CHAPTER 10

OTHER FLATFISH

by

Thomas K. Wilderbuer, Daniel G. Nichol and Paul D. Spencer

EXECUTIVE SUMMARY

The following changes have been made to this assessment relative to the November 2006 SAFE:

Changes in the input data

- 1) The 2007 catch (total and discarded) was updated, and catch through 8 September, 2007 were included in the assessment.
- 2) 2007 Eastern Bering Sea trawl survey biomass estimates and standard errors of other flatfish species are included in the assessment. A linear regression of the AI survey estimates was used to predict the AI biomass in 2007, when an AI survey did not occur.

	07 Assessment commendations	2006 Assessment recommendations
Exploitable biomass	149,497 t	149,292 t
ABC	21,591 t	21,396 t
Overfishing	28,788 t	28,528 t
F _{ABC} for rex sole	0.13	0.13
F _{overfishing} for rex sole	0.17	0.17
F _{ABC} for Dover sole	0 .064	0.064
F _{overfishing} for Dover sole	0.085	0.085
F _{ABC} for the remaining species	0.20	0.20
Foverfishing for the remaining spec	ies 0.15	0.15

Response to SSC comments

The SSC encourages explorations of bottom temperature relationships with catchability for the other species in the other flatfish complex. It would be useful to be able to identify indicator species that are particularly sensitive to changes in environmental conditions, and also in scaling biomass estimates appropriately for different species in the complex.

No progress was made on these types of explorations in 2007.

The SSC notes the catch estimates in the BSAI plan team introduction on page 20 mislabels the catch and ABC columns for 2005 and 2006, creating a corresponding error in the text. The TAC was exceeded by 31% in 2004 and 56% in 2005. The TAC was not exceeded in 2006.

Preliminary specified TACs for "other flatfish" are usually a balance between the available Pollock and Pacific cod TACs and the 2.0 million metric t groundfish cap. In 2004 and 2005 there was not enough room under the cap to provide a larger TAC for "other flatfish" and still fulfill the desires of the fishing industry. Thus the annual catch exceeded the TAC when these species were captured, primarily in the pursuit of other flatfish species. However, in neither year did the catch exceed the ABC.

Although biomass estimates for the dominant species are increasing, the harvest of the remaining species category listed in Table 10.2 was the lowest in the series for 2005 and 2006. The SSC requests that the "remaining species" category in Table 10.2 be speciated to track relative changes in catch, and that all "other flatfish" species in the survey data be listed individually in Table 10.5.

The requested changes were made to Tables 10.2 and 10.5.

Introduction

The Bering Sea/Aleutian Islands "other flatfish" group have typically included those flatfish besides rock sole, yellowfin sole, arrowtooth flounder, and Greenland turbot. Flathead sole (*Hippoglossoides elassodon*) were part of the other flatfish complex until they were removed in 1995, and Alaska plaice was removed from the complex in 2002, as sufficient biological data exists for these species to construct age-structured population models. In contrast, survey biomass estimates are the principal data source used to assess the remaining other flatfish. Although over a dozen species (Table 10.1) of flatfish are found in the BSAI area, the other flatfish biomass consists primarily of starry flounder, rex sole, longhead dab, Dover sole and butter sole.

Catch History

The miscellaneous species of the other flatfish species category are listed in Table 10.1, and their catches from 1995-2007 are shown in Table 10.2. These species are not pursued as fishery targets but are captured in fisheries for other species. Catch from 1995-2003 were obtained from the NMFS Regional Office "blend" data, and the catch for some species are reported by species and in an aggregate flatfish group. The catch estimates for these years were produced by applying the proportional catch, by species, from fishery observer data to the estimated total catch for the aggregate other flatfish group, and adding this total to the catch that was reported by species. In the newer catch accounting system (in use since 2003), catches of other flatfish are reported only in an aggregate group, and the catch estimates for these years were produced by applying the proportional catch, by species, from fishery observer data to the estimated total catch of the aggregate group. In recent years, starry flounder (*Platichthys stellatus*) and rex sole (*Glyptocephalus zachirus*) account for most of the harvest of other flatfish, and contributed 88% of the harvest of other flatfish in 2007.

Other flatfish are grouped with Alaska plaice, rock sole, and flathead sole and other flatfish fisheries in a single prohibited species group (PSC) classification, with seasonal and total annual allowances of prohibited bycatch applied to the group. In recent years, this group of fisheries has been closed prior to attainment of the TAC due to the bycatch of halibut (Table 10.3). In 2007 the other flatfish harvest was subject to 3 closures: the first and second seasonal closures to prohibit further halibut retention, and the annual halibut cap closure as detailed in Table 10.3.

DATA

Absolute Abundance and Exploitation Rates

The biomass of the other flatfish complex on the eastern Bering Sea shelf has been relatively stable from 1983-1995, averaging 50,200 t, and has slightly increased from 1996 to 2005, averaging 84,500 t (Table 10.4). The 2007 biomass estimate of 133,491 t of other flatfish on the EBS shelf is the highest estimate since surveys began in 1982 and the 2006 Aleutian Islands trawl survey biomass estimate of 16,440 is the highest observed there as well. The increases are primarily due to the higher estimate of starry flounder on the Eastern Bering Sea shelf. An estimate of total BSAI biomass for the years in which an AI survey was not conducted (as in

2007) was calculated by regressing the AI survey biomass against the EBS survey biomass and adding the predicted AI biomass estimate to the observed EBS estimate. Individual species biomass estimates for the EBS and AI areas from 1997-2007 are shown in Table 10.5. Estimates of species biomass for starry flounder, rex sole, and butter sole in the Aleutian Islands were computed by fitting a linear trend to the observed survey data from 1991-2006, and using this trend to estimate biomass in years without an Aleutian Island survey. Estimate of total BSAI biomass (Table 10.6) were then used to compute species-specific exploitation rates.

Exploitation rates for starry flounder and rex sole have been low, not exceeding 0.10 from 1997 to 2007 (Table 10.6). The exploitation rates for butter sole have been higher, exceeding 0.14 in 1997, 2000, 2001, and 2003-2007, but the biomass estimates from which these were calculated for butter sole have large sampling variances, with coefficients of variation ranging from 0.44 to 0.86 in recent EBS trawl surveys dating back to 1999.

The 2003 biomass estimate of butter sole of 429 t is less than one-fourth the 2002 estimate of 2382, and results in an estimated exploitation rate of nearly 70%. However, butter sole were only captured in four hauls in the 2003 EBS trawl survey, leading to the large coefficient of variation of 0.61 for the estimated biomass. In addition, the bulk of the 2003 fishery catch came primarily from waters less than 50 m in January and February, a depth and time not covered by the trawl survey. Thus, it is likely that the population of butter sole is larger than that indicated from the survey, and the comparison of survey biomass to harvest should be interpreted accordingly. The 2007 biomass estimate of butter sole was 1104 t, between four and five times the 2003 estimate, with a high CV in both the shelf survey (0.53) and in the Aleutian Islands (0.98).

Several species of other flatfish are relatively rare on the EBS shelf, including Dover sole, Sakhalin sole, and English sole, and it is useful to identify whether the EBS represents the edge of the distribution for these species. The distribution of English sole has been identified as Baja California to Unimak Island, and the distribution of Dover sole has been identified as from Baja California to the Bering Sea (Hart 1973). Thus, the eastern Bering Sea can be considered the periphery of the range for these species. They are much more abundant in the Gulf of Alaska. For example, the abundance of Dover sole in the 1984-2001 GOA surveys has fluctuated between 63,000 t and 96,000 t, the abundance of butter sole has fluctuated between 17,000 t and 30,000 t, and the abundance of English sole has fluctuated between 3,000 t and 14,000 t (Turnock et al. 2005). Dover sole and English sole were most common in the eastern portion of the GOA, consistent with their reported distribution along the west coast of North America. In the case of Sakhalin sole, which prefer colder water and are caught at the northern extent of the survey, their perceived abundance from survey biomass estimates may be related to annual mean bottom water temperature (Fig 10.1).

PROJECTIONS AND HARVEST ALTERNATIVES

Reference Fishing Mortality Rates and Yields

Other flatfish are assessed under Tier 5 of Amendment 56 to the BSAI groundfish management plan, and thus have harvest recommendations which are directly calculated from estimates of

biomass and natural mortality. The natural mortality rates used in age-structured BSAI flatfish assessments can be used as guidance and are presented below:

Species	Natural mortality rate used for stock assessment
BSAI Yellowfin sole	0.12
BSAI Rock sole	0.15
BSAI Flathead sole	0.20
BSAI Alaska plaice	0.25
GOA Rex sole	0.17
GOA Dover sole	0.085

Natural mortlity values for rex and Dover sole are available from age-structured assessments in the Gulf of Alaska SAFE document (Turnock and A'mar 2005 and Stockhausen et al. 2005) and those published values are used for rex and Dover sole in this stock assessment. For the remaining flatfish species, where less information is available, an assumption of M=0.2 appears reasonable given the range of values shown above. For the case of starry flounder where estimates are available from a west coast stock assessment (Ralston 2005), the high estimates of M (male = 0.45, female = 0.3) are not used here due to the uncertainty of the estimates and the large spatial difference between the two management areas.

The estimates of F_{abc} and F_{ofl} under tier 5 are 0.75M and M, respectively, and the ABC and OFL levels are the product of the fishing mortality rate and the biomass estimate. Given the F_{abc} and F_{ofl} levels of 0.15 and 0.20, and the biomass estimate of 149,497 t, the resulting ABC and OFL levels are 21,591 and 28,788 t.

·	$\mathbf{F}_{\mathbf{ABC}}$	$\mathbf{F_{OFL}}$	ABC	OFL
Rex sole	0.13	0.17	3,959	5,279
Dover sole	0.064	0.085	100	133
Others	0.15	0.20	17,532	23,377
Total Other			21,591	28,788
flatfish				

Summary

In summary, several quantities pertinent to the management of the other flatfish are listed below.

Quantity	Value
Tier	5
Year 2007 Total Biomass	149,497 t
OFL	28,788 t
Maximum allowable ABC	21,591 t
Recommended ABC	21,591 t

REFERENCES

- Hart, J.L. 1973. Pacific fishes of Canada. Fisheries Research Board of Canada, Bulletin 180, Ottawa. 740 pp.
- Ralston, S. 2005. Starry flounder. An assessment of starry flounder off California, Oregon and Washington. <u>In</u> Status of the Pacific coast groundfish fisheries through 2005. Stock assessment and fishery evaluation. Pacific Fishery Management Council, Portland Oregon.
- Spencer, P.D., T.K. Wilderbuer, and C.I. Zhang. 2002. A mixed-species yield per recruit model for eastern Bering Sea flatfish fisheries. Can J. Fish. Aquat. Sci. 59:291-302.
- Stockhausen, W.T., B. J. Turnock, A. T. A'mar, M. E. Wilkins and M. H. Martin. 2005. Gulf of Alaska Dover Sole. In Stock Assessment and Fishery Evaluation Document for Groundfish Resources in the Gulf of Alaska Region as Projected for 2002. North Pacific Fishery Management Council, P.O. Box 103136, Anchorage Alaska 99510.
- Turnock, B.J., T.K. Wilderbuer, and E.S. Brown. 2001. Gulf of Alaska flatfish. <u>In Stock</u> Assessment and Fishery Evaluation Document for Groundfish Resources in the Gulf of Alaska Region as Projected for 2006. North Pacific Fishery Management Council, P.O. Box 103136, Anchorage Alaska 99510.
- Turnock, B.J. and Z. T. A'mar. 2005. Gulf of Alaska rex sole stock assessment. <u>In Stock</u> Assessment and Fishery Evaluation Document for Groundfish Resources in the Gulf of Alaska Region as Projected for 2006. North Pacific Fishery Management Council, P.O. Box 103136, Anchorage Alaska 99510.

Table 10.1. Flatfish species of the Bering Sea/Aleutian Islands "other flatfish" management complex.

Common Name	Scientific Name
Arctic flounder	Liopsetta glacialis
butter sole	Isopsetta isolepis
curlfin sole	Pleuronectes decurrens
deepsea sole	Embassichths bathybus
Dover sole	Microstomus pacificus
English sole	Parophrys vetulus
longhead dab	Limanda proboscidea
Pacific sanddab	Citharichthys sordidus
petrale sole	Eopsetta jordani
rex sole	Glyptocephalus zachirus
roughscale sole	Clidodoerma asperrimum
sand sole	Psettichthys melanostictus
slender sole	Lyopsetta exilis
starry flounder	Platichthys stellatus
Sakhalin sole	Pleuronectes sakhalinensis

Table 10.2. Harvest (t) of other flatfish from 1995-2007. 2007 catch is through September 8, 2007.

	Starry	Rex	Butter	longhead	Dover	English	deep sea	Sakhalin			
Year	Founder	Sole	Sole	dab	sole	sole	sole	sole	Total	ABC	TAC
1995	398	673	157	7	59	26	4	0	1324	117000	19540
1996	1171	1148	218	175	6	0	0	30	2748	102000	35000
1997	1043	687	448	211	53	0	29	6	2490	97500	50750
1998	402	998	229	93	41	0	0	0	1765	164000	89434
1999	725	998	230	56	81	27	0	0	2117	154000	154000
2000	1151	1069	458	277	66	4	0	0	3027	117000	83813
2001	755	869	244	62	70	4	6	0	2028	122000	28000
2002	1075	1192	222	107	34	0	1	0	2631	18100	3000
2003	887	1399	296	125	39	2	0	0	2749	16000	3000
2004	2062	1858	514	146	82	6	0	0	4669	13500	3000
2005	2069	2001	487	25	16	1	0	0	4599	21400	3500
2006	1663	1266	261	33	10	0	0	0	3233	18100	3500
2007	4080	760	542	82	4	2	0	0	5470	21400	10000

Table 10.3. Restrictions on the "other flatfish" fishery from 1995 to 2006 in the Bering Sea – Aleutian Islands management area. Note that in 1994, the other flatfish category included flathead sole. Unless otherwise indicated, the closures were applied to the entire BSAI management area. Zone 1 consists of areas 508, 509, 512, and 516, whereas zone 2 consists of areas 513, 517, and 521.

Year	Dates	Bycatch Closure
1995	2/21 - 3/30	First Seasonal halibut cap
	4/17 - 7/1	Second seasonal halibut cap
	8/1 – 12/31	Annual halibut allowance
1996	2/26 - 4/1	First Seasonal halibut cap
	4/13 - 7/1	Second seasonal halibut cap
	7/31 – 12/31	Annual halibut allowance
1997	2/20 - 4/1	First Seasonal halibut cap
	4/12 - 7/1	Second seasonal halibut cap
	7/25 – 12/31	Annual halibut allowance
1998	3/5 - 3/30	First Seasonal halibut cap
	4/21 - 7/1	Second seasonal halibut cap
	8/16 – 12/31	Annual halibut allowance
1999	2/26 - 3/30	First Seasonal halibut cap
	4/27 - 7/04	Second seasonal halibut cap
	8/31 – 12/31	Annual halibut allowance
2000	$\frac{3}{4} - \frac{3}{31}$	First Seasonal halibut cap
	4/30 - 7/03	Second seasonal halibut cap
	8/25 – 12/31	Annual halibut allowance
2001	3/20 – 3/31	First Seasonal halibut cap
	4/27 - 7/01	Second seasonal halibut cap
	8/24 – 12/31	Annual halibut allowance
2002	2/22 – 12/31	Red King crab cap (Zone 1 closed)
	3/1 - 3/31	First Seasonal halibut cap
	4/20 - 6/29	Second seasonal halibut cap
	7/29 – 12/31	Annual halibut allowance
2003	2/18 - 3/31	First Seasonal halibut cap
	4/1 - 6/21	Second seasonal halibut cap
	7/31 – 12/31	Annual halibut allowance
2004	2/24 - 3/31	First Seasonal halibut cap
	4/10 – 12/31	Bycatch status
2005	3/1 - 3/31	First Seasonal halibut cap
	4/22-6/30	Second Seasonal halibut cap
	5/9-12/31	Bycatch status, TAC attained
2006	2/21 - 3/31	First Seasonal halibut cap
	4/5 - 12/31	Red King crab cap (Zone 1 closed)
	4/12 - 5/31	Second seasonal halibut cap
	5/26	TAC attained, 7,000 t reserve released
	8/7 – 12/31	Annual halibut allowance
2007	2/17 – 3/31	First Seasonal halibut cap
	4/9 - 5/31	Second seasonal halibut cap
	8/6 - 12/31	Annual halibut allowance

Table 10.4. Estimated biomass (t) of other flatfish from the eastern Bering Sea and Aleutian Islands trawl surveys. Species included are Dover sole, longhead dab, rex sole, Sakhalin sole, starry flounder, and butter sole. A linear regression between EBS and AI survey abundance was used to predict AI abundance in years in which an AI survey did not occur.

		Area				
Year	EBS	AI	Total			
1982	117763		129518			
1983	66131	2700	68831			
1984	59647		64956			
1985	34572		37101			
1986	39517	6100	45617			
1987	49764		53977			
1988	43751		47298			
1989	49592		53786			
1990	46649		50517			
1991	72399	2144	74543			
1992	53817		58480			
1993	44399		48017			
1994	54045	5464	59509			
1995	37786		40671			
1996	60225		65599			
1997	70225	7580	77805			
1998	73936		80830			
1999	67713		73917			
2000	70538	8149	78687			
2001	78844		86282			
2002	98052	8801	106853			
2003	90327		99039			
2004	127630	14980	142610			
2005	107538		120900			
2006	132852	16440	149292			
2007	133491		149,497			

Table 10.5 --Estimated biomass (t) and coefficient of variation (in parentheses) for the miscellaneous species of the "other flatfish" management complex in the Bering Sea trawl and Aleutian Islands surveys.

Eastern Bering Sea Shelf survey

	Dover	Rex	longhead	Sakhalin	starry	butter	slender	sand
Year	Sole	Sole	dab	sole	flounder	sole	sole	sole
1982		5994 (0.16)	103806 (0.16)		7781 (0.32)	182 (0.82)		
1983		7272 (0.18)	51386 (0.38)		7436 (0.25)	37 (0.45)		1559(0.94)
1984		13058 (0.28)	35308 (0.16)	137 (0.43)	8913 (0.36)	2231 (0.64)		
1985	10 (1.04)	10751 (0.20)	9107 (0.13)	102 (0.37)	12181 (0.24)	2421 (0.83)		
1986	15 (1.00)	12886 (0.22)	10889 (0.14)	274 (0.48)	9112 (0.33)	6341 (0.58)		
1987	81 (0.91)	12931 (0.19)	11897 (0.19)	110 (0.59)	22702 (0.63)	2043 (0.38)		
1988	38 (0.59)	15445 (0.15)	16710 (0.19)	253 (0.63)	9222 (0.30)	2083 (0.47)		1128(1.0)
1989		12939 (0.15)	13086 (0.16)	58 (0.57)	22205 (0.35)	1304 (0.54)		
1990	47 (0.58)	11857 (0.21)	18601 (0.15)	110 (0.51)	15048 (0.26)	986 (0.60)		
1991	55 (0.70)	16014 (0.28)	18680 (0.14)	291 (0.79)	34303 (0.23)	3056 (0.50)		
1992	137 (0.58)	14001 (0.24)	10827 (0.17)	75 (0.48)	27544 (0.22)	1233 (0.70)		
1993	37 (0.75)	14567 (0.32)	11690 (0.21)	78 (0.34)	16510 (0.22)	1517 (0.75)		
1994	73 (0.72)	15943 (0.38)	18533 (0.26)	183 (0.41)	18218 (0.22)	1095 (0.97)		
1995		10420 (0.28)	8402 (0.15)	109 (0.32)	17652 (0.29)	1203 (0.54)		
1996		10532 (0.40)	8567 (0.20)	34 (0.34)	40409 (0.45)	683 (0.53)		
1997		8233 (0.27)	18003 (0.21)	87 (0.49)	41018 (0.21)	2884 (0.43)		
1998	41 (0.44)	7588 (0.22)	14737 (0.19)	34 (0.49)	49605 (0.30)	1942 (0.38)		
1999	16 (0.65)	8020 (0.28)	12087 (0.21)	63 <u>(</u> 0.29 <u>)</u>	43375 (0.25)	4152 (0.62)		
2000	11 (1.02)	9348 (0.19)	13511 (0.30)	145 (0.88)	45810 (0.19)	1713 (0.56)		
2001	16 (0.84)	21660 (0.23)	12764 (0.26)	31 (0.43)	43026 (0.25)	796 (0.50)		
2002	7 (0.80)	26053 (0.20)	9740 (0.22)	7 (0.69)	59877 (0.23)	2254 (0.64)		
2003	350 (0.66)	28023 (0.15)	8827(0.22)	55 (0.40)	52893 (0.17)	179 (0.61)	3	
2004	31(0.51)	28762 (0.19)	11290 (0.23)	8 (0.64)	86698 (0.38)	841 (0.86)		
2005	157(0.19)	23171(0.19)	11556 (0.21)	23(0.90)	71673(0.26)	958(0.81)		
2006	90(0.53)	21515(0.28)	13204(0.25)	52(0.41)	96900(0.37)	1091(0.53)		
2007	73(0.53)	17025(0.25)	16733(0.24)	19(0.40)	98623(0.17)	1018(0.44)		

Aleutian Islands Surveys

			Species				
	Dover	Rex	longhead	Sakhalin	starry	butter	English
Year	Sole	Sole	dab	sole	flounder	sole	sole
1991	174 (0.45)	1694 (0.18)			142 (0.85)	86 (0.73)	47 (0.80)
1994	438 (0.41)	4306 (0.15)			134 (0.69)	505 (0.98)	83 (0.81)
1997	386 (0.34)	6378 (0.16)			459 (0.90)	346 (0.98)	12 (0.72)
2000	630 (0.38)	6526 (0.18)			590 (0.71)	310 (0.99)	95 (0.97)
2002	575 (0.28)	7381 (0.15)			671 (0.72)	127 (0.83)	47 (0.94)
2004	870 (0.28)	13717 (0.18)			123 (0.72)	235 (0.93)	35(1.00)
2006	2155 (0.57)	14230 (0.19)			17 (0.97)	13(0.98)	25(0.84)

Table 10.6. Estimated exploitation rates of rex sole, starry flounder and butter sole from 1997 to 2007.

Rex sole				Starry Flounder			Butter sole		
Year	Biomass (t)	Harvest (t)	Exp. Rate	Biomass (t)	Harvest (t)	Exp. Rate	Biomass (t)	Harvest (t)	Exp. Rate
1997	14611	401	0.03	41477	814	0.02	3230	336	0.10
1998	14250	569	0.04	49950	242	0.00	2210	157	0.07
1999	15415	516	0.03	43750	597	0.01	4416	167	0.04
2000	15874	569	0.04	46400	770	0.02	2023	266	0.13
2001	30524	507	0.02	43829	479	0.01	1059	147	0.14
2002	33411	1227	0.04	60633	1023	0.02	2382	187	0.08
2003	38349	1399	0.04	53353	887	0.02	429	296	0.69
2004	42479	1858	0.04	86821	2062	0.02	1076	514	0.48
2005	34963	1830	0.05	72176	1892	0.03	1201	445	0.37
2006	35745	1266	0.04	96917	1663	0.02	1104	261	0.24
2007	17,025			98623			1018		

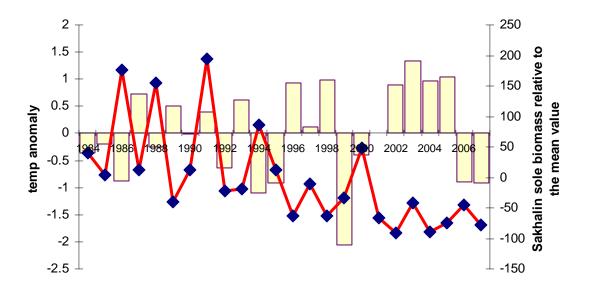


Figure 10.1—Relationship between annual survey bottom water temperature anomalies (yellow bars) and Sakhalin sole biomass estimates (red line).