## Addendum to Chapter 2:

# Revisions to the Assessment of the Pacific Cod Stock in the Eastern Bering Sea and Aleutian Islands Area 

Grant Thompson<br>U.S. Department of Commerce<br>National Oceanic and Atmospheric Administration<br>National Marine Fisheries Service<br>Alaska Fisheries Science Center<br>7600 Sand Point Way NE., Seattle, WA 98115-6349

EXECUTIVE SUMMARY

## Why is an Addendum Needed?

In the Pacific cod chapter of the 2006 BSAI SAFE report (Thompson et al. 2006), nine models were presented, one of which was similar to the model chosen last year by the Plan Team and SSC and the other eight of which represented a set of alternatives. The authors recommended use of one of the alternative models, specifically Model B1. This model attempted to estimate the catchability coefficient of the EBS shelf bottom trawl survey and used a simpler selectivity function than previous assessments of the Pacific cod stock. The Plan Team concurred with the authors' recommendation and based its ABC and OFL recommendations on Model B1.

After the Plan Team meeting, an external reviewer identified a problem with the parameter estimates obtained by Model B1. In non-technical terms, the problem can be described as follows: The basic goal of stock assessment modeling is to develop a mathematical model of population dynamics that matches the data as closely as possible (i.e., to minimize the "distance" between what the model says the stock is doing and what the data say the stock is doing). Unfortunately, the various data sets used in a stock assessment are typically somewhat inconsistent with one another, and the models developed to represent the population dynamics of the stock and the interaction of the various fishing gears with the stock can be sufficiently complicated that it is sometimes possible to find parameter values that appear to give the best possible fit to the data, when in reality other parameter values exist that give an even better fit. This is what happened in the case of Model B1.

Although modern stock assessment models typically contain dozens, or even hundreds, of dimensions (parameters), an analogy can be drawn in terms of topography for the two-dimensional case: The objective is to find the lowest elevation (closest fit to the data) in the topography of some geographic region. While it is usually easy to find the lowest elevation in a particular valley (a "local minimum"), it is harder to prove that no other valley exists somewhere else in the region with an even lower minimum elevation (the "global minimum"). The problem becomes harder as the size of the geographic region increases, and harder still as the dimensionality of the problem increases. Fortunately, the ADMB programming language (Fournier 2005), which is utilized by all age-structured assessments of BSAI and GOA groundfish stocks, contains a number of sophisticated features (e.g., extremely accurate computation of derivatives and "phased" estimation of parameters, so that the most influential parameters are estimated first) that substantially reduce the chances of converging on a local minimum different from the global minimum. In developing the original version of Model B1, appropriate tests were conducted to make sure that the model had truly converged. However, by altering the path by which the minimum is
approached, it turns out that a different minimum can be found for Model B1, resulting in a revised version of the model that fits the data better than the original.

## What is Included in this Addendum?

This addendum includes substitutes for the "Results" and "Projections and Harvest Alternatives" sections of the Pacific cod chapter of the 2006 SAFE report. To ensure that all revised parameter estimates are made available, substitutes for certain portions of the "Model Evaluation" section are also included.

Because the chapter authors and Plan Team recommended adoption of the original version of Model B1, the substitute sections contained in this addendum are based on the revised version of Model B1. While this seems to be the most straightforward way to address the implications of the revised model, readers should be aware that the authors or Plan Team might have reached different conclusions regarding model choice had the need for a revision been discovered earlier. In order to minimize potential confusion, no model recommendations or ABC recommendations are contained in this addendum. However, several alternative ABC values are presented in the interest of allowing those responsible for final harvest specifications to make a fully informed decision.

To facilitate comparison with the Pacific cod chapter of the SAFE report, table and figure numbers used here are identical with those used in the SAFE report.

It should be noted that Model B2, which is closely related to Model B1, is affected by the problem of incorrect identification of the global minimum in the same way as Model B1. However, because the results from the revised version of Model B2 are so close to the results from the revised version of Model B1 (as was also true in the original versions of those two models), only the results from the revised version of Model B1 are presented here, in the interest of keeping this addendum as concise as possible.

## What are the Major Implications?

The major qualitative conclusions from the Pacific cod chapter of the SAFE report are unchanged:

1) All of the models are in basic agreement as to which year classes appear to be strong and which appear to be weak.
2) In particular, all of the models agree that the 2000-2004 year classes currently appear to be weak.
3) From about 1993 to the present, all of the models indicate that female spawning biomass has been fairly stable, although the trend over the last couple of years is downward in all models.
4) All of the models project continued declines in spawning biomass and maximum permissible ABC for the next $2-3$ years.

Although the major qualitative conclusions of the assessment are unchanged, if the revised version of Model B1 is accepted as the preferred model, the values of several key outputs change significantly:

1) Projected 2007 female spawning biomass for the BSAI stock is $351,000 \mathrm{t}$, up about $14 \%$ from the original version of Model B1.
2) Projected 2007 total age $3+$ biomass for the BSAI stock is $1,080,000 \mathrm{t}$, up about $13 \%$ from the original version of Model B1.
3) The projected maximum permissible 2007 ABC for the BSAI stock is $202,000 \mathrm{t}$, up about $15 \%$ from the original version of Model B1.
4) The projected 2007 OFL for the BSAI stock is $238,000 \mathrm{t}$, up about $15 \%$ from the original version of Model B1.

## MODEL EVALUATION

## Goodness of Fit

The following table presents values of the various components of the objective function from the original and revised versions of Model B1 (except for the inclusion of the values for the revised version, this is a subset of Table 2.16 in the SAFE report; also, it should be noted that all log likelihood, log prior, and objective function values are multiplied by -1 , meaning that a lower value indicates a better fit):

| Objective function component | Original | Revised |
| :--- | ---: | ---: |
| pre-1982 shelf trawl survey abundance | 0.40 | 0.37 |
| post-1981 shelf trawl survey abundance | 45.29 | 46.26 |
| slope trawl survey abundance | 0.22 | 0.22 |
| Jan-May trawl fishery size composition | 266.07 | 266.62 |
| Jun-Dec trawl fishery size composition | 440.95 | 438.00 |
| longline fishery size composition | 489.07 | 491.40 |
| pot fishery size composition | 172.44 | 171.95 |
| pre-1982 shelf trawl survey size composition | 35.18 | 35.25 |
| post-1981 shelf trawl survey size composition | 188.30 | 189.94 |
| slope trawl survey size composition | 1.17 | 1.17 |
| post-1981 shelf trawl survey age composition | 94.91 | 98.44 |
| post-1981 shelf trawl survey size-at-age | 420.83 | 414.33 |
| recruitment | 30.04 | 29.94 |
| log priors | 18.59 | 17.92 |
| objective function (sum of the above) | $2,203.47$ | $2,201.80$ |

It should be noted that the values in the above table are not strictly comparable, because different values of the parameters governing the distribution of recruitments were required for the two versions of Model B1 (see "Parameters Estimated Conditionally" in the Pacific cod chapter of the SAFE report). However, when the recruitment distribution parameters were held constant at the levels obtained in the original version, the results were similar to the above. In particular, it is clear that the revised version provides a better overall fit (lower objective function) than the original version, given that equal weights are assigned to the various components of the objective function.

With the above caveat in mind, the following conclusions emerge: Of the 14 components of the objective function, the revised version of Model B1 fit better than the original version in 7 cases, and the original version fit better than the revised version in the other 7 cases. The biggest single improvement between the two versions was in the post-1981 shelf trawl survey size-at-age component, where the revised version showed an improvement of 6.5 units relative to the original version.

For the length composition and age composition components of the likelihood, another way to assess goodness of fit is by comparing input sample sizes and "effective" output sample sizes (see Pacific cod chapter of the SAFE report). The following table shows the average of the input sample sizes (Input N ) for each length or age composition component and the ratio between the average effective sample size and the average input sample size under the original and revised versions of Model B1 (a higher ratio implies a better fit):

| Gear | Type | Input N | Original | Revised |
| :--- | :--- | ---: | ---: | ---: |
| Jan-May trawl fishery | Length | 169 | 1.52 | 1.52 |
| Jun-Dec trawl fishery | Length | 42 | 1.99 | 2.03 |
| longline fishery | Length | 191 | 1.79 | 1.80 |
| pot fishery | Length | 100 | 2.44 | 2.48 |
| pre-82 shelf survey | Length | 100 | 0.64 | 0.64 |
| post-81 shelf survey | Length | 104 | 0.93 | 0.92 |
| slope survey | Length | 23 | 10.27 | 10.02 |
| post-81 shelf survey | Age | 94 | 0.60 | 0.55 |

Of the seven length composition components, the revised version of Model B1 had a higher ratio in three cases, the original version had a higher ratio in two cases, and the two versions had virtually identical ratios in two cases. For the age component, the original version had a higher ratio than the revised version. However, it is important to note that for the most recent year of age data (2005), both the original and revised versions gave excellent fits (effective $\mathrm{N}=190$ and 185 for the original and revised versions, respectively).

## Final Parameter Estimates and Associated Schedules

The following table presents estimates of some key parameters from the original and revised versions of Model B1 (except for the last row and the inclusion of values for the revised version, this is a subset of Table 2.16 in the SAFE report):

| Parameter | Original | Revised |
| :--- | ---: | ---: |
| Sigma(R) | 0.62 | 0.63 |
| $\ln ($ post-1976 Rmed) | 13.62 | 13.70 |
| $\ln ($ pre-1977 Rmed)-ln(post-1976 Rmed) | -1.18 | -1.19 |
| Pre-1982 shelf trawl survey catchability | 0.97 | 0.89 |
| Post-1981 shelf trawl survey catchability | 0.57 | 0.52 |
| Initial fishing mortality rate | 0.075 | 0.069 |

The first three rows in the above table describe parameters governing the distribution of recruitments. The row labeled "Sigma(R)" shows the standard deviation of the distribution of log-scale recruitment deviations, the row labeled "ln(post-1976 Rmed)" shows the median log-scale recruitment for the post1976 environmental regime, and the row labeled "ln(pre-1977 Rmed)-ln(post-1976 Rmed)" shows the log of the ratio of median log-scale recruitments between the pre-1977 and post-1976 environmental regimes (i.e., a negative value in this row means that median recruitment was lower in the pre-1977 regime than in the post-1976 regime).

The last three rows in the above table show the estimates of the shelf trawl survey catchability coefficient for the pre-1982 portion and post-1981 portions of the time series and the initial (equilibrium) fishing mortality rate.

Estimates of year-, season-, and gear-specific fishing mortality rates from the revised version of Model B1 are shown in Table 2.18, estimates of regime-specific median recruitments and annual recruitment deviations from the revised version of Model B1 are shown in Table 2.19, and estimates of selectivity parameters from the revised version of Model B1 are shown in Table 2.20.

Schedules of selectivity at length from the revised version of Model B1 are shown for the commercial fisheries in Table 2.21a and for the bottom trawl surveys in Table 2.21b. The schedules in Tables 2.21a and 2.21b are plotted in Figure 2.6.

Schedules of length at age, proportion mature at age, and weight at age from the revised version of Model B1 are shown in Table 2.22.

## RESULTS

## Definitions

The biomass estimates presented here will be defined in three ways: 1) age 3+ biomass, consisting of the biomass of all fish aged three years or greater in January of a given year; 2) spawning biomass, consisting of the biomass of all spawning females in a given year; and 3) survey biomass, consisting of the biomass of all fish that the model estimates should have been observed by the survey in July of a given year. The recruitment estimates presented here will be defined as numbers of age 0 fish in a given year. The fishing mortality rates presented here will be defined as full-selection, instantaneous fishing mortality rates expressed on a per annum scale. In all comparisons involving last year's results, it is important to note that table entries labeled "Last Year's Values" do not correspond to the values given in last year's SAFE report, because the values given in last year's SAFE report corresponded to the authors' preferred model, not the model chosen by the Plan Team and SSC. Instead, table entries labeled "Last Year's Values" correspond to the results given last year under the model chosen by the Plan Team and SSC.

## Biomass

Table 2.23 shows the time series of EBS (not expanded to BSAI) Pacific cod age $3+$ and female spawning biomass for the years 1977-2006 as estimated last year under the Plan Team's and SSC's preferred model and this year under the revised version of Model B1. In the case of female spawning biomass, the two estimated time series are accompanied by their respective $95 \%$ confidence intervals.

The estimated EBS female spawning biomass time series and confidence intervals from the revised version of Model B1 are shown, together with the revised version of Model B1's estimated time series of EBS age 3+ biomass, in Figure 2.7. Figure 2.7 also compares the observed and model-estimated time series from the EBS shelf bottom trawl survey. All three biomass trends estimated by the revised version of Model B1 are fairly flat from about 1992 through about 2004, but all three show a declining trend for at least the last couple of years.

The biomasses estimated by the revised version of Model B1 are significantly higher than those estimated by the original version. In the Pacific cod chapter of the SAFE report, Model A2 provides the most optimistic estimates of biomass, with the biomass estimates from Model A1 and the original versions of Models B1 and B2 close to one another but significantly below those of Model A2 (see Figure 2.3 of the SAFE report). In contrast, the revised version of Model B1 now provides the most optimistic estimates of biomass, slightly higher than the estimates from Model A2. While the reasons for the increased biomass estimates resulting from the revised version of Model B1 are likely complicated and inter-related, some key factors are likely as follows: There are five internally estimated parameters whose correlations with estimated 2006 female spawning biomass exceed 0.5 in absolute value: 1) the logarithm of the post-1981 shelf trawl survey catchability coefficient (correlation $=-0.95$ ), 2) post-1976 median log-scale recruitment (correlation $=0.89$ ), 3 ) initial equilibrium fishing mortality rate (correlation $=-0.75$ ), 4) the logarithm of the pre-1982 shelf trawl survey catchability coefficient (correlation $=-0.57$ ), and 5) the width of the longline fishery selectivity peak during the years 1989-1999 (correlation $=-0.55$ ). Of these parameters, the estimates of all five changed in the direction that would tend to cause 2006 female spawning biomass to increase. Perhaps most significantly, the estimate of the post-1981 shelf trawl
survey catchability coefficient changed from 0.57 to 0.52 . Given that the post- 1981 shelf trawl survey selectivity schedule was estimated to be approximately asymptotic in both the original and revised versions of Model B1, the change in the estimated value of the catchability coefficient could account for a major portion of the change in estimated biomass.

## Recruitment

Table 2.24 shows the time series of EBS (not expanded to BSAI) Pacific cod age 0 recruitment (1000s of fish) for the years 1977-2005 as estimated last year under the Plan Team's and SSC's preferred model and this year under the revised version of Model B1. Both estimated time series are accompanied by their respective $95 \%$ confidence intervals.

The revised version of Model B1's recruitment estimates for the entire time series (1964-2005) are shown in Figure 2.8, along with their respective $95 \%$ confidence intervals and regime-specific averages. For the time series as a whole, the largest year classes appear to have been the 1976-1977 cohorts. Other large cohorts include the 1978, 1982, 1984, 1989, 1992, 1996, and 1999 year classes. Of the five classes spawned immediately after the strong 1999 year class, however, none have $95 \%$ confidence intervals that extend above the 1977-2005 average. One potential bright spot on the horizon is the 2005 year class, whose point estimate is just below the 1977-2005 average. However, its confidence interval is fairly large, since the only data currently available to estimate its strength is the size composition data from the 2006 shelf trawl survey.

To date, it has not been possible to estimate a reliable stock-recruitment relationship for this stock. With the move to SS2, prospects for future estimation of such a relationship should improve. In the interim, Figure 2.9 is provided to give some indication of the relationship between stock and recruitment. The Ricker (1954) curve shown in this figure (fit by maximum likelihood from the outputs of the stock assessment model, ignoring process error) is intended to be illustrative only, and is not recommended for management purposes.

## Exploitation

Table 2.25 shows the time series of EBS Pacific cod catch divided by age 3+ biomass for the years 19772006 as estimated last year under the Plan Team's and SSC's preferred model and this year under the revised version of Model B1.

The average value of this ratio over the entire time series is about 0.11 , slightly less than the average value of 0.13 obtained in the model chosen last year by the Plan Team and SSC. The estimated values exceed the average for every year after 1989 except 1993, whereas none of the estimated values exceed the average in any year prior to 1990. This finding is similar to that obtained in past assessments.

Figure 2.10 plots the trajectory of relative fishing mortality and relative female spawning biomass from 1977 through 2006 based on the revised version of Model B1, overlaid with the current harvest control rules (fishing mortality rates in the figure are standardized relative to $F_{35 \%}$ and biomasses are standardized relative to $B_{35 \%}$, per SSC request). The entire trajectory lies underneath both the $F_{\text {OFL }}$ and $\max F_{A B C}$ control rules except for the years 1977 and 1978. It should be noted that the current harvest control rules did not go into effect until 1999.

## PROJECTIONS AND HARVEST ALTERNATIVES

## Amendment 56 Reference Points

Amendment 56 to the BSAI Groundfish Fishery Management Plan (FMP) defines the "overfishing level" (OFL), the fishing mortality rate used to set OFL ( $F_{\text {OFL }}$ ), the maximum permissible ABC, and the fishing
mortality rate used to set the maximum permissible ABC. The fishing mortality rate used to set ABC ( $F_{A B C}$ ) may be less than this maximum permissible level, but not greater. Because reliable estimates of reference points related to maximum sustainable yield (MSY) are currently not available but reliable estimates of reference points related to spawning per recruit are available, Pacific cod in the BSAI are managed under Tier 3 of Amendment 56. Tier 3 uses the following reference points: $B_{40 \%}$, equal to $40 \%$ of the equilibrium spawning biomass that would be obtained in the absence of fishing; $F_{35 \%}$, equal to the fishing mortality rate that reduces the equilibrium level of spawning per recruit to $35 \%$ of the level that would be obtained in the absence of fishing; and $F_{40 \%}$, equal to the fishing mortality rate that reduces the equilibrium level of spawning per recruit to $40 \%$ of the level that would be obtained in the absence of fishing. The following formulae apply under Tier 3:

$$
\begin{aligned}
& \text { 3a)Stock status: } B / B_{40 \%}>1 \\
& F_{\text {OFL }}=F_{35 \%} \\
& F_{A B C} \leq F_{40 \%} \\
& \text { 3b)Stock status: } 0.05<B / B_{40 \%} \leq 1 \\
& F_{\text {OFL }}=F_{35 \%} \times\left(B / B_{40 \%}-0.05\right) \times 1 / 0.95 \\
& F_{A B C} \leq F_{40 \%} \times\left(B / B_{40 \%}-0.05\right) \times 1 / 0.95 \\
& \text { 3c)Stock status: } \quad B / B_{40 \%} \leq 0.05 \\
& F_{\text {OFL }}=0 \\
& F_{A B C}=0
\end{aligned}
$$

Estimation of the $B_{40 \%}$ reference point used in the above formulae requires an assumption regarding the equilibrium level of recruitment. In this assessment, it is assumed that the equilibrium level of recruitment is equal to the post-1976 average (i.e., the arithmetic mean of all estimated recruitments from year classes spawned in 1977 or later). Other useful biomass reference points which can be calculated using this assumption are $B_{100 \%}$ and $B_{35 \%}$, defined analogously to $B_{40 \%}$. These reference points are estimated as follows, based on the revised version of Model B1:

| Reference point: | $B_{35 \%}$ | $B_{40 \%}$ | $B_{100 \%}$ |
| ---: | :---: | :---: | :---: |
| BSAI: | $300,000 \mathrm{t}$ | $343,000 \mathrm{t}$ | $858,000 \mathrm{t}$ |
| EBS: | $252,000 \mathrm{t}$ | $288,000 \mathrm{t}$ | $721,000 \mathrm{t}$ |

For a stock exploited by multiple gear types, estimation of $F_{35 \%}$ and $F_{40 \%}$ requires an assumption regarding the apportionment of fishing mortality among those gear types. For this assessment, the apportionment was based on the revised version of Model B1's estimates of fishing mortality by gear for the three most recent complete years of data (2003-2005). The average fishing mortality rates for those years implied that total fishing mortality was divided among the three main gear types according to the following percentages: trawl $30.1 \%$, longline $59.5 \%$, and pot $10.4 \%$. This apportionment results in estimates of $F_{35 \%}$ and $F_{40 \%}$ equal to 0.41 and 0.34 , respectively.

## Short-Term Projections: Specification of OFL and Maximum Permissible ABC

The age 3+ biomass estimates for 2007 from the revised version of Model B1 are 1,080,000 $t$ and 908,000 $t$ for the BSAI and EBS, respectively.

BSAI spawning biomass for 2007 is estimated by the revised version of Model B1 at a value of 351,000 t $(E B S$ value $=295,000 \mathrm{t})$. This is about $2 \%$ above the BSAI $B_{40 \%}$ value of $343,000 \mathrm{t}(\mathrm{EBS}$ value $=$ $288,000 \mathrm{t}$ ), thereby placing Pacific cod in Tier 3a. If the stock were fished at the maximum permissible rate, the model projects that spawning biomass would be about $13 \%$ below $B_{40 \%}$ in 2008 (Tier 3b). Given this, the revised version of Model B1 estimates maximum permissible BSAI ABC, BSAI OFL, and the associated fishing mortality rates for 2007 and 2008 as follows:

| Quantity | 2007 | 2008 |
| :--- | ---: | ---: |
| BSAI maximum permissible ABC | $202,000 \mathrm{t}$ | $147,000 \mathrm{t}$ |
| BSAI OFL | $238,000 \mathrm{t}$ | $172,000 \mathrm{t}$ |
| Fishing mortality rate at maximum permissible ABC | 0.34 | 0.30 |
| Fishing mortality rate at OFL | 0.41 | 0.36 |

In the event that a 2007 ABC lower than the maximum permissible value is deemed advisable, the table below provides some short-term projections associated with a range of alternatives. The table shows projected annual values of ABC and OFL for different fixed levels of ABC in 2007, under the assumption that ABC would be set at the maximum permissible level thereafter. The fixed levels of 2007 ABC range from 200,000 $t$ down to $160,000 \mathrm{t}$ (all ABCs and OFLs are for the entire BSAI stock, and are shown in thousands of t ). In all projections, both ABC and OFL are expected to increase after 2009, though it should be noted that these future increases are predicated on the assumption that future recruitments will tend to approximate the long-term (post-1976) average. The last two rows show the average for the years 2006-2009 and the coefficient of variation (ratio of standard deviation to average) for those same years. In general, lowering the 2007 ABC below the maximum permissible value would be expected to decrease both the projected average ABC and the projected coefficient of variation, though only slightly.

|  | $2007 \mathrm{ABC}=200$ |  | $2007 \mathrm{ABC}=190$ |  | 2007 ABC=180 |  | 2007 ABC=170 |  | 2007 ABC=160 |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Year | ABC | OFL |
| 2006 | 194 | 230 | 194 | 230 | 194 | 230 | 194 | 230 | 194 | 230 |
| 2007 | 200 | 238 | 190 | 238 | 180 | 238 | 170 | 238 | 160 | 238 |
| 2008 | 147 | 173 | 151 | 177 | 154 | 181 | 157 | 185 | 161 | 189 |
| 2009 | 123 | 145 | 124 | 147 | 126 | 149 | 128 | 150 | 129 | 152 |
| Ave. | 166 | 196 | 165 | 198 | 164 | 199 | 162 | 201 | 161 | 202 |
| CV | 0.19 | 0.20 | 0.18 | 0.19 | 0.16 | 0.18 | 0.15 | 0.18 | 0.14 | 0.17 |

## Long-Term Projections

## Standard Harvest Scenarios

A standard set of projections is typically produced for each stock managed under Tiers 1, 2, or 3 of Amendment 56. This set of projections encompasses seven harvest scenarios designed to satisfy the requirements of Amendment 56, the National Environmental Policy Act, and the Magnuson-Stevens Fishery Conservation and Management Act (MSFCMA).

For each scenario, the projections begin with the vector of 2006 numbers at age estimated in the assessment. This vector is then projected forward to the beginning of 2007 using the schedules of natural mortality and selectivity described in the assessment and the best available estimate of total (year-end) catch for 2006. In each subsequent year, the fishing mortality rate is prescribed on the basis of the spawning biomass in that year and the respective harvest scenario. In each year, recruitment is drawn from an inverse Gaussian distribution whose parameters consist of maximum likelihood estimates determined from recruitments estimated in the assessment. Spawning biomass is computed in each year based on the time of peak spawning and the maturity and weight schedules described in the assessment. Total catch is assumed to equal the catch associated with the respective harvest scenario in all years. This projection scheme is run 1000 times to obtain distributions of possible future stock sizes, fishing mortality rates, and catches.

Five of the seven standard scenarios will be used in an Environmental Assessment prepared in conjunction with the final SAFE. These five scenarios, which are designed to provide a range of harvest alternatives that are likely to bracket the final TAC for 2007, are as follow (" $m a x F_{A B C}$ " refers to the maximum permissible value of $F_{A B C}$ under Amendment 56):

Scenario 1: In all future years, $F$ is set equal to $\max F_{A B C}$. (Rationale: Historically, TAC has been constrained by ABC, so this scenario provides a likely upper limit on future TACs.)

Scenario 2: In all future years, $F$ is set equal to a constant fraction of $\max F_{A B C}$, where this fraction is equal to the ratio of the $F_{A B C}$ value for 2007 recommended in the assessment to the max $F_{A B C}$ for 2007. (Note: Because no ABC recommendation is contained in this addendum, Scenario 2 is not included in the projections.)

Scenario 3: In all future years, $F$ is set equal to $50 \%$ of $\max F_{A B C}$. (Rationale: This scenario provides a likely lower bound on $F_{A B C}$ that still allows future harvest rates to be adjusted downward when stocks fall below reference levels.)

Scenario 4: In all future years, $F$ is set equal to the 2002-2006 average $F$. (Rationale: For some stocks, TAC can be well below ABC, and recent average $F$ may provide a better indicator of $F_{\text {TAC }}$ than $F_{A B C}$.)

Scenario 5: In all future years, $F$ is set equal to zero. (Rationale: In extreme cases, TAC may be set at a level close to zero.)

Two other scenarios are needed to satisfy the MSFCMA's requirement to determine whether a stock is currently in an overfished condition or is approaching an overfished condition. These two scenarios are as follow (for Tier 3 stocks, the MSY level is defined as $B_{35 \%}$ ):

Scenario 6: In all future years, $F$ is set equal to $F_{O F L}$. (Rationale: This scenario determines whether a stock is overfished. If the stock is expected to be 1) above its MSY level in 2007 or 2) above $1 / 2$ of its MSY level in 2007 and above its MSY level in 2017 under this scenario, then the stock is not overfished.)

Scenario 7: In 2007 and 2008, $F$ is set equal to $\max F_{A B C}$, and in all subsequent years, $F$ is set equal to $F_{\text {OFL }}$. (Rationale: This scenario determines whether a stock is approaching an overfished condition. If the stock is expected to be above its MSY level in 2019 under this scenario, then the stock is not approaching an overfished condition.)

Projections corresponding to the standard scenarios are shown for the revised version of Model B1 in Tables 2.26-2.31.

## Status Determination

Harvest Scenarios \#6 and \#7 are intended to permit determination of the status of a stock with respect to its minimum stock size threshold (MSST). Any stock that is below its MSST is defined to be overfished. Any stock that is expected to fall below its MSST in the next two years is defined to be approaching an overfished condition. Harvest Scenarios \#6 and \#7 are used in these determinations as follows:

Is the stock overfished? This depends on the stock's estimated spawning biomass in 2007:
a. If spawning biomass for 2007 is estimated to be below $1 / 2 B_{35 \%}$, the stock is below its MSST.
b. If spawning biomass for 2007 is estimated to be above $B_{35 \%}$ the stock is above its MSST.
c. If spawning biomass for 2007 is estimated to be above $1 / 2 B_{35 \%}$ but below $B 35 \%$, the stock's status relative to MSST is determined by referring to harvest Scenario \#6 (Table 2.30). If
the mean spawning biomass for 2017 is below $B_{35 \%}$, the stock is below its MSST. Otherwise, the stock is above its MSST.

Is the stock approaching an overfished condition? This is determined by referring to harvest Scenario \#7 (Table 2.31):
a. If the mean spawning biomass for 2009 is below $1 / 2 B_{35 \%}$, the stock is approaching an overfished condition.
b. If the mean spawning biomass for 2009 is above $B_{35 \%}$, the stock is not approaching an overfished condition.
c. If the mean spawning biomass for 2009 is above $1 / 2 B_{35 \%}$ but below $B_{35 \%}$, the determination depends on the mean spawning biomass for 2019. If the mean spawning biomass for 2019 is below $B_{35 \%}$, the stock is approaching an overfished condition. Otherwise, the stock is not approaching an overfished condition.

In the case of BSAI Pacific cod, spawning biomass for 2007 is estimated to be above $B_{35 \%}$ under the revised version of Model B1. Therefore, the stock is above its MSST and is not overfished. Mean spawning biomass for 2009 in Table 2.31 is above $1 / 2 B_{35 \%}$ but below $B_{35 \%}$, and mean spawning biomass for 2019 is above $B_{35 \%}$. Therefore, the stock is not approaching an overfished condition.

## ACKNOWLEDGMENTS

Mark Maunder identified the problem with the local minimum in the objective function for the original version of Model B1 that led to the need for this addendum. Anne Hollowed reviewed an earlier draft of this addendum.

## REFERENCES

Fournier, D. 2005. An introduction to AD Model Builder Version 6.0.2 for use in nonlinear modeling and statistics. Otter Research Ltd. P.O. Box 2040, Sidney BC V8L3S3.

Thompson, G. G., M. W. Dorn, S. Gaichas, and K. Aydin. 2006. Assessment of the Pacific cod stock in the Eastern Bering Sea and Aleutian Islands Area. In Plan Team for Groundfish Fisheries of the Bering Sea/Aleutian Islands (compiler), Stock assessment and fishery evaluation report for the groundfish resources of the Bering Sea/Aleutian Islands regions, p. xxx-yyy. North Pacific Fishery Management Council, 605 W. 4th Avenue Suite 306, Anchorage, AK 99501

Table 2.18-Estimates of Pacific cod fishing mortality rates, expressed on an annual time scale (revised version of Model B1). Empty cells indicate that recorded catch was negligible or that no catch was recorded.

|  | Trawl |  |  | Longline |  |  | Pot |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Sea. 1 | Sea. 2 | Sea. 3 | Sea. 1 | Sea. 2 | Sea. 3 | Sea. 1 | Sea. 2 | Sea. 3 |
| 1964 | 0.017 | 0.006 | 0.007 | 0.002 | 0.000 | 0.004 |  |  |  |
| 1965 | 0.018 | 0.007 | 0.008 | 0.003 | 0.000 | 0.005 |  |  |  |
| 1966 | 0.022 | 0.008 | 0.009 | 0.003 | 0.000 | 0.006 |  |  |  |
| 1967 | 0.039 | 0.015 | 0.017 | 0.006 | 0.001 | 0.010 |  |  |  |
| 1968 | 0.074 | 0.030 | 0.034 | 0.010 | 0.002 | 0.020 |  |  |  |
| 1969 | 0.074 | 0.029 | 0.034 | 0.010 | 0.002 | 0.020 |  |  |  |
| 1970 | 0.120 | 0.049 | 0.058 | 0.017 | 0.003 | 0.035 |  |  |  |
| 1971 | 0.095 | 0.037 | 0.043 | 0.013 | 0.002 | 0.027 |  |  |  |
| 1972 | 0.111 | 0.044 | 0.050 | 0.016 | 0.002 | 0.032 |  |  |  |
| 1973 | 0.157 | 0.064 | 0.073 | 0.023 | 0.004 | 0.045 |  |  |  |
| 1974 | 0.205 | 0.088 | 0.100 | 0.030 | 0.005 | 0.059 |  |  |  |
| 1975 | 0.190 | 0.082 | 0.090 | 0.028 | 0.004 | 0.051 |  |  |  |
| 1976 | 0.187 | 0.081 | 0.085 | 0.028 | 0.004 | 0.049 |  |  |  |
| 1977 | 0.107 | 0.043 | 0.042 | 0.017 | 0.002 | 0.024 |  |  |  |
| 1978 | 0.097 | 0.039 | 0.038 | 0.016 | 0.002 | 0.021 |  |  |  |
| 1979 | 0.053 | 0.021 | 0.020 | 0.008 | 0.001 | 0.011 |  |  |  |
| 1980 | 0.037 | 0.015 | 0.014 | 0.006 | 0.001 | 0.008 |  |  |  |
| 1981 | 0.020 | 0.018 | 0.024 | 0.002 | 0.001 | 0.005 |  |  |  |
| 1982 | 0.020 | 0.017 | 0.014 | 0.000 | 0.000 | 0.002 |  |  |  |
| 1983 | 0.030 | 0.018 | 0.017 | 0.002 | 0.001 | 0.002 |  |  |  |
| 1984 | 0.033 | 0.017 | 0.017 | 0.004 | 0.002 | 0.015 |  |  |  |
| 1985 | 0.039 | 0.020 | 0.016 | 0.011 | 0.001 | 0.018 |  |  |  |
| 1986 | 0.044 | 0.019 | 0.016 | 0.008 | 0.000 | 0.015 |  |  |  |
| 1987 | 0.050 | 0.012 | 0.016 | 0.018 | 0.001 | 0.024 |  |  |  |
| 1988 | 0.102 | 0.020 | 0.037 | 0.000 | 0.001 | 0.001 |  |  |  |
| 1989 | 0.110 | 0.014 | 0.016 | 0.003 | 0.005 | 0.005 | 0.000 | 0.000 | 0.000 |
| 1990 | 0.098 | 0.010 | 0.010 | 0.012 | 0.017 | 0.018 |  | 0.001 | 0.000 |
| 1991 | 0.119 | 0.017 | 0.007 | 0.028 | 0.027 | 0.039 | 0.000 | 0.001 | 0.003 |
| 1992 | 0.079 | 0.015 | 0.008 | 0.067 | 0.036 | 0.010 | 0.004 | 0.007 | 0.000 |
| 1993 | 0.097 | 0.007 | 0.012 | 0.072 | 0.000 | 0.000 | 0.003 | 0.000 |  |
| 1994 | 0.084 | 0.007 | 0.022 | 0.079 | 0.000 | 0.028 | 0.007 |  | 0.004 |
| 1995 | 0.118 | 0.011 | 0.015 | 0.088 | 0.000 | 0.039 | 0.017 | 0.005 | 0.005 |
| 1996 | 0.102 | 0.004 | 0.013 | 0.080 | 0.000 | 0.035 | 0.025 | 0.010 | 0.005 |
| 1997 | 0.107 | 0.005 | 0.011 | 0.091 | 0.000 | 0.064 | 0.020 | 0.006 | 0.005 |
| 1998 | 0.064 | 0.008 | 0.014 | 0.076 | 0.000 | 0.044 | 0.014 | 0.005 | 0.002 |
| 1999 | 0.065 | 0.005 | 0.005 | 0.081 | 0.003 | 0.036 | 0.015 | 0.002 | 0.003 |
| 2000 | 0.068 | 0.006 | 0.006 | 0.055 | 0.002 | 0.051 | 0.023 |  | 0.000 |
| 2001 | 0.033 | 0.009 | 0.007 | 0.048 | 0.008 | 0.054 | 0.015 | 0.001 | 0.005 |
| 2002 | 0.050 | 0.012 | 0.005 | 0.059 | 0.015 | 0.045 | 0.013 | 0.001 | 0.005 |
| 2003 | 0.045 | 0.012 | 0.004 | 0.062 | 0.013 | 0.051 | 0.019 | 0.000 | 0.008 |
| 2004 | 0.055 | 0.015 | 0.004 | 0.066 | 0.013 | 0.054 | 0.015 | 0.001 | 0.006 |
| 2005 | 0.062 | 0.009 | 0.001 | 0.068 | 0.018 | 0.065 | 0.016 |  | 0.007 |
| 2006 | 0.070 | 0.009 | 0.001 | 0.075 | 0.024 | 0.078 | 0.021 |  | 0.008 |

Table 2.19—Estimates of Pacific cod regime-specific median recruitments and recruitment deviations (revised version of Model B1). Deviations are expressed as the difference between the logarithm of annual recruitment at age 0 and the logarithm of median recruitment for the respective environmental regime.

| Year | $\ln$ (Median Recruitment) | Annual Deviation |
| ---: | ---: | ---: |
| 1964 | 12.505 | -0.400 |
| 1965 | 12.505 | -0.484 |
| 1966 | 12.505 | -0.549 |
| 1967 | 12.505 | -0.554 |
| 1968 | 12.505 | -0.438 |
| 1969 | 12.505 | -0.182 |
| 1970 | 12.505 | -0.236 |
| 1971 | 12.505 | -0.300 |
| 1972 | 12.505 | -0.137 |
| 1973 | 12.505 | 0.474 |
| 1974 | 12.505 | 1.381 |
| 1975 | 12.505 | -0.937 |
| 1976 | 12.505 | 2.337 |
| 1977 | 13.695 | 0.885 |
| 1978 | 13.695 | 0.422 |
| 1979 | 13.695 | 0.356 |
| 1980 | 13.695 | -0.378 |
| 1981 | 13.695 | 0.294 |
| 1982 | 13.695 | 0.822 |
| 1983 | 13.695 | -0.565 |
| 1984 | 13.695 | 0.574 |
| 1985 | 13.695 | -0.500 |
| 1986 | 13.695 | -0.560 |
| 1987 | 13.695 | -0.779 |
| 1988 | 13.695 | 0.283 |
| 1989 | 13.695 | 0.503 |
| 1990 | 13.695 | -0.043 |
| 1991 | 13.695 | 0.300 |
| 1992 | 13.695 | 0.380 |
| 1993 | 13.695 | -0.606 |
| 1994 | 13.695 | -0.183 |
| 1995 | 13.695 | 0.375 |
| 1996 | 13.695 | 0.483 |
| 1997 | 13.695 | -0.131 |
| 1998 | 13.695 | 0.191 |
| 1999 | 13.695 | 0.400 |
| 2000 | 13.695 | -0.262 |
| 2001 | 13.695 | -0.394 |
| 2002 | 13.695 | -0.467 |
| 2003 | 13.695 | -0.549 |
| 2004 | 13.695 | -0.812 |
| 2005 | 13.695 | -0.012 |
|  |  |  |

Table 2.20—Estimates of Pacific cod selectivity parameters (revised version of Model B1). The first column lists the years defining the era for which the parameter values in that row are applicable. The eras for the commercial fisheries are 1964-1988, 1989-1999, and 2000-2006 (no eras per se are defined for the surveys, although separate shelf bottom trawl surveys are defined for the years prior to 1982 and after 1981). The second column lists the particular parameter being described. Four parameters define the shape of the selectivity function: the size at which selectivity first reaches a value of 1.0 ("peak location"), the logit transform of the region (within the range from peak location to the maximum length in the model) over which selectivity remains at a value of 1.0 ("logit(peak width)"), the log of the variance term in the ascending curve ("ln(asc. variance)"), and the log of the variance term in the descending curve ("In(des. variance)"). See text for further description of these parameters and how they are used to define the selectivity function. The remaining columns correspond to the fishery or survey to which the values are applicable, using the following notation: TWL1 = January-May trawl fishery, TWL2 $=$ June-December trawl fishery, LGL = longline fishery, POT = pot fishery, SRV1 = pre-1982 shelf trawl survey, SRV2 = post-1981 shelf trawl survey, and SRV3 = slope trawl survey.

| Years | Parameter | TWL1 | TWL2 | LGL | POT |
| :--- | :--- | ---: | ---: | ---: | ---: |
| 1964-1988 | peak location | 76.146 | 79.750 | 72.678 |  |
| 1989-1999 | peak location | 78.018 | 75.708 | 69.589 | 70.632 |
| 2000-2006 | peak location | 80.240 | 80.629 | 66.091 | 65.856 |
| 1964-1988 | logit(peak width) | -7.881 | -0.144 | -3.785 |  |
| 1989-1999 | logit(peak width) | -2.152 | 1.678 | -1.271 | -1.818 |
| 2000-2006 | logit(peak width) | -8.250 | 1.279 | -2.873 | -8.209 |
| 1964-1988 | ln(asc. variance) | 6.323 | 6.406 | 5.523 |  |
| 1989-1999 | ln(asc. variance) | 6.340 | 6.198 | 5.321 | 5.141 |
| 2000-2006 | $\ln$ (asc. variance) | 6.260 | 6.486 | 5.279 | 4.733 |
| 1964-1988 | $\ln$ (des. variance) | 6.308 | 5.719 | 6.267 |  |
| 1989-1999 | $\ln ($ des. variance) | 6.054 | 4.059 | 6.423 | 6.576 |
| 2000-2006 | $\ln ($ des. variance) | 6.300 | 3.888 | 6.630 | 7.185 |
|  |  |  |  |  |  |
| Years | Parameter | SRV1 | SRV2 | SRV3 |  |
| n/a | peak location | 40.233 | 44.403 | 55.756 |  |
| n/a | logit(peak width) | -8.936 | 3.685 | -1.425 |  |
| n/a | $\ln$ (asc. variance) | 5.255 | 7.083 | 4.221 |  |
| n/a | $\ln$ (des. variance) | 6.987 | 2.474 | 5.538 |  |
|  |  |  |  |  |  |

Table 2.21a-Schedules of Pacific cod selectivities at length in the commercial fisheries as defined by final parameter estimates (revised version of Model B1). Lengths (cm) correspond to mid-points of size bins. Len. $=$ length, $\mathrm{FOR}=1964-1988$, DOM $=1989-1999$, NEW $=$ 2000-2006.

|  | Jan-May Trawl Fishery |  |  | Jun-Dec Trawl Fishery |  |  | Longline Fishery |  |  | Pot Fishery |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Len. | FOR | DOM | NEW | FOR | DOM | NEW | FOR | DOM | NEW | DOM | NEW |
| 10.5 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 13.5 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 16.5 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 19.5 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 22.5 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 25.5 | 0.01 | 0.01 | 0.00 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 28.5 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 31.5 | 0.03 | 0.02 | 0.01 | 0.02 | 0.02 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 34.5 | 0.04 | 0.04 | 0.02 | 0.03 | 0.03 | 0.04 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 |
| 37.5 | 0.07 | 0.06 | 0.03 | 0.05 | 0.05 | 0.06 | 0.01 | 0.01 | 0.02 | 0.00 | 0.00 |
| 40.5 | 0.10 | 0.08 | 0.05 | 0.08 | 0.08 | 0.09 | 0.02 | 0.02 | 0.04 | 0.00 | 0.00 |
| 43.5 | 0.15 | 0.12 | 0.08 | 0.11 | 0.12 | 0.12 | 0.03 | 0.04 | 0.07 | 0.01 | 0.01 |
| 47.5 | 0.23 | 0.19 | 0.13 | 0.18 | 0.20 | 0.19 | 0.08 | 0.09 | 0.17 | 0.04 | 0.05 |
| 52.5 | 0.37 | 0.32 | 0.23 | 0.29 | 0.33 | 0.30 | 0.20 | 0.24 | 0.39 | 0.15 | 0.21 |
| 57.5 | 0.54 | 0.48 | 0.37 | 0.44 | 0.51 | 0.44 | 0.40 | 0.49 | 0.69 | 0.36 | 0.54 |
| 62.5 | 0.72 | 0.65 | 0.55 | 0.61 | 0.70 | 0.61 | 0.66 | 0.78 | 0.94 | 0.68 | 0.91 |
| 67.5 | 0.87 | 0.82 | 0.73 | 0.78 | 0.87 | 0.77 | 0.90 | 0.98 | 1.00 | 0.94 | 1.00 |
| 72.5 | 0.98 | 0.95 | 0.89 | 0.92 | 0.98 | 0.90 | 1.00 | 1.00 | 0.97 | 1.00 | 0.97 |
| 77.5 | 1.00 | 1.00 | 0.99 | 0.99 | 1.00 | 0.99 | 0.97 | 1.00 | 0.89 | 0.99 | 0.90 |
| 82.5 | 0.93 | 0.99 | 0.99 | 1.00 | 1.00 | 1.00 | 0.85 | 0.95 | 0.76 | 0.93 | 0.81 |
| 87.5 | 0.79 | 0.90 | 0.91 | 1.00 | 1.00 | 1.00 | 0.68 | 0.84 | 0.61 | 0.81 | 0.70 |
| 92.5 | 0.61 | 0.72 | 0.76 | 0.99 | 1.00 | 1.00 | 0.50 | 0.68 | 0.46 | 0.66 | 0.58 |
| 97.5 | 0.44 | 0.52 | 0.58 | 0.87 | 1.00 | 1.00 | 0.33 | 0.51 | 0.32 | 0.50 | 0.47 |
| 102.5 | 0.28 | 0.33 | 0.40 | 0.65 | 0.86 | 0.76 | 0.20 | 0.35 | 0.21 | 0.36 | 0.36 |

Table 2.21b—Schedules of Pacific cod selectivities at length in the bottom trawl surveys as defined by final parameter estimates (revised version of Model B1). Lengths (cm) correspond to mid-points of size bins.

|  | Shelf Survey |  |  |
| ---: | ---: | ---: | ---: |
| Length | pre-1982 | post-1981 | Slope |
| 10.5 | 0.01 | 0.38 | 0.00 |
| 13.5 | 0.02 | 0.45 | 0.00 |
| 16.5 | 0.05 | 0.52 | 0.00 |
| 19.5 | 0.11 | 0.59 | 0.00 |
| 22.5 | 0.19 | 0.67 | 0.00 |
| 25.5 | 0.32 | 0.74 | 0.00 |
| 28.5 | 0.49 | 0.81 | 0.00 |
| 31.5 | 0.67 | 0.87 | 0.00 |
| 34.5 | 0.84 | 0.92 | 0.00 |
| 37.5 | 0.96 | 0.96 | 0.01 |
| 40.5 | 1.00 | 0.99 | 0.03 |
| 43.5 | 0.99 | 1.00 | 0.11 |
| 47.5 | 0.95 | 1.00 | 0.37 |
| 52.5 | 0.87 | 1.00 | 0.86 |
| 57.5 | 0.76 | 1.00 | 1.00 |
| 62.5 | 0.63 | 1.00 | 1.00 |
| 67.5 | 0.50 | 1.00 | 0.98 |
| 72.5 | 0.38 | 1.00 | 0.81 |
| 77.5 | 0.28 | 1.00 | 0.55 |
| 82.5 | 0.19 | 1.00 | 0.30 |
| 87.5 | 0.13 | 1.00 | 0.14 |
| 92.5 | 0.08 | 1.00 | 0.05 |
| 97.5 | 0.05 | 1.00 | 0.02 |
| 102.5 | 0.03 | 1.00 | 0.00 |

Table 2.22—Schedules of Pacific cod length (cm), proportion mature, and weight (kg) by season and age as estimated by the revised version of Model B1. Pop. = population, Sea. $1=$ Jan-Jun, Sea. $2=$ Jul-Aug, Sea. 3 = Sep-Dec, Beg. = beginning of season, Mid. = middle of season, S.Dev. = standard deviation, Mat. = proportion mature, Twl. = trawl fishery, Lgl. = longline fishery, pot = pot fishery, shelf = shelf survey, slope = slope survey.

|  |  | Length |  |  |  | Pop. Weight |  | Fishery Weight |  |  | Survey Wt. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sea. | Age | Beg. | Mid. | S.Dev. | Mat. | Beg. | Mid. | Twl. | Lgl. | Pot | Shelf | Slope |
| 1 | 1 | 11.10 | 13.79 | 3.54 | 0.00 | 0.01 | 0.02 | 0.03 | 0.04 | 0.06 | 0.02 | 0.07 |
| 1 | 2 | 23.44 | 25.85 | 4.87 | 0.01 | 0.13 | 0.17 | 0.24 | 0.31 | 0.42 | 0.18 | 0.45 |
| 1 | 3 | 34.47 | 36.61 | 5.80 | 0.05 | 0.43 | 0.53 | 0.73 | 0.87 | 1.08 | 0.54 | 1.00 |
| 1 | 4 | 44.32 | 46.23 | 6.42 | 0.18 | 0.98 | 1.13 | 1.45 | 1.55 | 1.77 | 1.13 | 1.52 |
| 1 | 5 | 53.11 | 54.82 | 6.80 | 0.38 | 1.75 | 1.94 | 2.34 | 2.31 | 2.48 | 1.94 | 2.13 |
| 1 | 6 | 60.97 | 62.50 | 7.00 | 0.59 | 2.72 | 2.95 | 3.34 | 3.16 | 3.25 | 2.95 | 2.93 |
| 1 | 7 | 67.99 | 69.35 | 7.07 | 0.75 | 3.86 | 4.12 | 4.42 | 4.12 | 4.17 | 4.12 | 3.82 |
| 1 | 8 | 74.25 | 75.47 | 7.05 | 0.85 | 5.12 | 5.40 | 5.55 | 5.21 | 5.27 | 5.40 | 4.73 |
| 1 | 9 | 79.85 | 80.94 | 6.97 | 0.90 | 6.47 | 6.76 | 6.71 | 6.37 | 6.49 | 6.76 | 5.63 |
| 1 | 10 | 84.85 | 85.82 | 6.83 | 0.93 | 7.86 | 8.16 | 7.89 | 7.57 | 7.76 | 8.14 | 6.55 |
| 1 | 11 | 89.31 | 90.18 | 6.67 | 0.95 | 9.27 | 9.56 | 9.07 | 8.78 | 9.04 | 9.49 | 7.48 |
| 1 | 12 | 93.30 | 94.08 | 6.49 | 0.96 | 10.65 | 10.94 | 10.25 | 9.99 | 10.32 | 10.72 | 8.42 |
| 1 | 13 | 96.86 | 97.55 | 6.71 | 0.97 | 11.98 | 12.24 | 11.33 | 11.08 | 11.50 | 11.68 | 9.13 |
| 1 | 14 | 100.04 | 100.66 | 6.90 | 0.98 | 13.16 | 13.38 | 12.35 | 12.12 | 12.60 | 12.41 | 9.79 |
| 2 | 1 | 16.41 | 17.96 | 3.54 |  | 0.05 | 0.05 | 0.07 | 0.10 | 0.15 | 0.06 | 0.17 |
| 2 | 2 | 28.19 | 29.57 | 4.87 |  | 0.27 | 0.27 | 0.36 | 0.48 | 0.65 | 0.28 | 0.65 |
| 2 | 3 | 38.71 | 39.94 | 5.80 |  | 0.71 | 0.71 | 0.92 | 1.11 | 1.33 | 0.72 | 1.19 |
| 2 | 4 | 48.10 | 49.21 | 6.42 |  | 1.38 | 1.38 | 1.68 | 1.82 | 2.04 | 1.38 | 1.72 |
| 2 | 5 | 56.49 | 57.48 | 6.80 |  | 2.26 | 2.26 | 2.61 | 2.60 | 2.75 | 2.26 | 2.39 |
| 2 | 6 | 63.99 | 64.87 | 7.00 |  | 3.33 | 3.33 | 3.66 | 3.48 | 3.55 | 3.33 | 3.22 |
| 2 | 7 | 70.68 | 71.47 | 7.07 |  | 4.54 | 4.54 | 4.79 | 4.48 | 4.53 | 4.54 | 4.11 |
| 2 | 8 | 76.66 | 77.36 | 7.05 |  | 5.86 | 5.86 | 6.00 | 5.59 | 5.67 | 5.86 | 5.00 |
| 2 | 9 | 82.00 | 82.63 | 6.97 |  | 7.23 | 7.23 | 7.28 | 6.76 | 6.90 | 7.23 | 5.90 |
| 2 | 10 | 86.77 | 87.33 | 6.83 |  | 8.63 | 8.63 | 8.59 | 7.95 | 8.17 | 8.60 | 6.81 |
| 2 | 11 | 91.03 | 91.53 | 6.67 |  | 10.03 | 10.03 | 9.85 | 9.16 | 9.45 | 9.91 | 7.73 |
| 2 | 12 | 94.83 | 95.28 | 6.49 |  | 11.39 | 11.39 | 10.97 | 10.36 | 10.72 | 11.07 | 8.66 |
| 2 | 13 | 98.23 | 98.63 | 6.71 |  | 12.64 | 12.64 | 11.87 | 11.44 | 11.88 | 11.95 | 9.36 |
| 2 | 14 | 101.27 | 101.62 | 6.90 |  | 13.71 | 13.71 | 12.63 | 12.45 | 12.93 | 12.61 | 10.00 |
| 3 | 1 | 19.48 | 21.48 | 3.54 |  | 0.10 | 0.10 | 0.13 | 0.19 | 0.27 | 0.10 | 0.30 |
| 3 | 2 | 30.93 | 32.72 | 4.87 |  | 0.37 | 0.37 | 0.50 | 0.67 | 0.87 | 0.39 | 0.84 |
| 3 | 3 | 41.16 | 42.75 | 5.80 |  | 0.88 | 0.88 | 1.14 | 1.33 | 1.56 | 0.89 | 1.35 |
| 3 | 4 | 50.29 | 51.72 | 6.42 |  | 1.62 | 1.62 | 1.96 | 2.06 | 2.26 | 1.62 | 1.91 |
| 3 | 5 | 58.45 | 59.72 | 6.80 |  | 2.56 | 2.56 | 2.93 | 2.86 | 2.99 | 2.56 | 2.63 |
| 3 | 6 | 65.73 | 66.87 | 7.00 |  | 3.68 | 3.68 | 4.00 | 3.77 | 3.83 | 3.68 | 3.48 |
| 3 | 7 | 72.24 | 73.26 | 7.07 |  | 4.93 | 4.93 | 5.15 | 4.80 | 4.86 | 4.93 | 4.36 |
| 3 | 8 | 78.05 | 78.96 | 7.05 |  | 6.26 | 6.26 | 6.38 | 5.92 | 6.02 | 6.26 | 5.24 |
| 3 | 9 | 83.24 | 84.05 | 6.97 |  | 7.65 | 7.65 | 7.67 | 7.09 | 7.26 | 7.64 | 6.13 |
| 3 | 10 | 87.88 | 88.60 | 6.83 |  | 9.05 | 9.05 | 8.97 | 8.29 | 8.54 | 9.00 | 7.03 |
| 3 | 11 | 92.02 | 92.67 | 6.67 |  | 10.44 | 10.44 | 10.18 | 9.49 | 9.81 | 10.26 | 7.94 |
| 3 | 12 | 95.72 | 96.30 | 6.49 |  | 11.77 | 11.77 | 11.25 | 10.68 | 11.06 | 11.35 | 8.87 |
| 3 | 13 | 99.02 | 99.54 | 6.71 |  | 12.98 | 12.98 | 12.11 | 11.74 | 12.20 | 12.16 | 9.55 |
| 3 | 14 | 101.97 | 102.43 | 6.90 |  | 13.98 | 13.98 | 12.82 | 12.73 | 13.22 | 12.77 | 10.18 |

Table 2.23-Time series of EBS (not expanded to BSAI) Pacific cod age 3+ biomass and female spawning biomass for the years 1977-2006 as estimated last year under the Plan Team's and SSC's preferred model and this year under the revised version of Model B1, 1977-2006 (note that the entries labeled "Last Year's Values" do not correspond to the values given in last year's SAFE report, because the values given in last year's SAFE report corresponded to the authors' preferred model, not the model chosen by the Plan Team and SSC). The columns labeled "L95\%CI" and "U95\%CI" represent the bounds of the $95 \%$ confidence intervals of the female spawning biomass point estimates ("Mean").

| Year | Last Year's Values |  |  |  | This Year's Values |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Age 3+ <br> Biomass | Female Spawning Biomass |  |  | Age 3+ <br> Biomass | Female Spawning Biomass |  |  |
|  |  | Mean | L95\%CI | U95\%CI |  | Mean | L95\%CI | U95\%CI |
| 1977 | 206,295 | 32,871 | 23,372 | 42,369 | 351,043 | 63,970 | 41,324 | 86,616 |
| 1978 | 249,016 | 48,058 | 36,761 | 59,354 | 413,578 | 88,355 | 60,761 | 115,949 |
| 1979 | 469,543 | 76,760 | 60,268 | 93,252 | 748,089 | 129,390 | 92,587 | 166,193 |
| 1980 | 891,564 | 134,915 | 109,848 | 159,982 | 1,158,690 | 203,880 | 152,721 | 255,039 |
| 1981 | 1,187,170 | 243,335 | 205,705 | 280,965 | 1,517,400 | 324,615 | 252,425 | 396,805 |
| 1982 | 1,472,030 | 381,235 | 330,376 | 432,094 | 1,803,040 | 472,195 | 375,383 | 569,007 |
| 1983 | 1,607,040 | 501,700 | 441,912 | 561,488 | 1,940,570 | 606,100 | 488,186 | 724,014 |
| 1984 | 1,625,670 | 567,600 | 504,904 | 630,296 | 2,008,660 | 684,250 | 553,518 | 814,982 |
| 1985 | 1,726,130 | 577,950 | 516,926 | 638,974 | 2,108,490 | 706,050 | 570,447 | 841,653 |
| 1986 | 1,674,350 | 565,500 | 508,045 | 622,955 | 2,052,550 | 701,450 | 565,308 | 837,592 |
| 1987 | 1,748,410 | 564,550 | 510,416 | 618,684 | 2,063,370 | 699,800 | 564,756 | 834,844 |
| 1988 | 1,706,510 | 564,450 | 513,092 | 615,808 | 1,962,320 | 688,100 | 555,996 | 820,204 |
| 1989 | 1,548,160 | 543,900 | 495,219 | 592,582 | 1,762,380 | 643,350 | 516,940 | 769,760 |
| 1990 | 1,359,840 | 513,600 | 468,179 | 559,021 | 1,550,070 | 590,400 | 472,457 | 708,343 |
| 1991 | 1,213,970 | 456,835 | 415,863 | 497,807 | 1,419,360 | 521,900 | 414,943 | 628,857 |
| 1992 | 1,152,860 | 375,875 | 339,795 | 411,955 | 1,343,810 | 437,945 | 342,257 | 533,633 |
| 1993 | 1,136,790 | 337,610 | 305,129 | 370,091 | 1,311,710 | 398,420 | 311,291 | 485,549 |
| 1994 | 1,160,790 | 346,000 | 315,330 | 376,670 | 1,357,450 | 402,690 | 320,606 | 484,774 |
| 1995 | 1,206,320 | 354,910 | 325,102 | 384,718 | 1,397,110 | 409,055 | 329,568 | 488,542 |
| 1996 | 1,118,340 | 344,020 | 314,354 | 373,686 | 1,306,820 | 398,060 | 319,530 | 476,590 |
| 1997 | 1,014,240 | 333,220 | 303,174 | 363,266 | 1,222,930 | 389,370 | 310,931 | 467,809 |
| 1998 | 906,286 | 296,725 | 266,672 | 326,778 | 1,170,450 | 359,855 | 281,849 | 437,861 |
| 1999 | 915,133 | 275,280 | 245,114 | 305,446 | 1,238,220 | 353,235 | 275,064 | 431,406 |
| 2000 | 901,674 | 266,385 | 235,573 | 297,197 | 1,275,970 | 364,415 | 284,616 | 444,214 |
| 2001 | 903,325 | 268,275 | 236,733 | 299,817 | 1,318,360 | 388,395 | 305,981 | 470,809 |
| 2002 | 962,447 | 275,295 | 243,594 | 306,996 | 1,390,490 | 413,955 | 329,578 | 498,332 |
| 2003 | 992,856 | 277,895 | 246,138 | 309,652 | 1,375,020 | 423,905 | 338,912 | 508,898 |
| 2004 | 954,107 | 284,915 | 252,345 | 317,485 | 1,305,670 | 423,950 | 339,499 | 508,402 |
| 2005 | 886,480 | 283,075 | 249,153 | 316,997 | 1,194,340 | 406,580 | 324,056 | 489,104 |
| 2006 | n/a | n/a | n/a | n/a | 1,061,930 | 370,620 | 291,470 | 449,770 |

Table 2.24—Time series of EBS (not expanded to BSAI) Pacific cod age 0 recruitment (1000s of fish) as estimated last year under the Plan Team's and SSC's preferred model and this year under the revised version of Model B1, 1977-2005 (note that the entries labeled "Last Year's Values" do not correspond to the values given in last year's SAFE report, because the values given in last year's SAFE report corresponded to the authors' preferred model, not the model chosen by the Plan Team and SSC). The columns labeled "L95\%CI" and "U95\%CI" represent the lower and upper bounds of the 95\% confidence interval for each cohort.

|  | Last Year's Values |  |  | This Year's Values |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Year | Recruits | L95\%CI | U95\%CI | Recruits | L95\%CI | U95\%CI |
| 1977 | $2,087,960$ | $1,727,781$ | $2,523,294$ | $1,761,770$ | $1,387,935$ | $2,236,296$ |
| 1978 | 522,535 | 312,677 | 873,249 | $1,109,022$ | 814,494 | $1,510,054$ |
| 1979 | $1,074,910$ | 834,512 | $1,384,544$ | $1,038,138$ | 780,328 | $1,381,125$ |
| 1980 | 370,327 | 233,561 | 587,207 | 498,211 | 328,889 | 754,705 |
| 1981 | 482,648 | 339,877 | 685,403 | 975,982 | 761,914 | $1,250,194$ |
| 1982 | $1,637,790$ | $1,407,769$ | $1,905,306$ | $1,654,235$ | $1,370,367$ | $1,996,905$ |
| 1983 | 315,147 | 205,383 | 483,561 | 413,432 | 280,562 | 609,228 |
| 1984 | $1,494,730$ | $1,285,365$ | $1,738,179$ | $1,291,338$ | $1,074,664$ | $1,551,698$ |
| 1985 | 428,535 | 314,820 | 583,336 | 441,251 | 327,515 | 594,484 |
| 1986 | 286,273 | 206,672 | 396,524 | 415,638 | 312,832 | 552,229 |
| 1987 | 200,418 | 134,291 | 298,974 | 333,938 | 239,140 | 466,316 |
| 1988 | 658,175 | 544,584 | 795,467 | 965,730 | 799,657 | $1,166,293$ |
| 1989 | $1,224,710$ | $1,061,143$ | $1,413,498$ | $1,203,482$ | $1,006,723$ | $1,438,697$ |
| 1990 | 657,983 | 532,483 | 813,062 | 696,888 | 555,982 | 873,505 |
| 1991 | 640,898 | 524,260 | 783,476 | 982,327 | 816,702 | $1,181,541$ |
| 1992 | $1,031,550$ | 898,553 | $1,184,225$ | $1,063,770$ | 891,879 | $1,268,789$ |
| 1993 | 280,836 | 212,685 | 370,814 | 396,896 | 299,301 | 526,314 |
| 1994 | 351,743 | 280,394 | 441,241 | 605,736 | 484,720 | 756,965 |
| 1995 | 627,883 | 531,606 | 741,596 | $1,058,231$ | 885,921 | $1,264,055$ |
| 1996 | 878,950 | 767,880 | $1,006,078$ | $1,179,663$ | $1,000,228$ | $1,391,288$ |
| 1997 | 411,017 | 340,031 | 496,831 | 638,106 | 521,369 | 780,981 |
| 1998 | 631,846 | 539,514 | 739,979 | 880,891 | 736,783 | $1,053,186$ |
| 1999 | 943,613 | 820,365 | $1,085,367$ | $1,084,869$ | 920,607 | $1,278,440$ |
| 2000 | 693,481 | 586,035 | 820,616 | 559,825 | 459,265 | 682,403 |
| 2001 | 300,762 | 234,407 | 385,904 | 490,549 | 396,657 | 606,667 |
| 2002 | 411,992 | 323,510 | 524,669 | 455,878 | 357,802 | 580,837 |
| 2003 | 272,626 | 193,079 | 384,942 | 420,029 | 313,607 | 562,565 |
| 2004 | 435,093 | 279,269 | 677,917 | 322,804 | 203,525 | 511,987 |
| 2005 | $\mathrm{n} / \mathrm{a}$ | $\mathrm{n} / \mathrm{a}$ | $\mathrm{n} / \mathrm{a}$ | 719,028 | 473,563 | $1,091,727$ |

Table 2.25-Time series of EBS Pacific cod catch divided by age 3+ biomass as estimated last year under the Plan Team's and SSC's preferred model and this year under the revised version of Model B1, 19772006 (note that the entries labeled "Last Year's Values" do not correspond to the values given in last year's SAFE report, because the values given in last year's SAFE report corresponded to the authors' preferred model, not the model chosen by the Plan Team and SSC). The last entry in each column is based on partial catches for the respective year, because the year was/is still in progress at the time of the assessment.

| Year | Last Year’s Values | This Year’s Values |
| ---: | ---: | ---: |
| 1977 | 0.16 | 0.09 |
| 1978 | 0.18 | 0.11 |
| 1979 | 0.08 | 0.05 |
| 1980 | 0.05 | 0.04 |
| 1981 | 0.05 | 0.04 |
| 1982 | 0.04 | 0.03 |
| 1983 | 0.06 | 0.05 |
| 1984 | 0.08 | 0.06 |
| 1985 | 0.08 | 0.07 |
| 1986 | 0.08 | 0.07 |
| 1987 | 0.09 | 0.07 |
| 1988 | 0.12 | 0.10 |
| 1989 | 0.12 | 0.10 |
| 1990 | 0.13 | 0.11 |
| 1991 | 0.17 | 0.15 |
| 1992 | 0.14 | 0.12 |
| 1993 | 0.12 | 0.10 |
| 1994 | 0.15 | 0.13 |
| 1995 | 0.19 | 0.16 |
| 1996 | 0.19 | 0.16 |
| 1997 | 0.23 | 0.19 |
| 1998 | 0.17 | 0.14 |
| 1999 | 0.16 | 0.12 |
| 2000 | 0.17 | 0.12 |
| 2001 | 0.16 | 0.11 |
| 2002 | 0.17 | 0.12 |
| 2003 | 0.18 | 0.13 |
| 2004 | 0.19 | 0.14 |
| 2005 | 0.21 | 0.15 |
| 2006 | $\mathrm{n} / \mathrm{a}$ | 0.17 |

Table 2.26—Projections for BSAI Pacific cod catch ( t ), spawning biomass ( t ), and fishing mortality under the assumption that $F=\max F_{A B C}$ in 2007-2019 (Scenario 1, revised version of Model B1), with random variability in future recruitment.

| Catch Projections <br> Year |  |  |  |  |  |  | L90\%CI | Median | Mean | U90\%CI | Std. Dev. |
| :--- | ---: | ---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2007 | 202177 | 202177 | 202177 | 202177 | 0 |  |  |  |  |  |  |
| 2008 | 146631 | 146633 | 146633 | 146637 | 2 |  |  |  |  |  |  |
| 2009 | 122326 | 122442 | 122467 | 122696 | 123 |  |  |  |  |  |  |
| 2010 | 128134 | 130089 | 130500 | 134291 | 2062 |  |  |  |  |  |  |
| 2011 | 146015 | 159532 | 162265 | 187917 | 14275 |  |  |  |  |  |  |
| 2012 | 151208 | 190743 | 196680 | 254813 | 34570 |  |  |  |  |  |  |
| 2013 | 147045 | 211637 | 215344 | 292153 | 47496 |  |  |  |  |  |  |
| 2014 | 146719 | 222306 | 223346 | 310663 | 52716 |  |  |  |  |  |  |
| 2015 | 143933 | 226555 | 226422 | 319649 | 54141 |  |  |  |  |  |  |
| 2016 | 141309 | 227757 | 226885 | 316573 | 54654 |  |  |  |  |  |  |
| 2017 | 138005 | 228242 | 226612 | 317181 | 54440 |  |  |  |  |  |  |
| 2018 | 140107 | 228010 | 226382 | 316044 | 53670 |  |  |  |  |  |  |
| 2019 | 142048 | 226096 | 226467 | 314680 | 53266 |  |  |  |  |  |  |
| Spawning Biomass Projections |  |  |  |  |  |  |  |  |  |  |  |
| Year | L90\%CI | Median | Mean | U90\%CI | Std. Dev. |  |  |  |  |  |  |
| 2007 | 351030 | 351030 | 351030 | 351030 | 0 |  |  |  |  |  |  |
| 2008 | 298054 | 298057 | 298058 | 298065 | 4 |  |  |  |  |  |  |
| 2009 | 270924 | 271109 | 271150 | 271512 | 196 |  |  |  |  |  |  |
| 2010 | 269045 | 271193 | 271603 | 275663 | 2206 |  |  |  |  |  |  |
| 2011 | 279805 | 290702 | 292563 | 311675 | 10805 |  |  |  |  |  |  |
| 2012 | 284561 | 313179 | 317666 | 363014 | 26812 |  |  |  |  |  |  |
| 2013 | 282161 | 328721 | 335565 | 409764 | 42465 |  |  |  |  |  |  |
| 2014 | 281106 | 337205 | 345952 | 436202 | 51748 |  |  |  |  |  |  |
| 2015 | 279528 | 341082 | 351228 | 458079 | 55536 |  |  |  |  |  |  |
| 2016 | 276984 | 342811 | 353371 | 455675 | 56893 |  |  |  |  |  |  |
| 2017 | 275273 | 345934 | 354065 | 459002 | 57012 |  |  |  |  |  |  |
| 2018 | 276606 | 345196 | 354379 | 456690 | 56534 |  |  |  |  |  |  |
| 2019 | 278536 | 343963 | 354786 | 452836 | 56323 |  |  |  |  |  |  |
| Fishing Mortality Projections |  |  |  |  |  |  |  |  |  |  |  |
| Year | L90\%CI | Median | Mean | U90\%CI | Std. Dev. |  |  |  |  |  |  |
| 2007 | 0.344 | 0.344 | 0.344 | 0.344 | 0.000 |  |  |  |  |  |  |
| 2008 | 0.296 | 0.296 | 0.296 | 0.296 | 0.000 |  |  |  |  |  |  |
| 2009 | 0.268 | 0.268 | 0.268 | 0.268 | 0.000 |  |  |  |  |  |  |
| 2010 | 0.266 | 0.268 | 0.268 | 0.273 | 0.002 |  |  |  |  |  |  |
| 2011 | 0.277 | 0.288 | 0.290 | 0.311 | 0.011 |  |  |  |  |  |  |
| 2012 | 0.282 | 0.312 | 0.313 | 0.344 | 0.020 |  |  |  |  |  |  |
| 2013 | 0.279 | 0.329 | 0.322 | 0.344 | 0.023 |  |  |  |  |  |  |
| 2014 | 0.278 | 0.337 | 0.325 | 0.344 | 0.023 |  |  |  |  |  |  |
| 2015 | 0.277 | 0.342 | 0.326 | 0.344 | 0.024 |  |  |  |  |  |  |
| 2016 | 0.274 | 0.343 | 0.326 | 0.344 | 0.025 |  |  |  |  |  |  |
| 2017 | 0.272 | 0.344 | 0.326 | 0.344 | 0.025 |  |  |  |  |  |  |
| 2018 | 0.274 | 0.344 | 0.326 | 0.344 | 0.025 |  |  |  |  |  |  |
| 2019 | 0.276 | 0.344 | 0.327 | 0.344 | 0.024 |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |

Table 2.27—Projections for BSAI Pacific cod catch ( t ), spawning biomass ( t ), and fishing mortality under the assumption that $F=1 / 2$ max $F_{A B C}$ in 2007-2019 (Scenario 3, revised version of Model B1), with random variability in future recruitment.

| Catch Projections |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Year | L90\%CI | Median | Mean | U90\%CI | Std. Dev. |
| 2007 | 106861 | 106861 | 106861 | 106861 | 0 |
| 2008 | 94778 | 94779 | 94779 | 94781 | 1 |
| 2009 | 87552 | 87623 | 87639 | 87778 | 75 |
| 2010 | 93470 | 94670 | 94920 | 97244 | 1258 |
| 2011 | 106364 | 112903 | 113559 | 122734 | 5284 |
| 2012 | 111685 | 126312 | 128720 | 152360 | 14027 |
| 2013 | 111339 | 137077 | 140612 | 180362 | 22858 |
| 2014 | 112709 | 145004 | 148720 | 196286 | 27960 |
| 2015 | 112389 | 149535 | 153588 | 208758 | 30050 |
| 2016 | 112516 | 152162 | 156107 | 210268 | 30820 |
| 2017 | 110798 | 154942 | 157310 | 211714 | 30911 |
| 2018 | 112810 | 155006 | 157963 | 211042 | 30546 |
| 2019 | 114797 | 155083 | 158445 | 210132 | 30269 |
| Spawning Biomass Projections |  |  |  |  |  |
| Year | L90\%CI | Median | Mean | U90\%CI | Std. Dev. |
| 2007 | 358095 | 358095 | 358095 | 358095 | 0 |
| 2008 | 337303 | 337307 | 337308 | 337315 | 4 |
| 2009 | 324776 | 324964 | 325004 | 325371 | 198 |
| 2010 | 328882 | 331066 | 331483 | 335609 | 2242 |
| 2011 | 343719 | 355034 | 357008 | 377076 | 11310 |
| 2012 | 353957 | 385625 | 390842 | 441435 | 30093 |
| 2013 | 357439 | 415876 | 423455 | 511577 | 51787 |
| 2014 | 362618 | 440211 | 450044 | 566261 | 68121 |
| 2015 | 364740 | 459661 | 469754 | 606510 | 77513 |
| 2016 | 365743 | 472531 | 483444 | 627773 | 82312 |
| 2017 | 369268 | 483074 | 492753 | 638793 | 84378 |
| 2018 | 371193 | 491526 | 499257 | 647595 | 84785 |
| 2019 | 379278 | 495317 | 504021 | 652180 | 84665 |
| Fishing Mortality Projections |  |  |  |  |  |
| Year | L90\%CI | Median | Mean | U90\%CI | Std. Dev. |
| 2007 | 0.172 | 0.172 | 0.172 | 0.172 | 0.000 |
| 2008 | 0.165 | 0.165 | 0.165 | 0.165 | 0.000 |
| 2009 | 0.159 | 0.159 | 0.159 | 0.160 | 0.000 |
| 2010 | 0.161 | 0.163 | 0.163 | 0.165 | 0.001 |
| 2011 | 0.169 | 0.172 | 0.171 | 0.172 | 0.001 |
| 2012 | 0.172 | 0.172 | 0.172 | 0.172 | 0.000 |
| 2013 | 0.172 | 0.172 | 0.172 | 0.172 | 0.001 |
| 2014 | 0.172 | 0.172 | 0.172 | 0.172 | 0.001 |
| 2015 | 0.172 | 0.172 | 0.172 | 0.172 | 0.001 |
| 2016 | 0.172 | 0.172 | 0.172 | 0.172 | 0.002 |
| 2017 | 0.172 | 0.172 | 0.172 | 0.172 | 0.002 |
| 2018 | 0.172 | 0.172 | 0.172 | 0.172 | 0.002 |
| 2019 | 0.172 | 0.172 | 0.172 | 0.172 | 0.001 |

Table 2.28—Projections for BSAI Pacific cod catch ( t ), spawning biomass ( t ), and fishing mortality under the assumption that $F=$ the 2002-2006 average in 2007-2019 (Scenario 4, revised version of Model B1), with random variability in future recruitment.

| Catch Projections |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Year | L90\%CI | Median | Mean | U90\%CI | Std. Dev. |
| 2007 | 145949 | 145949 | 145949 | 145949 | 0 |
| 2008 | 128747 | 128747 | 128747 | 128747 | 0 |
| 2009 | 119535 | 119566 | 119573 | 119634 | 33 |
| 2010 | 124107 | 124970 | 125155 | 126832 | 907 |
| 2011 | 134297 | 141060 | 142393 | 154874 | 6938 |
| 2012 | 137439 | 157678 | 160982 | 193226 | 19187 |
| 2013 | 135834 | 170429 | 175070 | 228002 | 30337 |
| 2014 | 136789 | 179232 | 184109 | 246393 | 36090 |
| 2015 | 136509 | 184389 | 189143 | 259319 | 38074 |
| 2016 | 136271 | 186220 | 191483 | 259589 | 38645 |
| 2017 | 134709 | 189046 | 192455 | 260973 | 38536 |
| 2018 | 135863 | 189120 | 192918 | 260073 | 38087 |
| 2019 | 138538 | 188667 | 193326 | 258133 | 37848 |
| Spawning Biomass Projections |  |  |  |  |  |
| Year | L90\%CI | Median | Mean | U90\%CI | Std. Dev. |
| 2007 | 355276 | 355276 | 355276 | 355276 | 0 |
| 2008 | 320249 | 320253 | 320254 | 320261 | 4 |
| 2009 | 296636 | 296827 | 296869 | 297243 | 202 |
| 2010 | 292508 | 294748 | 295176 | 299410 | 2300 |
| 2011 | 301424 | 313020 | 315026 | 335464 | 11518 |
| 2012 | 307067 | 338961 | 344072 | 394224 | 29905 |
| 2013 | 307036 | 363805 | 370993 | 457406 | 49993 |
| 2014 | 309674 | 382477 | 391657 | 501585 | 63826 |
| 2015 | 308570 | 396276 | 405952 | 531814 | 70845 |
| 2016 | 310210 | 406483 | 415128 | 542257 | 73987 |
| 2017 | 311682 | 412665 | 420915 | 551201 | 75058 |
| 2018 | 312799 | 415582 | 424797 | 554755 | 74950 |
| 2019 | 317988 | 420855 | 427673 | 554323 | 74638 |
| Fishing Mortality Projections |  |  |  |  |  |
| Year | L90\%CI | Median | Mean | U90\%CI | Std. Dev. |
| 2007 | 0.240 | 0.240 | 0.240 | 0.240 | 0.000 |
| 2008 | 0.240 | 0.240 | 0.240 | 0.240 | 0.000 |
| 2009 | 0.240 | 0.240 | 0.240 | 0.240 | 0.000 |
| 2010 | 0.240 | 0.240 | 0.240 | 0.240 | 0.000 |
| 2011 | 0.240 | 0.240 | 0.240 | 0.240 | 0.000 |
| 2012 | 0.240 | 0.240 | 0.240 | 0.240 | 0.000 |
| 2013 | 0.240 | 0.240 | 0.240 | 0.240 | 0.000 |
| 2014 | 0.240 | 0.240 | 0.240 | 0.240 | 0.000 |
| 2015 | 0.240 | 0.240 | 0.240 | 0.240 | 0.000 |
| 2016 | 0.240 | 0.240 | 0.240 | 0.240 | 0.000 |
| 2017 | 0.240 | 0.240 | 0.240 | 0.240 | 0.000 |
| 2018 | 0.240 | 0.240 | 0.240 | 0.240 | 0.000 |
| 2019 | 0.240 | 0.240 | 0.240 | 0.240 | 0.000 |

Table 2.29—Projections for BSAI Pacific cod catch ( t ), spawning biomass ( t ), and fishing mortality under the assumption that $F=0$ in 2007-2019 (Scenario 5, revised version of Model B1), with random variability in future recruitment.

| Catch Projections |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Year | L90\%CI | Median | Mean | U90\%CI | Std. Dev. |
| 2007 | 0 | 0 | 0 | 0 | 0 |
| 2008 | 0 | 0 | 0 | 0 | 0 |
| 2009 | 0 | 0 | 0 | 0 | 0 |
| 2010 | 0 | 0 | 0 | 0 | 0 |
| 2011 | 0 | 0 | 0 | 0 | 0 |
| 2012 | 0 | 0 | 0 | 0 | 0 |
| 2013 | 0 | 0 | 0 | 0 | 0 |
| 2014 | 0 | 0 | 0 | 0 | 0 |
| 2015 | 0 | 0 | 0 | 0 | 0 |
| 2016 | 0 | 0 | 0 | 0 | 0 |
| 2017 | 0 | 0 | 0 | 0 | 0 |
| 2018 | 0 | 0 | 0 | 0 | 0 |
| 2019 | 0 | 0 | 0 | 0 | 0 |
| Spawning Biomass Projections |  |  |  |  |  |
| Year | L90\%CI | Median | Mean | U90\%CI | Std. Dev. |
| 2007 | 365315 | 365315 | 365315 | 365315 | 0 |
| 2008 | 384118 | 384122 | 384123 | 384130 | 4 |
| 2009 | 403483 | 403675 | 403716 | 404091 | 202 |
| 2010 | 432062 | 434306 | 434735 | 438975 | 2303 |
| 2011 | 468735 | 480475 | 482512 | 503244 | 11670 |
| 2012 | 502596 | 536384 | 541666 | 594932 | 31667 |
| 2013 | 529383 | 594759 | 602907 | 699452 | 57672 |
| 2014 | 554142 | 648553 | 659508 | 802237 | 81845 |
| 2015 | 573201 | 694521 | 707972 | 882233 | 100208 |
| 2016 | 586599 | 734476 | 747209 | 949262 | 112761 |
| 2017 | 601707 | 764145 | 777874 | 986769 | 120628 |
| 2018 | 614745 | 790359 | 801412 | 1016610 | 124915 |
| 2019 | 632262 | 805159 | 819277 | 1040890 | 126944 |
| Fishing Mortality Projections |  |  |  |  |  |
| Year | L90\%CI | Median | Mean | U90\%CI | Std. Dev. |
| 2007 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2008 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2009 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2010 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2011 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2012 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2013 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2014 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2015 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2016 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2017 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2018 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2019 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

Table 2.30—Projections for BSAI Pacific cod catch ( t ), spawning biomass ( t ), and fishing mortality under the assumption that $F=F_{\text {OFL }}$ in 2007-2019 (Scenario 6, revised version of Model B1), with random variability in future recruitment.

| Catch Projections |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Year | L90\%CI | Median | Mean | U90\%CI | Std. Dev. |
| 2007 | 237943 | 237943 | 237943 | 237943 | 0 |
| 2008 | 158661 | 158663 | 158664 | 158667 | 2 |
| 2009 | 129086 | 129216 | 129244 | 129499 | 138 |
| 2010 | 135751 | 137944 | 138404 | 142656 | 2313 |
| 2011 | 155620 | 170748 | 173846 | 202604 | 16173 |
| 2012 | 160321 | 203792 | 21879 | 289181 | 41371 |
| 2013 | 154658 | 224246 | 232854 | 328183 | 57225 |
| 2014 | 153890 | 233188 | 240288 | 343610 | 62128 |
| 2015 | 150139 | 235450 | 242069 | 350339 | 62991 |
| 2016 | 147449 | 235214 | 241321 | 347722 | 63314 |
| 2017 | 142721 | 234217 | 240313 | 345219 | 62969 |
| 2018 | 145246 | 234747 | 239540 | 342364 | 62146 |
| 2019 | 147202 | 234462 | 239503 | 342474 | 61916 |
| Spawning Biomass Projections |  |  |  |  |  |
| Year | L90\%CI | Median | Mean | U90\%CI | Std. Dev. |
| 2007 | 348202 | 348202 | 348202 | 348202 | 0 |
| 2008 | 283969 | 283972 | 283973 | 283980 | 4 |
| 2009 | 254151 | 254336 | 254376 | 254737 | 195 |
| 2010 | 252015 | 254153 | 254562 | 258602 | 2195 |
| 2011 | 262579 | 273383 | 275227 | 294160 | 10703 |
| 2012 | 266378 | 294460 | 298791 | 342310 | 26072 |
| 2013 | 263122 | 307967 | 313850 | 382038 | 39652 |
| 2014 | 261756 | 313808 | 320814 | 401197 | 46222 |
| 2015 | 259380 | 315955 | 323187 | 412561 | 48078 |
| 2016 | 257126 | 316138 | 323297 | 411441 | 48441 |
| 2017 | 254626 | 316079 | 322751 | 411523 | 48118 |
| 2018 | 255968 | 315596 | 322390 | 408955 | 47483 |
| 2019 | 257507 | 314780 | 322499 | 406323 | 47236 |
| Fishing Mortality Projections |  |  |  |  |  |
| Year | L90\%CI | Median | Mean | U90\%CI | Std. Dev. |
| 2007 | 0.414 | 0.414 | 0.414 | 0.414 | 0.000 |
| 2008 | 0.339 | 0.339 | 0.339 | 0.339 | 0.000 |
| 2009 | 0.301 | 0.301 | 0.301 | 0.301 | 0.000 |
| 2010 | 0.298 | 0.301 | 0.301 | 0.306 | 0.003 |
| 2011 | 0.311 | 0.325 | 0.327 | 0.351 | 0.013 |
| 2012 | 0.316 | 0.352 | 0.356 | 0.413 | 0.027 |
| 2013 | 0.312 | 0.369 | 0.369 | 0.414 | 0.034 |
| 2014 | 0.310 | 0.376 | 0.373 | 0.414 | 0.036 |
| 2015 | 0.307 | 0.379 | 0.374 | 0.414 | 0.037 |
| 2016 | 0.304 | 0.379 | 0.374 | 0.414 | 0.038 |
| 2017 | 0.301 | 0.379 | 0.373 | 0.414 | 0.039 |
| 2018 | 0.303 | 0.379 | 0.373 | 0.414 | 0.038 |
| 2019 | 0.305 | 0.378 | 0.373 | 0.414 | 0.037 |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

Table 2.31—Projections for BSAI Pacific cod catch ( t ), spawning biomass ( t ), and fishing mortality under the assumption that $F=\max F_{A B C}$ in each year 2007-2008 and $F=F_{O F L}$ thereafter (Scenario 7, revised version of Model B1), with random variability in future recruitment.

| Catch Projections |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Year | L90\%CI | Median | Mean | U90\%CI | Std. Dev. |
| 2007 | 202177 | 202177 | 202177 | 202177 | 0 |
| 2008 | 146631 | 146633 | 146633 | 146637 | 2 |
| 2009 | 144062 | 144198 | 144228 | 144495 | 144 |
| 2010 | 143499 | 145745 | 146217 | 150574 | 2369 |
| 2011 | 159161 | 174442 | 177564 | 206596 | 16292 |
| 2012 | 161364 | 204916 | 212936 | 289958 | 41240 |
| 2013 | 154674 | 224224 | 232738 | 327632 | 57087 |
| 2014 | 153679 | 232891 | 239975 | 343216 | 62089 |
| 2015 | 149885 | 235176 | 241832 | 350133 | 62990 |
| 2016 | 147310 | 235061 | 241183 | 347561 | 63318 |
| 2017 | 142642 | 234131 | 240240 | 345133 | 62971 |
| 2018 | 145200 | 234803 | 239504 | 342323 | 62147 |
| 2019 | 147181 | 234440 | 239485 | 342455 | 61916 |
| Spawning Biomass Projections |  |  |  |  |  |
| Year | L90\%CI | Median | Mean | U90\%CI | Std. Dev. |
| 2007 | 351030 | 351030 | 351030 | 351030 | 0 |
| 2008 | 298054 | 298057 | 298058 | 298065 | 4 |
| 2009 | 269414 | 269598 | 269639 | 269999 | 195 |
| 2010 | 260478 | 262612 | 263020 | 267053 | 2191 |
| 2011 | 266850 | 277637 | 279478 | 298378 | 10686 |
| 2012 | 268210 | 296264 | 300577 | 344029 | 26044 |
| 2013 | 263800 | 308574 | 314471 | 382590 | 39664 |
| 2014 | 261969 | 313960 | 321014 | 401447 | 46266 |
| 2015 | 259415 | 316015 | 323258 | 412769 | 48121 |
| 2016 | 257129 | 316149 | 323331 | 411597 | 48472 |
| 2017 | 254618 | 316086 | 322771 | 411660 | 48137 |
| 2018 | 255960 | 315598 | 322401 | 409000 | 47494 |
| 2019 | 257504 | 314784 | 322505 | 406327 | 47242 |
| Fishing Mortality Projections |  |  |  |  |  |
| Year | L90\%CI | Median | Mean | U90\%CI | Std. Dev. |
| 2007 | 0.344 | 0.344 | 0.344 | 0.344 | 0.000 |
| 2008 | 0.296 | 0.296 | 0.296 | 0.296 | 0.000 |
| 2009 | 0.320 | 0.320 | 0.320 | 0.321 | 0.000 |
| 2010 | 0.309 | 0.311 | 0.312 | 0.317 | 0.003 |
| 2011 | 0.317 | 0.330 | 0.333 | 0.357 | 0.013 |
| 2012 | 0.319 | 0.354 | 0.358 | 0.414 | 0.027 |
| 2013 | 0.313 | 0.370 | 0.369 | 0.414 | 0.034 |
| 2014 | 0.311 | 0.377 | 0.373 | 0.414 | 0.036 |
| 2015 | 0.307 | 0.379 | 0.374 | 0.414 | 0.037 |
| 2016 | 0.304 | 0.379 | 0.374 | 0.414 | 0.038 |
| 2017 | 0.301 | 0.379 | 0.373 | 0.414 | 0.039 |
| 2018 | 0.303 | 0.379 | 0.373 | 0.414 | 0.038 |
| 2019 | 0.305 | 0.378 | 0.373 | 0.414 | 0.037 |



Figure 2.6-Selectivity at length (cm, evaluated at midpoints of length bins) as estimated by the revised version of Model B1.


Figure 2.7-Biomass time trends (age 3+ biomass, female spawning biomass, survey biomass) of EBS Pacific cod as estimated by the revised version of Model B1.


Figure 2.8-Time series of EBS Pacific cod recruitment at age 0, with $95 \%$ confidence intervals, as estimated by the revised version of Model B1.


Figure 2.9—Age 0 recruitment versus female spawning biomass for Pacific cod during the years 19772005 as estimated by the revised version of Model B1, with Ricker stock-recruitment curve (for illustrative purposes only).


Figure 2.10—Trajectory of Pacific cod fishing mortality and female spawning biomass as estimated by the revised version of Model B1, 1977-present. Because Pacific cod is a key prey of Steller sea lions, harvests would be restricted to incidental catch in the event that spawning biomass fell below $B_{20 \%}$.

