# 18d. Assessment of sculpins in the Gulf of Alaska

Olav A. Ormseth and Todd T. TenBrink NMFS Alaska Fisheries Science Center

# **Executive Summary**

The following report summarizes the information currently known about sculpins (Families: Cottidae, Hemitripteridae, Psychrolutdiae, and Rhamphocottidae) in the Gulf of Alaska (GOA). Sculpin catch has increased in the last several years from 583 t in 2006 to 960 t in 2007 and 1,943 t in 2008. The 2009 catch as of October is also high at 1,146 t. These catches are mainly the result of increased catches of sculpins in the shallow-water flatfish fishery.

## Summary of changes in assessment inputs

- 1. Sculpin catch within the GOA fisheries was updated with complete 2008 and partial 2009 data as of October 7, 2009. In addition, catch data from 2003-2007 have been updated due to changes in the Catch Accounting System.
- 2. Biomass estimates from the 2009 GOA bottom trawl survey have been added.
- 3. Information on catch by target fishery, retention, and catch species composition has been updated through 2009.
- 4. Survey length compositions are updated with data from the 2009 survey.
- 5. Layout and tables have changed somewhat as the result of there being a new assessment author.

## Summary of results

As in the 2008 assessment, we recommend a Tier 5 approach for sculpins using M=0.19 and average survey biomass from the last four surveys (2003-2009). The 2009 survey biomass estimate for sculpins was 40,726 t, a substantial increase from the 2007 survey estimate of 32,468 t. This increase resulted in a slight increase in the recommended ABC and OFL. Catch has remained below the OFL for GOA sculpins, so the stock complex is not experiencing overfishing. Data are not available for assessing whether the population is overfished.

| harvest recommendations for GOA sculpins in 2010-2011 |                        |                  |         |      |         |  |  |  |  |
|-------------------------------------------------------|------------------------|------------------|---------|------|---------|--|--|--|--|
| М                                                     | average<br>biomass (t) | F <sub>ABC</sub> | ABC (t) | FOFL | OFL (t) |  |  |  |  |
| 0.19                                                  | 33,307                 | 0.1425           | 4,746   | 0.19 | 6,328   |  |  |  |  |
|                                                       | 20                     | 009 specifica    | tions   |      |         |  |  |  |  |
| 0.19                                                  | 30,836                 |                  | 4,394   |      | 5,859   |  |  |  |  |

# Introduction

## Description, scientific names, and general distribution

Sculpins are a group of benthic-dwelling predatory teleost fish, that include 46 species in waters off the coast of Alaska. Sculpins have been identified to species in the AFSC surveys since 2001. During AFSC surveys of the Gulf of Alaska, only 39 of 46 listed species of sculpins have been identified (Table 1). It is not clear whether the other 7 species exist in the GOA. Sculpin diversity is high in the GOA and many of these species are also found in the Bering Sea (Table 1). Sculpins are broadly distributed throughout the shelf and slope regions of the Gulf of Alaska occupying all benthic habitats and depths. In this assessment, we mainly focus on large sculpin species from the genera *Myoxocephalus*, *Hemitripterus*, and *Hemilepidotus* which observers from the North Pacific Groundfish Observer Program have recently begun to identify sculpin catch to genus.

### Management units

Sculpins are managed as part of the GOA Other Species complex, which also includes sharks, octopus and squid. A single TAC is specified for the entire Other Species complex. Historically this TAC was established as 5% or less of the sum of the TACs for all other assessed target species in the GOA Fishery Management Plan (FMP). In 2008, the North Pacific Fishery Management Council (NPFMC) adopted an amendment to set harvest specifications for the Other Species complex by calculating individual OFL and ABC for each species group and aggregating these into a single Other Species OFL and ABC. Sculpins are currently non-targets in the GOA, so future catch of sculpins may depend solely on the TAC and spatial temporal limitations placed on target fisheries. Vulnerability analyses indicate that sculpins could be managed as a separate assemblage and catch could be constrained within a spatial context.

## Reproductive Ecology

Recent studies on the reproductive biology of top 5 sculpin species in the Eastern Bering Sea Shelf area have given us much needed information of sculpin life history in Alaska. Prior to those studies much of the reproductive biology information comes from studies in the western North Pacific. Sculpins lay adhesive eggs in nests, and many exhibit parental care for eggs (Eschemeyer et al, 1983). Markevich (2000) observed the sea raven, *Hemitripterus villosus*, releasing eggs into crevices of boulders and stones in shallow waters in Peter the Great Bay, Sea of Japan. This type of reproductive strategy may make sculpin populations more sensitive to changes in benthic habitats than other groundfish species such as pollock, which are broadcast spawners with pelagic eggs. In the western Pacific, great sculpins Myoxocephalus polyacanthocephalus are reported to have late ages at maturity (5-8 years, Tokranov, 1985) despite being relatively short-lived (13-15 years), which suggests a limited reproductive portion of the lifespan relative to other groundfish species. Fecundity for the great sculpin off East Kamchatka waters ranged from 48,000 to 415,000 eggs (Tokranov, 1985). In contrast, preliminary information on reproduction for bigmouth sculpin (Hemitripterus bolini) in the Gulf of Alaska shows fecundity averaged 2283 eggs per female (Morgan Busby, AFSC, personal comm.). The diversity of sculpin species in the Gulf of Alaska suggests that each sculpin population might respond differently to environmental changes (whether natural or fishing induced). Within each sculpin species, observed spatial differences in fecundity, egg size, and other life history characteristics suggest local population structure (Tokranov, 1985).

### Life history (GOA-specific)

Information such as depth range, distribution, and maximum length has been collected for several years for many species during surveys. There are no GOA-specific age and growth, maturity data for sculpins identified in this management region. Known life history characteristics for selected sculpin species in the GOA are presented in Table 2. With the exception of data for bigmouth sculpins, all fecundity and maturity data in Table 2 are from outside GOA region.

## Fishery

There are no directed fisheries for sculpin species in the GOA at this time. Sculpins, in 2008, constituted about 65% of the GOA Other Species catch. Prior to 2005 when skates were still included in the complex they were 7-19% of the other species catch (Table 3). Retained catch of sculpin species in the GOA has increased recently from 7% in 2003 to 20% in 2009 (Table 3). Sculpins are caught incidentally by a wide variety of fisheries. Based on data from the NMFS AKRO the main fisheries that catch sculpins are the flatfish, Pacific cod, and IFQ halibut fisheries (Table 4). It is unclear which sculpin species were commonly taken in GOA groundfish fisheries prior to 2004, because observers did not regularly identify animals in these groups to species. Sculpin catch has increased in the last several years from 583 t in 2006 to 960 t in 2007 and 1,943 t in 2008. The 2009 catch as of October is also high at 1,146 t. These catches are mainly the result of increased catches of sculpins in the shallow-water flatfish fishery (Table 4).

In 2002-2003, the observer program of AFSC initiated a species identification project to address the need to gather basic population data for groups in the Other Species complex. Beginning in January 2004, sculpin catch was identified to genus for the larger sculpin species: *Hemilepidotus, Myoxocephalus, and Hemitripterus*. Several species of *Hemilepidotus* and *Myoxocephalus* have been identified from surveys. In Alaskan waters, *Hemitripterus* probably represents only one species, the bigmouth sculpin (Stevenson 2004). Another member of this genus that may occur in waters off the coast of Alaska, the sea raven (*H. villosus*), has never been identified in any of the GOA trawl surveys conducted by AFSC. It is reasonable to assume that all sculpins identified by observers as *Hemitripterus* sculpins were bigmouth sculpins. According to total catch figures for 2007 from the NMFS Alaska Regional Office (AKRO), the aforementioned large sculpin genera contributed the vast majority of all sculpin catch in the GOA region (Table 5).

The observer catch composition data in Table 5 show that in 2007, *Hemilepidotus* spp. (the Irish lords) made up 65% of the sculpin total observed catch. *Hemitripterus* spp. (bigmouth sculpin) constituted approximately 18% of the total sculpins. In 2008, the first year observers identified the top 5 species of sculpins to species, shows that *Hemilepidotus jordani* (yellow Irish lord) were 62% of all sculpin catch in the GOA, followed by Irish lord unidentified. In 2009 the catch percentage of *H. jordani* is lower but still the largest fraction of sculpin catch. *Myoxocephalus* species make up only a small part of GOA sculpin catches (Table 5).

## Data

### Survey data

#### **Biomass estimates**

Aggregate sculpin biomass in the GOA shows no clear trend, and should probably not be used as an indicator of population status for a complex with so much species diversity (Table 6). Trends in biomass were available for only selected sculpin species for the period 1984-2000due to difficulties with species identification and survey priorities. Species specific biomass estimates are available for the 2001-2009 surveys. Almost 95% of the sculpin biomass is dominated by the larger sculpin species in the GOA. Yellow Irish lord is the most abundant (~45.5% of the sculpin biomass), followed by the genera *Myoxocephalus* at ~27% and bigmouth sculpin at ~22% of the sculpin biomass (Table 7 and Figure 1).

Biomass trends show that the bigmouth sculpin declined between 1984 and 2001, but has remained relatively stable since then (Figure 1). Yellow Irish lord biomass has increased over the last three surveys, which has resulted in an increase in total sculpin biomass (Table 7 and Figure 2). The coefficient of variations (CVs) for the survey biomass estimates of 7 out of 12 sculpins species are below 0.3, suggesting that the GOA survey is doing an adequate job assessing the biomass of the more abundant species (Table 8).

Length frequency

Length measurements (fork length, FL in mm) have been collected for a variety of sculpin species during AFSC surveys. The four most abundant species from the GOA survey have been measured on every biennial survey since 2003: yellow Irish lord, plain sculpin, great sculpin and bigmouth sculpin (Figure 3). These length compositions have remained fairly stable during this period. One interesting observation is that the surveys tend to catch bigmouth sculpins on the higher side of the length range, similar to the length observations of bigmouth from the eastern Bering Sea (EBS) shelf survey. Although little information is known about bigmouth sculpin life history, this may suggest that the younger or smaller bigmouth sculpins occur in areas not sampled well by the surveys.

| Species           | 2003 | 2005 | 2007 | 2009 |
|-------------------|------|------|------|------|
| yellow Irish lord | 917  | 1034 | 1044 | 2573 |
| plain sculpin     | 81   | 126  | 176  | 153  |
| great sculpin     | 208  | 201  | 209  | 304  |
| bigmouth sculpin  | 81   | 61   | 51   | 64   |

Sample sizes for length frequency analysis for GOA:

## Analytic Approach

Sculpins in the GOA are managed under Tier 5, where OFL = M \* average survey biomass and ABC = 0.75 \* M \* average survey biomass. Average biomass was calculated as the average of the last 4 GOA trawl survey estimates (Table 6). The following methods were employed to evaluate natural mortality with life history parameters: Alverson and Carney 1975, Pauly 1980, Charnov 1993, Hoenig 1983, Rikhter and Efanov 1976. Little information was available for sculpin stocks in the GOA FMP area, so M was estimated by applying these methods to data for Russian sculpin species. Considering the uncertainty inherent in applying this method to sculpin species and stocks not found in the GOA, as well as that great and plain sculpin are the most abundant in the GOA and have estimates of M in the literature, we elected to use the lowest estimate of M, 0.19, which is one of the estimates for great sculpin (Table 8). Although new estimates of M are available for sculpins in the BSAI, no new data are available for the GOA and we recommend keeping the status quo until GOA-specific estimates are available.

## Results

Applying the M estimate of 0.19 to the average survey biomass estimates, we calculate an ABC of  $0.75 \times 0.19 \times (33,307) = 4,746$  t for the GOA. The GOA OFL is calculated as  $0.19 \times (33,307) = 6,328$  t for the GOA.

Because sculpin life histories differ substantially from other species groups in the GOA Other Species complex, we recommend that sculpins be managed as a separate complex with its own harvest specifications. In the unlikely event that target fisheries develop for some sculpin species, we recommend that each targeted sculpin species be managed separately, and that directed fishing only be allowed when sufficient life history information becomes available to make reasonable species specific estimates of productivity.

# **Ecosystem Considerations**

## Ecosystem Effects on Stock

Little is known about sculpin food habits in the GOA, especially during fall and winter months. Limited information indicates that in the GOA the larger sculpin species prey on shrimp and other benthic invertebrates, as well as some juvenile walleye pollock (Figure 4). In the GOA the main predator of large sculpins are Pacific halibut, pinnipeds, small demersal fish and sablefish (Figure 4). Other sculpins in the GOA feed mainly on shrimp and benthic crustaceans (Figure 5). Other sculpins are mainly preyed upon by Pacific cod and is the main source of mortality (Figure 5). Source of above information from Aydin et al. (2007).

## Fishery Effects on the Ecosystem

Analysis of ecosystem considerations for those fisheries that affect the stocks within this complex (see Table 4) is given in the respective fisheries SAFE chapter. The GOA Sculpin complex is not a targeted fishery, therefore reference to the effects of the fishery on the ecosystem will be described in those chapters of the fisheries that catch sculpins incidentally.

| cosystem effects on Scul  | pin complex                            |                   |             |  |
|---------------------------|----------------------------------------|-------------------|-------------|--|
| dicator                   | Observation                            | Interpretation    | Evaluation  |  |
| ey availability or abunda | unce trends                            |                   |             |  |
|                           | Stomach contents, ichthyoplankton      |                   | Probably no |  |
| Zooplankton               | surveys, changes mean wt-at-age        | No affect         | concern     |  |
| a. Predator p             | opulation trends                       |                   |             |  |
|                           | Fur seals declining, Steller sea lions |                   | Probably no |  |
| Marine mammals            | increasing slightly                    | No affect         | concern     |  |
|                           | Stable, some increasing some           |                   | Probably no |  |
| Birds                     | decreasing                             | No affect         | concern     |  |
| Fish (Pollock, Pacific    |                                        |                   | Probably no |  |
| cod, halibut)             | Stable to increasing                   | Affects not known | concern     |  |
| b. Changes in             | habitat quality                        |                   |             |  |
|                           |                                        |                   | Unknown     |  |
| Temperature regime        | None                                   | Affects not known |             |  |
| Winter-spring             |                                        |                   |             |  |
| environmental             |                                        | Probably a number |             |  |
| conditions                | None                                   | of factors        | Unknown     |  |
|                           | Fairly stable nutrient flow from       | Inter-annual      |             |  |
| Production                | upwelled BS Basin                      | variability low   | No concern  |  |

## Data gaps and research priorities

Severe data gaps exist in sculpin species life history characteristics, spatial distribution and abundance in Alaskan waters. Most importantly no data on maximum age exists for the four main sculpin species in the GOA. Therefore, collections for age data on Yellow Irish lord, Great sculpin, bigmouth sculpin and plain sculpin are needed from the GOA. It is essential that we continue to improve species identifications as well as collecting life history information from the fisheries. Over 90% of all sculpins caught in the fisheries of the GOA in 2004 were from the genera *Myoxocephalus*, *Hemitripterus*, and *Hemilepidotus*. Collecting seasonal food habits data (with additional summer collections) would help to clarify the role of

both large and small sculpin species within the GOA ecosystem. These data are necessary in deciding creative management strategies for non-target species.

#### **Literature Cited**

- Alverson, D.L., and M.J. Carney. 1975. A graphic review of the growth and decay of population cohorts. J. Cons. Int. Explor. Mer 36:133-143.
- Aydin, K., S. Gaichas, I. Ortiz, D. Kinzey, and N. Friday. 2007. A comparison of the Bering Sea, Gulf of Alaska, and Aleutian Islands large marine ecosystems through food web modeling. NOAA Tech Memo.178 298pp.
- Charnov, E.L. 1993. Life history invariants some explorations of symmetry in evolutionary ecology. Oxford University Press Inc., New York. 167p.
- Eschmeyer, W.N., E.S. Herald, and H. Hammann, 1983. A field guide to Pacific coast fishes of North America. Houghton Mifflin Co., Boston: 336 pp.
- Gaichas, S.K., D. Courtney, T. TenBrink, M. Nelson, S. Lowe, J. Hoff, B. Matta and J. Boldt. 2004. BSAI Squid and Other species stock assessment. In Stock Assessment and Fishery Evaluation Report for the Groundfish Resources of the Gulf of Alaska Region. North Pacific Fishery Management Council, 605 W. 4th Ave., Suite 306, Anchorage, AK 99501.
- Hoenig, J.M. 1983. Empirical use of longevity data to estimate mortality rates. Fish. Bull. 82: 898-903.
- Markevich, A. 2000. Spawning of the sea raven *Hemitripterus villosus* in Peter the Great Bay, Sea of Japan. Russian Journal of Marine Biology 26(4): 283-285.
- Pauly, D. 1980. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. J. Cons. Int. Explor. Mer 39(2):175-192.
- Rikhter, V.A., and V.N. Efanov. 1976. On one of the approaches to estimation of natural mortality of fish populations. ICNAF Res. Doc. 76/VI/8. Serial N. 3777. 13p.
- Roff, D.A. 1986. The evolution of life history parameters in teleosts. Can. J. Fish. Aquat. Sci. 41:989-1000.
- Stevenson, D.E. 2004. Identification of skates, sculpins, and smelts by observers in North Pacific groundfish fisheries (2002-2003). U.S. Dept. Commer., NOAA Tech. Memo. NMFS-AFSC-142, 67p.
- Tokranov, A.M., 1985. Reproduction of great sculpin, *Myoxocephalus polyacanthocephalus* (Cottidae) in Kamchatka waters. J. Ichthyol. 24(4):119-127.

| Family          | Scientific name                   | Common name              |
|-----------------|-----------------------------------|--------------------------|
| Cottidae        | Artediellus pacificus             | Pacific hookear sculpin  |
|                 | Artedius lateralis                | Smoothhead sculpin       |
|                 | Bolinia euryptera                 | Broadfin sculpin         |
|                 | Enophyrs bison                    | Buffalo sculpin          |
|                 | Enophrys diceraus                 | Antlered sculpin         |
|                 | Gymnocanthus galeatus             | Armorhead sculpin        |
|                 | Gymnocanthus pistilliger          | Threaded sculpin         |
|                 | Hemilepidotus hemilepidotus       | Red Irish Lord           |
|                 | Hemilepidotus jordani             | Yellow Irish Lord        |
|                 | Hemilepidotus papilio             | Butterfly sculpin        |
|                 | Hemilepidotus spinosus            | Brown Irish lord         |
|                 | Hemilepidotus zapus               | Longfin Irish lord       |
|                 | Icelinus borealis                 | Northern sculpin         |
|                 | Icelinus burchami                 | Dusky sculpin            |
|                 | Icelinus filamentosus             | Threadfin sculpin        |
|                 | Icelinus tenuis                   | Spotfin sculpin          |
|                 | Icelus spatula                    | Spatulate sculpin        |
|                 | Icelus spiniger                   | Thorny sculpin           |
|                 | Icelus uncinalis                  | Uncinate sculpin         |
|                 | Jordania zonope                   | Longfin sculpin          |
|                 | Leptocottus armatus               | Pacific staghorn sculpin |
|                 | Microcottus sellaris              | Brightbelly sculpin      |
|                 | Myoxocephalus jaok                | Plain sculpin            |
|                 | Myoxocephalus polyacanthocephalus | Great sculpin            |
|                 | Myoxocephalus verrucocus          | Warty sculpin            |
|                 | Paricelinus hopliticus            | Thornback sculpin        |
|                 | Radulinus asprellus               | Slim sculpin             |
|                 | Rastrinus scutiger                | Roughskin sculpin        |
|                 | Thecopterus aleuticus             | Whitetail sculpin        |
|                 | Thyriscus anoplus                 | Sponge sculpin           |
|                 | Triglops forficatus               | Scissortail sculpin      |
|                 | Triglops macellus                 | Roughspine sculpin       |
|                 | Triglops metopias                 | Crescent-tail sculpin    |
|                 | Triglops pingelii                 | Ribbed sculpin           |
|                 | Triglops septicus                 | Spectacled sculpin       |
| Hemitripteridae | Blepsias bilobus                  | Crested sculpin          |
|                 | Hemitripterus bolini              | Bigmouth sculpin         |
|                 | Nautichthys oculofasciatus        | Sailfin sculpin          |
|                 | Nautichthys pribilovius           | Eyeshade sculpin         |
| Psychrolutidae  | Dasycottus setiger                | Spinyhead sculpin        |
| 1 sy em orandue | Eurymen gyrinus                   | Smoothcheek sculpin      |
|                 | Malacoccottus zonurus             | Darkfin sculpin          |
|                 | Malacocottus kincaidi             | Blackfin sculpin         |
|                 | Psychrolutes paradoxus            | Tadpole sculpin          |
|                 | Psychrolutes phrictus             | Blob sculpin             |
| Rhamphocottidae | Rhamphocottus richardsoni         | Grunt sculpin            |
| Knamphocottiuae | кнатрносония непагазони           | Grunt scuipin            |

Table 1. Sculpin species that have been observed during AFSC GOA bottom trawl surveys.

| Species                | common name       | maximum<br>length (cm) |    | maximum age |     | fecundity        | age at<br>50% |
|------------------------|-------------------|------------------------|----|-------------|-----|------------------|---------------|
| Species                | common name       | O GOA                  |    | 0           | GOA | ( <b>x1000</b> ) | maturity      |
| Myoxocephalus joak     | plain             | 75                     | 59 | 15          |     | 25.4 - 147       | 5 - 8         |
| M. polyacanthocephalus | great             | 82                     | 72 | 13          |     | 48 - 415         | 6 - 8         |
| M. verrucosus          | warty             | 78                     |    |             |     | 2.7              |               |
| Hemitripterus bolini   | bigmouth          | 83                     | 86 |             |     | 2.3              |               |
| Hemilepidotus jordani  | yellow Irish lord | 65                     | 50 | 13          |     | 25 - 241         | 6 - 7         |
| H. papilio             | butterfly         | 38                     |    |             |     |                  |               |
| G. pistilliger         | threaded          | 27                     |    | 13          |     | 5 - 41           |               |
| G. galeatus            | armorhead         | 46                     | 28 | 13          |     | 12 - 48          |               |
| Dasycottus setiger     | spinyhead         | 45                     | 22 | 11          |     |                  |               |
| Icelus spiniger        | thorny            | 17                     |    |             |     |                  |               |
| Triglops pingeli       | ribbed            | 20                     |    | 6           |     | 1.8              |               |
| T. forficate           | scissortail       | 30                     | 28 | 6           |     | 1.7              |               |
| T. scepticus           | spectacled        | 25                     |    | 8           |     | 3.1              |               |

Table 2. Life history information available for selected GOA sculpin species. "O" designates data was obtained from individuals of that species outside the GOA region.

References: AFSC; Panchenko 2002; Panchenko 2003; Tokranov 1985; Andriyashev 1954; Tokranov 1988a; Tokranov 1988b; Tokranov 1995; Tokranov and Orlov 2001; Busby, AFSC, personal comm. Notes: Estimate of Natural mortality (M) is the lowest estimate of M derived from several methods as presented in Gaichas et al. (2004); blanks indicate no life history data found.

Table 3. GOA total sculpin complex catch, retention rate, total Other Species catch, and sculpin percentage of Other Species catch, 1997-2009\*. Source: AKRO Catch Accounting System except for retention rate, which was estimated from fishery observer data obtained from the AFSC Fishery Monitoring and Analysis program.

| Year       | Sculpin complex<br>total catch | retention rate | Other species total catch | Percent of Other<br>Species catch |
|------------|--------------------------------|----------------|---------------------------|-----------------------------------|
| 1997       | 898                            |                | 4,823                     | 19%                               |
| 1998       | 526                            |                | 7,422                     | 7%                                |
| 1999       | 544                            |                | 3,788                     | 14%                               |
| 2000       | 940                            |                | 5,455                     | 17%                               |
| 2001       | 587                            |                | 3,383                     | 17%                               |
| 2002       | 919                            |                | 8,162                     | 11%                               |
| 2003       | 629                            | 7%             | 6,262                     | 10%                               |
| 2004       | 816                            | 9%             | 5,865                     | 14%                               |
| $2005^{+}$ | 626                            | 16%            | 2,512                     | 25%                               |
| 2006       | 583                            | 16%            | 3,882                     | 15%                               |
| 2007       | 960                            | 19%            | 3,026                     | 32%                               |
| 2008       | 1,943                          | 14%            | 2,984                     | 65%                               |
| 2009*      | 1,146                          | 20%            | 2,085                     | 55%                               |

+ Beginning in 2005, skates were removed from Other Species complex.

\* 2009 data as of October 7, 2009.

| target fishery      | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009* |
|---------------------|------|------|------|------|------|------|-------|
| arrowtooth flounder | 16   | 7    | 19   | 36   | 38   | 16   | 16    |
| deep flatfish       | 17   | 4    | 1    | 6    | 5    | 1    | 3     |
| flathead sole       | 1    | 125  | 2    | 1    | 0    | 18   | 2     |
| IFQ_halibut         | 36   | 43   | 20   | 15   | 27   | 152  | 113   |
| other target        | 22   | 0    | 10   | 0    | 7    | 0    | 10    |
| Pacific cod         | 69   | 412  | 294  | 351  | 437  | 740  | 487   |
| rex sole            | 27   | 19   | 11   | 7    | 8    | 4    | 26    |
| rockfish            | 24   | 58   | 28   | 32   | 31   | 23   | 34    |
| sablefish           | 1    | 2    | 17   | 4    | 7    | 2    | 18    |
| shallow flatfish    | 113  | 129  | 199  | 125  | 376  | 969  | 425   |
| pollock             | 1    | 0    | 0    | 2    | 22   | 15   | 6     |

Table 4. Total GOA sculpin catch (mt) by target fishery, 2003-2009. *Source: AKRO Catch Accounting System.* 

\* 2009 data are as of October 7, 2009.

Table 5. Estimated species composition of GOA incidental sculpin catches, 2007-2009\*, based on fishery observer data. *Source: NMFS AFSC Fishery Monitoring and Analysis Program.* 

|                            | 2007  | 2008  | 2009* |
|----------------------------|-------|-------|-------|
| Hemitripterus spp.**       | 18.0% |       |       |
| H. bolini                  |       | 7.8%  | 16.1% |
| <i>Hemilepidotus</i> spp.  | 65.0% |       |       |
| Hemilepidotus unidentified |       | 16.4% | 23.6% |
| H. hemilepidotus           |       | <1%   | <1%   |
| H. jordani                 |       | 61.7% | 37.3% |
| Myoxocephalus spp.         | 9.0%  |       |       |
| Myoxocephalus unidentified |       | <1%   | 2.9%  |
| M. verrucosus              |       | <1%   | <1%   |
| M. jaok                    |       | <1%   | <1%   |
| M. polyacanthocephalus     |       | 10.0% | 5.4%  |
| Miscellaneous sculpins§    | 8.0%  | 3.4%  | 14.1% |

\* 2009 data are incomplete.

\*\* Hemitripterus spp. probably represents only one species (bigmouth sculpin).

§ Miscellaneous sculpins includes unidentified sculpins as well as darkfin, scissortail, and longfin Irish lord.

Table 6. Sculpin complex biomass estimates based on NMFS bottom-trawl surveys, 1984-2007.

| Year | Biomass | CV   |
|------|---------|------|
| 1984 | 40,954  | 0.08 |
| 1987 | 31,328  | 0.11 |
| 1990 | 25,556  | 0.18 |
| 1993 | 25,371  | 0.12 |
| 1996 | 31,313  | 0.26 |
| 1999 | 30,783  | 0.11 |
| 2001 | 30,418  | 0.28 |
| 2003 | 26,514  | 0.09 |
| 2005 | 33,519  | 0.09 |
| 2007 | 32,468  | 0.11 |
| 2009 | 40,726  | 0.11 |

| species           |        |        |        | biomass |        |        |        | CV   |
|-------------------|--------|--------|--------|---------|--------|--------|--------|------|
|                   | 1996   | 1999   | 2001*  | 2003    | 2005   | 2007   | 2009   | 2009 |
| crested           | -      | -      | 6      | -       | -      | -      | -      | -    |
| spinyhead         | 278    | 271    | 690    | 608     | 463    | 422    | 410    | 0.14 |
| antlered          | -      | -      | 1      | -       | -      | -      | -      | -    |
| armorhead         | 13     | 15     | 60     | 78      | 28     | 58     | 216    | 0.22 |
| threaded          | 3      | -      | 21     | <1      | 2      | -      | 2      | 0.70 |
| yellow Irish lord | 17,804 | 20,255 | 20,945 | 12,064  | 15,952 | 15,720 | 25,219 | 0.16 |
| butterfly         | <1     | 1      | -      | -       | -      | -      | -      | -    |
| bigmouth          | 4,246  | 3,983  | 3,471  | 5,767   | 5,543  | 3,126  | 3,154  | 0.19 |
| thorny            | 1      | -      | 1      | <1      | <1     | <1     | <1     | -    |
| Pacific staghorn  | -      | 1      | 2      | -       | 14     | -      | 8      | 0.63 |
| darkfin           | 477    | 371    | 335    | 607     | 944    | 790    | 614    | 0.22 |
| plain             | 1,015  | 1,692  | 932    | 1,220   | 3,912  | 4,456  | 2,562  | 0.30 |
| great             | 7,326  | 3,913  | 3,540  | 6,037   | 6,574  | 7,734  | 8,215  | 0.18 |
| warty             | -      | -      | 339    | -       | -      | 33     | -      | -    |
| scissortail       | 60     | 47     | 62     | 94      | 23     | 30     | 111    | 0.49 |
| spectacled        | 90     | 233    | 12     | 40      | 105    | 96     | 68     | 0.83 |
| total             | 31,313 | 30,782 | 30,417 | 26,515  | 33,560 | 32,468 | 40,726 | 0.11 |

Table 7. GOA trawl survey biomass estimates (mt) for individual sculpin species, 1996-2009, with 2009 CV.

\* The 2001 trawl survey did not cover the eastern GOA, so those numbers are not directly comparable.

| Species                 | Area                | Sex     | Hoenig | Rikhter &<br>Efanov | Alverson<br>&<br>Carney | Charnov |
|-------------------------|---------------------|---------|--------|---------------------|-------------------------|---------|
| Arctic staghorn sculpin | W. Bering<br>Sea    | males   | 0.53   |                     |                         |         |
|                         | W. Bering<br>Sea    | females | 0.47   |                     |                         |         |
|                         |                     |         |        | 0.41                |                         |         |
| Common staghorn sculpin | Kamchatka           | males   | 0.32   | 0.32                |                         |         |
|                         | Kamchatka           | females | 0.25   | 0.26                |                         |         |
| Red Irish Lord          | Puget<br>Sound      |         | 0.70   |                     |                         |         |
| Threaded sculpin        | E. Bering<br>Sea    | males   | 0.42   |                     | 0.36                    | 0.65    |
|                         |                     | females | 0.47   |                     | 0.58                    | 0.40    |
| Armorhead sculpin       | Kamchatka           | males   | 0.38   |                     |                         |         |
|                         | Kamchatka           | females | 0.32   |                     |                         |         |
| Great sculpin           | Kamchatka           | males   | 0.47   | 0.32                |                         |         |
|                         | Kamchatka           | males   | 0.00   | 0.26                |                         |         |
|                         | Kamchatka           | females | 0.32   | 0.22                |                         |         |
|                         | Kamchatka<br>Sea of | females |        | 0.19                |                         |         |
| Plain sculpin           | Japan               | males   | 0.35   | 0.41                |                         |         |
|                         | Sea of<br>Japan     | males   |        | 0.32                |                         |         |
|                         | Sea of<br>Japan     | females | 0.28   | 0.26                |                         |         |
|                         | Sea of<br>Japan     | females |        | 0.22                |                         |         |

Table 8. List of available natural mortality information for sculpins.



Figure 1. Species composition of the sculpin complex in the GOA. Data are from the 2003-2009 AFSC GOA bottom trawl surveys.



Figure 2. Time series of trawl survey biomass estimates for selected sculpin species and all sculpins combined in the GOA, 1984-2009.



Figure 3. Length composition (fork length, FL in mm) from survey data for the 4 most abundant sculpin species in the GOA, 2003-2009.

6%

4%

2%

0%

  5%

0%

 220 -



Figure 4. Diet, consumption and mortality information for Large Sculpins in the GOA.



Figure 5. Diet, consumption and mortality information for Other Sculpins in the GOA.