



# U.S. DEPARTMENT OF COMMERCE Marine Biological Laboratory

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION NATIONAL MARINE FISHERIES SERVICE

AUG 1 0 1971

WOODS HOLE, MASS.

Fur Seal Investigations, 1968



### NOTE

Until October 2, 1970, the National Marine Fisheries Service, Department of Commerce, was the Bureau of Commercial Fisheries, Department of the Interior. Throughout the body of this report, which was prepared for printing before October 2, the older term is used.

## UNITED STATES DEPARTMENT OF COMMERCE

Maurice H. Stans, Secretary

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

NATIONAL MARINE FISHERIES SERVICE
Philip M. Roedel, Director

# Fur Seal Investigations, 1968

By

NATIONAL MARINE FISHERIES SERVICE MARINE MAMMAL BIOLOGICAL LABORATORY

Special Scientific Report--Fisheries No. 617

Washington, D.C.
December 1970



### CONTENTS

|                                                                              | Page     |
|------------------------------------------------------------------------------|----------|
| Introduction                                                                 | 2        |
| Part I. Fur seal investigations, Pribilof Islands, Alaska, 1968              | 2        |
| Age classification and number of seals killed by sex                         | 2        |
| Males                                                                        |          |
| Females                                                                      | 2<br>5   |
| Survey data                                                                  | 6        |
| Dead seal pups counted                                                       | 6        |
| Causes of seal pup mortality                                                 | 7        |
| Malnutrition                                                                 | 8        |
| Hookworm disease                                                             | 8        |
|                                                                              | 9        |
| Trauma                                                                       | 9        |
|                                                                              | 9        |
| Infection (microbial)                                                        | 9        |
| Miscellaneous                                                                | 9        |
| Seasonal and annual trends in seal pup mortality                             | 11       |
| Dead seals counted that were older than pups                                 |          |
| Living adult male seals counted                                              | 11       |
| Reproductive condition of female seals                                       | 11       |
| Living pups weighed                                                          | 12       |
| Marking                                                                      | 13       |
| Application of marks                                                         | 13       |
| Pups                                                                         | 13       |
| Yearling male seals                                                          | 13       |
| Male seals age 2 years                                                       | 14       |
| Recoveries of marked seals                                                   | 14       |
| Marked seals                                                                 | 14       |
| Tag loss                                                                     | 14       |
| Time of tagging                                                              | 14       |
| Tags vs. other marks                                                         | 15       |
| Population estimates                                                         | 16       |
| Number of seal pups born                                                     | 16       |
| Number of yearling male seals                                                | 19       |
| Number of male seals age 2 years                                             | 20       |
| Forecast of the kill of male seals                                           | 22       |
| Quantitative comparisons for 3- and 4-year-old male seals                    | 22       |
| Forecast of the kill of 4-year-old male seals                                | 23       |
| Regression of the kill of 4-year-old male seals on the kill of 3-year-old    | 2.0      |
| male seals and the mean round of the kill of 3-year-old male seals           | 23       |
| Regression of the kill at ages 3 and 4 on mean air temperature               | 25       |
| Regression of the kill at ages 3 and 4 on the mean weight of living seal     | 2.5      |
| pups and the count of dead seal pups                                         | 25       |
| Estimate of the kill based on an estimate of the yearling male seal popu-    | 25       |
| lation                                                                       |          |
| Combined estimates of the kill of 4-year-old male seals on St. Paul Island.  | 26       |
| Forecast of the kill of 3-year-old male seals                                | 26       |
| Regression of kill at ages 3 and 4 on air temperature, mean weights of       | 2/       |
| living seal pups, and counts of dead seal pups                               | 26       |
| Forecast of the kill at age 3 based on an estimate of the yearling male seal | 24       |
| population                                                                   | 26       |
| Estimates of the total kill of male scale in 100.                            | 27       |
| Estimates of the total kill of male seals in 1969                            | 27<br>27 |
| Special studies                                                              | 27       |
| Activity of young male seals on land                                         | 27       |
| Tagging                                                                      | 29       |
| Telemetry                                                                    | 29       |
| ridge mate seats on the nauting grounds.,                                    | 49       |

|                |                                                                                                                                       | Page                       |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Par            | Summary Acknowledgments Glossary.  t II. Pelagic fur seal investigations, 1968                                                        | 31<br>32<br>32<br>34       |
|                | Research in 1968                                                                                                                      | 34<br>34<br>34<br>45       |
|                | Age and sex. Tag recoveries Lengths and weights Reproduction Feeding habits                                                           | 45<br>45<br>45<br>45<br>48 |
| Lite           | Relation of feeding habits to commercial fisheries                                                                                    | 53<br>69<br>69             |
| Арр            | pendix A tables                                                                                                                       | 70                         |
|                | pendix BPersons engaged in fur seal research on the Pribilof Islands in 1968                                                          | 99                         |
| App            | pendix C tables                                                                                                                       | 100                        |
|                | FIGURES                                                                                                                               |                            |
| No.            |                                                                                                                                       |                            |
| 2.<br>3.<br>4. | Location of rookeries and hauling grounds, St. Paul Island                                                                            | 3<br>3<br>5<br>5           |
|                | 1968                                                                                                                                  | 7                          |
| 7.             | July 1968                                                                                                                             | 7                          |
| 8.             | Island                                                                                                                                | 10                         |
| 9.             | Island Examples of mark locations that have been used on fur seals, Pribilof Islands,                                                 | 10                         |
| 10.            | Alaska                                                                                                                                |                            |
| 11.            | are marked "X." See table C-2 for detailed data                                                                                       | 35<br>36                   |
| 12.            | are marked "X." See table C-3 for detailed data                                                                                       |                            |
| 13.            | marked "X." See table C-4 for detailed data                                                                                           | 37                         |
| 14.            | measure 18.52 km. (10 nautical miles). Squares occupied for less than 0.5 hours are marked "X." See table C-5 for detailed data       | 38                         |
|                | long. 156° W. The sides of each square measure 18.52 km. (10 nautical miles). Squares occupied for less than 0.5 hours are marked "X" | 39                         |

| No. |                                                                                                                                                                                                                                                                                                 | Page |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 15. | Number of seals seen per hour of effort in each square (areal unit) occupied by a research vessel in June 1968 in Alaska waters between Kodiak Island and long. 158° W. The sides of each square measure 18.52 km. (10 nautical miles). Squares occupied for less than 0.5 hours are marked "X" | 40   |
| 16. | Number of seals seen per hour of effort in each square (areal unit) occupied by a research vessel in June 1968 in Alaska waters from long, 160° W. to Bering Sea. The sides of each square measure 18.52 km. (10 nautical miles). Squares occu-                                                 | 41   |
| 17. | pied for less than 0.5 hours are marked "X"                                                                                                                                                                                                                                                     |      |
| 18. | pied for less than 0.5 hours are marked "X"                                                                                                                                                                                                                                                     | 42   |
| 19. | occupied for less than 0.5 hours are marked "X"                                                                                                                                                                                                                                                 | 43   |
| 20. | total number seen                                                                                                                                                                                                                                                                               | 44   |
| 21. | Pacific Ocean, 1958-66                                                                                                                                                                                                                                                                          | 48   |
| 22. | stomachs collected off Washington, 1967-68                                                                                                                                                                                                                                                      | 53   |
| 23. | rences)                                                                                                                                                                                                                                                                                         | 54   |
| 24. | rences) and Gonatus fabricii (15 occurrences)                                                                                                                                                                                                                                                   | 55   |
| 25. | ber 1967 and January-February 1968 contained Thaleichthys pacificus (24 occurrences) and Loligo opalescens (17 occurrences)                                                                                                                                                                     | 56   |
| 24  | occurrences) and Salmonidae (60 occurrences)                                                                                                                                                                                                                                                    | 57   |
|     | Percentage volume and percentage occurrence of principal food species in fur seal stomachs collected off Alaska in 1968                                                                                                                                                                         | 62   |
| 2.8 | Sea in 1968 contained Salmonidae (11 occurrences) and Gonatus magister (14 occurrences)                                                                                                                                                                                                         | 63   |
| 20. | Sea in 1968 contained Mallotus villosus (12 occurrences) and Gonatopsis borealis (42 occurrences)                                                                                                                                                                                               | 64   |
|     | Locations where fur seal stomachs collected in Gulf of Alaska in 1968 contained Mallotus villosus (14 occurrences) and Gonatopsis borealis (28 occurrences)                                                                                                                                     | 65   |
| 30. | Locations where fur seal stomachs collected in Gulf of Alaska in 1968 contained  Theragra chalcogrammus (15 occurrences) and Gonatus magister (21 occurrences)                                                                                                                                  | 66   |
| 31. | Locations where fur seal stomachs collected off western Alaska and in the Bering Sea in 1968 contained Bathylagidae (13 occurrences) and Theragra chalcogram-                                                                                                                                   |      |
| 32. | mus (44 occurrences)                                                                                                                                                                                                                                                                            | 67   |
|     | Gonatus fabricii (37 occurrences)                                                                                                                                                                                                                                                               | 00   |
|     | TABLES                                                                                                                                                                                                                                                                                          |      |
|     | Kill of male seals, by year class, Pribilof Islands Alaska, 1947-66                                                                                                                                                                                                                             | 4 5  |
| 3.  | Number of female seals to be killed and the number actually taken during a special kill of female seals. Dribilof Islands, Alacka August 1969                                                                                                                                                   | 5    |

| No. |                                                                                                                                                                                                                                           | Pag      |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|     | Kill of female seals, by year class, Pribilof Islands, Alaska, 1943-67                                                                                                                                                                    | 6        |
|     | Primary causes of death among seal pups within three mortality study areas, St. Paul Island, 4 July to 15 August 1968                                                                                                                     | 8        |
| 6.  | Seal pups that died of malnutrition with secondary bacterial enteritis, all mortality study areas, St. Paul Island, 1964 and 1966-68                                                                                                      | 9        |
|     | Dead seals counted that were older than pups, Pribilof Islands, Alaska, 1965-68<br>Age composition of dead male seals, age 6 and older, Pribilof Islands, Alaska,                                                                         | 11       |
| 9.  | 1965-68 Reproductive condition of female seals sampled from the kill, by age, St. Paul                                                                                                                                                    | 11       |
| 10. | Island, 26 June to 16 August 1968                                                                                                                                                                                                         | 12       |
| 11. | older, St. Paul Island                                                                                                                                                                                                                    | 12       |
| 12. | August 1968                                                                                                                                                                                                                               | 12       |
|     | Means of the weights of living seal pups, Robben and Bering Islands, U.S.S.R., 1968. Summary of tag loss for male seals tagged as pups, tag series O through S, Pribilof                                                                  | 1 2      |
|     | Islands, Alaska                                                                                                                                                                                                                           | 15       |
|     | Alaska                                                                                                                                                                                                                                    | 16       |
|     | Island, 1963-64                                                                                                                                                                                                                           | 16       |
| 11. | from recoveries of marked female seals killed in 1967 and 1968, Pribilof Islands, Alaska                                                                                                                                                  | 17       |
| 18. | Estimates of the seal pup population, year classes 1963-66, at time of marking from recoveries of marked male seals killed 26 June to 2 August 1968, Pribilof                                                                             |          |
| 19. | Islands, Alaska                                                                                                                                                                                                                           | 17       |
| 20. | recoveries of marked male seals in ages 2 to 5, Pribilof Islands, Alaska Estimates of the seal pup population, year classes 1960-65, at time of tagging from recoveries of marked male seals in ages 3 and 4, and the count of dead pups, | 17       |
| 21. | Pribilof Islands, Alaska                                                                                                                                                                                                                  | 18       |
| 22. | Mean estimates of the seal pup population, year classes 1966 and 1968, from shearing and sampling on selected rookeries, St. Paul Island                                                                                                  | 19       |
| 23. | Complete counts of living seal pups on selected rookeries in early August, St. Paul Island, 1963-68                                                                                                                                       | 19       |
| 24. | Estimates of the number of yearling male seals, year classes 1964-66, from recoveries of tagged male seals, Pribilof Islands, Alaska                                                                                                      | 20       |
| 25. | Summary of male seals known or believed to be 2 years old when tagged in 1966, and recovered in 1967 and 1968, St. Paul Island                                                                                                            | 21       |
| 26. | Estimates of the number of 2- and 3-year-old male seals, year classes 1963-64, from recoveries of male seals known or believed to be 2 years old when tagged, St. Paul Island                                                             | 21       |
| 27. | Comparisons of forecast of kill of 4-year-old male seals, by method, St. Paul                                                                                                                                                             | 22       |
| 28. | Island, 1965-68                                                                                                                                                                                                                           | 23       |
| 29. | Island, 1965-68                                                                                                                                                                                                                           | 24       |
| 30. | 1953-64, St. Paul Island                                                                                                                                                                                                                  |          |
| 31. | Paul Island                                                                                                                                                                                                                               | 24<br>25 |
| 32. | classes 1957-64, St. Paul Island                                                                                                                                                                                                          | 25       |

| No. |                                                                                                                                                                      | Pag      |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 33. | Estimated number of yearling male seals, and the ratio of the kill at ages 3 and 4 on St. Paul Island to the number of yearling male seals, year classes 1961, 1962, |          |
| 34. | Estimated number of yearling male seals, year classes 1961, 1962, 1964, and 1965, from tag recoveries at age 2, and the kill of 3-year-old male seals, St.           | 25       |
| 35  | Paul Island                                                                                                                                                          | 27<br>27 |
|     | Forecasted and actual kill of male seals, Pribilof Islands, Alaska, 1968                                                                                             | 27       |
| 37. | Number of days between tagging and recovery of tags applied to male seals, St. Paul Island, 24 June to 18 July 1968                                                  | 28       |
|     | Recoveries in 1968 of male seals tagged on St. Paul Island, 24 June to 18 July 1968 according to hauling ground                                                      | 29       |
|     | Age composition of four groups of adult male seals from hauling grounds, St. Paul Island, 1967                                                                       | 30       |
| 40. | Mean length and weight of body and mean weight of testes of 100 adult male seals from hauling grounds, by age, St. Paul Island, 1967                                 | 30       |
| 41. | Measurements of territorial and nonterritorial male seals of selected ages, St. Paul Island                                                                          | 31       |
| 42. | Age and sex, by month, of fur seals collected pelagically by the United States in the eastern Pacific, 1967-68.                                                      | 46       |
| 43. |                                                                                                                                                                      |          |
| 44. | Months of collection and number of female seals age 5 and older collected by the                                                                                     | 47       |
| 45. | United States in the eastern Pacific, 1958-66                                                                                                                        | 48       |
| 46. | tests of pregnancy rates between areas in 1958, 1960-62, and 1964  Pregnancy rates, by area and month of collection, and chi-square values for tests                 | 49       |
| 47. | of pregnancy rates, between years, 1958-66                                                                                                                           | 50       |
| 48. | Stomach contents of fur seals collected pelagically by the United States off Washington, 1967-68                                                                     | 52       |
| 49. | Stomach contents of fur seals collected pelagically by the United States off Southeastern Alaska, 1968                                                               | 58       |
| 50. | Stomach contents of fur seals collected pelagically by the United States in the Gulf of Alaska, 1968                                                                 | 58       |
| 51. | Stomach contents of fur seals collected pelagically by the United States off western                                                                                 |          |
| 52. | Alaska, 1968 Stomach contents of fur seals collected pelagically by the United States in the                                                                         | 59       |
| 53. | Bering Sea, 1968                                                                                                                                                     | 60       |
|     | Alaska, 1968                                                                                                                                                         | 61       |
| No. |                                                                                                                                                                      |          |
| Арр | endix A tables                                                                                                                                                       |          |
| l.  | Age classification of male seals killed on St. Paul Island, 26 June to 2 August 1968                                                                                 | 70       |
| 2.  | Cumulative age classification of male seals killed on St. Paul Island, 26 June to 2 August 1968                                                                      | 71       |
| 3.  | Age classification of male seals killed on St. George Island, 26 June to 5 August                                                                                    | 72       |
| 4.  | 1968                                                                                                                                                                 | 73       |
| 5.  | 5 August 1968                                                                                                                                                        | 74       |
|     | Percentage age classification of female seals in sample, St. Paul Island, 26 June to                                                                                 |          |
| 7.  | 16 August 1968                                                                                                                                                       | 75       |
| 8   | August 1968                                                                                                                                                          | 76       |
| 0.  | 16 August 1968                                                                                                                                                       | 77       |

| No.  |                                                                                                                                                                                                                              | Pag      |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 9.   | Number of female seals killed, by age, St. George Island, 29 July to 12 August                                                                                                                                               |          |
| 10.  | Percentage age classification of female seals in sample, St. George Island, 29                                                                                                                                               | 78       |
| 11.  | July to 12 August 1968                                                                                                                                                                                                       | 78<br>79 |
| 12.  | 12 August 1968                                                                                                                                                                                                               |          |
|      | to 12 August 1968                                                                                                                                                                                                            | 79<br>80 |
|      | Dead seal pups counted, by rookery sections, St. Paul Island, 22-27 August 1968  Lesions and circumstances associated with cases of multiple hemorrhage-perinatal complex among seal pups, St. Paul Island, 1964 and 1966-68 | 81<br>82 |
| 16.  | Primary causes of death among 379 seal pups, by 7-day periods, St. Paul Island, 5 July to 15 August 1968                                                                                                                     | 83       |
|      | Adult male seals counted, by class and rookery, St. George Island, 21-22 June 1968.  Adult male seals counted, by class and rookery section, St. George Island, 13 July                                                      | 83       |
| 19.  | Adult male seals counted, by class and rookery section, St. Paul Island, 21-26 June                                                                                                                                          | 84       |
| 20.  | Adult male seals counted, by class and rookery section, St. Paul Island, 10-11                                                                                                                                               | 85       |
| 21.  | July 1968                                                                                                                                                                                                                    | 87       |
| 2.2  | St. Paul Island, 9-14 July 1966 and 1968                                                                                                                                                                                     | 88<br>88 |
|      | Harem and idle male seals counted in mid-July, Pribilof Islands, Alaska, 1959-68  Mean weights of untagged and unmarked seal pups about 1 September, St. Paul                                                                |          |
| 24   | Island, 1957-68                                                                                                                                                                                                              | 89<br>89 |
|      | Record of tags applied to male seals selected as yearlings and as 2-, 3-, and 4-year-olds on the basis of body length or size, St. Paul Island, 1961-63 and                                                                  |          |
| 26   | 1965-68                                                                                                                                                                                                                      | 90<br>90 |
| 27.  | Seal pups tagged and checkmarked, St. Paul Island, 26-27 August 1968 Record of 714 yearling male seals tagged, St. Paul Island, September and October                                                                        | 90       |
| 29.  | 1968                                                                                                                                                                                                                         | 90       |
| 30.  | yearlings, St. Paul Island, September and October 1968                                                                                                                                                                       | 91       |
| 31.  | October 1968                                                                                                                                                                                                                 | 91       |
| 32.  | Paul Island, September and October 1968                                                                                                                                                                                      | 92<br>93 |
| 33.  | Alaska, 26 June to 16 August 1968                                                                                                                                                                                            | 93       |
| 34.  | at age 2 or older in previous years, Pribilof Islands, Alaska, 1968                                                                                                                                                          | 95       |
| 35.  | Alaska, 26 June to 2 August 1968                                                                                                                                                                                             | 96       |
| 36.  | lands, Alaska, 26 June to 16 August 1968                                                                                                                                                                                     | 98       |
| A pp | pendix C tables                                                                                                                                                                                                              | ,0       |
|      | Itinerary of pelagic investigations, 1967-68                                                                                                                                                                                 | 100      |
| 2.   | List of chart squares occupied by a research vessel off Washington in November 1967, showing hours in square, seals seen per hour, and number of seals seen                                                                  | 100      |
| 3.   | and collected                                                                                                                                                                                                                | 100      |
|      | 1967, showing hours in square, seals seen per hour, and number of seals seen and collected                                                                                                                                   | 101      |
| 4.   | List of chart squares occupied by a research vessel off Washington in January 1968, showing hours in square, seals seen per hour, and number of seals seen                                                                   | 10:      |
|      | and collected                                                                                                                                                                                                                | 101      |

| No. |                                                                                                                                                             | Page       |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 5.  | List of chart squares occupied by a research vessel off Washington in February 1968, showing hours in square, seals seen per hour, and number of seals seen | 100        |
| 6.  | and collected                                                                                                                                               | 102        |
| 7.  | and collected                                                                                                                                               | 103        |
| 8.  | and collected                                                                                                                                               | 104        |
| 9.  | seen and collected                                                                                                                                          | 104        |
| 10. | and collected                                                                                                                                               | 105        |
| 11. | and collected                                                                                                                                               | 106        |
|     | and collected                                                                                                                                               | 107<br>108 |
|     | Number and percentage of seals shot at sea that were collected, wounded and lost, and killed and lost, 1958-68                                              | 108        |
| 15. | off Washington, 27 November 1967 to 26 February 1968                                                                                                        | 109        |
|     | Number of seals collected, and number collected per boat-hunting day, by 10-day periods, off Washington, 27 November 1967 to 26 February 1968               | 110        |
|     | periods, in Alaska waters, 18 May to 24 August 1968                                                                                                         | 110        |
| 19. | ber 1967 to 26 February 1968                                                                                                                                | 111        |
|     | Thickness of subcutaneous fat in yearling fur seals collected pelagically off Washington, 1968                                                              | 112        |
|     | Monthly mean lengths of pregnant fur seals collected pelagically by the United States in the eastern Pacific, 1967-68                                       | 113        |
|     | States in the eastern Pacific, 1967-68                                                                                                                      | 114        |
| 24. | States in the eastern Pacific, 1968                                                                                                                         | 115        |
| 25. | Monthly mean lengths of nonpregnant female seals collected pelagically by the United States in the eastern Pacific, 1967-68                                 | 117        |
| 26. | Monthly mean weights of nonpregnant female seals collected pelagically by the United States in the eastern Pacific, 1967-68                                 | 118        |
| 28. | eastern Pacific, 1967-68                                                                                                                                    | 119        |
| 29. | eastern Pacific, 1967-68                                                                                                                                    | 120        |
| 30. | pelagically by the United States off Washington, 1967-68                                                                                                    | 121        |
|     | Reproductive condition of female seals collected pelagically by the United States in the eastern Pacific, 1967-68                                           | 122        |
| 32. | Pregnancy rates of female seals collected by the United States in the eastern Pacific, by area and month, 1967-68                                           | 125        |



## Fur Seal Investigations, 1968

by

NATIONAL MARINE FISHERIES SERVICE MARINE MAMMAL BIOLOGICAL LABORATORY Sand Point Naval Air Station Seattle, Washington 98115

#### **ABSTRACT**

Field investigations in 1968 were made on the Pribilof Islands from June to October, in Washington waters in November-December 1967 and January-February 1968, and in Alaska waters from May to August 1968. Data were collected during these periods for studies of population levels and the maximum sustained yield, and the distribution, feeding habits, migrations, and pregnancy rates of fur seals.

In 1968, 45,625 male and 13,335 female fur seals (Callorhinus ursinus) were

killed on the Pribilof Islands.

Dead fur seals counted included 31,438 pups and 350 animals older than pups. The major causes of death among 379 pups were malnutrition, hookworm disease, trauma, infections, and perinatal complex.

We estimated that the Islands had 7,924 harem and 4,383 idle males in mid-July. Pregnancy rates of females were 42 percent for 1,058 from hauling grounds in 1968 and 100 percent for 221 from rookeries in 1957.

The average weights of the pups were 9.6 kg. for males and 8.3 kg. for females. Seals tagged included 11,675 pups regardless of sex,714 males estimated to be yearlings, and 1,495 males estimated to be 2 years old.

Of the marked seals recovered, 3,946 had been given tags or other marks as pups and 1,197 had been tagged at age 1 or older.

Tag loss apparently is highest soon after tagging.

The recovery rate for pups tagged in September has been higher than that for pups tagged in August.

Pups marked by removing parts of flippers apparently have a higher survival

rate than pups that have been given tags and flipper marks.

Two different methods of estimating populations yielded similar values (400,000 and 350,000) for the number of pups born in 1965. The pup population estimates decreased annually since 1960 to less than 400,000 in 1965.

Estimates of the number of yearling males for several year classes are 82,000

(1961), 79,000 (1962), 115,000 (1964), and 80,000 (1965).

After the kill in 1966, the population still included 25,000 3-year-old males from the 1963 year class and 70,000 2-year-old males from the 1964 year class.

The predicted kill of males in ages 2 to 5 was 49,000 for 1968 and is 56,000 for

1969. The actual kill in 1968 was 44,162.

The recovery rate of young males tagged and recovered in 1968 was higher for those marked in June than for those marked in July. The recovery rate for seals tagged on hauling grounds inaccessible to the kill was less than that for seals tagged on accessible hauling grounds. One of ten transmitters attached to seals emitted signals for 9 days.

Nearly all of 250 adult males killed from rookeries were age 10 or older, but 58 percent of 100 adult males killed from hauling grounds were less than 10 years.

Researchers took 374 seals off Washington and 456 in Alaska waters; 38 of these seals had tags or other marks. About 50 percent of the female seals taken were from 1 to 7 years old.

The principal fishes eaten by fur seals off Washington were salmon, Oncorhynchus spp.; anchovy, Engraulis mordax; rockfish, Sebastodes spp.; eulachon, Thaleichthys pacificus; and capelin, Mallotus villosus. The principal foods consumed in Alaska waters were walleye pollock, Theragra chalcogrammus; squids, Cephalopoda; and Atka mackerel, Pleurogrammus monopterygius.

#### INTRODUCTION

The year 1968 marks an important step in studies of the Pribilof Islands fur seal population.

Now, 13 years after we first began to reduce the seal population with the expectation that a smaller population would yield larger kills and more stability, we are ready to let it increase in size. The high population of the 1950's has been reduced and held at nearly the same level since 1963. An estimate of the mean kill of males from the year classes at this lower population level and the size of fluctuations to be expected in the kill will be determined from collections of data completed by 1972.

The next step will be to find the productivity of the population when it reaches a new, higher level.

Information about marked seals continues to upset any of our previous notions about the purity of separate populations in the North Pacific. A small colony of seals that produced young in 1968 on San Miguel Island, off the coast of California, included marked animals from the Pribilof and Commander Islands. A male seal marked in late June 1968 on the Pribilof Islands was taken on the Commander Islands within a month.

Part I, on land investigations, was prepared by Raymond E. Anas, Douglas G. Chapman (Director of the Center for Quantitative Analysis, University of Washington), Ancel M. Johnson, Mark C. Keyes, Alton Y. Roppel, and Ford Wilke.

Part II, on pelagic studies, was contributed by Clifford H. Fiscus and Hiroshi Kajimura.

# Part I. FUR SEAL INVESTIGATIONS, PRIBILOF ISLANDS, ALASKA, 1968

The purpose of fur seal research on the Pribilof Islands is to appraise the reaction of the herd to population levels purposely adjusted so that the level of maximum sustained yield can be calculated. Part I of this report summarizes the information collected in 1968 and describes the progress made toward the achievement of this goal. The glossary describes terms having special meanings in fur seal research, figures 1 and 2 show the loca-

tion of rookeries and hauling grounds on St. Paul and St. George Islands, and Appendix B lists persons engaged in fur seal research on the Pribilof Islands in 1968. In this report, "Pribilof Islands" includes St. Paul and St. George Islands and, occasionally, Sea Lion Rock. There are no fur seal rookeries on Walrus and Otter Islands, two of the five islands belonging to the Pribilof group.

#### AGE CLASSIFICATION AND NUMBER OF SEALS KILLED BY SEX

Seals of both sexes were taken on the Pribilof Islands from 26 June to 16 August 1968; males were killed primarily from 26 June to 2 August, and females from 3 to 16 August.

#### MALES

All available males 42 inches (107 cm.) long or longer from tip of nose to tip of tail, but without manes, were taken from 26 June to 2 August on St. Paul Island and from 26 June to 5 August on St. George Island. The animals were killed beginning at 6 a.m. Monday through Saturday on St. Paul Island and at 9 a.m. on Mondays, Wednesdays, and Fridays on St. George Island.

The lower length limit for male seals was removed on St. Paul Island from 22 to 26 July to continue a study of the relation of abundance of seals at age 2 to the number killed from the same year class a year later at age 3.

Efforts to increase the utilization of males were carried out primarily by taking as many as possible of the large 4-year-olds during

the kills of males on both islands. Seals on Zapadni Point were frightened away once in an attempt to make the animals haul out on an area accessible to the kill.

Table 1 gives the kills of male seals on the Pribilof Islands from year classes 1947 to 1966.

Right upper canine teeth collected from 20 percent of the males killed on the Pribilof Islands in 1968 were used to estimate the age composition of the total kill. A kill of 44,292 males in ages 2 to 6 included 35,292 taken on St. Paul Island and 9,000 taken on St. George Island (tables A-1 to A-4). Ages were not determined for an additional I,333 young males taken during the kill of females 3-16 August, though most of the animals were probably 3 to 4 years old. The seasonal trend in the availability of 3- and 4-year-old males killed is given in figure 3 for St. Paul Island and in figure 4 for St. George Island.

On the basis of tests of reader ability to determine the ages of seals from canine teeth (Marine Mammal Biological Laboratory, 1969) the age compositions were adjusted to show the

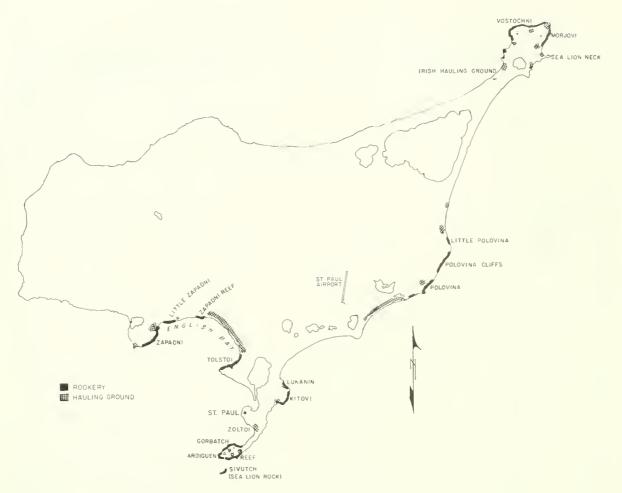



Figure 1.--Location of rookeries and hauling grounds, St. Paul Island.

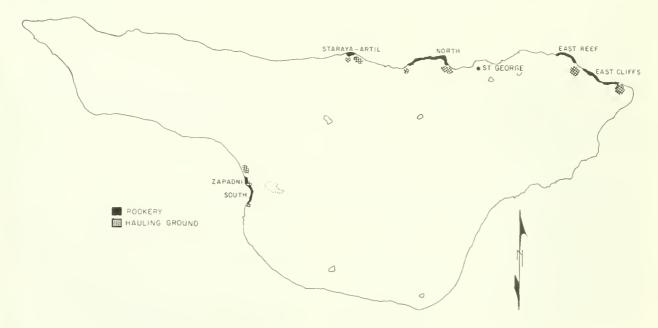



Figure 2.--Location of rookeries and hauling grounds, St. George Island.

Table 1.--Kill of male seals, 1/2 by year class, Pribilof Islands, Alaska, 1947-66

|        |        |          | Paul Islan      |        |                      | St. George Island |                 |         |     |                       |                        |
|--------|--------|----------|-----------------|--------|----------------------|-------------------|-----------------|---------|-----|-----------------------|------------------------|
| Year   | 2      | Age<br>3 | Age when killed |        |                      | 2                 | Age when killed |         | 5   | Total                 | Grand                  |
| class  |        |          | Number          | 5      | Total                |                   |                 | -Number |     | 1 otal                | Number Number          |
| 1947   | -      | 30, 110  | 23,697          | 854    | 54, 661              | -                 | 7, 043          | 3,731   | 123 | 10, 897               | 65, 5 58               |
| 1948   | 486    | 25, 714  | 19, 995         | 103    | 46, 298              | 114               | 5, 546          | 3, 926  | 22  | 9, 608                | 55, 906                |
| 1949   | -      | 29, 697  | 12, 326         | 249    | 42,272               | 303               | 7, 116          | 2,570   | 280 | 10, 269               | 52,541                 |
| 1950   | 855    | 40,656   | 15, 365         | 332    | 57, 208              | 1,104             | 8, 475          | 4,793   | 147 | 14, 519               | 71,727                 |
| 1951   | 1, 384 | 32, 350  | 18, 083         | 3,057  | 54, 874              | 288               | 7, 907          | 5, 310  | 681 | 14, 186               | 69,060                 |
| 1952   | 1,735  | 30, 733  | 31, 410         | 675    | 64, 553              | 545               | 8, 998          | 8, 459  | 506 | 18, 508               | 83,061                 |
| 1953   | 839    | 38, 312  | 8,855           | 54     | 48,060               | 295               | 10,611          | 3,330   | 100 | 14, 336               | 62, 396                |
| 1954   | 2,918  | 23, 473  | 5, 599          | 554    | 32,544               | 535               | 6, 651          | 2,779   | 162 | 10, 127               | 42,671                 |
| 1955   | 1,015  | 27,863   | 10,555          | 115    | 39, 548              | 555               | 7,246           | 2,825   | 260 | 10,886                | 50, 434                |
| 1956   | 885    | 10,671   | 2,762           | 532    | 14,850               | 171               | 2,251           | 1,387   | 218 | 4,027                 | 18,877                 |
| 1957   | 2,590  | 24, 283  | 15, 344         | 773    | 42, 990              | 242               | 5, 098          | 4, 492  | 244 | 10, 076               | 53, 066                |
| 1958   | 1,977  | 48, 458  | 14, 149         | 1, 587 | 66, 171              | 431               | 9, 413          | 3, 707  | 540 | 14, 091               | 80, 262                |
| 1959   | 2,820  | 26, 456  | 14, 184         | 1,764  | 45, 224              | 891               | 5, 890          | 4, 690  | 492 | 11, 963               | 57, 187                |
| 1960   | 1,619  | 14, 310  | 10,533          | 1,240  | 27, 702              | 636               | 4, 332          | 2,579   | 178 | 7,725                 | 35, 427                |
| 1961   | 1,098  | 22, 468  | 12,046          | 1,270  | 36, 882              | 921               | 6, 948          | 2, 592  | 502 | 10, 963               | 47,845                 |
| 1962   | 2,539  | 19, 009  | 12, 156         | 1,287  | 34, 991              | 1, 139            | 3, 736          | 3,881   | 392 | 9, 148                | 44, 139                |
| 1963   | 1,264  | 25, 535  | 11, 785         | 1,542  | 40, 126              | 167               | 5, 586          | 3, 738  | 406 | 9, 897                | 50, 023                |
| 19642/ | 3, 143 | 26, 991  | 13, 279         |        | 43, 413              | 391               | 7,622           | 3, 680  |     | 11,693                | 55, 106                |
| 19652/ | 2,200  | 18, 706  |                 |        | 20, 906              | 740               | 4, 443          |         |     | 5, 183                | 26, 089                |
| 19662/ | 1,673  |          |                 |        | 1,673                | 443               |                 |         |     | 443                   | 2, 116                 |
| Mean   | 1,724  | 27, 147  | 14,007          | 940    | $\frac{3}{4}$ 3, 468 | 522               | 6,340           | 3,804   | 309 | $\frac{4}{1}$ 11, 271 | - <sup>1</sup> 54, 805 |

<sup>1/</sup> Includes only 2- to 5-year-old seals taken during the kill of males on the Pribilof Islands. From 1956 to 1966, 131 1-year-olds and 564 6-year-olds were taken on St. Paul Island and 20 1-year-olds and 202 6-year-olds were taken on St. George Island. In addition, age was not determined for 4, 919 males taken on St. Paul Island, nor for 1,522 taken on St. George Island.

<sup>2/</sup> Incomplete returns.

<sup>3/</sup> 1947, 1949, 1964, 1965, and 1966 year classes not included.

<sup>4/ 1947, 1964, 1965,</sup> and 1966 year classes not included.

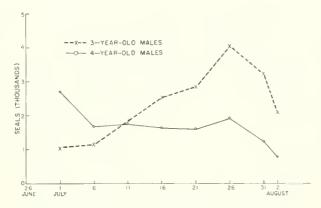



Figure 3.--Kill of 3- and 4-year-old male seals, St. Paul Island, 26 June to 2 August 1968.

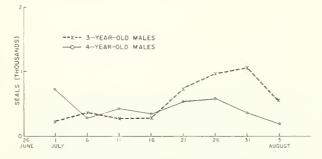



Figure 4.--Kill of 3- and 4-year-old male seals, St. George Island, 26 June to 5 August 1968.

possible magnitude of error in the number of males of each age killed in 1968. Differences between adjusted and nonadjusted age compositions were about 1 percent each for 3-, 4-, and 5-year-old males and 17 percent for 2-year-old males (table 2). The adjusted number of 2-year-old males was less than the nonadjusted number. Adjusted numbers of seals killed are not used in any of the calculations in this report because the data are similar for ages 3, 4, and 5, and it is not known if the adjusted or the nonadjusted age composition is more representative of the true age composition.

#### FEMALES

The 13,335 females killed on the Pribilof Islands in 1968 were considered excess to the number needed to maintain the production of pups at the present level. St. Paul Island contributed 10,544 females, and St. George Island, 2,791. Right upper canine teeth from 30 percent of the females killed were used to estimate the age composition of the total kill (tables A-5 to A-12).

The kill began about 6 a.m. Monday through Friday on St. Paul Island and about 9 a.m. Monday, Wednesday, and Friday on St. George Island. All females killed were taken from

Table 2. --Unadjusted and adjusted kill of male seals, Pribilof Islands, Alaska, 26 June to 5 August 1968

| Age   | Unadjusted<br>kill    | Adjusted<br>kill     | Difference |
|-------|-----------------------|----------------------|------------|
| Years | Number                | Number               | Percent    |
| 2     | 2,106                 | 1,802                | +16.87     |
| 3     | 23, 149               | 23,339               | - 0.81     |
| 4     | 16, 959               | 17,099               | - 0.82     |
| 5     | 1, 948                | 1,923                | + 1.30     |
| Total | $\frac{1}{4}$ 44, 162 | $\frac{1}{44}$ , 162 |            |

1/ We did not include 130 6-year-old males taken on the Pribilof Islands 26 June to 5 August, nor 307 males killed on St. Paul Island 3 and 5 August because the data for these seals were incomplete.

Table 3.--Number of female seals to be killed and the number actually taken during a special kill of female seals, Pribilof Islands, Alaska, August 1968

| Island and rookery                                                                                            | Quota                                                      | Actual<br>kill                                           |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|
| St. Paul Island:  Northeast Point Tolstoi-Zapadni Reef. Zapadni- Little Zapadni Reef Lukanin-Kitovi Polovina. | Number<br>2,129<br>1,022<br>1,874<br>1,789<br>596<br>1,107 | Number<br>2,829<br>962<br>2,137<br>1,417<br>592<br>1,374 |
| Total                                                                                                         | 8,517                                                      | 9,311                                                    |
| St. George Island:  Zapadni  North  East  Staraya Artil                                                       | 800<br>1,262<br>615<br>400                                 | 854<br>1,032<br>513<br>219                               |
| Total                                                                                                         | 3,077                                                      | 2,618                                                    |

hauling grounds, and all females in the drive were killed regardless of age or size. When the kill of males ended 2 August on St. Paul Island and 5 August on St. George Island, 1,233 and 173 females, respectively, had been taken. The relative size of each rookery was used as a guide in killing the remaining 11,594 females needed to achieve a quota of 13,000 (table 3). A special effort was made not to exceed the quotas on Reef, Polovina, and Staraya Artil, three rookeries where females are extremely accessible.

Table 4 shows the kills of females from year classes 1943-67.

Table 4.--Kill of female seals, by year class, 1/Pribilof Islands, Alaska, 1943-67

| Year  | L     |     | Age in     | years  |        |        |
|-------|-------|-----|------------|--------|--------|--------|
| class | 1     | 2   | 3          | 4      | 5      | 6      |
|       |       |     | <u>N</u> u | mber   |        |        |
| 1943  | -     | -   | -          | -      | -      | 12     |
| 1944  | -     | -   | -          | -      | 3      | 1.     |
| 1945  | -     | ~   | -          | 4      | 4      | {      |
| 1946  | -     | -   | -          | 4      | 4      | 60     |
| 1947  | -     | 1   | -          | 1      | 37     | 84     |
| 1948  | -     | -   | -          | 84     | 75     | 94     |
| 1949  | -     | -   | 30         | 34     | 161    | 118    |
| 1950  | -     | 10  | 17         | 92     | 210    | 2,949  |
| 1951  | 4     | -   | 8          | 85     | 4,618  | 6,343  |
| 1952  | -     | _   | 16         | 6, 422 | 11,465 | 3,408  |
| 1953  | -     | 1   | 2,132      | 5, 806 | 4,056  | 2,958  |
| 1954  | -     | 132 | 1, 150     | 8,493  | 3,771  | 683    |
| 1955  | 40 40 | 11  | 11,468     | 7,285  | 1,047  | 4,810  |
| 1956  | -     | 601 | 2,072      | 614    | 4,520  | 3, 444 |
| 1957  | 150   | 281 | 352        | 6,912  | 6,303  | 4,080  |
| 1958  | 76    | 79  | 4,651      | 8,683  | 8,697  | 1, 914 |
| 1959  | 27    | 508 | 4,563      | 8,044  | 3,626  | 62     |
| 1960  | 120   | 431 | 2,979      | 3, 409 | 1, 121 | 46     |
| 1961  | 37    | 724 | 3,434      | 2,629  | 85     | 1, 193 |
| 1962  | 7     | 390 | 1,384      | 93     | 1,571  | 1,67   |
| 1963  | 26    | 172 | 45         | 1,597  | 1, 908 |        |
| 1964  | 12    | 13  | 963        | 2,791  |        |        |
| 1965  | 58    | 33  | 789        |        |        |        |
| 1966  | 10    | 65  |            |        |        |        |
| 1967  | 84    |     |            |        |        |        |

1/ Includes pelagic research kill of the United States and Canada, 1958-68. In addition, 138,665 females age 7 and older and 7,067 females of undetermined age were taken.

#### SURVEY DATA

Data were collected on: (1) numbers of dead pups, (2) causes of pup mortality, (3) seasonal and annual trends in pup mortality, (4) number of dead adults, (5) number of living adult males, (6) reproductive condition of females, and (7) weights of living pups.

#### DEAD SEAL PUPS COUNTED

Total counts of dead pups have been made after 15 August on the Pribilof Islands nearly every year since 1941. About twice as many were counted in 1968 than in 1967 (table A-13). Of 31,438 dead pups counted in 1968, 26,563 were on St. Paul Island and 4,875 were on St. George Island.

In 1966, the rookeries on St. Paul Island were subdivided into sections that contained

about 100 class 3<sup>1</sup> males counted on land in mid-July 1965. Records of counts by section (table A-14) have now been kept for 3 years. Mortality, according to the counts, does not vary uniformly on all rookeries nor on sections of rookeries. For example, the counts of dead pups on Polovina Cliffs Rookery were 809, 825, and 1,616 in 1966, 1967, and 1968, respectively, but the total counts (nearest 1,000) for St. Paul Island in each of the 3 years were 21,000, 14,000, and 27,000. Apparently the mortality differs among the rookeries, and if true, mortality from various causes probably varies among rookeries and sections of rookeries within a year.

<sup>1</sup> Territorial males with females.

#### CAUSES OF SEAL PUP MORTALITY

Malnutrition, hookworm disease, trauma, multiple hemorrhage-perinatal complex, and microbial infections of various kinds caused most of the pup deaths on three study areas on St. Paul Island in 1968. These and miscellaneous causes of death among pups are discussed in this section.

From 4 July to 15 August 1968, 379 dead pups were collected from catwalks on study areas at Reef and Northeast Point Rookeries (figs. 5 and 6). Of these dead pups, 324 were autopsied and 55 were discarded because of advanced post mortem degeneration. An additional 34 pups that had died on the study areas before we began our research in 1968 were also discarded when the areas were first

cleared on 4 and 5 July. We know, however, that few pups die from malnutrition before 17 July, and we can safely assume that none of the 34 pups died from hookworm disease because the earliest deaths from this cause have been observed about 17 July in past years. Twenty-one dead pups that we discarded after 5 July were unsuitable for examimation because of extremely rapid putrefaction, probably preceded by bacterial infection. Emaciated pups deteriorate relatively slow, and hookworm disease can usually be recognized in spite of post mortem change. Thus, we would have discarded few pups that died from these causes. The cause of death was not determined for 12 of the 324 pups examined, but we know these animals did not die of malnutrition or hookworm disease. Therefore, the proportions of



Figure 5.--Seal pup mortality study areas 1 and 2, Reef Rookery, St. Paul Island, mid-July 1968.



Figure 6.--Seal pup mortality study area 3, Northeast Point Rookery, St. Paul Island, mid-July 1968.

Table 5.--Primary causes of death among seal pups within three mortality study areas, St. Paul Island, 4 July to
15 August 1968

|                       | T      |         | Stı     | idy area |          |            |        |         |
|-----------------------|--------|---------|---------|----------|----------|------------|--------|---------|
|                       |        | Reef    | Rookery |          | North    | east Point | 1      |         |
|                       | Are    | a l     | Are     | a 2      | Are      | ea 3       |        |         |
| Causes of death       | Old ca | twalk   | New c   | atwalk   | Hutchins | son Hill   |        |         |
|                       | Dead   | pups    | Dead    | pups     | Dead     | pups       | Tot    | al      |
|                       | Number | Percent | Number  | Percent  | Number   | Percent    | Number | Percent |
| Malnutrition          | 80     | 60.7    | 42      | 43.2     | 59       | 39.3       | 181    | 47.8    |
| Hookworm disease      | 7      | 5.3     | 7       | 7.2      | 50       | 33.3       | 64     | 16.9    |
| Trauma                | 11     | 8.3     | 5       | 5.2      | 5        | 3.3        | 21     | 5,5     |
| Bite wounds           | (7)    | (5.2)   | (3)     | (3.1)    | (3)      | (2.0)      | (13)   | (3.4)   |
| Skull fractures       | (0)    | (0.0)   | (1)     | (1.0)    | (1)      | (0.7)      | (2)    | (0.5)   |
| Contusions            | (0)    | (0.0)   | (0)     | (0.0)    | (1)      | (0.7)      | (1)    | (0.3)   |
| Stomach rupture       | (3)    | (2.3)   | (1)     | (1.0)    | (0)      | (0.0)      | (4)    | (1.0)   |
| Heart rupture         | (1)    | (0.8)   | (0)     | (0.0)    | (0)      | (0.0)      | (1)    | (0.3)   |
| Multiple hemorrhage-  |        |         |         |          |          |            |        |         |
| perinatal complex     | 4      | 3.0     | 9       | 9. 3     | 6        | 4.0        | 19     | 5.0     |
| Infection (microbial) | 2      | 1.5     | 5       | 5.2      | 13       | 8,7        | 20     | 5,3     |
| Navel                 | (0)    | (0.0)   | (3)     | (3.1)    | (1)      | (0.7)      | (4)    | (1.0)   |
| Peritonitis           | (0)    | (0.0)   | (1)     | (1.0)    | (2)      | (1.3)      | (3)    | (0.8)   |
| Pleuritis             | (0)    | (0.0)   | (0)     | (0.0)    | (2)      | (1.3)      | (2)    | (0.5)   |
| Enteritis             | (2)    | (1.5)   | (1)     | (1.0)    | (7)      | (4.7)      | (10)   | (2.6)   |
| Pneumonia             | (0)    | (0.0)   | (0)     | (0.0)    | (1)      | (0.7)      | (1)    | (0.3)   |
| Miscellaneous         | 3      | 2.3     | 3       | 3.1      | 1        | 0.7        | 7      | 1.8     |
| Stillborn             | (3)    | (2.3)   | (1)     | (1.0)    | (1)      | (0.7)      | (5)    | (1.3)   |
| Meconium impaction    | (0)    | (0.0)   | (1)     | (1.0)    | (0)      | (0.0)      | (1)    | (0.3)   |
| Congenital pneumonia  | (0)    | (0.0)   | (1)     | (1.0)    | (0)      | (0.0)      | (1)    | (0.3)   |
| Undetermined          | 3      | 2.3     | 6       | 6.2      | 3        | 2,0        | 12     | 3.2     |
| Unsuitable for        |        |         |         |          |          |            |        |         |
| examination           |        | 16.6    | 20_     | 20.6     | 13       | 8.7        | 55     | 14.5    |
| Total                 | 132    | 100.0   | 97      | 100.0    | 150      | 100.0      | 379    | 100.0   |

deaths given in table 5 for malnutrition and hookworm disease are based on a total that includes pups unsuitable for examination and pups for which the causes of death were undetermined.

#### Malnutrition

The causes of apparent malnutrition of fur seal pups is not well understood. If death from malnutrition depends on separation of mother and pup and if the extent of separation depends on crowding, then mortality from malnutrition should have been at about the same level since 1963. Mortality from malnutrition, however, has varied from 25 to 61 percent on study area 1 of Reef Rookery from 1964 to 1968. We believe that the density of the present population is below the level where density dependent mortality factors are important. Separation of mother and pup owing to crowding is probably not the only cause of malnutrition. Perhaps some disease is involved. For example, a

disease affecting the mother could stop the flow of milk (agalactia), a condition we have observed in two females captured at the time of parturition. A disease affecting the pup could also interrupt feeding. Any infectious disease with a duration of from 1 to 3 weeks would outwardly manifest itself in the pup by a loss of weight and other condition. Certain types of viruses can cause a loss of appetite (anorexia) without observable gross lesions until those caused by secondary bacterial invasion appeared. Actually, most pups that die of apparent malnutrition are emaciated but have no other observable gross lesions except an apparent secondary bacterial enteritis (table 6). We have not been able to positively differentiate between malnutrition caused by disease and that caused by simple starvation.

#### Hookworm Disease

"Hookworm disease" refers to the presence of sufficient numbers of the parasite in the

Table 6. --Seal pups that died of malnutrition with secondary bacterial enteritis, all mortality study areas,

St. Paul Island, 1964 and 1966-68

| Year | Total deaths from malnutrition— | Pups with secondary bacterial enteritis |         |  |
|------|---------------------------------|-----------------------------------------|---------|--|
|      | Number                          | Number                                  | Percent |  |
| 1964 | 41                              | 23                                      | 56.1    |  |
| 1966 | 69                              | 40                                      | 58.0    |  |
| 1967 | 72                              | 27                                      | 37.5    |  |
| 1968 | 181                             | 77                                      | 42.5    |  |

<sup>&</sup>lt;u>1</u>/ Permanent canine teeth had not erupted in 70.7 percent of pups that died of malnutrition, indicating that deaths from this cause usually occur before the age of 3 to 4 weeks. Permanent canine teeth usually erupt in females by the third week and in males by the fourth week.

intestinal tract to cause hemorrhagic anemia, focal intestinal ulceration, inflammation, and, in some cases, perforation.

Although the percentage of deaths from hookworm disease for all areas combined in 1968 (16.9 percent) was nearly the same as in 1967 (16.0 percent), the actual number increased from 37 to 64.

The first cases of hookworm disease were found on Reef Rookery 10 July 1968, 1 week earlier than usual. The incidence there (6.3 percent) was much lower than on Northeast Point (33.3 percent). We can only speculate that the reason for this and a similar difference noted in 1967 is because of different topography, or a cyclic variation in the level of passive resistance transmitted from mothers to their pups.

The permanent canine teeth had not erupted in 71.9 percent of the pups that died of hook-worm disease, indicating that the pups died from this cause before they were 3 to 4 weeks old.

#### Trauma

Eight pups with ruptured livers did not have definite symptoms of the multiple hemorrhage-perinatal complex other than liver hemorrhage and may have been trampled by adult seals. For example, we assume that trampling ruptured a heart and four stomachs, fractured two skulls, and gave one pup severe contusions. In addition, 13 pups died of infection or hemorrhage owing to bite wounds.

#### Multiple Hemorrhage-Perinatal Complex

Thirty to forty percent of the pups that have died of this complex have been stillborn, and 67 to 80 percent have hadfresh umbilical cords or placentas; hence the designation "perinatal" (around birth). Except for liver rupture, the most constant lesion has been hemorrhage, usually from the liver but from other organs

also, and peculiarly, within the eyes (20-44 percent). Affected livers are usually friable, swollen, and easily ruptured, and often have blood blisters and focal necrosis on their surfaces. One affected pup (necropsy number 68-N-133) had subcapsular hemorrhages of the liver and generalized jaundice, but the liver had not ruptured. Table A-15 shows the lesions and circumstances associated with this disease. We do not know the cause but suspect a virus infection, or some toxic process. Although attempts to culture a virus from the liver of affected seals using tissue culture cell lines from human embryonic kidney and fibroblasts, and African Green Monkey kidney, 2 were negative, the results were inconclusive because we were unable to try tissue culture cell lines from the fur seal.

#### Infection (Microbial)

The most prevalent form of microbial infection (table 5) was enteritis, the primary cause of death in 10 pups and the secondary cause in 77. Navel infection (omphalophlebitis) in 1968 was lower than expected (1 percent), but pups that die of this cause deteriorate rapidly and some may have been overlooked among those classified as unsuitable for examination. Bite wounds in nine pups caused fatal secondary infections.

#### Miscellaneous

This category included five stillbirths, one meconium impaction, and one congenital pneumonia. Among those that died of the multiple-hemorrhage-perinatal complex, 7 were still-births, bringing the total to 12 stillbirths (3.2 percent) among 324 pups.

## SEASONAL AND ANNUAL TRENDS IN SEAL PUP MORTALITY

Table A-16 shows the causes of death by 7-day periods on St. Paul Island. The number of deaths was highest from 26 July to 1 August when most were caused by malnutrition and hookworm disease. Most of the deaths from all other causes occurred before 26 July.

Figures 7 and 8 compare mortality for 4 years on area 1, Reef Rookery, and for 2 years on area 3, Northeast Point. The relative size of the five major causes of mortality varied significantly between years on Reef Rookery (P < 0.005) but not on Northeast Point (P = 0.25). The causes of death that deviated most from

<sup>&</sup>lt;sup>2</sup> This work was done by Dorothy F. Scott, Department of Microbiology, Presbyterian-St. Luke's Hospital, Chicago, through the courtesy of Friedrich Deinhardt, Chairman

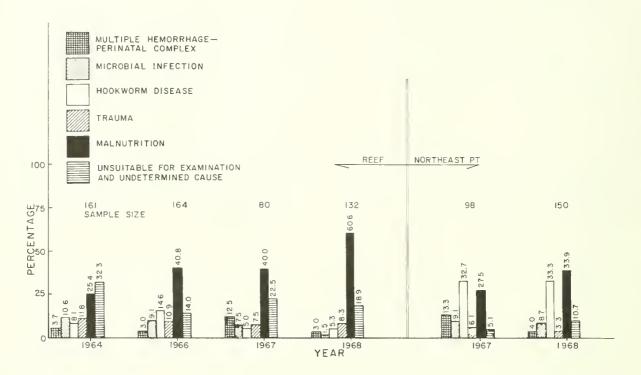



Figure 7.--Percentage of seal pups that died of various causes, Reef Rookery study area 1, 1964 and 1966-68, and Northeast Point study area 3, 1967 and 1968, St. Paul Island.

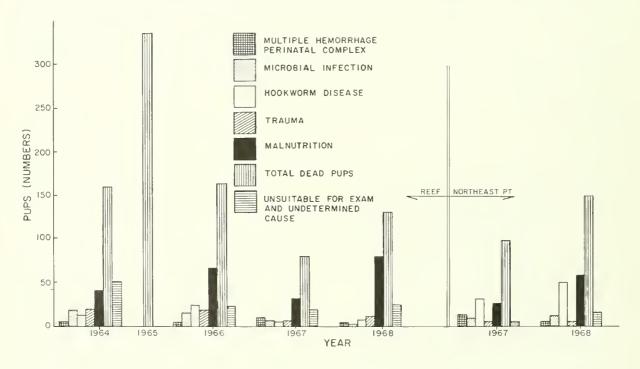



Figure 8.--Number of seal pups that died of various causes, Reef Rookery study area 1, 1964 and 1966-68, and Northeast Point study area 3, 1967 and 1968, St. Paul Island.

the average were microbial infection and trauma in 1964, multiple hemorrhage-perinatal complex in 1967, and malnutrition and microbial infection in 1968.

We conclude that observed fluctuations in mortality are probably influenced by changes in the incidence of one or two causes of death rather than a general increase or decrease in the incidence of all.

## DEAD SEALS COUNTED THAT WERE OLDER THAN PUPS

All beaches of St. Paul and St. George Islands are now routinely examined each year for dead fur seals older than pups. Seals of both sexes are counted, and canine teeth are collected from each for studies of age and mortality. Table 7 shows the number of dead animals counted in 1965-68, and table 8 the age composition of dead males age 6 and older in 1965-68.

Table 7.--Dead seals counted that were older than pups, Pribilof Islands, Alaska, 1965-68

| Year         | St. Paul<br>Island |                 | St. G<br>Isl |               | Total         |                 |  |
|--------------|--------------------|-----------------|--------------|---------------|---------------|-----------------|--|
|              | Males              | Females         | Males        | Males Females |               | Females         |  |
| Number       |                    |                 | <u>Num</u>   | ber           | <u>Number</u> |                 |  |
| 1965<br>1966 | 158<br>181         | No count<br>172 | No count     | No count      | 158<br>222    | No count<br>227 |  |
| 1967         | 108                | 157             | 41           | 28            | 149           | 185             |  |
| 1968         | 134                | 161             | 32           | 23            | 166           | 184             |  |

#### LIVING ADULT MALE SEALS COUNTED

In 1968, the adult males were counted on all rookeries in June and July on St. George Island (tables A-17 and A-18) and in June on St. Paul Island and Sea Lion Rock (table A-19). Since 1966, the number of adult males on St. Paul Island in July has been estimated from sample counts. For example, adult males were counted only on Reef, Zapadni Reef, Vostochni, and Morjovi Rookeries in July 1968 (table A-20). We then extrapolated these counts to produce estimated totals of 6,176 harem and 3,100 idle males for St. Paul Island, under the assumption that decreases on the sample rookeries from 1966 (the last year in which a total count of adult males was obtained for St. Paul Island in July) to 1968 (table A-21) represented similar changes on all rookeries during this

The total number of adult males counted on the Pribilof Islands in July has decreased annually since 1961 (table A-22). If we consider only the counts obtained in 1962 and later, which were made by the same individual, the number of harem (7,924) and idle (4,383) males counted in 1968 represents 63 and 37

Table 8.--Age composition of dead male seals, age 6 and older, Pribilof Islands, Alaska, 1965-68

| Age   | 1965 | 1966 | 1967 | 1968 |
|-------|------|------|------|------|
| Years |      | Num1 | ber  |      |
| 6     |      |      | 5    | 6    |
| 7     | 5    | 6    | 1    | 5    |
| 8     | 17   | 19   | 10   | 8    |
| 9     | 24   | 31   | 23   | 13   |
| 10    | 37   | 29   | 7    | 15   |
| 11    | 29   | 33   | 17   | 17   |
| 12    | 15   | 18   | 14   | 17   |
| 13    | 20   | 19   | 20   | 15   |
| 14    | 5    | 5    | 6    | 5    |
| 15    | 4    | 5    | 2    | 8    |
| 16    |      | 3    |      | 4    |
| 17    |      | 4    | 3    | 2    |
| 18    |      |      | 1    |      |
| 10+1  |      | 5    |      |      |
| Total | 156  | 177  | 109  | 115  |

<sup>1</sup> Age could not be determined for five seals older than 10 years because their teeth were broken.

percent, respectively, of the number counted in 1962.

The rookeries on the Pribilof Islands were divided into sections containing about 100 class 3 males in July. The sections on St. Paul Island were established in 1966 from counts of class 3 males in 1965, whereas the sections on St. George Island were established in 1968 from the number of class 3 males counted in July of that year. Sections were not yet marked on St. George Island when the adult males were counted there in June 1968.

## REPRODUCTIVE CONDITION OF FEMALE SEALS

Age and reproductive condition were determined for 2,473 females killed on St. Paul Island from 26 June to 16 August 1968 (table 9). The genital tracts of these females were examined for evidence of parturition in 1968, and ages were obtained from right upper canine teeth. Whole teeth from females age 6 and younger and sectioned teeth from females age 7 and older were used.

The pregnancy rates (table 9) do not represent the total population of females because the animals killed were taken from hauling grounds where the pregnancy rate is lower than on the rookeries. Data collected in most years from rookeries and hauling grounds cannot be separated, although comparisons of pregnancy rates of females from these areas are available for 1956-58 and 1968 (table 10).

Table 9. --Reproductive condition of female seals sampled from the kill, by age, St. Paul Island, 26 June to 16 August 1968

|           | Reproductiv    | Pregnancy   |         |
|-----------|----------------|-------------|---------|
| Age       | Nonpost partum | Post partum | rate    |
| Years     | Number         | Number      | Percent |
| 2         | 12             | _           | 0       |
| 3         | 135            | 3           | 2       |
| 4         | 438            | 35          | 7       |
| 5         | 207            | 115         | 36      |
| 6         | 152            | 136         | 47      |
| 7         | 80             | 102         | 56      |
| 8         | 52             | 67          | 57      |
| 9         | 57             | 67          | 54      |
| 10        | 52             | 52          | 50      |
| 11        | 59             | 49          | 4.5     |
| 12        | 42             | 34          | 45      |
| 13        | 44             | 26          | 37      |
| 14        | 42             | 30          | 42      |
| 15        | 47             | 32          | 40      |
| 16        | 48             | 31          | 39      |
| 17        | 50             | 16          | 24      |
| 8 1       | 36             | 18          | 33      |
| 19        | 37             | 12          | 24      |
| 2.0       | 23             | 6           | 21      |
| 2.1       | 17             | 2           | 10      |
| 2.2       | 5              | 1           | 17      |
| 2.3       | 2              | -           | 0       |
| 2.4       |                |             | 0       |
| Total     | 1,639          | 834         |         |
| Ages 8-13 | 306            | 295         | 49      |

Table 10. --Pregnancy rates of female seals from hauling grounds and rookeries, age 8 and older, St. Paul Island

| Year | Area           | Females<br>examined | Pregnancy<br>rate! |
|------|----------------|---------------------|--------------------|
|      |                | Number              | Percent            |
| 1956 | Rookery        | 84                  | 99                 |
| 1957 | Rookery        | 221                 | 100                |
| 1958 | Hauling ground | 198                 | 42                 |
| 1968 | Hauling ground | 1,058               | 42                 |

 $<sup>1\!\!/</sup>$  Pregnancy rates are based on examinations of genital tracts for evidence of parturition during the summer the animals were

#### LIVING PUPS WEIGHED

Data have been collected annually since 1957 on St. Paul Island to determine if the body weight of unmarked pups is related to the size of the kill of males of the year class at age 3. The results have been inconclusive in this respect, but do indicate that handling, and marking by tagging or by removing parts of flipper, retard the growth of pups. The relation of body weight of pups in autumn to the return of the year class at age 3 is discussed in the section on forecasts of the kill of males.

In 1968 we tested the variances and means (table 11) of the weights of unmarked pups from four rookeries. The variances for rookeries and sexes were common (P=0.41), and the frequency of weights appeared to be normally distributed. According to an analysis of variance test of rookeries and sexes, the rookery-

Table 11. -- Variances in and means of the weights of living seal pups, St. Paul Island, 30 August 1968

| Sex           |        |          |      |
|---------------|--------|----------|------|
| and           | Sample |          |      |
| rookery       | size   | Variance | Mean |
|               | Number |          | Kg.  |
| Males         |        |          |      |
| Morjovi       | 100    | 3. 5476  | 9.73 |
| Reef          | 100    | 2.9949   | 9.60 |
| Polovina      | 100    | 3.4794   | 9.48 |
| Zapadni Reef  | 100    | 3, 3783  | 9.45 |
| All rookeries | 400    |          | 9.56 |
| Females       |        |          |      |
| Reef          | 100    | 2.1943   | 8.74 |
| Zapadni Reef  | 100    | 2.7039   | 8.28 |
| Polovina      | 100    | 2.2879   | 8.20 |
| Morjovi       | 100    | 2.5036   | 7.92 |
| All rookeries | 400    |          | 8.28 |
|               | • • •  |          |      |

sex interaction term was significant (P<0.05). The probable cause of this interaction was that on Morjovi Rookery males had the largest and females the smallest mean weight among the four rookeries. Although conclusions regarding rookeries and sexes are questionable because of the rookery-sex interaction, differences between rookeries are negligible when compared with differences between sexes (table 12).

Male pups averaged 9.6 kg. and females 8.3 kg. in 1968. These weights were within 0.1 kg. of the average weights for 1957-68 (table A-23).

We compared pup weight data obtained in 1968 by us on St. Paul Island and by Soviet scientists on Robben and Bering Islands. Weighing dates on Robben and St. Paul Islands were comparable, but the dates on Bering Island were later than for St. Paul Island (table 13). Untagged males on Robben Island

Table 12. --Analysis of variance in the weights of living seal pups, St. Paul Island, 30 August 1968

|             | Degrees of | Sums of   | Mean                 |
|-------------|------------|-----------|----------------------|
| Source      | freedom    | squares   | squares              |
| Rookeries   | 3          | 16.0484   | ( 5.3495             |
| Sexes       | 1          | 328, 3203 | (328. 3203           |
| Interaction | 3          | 23,2610   | $\frac{1}{7}$ , 7537 |
| Error       | 792        | 2285.8925 | 2.8862               |
| Total       | 799        | 2653.5222 |                      |

<sup>1/</sup> P<0.05.

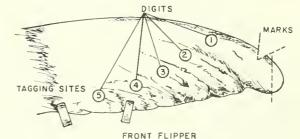
Table 13.--Means of the weights of living seal pups, Robben and Bering Islands, U.S.S.R., 1968

|        | [Numbers of pups in parentheses] |              |                |               |               |                |  |  |
|--------|----------------------------------|--------------|----------------|---------------|---------------|----------------|--|--|
|        |                                  |              | M              | ales          | Fe            | emales         |  |  |
| Island | Date                             | Rookery      | Tagged         | Untagged      | Tagged        | Untagged       |  |  |
|        |                                  |              | Kg.            | Kg.           | Kg.           | Kg.            |  |  |
| Robben | 2 Sept.                          |              | 10.08          | 10.30         | 8.43          | 8.49           |  |  |
|        |                                  |              | (38)           | (63)          | (30)          | (70)           |  |  |
| Bering | 18 Sept.                         | Northern     | 10.17          | 11.57         | 9.77          | 10. 18         |  |  |
| 0      | *                                |              | (42)           | (58)          | (43)          | (57)           |  |  |
| Bering | 23 Sept.                         | Northwestern | 11. 92<br>(38) | 12.62<br>(62) | 10.27<br>(24) | 10. 97<br>(76) |  |  |
|        |                                  |              |                |               |               |                |  |  |

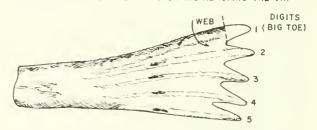
were 0.7 kg. heavier (0.025<P<0.05) than untagged males on St. Paul Island. Untagged females on Robben Island, however, were only 0.2 kg. heavier (0.40<P<0.20) than untagged

females on St. Paul Island. Tagged pups on Robben Island weighed less than untagged pups, a fact that agrees with data collected on St. Paul Island in earlier years.

#### MARKING


Recoveries of permanently marked seals provided data for making population estimates and for studying growth, mortality, and distribution of seals at sea. The application of marks in 1968 and the recovery of seals marked in previous years are discussed in this section. Most permanent marks are currently made by tagging and by removing parts of flippers.

#### APPLICATION OF MARKS


Monel cattle-ear tags have been used to mark seals on the Pribilof Islands since 1941. Table A-24 shows records of pups marked by tagging or by removing parts of flippers since 1959, and table A-25 gives similar data on male seals (yearlings and 2-year-olds) marked by tagging since 1961.

#### Pups

Single U-series tags were attached to 9,200 pups on St. Paul Island (table A-26) and to 2,475 pups on St. George Island (table A-27). Each tag was attached to the rear edge of a left front flipper at the hairline, and the tip of the same flipper was removed as a checkmark (fig. 9). A checkmark applied at the time of tagging enables us to identify the year of birth of any seals that lose their tags.



TAGS CLINCHED AT THE HAIRLINE AND BETWEEN THE FOURTH AND THE FIFTH DIGIT.
MARKS MADE BY CUTTING A V-NOTCH AND REMOVING THE TIP.



HIND FLIPPER
MARK MADE BY REMOVING THE TIP OF THE FIRST DIGIT

Figure 9.--Examples of mark locations that have been used on fur seals, Pribilof Islands, Alaska.

#### Yearling Male Seals

A total of 714 males were marked as yearlings on St. Paul Island in 1968. Two IU-series

tags were attached to each of 686 males (table A-28) considered to be yearlings on the basis of body lengths, and to 28 known yearlings that had been marked as pups in 1967 and given one lU-series tag (table A-29). Fourteen of the latter were born on islands owned by the U.S.S.R. Each tag was attached to a front flipper at the hairline (fig. 9). The mean body length (tip of nose to tip of tail) of all animals tagged was 93.4 cm.

#### Male Seals Age 2 Years

A total of 1,495 males known or believed to be 2 years old were marked with 2U-series tags. Soviet biologists had attached tags to 3 of these animals as pups in 1966, United States biologists had marked 29 with tags as pups and 54 by removing parts of flippers in 1966, and 1,409 had never been marked. All seals without tags were given two tags, and those with one tag were given an additional one. Each tag was attached to the front flipper at the hairline (fig. 9). We will determine the age of these seals at the time of tagging from their canine teeth when they are killed on the Pribilof Islands or elsewhere. In the past, some seals judged to be 2 years old were ages 1, 3, and 4.

Tables A-30 and A-31 give the number of seals tagged at "age 2" in 1968.

#### RECOVERIES OF MARKED SEALS

Data on marked animals recovered in 1968, an analysis of tag loss, the effect of the time of marking on survival, and the value of tags versus other marks are included in this section.

#### Marked Seals

Seals marked on the Pribilof Islands in previous years and recovered there in 1968 included 3,907 that had been given single tags or other marks as pups (table A-32) and 1,197 that had been given double tags at age 1 or older (table A-33). The information is incomplete for 228 of the animals that had been tagged at age 1 or older; the age of 40 could not be determined because the heads or flippers were separated from the carcasses during the skinning process, and 188 had lost both tags.

Marked seals killed from 26 June to 2 August were tabulated separately from those killed 3-16 August (table A-32) because the ages of 1,333 males taken during the latter period were not determined. In some of the analyses elsewhere in this report we use the data for these two periods separately.

Table A-34 and A-35 give the rookery of marking and location of recovery for seals given tags and checkmarks as pups in previous years and killed in 1968.

Thirty-nine seals tagged as pups by the Soviets were killed on the Pribilof Islands in 1968 (table A-36).

#### Tag Loss

Seals tagged as pups are also given a checkmark (fig. 9) so that the rate of tag loss can be determined. Rates of tag loss among males in ages 3, 4, and 5 are not greatly different from those among females of the same ages, though the comparison is based on a large kill of males of these ages and a relatively low kill of females. Females 4 years apart in age have the same identifying mark and cannot be accurately identified as to the year of birth if age 6 or older. We cannot, therefore, calculate a rate of tag loss for older females.

Table 14 shows the rates of tag loss among males tagged as pups with O-through S-series tags. The loss observed among males killed on St. George Island was les's than that for males killed on St. Paul Island for all series, possibly because marked seals were overlooked when the carcasses were examined on the kill fields of St. George Island. On St. Paul Island, the carcasses are examined for tags and marks in the mink-food processing plant.

Seals tagged at age 1 or older are given two tags but no checkmark. The incidence of tag loss among these animals has been similar to that among seals tagged as pups, with the exception of 1T- and 2T-series tags attached to seals in 1967. For no apparent reason, the rate of loss for these tags was only about one-tenth that observed for tags of other series (table 15). Seals killed in the future will be examined carefully to determine what caused the low rate of loss for 1T- and 2T-series tags or whether the rate of loss is real.

If its rate is constant, tag loss should increase as the interval between tagging and recovery lengthens; however, we observed only slight increases for seals tagged as pups and at age 1 or older. Apparently, tag loss is highest soon after tagging and the probability of loss becomes less thereafter.

#### Time of Tagging

For many years, pups were tagged on the Pribilof Islands during the latter half of August, when they were about 2 months old and relatively small. We began to suspect, however, that the survival of tagged pups would be greater if they were tagged later in the season than August. Therefore, in 1963 we began a test of age at tagging as a factor in the survival of tagged pups.

Half of the pups tagged on St. Paul Island in 1963 and in 1964 were tagged in mid-August, and half were tagged in late September. The recovery rate has been significantly higher

Table 14. --Summary of tag loss for male seals tagged as pups, tag series O through S, Pribilof Islands, Alaska

|          |           |        | St. F    | Paul Islan | d             |        | St. G    | eorge Isla | nd            |
|----------|-----------|--------|----------|------------|---------------|--------|----------|------------|---------------|
| Year and |           | Tagged | Lost-tag |            |               | Tagged | Lost-tag | 1          |               |
| tag      | Age       | seals  | seals    | Total      | Ratio         | seals  | seals    | Total      | Ratio         |
| -        | recovered | (a)    | (b)      | (a)+(b)    | (b)/[(a)+(b)] | (a)    | (b)      | (a)+(b)    | (b)/[(a)+(b)] |
|          | Years     |        | Number   |            | Percent       |        |          |            | Percent       |
| 962      |           |        |          |            |               |        |          |            |               |
| )        | 2         | 161    | 105      | 266        | 0.39          | 67     | 20       | 87         | 0,23          |
|          | 3         | 1,393  | 748      | 2, 141     | 0.35          | 262    | 29       | 291        | 0.10          |
| )        | 4         | 835    | 675      | 1,510      | 0.45          | 302    | 141      | 443        | 0.32          |
| )        | 5         | 80     | 92       | 172        | 0.53          | 39     | 22       | 61         | 0.36          |
|          |           |        |          |            |               |        |          |            |               |
| Total    |           | 2,469  | 1,620    | 4,089      | 0.40          | 670    | 212      | 882        | 0.24          |
|          |           |        |          |            |               |        |          |            |               |
| 963      |           |        |          |            |               |        |          |            |               |
| )        | 2         | 53     | 57       | 110        | 0.52          | 5      | 3        | 8          | 0.38          |
| )        | 3         | 1,038  | 491      | 1,529      | 0.32          | 244    | 72       | 316        | 0.23          |
|          | 4         | 490    | 313      | 803        | 0.39          | 166    | 48       | 214        | 0.22          |
| )        | 5         | 53     | 24       | 77         | 0.31          | 27     | 8        | 35         | 0.23          |
|          |           |        |          |            |               |        |          |            |               |
| Total    |           | 1,634  | 885      | 2,519      | 0.35          | 442    | 131      | 573        | 0.23          |
|          |           |        |          |            |               |        |          |            |               |
| 964      |           |        |          |            |               |        |          |            |               |
| )        | 2         | 121    | 60       | 181        | 0.33          | 0.1    | 21       | 31         | 0.68          |
| )        | 3         | 1,225  | 558      | 1,783      | 0.31          | 338    | 89       | 427        | 0.21          |
| )        | 4         | 582    | 272      | 854        | 0.32          | 160    | 36       | 196        | 0.18          |
|          |           |        |          |            |               |        |          |            |               |
| Total    |           | 1,928  | 890      | 2,818      | 0.32          | 508    | 146      | 654        | 0.22          |
| 965      |           |        |          |            |               |        |          |            |               |
| 1/       | 2         | 0.1    | - /      |            |               |        |          |            |               |
|          | 2         | 36     | 56       | 92         | 0.61          | 2      | 6        | 8          | 0.75          |
|          | 3         | 358    | 177      | 535        | 0.33          | 24     | 29       | 53         | 0.55          |
| TD 4 - 3 |           | 204    | 2.2.2    | / 25       | 0. 25         | 2/     | 2.6      |            |               |
| Total    |           | 394    | 233      | 627        | 0.37          | 26     | 35       | 61         | 0.57          |
| 0//      |           |        |          |            |               |        |          |            |               |
| 966      | 2         | 2.5    | 2.2      |            | 0.20          | ,      |          | 1./        | 0 /2          |
|          | 2         | 35     | 22       | 57         | 0.39          | 6      | 10       | 16         | 0.62          |

<sup>1/</sup> No R-series tags were applied to seals on St. George Island.

(P<0.001) for tags applied to pups in September than for those applied in August (table 16). Because there is very little natural mortality of pups on land between mid-August and late September, we assume that the difference in recovery rate was caused by the difference in the age of the pups at the time of tagging. Consequently, we have scheduled all of the pup tagging on St. Paul Island in mid-September or later since 1966. We have continued to tag pups on St. George Island in August because transportation to the island is unavailable later.

#### Tags vs. Other Marks

Cattle-ear tags, when attached to pups, apparently cause an increase in mortality for that group of animals. The magnitude of the mortality, however, is unknown.

As it is nearly impossible to measure directly the effect of tagging on survival, other

methods of marking believed to be less harmful were tried in 1965 to see if they would give comparable results. We used different marks on three groups of about equal numbers of pups. We attached a single cattle-ear tag to the left front flipper of each of 10,000 pups and cut a V-notch checkmark into the leading edge of the same flipper near the tip. We also marked 10,007 pups by cutting a V-notch into the leading edge of the right front flipper near the tip (RFV), and marked 10,080 by removing the tip of the first digit on the right hind flipper (RH1). Pups were given similar tags and marks in 1966. Examples of tag and mark locations are shown in figure 9.

Animals given tags and checkmarks in 1965 and seals given marks only in that year were recovered at age 2 in 1967 (Marine Mammal Biological Laboratory, 1970) and at age 3 in 1968 (table A-32). Of the 2-year-old males killed in 1967 from the three groups,

Table 15.--Summary of tag loss for male seals tagged at age 1 or older, Pribilof Islands, Alaska

| Tag<br>series | Time<br>elapsed<br>since<br>tagging | Both tags<br>recovered | One<br>tag<br>lost     | Incidence<br>of tag<br>loss |
|---------------|-------------------------------------|------------------------|------------------------|-----------------------------|
|               | Years                               | Number                 | Number                 |                             |
| 2S            | 1 2                                 | 320<br><u>45</u>       | 399<br>63              | 0.38<br><u>0.41</u>         |
| Total.        |                                     | 365                    | 462                    | 0.39                        |
| 2T            | 1                                   | 404                    | 30                     | 0.04                        |
| 1R<br>1R      | 1<br>2<br>3                         | 35<br>105<br>31        | 21<br>113<br><u>35</u> | 0.23<br>0.35<br>0.36        |
| Total.        |                                     | 171                    | 169                    | 0.33                        |
| 1S            | 1 2                                 | 77<br>132              | 51<br>150              | 0.25<br>0.36                |
| Total.        |                                     | 209                    | 201                    | 0.32                        |
| 1T            | 1                                   | 84                     | 7                      | 0.04                        |

<sup>&</sup>lt;sup>1</sup> Seals known to have lost two tags were excluded because there was no way to determine the tag series that had been applied.

returns were slightly higher among those with a tag and a checkmark (100) than those with an RH1 mark (72) or an RFV mark (94). In 1968, however, only 588 males were recovered with tags and checkmarks compared to 673 with RH1 marks and 709 with RFV marks. The small difference between the groups that received RH1 and RFV marks was not significant (P=0.4), but the difference between these two groups and the group given tags and checkmarks was significant (P<0.005).

Table 10.--Tag recoveries from male seals tagged as pups in August and September, St. Paul Island, 1963-64

| Year     | Age        |              | Time of tagging |                 |         |        |  |
|----------|------------|--------------|-----------------|-----------------|---------|--------|--|
| class    | recovered  | 12-21 August |                 | 20-25 September |         | Total  |  |
|          |            | Number       | Percent         | Number          | Percent | Number |  |
| 1963     | 2          | 13           | 28              | 34              | 72      | 47     |  |
|          | 3          | 354          | 28              | 568             | 62      | 922    |  |
|          | 4          | 180          | 37              | 312             | 63      | 492    |  |
| Combined | recoveries | 547          | 37              | 914             | 63      | 1,461  |  |
| 1964     | 2          | 49           | 47              | 56              | 53      | 105    |  |
|          | 3          | 527          | 47              | 596             | 53      | 1,123  |  |
|          | 4          | 241          | 38              | 399             | 62      | 640    |  |
| Combined | recoveries | 817          | Lie             | 1,051           | 56      | 1,868  |  |

Of the seals marked in 1966, fewer 2-year-old males killed in 1968 had marks only than had tags and checkmarks (table A-32). This condition was also true for animals marked in 1965 and recovered in 1967.

We tentatively conclude that pups given marks have a higher survival rate than those given tags and checkmarks. The rate of recovery for males given a mark in 1965 and recovered at age 3 in 1968 was 1.17 times that of animals given a tag and checkmark. A higher recovery rate for males given a tag and checkmark and killed at age 2 in 1967 is attributed to unintentional selection for tagged animals during the kill. Most of the 2-yearold males are shorter than the minimum body length limit of 42 inches (107 cm.) set for killing. It is probable that among animals near this minimum limit, the people responsible for killing the seals select more tagged animals than those not visibly marked. If true, selection for tags by these people is undoubtedly subconscious and exaggerated because a seal with a tag attached to its flipper is more conspicuous than a seal with only a mark. There should be little or no selection for tagged animals among 3-year-old males because very few seals of this age are shorter than the minimum body length limit of 42 inches (107 cm.) set for killing. Selection for tagged animals is discussed further in the section on population estimates.

#### POPULATION ESTIMATES

We are currently evaluating each year class of seals by making estimates of its size at three stages of life: (1) Number of pups born; (2) number of pups that survive to age 1; and (3) number of the year class that survive to age  $\geq$  2. The estimates are presented in this section.

Because the age composition of 1,333 males killed after 2 August was not determined, only the recovery data collected before 3 August are used in calculations based also on the number of male seals killed.

#### NUMBER OF SEAL PUPS BORN

We make estimates of the number of pups born from: (1) tags and marks applied to pups of both sexes and recovered when the animals are taken in the kill; (2) shearing and sampling of pups; and (3) complete counts of living pups on some rookeries. The first method was used to estimate the size of year classes 1962-66 and the last two were used to estimate the number of pups born in 1968. In making estimates of the number of pups from tags and marks, we

Table 17 .-- Estimates of the seal pup population, year classes 1961-65, at time of marking from recoveries of marked female seals killed in 1967 and 1968, Pribilof Islands, Alaska

| Year<br>class                | Age     | Killed | Marked                                                                                   | Recovered            | Population<br>estimate<br>at time of<br>marking <sup>1</sup><br>(N) |
|------------------------------|---------|--------|------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------|
|                              | Years   |        | <u>Nu</u> m                                                                              | ber                  |                                                                     |
|                              |         |        | 1967                                                                                     |                      |                                                                     |
| 1961                         | 6       | 1,166  | <sup>2</sup> 49,921                                                                      | 93                   | 619,776                                                             |
| 1962                         | 5       | 1,552  | <sup>2</sup> 49,908                                                                      | 169                  | 455,933                                                             |
| 1963                         | 4       | 1,579  | 2 24,971                                                                                 | 80                   | 487,108                                                             |
| 1964                         | 3       | 935    | <sup>2</sup> 24,991<br>1968                                                              | 66                   | 349,142                                                             |
| 1962                         | 6       | 1,581  | 2 49,908                                                                                 | 137                  | 572,145                                                             |
| 1963                         | 5       | 1,836  | 2 24,971                                                                                 | 88                   | 515,433                                                             |
| 1964                         | Ly      | 2,630  | <sup>2</sup> 24,991                                                                      | 126                  | 517,748                                                             |
| 1965<br>1965<br>1965<br>1965 | 3 3 3   | 704    | <sup>2</sup> 10,000<br><sup>3</sup> 10,080<br><sup>4</sup> 10,007<br><sup>5</sup> 30,087 | 20<br>15<br>15<br>50 | 335,748<br>444,194<br>440,978<br>415,922                            |
| 1 \( \)                      | C+1)(M+ | -1)    |                                                                                          |                      |                                                                     |

<sup>1</sup> N=(C+1)(M+1

2 Marked by tagging.

Marked seals of the 1965 year class combined.

combined the data from both islands, but separated the sexes (tables 17 and 18).

With the exception of the 1964 year class, estimates of the number of pups from tagged males recovered at age 2 have been less than estimates from recoveries at ages 3 and 4 (table 19). Among seals killed at age 2, therefore, more had tags than would be expected from the rate of recovery observed at ages 3 and 4. Estimates from recoveries of tagged 2-yearold males also varied considerably, probably because few animals of this age were taken.

Low estimates based on tagged males recovered at age 2 may be caused by unintentional selection for tagged animals, as described in the section Tags vs. Other Marks. Most 2-year-old males are less than the minimum body length limit of 42 inches (107 cm.) used as a guide to select animals for killing. Hence, a slight tendency to take tagged animals near the lower length limit and let untagged seals escape would account for the greater than expected number of tagged males among animals taken at age 2. A similar tendency when taking animals age 3 and older would have a negligible effect on the estimates because most seals of these ages are longer than the minimum limit of body length.

Table 18 .-- Estimates of the seal pup population, year classes 1963-66, at time of marking from recoveries of marked male seals killed 26 June to 2 August 1968, Pribilof Islands, Alaska

| Year | Age   | Killed | Marked   | Recovered (R) | Population estimate at time of marking (N) |
|------|-------|--------|----------|---------------|--------------------------------------------|
|      | Years |        |          | Number        |                                            |
| 1963 | 5     | 1,935  | 2 24,971 | 112           | 427,839                                    |
|      |       |        | ,        | 112           | 421,000                                    |
| 1964 | 4     | 16,912 | 2 24,991 | 1,050         | 402,179                                    |
| 1965 | 3     | 22,978 | 2 10,000 | 588           | 390,175                                    |
| 1965 | 3     |        | 3 10,080 | 709           | 326,269                                    |
| 1965 | 3     |        | 4 10,007 | 673           | 341,207                                    |
| 1965 | 3     |        | 5 30,087 | 1,970         | 350,782                                    |
| 1966 | 2     | 2,040  | 2 12,499 | 73            | 344,764                                    |
| 1966 | 2     |        | 6 12,078 | 45            | 535,940                                    |
| ^    |       |        |          |               |                                            |

 $<sup>1 \</sup>stackrel{\wedge}{N}= (C+1)(M+1)$ 

Table 19 .-- Estimates of the seal pup population, year classes 1960-66, at time of tagging, from recoveries of marked male seals in ages 2 to 5, Pribilof Islands, Alaska

| Year               | Age                                          |                                              |         |         |  |  |  |
|--------------------|----------------------------------------------|----------------------------------------------|---------|---------|--|--|--|
| class <sup>1</sup> | 2                                            | 3                                            | 4,      | 5       |  |  |  |
|                    |                                              | Number                                       |         |         |  |  |  |
| 1960               | 436,000                                      | 538,000                                      | 615,000 | 465,000 |  |  |  |
| 1961               | 323,000                                      | 495,000                                      | 479,000 | 232,663 |  |  |  |
| 1962               | 373,000                                      | 446,000                                      | 409,463 | 358,321 |  |  |  |
| 1963               | 301,000                                      | 420,804                                      | 380,786 | 427,839 |  |  |  |
| 1964               | 414,656                                      | 391,247                                      | 402,179 | 66 vils |  |  |  |
| 1965               | 2 291,210                                    | <sup>2</sup> 390,175<br><sup>3</sup> 333,769 |         |         |  |  |  |
| 1966               | <sup>2</sup> 344,764<br><sup>3</sup> 535,940 |                                              |         |         |  |  |  |

<sup>1</sup> Estimates for year classes 1960-64 from seals marked

Estimates of the 1965 year class show that the recovery rate for males given a mark was higher than that for males given a tag and

<sup>(</sup>R+1)

<sup>3</sup> Marked by removing the tip of the first digit on the right hind flipper.

Marked by cutting a V-notch into the leading edge of the right front flipper.

<sup>(</sup>R+1)

<sup>2</sup> Marked by tagging.

<sup>3</sup> Marked by removing the tip of the first digit on the right hind flipper.

Marked by cutting a V-notch into the leading edge of the right front flipper.

Marked seals of the 1965 year class combined. 6 Includes 9,578 seals marked by removing the tip of the third digit on the right hind flipper and 2,500 marked by removing the tip of the second digit on the left hind flipper.

by tagging.
<sup>2</sup> Estimates from seals marked by tagging and by removing parts of flippers.

Estimates from seals marked by removing parts of flippers.

checkmark (see section on Tags vs. Other Marks). The opposite was true, however, for 2-year-old males of the 1965 year class recovered in 1967 and those of the 1966 year class killed in 1968.

Estimates of the pup population from marked females are higher than those from marked males but decrease at a similar rate by year class (tables 17 and 18). Estimates from recoveries of marked females vary considerably, according to age at recovery, probably because females that lose their tags cannot be identified accurately as to year class except for those in ages 2, 3, and 4. In addition, the number of females killed in each of these age groups is small. The estimates from recoveries of females are probably biased, so the data for the sexes were not combined to provide a pooled estimate. Generally, the use of combined data would produce estimates slightly greater than those based only on recoveries from males.

Because most or all of the mortality of pups on land occurs before marking, the number of dead pups counted was added to population estimates "at the time of marking" to obtain the total number of pups born for each year class. For reasons discussed previously, the most reliable estimates of the number of pups at the time of marking based on the recovery of marked males are believed to be at ages 3 and 4. According to the estimates, the total number of pups born has decreased each year since 1960 (table 20).

The pup population on four rookeries was estimated by shearing and sampling (Chapman and Johnson, 1968). Three rookeries were

Table 20.--Estimates of the seal pup population, year classes 1960-65, at time of tagging from recoveries of marked male seals in ages 3 and 4, and the count of dead pups, Pribilof Islands, Alaska

| Year<br>class <sup>1</sup> | Estimate of pups at time of tagging | Count of dead pups | Total pups<br>born |  |  |
|----------------------------|-------------------------------------|--------------------|--------------------|--|--|
|                            | Number                              | Number             | Number             |  |  |
| 1960                       | 568,000                             | 75,000             | 643,000            |  |  |
| 1961                       | 489,000                             | 71,000             | 560,000            |  |  |
| 1962                       | 430,000                             | 54,000             | 484,000            |  |  |
| 1963                       | 407,000                             | 39,000             | 446,000            |  |  |
| 1964                       | 395,000                             | 25,000             | 420,000            |  |  |
| 1965                       | <sup>2</sup> 351,000                | 46,000             | 397,000            |  |  |

<sup>1</sup> Estimates for year classes 1960-64 were from seals marked by tagging.

<sup>2</sup> Estimates from recoveries of 3-year-old males marked by tagging and by removing parts of flippers.

sampled four times, and one was sampled twice (table 21). The total of the mean estimate for the four rookeries was 27 percent lower than that obtained last in 1966 (table 22).

The number of pups counted on two rookeries in 1968 (table 23) changed little since 1966. The number on Morjovi Rookery was 4 percent less in 1968 than in 1966, and the number on Zapadni Reef Rookery was about 4 percent higher. According to estimates based on shearing and sampling, 17 percent fewer pups have

Table 21.--Estimates of the seal pup population, year class 1968, from shearing and sampling on selected rookeries, St. Paul Island

|                        |                 | Firs       | t sampling | period,        | 17 August                                    | Second  | l sampling | period, 20 | 0-22 August                                  |
|------------------------|-----------------|------------|------------|----------------|----------------------------------------------|---------|------------|------------|----------------------------------------------|
| D 1                    | Pups<br>sheared | Samples    | Counted    |                | Estimated pup population at time of shearing | Samples | Counted    |            | Estimated pup population at time of shearing |
|                        |                 |            | Sheared    | Total          | (N)1                                         |         | Sheared    | Total      | (N)1                                         |
|                        |                 |            |            |                | Number                                       |         |            |            |                                              |
| irst count             | 0.500           | 300        | 320        | 2 (50          | 10 424                                       | 64      | 270        | 1,600      | 14,987                                       |
| Morjovi<br>Reef        | 2,529<br>4,216  | 106<br>125 | 380<br>547 | 2,650<br>3,125 | 17,636<br>24,086                             | 75      | 324        | 1,872      | 24,359                                       |
| Vostochni <sup>2</sup> | 5,581           | =-         | J47        | J, LEJ         | 24,000                                       | 115     | 464        | 2.875      | 34,581                                       |
| Zapadni Reef.          | 721             | 19         | 78         | 475            | 4,391                                        | 17      | 68         | 425        | 4,506                                        |
| econd count            |                 |            |            |                |                                              |         |            |            |                                              |
| Morjovi                | 2,529           | 101        | 393        | 2,525          | 16,249                                       | 56      | 238        | 1,400      | 14,876                                       |
| Reef                   | 4,216           | 90         | 352        | 2,250          | 26,949                                       | 60      | 264        | 1,500      | 23,955                                       |
| Vostochni              | 5,581           |            |            |                |                                              | 104     | 454        | 2,600      | 31,962                                       |
| Zapadni Reef.          | 721             | 15         | 64         | 375            | 4,225                                        | 13      | 46         | 325        | 5,094                                        |

 $<sup>\</sup>frac{1}{R}$ ; where N=estimates of the pup population at time of shearing; M=number of pups sheared; C=number of pups counted during sampling; and R=number of sheared pups counted during sampling.

Pups were not sampled on Vostochni Rookery 17 August.

Table 22.--Mean estimates of the seal pup population, year classes 1966 and 1968, from shearing and sampling on selected rookeries, St. Paul Island

|              |         | •       |          |
|--------------|---------|---------|----------|
|              | Mean    |         |          |
| Rookery      | 1966    | 1968    | Decrease |
|              | Number  | Number  | Percent  |
| Morjovi      | 19, 166 | 15, 937 | 17       |
| Reef         | 34,918  | 24,837  | 29       |
| Vostochni    | 48,834  | 33, 276 | 32       |
| Zapadni Reef | 4, 942  | 4,554   | 8        |
| Total        | 107,860 | 78,604  | 27       |
|              |         |         |          |

been born on Morjovi and 8 percent fewer on Zapadni Reef Rookeries since 1966.

Beginning in 1963 the annual kill of females has been adjusted to maintain a constant level of pup production; however, the production of pups may have descreased slightly since then. Recent estimates of the pup population from recoveries of marked seals have declined steadily and have not varied as they did for year classes 1955-59. The estimates may be slightly inflated by tag-caused mortality and are, in fact, higher than estimates from shearing and sampling in the summer of birth. Confidence limits have not been calculated because we believe that the estimates are biased and, therefore, the limits would not reflect the true confidence level. Perhaps we can accept the estimate of the number of pups born from recoveries of animals given tags or other marks as the upper limit and the estimate based on shearing and sampling as the lower limit, and assume that the actual number is between the two estimates. For example, the limits for the 1965 year class are 400,000 and 350,000, rounded to the nearest 10,000. The

number of pups born in 1968 is probably within this range also.

#### NUMBER OF YEARLING MALE SEALS

Recoveries of yearling seals tagged in autumn have been used to estimate the size of a year class at age 1, and 1968 was the first year in which sufficient data from the recovery of males tagged at age 2 or older became available for evaluating survival beyond age 1.

The survival to age lof seals born in 1964-66 was estimated from tags recovered from males selected by body length and tagged as yearlings in 1965-67. The true age of each seal recovered in the kill was determined from a canine tooth. The age composition was then used to estimate the actual number of yearlings that were tagged. For example, of 873 males tagged as yearlings in 1965, 64 were known yearlings (tagged as pups) from the 1964 year class and 809 were considered to be yearlings on the basis of their length (see section on yearling tagging). Of 294 seals selected as yearlings and later recovered, 21 were 2-year-olds (1963 year class) and 273 were yearlings (1964 year class) when tagged. Therefore, the estimated number of males that were actually yearlings from the 1964 year class when tagged in 1965 was 815; that is, 64+(273/294)809.

The number of tagged seals recovered was adjusted to include animals of unknown age and those that had lost both tags (table 24). Animals of unknown age that could be identified as belonging to a given tag series were allotted by age according to the observed age of animals selected for tagging and recovered in the kill. Seals that lost both tags and could not be identified as to the year tagged were allotted according to the number of tags recovered for

Table 23.--Complete counts of living seal pups on selected rookeries in early August, St. Paul Island, 1963-68

| Rookery            | 1963  | 1964   | 1965     | 1966    | 1967    | 1968    |
|--------------------|-------|--------|----------|---------|---------|---------|
|                    |       |        | <u>N</u> | umber   |         |         |
| Little Polovina    | 7,230 | 7, 180 | 7,314    | 7,071   | 6,030   |         |
| Morjovi <u>l</u> / |       | 17,530 | 18, 384  | 17, 388 |         | 16, 781 |
| Zapadni Reef       |       | 5,700  | 5, 383   | 5, 729  | 4, 665  | 5, 916  |
| Lukanin            |       |        |          |         | 3, 244  |         |
| Kitovi             |       |        |          |         | 10, 307 |         |

<sup>1/</sup> The pups on a small rookery south of Sea Lion Neck were not counted.

Table 24.--Estimates of the number of yearling male seals, year classes 1964-66, from recoveries of tagged male seals, Pribilof Islands, Alaska

| Year class | Year<br>when | Age<br>when | Killed | Tagged 1/ | Recovered 2/ | Estimate of yearling males |
|------------|--------------|-------------|--------|-----------|--------------|----------------------------|
| tag series | killed       | killed      | (C)    | (M)       | (R)          | N=(MC)/R                   |
|            |              | Years       |        | <u>-</u>  | Number       |                            |
| 1964       |              |             |        | 815       |              |                            |
| •          | 10//         | 2           | 2 522  | 010       | 4.0          | -1.005                     |
| lR         | 1966         | 2           | 3,533  |           | 40           | 71, 985                    |
| 1R         | 1967         | 3           | 34,613 |           | 274          | 102, 954                   |
| 1R         | 1968         | 4           | 16,912 |           | 76           | 181, 359                   |
| 1R         | Poole        | d           | 55,058 |           | 390          | 115,057                    |
| 1965       |              |             |        | 1, 277    |              |                            |
| 1S         | 1967         | 2           | 2,940  |           | 108          | 34, 763                    |
| 1S         | 1968         | 3           | 22,978 |           | 312          | 94,048                     |
| 1S         | Poole        | . t         | 25,918 |           | 420          | 78,803                     |
| 1966       |              |             |        | 709       |              |                            |
| 1 T        | 1968         | 2           | 2,040  | •         | 75           | 19, 285                    |

2/ The adjusted total includes animals recovered but for which data are missing, those of unknown age, and double-tag loss. The proportion in each age within a tag series was used to allocate animals of unknown age that could be identified as belonging to a given tag series; seals that lost both tags and could not be identified as to the year tagged were allocated according to the number of tags recovered for each age and tag series (see example in section of Number of Yearling Male Seals).

each age and tag series. Although this method of allocating the recoveries for which information is missing is questionable, there is some advantage in including the data. We hope to devise a better method when seals with tags of the series involved have been killed at ages through 5 years.

Estimates of the number of yearling males vary considerably from one year class to another and between years within a year class. Estimates of the number of yearling males from all recoveries for year classes 1961, 1962, 1964, and 1965 were 82,000, 79,000, 115,000, and 80,000 respectively. The estimate for each of these year classes from recoveries at age 2 was much lower than estimates from recoveries at other ages, a condition that could have been caused by selection for tagged animals during the kill. If the estimates from recoveries at age 3 are correct, we recovered

more than twice the expected number of tagged animals at age 2 from year classes 1964 and 1965, and also from year classes 1961 and 1962 (Marine Mammal Biological Laboratory, 1970).

#### NUMBER OF MALE SEALS AGE 2 YEARS

Males known or believed to be 2 years old were tagged in 1966, 1967, and 1968 (age was subsequently determined from the canine teeth of these seals—some of the animals were actually ages 1, 3, and 4 when tagged). Seals tagged in 1966 have now been harvested through two seasons, and few additional recoveries are expected. Age was determined from canine teeth for all seals from this group as they appeared in the kill, except those from which the head or flippers were torn from the carcass during the skinning process. The age distribution of the tagged animals was then used to

Table 25. -- Summary of male seals known or believed to be 2 years old when tagged in 1966, and recovered in 1967 and 1968, St. Paul Island

|        | m - 1  | /2C         | D     | 1      | 0/7 - 1 | 10/0            | A 1. | . 1    |
|--------|--------|-------------|-------|--------|---------|-----------------|------|--------|
|        |        | (2S-series) |       |        | 967 and |                 |      | usted, |
|        | Known, | . , ,2/     | Known | age    | Sele    | cted            | to   | tals3/ |
| Age    | age 1/ | Selected 2/ | 1967  | 1968   | 1967    | 1968            | 1967 | 1968   |
| Years  |        |             | ]     | Number |         |                 |      |        |
|        |        |             | _     |        |         |                 |      |        |
| 1      | _      | 14          | -     | ***    | 8       | -               | 12   | _      |
|        |        |             |       |        |         |                 |      |        |
| 2      | 56     | 1,068       | 28    | 5      | 519     | 91              | 706  | 120    |
| _      | 30     | 1, 000      |       |        | 32/     | / =             | 100  | 100    |
| 3      | 9      | 329         | 6     | _      | 167     | 11              | 223  | 13     |
| 3      | 7      | 367         | U     | _      | 101     | 11              | 663  | 13     |
|        | 4      |             | 1     |        |         |                 | 1    |        |
| 4      | 4      | -           | 1     | -      | -       | -               | 1    | -      |
|        |        |             |       |        |         | $\frac{4}{5}$   |      |        |
| Unknov | vn     |             | -     | -      | 36      | <del>-</del> '5 | -    | -      |
|        |        |             |       |        |         |                 |      |        |
| Total  | 69     | 1,411       |       |        |         |                 |      |        |
|        |        |             |       |        |         |                 |      |        |

1/ Age known from mark applied as a pup.

4/ Excludes one male recovered during the kill of females.

Table 26. -- Estimates of the number of 2- and 3-year-old male seals, year classes 1963-64, from recoveries of male seals known or believed to be 2 years old when tagged, St. Paul Island

| '       | Age       | Tagged      |            | 2./         | Population |
|---------|-----------|-------------|------------|-------------|------------|
| Year    | when ,,   | (2S-series) | Killed     | Recovered2/ | estimate3/ |
| class   | tagged 1/ | (M)         | (C)        | (R)         | N=(MC)/R   |
|         | Years     |             | 1          | Number      |            |
|         |           |             | -          |             |            |
|         |           | 19          | 67 recover | ries        |            |
| 1963    | 3         | 338         | 15, 523    | 223         | 23, 528    |
|         |           |             | ,          |             | ,          |
| 1964    | 2         | 1, 124      | 34,613     | 706         | 55, 106    |
| -,      |           | -,          | ,          |             | ,          |
|         |           | 19          | 68 recover | ries        |            |
| 1963    | 3         | 338         | 1, 935     | 13          | 50, 310    |
| - , 0 0 | _         |             | -, ,       |             | ,          |
| 1964    | 2         | 1, 124      | 16, 912    | 120         | 158, 409   |
| 2 / 0 1 |           | 2, 250 1    | 10, /      |             | ,,         |
|         |           | Con         | nbined rec | overies     |            |
| 1963    | 3         | 338         | 17, 458    | 236         | 25,003     |
| 1 /03   | 9         | 330         | 11, 150    | 230         | 25, 505    |
| 1964    | 2         | 1, 124      | 51, 525    | 826         | 70, 114    |
| 1704    | 4         | 1, 144      | 51, 565    | 020         | 70, 111    |
|         |           |             |            |             |            |

3/ Tags were applied after the kill in 1966, so the estimate applies to that time.

<sup>2/</sup> Age unknown at time of tagging but later determined from canine teeth of tagged animals recovered in the kill.

<sup>3/</sup> Includes animals of unknown ages and seals with both tags lost (see discussion in section Number of yearling male seals).

<sup>1/</sup> Some seals judged to be 2 years old were age 3.
2/ Only tags recovered from 26 June through 5 August 1967 and 26 June through 2 August 1968 are included. The number of recoveries were adjusted to include animals for which data were missing (see footnote 2, table 24).

estimate the number of tags applied to each age class at the time of tagging. Table 25 summarizes the number of tags attached to seals on St. Paul Island in 1966 and recovered on the Pribilof Islands in 1967 and 1968.

The number of males tagged at ages 2 and 3 in 1966 can be used for making population estimates. On the basis of recoveries of tags in 1967 and 1968 (table 26), 25,000 3-year-old males from the 1963 year class and 70,000 2-year-old males from the 1964 year class were still living after the kill in 1966. The estimates for both year classes from recoveries in 1968 are much higher than estimates from recoveries in 1967. Possible causes for the discrepancy in the estimates between years for a given year class are that some of the animals that lose both tags are not recognized and the number of animals with both tags lost would be greater 2 years after tagging than I year later.

The estimates of 25,000 males age 3 and 70,000 males age 2 remaining after the kill in 1966 seem reasonable. A more critical appraisal of the results will be possible when

additional data become available.

#### FORECAST OF THE KILL OF MALE SEALS

Forecasts of the number of male seals in the kill have been made each year since 1959. The accuracy of the various prediction methods was reviewed in 1966 (Marine Mammal Biological Laboratory, 1969), but no quantitative comparisons were made. Quantitative comparisons for past data, forecasts of the kill of 3- and 4year-old males for St. Paul Island in 1969, and

forecasts of the kill of males 2 to 5 years old for the Pribilof Islands in 1969 are discussed in this section.

#### QUANTITATIVE COMPARISONS FOR 3- AND 4-YEAR-OLD MALE SEALS

Table 27 gives the results of five methods of forecasting the kill of 4-year-old males.

Table 27.--Comparisons of forecast of kill of 4-year-old male seals, by method, St. Paul Island, 1965-68

| 1967             | 10/0                   |
|------------------|------------------------|
| ,                | 1968                   |
| <u>nds</u>       |                        |
| 14.1(+)          | 10.5(-)                |
| 20.0(++)         | 4. 3()                 |
|                  | 9. 2(-)                |
|                  | 17. 8 <b>(+)</b>       |
| Not<br>available | 2/ <sub>25.1(++)</sub> |
| 14. 3            | 13.0                   |
| 11 0             | 13. 3                  |
|                  | available              |

<sup>1/</sup> Erred positively by a moderate (+) or large (++) amount or negatively by a moderate (-) or a large (--) amount.

3/ The season for killing males ended 9 August in 1965, 5 August in 1966 and 1967, and 2 August in 1968.

<sup>2/</sup> The yearling estimate used was incorrect because no allowance was made for double tag-lost recoveries. If the tag-lost recoveries were considered, the forecast would have been 12.0, which like the other forecasts derived from yearling estimates is very accurate.

This comparison is made only for the past 4 years, a period when forecasts have been most successful. To go back further is of little use, because methods have changed as new data became available and old data became unsatisfactory.

It is possible to calculate an empirical standard error for the three methods that have several comparisons, that is, the square root of the average of the squares of deviations of forecast from actual value. Because we are evaluating the method, it is appropriate to use the figure (12.0) for the 1968 forecast based on the yearling estimate. The standard errors are:

Regression on the kill at

age 3 and mean date . . . . . 2.6 thousand Regression on temperature . . . 7.9 thousand Based on yearling estimate . . . 0.3 thousand

The first two standard errors are in agreement with the theoretical values noted in recent forecasts; the last is much smaller than suggested by theory. Two points may be noted. First, because the standard error of 0.3 thousand is based on only three comparisons, sampling error may be large, and an extension of the killing season in 1965 and a reduction in 1968 reduced the error in this forecast. Second, even if we allowed for departures from routine, the standard error of 0.3 thousand as derived from the empirical comparisons would be increased to only 1.3 thousand.

Table 28 shows a comparison of recent forecasts with the actual kill, by method, for 3-year-olds.

## FORECAST OF THE KILL OF 4-YEAR-OLD MALE SEALS

Four methods used to forecast the kill of 4-year-old males are: (1) Regression of the kill of 4-year-old male seals on the kill of 3-year-old male seals and the mean round of the kill of 3-year-old male seals; (2) regression of the kill at ages 3 and 4 on mean air temperature; (3) regression of the kill at ages 3 and 4 on the mean weight of pups and the count of dead pups; and (4) an estimate of the number of yearling male seals.

Regression of the Kill of 4-year-old Male Seals on the Kill of 3-Year-Old Male Seals and the Mean Round of the Kill of 3-Year-Old Male Seals

This regression uses data from the 1953 and subsequent year classes; 5 August was considered the end of the male kill, and adjustments were made where necessary. For example, 18,706 3-year-olds and 13,279 4-year-olds were killed in 1968; an additional 2,000 3-year-olds and 680 4-year-olds would have been taken had the kill been extended from 2 to 5 August, the "standard" termination date of recent years. These estimates are based on an average daily kill of 981 3-year-old

Table 28.--Comparisons of forecast 1/ of kill of 3-year-old male seals, by method, St. Paul Island, 1965-68

|                                         | Year     |          |         |                  |  |  |  |
|-----------------------------------------|----------|----------|---------|------------------|--|--|--|
| Method                                  | 1965     | 1966     | 1967    | 1968             |  |  |  |
|                                         |          | Thous    | ands    |                  |  |  |  |
| Regression on mean air<br>temperature   | 24.0(++) | 31.0(++) | 21.2()  | 18. 9            |  |  |  |
| Regression on pup weight                | 49 00    | 19.7()   | 24.7(-) | 26.5 <b>(</b> ++ |  |  |  |
| Regression on the count of dead pups    |          |          | ** 4B   | 19.2(+)          |  |  |  |
| Forecast derived from yearling estimate | 28.6(++) |          |         | 21.7(+)          |  |  |  |
| Actual kill <sup>2</sup> /              | 19.0     | 25.5     | 27.0    | 18.7             |  |  |  |

\_\_\_\_\_/ Erred positively by a moderate (+) or a large (++) amount or negatively
by a moderate (-) or a large (--) amount.

<sup>2/</sup> The season for killing males ended 9 August in 1965, 5 August in 1966 and 1967, and 2 August in 1968.

Table 29.--Data for regression of the kill of 4-year-old male seals based on the kill of 3-year-old male seals and mean round of the kill of 3-year-old male seals, year classes 1953-64, St. Paul Island

| Year<br>class | Kill of<br>3-year-old<br>males before<br>5 August<br>(X <sub>1</sub> ) | Mean round of the kill of 3-year-old males (X <sub>2</sub> ) | Adjusted kill<br>of 4-year-old<br>males before<br>5 August<br>(Y) |
|---------------|------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------|
|               | Thousands                                                              |                                                              | Thousands                                                         |
| 1953          | 31.7                                                                   | 3.5                                                          | 13.5                                                              |
| 1954          | 19.8                                                                   | 3.4                                                          | 8.7                                                               |
| 1955          | 31.2                                                                   | 3.2                                                          | 8.1                                                               |
| 1956          | 11.7                                                                   | 3.3                                                          | 1.9                                                               |
| 1957          | 21,6                                                                   | 4.0                                                          | 16.2                                                              |
| 1958          | 38.9                                                                   | 3.8                                                          | 21.0                                                              |
| 1959          | 25.1                                                                   | 3.6                                                          | 14.9                                                              |
| 1960          | 14.0                                                                   | 3.7                                                          | 10.8                                                              |
| 1961          | 22.2                                                                   | 3.8                                                          | 11.3                                                              |
| 1962          | 15.2                                                                   | 4.0                                                          | 15.1                                                              |
| 1963          | 25.5                                                                   | 3.7                                                          | 11.8                                                              |
| 1964          | 27.0                                                                   | 3.5                                                          | 14.0                                                              |

males and 342 4-year-old males from 29 July to 3 August 1968. The reduction was of 2 killing days because Sunday (4 August) was not a working day. Table 29 shows the basic data for this regression, as extended with new data from the 1964 year class.

The method of adjustment has been discussed in previous reports and is summarized in the footnote to table 19 in the 1967 report (Marine Mammal Biological Laboratory, 1970). The resulting regression equation is:

$$Y = -47.42 + 0.39X_1 + 13.95X_2$$

where: Y,  $X_1$ , and  $X_2$  are as indicated in table 29.

For the 1965 year class, X1 (kill of 3-yearold males before 5 August) as adjusted is 20.7 thousand and X2 (mean round of kill of 3-year-old males) is 4.07. As in the basic data, the mean round (X2) of 4.07 was converted from the mean date of the kill (21.36 July). The unadjusted estimate of the kill of 4-year-old males in 1969 is 17.4 thousand. This estimate has a standard error of 2.0 thousand. The actual forecast must consider the 3-year-olds spared from 3 to 5 August and those taken in the postseason kill. Maximum and minimum numbers of seals that might be added to the kill of 4-year-old males in 1969 because of these factors are 1,300 and 400, respectively. Adding the average of these figures to the unadjusted forecast yields a final forecast by this method of 18.2 thousand.

Table 30.--The observed kill of 3- and 4-year-old male seals, mean air temperature, mean weight of living seal pups, and count of dead pups, year classes 1950-64, St. Paul Island

|       | Temperature     | Mean weight |                | Observed kil  |
|-------|-----------------|-------------|----------------|---------------|
|       | (in tenths of a | of unmarked |                | at ages 3 and |
| Year  | degree above    | pups in     | Count of       | 41/           |
| class | 32°)            | autumn      | dead pups      |               |
|       | (T)             | (W)         | (D)            | (K)           |
|       | °F.             | Kg.         | Thousands      | Thousands     |
| 1950  | 3.5             |             | 56             | 56            |
| 1951  | 36              | _           | 7.4            | 50            |
| 1952  | 37              |             | $\frac{2}{45}$ | 62            |
| 1953  | 16              | _           | 82             | 47            |
| 1954  | 10              | _           | 101            | 29            |
| 1955  | 17              |             | 79             | 38            |
| 1956  | 1               |             | 104            | 13            |
| 1957  | 23              | 8.7         | 65             | 40            |
| 1958  | 34              | 11.4        | 33             | 63            |
| 1959  | 33              | 9. 4        | 42             | 41            |
| 1960  | 26              | 9. 8        | 66             | 2.5           |
| 1961  | 18              | 8.5         | 61             | 35            |
| 1962  | 21              | 9. 2        | 48             | 31            |
| 1963  | 28              | 8. 9        | 34             | 37            |
| 1964  | 15              | 9. 1        | 23             | 41            |

<sup>1/</sup> Adjustments were made for year when the kill did not end 5 August. 2/ Estimated.

# Regression of the Kill at Ages 3 and 4 on Mean Air Temperature

Table 30 shows the basic data for this regression. The temperature regression is:

$$Y = 17.61 + 0.98T (r^2 = 0.59, r = 0.77)$$

where: T is the meanair temperature in tenths of a degree above 32°.

Unfortunately, the highly significant relation found several years ago between the annual mean air temperature for the 12 months ending 30 June of the year of birth of the year class and year-class returns continues to deteriorate. The validity of this relation has always been dubious because the casual mechanism is unclear. The estimated values of Y as determined from the regression equation are in table 31 for year classes 1957-64.

Table 31.--Comparison of estimated and actual kill of 3- and 4year-old male seals, year classes 1957-64, St. Paul Island

| Year | Estimated kill | Actual kill of<br>3- and 4-year-old<br>male seals | Difference |
|------|----------------|---------------------------------------------------|------------|
|      |                | Thousands                                         |            |
| 1957 | 40             | 40                                                | 0          |
| 1958 | 51             | 63                                                | -12        |
| 1959 | 50             | 41                                                | 9          |
| 1960 | 43             | 25                                                | 18         |
| 1961 | 35             | 35                                                | 0          |
| 1962 | 38             | 31                                                | 7          |
| 1963 | 45             | 37                                                | 8          |
| 1964 | 32             | 41                                                | -9         |

<sup>1/</sup> Estimated from the air temperature regression Y = 17.61+0.98T.

Although the average error for 1957-64 is about 2.7 thousand, fluctuations have been wide. Thus, this forecast method must be evaluated carefully in the future. Setting aside these reservations, the forecast for the 1965 year class is found by setting T = 12.

The kill at age 3 and 4 in 1965 was 29.4 thousand. Because the kill of 3-year-olds in 1968 was 18.7 thousand (plus some fraction of the postseason kill), this method yields a remaining estimated balance of about 10 thousand. The standard error is 9.7 thousand.

### Regression of the Kill at Ages 3 and 4 on the Mean Weight of Living Seal Pups and the Count of Dead Seal Pups

The count of dead pups provided a forecast that was too high, and the regression on mean

weight of living pups provided one that was too low. It seemed appropriate, therefore, to consider a multiple regression using both variables. Because pups were first weighed in 1957, that year was used as a starting point. The data for the regression are in table 30. The resulting multiple regression equation is

$$K = -12.14 - 0.25D + 6.73W (R^2 = 0.56);$$
  
K, D, and W are defined in table 30.

None of the F ratios shown in table 32 in an analysis of the two variables are significant; the variable D (count of dead pups) in particular seems to have little estimation value. The forecast procedure is retained, however, because its standard error is large and will receive little weight. The total kill in 1968 of the 1965 year class was estimated to be 41.5 thousand. The balance to be taken at age 4 is about 22.0 thousand. The standarderror of this estimate is 9.3 thousand.

Table 32. --Analysis of variance in a regression of the total kill of 3- and 4-year-old male seals (K) on count of dead seal pups (D) and mean weight of living seal pups (W)

| Source                               | Sums of squares | Degrees of freedom | Mean<br>square | F<br>ratio |
|--------------------------------------|-----------------|--------------------|----------------|------------|
| Due to regression of<br>K on D and W | 488.73          | 2                  | 244. 36        | 3.25       |
| Due to regression of<br>K on D alone | 238.61          | 1                  | 238.61         | 3. 17      |
| Due to regression of<br>K on W alone | 104. 90         | 1                  | 104.90         | 1.39       |
| Error                                | 376.15          | 5                  | 75.23          |            |

# Estimate of the Kill Based on an Estimate of the Yearling Male Seal Population

Table 33 shows the estimates of the yearling population surviving from the 1961, 1962, and 1964 year classes on the basis of recoveries

Table 33.--Estimated number of yearling male aeala, and the ratio of the kill at ages 3 and 4 on St. Paul Island to the number of yearling male seals, year classes 1961, 1962, and 1964

| Year<br>class | Yearling 1/<br>estimate 1/<br>(a) | Combined kill<br>at age 3 and 4<br>St. Paul Island<br>(b) | Ratio $(\frac{b}{a} \times 100)$ |
|---------------|-----------------------------------|-----------------------------------------------------------|----------------------------------|
|               | Thousands                         | Thousands                                                 | Percent                          |
| 1961          | 76.4                              | 34.5                                                      | 45. 2                            |
| 1962          | 85. 9                             | 31.1                                                      | 36. 2                            |
| 1964          | 103.0                             | 40.3                                                      | 39. 1                            |
| Mean          |                                   |                                                           | 40.2                             |

 $<sup>\</sup>underline{1}/$  Based on recoveries at age 3; estimates from recoveriea at age 2 have been biased.

of tags from 3-year-olds, the kill on St. Paul Island from these year classes at ages 3 and 4, and the ratio expressed as a percentage.

From table 24 the estimate of the yearing population of the 1965 year class is 94.0 thousand, of which 40.2 percent is 37.8 thousand. Therefore, an implied balance to be taken from the 1965 year class at age 4 is 18.3 thousand. The standard error of the forecast is 4.8 thousand.

# Combined Estimates of the Kill of 4-Year-Old Male Seals on St. Paul Island

The several estimates and their standard errors are:

| Method                                                                    | Estimate  | Standard<br>error |
|---------------------------------------------------------------------------|-----------|-------------------|
|                                                                           | Thousands | Thousands         |
| Regression on kill<br>at age 3 and mean<br>round of kill at               |           |                   |
| age 3                                                                     | 18.5      | 2.0               |
| Regression on mean air temperature                                        | 9.9       | 9.7               |
| Regression on mean weight of pups and count of dead pups Estimate derived | 22.0      | 9.5               |
| from yearling population                                                  | 18.3      | 4.8               |
| Weighted average                                                          | 18.3      | 1.8               |

The analysis in table 27 might suggest that more weight should be given to the estimate derived from the yearling estimate. Because the combined average estimate is identical with this yearling-derived estimate, however, such increased weighting would have no effect for 1969.

# FORECAST OF THE KILL OF 3-YEAR-OLD MALE SEALS

Two methods used to forecast the kill of 3-year-old males are discussed in this section: (1) Two regressions, one based on air temperatures and another on mean weights of living pups and counts of dead pups, and (2) estimated number of yearling males.

### Regression of Kill at Ages 3 and 4 on Air Temperature, Mean Weights of Living Seal Pups, and Counts of Dead Seal Pups

All regressions except the first calculated in the previous section are also useful for making estimates of the kill of 3-year-old males expected in 1969. Estimates of the kill

of 3-year-old males in 1969 are derived by multiplying the combined estimate of the kill of 3- and 4-year-olds (K) by 0.67 (the ratio of the kill of 3-year-old males to the kill of 3- plus 4-year-old males), a factor that has been used for several years. For the 1961-64 year classes the ratio was 0.66, almost identical to the long-term ratio. Use of this most recent ratio would alter the forecast only slightly. The regressions and the estimates are:

- 1. Temperature regression K=17.61+0.98T For the 1966 year class T=29,  $\hat{K}=46.0$  thousand with a standard error of 9.5 thousand, and for 1969 the kill of males at age 3 is estimated as 30.8 thousand.
- 2. Pup weight and dead pup count regression K = -12.14-0.25D+6.73W For the 1966 year class D = 22.5, W = 9.6, K = 46.8 with a standard error of 11.4 thousand, and for 1969 the kill of males at age 3 is estimated at 31.4 thousand.

# Forecast of the Kill at Age 3 Based on an Estimate of the Yearling Male Seal Population

Table 24 gives 19,285 as the estimated number of yearlings surviving from the 1966 year class. This estimate of the yearling population is the lowest to date, though all estimates based on recoveries at age 2 have been biased downward. It is still not clear why this bias exists, unless tagged seals are selected during the commercial kill. The extent to which such selection might vary from year to year is unknown, though evidence to date suggests considerable variation. To obtain a valid procedure for forecasting it is necessary to adjust the estimate obtained at age 2, which can be done with a direct correction factor derived empirically from the various final estimates of earlier year classes. An alternative indirect but simpler procedure is to calculate a regression of the kill at age 3 against the estimate of the yearling population obtained from tag recoveries at age 2. The data are in table 34 and the regression is:

$$K_3 = 15.3 + 0.15E (r^2 = 0.65)$$

For the 1966 year class E = 19.3 and hence  $\hat{K}_3$  = 18.3 with a standard error of 6.1 (all in thousands).

Although the yearling population estimate and the resulting estimated kill of 3-year-old males seem low, it is difficult to discard the two entirely because the estimate derived from yearlings has to date been the best for forecasting the kill of 4-year-old males. Moreover, the estimate, although low, is reasonable because the major variable is apparently survival during the first 2 years, All other methods

Table 34. --Estimated number of yearling male seals, year classes 1961, 1962, 1964, and 1965, from tag recoveries at age 2, and the kill of 3-year-old male seals, St. Paul Island

| Year<br>class | Estimate based on recoveries at age 2 (E) | Kill of<br>3-year-olds<br>(K <sub>3</sub> ) |
|---------------|-------------------------------------------|---------------------------------------------|
|               | Thousands                                 | Thousands                                   |
| 1961          | 27.1                                      | 22.5                                        |
| 1962          | 33.8                                      | 19.0                                        |
| 1964          | 72.0                                      | 27.0                                        |
| 1965          | 34. 8                                     | 18.7                                        |

attempt to estimate survival indirectly, but the forecast based on the yearling estimate reflects a direct estimate.

# Combined Estimates of the Kill of 3-Year-Old Male Seals on St. Paul Island

The estimates and their standard errors are:

| Method                                                   | Estimate<br>Thousands | Standard error |
|----------------------------------------------------------|-----------------------|----------------|
| Air temperature regression Pup weight and dead-pup count | 30.9                  | 9.5            |
| regression Yearling estimate.                            |                       | 11.4<br>6.1    |
| Weighted averag                                          | e 23.6                | 4.7            |

# ESTIMATES OF THE TOTAL KILL OF MALE SEALS IN 1969

Table 35 shows the forecast of the total kill of males for the Pribilof Islands. The estimated kill at ages 2 and 5 is the average

Table 35. --Forecast of the kill of male seals in 1969, by age,
Pribilof Islands, Alaska

|           |         | Age     |         |         |
|-----------|---------|---------|---------|---------|
| Island    | 2 and 5 | 3       | 4       | Total   |
|           |         | Number- |         |         |
| St Paul   | 3, 300  | 23,600  | 18, 300 | 45,200  |
| St George | 900     | 5, 900  | 4,600   | 11, 400 |
| Total     | 4,200   | 29,500  | 22,900  | 56, 600 |

of recent years. The extrapolation to St. George Island is based on the assumption that the population of seals there is about 20 percent of the total. Table 36 compares the forecast for 1968 with the actual number killed in that year.

Table 36.--Forecasted and actual kill of male seals, Pribilof Islands, Alaska, 1968

| Island     | 2 and 5 | 3            | 4        | Total   |
|------------|---------|--------------|----------|---------|
|            |         | <u>Numbe</u> | <u>r</u> |         |
| it. Paul   |         |              |          |         |
| Actual     | 3,215   | 18, 706      | 13, 279  | 35, 200 |
| Forecast   | 3,500   | 22,000       | 13,000   | 38, 500 |
| St. George |         |              |          |         |
| Actual     | 839     | 4, 443       | 3,680    | 8, 962  |
| Forecast   | 1,000   | 6,000        | 4,000    | 11,000  |
| Combined   |         |              |          |         |
| Actual     | 4,054   | 23, 149      | 16, 959  | 44, 162 |
| Forecast   | 4,500   | 28,000       | 17,000   | 49,500  |

The forecast error for 1968 was greater than that for 1966 and 1967. The error was about 1,000 for St. Paul Island and about 2,000 for St. George Island if allowance is made for advancing the termination date to 2 August. We hope the forecast error can be kept to this order of magnitude, though many variables in differential survival and in estimated errors are still poorly understood.

### SPECIAL STUDIES

This section includes studies of fur seal biology that are carried on in addition to continuing studies described in the main body of this report.

# ACTIVITY OF YOUNG MALE SEALS ON LAND

Studies of the activity of young males while they are on hauling grounds will provide information useful for harvesting the population. In 1968, some young males were tagged and radio transmitters were attached to others for studies of behavior.

### Tagging

Between 24 June and 18 July, 334 young males in ages 2 to 5 were double tagged St. Paul Island (table 37). Among 226 tagged males taken in the commercial kill by 13 August, 2, 55, 42, and 1 percent were in ages 2, 3, 4, and 5, respectively. Four were killed on St. George Island, and 222 were taken on St. Paul Island. One seal tagged on 24 June was killed on Southeastern Rookery, Medny Island, U.S.S.R., in 1968, but the exact date of recovery is not known. Presumably, some of the survivors will be killed on the Pribilof Islands in 1969 and 1970.

Table 37. -- Number of days between tagging and recovery of tags applied to male seals, St. Paul Island, 24 June to 18 July 1968

| Date of | Hauling<br>ground of | Tag<br>numbers2/              | Effective |     |      | Days to 1 | recoverv |       |       | Total<br>tags  |
|---------|----------------------|-------------------------------|-----------|-----|------|-----------|----------|-------|-------|----------------|
| tagging | tagging 1/           | (X-series)                    | tags      | 1-7 | 8-14 | 15-21     | 22-28    | 29-35 | 36-43 | recovere       |
|         |                      |                               | Number    |     |      |           | -Number  |       |       | Number         |
| 4 June  | REEF                 | 901-950                       | 50        | 27  | 3    | 2         | 6        | 4     |       | $\frac{3}{42}$ |
| 4 June  | ZAP                  | 951-1000                      | 50        | 16  | 8    | 1         | 10       | 5     | 2     | 42             |
| 5 June  | NEP(west)            | 851-900                       | 50        | 30  | 2    | -         | 5        | 1     | 5     | 43             |
| 5 June  | ZAP PT               | 776-800                       | 25        | 13  | -    | 2         | 1        | -     | 1     | 17             |
| 5 June  | ARD                  | 826-841                       | 16        | 5   | 1    | 1         | 2        | 1     | ~     | 10             |
| 0 July  | NEP(east)            | 701-750                       | 50        | 14  | 3    | 1         | 3        | -     | -     | 21             |
| l July  | TZR                  | 651-700                       | 50        | 21  | 1    | 3         | 3        |       | -     | 28             |
| 8 July  | REEF                 | 1001-1042<br>and<br>1051-1094 | 43        | 22  |      | 1         | -        | -     | -     | 23             |
| Tota    | .1                   |                               | 334       | 148 | 18   | 11        | 30       | 11    | 8     | 226            |

1/ REEF=Reef; ZAP=Zapadni; NEP(west)=west side of Northeast Point; ZAP PT=Zapadni Point; ARD=Ardiguen; NEP(east)=east side of Northeast Point; TZR=Tolstoi-Zapadni Reef. Zapadni Point and Ardiguen are inaccessible areas where seals are not driven and killed.

2/ Seals were double tagged with paired numbers (651 and 651 on first seal, etc.), except for 1001-1094 which were double tagged with successive numbers (1001 and 1002 on first seal, etc.).

3/ Does not include one seal tagged on REEF on 24 June and recovered in 1968 (date unknown) on Southeastern Rookery, Medny Island, U.S.S.R.

Most of the hauling grounds on St. Paul Island are accessible, and seals are regularly driven from them for killing. Hauling grounds near Ardiguen Rookery and at Zapadni Point are exceptions. Seals on these areas are not driven for killing because of overhanging cliffs and are taken only if they stray to an accessible hauling ground. This condition was reflected in relatively low recovery rates of 62 percent for seals tagged near Ardiguen Rookery and 68 percent at Zapadni Point.

Zapadni, Reef, Northeast Point, and Tolstoi-Zapadni Reef are examples of rookeries with accessible hauling grounds close by that are driven regularly during the killing season. As expected, the recovery rates for seals tagged in June on Zapadni, Reef, and Northeast Point were much higher than the rates for seals tagged near Ardiguen Rookery and at Zapadni Point. In addition, the recovery rates for seals tagged in June differed from those tagged in July. An overall recovery rate of 85 percent (range 84-86) for seals tagged in

June on the hauling grounds of Zapadni, Reef, and the west side of Northeast Point was higher than the rate (50 percent) for seals tagged in July on the hauling grounds of Reef, Tolstoi-Zapadni Reef, and the east side of Northeast Point (table 38). On the basis of a standard recovery interval of 15 days (the interval between tagging on 18 July and the end of the male kill on 2 August), 57 percent of the seals tagged in June and 43 percent of the seals tagged in July were recovered. In 1968, therefore, a larger proportion of the males found on land and tagged in June remained available for killing compared to those found on land and tagged in July.

The interval between tagging and recovery ranged from 1 to 43 days for seals killed in 1968 (table 37); each of the 226 seals recaptured had retained both tags. The four animals killed on St. George Island were taken 20 to 26 days after tagging. The largest proportion of recoveries occurred soon after tagging. Fifty percent of the seals that were tagged

Table 38 -- Recoveries in 1968 of male seals tagged of 5t. Paul Island, 24 June to 18 July 1968 according to houting ground

| Date of | Hauling<br>ground of | Effective<br>tags |           | Haul      | ing grou | ind of r | covery 1 | /   |     |         |     |        |         |
|---------|----------------------|-------------------|-----------|-----------|----------|----------|----------|-----|-----|---------|-----|--------|---------|
| tagging | tagging 1/           | (X-series)        | NEP(west) | NEP(east) | ZAP      | TZR      | REEF     | L-K | POL | ZAP(SG) | NOR | Tot    | tal     |
|         |                      | Number            |           |           |          | <u>N</u> | lumber   |     |     |         |     | Number | Percent |
| 24 June | ZAP                  | 50                |           | 5         | 16       | 15       | 3        | -   | 1   | -       | 2   | 42     | 82.0    |
| 24 June | REEF                 | 50                | **        | 1         | -        | 1        | 3.5      |     | 1   | -       | 1   | 2/42   | 84.0    |
| 25 June | NEP(west)            | 50                | 30        | 11        | -        | -        | 1        |     |     | -       |     | 43     | 86.0    |
| 25 June | ZAP PT               | 25                | **        | -         | 9        | 6        | 1        | 1   | -   |         | -   | 17     | υ8.0    |
| 25 June | ARD                  | 16                | -         | I         | 1        | 2        | 6        | -   |     |         | -   | 10     | 62.5    |
| 10 July | NEP(east)            | ~()               | •         | 11        | 3        | 3        | 1        | 1   | 2   | -       | -   | 21     | 42.0    |
| ll July | TZR                  | - 0               | 1         | 2         | 16       | 2        | 2        | 1   | 3   | 1       | -   | 28     | ~6.0    |
| 18 July | REEF                 | 43                |           | -         | 1        | 2        | 20       | -   | -   | -       | -   | 23     | 53.5    |
| Total   |                      | 334               | 31        | 31        | 46       | 3 1      | 69       | 7   | 7   | 1       | 3   | 226    | 67.7    |

<sup>1/</sup> NEP(east) east side of Northeast Point; NEP(west)=west side of Northeast Point, ZAP=Zapadni; TZR-Tolstoi-Zapadni Reef, REEF Reef; L-K-Lukanin-Kitovi; POL-Polovina; ZAP(SG)=Zapadni, St. George Island; NOR=North; ZAP PT-Zapadni Point; ARD Ardiguen. Zapadni Point and Ardiguen are inaccessible areas where seals are not driven and killed.

were recaptured and killed within 2 weeks of tagging, 68 percent were taken by the end of the killing season in 1968.

### Telemetry

Radio transmitters were placed on young male fur seals on St. George Island in 1967 and on St. Paul Island in 1968. Five seals were radio-tagged each year, and each was also double-tagged on his front flipper with cattle-ear tags so that he could be identified if the transmitter was lost.

In 1967, the transmitters were dipped in Tygon<sup>3</sup> epoxy, wrapped in Scotch electricians tape, and placed around the neck of the seals. The radios tended to short out and not function because these materials were not waterproof, and antennas were broken, presumably by seals accidentally falling against rocks. The longest period of transmission in 1967 was 3 days from a seal that moved from the hauling ground on East Rookery to that on North Rookery on St. George Island.

A nylon harness used in 1968 stayed on well and did not seem to impede the movements of the seals. Though the transmitters were potted in dental acrylic and silastic rubber, many of them leaked. The longest transmission was 9 days, from a seal that was tagged and stayed on Reef hauling ground, St. Paul Island, until accidentally taken in the kill on the 9th day. This seal was driven to the killing field twice but always returned to the area where it was tagged. Other recoveries were: (1) A seal

that was harnessed but not radio-tagged on Reef hauling ground on 1 July and recovered there on 2 August; (2) a seal that was tagged on Northeast Point hauling ground on 6 July and recaptured on Ardiguen Rookery on 11 July; and (3) a seal, with a harness and identification tags, that was driven to the killing field from North hauling ground, St. George Island, on 26 July, and then released. The tag numbers of the latter were not recorded, but the seal had been harnessed and tagged on Tolstoi hauling ground, St. Paul Island, on either 8 or 13 July.

## ADULT MALE SEALS ON THE HAULING GROUNDS

Adult males found on the Pribilof Islands during the breeding season can be classified as territorial or nonterritorial. The former establish and defend territories, whereas the latter, though similar in body size and other characteristics, roam freely and are usually on hauling grounds.

In 1965, 250 territorial males from rookeries were killed for a study of adult males (Johnson, 1968). This study was continued in 1967 when 100 nonterritorial males were killed on the hauling grounds. Table 39 summarizes the ages of the seals.

The study of 100 nonterritorial males killed in 1967 lends support to a traditional belief that adult males on hauling grounds are too young to compete for or maintain control of a territory. According to the age composition of these animals, most of the large males on

<sup>2/</sup> Does not include one seal tagged on REEF on 24 June and recovered in 1968 (date unknown) on Southeastern Rookery, Medny Island, U  $\vec{S}$  S R

<sup>&</sup>lt;sup>3</sup> Trade names referred to in this publication do not lmply endorsement of commercial products.

Table 39.--Age composition of four groups of adult male seals from hauling grounds, St. Paul Island, 1967

|       |   |    |    |    |          | Age   |           |    |    |    |    |
|-------|---|----|----|----|----------|-------|-----------|----|----|----|----|
| Group | 7 | 8  | 9  | 10 | 11       | 12    | 13        | 14 | 15 | 17 | 18 |
|       |   |    |    |    | <u>N</u> | Jumbe | <u>r </u> |    |    |    |    |
| 1     | - | 5  | 8  | 7  | 1        | 1     | 1         | 1  | -  | -  | 1  |
| 2     | l | 5  | 7  | 6  | 2        | 2     | -         | l  | 1  | -  | -  |
| 3     | 2 | 5  | 7  | 3  | -        | l     | 3         | 1  | 1  | 1  | 1  |
| 4     | _ | 6  | 12 | 3  | 1        | -     | l         | 1  | ~  | -  | l  |
| Total | 3 | 21 | 34 | 19 | 4        | 4     | 5         | 4  | 2  | 1  | 3  |

hauling grounds are younger than territorial males on the rookeries. For example, nearly all of the latter studied in 1965 were 10 years old or older, but 58 percent of the 100 males taken from hauling grounds were younger than 10 years. Of the nonterritorial males, 42 were older than 9 years, but no evidence was found of an accumulation of senile males on the hauling grounds. About half of the nonterritorial males on hauling grounds are too young to compete successfully for territories, and half are old enough but are unsuccessful for unknown reasons.

Table 40 gives body length and weight, and weight of paired, preserved testes for nonterritorial males killed in 1967. Because of the small sample sizes, we cannot draw reliable conclusions from comparisons of these characteristics by age, but for all ages combined, the mean weight of paired testes from territorial males is greater than that of paired testes from nonterritorial males (table 41). In addition, the mean weight of testes of territorial males collected in 1965 from 8 to 23 June was about 13 g. heavier than that of testes collected from 5 to 15 July. The body weights of territorial and nonterritorial males cannot be compared because territorial males killed 5-15 July 1965 were not weighed. Body length, however, can be compared because length would probably change little within a season. Sample sizes are small, but for each age the mean body length of nonterritorial

Table 40.--Mean length and weight of body and mean weight of testes 1/of 100 adult male seals from hauling grounds, by age, St. Paul Island, 1967

|         |        | Mean body | Mean body | Mean weight     |
|---------|--------|-----------|-----------|-----------------|
| Age     | Seals  | length    | weight    | of paired teste |
| Years   | Number | Cm.       | Kg.       | <u>G</u> .      |
| 7       | 3      | 180,3     | 154.8     | 106.8           |
| 8       | 21     | 184.7     | 155.6     | 104.5           |
| 9       | 34     | 189. 1    | 169.0     | 123.9           |
| 10      | 19     | 188.9     | 169.8     | 120.4           |
| 11      | 4      | 185.0     | 159.7     | 121,1           |
| 12      | 4      | 198.4     | 172.6     | 116.6           |
| 13      | 5      | 185.3     | 147.9     | 115.2           |
| 14      | 4      | 192.9     | 163.1     | 103.7           |
| 15      | 2      | 192.5     | 178.2     | 95.4            |
| 17      | 1      | 195.0     | 168.7     | 108.3           |
| 18      | 3      | 195.0     | 172.0     | 118.8           |
| All age | s 100  | 188.4     | 164.8     | 116.1           |

<sup>1/</sup> Preserved in formalin.

males was less than that for territorial males. The comparisons are valid only if we can assume that there are no differences between years.

Table 41.--Measurements of territorial and nonterritorial male seals of selected ages, st. Paul Island

[Numbers of seals in parentheses]

|       |           |              | Territorial m | ales             | Non       | territorial m | ales          |
|-------|-----------|--------------|---------------|------------------|-----------|---------------|---------------|
|       |           | 18-23 June 1 | 1965          | 5-15 July 19654/ |           | 5-8 July 196  | 7             |
|       | Mean body | Mean body    | Mcan weight   | Mean weight      | Mean body | Mean body     | Mean weight   |
| Age   | length    | weight       | paired testes | paired testes    | length    | weight        | paired testes |
| Years | Cm.       | Kg.          | G.            | G.               | Cm.       | Kg.           | <u>G.</u>     |
| 9     | 197.9     | 195.4        | 113.8         | 133.3            | 189.1     | 169.0         | 123.9         |
|       | (8)       | (9)          | (9)           | (15)             | (34)      | (34)          | (33)          |
| 10    | 198.5     | 189.8        | 108.8         | 125.9            | 188.9     | 169.8         | 120.4         |
|       | (24)      | (28)         | (28)          | (36)             | (19)      | (19)          | (19)          |
| 11    | 193.7     | 191.1        | 114.3         | 121.3            | 185.0     | 159.7         | 121.1         |
|       | (12)      | (19)         | (19)          | (39)             | (4)       | (4)           | (4)           |
| 12    | 199.5     | 194.9        | 107.6         | 122.1            | 198.4     | 172.6         | 116.6         |
|       | (8)       | (8)          | (8)           | (11)             | (4)       | (4)           | (4)           |
| 13    | 199.3     | 193.0        | 116.1         | 126.3            | 185.3     | 147.9         | 115.2         |
|       | (15)      | (16)         | (17)          | (17)             | (5)       | (5)           | (5)           |

<sup>1/</sup> Killed in 1965.

4/ Seals were neither measured nor weighed in July 1965.

#### SUMMARY

Field investigations on the Pribilof Islands in 1968 were conducted for continuing studies of the fur seal population and the level at which it will produce a maximum sustained yield.

A kill of 44,292 males inages 2 to 6 included 35,292 from St. Paul Island and 9,000 from St. George Island. Ages were not determined for 1,333 young males.

A kill of 13,297 females in ages 2 to 24 included 10,544 from St. Paul Island and 2,753 from St. George Island. Ages were not determined for 38 females.

The number of dead pups counted was 26,563 on St. Paul Island and 4,875 on St. George Island.

Causes of death among 379 pups that died on three study areas by 15 August were malnutrition (48 percent), hookworm disease (17 percent), trauma (6 percent), microbial infections (5 percent), perinatal complex (5 percent), miscellaneous (2 percent), and unknown

(3 percent). Fourteen percent of the pups were unsuitable for examination.

The number of dead males counted was 587 from 1965 to 1968 on St. Paul Island and 114 from 1966 to 1968 on St. George Island. Dead females counted from 1966 to 1968 were 490 on St. Paul Island and 106 on St. George Island.

An estimated 7,924 harem and 4,383 idle males were on the Pribilof Islands in 1968.

Pregnancy rates of females age 8 and older taken from hauling grounds were 42 percent for 1,058 killed in 1968 and 42 percent for 198 taken in 1958. Pregnancy rates of females taken from rookeries were 99 percent for 84 killed in 1956 and 100 percent for 221 taken in 1957.

Average weights of 9.6 kg. for males and 8.3 kg. for females on St. Paul Island were within 0.1 kg. of the average weights of pups weighed there from 1957 to 1968. Untagged males on

<sup>2/</sup> Killed in 1967.

<sup>3/</sup> Seals in ages 9 to 13 were selected because most measurements were made for these animals.

Robben Island were significantly heavier than untagged males on St. Paul Island, and tagged pups on both islands weighed less than untagged

pups.

Single U-series tags were attached to the right front flippers and the tip of the same flipper was removed as a checkmark on 9,200 pups regardless of sex on St. Paul Island and on 2,475 on St. George Island.

A total of 714 males were double-tagged as yearlings on St. Paul Island with lU-series

A total of 1,495 males known or believed to be 2 years old were double-tagged on St. Paul

Island with 2U-series tags.

Seals marked on St. Paul and St. George Islands in previous years and recovered there in 1968 included 3,907 that had been single-tagged or marked as pups and 1,197 that had been double-tagged at age 1 or older. Thirty-nine seals tagged as pups by Soviet biologists were killed on the Pribilof Islands in 1968.

Most tag loss apparently occurs soon after tagging, and the probability of loss becomes

less thereafter.

The recovery rate for tags applied to pups in September has been significantly higher than that for tags applied to pups in August.

Marked pups apparently have a higher survival rate than tagged and checkmarked pups; the rate of recovery for males given a mark in 1965 and recovered at age 3 in 1968 was 1.17 times that of animals given a tag and a checkmark.

According to recoveries of marked seals, the total number of pups born on the Pribilof Islands has decreased each year from 643,000

in 1960 to 397,000 in 1965. The latter estimate is similar to one of 350,000 obtained for the 1965 year class from shearing and sampling.

Estimates of the number of yearling males from all recoveries of marked seals for several year classes are 82,000 (1961), 79,000 (1962), 115,000 (1964), and 80,000 (1965).

Recoveries of marked seals yielded estimates of 25,000 3-year-old males from the 1963 year class and 70,000 2-year-old males from the 1964 year class still living after the kill in 1966.

The predicted kill of males on the Pribilof Islands in 1968 included 4,500 of ages 2 and 5, 28,000 of age 3, and 17,000 of age 4. Actual kills were 4,054 of ages 2 and 5, 23,149 of age 3, and 16,959 of age 4.

A forecast of the kill on the Pribilof Islands in 1969 includes 4,200 of ages 2 and 5, 29,500

of age 3, and 22,900 of age 4.

Young males (ages 2-5) tagged and recovered on St. Paul Island in 1968 provided information on the movements of these animals. Seals tagged in June were recovered at a greater rate than were seals tagged in July, and the rate for seals tagged on hauling grounds inaccessible to the kill was low compared to the rate for seals tagged on accessible hauling grounds.

Radio transmitters were attached to five seals on St. George Island in 1967 and to five on St. Paul Island in 1968. The longest transmission was 9 days.

More than half of 100 adult males from hauling grounds were age 9 or less. Most adult males on rookeries are age 10 or older.

#### **ACKNOWLEDGMENTS**

The research in 1968 was completed with the cooperation of C. Howard Baltzo, Program Director; Bertel W. Johnson, Management Staff Officer; Richard A. Hajny, Wildlife Management Biologist; Harold Thayer, Program Construction Supervisor; Victor Misiken, Village Foreman; Alex Melovidov, Sealer Fore-

man; Lee Paola, Superintendent, Oregon-Alaska Marine Products; and Tikhon Stepetin, President, St. Paul Island Community Council.

Kazumoto Yoshida from the Japanese Fishery Agency observed fur seal research on the Pribilof Islands from 3 to 25 July.

#### **GLOSSARY**

The following terms used in fur seal research and management on the Pribilof Islands have special meanings or are not readily found in standard dictionaries.

Checkmark A notch, slit, hole, or other mark made on a seal flipper when a tag is applied, to ensure later recognition of an animal that has lost its tag. See mark and lost tag.

Drive The act of surrounding and moving groups of seals on land from one location to another.

Escapement Seals that were not killed because they were too old, too large, or were not available.

Female kill That part of the annual harvest devoted principally to the kill of female seals, usually in August. See male kill.

Hauling ground An area, usually near a rookery, on which nonbreeding seals congregate. See rookery.

Haul out The act of seals moving from the sea to a rookery or hauling ground on

Known-age Refers to a seal whose age is known because the animal bears an inscribed tag or has a certain combination of tag-scar and checkmark.

Lost-tag Refers to a seal known to have been tagged as a pup because it bears a check-

mark.

Lost-tag-to-tag ratio The number of seals that have lost tags as compared with the

number retaining tags.

Male kill That part of the annual harvest devoted principally to the kill of male seals, usually in late June, in July, and in early August. See female kill.

Male seals, adult Class 1 Shoreline -- Fullgrown males about age 10 and older without females but apparently with established territories at the high-tide mark.

Class 2 Territorial without females -- Fullgrown males about age 10 and older without females but with established terri-

tories on the rookery.

Class 3 Territorial with females -- Fullgrown males about age 10 and older with females and established territories on the

Class 4 Back fringe -- Full-grown and partly grown males about age 7 and older without females and territories that are along the inland fringe of the rookery.

Class 5 Hauling ground -- Full-grown and partly grown males about age 7 and older without females that are on traditional hauling grounds.

Mane Long, silver-colored guard hairs on the shoulders and on back of the neck--a

secondary sex characteristic of males. The mane appears on some males at age 5, on most at age 6, and on all at age 7.

Mark Examples of marks are a tag, the tip of a digit from a hind flipper removed, a V-notch cut into the leading edge of a front flipper near the tip, or the tip of a front flipper sliced off. When applied to seals in conjunction with tags, marks made by removing part of a flipper are considered checkmarks. See checkmark and lost-tag.

Marked-to-unmarked ratio The number of marked seals compared with the number

of unmarked seals.

Pregnancy rate Percentage of females that were carrying or had borne pups in the year of examination.

Rookery An area on which breeding seals con-

gregate.

Round The sequence in which hauling grounds on St. Paul Island are visited to harvest seals. When used, a circuit or round of the hauling grounds is completed in 5 days and the procedure is repeated throughout the kill of males. The mean round of the kill is calculated by multiplying the round number by the number killed in that round and dividing the cumulative product by the cumulative kill.

Roundup The act of surrounding and collecting seals to be driven for harvesting, tagging,

or other purposes.

Tagged Refers to a seal with an inscribed metal tag or tags attached to one or more

of its flippers.

Tag recoveries Includes seals that were given tags or other marks, and seals identified from checkmarks as having lost their tags. See checkmark, mark, lost tag, and tagged.

### Part II. PELAGIC FUR SEAL INVESTIGATIONS, 1968

The objectives of pelagic research in 1968 were: (1) to collect information on the distribution of fur seals in winter, including the arrival time of the year classes, and their feeding habits off Washington; and (2) to re-

survey migration, distribution, and feeding habits of fur seals in waters of western Alaska with special emphasis on collecting young females for studies of reproductive condition in late spring and summer.

#### **RESEARCH IN 1968**

We carried out our investigations off Washington from 27 November to 21 December 1967 and from 2 January to 26 February 1968. Investigations were conducted in Alaska waters from 18 May to 25 August. The M/V Tonquin4 was chartered for the cruise (No. 29) off Washington and the M/V New St. Joseph5 for the cruise (No. 30) in Alaska waters. Table C-1 shows participants and their itineraries. Kazumoto Yoshida from the Japanese Fishery Agency observed pelagic sealing methods aboard the M/V New St. Joseph from 10 June to 2 July 1968.

Equipment and methods used to collect and examine seals are described in previous reports (Fiscus, Baines, and Wilke, 1964; Fiscus

and Kajimura, 1967).

Sonar (Western Marine Electronics [Wesmar | Horizontal-scan sonar model SS200) was installed in the Tonguin so that the equipment could be evaluated for use in locating and tracking fur seals. Factory representatives calibrated and demonstrated use of their sonar during the cruise. We concluded, however, that sonar is currently of no advantage in pelagic fur seal research. Seals encountered during tests of the equipment behaved normally; they were usually lying on the surface when sighted, and dived and changed course rapidly when approched and disturbed. We found it extremely difficult to find a seal on the surface by sonar because we could not separate surface and wave returns from seals on the sonar screen. Air bubbles in the vessel's wake were detected and shown on the screen. They formed an effective barrier to sonar through which a seal could escape undetected. Seals below the surface were apparently detected just after they dived, but most disappeared rapidly from the screen when followed. The sonar operator could then only scan in the direction the seal appeared to be traveling, a futile effort in each instance.

### DISTRIBUTION OFF WASHINGTON

Seals were present off Washington in late November and in early December. Their numbers increased along the Continental Shelf in the second and third week of December. In January and February seals were abundant along the Continental Shelf from Grays Harbor to the Columbia River and present in lesser numbers from Grays Harbor northward along the shelf to Cape Flattery. Figures 10 to 13 and tables C-2 to C-5 show the distribution of seals.

#### DISTRIBUTION IN ALASKA WATERS

Figures 14 to 18 and tables C-6 to C-11 show the distribution of seals in areas we surveyed from the New St. Joseph. A concentration of seals (105 sighted) was found on 21 May in the eastern Gulf of Alaska.

We cruised the western Gulf of Alaska and waters off Kodiak Island the last of May but failed to locate any concentrations of seals where they were in previous years. Only 21 animals were sighted on 1-2 June west from Kodiak Island toward the Shumagin Islands. We saw seals south of the Shumagin Islands on 3-4 June. We found concentrations of seals on 17-18 and 27-28 June south and east of Akutan Pass while working south of the eastern Aleutian Islands 6-30 June.

The M/V <u>Pribilof</u><sup>6</sup> carried U.S. observers from the Pribilof Islands to Medny Island, Commander Islands, and back between 26 June and 10 July 1968. One to three observers watched for seals during most daylight hours; the officers and crew of the <u>Pribilof</u> assisted. Figure 19 shows the daily run and seals sighted.

Seals were abundant on 6 July near Medny Island but most of the seals seen were sighted on 27 June and 9 July off the Continental Shelf 148 to 370 km. (80-200 miles) from the Pribilof Islands. Only three seals were seen north of the western Aleutian Islands.

We surveyed the Bering Sea and the Pacific Ocean near the eastern Aleutians in July. No concentrations of seals were located until 21 July, when 78 were sighted north of Akutan Island.

<sup>&</sup>lt;sup>4</sup> Registered length 29.4 m. (96.6 feet), 200 net tons, 350 horsepower, cruising speed 16.7 km. per hour (9 knots).

<sup>&</sup>lt;sup>5</sup> Registered length 22.4 m. (73.6 feet), 53 net tons, 340 horsepower, cruising speed 18.5 km. per hour (10 knots).

<sup>&</sup>lt;sup>6</sup> Bureau of Commercial Fisheries Pribilof Islands supply vessel; registered length 64 m. (210 feet), 1,200 gross tons, 14,000 horsepower, cruising speed 22.2 km. per hour (12 knots).

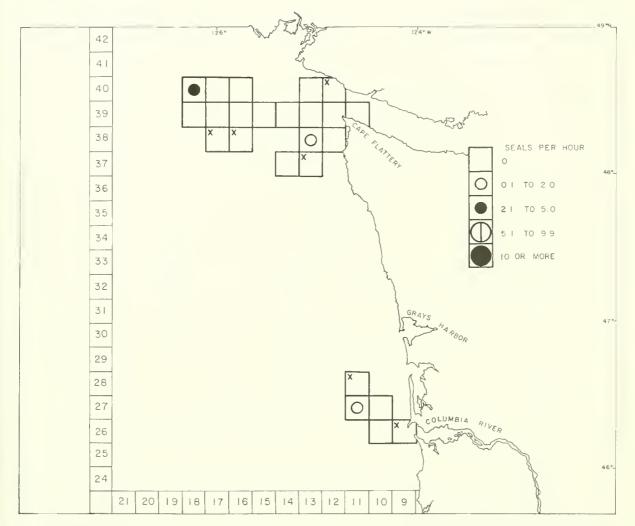



Figure 10.--Number of seals seen per hour of effort in each square (areal unit) occupied by a research vessel in November 1967 off Washington. The sides of each square measure 18.52 km. (10 nautical miles). Squares occupied for less than 0.5 hours are marked "X." See table C-2 for detailed data.

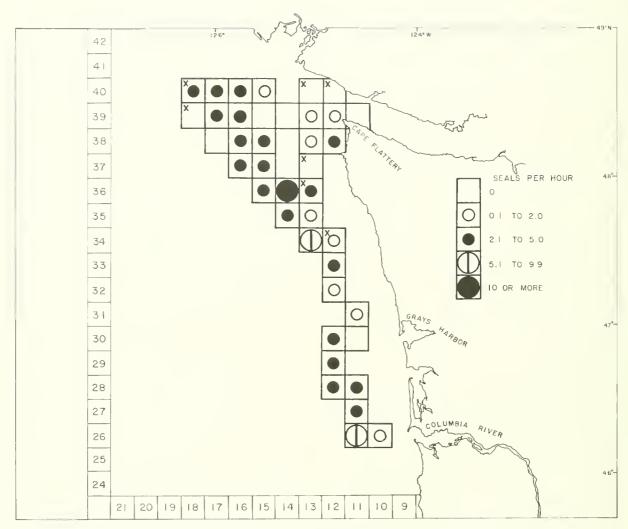



Figure 11.--Number of seals seen per hour of effort in each square (areal unit) occupied by a research vessel in December 1967 off Washington. The sides of each square measure 18.52 km. (10 nautical miles). Squares occupied for less than 0.5 hours are marked "X." See table C-3 for detailed data.

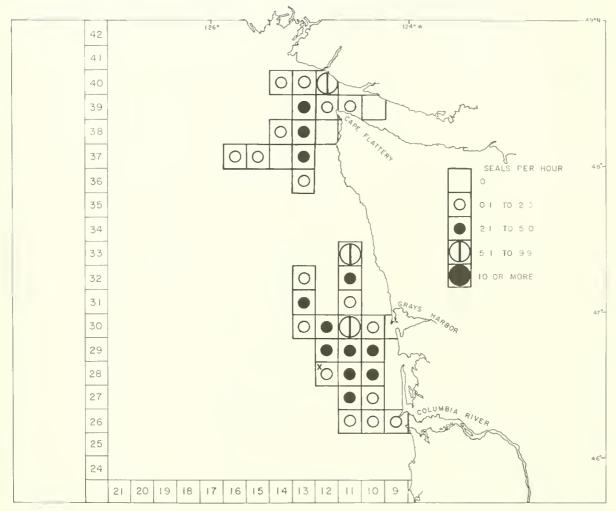



Figure 12.--Number of seals seen per hour of effort in each square (areai unit) occupied by a research vessel in January 1968 off Washington. The sides of each square measure 18,52 km. (10 nautical miles). Squares occupied for less than 0.5 hours are marked "X." See table C-4 for detailed data.

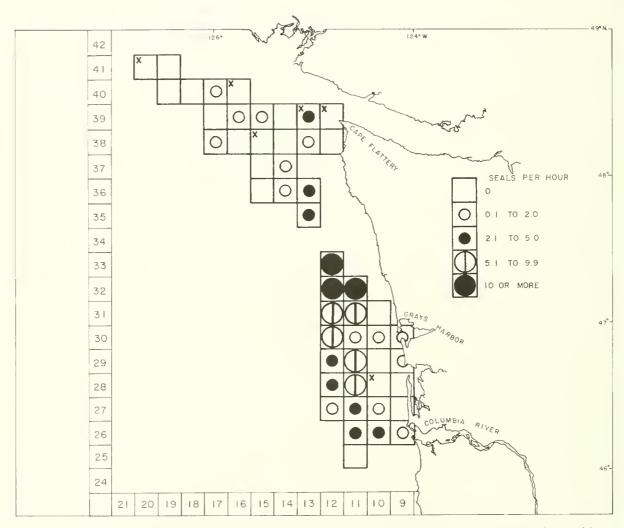



Figure i3.--Number of seals seen per hour of effort in each square (areal unit) occupied by a research vessel in February 1968 off Washington. The sides of each square measure 18.52 km. (10 nautical miles). Squares occupied for less than 0.5 hours are marked "X." See table C-5 for detailed data.

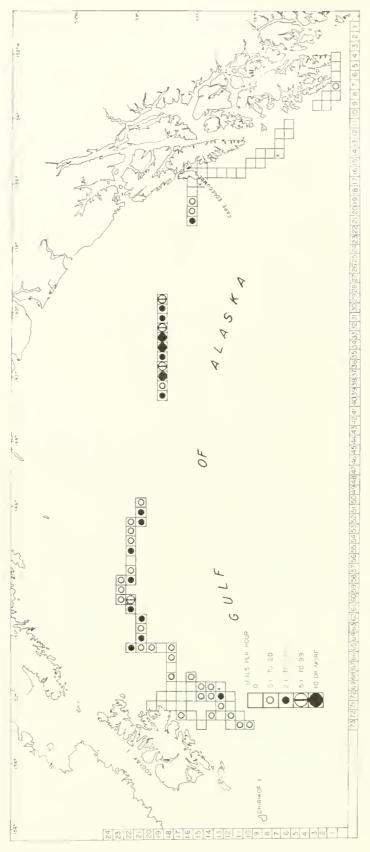



Figure 14.--Number of seals seen per hour of effort in each square (areal unit) occupied by a research vessel in May 1968 in Alaska waters between Dixon Entrance and long, 1560 W. The sides of each square measure 18,52 km, (10 nautical miles), Squares occupied for less than 0,5 hours are marked "X,"

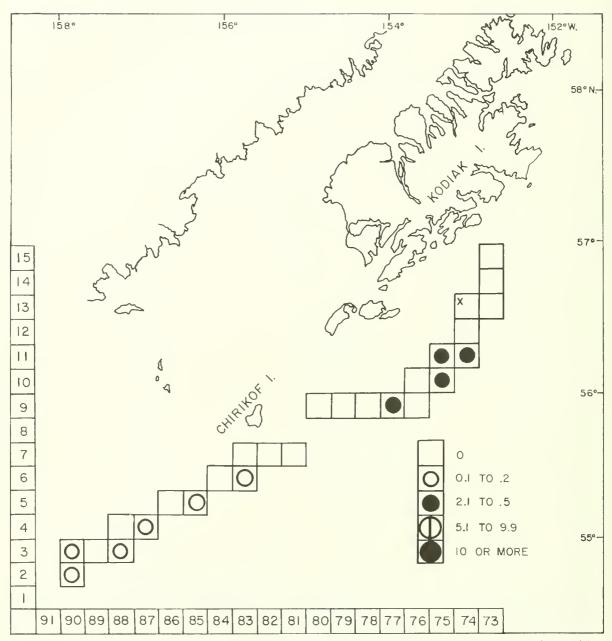



Figure 15.--Number of seals seen per hour of effort in each square (areal unit) occupied by a research vessel in June 1968 in Alaska waters between Kodiak Island and long, 158° W. The sides of each square measure i8.52 km. (i0 nautical miles). Squares occupied for less than 0.5 hours are marked "X."

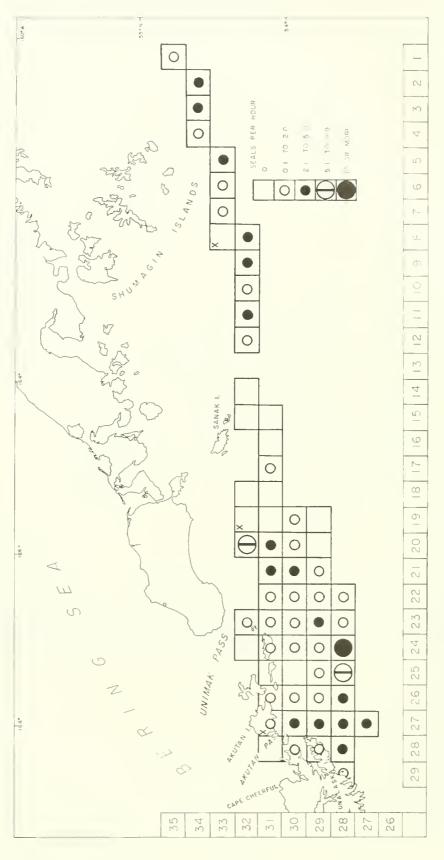



Figure 16.--Number of seals seen per hour of effort in each square (areal unit) occupied by a research vessei in June 1968 in Alaska waters from long, 1600 W. to Berling Sea. The sides of each square measure 18.52 km. (10 nautical miles). Squares occupied for less than 0.5 hours are marked "X,"

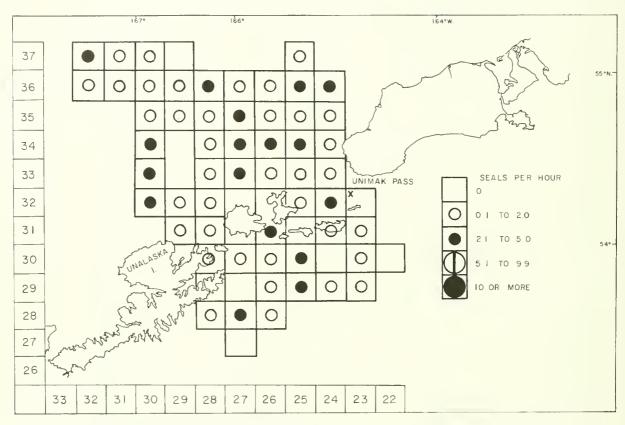



Figure 17.--Number of seals seen per hour of effort in each square (areal unit) occupied by a research vessel in July 1968 in Alaska waters near the eastern Aleutian Islands. The sides of each square measure 18.52 km. (10 nautical miles). Squares occupied for less than 0.5 hours are marked "X."

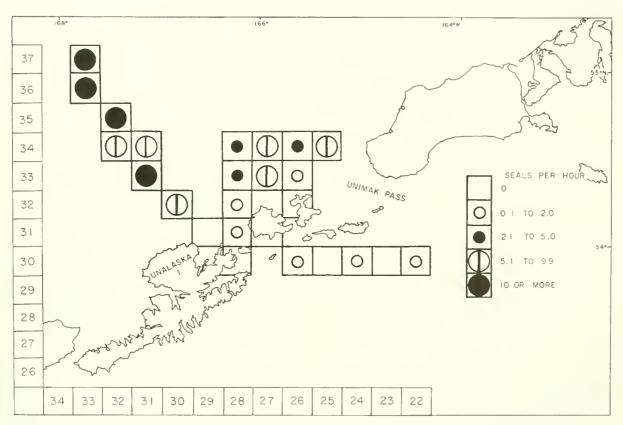



Figure 18.--Number of seais seen per hour of effort in each square (areal unit) occupied by a research vessel in August 1968 in Aiaska waters near the eastern Aleutian Islands. The sides of each square measure 18.52 km. (10 nautical miles). Squares occupied for less than 0.5 hours are marked "X."

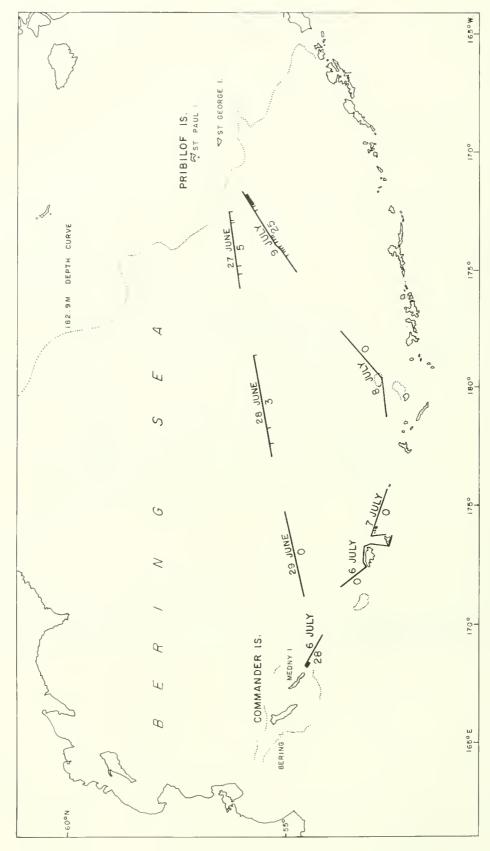



Figure 19.-- Tracklines of the M/V Pribilof from 27 June to 9 July 1968. The position of each seal sighted is shown by a mark (') just below the trackline, together with the total number seen.

We saw considerable numbers of seals in the Bering Sea along and outside the Continental Shelf from Unalaska Island east to Unimak Pass from 1 to 15 August.

The following surveys are not shown on any of the figures:

| Date | Dls | stance  | Direction and locality                                                                                                                                                                                                                          | Seals<br>seen |
|------|-----|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|      | Km. | (Mlles) |                                                                                                                                                                                                                                                 | Number        |
| Aug. |     |         |                                                                                                                                                                                                                                                 |               |
| 12   | 64  | (40)    | St. Paul to St. George                                                                                                                                                                                                                          | 20            |
| 15   | 55  | (30)    | 56 km. (30 mlles) south of<br>St. George to 111 km. (60<br>mlles) northwest of Cape<br>Cheerful, Unalaska Island<br>(Just off the Continental<br>Shelf between Pribilof Is-<br>lands and feeding grounds<br>near eastern Aleutian Is-<br>lands) |               |
| 18   | 230 | (124)   | Along Continental Shelf be-<br>tween Sanak Island and<br>Shumagin Islands                                                                                                                                                                       | 23            |
| 19   | 185 | (100)   | Past Chirikof Island                                                                                                                                                                                                                            | 5             |
| 20   | 148 | (80)    | Toward town of Kodlak                                                                                                                                                                                                                           | 8             |
| 22   | 185 | (100)   | Eastward from Kodiak                                                                                                                                                                                                                            | 0             |
| 23   | 222 | (120)   | Southeastward in Gulf of Alaska                                                                                                                                                                                                                 | 0             |
| 24   | 185 | (100)   | 137 km. (74 miles) west of Cape Edgecumbe                                                                                                                                                                                                       | 1             |

### ABUNDANCE

The numbers of seals sighted, collected, wounded and lost, and killed and lost were 1,078, 374, 39, and 26 off Washington and 1,509, 456, 27, and 78 in Alaska waters. Tables C-12 and C-13 give numbers and percentages of seals in these categories for 1958-68.

Tables C-14 to C-17 show the number of seals seen and collected off Washington and in Alaska waters in relation to effort by 10-day periods.

Seals were seen in groups of one to nine animals off Washington (table C-18) and in groups of one to five in Alaska waters (table C-19). Seals travelalone more frequently in the spring and summer in Alaska waters than in winter off Washington.

Incomplete data on six seals taken in Alaska waters are not included in any of the following tables.

#### AGE AND SEX

Seals collected at sea are considered to have passed into the next higher age group on 1 January (Standing Scientific Committee of the North Pacific Fur Seal Commission, 1963). The ages of seals collected in November and December 1967, however, were increased 1

year to permit comparisons with seals taken after 1 January 1968. Thus, seals of the same year class were given the same age in all tables in this report.

Table 42 gives the age and sex of seals collected off Washington and Alaska in 1967-68. About 50 percent of the females killed were from 1 to 7 years old.

Seventy-four yearling seals (1967 year class) were collected January-February 1968 for continuing studies of these animals during their first year of life, a period when fur seals suffer the greatest mortality. For example, general body condition was appraised by measuring the subcutaneous layers of fat at their thickest points over the sternum and ventral to the pelvic region (table C-20). Additional information on these yearlings is given elsewhere in this report.

#### TAG RECOVERIES

In 1968, we took 7 males in ages 2 to 16 years and 31 females between the ages of 1 and 16 years that had tags or other marks (table 43). No Soviet tags were found attached to seals collected in 1968.

### LENGTHS AND WEIGHTS

Mean lengths and weights are given for pregnant, post partum, and nonpregnant females collected in 1967-68 in tables C-21 to C-26, and for males in tables C-27 and C-28.

Sex, length, and weight were not determined for two very small embryos, and the data have not yet been obtained for 17 fetuses on loan. Crown rump rather than total length measurments were taken from 24 male and 33 female fetuses because of their small size, and these fetuses were weighed in the laboratory rather than at sea because accurate weights could not be obtained on a rolling and pitching vessel. Table C-29 gives crown-rump length and weight after preservation in formalin.

Table C-30 shows measurements of total length and of the weight of unpreserved fetuses.

#### REPRODUCTION

Table C-31 shows the reproductive condition of female seals collected by month in 1967-68. Five primiparous 4-year-olds were the youngest and one multiparous 21-year-old was the oldest among pregnant seals collected in 1967-68.

The pregnancy rates of fur seals collected in the eastern Pacific Ocean from 1958 to 1966 were tested to see if they differed by area and year of collection. The largest numbers of seals were collected off California (36.5 percent) and in the Bering Sea (28.4 percent).

Table 42. --Age and sex, by month, of fur seals collected pelagically by the United States in the eastern Pacific, 1967-68

| ap pe                           | mber 1967                               | $\mathbb{H}$                 | H                            | Decembe                    | embe                 |                      | r 196           | 7            |              | January 1968 | ry 196  | 8     | H   | Feb | ruar | y 1968 | 88   | N STATE | Ma    | May 1968 | 80     | H    | Ju  | June 1968 | 968<br>Female | 9    | Ma   | July 1968 | 1968 | 8 200 | +     | Aug | August 1968 | 968<br>Female | -       | Male  | Total | Female | 1   4 |
|---------------------------------|-----------------------------------------|------------------------------|------------------------------|----------------------------|----------------------|----------------------|-----------------|--------------|--------------|--------------|---------|-------|-----|-----|------|--------|------|---------|-------|----------|--------|------|-----|-----------|---------------|------|------|-----------|------|-------|-------|-----|-------------|---------------|---------|-------|-------|--------|-------|
| % No. % No. %                   | Female Mate Female Mate Female          | No % No. % No. % No. %       | No % No. % No. % No. %       | 7 No. 7 No. 70 No. 70      | % No. % No. %        | % No. % No. %        | % No. % No. %   | No. % No. %  | % No. %      | No. %        | Date    | -     | 10  | 2   | P2   | No.    | 100  | No.     | 60    | ┪ .      | No. %  | -    | No. | 6         | No.           | 6    | Š    | 12        | °Z   | 6     |       |     | Z           | No.           | -       | No    | 20    | No.    | 150   |
|                                 |                                         | 11 78.6 15 14.8              | 11 78.6 15 14.8              | 11 78.6 15 14.8            | 11 78.6 15 14.8      | - 11 78.6 15 14.8    | 11 78.6 15 14.8 | 78.6 15 14.8 | 78.6 15 14.8 | 6 15 14.8    | 14.8    | 00    | 9   | 00  | 84 2 | 3.2    | 20.6 | 7       | 9     | - 6      |        |      | ,   |           | ,             | +    | ,    | 1         | 1    | ,     | ,     | ,   |             |               | ,       | 29 2  | 23.0  | 47     | 6.8   |
| . 1 33,3 3 3,7 1 10 1           | 3 3.7 1 1                               | 3 3.7 1 1                    | 3 3.7 1 1                    | . 3 3,7 - 1 1              | 3 3,7 1 1            | 3,7 1 1              | 1               | 1            | - 1 10 1     | 1 10 1       | 1 0 1   | 1 0 1 | -   |     | 5.3  | 2      | 1. 3 | 80      | 27.6  | 6 1      |        | 1.4  | _   | 4.3       | ,             | ,    | 9    | 23.       | 2 1  | -     | . 0   | 35. | 80          | ,             | ,       | 2.1 1 | 16.7  | 6      |       |
| 7 8.6 2 14 3 2 2.0 2            | _ 7 8.6 2 143 2 2.                      | _ 7 8.6 2 143 2 2.           | _ 7 8.6 2 143 2 2.           | - 7 8.6 2 143 2 2.         | 7 8,6 2 143 2 2.     | 8,6 2 14 3 2 2.      | 2 14 3 2 2.     | 2 14 3 2 2.  | 3 2 2.       | 3 2 2.       |         |       | 2   |     | 10.5 | 4      | 2.6  | 6       | 31. 1 | . 1      |        | 4.3  | 12  | 52. 3     | 1             | 1    | 13   | 50.       | 6 0  | 00    | 00    | 2.1 | 40          | 10 1          | 12.6    | 41 3  | 32, 5 | 35     | 5.0   |
| 1 100.0 11 13.6 1 7.1 16 15.8 - | 1 100,0 11 13,6 1 7.1 16 15.            | 1 100,0 11 13,6 1 7.1 16 15. | 1 100,0 11 13,6 1 7.1 16 15. | 100.0 11 13.6 1 7.1 16 15. | 11 13.6 1 7.1 16 15. | 11 13.6 1 7.1 16 15. | 1 7.1 16 15.    | 1 7.1 16 15. | 16 15.       | 16 15.       | 15.     |       | 1   |     | 1    | 18     | 11.6 | 9       | 20.   | . 7 5    |        | 7.1  | 2   | 8.7       | 00            | 7.5  | 20   | 11.       | 6 18 | 17.   | . 6   | -   | 7 1 1       | 19 2          | 24 0    | 14    | 1.1   | 95 3   | 13,   |
| - 4 4,9 6 5.9 -                 | 6 4 5.9 6 5.                            | - 4 4,9 6 5.                 | - 4 4,9 6 5.                 | - 4 4,9 6 5.               | 4 4.9 6 5.           | 4.9 6 5.             | - 6 5.          | - 6 5.       | ν,           | ν,           | ν,      |       |     |     | ,    | 7      | 4.5  | 7       | 9     | 4 6.     |        | 5.3  | m   | 13. 1     | 4             | 3.7  | -    | 3.        | 6 8  | 00    | 80    |     |             | ~             | 3.8     | 9     | 4.7   | 3.7    | 5.    |
| . 1 33,3 4 4,9 6 5.9 -          | 1 33,3 4 4,9 · · 6 5.                   | - 4 4.9 - 6 5.               | - 4 4.9 - 6 5.               | 4 4.9 6 5.                 | 4 4.9 6 5.           | 4.9 ~ - 6 5.         | . 6 5.          | . 6 5.       | 5,           | 5,           | 5,      |       | 1   |     |      | 12     | 7 7  | -       | m'    | . 4      | 4.     | 5.9  | ŀ   | ,         | 10            | 9.3  | 1    | •         | 00   | 7     | 00    |     |             | 7             | 5. 1    |       | 0.8   | 47     | 6.8   |
|                                 |                                         | 10 12,4 9 8.                 | 10 12,4 9 8.                 | 10 12,4 9 8.               | 10 12,4 9 8.         | 12,4 9 8.            | - 9 8.          | - 9 8.       |              |              |         |       | - ( |     |      | 16     | 10.3 | 1       | 1     | 9        |        | 9.6  | 2   | 7         | 1.            | 10.3 | -    | m         | 8 10 | 6     | 00    |     |             | 2             | 80      | ~     | 2.4 ( | 69 1   | 10.0  |
| , 8 9,9 4 4.0 .                 | 8 9,9 - 4 4.                            | 8 9,9 4 4.                   | 8 9,9 4 4.                   | 8 9,9 4 4.                 | 8 9,9 4 4.           | 9.9 4 4.             | 4               | 4            |              |              |         |       | 1   |     | 1    | 7      | 1, 3 | 1       | - 1   | m        |        | 4.3  |     |           | £ 3           | 12.2 | 1    | 1         | 5    | 4     | 6.    |     |             | m             | 3       |       | ,     | 38     | 5     |
| - 1 33.4 8 9.9 7 6.9 -          | ,6 7 9.9                                | ,6 7 9.9                     | ,6 7 9.9                     | 8 9.9 7 6,                 | 8 9.9 7 6,           | 9.9 7 6.             | - 7 6.          | - 7 6.       |              |              |         |       | 1   |     |      | 6      | 5.8  | 1       | ,     | 4        | ng dia | 5.7  |     | 1         | 5             | 4.   | -    | m         | 8    | ~     | . 9 2 | 7   | 14 3        | 2             | 2.5     | ~     | 2.4   | 40     | 5,    |
| 3 3,7 - 9 8.9 -                 |                                         | 3 3,7 - 9 8.                 | 3 3,7 - 9 8.                 | 3 3,7 9 8.                 | 3 3,7 9 8.           | 3,7 - 9 8.           | - 9 8.          | - 9 8.       |              |              |         |       | - 1 |     |      | Ξ      | 7.1  | - 1     | )     | ~        |        | 4 3  | _   | 4 3       | 7             | 6,5  | 5    | ~         | 9 8  | 9     | 6.    |     |             | _             | 1 3     | 2     | 1.6   | 40     | 5     |
| - 5 6 <sub>6</sub> 2 4 4.0 -    | 5 6.2 4 4.                              | 5 6.2 4 4.                   | 5 6.2 4 4.                   | 5 6.2 4 4.                 | 5 6.2 4 4.           | 6.2 4 4.             | 4. 4.           | 4. 4.        |              |              |         |       | 1   |     |      | 12     | 7.7  | -       | ω.    | . 4 .    | 100    | 7 1  | _   | 4 3       | 6             | 90   | - 44 | 1         | 2    | 2     | 0     |     |             | 2             | 2 5     | 2     | 9 7   | 39     | 5.6   |
| - 5 6,2 8 7.9 -                 | 5 6.2 8 7.                              | 5 6.2 8 7.                   | 5 6.2 8 7.                   | 5 6.2 8 7.                 | 5 6.2 8 7.           | 6.2 8 7.             | 8               | 8            | 7.           | 7.           | 7.      | - 6.7 | 1   |     |      | 6      | 5.8  | 1       | 1     | 9        |        | 9 8  |     |           | 00            | P    | ,    | 1         | -    | _     | 0.    |     |             | 23            | 3.8     |       | ,     | 40     | 5. 7  |
|                                 | - 1 1.2 2 2.                            | - 1 1.2 2 2.                 | - 1 1.2 2 2.                 | - 1 1.2 2 2.               | 1 1,2 2 2.           | 1,2 2 2.             | 2 _ 2.          | 2 _ 2.       | - 2 2.       |              |         |       |     |     |      | 2      | 1.3  | 1       | 1     | 7        | 7      | 0.01 |     | 4 3       | 4             | 3.7  | 1    | 1         | 5    | 4     | 6     |     |             | m             | 00<br>m | _     | 9 0   | 5.4    | 3.4   |
|                                 | . 1 1,2 1 1.                            | . 1 1,2 1 1.                 | . 1 1,2 1 1.                 | . 1 1,2 1 1.               | 1 1,2 1 1.           | 1,2 1 1.             | 1.              | 1.           | . 1 1.       | 1 1.0 =      | 1 1.0 - | 1.0 - | F   |     |      | 4      | 2.6  | 1       | 1     | wi       | 20     | 7.1  | ,   | 1         | 5             | 4    | ,    | )         | 9    | 9     | 6     |     |             | 4             | 5. 1    |       | ,     | 26     | m     |
| 2 2.5 - 3 3.0 -                 | 2 2.5 3 3.                              | 2 2.5 3 3.                   | 2 2.5 3 3.                   | 2 2.5 3 3.                 | 2 2.5 3 3.           | 2.5 3 3.             | , a             | , a          | - 3          | 3 3.0 -      | 3 3.0 - | 3.0 - | 1   |     | ,    | œ      | 5.2  |         | 1     |          |        | 4    | F   |           | 7             | 9.9  | 9    | b         | 5    | 4     | . 9   |     | -           | 4             | -5<br>  |       | 9.0   | 30     | 4.3   |
|                                 |                                         | _ 2 2.5 - 4 4.               | _ 2 2.5 - 4 4.               | _ 2 2.5 - 4 4.             | 2 2.5 4 4.           | 2.5 4 4.             | - 4             | - 4          | . 4 4.       | 4 4.0 -      | 4 4.0 - | 4.0 - | 1   |     | ,    | 44     | 2.6  |         | 1     | vn       | 10     | 7 1  |     |           | 9             | 47.  | 1    | F         |      | -     | 0.    |     | -           | 5             | 6 3     | ent   | 0.8   | 26     | 3, 7  |
|                                 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                              |                              |                            | 1 44                 | 4.                   | 4               | 4            | 4            | 4 4 0 -      | 4 40 -  | - 0 + |     |     | )    | 7      | 1 3  | 1       | 1     | 2        | 61     | 6.2  |     | ,         | 5             | 4. 1 | 1    | 1         | 4-   | m     | 6.    |     |             | 4             | 5 1     | _     | 8.0   | 2.1    | 3,0   |
| 2 2.5                           | 2 2.5                                   | 2 2.5                        | 2 2.5                        | 2 2.5                      | 2 2.5                | 2.5                  |                 |              | i i          | )<br>)       |         | 1     |     |     | 1    | -      | 0.7  | 1       | 1     | 2        | 61     | 5.9  | ı   | ,         | ~             | 2.8  | 00   | 1         | 2    | 2     | 0.    |     |             | _             | 1.3     |       | ,     |        | 1,6   |
| 2 2,5                           | - 2 2.5                                 | 2 2.5                        | 2 2.5                        | 2 2.5                      | 2 2.5                | 2.5                  |                 |              |              | 1            |         |       |     |     | 1    |        |      | 3       | b     | 2        | 63     | 5.9  | 1   | ,         | 7             | 1.   | - 6  | 1         | m    | 2     | 6.    |     |             | _             | 1.3     | ,     | ,     | 10     | 1,4   |
|                                 | 1 1,2                                   | 1 1,2                        | - 1 1.2                      | - 1 1.2                    | 1 1.2                | 1.2                  |                 |              | 1            | 1            |         |       |     |     | 1    |        | 1    | 1       | 1     | FQ       | 61     | 5.9  | 1   | ,         | -             | 0.0  | - 6  | 1         | 1    |       |       |     |             | ~             | 00<br>m |       | ,     | 7      | 1.0   |
|                                 |                                         |                              | 1                            | 1                          |                      | 1                    |                 |              |              | 1            |         | ,     | ı   |     |      | ,      | ,    | 1       | '     |          | _      | 1.4  | 1   |           | 1             |      | ,    | 1         | 2    | 2     | 2.0   |     |             | ,             | ,       | ,     | ,     | M      | 0.4   |
|                                 | 1.1.2                                   | 1 1.2                        | - 1 1.2                      | - 1 1.2                    | 1 1.2                | 1.2                  |                 |              |              |              |         | ,     | ,   |     | 1    |        | 1    | 1       | 1     |          | _      | 41   | 1   |           |               | -    | -    | )         | -    | _     | 1.0   |     |             | ,             | 1       | ,     | ,     | m      | 0, 4  |
|                                 | 1 1.2                                   | 1.2                          | 1 1.2                        | . 1 1.2                    | 1 1.2                | 1. 2                 |                 |              |              |              |         |       |     |     |      |        | 1    | 1       | 1     | ,        |        | 1    |     |           | 1             | 1    | 1    | 1         | 1    | ,     | ,     |     |             | . ]           |         |       | ,     | _      | 0,0   |
| 3 1 81 14 101 19                | 1 81 14 101                             | 1 81 14 101                  | 81 14 101                    | 81 14 101                  | 14 101               | 14 101               | 101             | 101          | 101          |              |         | 19    | 6   |     | -    | 155    |      | 2.9     |       | 7.0      |        | 2    | 23  |           | 107           |      | 56   |           | 102  |       | 14    |     | 7           | 42            | 126     | 9     | 9     | 869    |       |
|                                 |                                         |                              |                              |                            |                      |                      |                 |              |              |              |         |       |     |     |      |        |      |         |       |          |        |      |     |           |               |      |      |           |      |       |       |     |             |               |         |       |       |        |       |

Table 43.--Tag recoveries from fur seals collected pelagically in the eastern North Pacific by the United States in November and December 1967, and January, February, May, June, July, and August 1968.

[Figures in parentheses indicate number of animals that had lost tags; these are included in the totals. Seals that were marked only are included in tagged seal totals.]

| Age                                     | Year<br>of<br>tagging                                        | Tag<br>series                             | Seals<br>tagged<br>or<br>marked                                                        |                        | ag<br>overy                                                  | Sea<br>colle<br>in e<br>age g       | cted                                         |
|-----------------------------------------|--------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------|-------------------------------------|----------------------------------------------|
|                                         |                                                              |                                           | marked                                                                                 | 3                      | 9                                                            | 3                                   | Ŷ.                                           |
| Years                                   |                                                              |                                           | Number                                                                                 | <u>Nur</u>             | mber                                                         | <u>Nu</u> m                         | ber                                          |
| 3<br>6<br>7<br>16                       | 1965<br>1962<br>1961<br>1952                                 | R<br>O<br>N<br>E                          | 30,087<br>49,908<br>49,921<br>19,979                                                   |                        | 1<br>1(1)<br>1                                               | <br><br>                            | 7<br>4<br>10<br>2                            |
| 1<br>2<br>3                             | 1967<br>1966<br>1965<br>1967                                 | T<br>S<br>R<br><sup>2</sup> 2T            | 1968<br>12,472<br>24,577<br>30,087                                                     | 1<br>2<br>1            | 1 1(1)                                                       | 29<br>21<br>41                      | 47<br>5<br>28                                |
| 4                                       | 1964<br>1966                                                 | Q<br>2 2S                                 | 24,991                                                                                 |                        | 5(1)                                                         | 13                                  | 84                                           |
| 5<br>6<br>7<br>8<br>9<br>10<br>11<br>13 | 1963<br>1962<br>1961<br>1960<br>1959<br>1958<br>1957<br>1955 | P<br>O<br>N<br>M<br>L<br>K<br>J<br>H<br>E | 24,971<br>49,908<br>49,921<br>59,981<br>49,881<br>49,917<br>49,842<br>49,870<br>19,979 | 1<br><br><br><br><br>1 | 1(1)<br>3(2)<br>4(1)<br>4(2)<br>1(1)<br>4(1)<br>2(1)<br>1(1) | 6<br>1<br>3<br><br>3<br>2<br>2<br>1 | 33<br>42<br>59<br>30<br>31<br>37<br>34<br>23 |

<sup>1</sup> Table does not include seals born in years when seals were not tagged, nor year classes from which no tagged seals were taken.

Animals tagged as 2-year-olds, based on body length. Samples were collected from January to April from California to Southeast Alaska, from April to June in Yakutat and the Gulf of Alaska, and from May to October in western Alaska, Unimak Pass, and the Bering Sea (table 44). The tests were restricted to seals 5 years old and older, because younger seals have very low pregnancy rates and thus are not important to the breeding population. Ages 5, 6, and 7 were tested separately, because the percentage of females pregnant differ for those ages (38, 73, and 81 percent, respectively). The pregnancy rates for females 8 to 13 years old are similar (fig. 20). An analysis of variance test of the pregnancy rates (transformed by arcsin) by year, showed no significant differences between ages or years for females 8 to 13 years old (P>0.25). According to a test for nonadditivity, the transformed data were additive (P>0.25). Ages 8 to 13, therefore, were pooled (mean pregnancy rate of 89 percent). Females 14 years old and older were pooled to increase sample sizes and to minimize the effects of errors known to exist in assigning ages to older animals. Chisquare was used to test for significance between numbers of pregnant and nonpregnant

seals (P < 0.05 indicates significant differences). Comparisons were limited to samples of 15 or more seals.

Five-year-old seals had significantly different pregnancy rates in the different areas in 3 to 4 years when areas within years were tested (0.01<P<0.05, table 45). The pregnancy rates for females in ages 6, 7, 8 to 13, and  $\geq 14$  were similar when areas within years were tested (P>0.05). Why only age 5 seals differed is not known.

When different years within areas were tested by chi-square, the pregnancy rates of seals collected off California were significantly different for all age groups except age 7 (table 46). Pregnancy rates for age groups other than 7 were low in 1964 and 1965 and high in 1958 for samples collected off California, Samples from California were collected in April-May 1964 and 1965 as opposed to January-April in the other years. Age 5 seals were collected during similar months off California in 1958, 1959, 1961, and 1966, but the pregnancy rates were not as high in 1961 and 1966 as in 1958 and 1959 (24-27 percent in 1961 and 1966 as compared to 60 percent in 1958 and 1959). If pregnant seals had already left the area off California to migrate to the Pribilof Islands before samples were collected in 1964 and 1965, then we would expect lower pregnancy rates. Nonpregnant seals may migrate to the Pribilof Islands later in the year than pregnant seals, or in some years may not return at all.

Pregnancy rates for seals in ages 8 to 13 collected in western Alaska in 1958, 1960, and 1962 were significantly different (P=0.01); the pregnancy rate in 1960 (96.7) was higher than the rate in 1958 (87.8) and 1962 (83.9). Pregnancy rates between years for 5-, 6-, and 7-year old females were similar within each age group for samples collected in the Bering Sea; pregnancy rates for females 8 to 13 and  $\geq$  14 years old were significantly different (P=0.04 and P=0.01, respectively). The pregnancy rate was low in 1964 for seals 8 to 13 and  $\geq$  14 years old collected in the Bering Sea.

It is difficult to explain the cause of the difference between years when the months of collecting are the same. If the difference is not real, possible explanations are sampling errors, errors in assigning ages, and segregation by reproductive condition.

Pregnancy rates varied more than we expected between areas, years, and months of collection. Pregnancy rates differed more for samples collected in different years in a particular area than for those collected in the same year but in different areas. The differences in the pregnancy rates indicate at least partial segregation of females at sea, within age by reproductive condition, and by age and month. No evidence exists that there has been a

Table 44. --Months of collection and number of temale scals age 5 and older collected by the United States in the eastern Pacific, 1958-66

|        |                    |               |            |       |             |               | rea        |                   |                   |                |                                  |                     |
|--------|--------------------|---------------|------------|-------|-------------|---------------|------------|-------------------|-------------------|----------------|----------------------------------|---------------------|
| Year   | Collection<br>data | Çalıf.        | Oreg.      | Wash. | вс          | S E<br>Alaska | Yakutat    | Gulf of<br>Alaska | Western<br>Alaska | Unimak<br>Pass | Bering<br>Sea                    | Total               |
| 1958   | Months             | Feb           | Apr.       | Apr.  | -           | Feb           | Apr<br>May | May-<br>June      | June              | -              | June                             |                     |
|        | Num be r           | 423           | 39         | 49    |             | 192           | 21         | 390               | 89                |                | 2                                | 1, 205              |
| 1959   | Months             | Jan<br>Apr.   | Jan<br>Apr | Apr   | -           | -             |            |                   |                   | -              | -                                |                     |
|        | Number             | 1, 103        | 31         | 164   | -           | -             | -          | -                 | -                 | -              | -                                | 1,298               |
| 1960   | Months             | -             |            | -     | -           | Mar -<br>Apr. | Apr        | Apr -<br>May      | June              |                | June-                            |                     |
|        | Number             | -             |            | -     | -           | 131           | 3          | 638               | 129               |                | <u>1</u> <sup>Aug</sup> .<br>331 | 1,232               |
| 1961   | Months             | Jan<br>Apr    | Apr.       | Apr.  | Feb<br>Mar. | -             | -          | -                 | -                 | -              | -                                |                     |
|        | Number             | 733           | 25         | 238   | 51          | -             | -          | -                 | -                 | -              | -                                | 1,047               |
| 1962   | Months             | -             | -          | -     | -           | -             | May        | ~                 | May-<br>Sept.     | June -<br>Oct. | May =<br>Oct                     |                     |
|        | Number             | -             | -          | -     | ~-          | -             | 2          | •                 | 233               | 332            | 508                              | 1,075               |
| 1963   | Months             | -             | -          | -     | -           | ~             | -          | -                 | -                 | -              | July -<br>Sept.                  |                     |
|        | Number             | -             | -          | -     | -           |               | -          | ~                 | -                 | •              | 1,043                            | 1, 043              |
| 1964   | Months             | Apr<br>May    | Apr<br>May | May   | -           | -             | -          | -                 | -                 | -              | July-<br>Sept.                   |                     |
|        | Number             | 201           | 3          | 9     |             | -             | -          | -                 | -                 | -              | 406                              | 619                 |
| 1965   | Months             | Apr<br>June   | -          | Apr.  | -           | ~             | -          | -                 | -                 | -              | -                                |                     |
|        | Number             | 172           | -          | 73    | -           | -             | -          | -                 | -                 | -              |                                  | 245                 |
| 1966   | Months             | Jan -<br>Mar. | -          | -     | -           | -             | -          | -                 | -                 | -              | -                                |                     |
|        | Number             | 318           | -          | -     | -           | -             | *          | -                 | -                 | -              | -                                | 318                 |
| Total  |                    | 2, 950        | 98         | 533   | 51          | 323           | 26         | 1,028             | 451               | 332            | 2,290                            | 2/ <sub>8,082</sub> |
| Percer | nt                 | 36            | 5 1.2      | 6.6   | 0.6         | 4.0           | 0.3        | 12.7              | 5.6               | 4 1            | 28 -                             | 100                 |

<sup>1/</sup> Bering Sea and Unimak Pass combined

<sup>2/4</sup> less than total in table 4, Fiscus and Kajumura (1966)

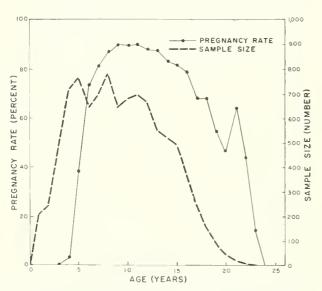



Figure 20.--Pregnancy rates and sample sizes, by age, of female seals collected in the eastern Pacific Ocean, 1958-66.

significant change in the pregnancy rate since 1958.

Table 47 shows the pregnancy rates of all female seals collected in the eastern Pacific Ocean by the United States each year since 1958; these seals are also listed in table C-32 by number and percentage pregnant for each area and month.

#### FEEDING HABITS

The stomachs of fur seals collected in the eastern and western Pacific Ocean and throughout the range of this animal consistently contained a variety of fishes and cephalopods. Fur seals feed principally between dusk and dawn.

Of 374 stomachs collected off Washington in November-December 1967 and January-February 1968, 251 (67 percent) contained food (table 48). Salmon, Oncorhynchus spp.; anchovy, Engraulis mordax; rockfish, Sebastodes spp.; eulachon, Thaleichthys pacificus; and

Table 45. --Pregnancy rates by year, area, and month of allection, and chi-square values for tests of pregnancy rates between areas in 1958, 1960-62, and 1964

|         |               |               |                | Sample siz        | es are shows           | n in parenth   | eses           |                |       |
|---------|---------------|---------------|----------------|-------------------|------------------------|----------------|----------------|----------------|-------|
| Age     | Calif.        | Wash          | S E.<br>Alaska | Gulf of<br>Alaska | Western<br>Alaska      | Unimak<br>Pass | Bering<br>Sea  | Chi-<br>square | P     |
| Years   |               |               | 1              |                   | 1958                   |                |                |                |       |
|         | Feb<br>Apr.   |               | Feb<br>Apr.    | May-<br>June      | June                   |                |                |                |       |
| 5       | 60.5<br>(38)  | -             | -              | 28.6<br>(21)      | •                      | -              | -              | 4. 30          | 0 02  |
| 6       | 92.5<br>(40)  |               | -              | 83.3              | •                      | -              | -              | 0 77           | 0.40  |
| 7       | 95.3<br>(43)  | -             |                | 94.1<br>(34)      | -                      | -              | -              | 0, 0ь          | 0 80  |
| 8 - 1 3 | 93.8          | -             | 91. 9<br>(74)  | 88. Z<br>(228)    | 87 8<br>(49)           | -              | -              | 5.06           | 0.17  |
| ≥14     | 92.1          | -             | 84 3<br>(115)  | 84 5<br>(71)      |                        | -              | -              | 2.76           | 0.26  |
|         |               |               |                |                   | 1960                   |                |                |                |       |
|         |               |               | Feb<br>Apr.    | Apr<br>June       | June                   |                | June-<br>Aug.  |                |       |
| 8-13    | -             | -             | 92.1<br>(51)   | 90.8<br>(412)     | 96.7<br>(91)           | -              | 92. 9<br>(183) | 3, 86          | 0.27  |
| ≥14     |               | -             | 78. 4<br>(74)  | 82.2<br>(169)     | 82. I<br>(28)          | -              | 69. l<br>(55)  | 4.53           | 0.21  |
|         |               |               |                |                   | 1961                   |                |                |                |       |
|         | Jan<br>Mar.   | Mar<br>Apr.   |                |                   |                        |                |                |                |       |
| 5       | 24.4<br>(41)  | 14.8<br>(27)  | •              | -                 |                        | -              | -              | 0.42           | 0.50  |
| 6       | 82.9<br>(41)  | 66.7<br>(15)  | •              | -                 | *                      |                | -              | 0.89           | 0. 36 |
| 7       | 77. 4<br>(62) | 70.0<br>(29)  | -              | -                 | -                      |                | -              | 0.36           | 0.56  |
| 8-13    | 88.8<br>(410) | 88.8<br>(116) | -              | -                 | -                      | -              | -              | 0              | >0.99 |
| ≥ 1.4   | 77.5<br>(178) | 88.2<br>(51)  | -              | •                 |                        |                | -              | 0.02           | 0.90  |
|         |               |               |                |                   | 1962<br>June-<br>Sept. | June-<br>Sept. | July-<br>Sept. |                |       |
| 5       | -             | -             | -              | -                 | 16.7<br>(30)           | 16.2<br>(37)   | 37 5<br>(56)   | 6. 98          |       |
| ь       | -             | -             | -              | -                 | 56. 3<br>(16)          | 45.0<br>(20)   | 58.3<br>(36)   | 1 13           | n 95  |
| 7       |               | -             | •              |                   | 79.4<br>(34)           | 85. 0<br>(20)  | 89. 7<br>(39)  | 1.52           | 0 48  |
| 8+13    | ٠             | -             |                |                   | 83.9<br>(118)          | 88 9<br>(153)  | 91.8<br>(244)  | 5. 16          | 0. 08 |
| ≥14     |               | -             |                | -                 | 77. l<br>(35)          | 73.5<br>(102)  | 83.5<br>(133)  | 3, 49          | 0.18  |
|         |               |               |                |                   | 1964                   |                |                |                |       |
|         | Apr<br>May    |               |                |                   | - Andreas              |                | July-<br>Sept. |                |       |
| 5       | 18, 5<br>(27) | -             | -              | -                 | -                      | -              | 43. 9<br>(57)  | 4. 08          | 0.04  |
| 6       | 65. 2<br>(23) | -             | -              | ٠                 |                        | •              | 79 2<br>(53)   | 20.1           | 0.32  |
| 8 - 13  | 84. 9<br>(73) | -             | -              | -                 | -                      |                | 85. b<br>(174) | ം. 001         | >0.98 |
| ±14     | 65. 2<br>(69) | -             | -              |                   | -                      | -              | 65. Z<br>(89)  | )              | ~) 99 |

Table 46.--Pregnancy rates, by area and month of collection, and chi-square value for tests of pregnancy rates, between years, 1958-66

|                | _             |                |               | [5            |                | es are sho     | wn in parer    | ntheses      |               |                |        |
|----------------|---------------|----------------|---------------|---------------|----------------|----------------|----------------|--------------|---------------|----------------|--------|
| Age            | 1958          | 1959           | 1960          | 1961          | Year<br>1962   | 1963           | 1964           | 1965         | 1966          | Chi-<br>square | р      |
| Years          | 5             |                |               |               | Califor        | nia            |                |              |               |                |        |
|                | Feb<br>Apr.   | Jan<br>Apr.    |               | Jan<br>Mar.   |                |                | Apr. –<br>May  | Apr<br>May   | Jan<br>Mar.   |                |        |
| 5              | 60.5<br>(38)  | 60.0<br>(95)   | -             | 24.4<br>(41)  | -              | -              | 18.5<br>(27)   | 13.3<br>(15) | 27.3<br>(66)  | 40. 46         | <0.001 |
| 6              | 92.5<br>(40)  | 82.2<br>(107)  |               | 82.9<br>(41)  | -              | -              | 65. Z<br>(23)  | 52.6<br>(19) | 71.4<br>(35)  | 17.22          | <0.01  |
| 7              | 95, 3<br>(43) | 80.5<br>(128)  | -             | 77.4<br>(62)  | -              | -              | -              | -            | 78.3<br>(46)  | 6.39           | 0.10   |
| 8 - 1 3        | 93.8<br>(226) | 89.7<br>(485)  | -             | 88.8<br>(410) | -              | -              | 84. 9<br>(73)  | 81.6<br>(76) | 88.2<br>(127) | 11. 31         | 0.05   |
| <u>&gt;</u> 14 | 92.1<br>(76)  | 85. I<br>(288) | •             | 77.5<br>(178) | -              | -              | 65. 2<br>(69)  | 68.0<br>(50) | 75.0<br>(44)  | 27. 05         | <0.001 |
|                |               |                |               |               | Southe         | ast Alaska     |                |              |               |                |        |
|                | Feb<br>Apr.   |                | Mar.          |               |                |                |                |              |               |                |        |
| 8-13           | 91.9<br>(74)  | -              | 92.1<br>(51)  | -             | -              | -              | -              | -            | -             | <0.001         | >0.98  |
| <u>≥</u> 14    | 84.3<br>(115) | -              | 78. 4<br>(74) | -             | -              | -              | -              | -            | -             | 0.72           | 0.41   |
|                |               |                |               |               | Gulf o         | f Alaska       |                |              |               |                |        |
|                | May-<br>June  |                | Apr<br>May    |               |                |                |                |              |               |                |        |
| 7              | 94. 1<br>(34) | -              | 83. 9<br>(31) | -             | -              | -              | -              | -            | -             | 0.85           | 0.37   |
| 8 - 13         | 88.2<br>(228) | -              | 90.8<br>(412) | -             |                | -              | ~              | -            | -             | 0.83           | 0.38   |
| <u>≥</u> 14    | 84.5<br>(71)  | -              | 82.2<br>(169) | -             | -              | -              | -              | -            | -             | 0.06           | 0.80   |
|                |               |                |               |               |                | n Alaska       |                |              |               |                |        |
|                | June          |                | June          |               | May -<br>Sept. |                |                |              |               |                |        |
| 8-13           | 87.8<br>(49)  | -              | 96.7<br>(91)  | -             | 83. 9<br>(118) | -              | -              | -            | -             | 8. 46          | 0.01   |
| ≥14            | -             | •              | 82.1<br>(28)  | -             | 77. l<br>(35)  | -              | -              | -            | -             | 0.03           | 0.87   |
|                |               |                |               |               | Berin          |                |                |              |               |                |        |
|                |               |                | June-<br>Aug. |               | June-<br>Oct.  | July-<br>Sept. | July-<br>Sept. |              |               |                |        |
| 5              | -             | -              | 57. 9<br>(38) | -             | 37.5<br>(56)   | 44. 4<br>(162) | 43.9<br>(57)   | -            | -             | 3, 88          | 0.28   |
| 6              | -             | -              | 86. 2<br>(29) | -             | 58, 3<br>(36)  | 74.2<br>(89)   | 79.2<br>(53)   | -            | -             | 7.61           | 0.06   |
| 7              | -             | -              | 88. 5<br>(26) | -             | 89.7<br>(39)   | 89. 5<br>(76)  | 75.8<br>(33)   | -            | -             | 4.30           | 0.23   |
| 8 - 13         | -             | -              | 92.9<br>(183) | -             | 91.8<br>(244)  | 92.4<br>(476)  | 85.6<br>(174)  | -            | -             | 8.42           | 0.04   |
| ≥14            |               | sia.           | 69. 1<br>(55) | -             | 83.5<br>(133)  | 77. I<br>(240) | 65. 2<br>(89)  | **           | -             | 11, 31         | 0.01   |

Table 47. --Number of female seals collected pelagically by the United States in the eastern Pacific and (in parentheses) percentage pregnant, 1958-68

| Age         | 1958           | 1959           | 1960              | 1961           | 1962              | Year<br>1963      | 1964           | 1965           | 1966           | 1967          | 1968          | 1958-68<br>combine |
|-------------|----------------|----------------|-------------------|----------------|-------------------|-------------------|----------------|----------------|----------------|---------------|---------------|--------------------|
| Years       | 1 .,,,,,       |                |                   |                |                   | Numb              |                |                | 1700           | 1707          |               | combine            |
| 3           | 39<br>(2.6)    | 43 (0.0)       | 18 (0.0)          | 84<br>{0.0}    | 93<br>(1. 1)      | 53 (0.0)          | 74 (0.0)       | 51 (0.0)       | 30<br>(0.0)    | 10 (0.0)      | 35<br>(0.0)   | 530<br>(0.4)       |
| 4           | 42<br>(2.4)    | 93<br>(6.4)    | 36<br>(2.8)       | 96<br>(1.0)    | 140<br>(2.9)      | 113 (7.1)         | 62<br>(1.6)    | 73<br>(0.0)    | ь8<br>(1.5)    | 9<br>(0. 0)   | 95<br>(5.3)   | 827<br>(3.4)       |
| 5           | 70<br>(45.7)   | 114<br>(56.1)  | 55<br>(49. 1)     | 68<br>(20.6)   | 123<br>(26.0)     | 162<br>(43.8)     | 84<br>(35.7)   | 23<br>(26.1)   | 66<br>(27.3)   | 9 (44.4)      | 37<br>(37.8)  | 811<br>(38.5)      |
| 6           | 99<br>(80.8)   | 118<br>(77.1)  | 45<br>(80.0)      | 62<br>(75.8)   | 72<br>(54.2)      | 90<br>(74.4)      | 81<br>(75.3)   | 37<br>(56.8)   | 35<br>(71.4)   | 20<br>(60.0)  | 47<br>(76.6)  | 706<br>(72.9)      |
| 7           | 103<br>(89.3)  | 143<br>(76.2)  | 66<br>(78. 8)     | 95<br>(75.8)   | 93<br>(84. 9)     | 77<br>(88. 3)     | 44<br>(77.3)   | 24<br>(79.2)   | 46<br>(78. 3)  | 7<br>(71.4)   | 69<br>(72.5)  | 767<br>(80.3)      |
| 8           | 102<br>(89, 2) | 164<br>(86.6)  | 105<br>(85, 7)    | 107<br>(79. 4) | 98<br>(89. 8)     | 87<br>(97.7)      | 46<br>(84. 8)  | 33<br>(84.8)   | 43<br>(79. 1)  | 7<br>(85. 7)  | 38<br>(78.9)  | 830<br>(86,5)      |
| 9           | 81<br>(96.3)   | 108<br>(88. 9) | 144<br>(92.4)     | 114<br>(93.9)  | 73<br>(83.6)      | 60<br>(85.0)      | 30<br>(83. 3)  | 17<br>(70.6)   | 20<br>(100.0)  | 12<br>(100.0) | 40<br>(82.5)  | 699<br>(89.8)      |
| 0           | 97<br>(87.6)   | 96<br>(85. 4)  | 129<br>(91, 5)    | 112<br>(93.8)  | 100<br>(89. 0)    | 72<br>(93.1)      | 49<br>(87. 8)  | 10<br>(90.0)   | 13<br>(84.6)   | 11<br>(90. 9) | 40<br>(77.5)  | 729<br>(89,2)      |
| 11          | 113<br>(92.0)  | 98<br>(89. 8)  | 136<br>(91.2)     | 82<br>(89.0)   | 91<br>(89. 0)     | 88<br>(94.3)      | 42<br>(85, 7)  | 18<br>(83.3)   | 23<br>(78, 3)  | 4 (100.0)     | 39<br>(76.9)  | 734<br>(89.4)      |
| 2           | 134<br>(82.0)  | 76<br>(88. 2)  | 106<br>(90.6)     | 71<br>(93. 0)  | 97<br>(89. 7)     | 92<br>(92.4)      | 51<br>(84. 3)  | 15<br>(73.3)   | 16<br>(100.0)  | 3<br>(66.7)   | 40<br>(90.0)  | 701<br>(88. 3)     |
| 3           | 110<br>(82.7)  | 56<br>(89. 3)  | 120<br>(87.5)     | 76<br>(82.9)   | 58<br>(94. 8)     | 76<br>(90, 8)     | 33<br>(84. 8)  | 8<br>(100.0)   | 12 (100.0)     | 3<br>(100.0)  | 24<br>(83.3)  | 576<br>(87.5)      |
| 4           | 92<br>(81.5)   | 70<br>(84. 3)  | 107<br>(80.4)     | 67<br>(92. 5)  | 65<br>(87. 7)     | 57<br>(80. 7)     | 38<br>(76.3)   | 10<br>(80.0)   | 14<br>(85.7)   | (100.0)       | 26<br>(80.8)  | 547<br>(83.4)      |
| 5           | 71<br>(78. 9)  | 87<br>(88. 5)  | 67<br>(83.6)      | 68<br>(79. 4)  | 53<br>(81. 1)     | 75<br>(85. 3)     | 41<br>(65.9)   | 14<br>(78.6)   | 15<br>(93.3)   | 3<br>(66. 7)  | 30<br>(86, 7) | 524<br>(82.1)      |
| 6           | 56<br>(78. 6)  | 69<br>(75. 4)  | 53<br>{71.7)      | 55<br>(85.5)   | 50<br>(82.0)      | 45<br>(82.2)      | 22<br>(72.7)   | 12<br>(83.3)   | 5<br>(80.0)    | (100.0)       | 26<br>(96.2)  | 399<br>(80.2)      |
| 7           | 36<br>(56.6)   | 36<br>(80. 6)  | 46<br>(67.4)      | 24<br>(62.5)   | 44<br>(72.7)      | 28<br>(71.4)      | 21<br>(61. 9)  | 10<br>(80.0)   | 5<br>(40.0)    | 2 (0.0)       | 21<br>(81.0)  | 273<br>(68.5)      |
| 8           | 22<br>(59. 1)  | 27<br>(85.2)   | 23<br>(82.6)      | 25<br>(64.0)   | 25<br>(72.0)      | 12<br>(58.3)      | 20<br>(60.0)   | 8<br>(37.5)    | -              | -             | 11<br>(72.7)  | 173                |
| 9           | 14<br>(28.6)   | 16<br>(81.3)   | 19<br>(57. 9)     | 10<br>(50.0)   | 15<br>(60.0)      | 5<br>(60.0)       | 7<br>(57. 1)   | 2 (0.0)        | 3<br>(33.3)    | -             | 10<br>(60.0)  | 101<br>(55.4)      |
| 0           | 3<br>(33.3)    | 5<br>(40.0)    | 6<br>(16.7)       | 7<br>(100.0)   | 11<br>(72, 7)     | 11<br>(45.5)      | 10 (20.0)      | 2 (0.0)        | 1 (0.0)        | 1<br>(0.0)    | 7<br>(71,4)   | 64<br>(48.4)       |
| 1           | 1 (100.0)      | 7<br>(85.7)    | 6<br>(50.0)       | 2<br>(50.0)    | 3<br>(100.0)      | 4<br>(50.0)       | -              | 1 (0.0)        | l<br>(0.0)     | -             | 3<br>(33,3)   | 28<br>(60.7)       |
| 2           | 1 (0.0)        | 5<br>(40.0)    | -                 | -              | 3<br>(66. 7)      | -                 | -              | -              | -              | 1 (0.0)       | 3 (0.0)       | 13<br>(30, 8)      |
| 3           | -              | 1 (0.0)        | 1 (0.0)           | 1 (0.0)        | -                 | 2<br>(0.0)        | 1<br>(100.0)   | 1 (0.0)        | -              | -             | 1(0,0)        | 8<br>(12,5)        |
| 4           | -              | 1(0.0)         | 1 (0.0)           | 1 (0.0)        | [<br>(0.0)        | -                 | -              | -              | -              | -             | -             | 4 (0.0             |
| 6           | -              | 1 (0.0)        | -                 | -              | -                 | -                 | -              | -              | -              | -             | -             | 1 (0.0)            |
| Total       | 1,286 (76.1)   |                | 1,289<br>(79.7)   | 1,227 (68.5)   | 1, 308<br>(63. 4) | 1, 209<br>(69. 3) | 756<br>(58. 7) | 369<br>(45.8)  | 416<br>(52. 3) | 109 (61.5)    | 642<br>(61.4) | 10,045             |
| -26<br>ears | 1, 135 (83.3)  | 1, 184 (83.4)  | 1, 180<br>(84. 4) | 979<br>(84. 3) | 952<br>(83. 2)    | 881<br>(86.0)     | 536<br>(77. 0) | 222<br>(73. 4) | 252<br>(81.3)  | 81<br>(77. 8) | 475<br>(78.9) | 7,877<br>{82.9     |

Table 48. --Stomach contents of fur seals collected pelagically by the United States off Washington, 1967-68

[T = trace (<5 cc.). Trace counts are included in frequency counts.]

|                         |     | Autum   |           |         | Winter    |           | ,,,         | , F       |           |
|-------------------------|-----|---------|-----------|---------|-----------|-----------|-------------|-----------|-----------|
| -                       |     | Novem   |           |         | ember-Fel |           |             | mber-Febr |           |
| Food                    |     | olume   | Frequency | Cc.     | Percent   | Frequency | Cc.         | Percent   | Frequency |
|                         | Cc. | Percent | Number    | Ce.     | Fercent   | Number    | <u>oc</u> . | Fercent   | rumber    |
| Fish                    |     |         |           |         |           |           |             |           |           |
| Lampetra tridentata     | _   | -       | -         | 325     | 0.4       | 2         | 325         | 0.4       | 2         |
| Alosa sapidissima       | T   | 0.0     | 1         | 1,270   | 1.6       | 8         | 1,270       | 1.6       | 9         |
| Clupea harengus pallasi | -   | -       | -         | 2,005   | 2.5       | 16        | 2,005       | 2.5       | 16        |
| Engraulis mordax        | _   | _       | -         | 12,663  | 15.9      | 35        | 12,663      | 15.9      | 35        |
| Salmonidae              | T   | 0.0     | 1         | 25, 324 | 31.7      | 59        | 25, 324     | 31.7      | 60        |
| Osmeridae               | _   | -       | -         | 165     | 0.2       | 7         | 165         | 0.2       | 7         |
| Mallotus villosus       | -   | -       | -         | 7,749   | 9.7       | 33        | 7,749       | 9.7       | 33        |
| Thaleichthys pacificus  | -   | -       | -         | 9,275   | 11,7      | 24        | 9,275       | 11.7      | 24        |
| Myctophidae             | -   | -       | -         | 550     | 0.7       | 4         | 550         | 0.7       | 4         |
| Gadidae                 | -   | -       | -         | 35      | 0.0       | 1         | 35          | 0.0       | 1         |
| Merluccius productus    | -   | -       | ~         | 2,636   | 3.3       | 9         | 2,636       | 3.3       | 9         |
| Sebastodes spp.         | _   | -       | -         | 11,398  | 14.3      | 10        | 11,398      | 14.3      | 10        |
| Anoplopoma fimbria      | _   | _       | -         | 4,071   | 5. 1      | 22        | 4,071       | 5.1       | 22        |
| Pleuronectidae          | -   | -       | -         | 1,266   | 1.6       | 5         | 1,266       | 1.6       | 5         |
| Unidentified            | T   | 0.0     | 1         | 28      | 0.0       | 82        | 28          | 0.0       | 83        |
|                         |     |         |           |         |           |           |             |           |           |
| Squid                   |     |         |           |         |           |           |             |           |           |
| Loligo opalescens       | T   | 0.0     | 1         | 48      | 0.0       | 16        | 48          | 0.0       | 17        |
| Onychoteuthis sp.       | Т   | 0.0     | 1         | T       | 0.0       | 6         | T           | 0.0       | 7         |
| Gonatidae               | Т   | 0.0     | 1         | T       | 0.0       | 39        | T           | 0.0       | 40        |
| Gonatus fabricii        | _   | -       | -         | 109     | 0.1       | 15        | 109         | 0.1       | 15        |
| Gonatus magister        | _   | -       | -         | 824     | 1.0       | 2         | 824         | 1.0       | 2         |
| Chiroteuthis veranyi    | _   | -       | -         | T       | 0.0       | 1         | T           | 0.0       | 1         |
|                         |     |         |           |         | 0 0       | 4         | Т           | 0.0       | 4         |
| Unidentified            | -   | -       | -         | Т       | 0.0       | 4         | 1           | 0.0       | 4         |
|                         |     | 0.0     | 1         | Т       | 0.0       | 1         | Т           | 0.0       | 2         |
| Bird (feather)          | T   | 0.0     | 1         | 1       | 0.0       | •         | •           | 0.0       |           |
|                         |     |         |           | Т       | 0.0       | 4         | T           | 0.0       | 4         |
| Pebbles                 | -   | -       | -         | 1       | 0.0       | •         | _           |           |           |
| T                       |     |         | _         | T       | 0.0       | 1         | Т           | 0.0       | 1         |
| Inorganic material      |     |         |           | _       |           |           |             |           |           |
| Organic material        | _   | _       | _         | Т       | 0.0       | 2         | T           | 0.0       | 2         |
| Organic material        |     |         |           |         |           |           |             |           |           |
| Crustacea               | _   | _       | -         | 139     | 0.2       | 6         | 139         | 0.2       | 6         |
| Oldstacca               |     |         |           |         |           |           |             |           |           |
| Gastropoda              | T   | 0.0     | 1         | T       | 0.0       | 1         | T           | 0.0       | 2         |
|                         |     |         |           |         |           |           |             |           | _         |
| Parasitic copepod       | -   | -       | -         | T       | 0.0       | 7         | T           | 0.0       | 7         |
|                         |     |         |           |         |           |           | =0.000      |           |           |
| Total                   | -   |         |           | 79,880  |           |           | 79,880      |           |           |
|                         |     |         |           |         |           |           |             |           |           |
| Stomachs with food      | 251 |         |           |         |           |           |             |           |           |
| Stomachs empty          | 123 |         |           |         |           |           |             |           |           |

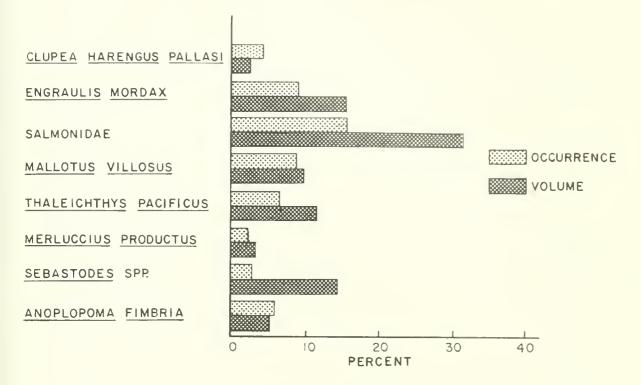



Figure 21.--Percentage volume and percentage occurrence of principal food species in fur seal stomachs collected off Washington, 1967-68

capelin, Mallotus villosus, constituted 83.3 percent of the total food volume (fig. 21). Salmon (60 occurrences) was the leading food, contributing 31.7 percent of the total food volume. Fur seals ate all five species of Pacific salmon (pink, Oncorhynchus gorbuscha; chum, O. keta; coho, O. kisutch; sockeye, O. nerka; and chinook, O. tshawytscha). The salmon were immature with no ocean growth on the scales. Figures 22 to 25 show species with frequency of occurrence greater than 10.

Off Alaska in May-August 1968, 323 (71 percent) of 456 stomachs contained food (tables 49-53). Walleye pollock, Theragra chalcogrammus; squids; and Atka mackerel, Pleurogrammus monopterygius, constituted 84.9 percent of the total food volume (fig. 26). Walleye pollock was the leading species eaten by seals in three of four areas surveyed in Alaska and contributed 37.8 percent of the total volume. Three species of Pacific salmon (pink, chum, and sockeye) in stomachs of fur seals taken in Alaska waters were mature and contributed 5.1 percent of the total food volume (19 occurrences). Two seals were taken alongside a Bureau of Commercial Fisheries salmon gill net research vessel as the net was being hauled. The stomach of one contained a mature 5-yearold chum salmon, Atka mackeral, and squids. The other stomach contained walleye pollock, Atka mackeral, and squids. Figures 27 to 32 show species with frequency of occurrence greater than 10.

The feeding habits of yearling seals (1967 year class) during their first winter at sea were studied by examining stomach contents and fecal material from a sample of 60 collected in January and February 1968 off Washington. Remains of fish vertebrae and otoliths were in 97 percent of the fecal samples, whereas, 20 of the corresponding 60 stomachs were empty. Remains of an eye lens, a bird feather, crustaceans, insects, pebbles, a lamprey, and squid beaks were also found in the fecal samples.

# RELATION OF FEEDING HABITS TO COMMERCIAL FISHERIES

The feeding habits of fur seals seem to be governed by abundance and availability of food. Salmon (Oncorhynchus spp.) were the most valuable commercial fish eaten by fur seals collected off Washington (60 occurrences) and Alaska (19 occurrences) in 1967-68. Salmon formed a larger proportion of the diet of seals off Washington in 1968 than in any previous collection. Other commercially important fish available off Washington are rockfish and eulachon. In Alaska, walleye pollock are caught by foreign fleets for minced meat and fish meal products. Squids, an important food of fur seals, are not fished commercially by the United States off Washington or in Alaska waters.

<sup>&</sup>lt;sup>7</sup>Kenneth H. Mosher and Gunnar Safsten, Bureau of Commercial Fisheries Biological Laboratory, Seattle, Wash., determined ages from the salmon scales.

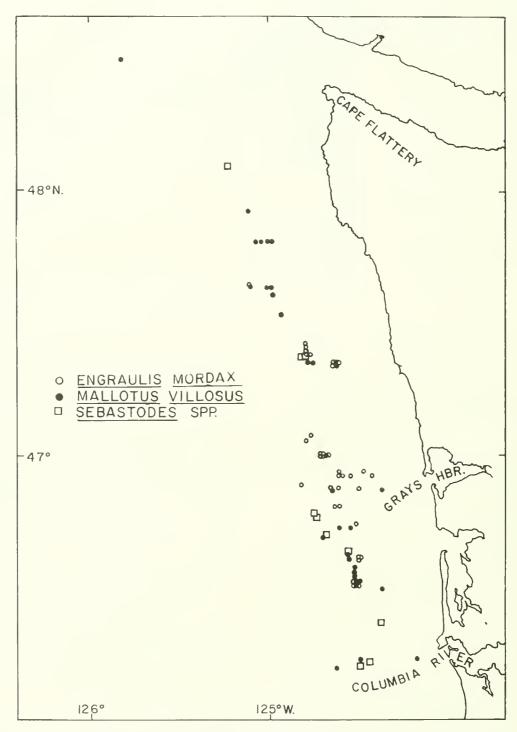



Figure 22.--Locations where fur seal stomachs collected off Washington in November-December i967 and January-February i968 contained Engraulis mordax (35 occurrences); Maiiotus viilosus (33 occurrences); and Sebastodes spp. (10 occurrences).

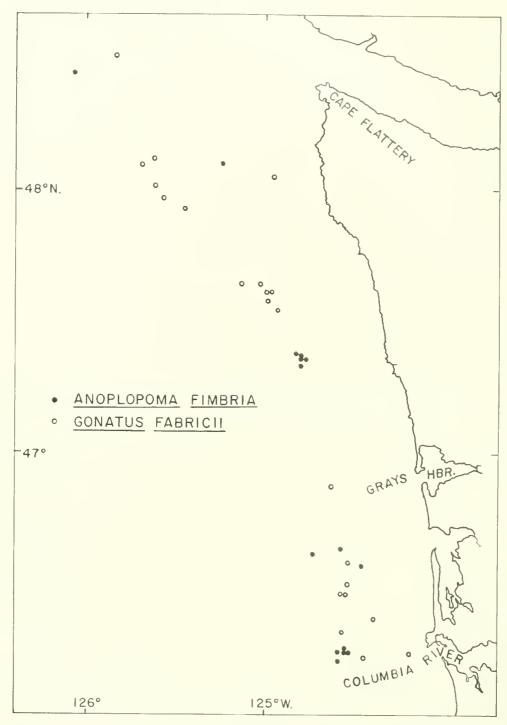



Figure 23.--Locations where fur seal stomachs collected off Washington in November-December 1967 and January-February 1968 contained <u>Anoplopoma fimbria</u> (22 occurrences) and <u>Gonatus fabricii</u> (15 occurrences).

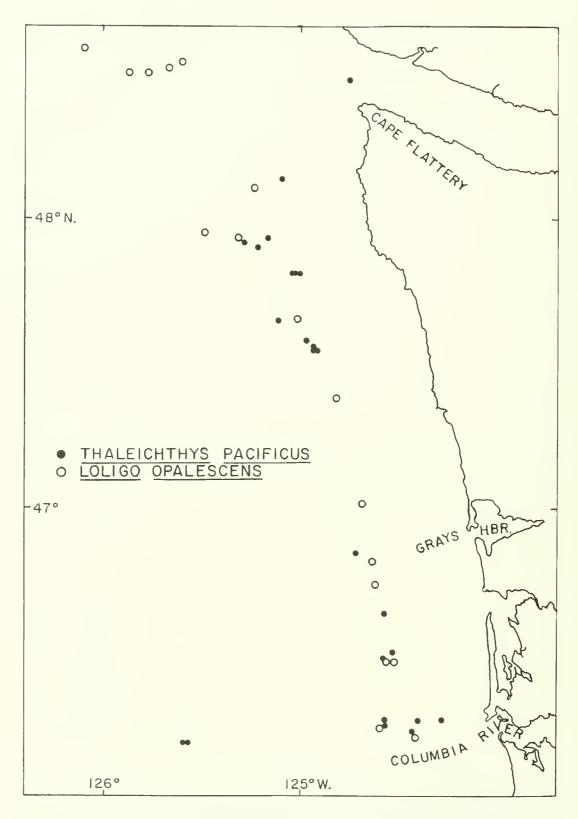



Figure 24.--Locations where fur seal stomachs collected off Washington in November-December 1967 and January-February 1968 contained <u>Thaleichthys pacificus</u> (24 occurrences) and <u>Loligo opalescens</u> (17 occurrences).

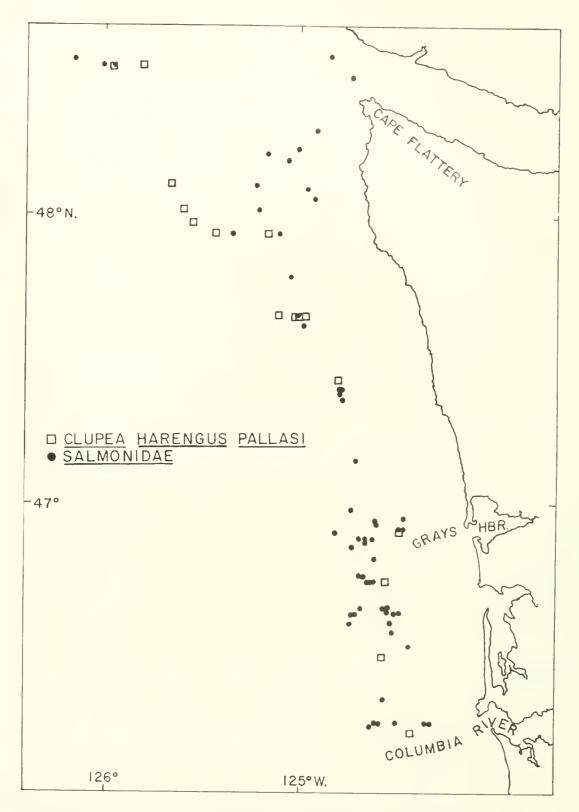



Figure 25.--Locations where fur seal stomachs collected off Washington in November-December 1967 and January-February 1968 contained <u>Clupea harengus pallasi</u> (16 occurrences), and Salmonidae (60 occurrences).

Table 49. --Stomach contents of fur seals collected pelagically by the United States off Southeastern Alaska, 1968

[T = trace (<5 cc.); counts are included in frequency counts]

|                        |      | Spring  |           |
|------------------------|------|---------|-----------|
| Food                   |      | May     |           |
|                        | Volu | ım e    | Frequency |
|                        | Cc.  | Percent | Number    |
| Fish                   |      |         |           |
| Theragra chalcogrammus | 20   | 100.0   | 1         |
| Squid                  |      |         |           |
| Gonatidae              | Т    | 0.0     | 1         |
| Total                  | 20   | -       | -         |
| Stomachs with food     | 1    |         |           |
| Stomachs empty         | 2    |         |           |

Table 50. --Stomach contents of fur seals collected pelagically by the United States in the Gulf of Alaska, 1968

|                      |        | Sprin   | g         |     | Summ     | er        |        |          |          |
|----------------------|--------|---------|-----------|-----|----------|-----------|--------|----------|----------|
|                      |        | May     |           | 1   | June-Aug | gust      |        | May-Augu | st       |
| Food                 | Vo     | lume    | Frequency | Vo  | lume     | Frequency | Vol    | ume      | Frequenc |
|                      | Cc.    | Percent | Number    | Cc. | Percent  | Number    | Cc.    | Percent  | Number   |
| Fish                 |        |         |           |     |          |           |        |          |          |
| Osmeridae            | T      | 0.0     | 2         | -   | -        | -         | T      | 0.0      | 2        |
| Mallotus villosus    | 7,415  | 14.7    | 14        | -   | -        | -         | 7,415  | 14.6     | 14       |
| Myctophidae          | T      | 0.0     | 1         | -   | -        | -         | T      | 0.0      | 1        |
| Cololabis saira      | 127    | 0.3     | 1         | -   | -        | -         | 127    | 0.2      | 1        |
| Gadidae              | T      | 0.0     | 1         | ~   | -        | -         | T      | 0.0      | 1        |
| Theragra             |        |         |           |     |          |           |        |          |          |
| chalcogrammus        | 14,725 | 29.2    | 13        | ~   | -        | -         | 14,725 | 29.0     | 13       |
| Trichodon trichodon  | 70     | 0.1     | 1         |     | -        | -         | 70     | 0.1      | 1        |
| Ammodytes hexapterus | 825    | 1.6     | 2         | -   | -        | -         | 825    | 1.6      | 2        |
| Unidentified         | 668    | 1.3     | 15        | Т   | 0.0      | 1         | 668    | 1.3      | 16       |
| Squid                |        |         |           |     |          |           |        |          |          |
| Gonatidae            | T      | 0.0     | 46        | 10  | 0.0      | 2         | 10     | 0.0      | 48       |
| Gonatus fabricii     | 233    | 0.5     | 9         | T   | 0.0      | 1         | 233    | 0.5      | 10       |
| Gonatus magister     | 8,804  | 17.4    | 21        | -   | -        | -         | 8,804  | 17.4     | 2 1      |
| Gonatopsis borealis  | 17,613 | 34.9    | 27        | 235 | 100.0    | 1         | 17,848 | 35.2     | 28       |
| Unidentified         | T      | 0.0     | 2         | T   | 0.0      | 1         | T      | 0.0      | 3        |
| Pebbles              | Т      | 0.0     | 2         | T   | 0.0      | 1         | Т      | 0.0      | 3        |
| Parasitic copepods   | T      | 0.0     | 4         |     | -        | ~         | T      | 0.0      | 4        |
| Total                | 50,480 |         |           | 245 |          |           | 50,725 |          |          |
| Stomachs with food   | 81     |         |           |     |          |           |        |          |          |
| Stomachs empty       | 23     |         |           |     |          |           |        |          |          |

Table 51.--Stomach contents of fur seals collected pelagically by the United States off western Alaska, 1968

[T = trace (<5 cc.); counts are included in frequency counts]

| [T = trace (<5 cc.); co              | unts are in        |         |           |
|--------------------------------------|--------------------|---------|-----------|
|                                      |                    | Summ    |           |
|                                      |                    | June-A  |           |
| Food                                 |                    | lume    | Frequency |
|                                      | <u>Cc.</u>         | Percent | Number    |
| Fish                                 |                    |         |           |
| Salmonidae                           | 6,602              | 13.8    | 11        |
| Osmeridae                            | T                  | 0.0     | 2         |
| Mallotus villosus                    | 3, 275             | 6.9     | 12        |
| Gadidae                              | T                  | 0.0     | 1         |
| Gadus macrocephalus 1/               | T                  | 0.0     | 1         |
| Theragra chalcogrammus               | 6,469              | 13.5    | 15        |
| Pleurogrammus                        |                    |         |           |
| monopterygius                        | 26,844             | 56.1    | 34        |
| Ammodytes hexapterus                 | 325                | 0.7     | 3         |
| Unidentified                         | 85                 | 0.2     | 14        |
|                                      |                    |         |           |
| Squid                                | 25/                | 0 5     | /=        |
| Gonatidae                            | 256                | 0.5     | 67        |
| Gonatus fabricii                     | 58                 | 0.1     | 9         |
| Gonatus magister                     | 736                | 1.5     | 2         |
| Gonatopsis borealis                  | 3,047              | 6.4     | 10        |
| Unidentified                         | Т                  | 0.0     | 4         |
| Bird (feather)                       | 125                | 0.3     | 2         |
| Pebbles                              | Т                  | 0.0     | 3         |
| Organic material                     | Т                  | 0.0     | 1         |
| Isopoda                              | Т                  | 0.0     | 6         |
| Crustacea                            | Т                  | 0.0     | 1         |
| Gastropoda                           | Т                  | 0.0     | 5         |
| Parasitic copepod<br>Total           | $\frac{T}{47,822}$ | 0.0     | 2         |
| Stomachs with food<br>Stomachs empty | 107<br>40          |         |           |

Table 52.--Stomach contents of fur seals collected pelagically by the United States in the Bering Sea, 1968

[T = trace (<5 cc.); counts are included in frequency counts]

| Food                        | Summer<br>July-August |         |        |
|-----------------------------|-----------------------|---------|--------|
|                             |                       |         |        |
|                             | Cc.                   | Percent | Number |
|                             | Fish                  |         |        |
| Salmonidae                  | 2,130                 | 3.0     | 8      |
| Mallotus villosus           | 1,854                 | 2.6     | 5      |
| Bathylagidae                | 1,898                 | 2.7     | 13     |
| Gadidae                     | 25                    | 0.0     | 4      |
| Gadus macrocephalus 1/      | T                     | 0.0     | 4      |
| Theragra chalcogrammus      | 43, 107               | 60.4    | 34     |
| Pleurogrammus monopterygius | 935                   | 1.3     | 4      |
| Ammodytes hexapterus        | 250                   | 0.3     | 1      |
| Unidentified                | 15                    | 0.0     | 10     |
| Squid                       |                       |         |        |
| Gonatidae                   | 225                   | 0.3     | 90     |
| Gonatus fabricii            | 166                   | 0.2     | 37     |
| Gonatus magister            | 12,516                | 17.5    | 14     |
| Gonatopsis borealis         | 7, 474                |         | 32     |
| Unidentified                | 835                   | 1.2     | 5      |
| Bird                        | Т                     | 0.0     | l      |
| Pebbles                     | Т                     | 0.0     | 5      |
| Total                       | 71, 430               |         |        |
| Stomachs with food          | 133                   |         |        |
| Stomachs empty              | 68                    |         |        |

 $<sup>\</sup>underline{\mathbb{I}}\!\!/$  Otoliths identified by John E. Fitch, California Department of Fish and Game.

Table 53.--Total stomach contents of fur seals collected pelagically by the United States off Alaska, 1968.

[T = trace (<5 cc.); counts are included in frequency counts]

|                             | Spr                       | ing and Sur |           |
|-----------------------------|---------------------------|-------------|-----------|
|                             |                           | May-Aug     |           |
| Food                        |                           | ume         | Frequency |
|                             | <u>Cc.</u>                | Percent     | Number    |
| Fish                        |                           |             |           |
| Salmonidae                  | 8,732                     | 5.1         | 19        |
| Osmeridae                   | Т                         | 0.0         | 4         |
| Mallotus villosus           | 12,544                    | 7.4         | 31        |
| Bathylagidae                | 1,898                     | 1.1         | 13        |
| Myctophidae                 | T                         | 0.0         | 1         |
| Cololabis saira             | 127                       | 0.1         | 1         |
| Gadidae 1/                  | 25                        | 0.0         | 6         |
| Gadus macrocephalus 1/      | T                         | 0.0         | 5         |
| Theragra chalcogrammus      | 64, 321                   | 37.8        | 63        |
| Pleurogrammus monopterygius | 27,779                    | 16.3        | 38        |
| Trichodon trichodon         | 70                        | 0.0         | 1         |
| Ammodytes hexapterus        | 1,400                     | 0.8         | 6         |
| Unidentified                | 768                       | 0.5         | 40        |
| Squid                       |                           |             |           |
| Gonatidae                   | 491                       | 0.3         | 206       |
| Gonatus fabricii            | 457                       | 0.3         | 55        |
| Gonatus magister            | 22,056                    | 13.0        | 37        |
| Gonatopsis borealis         | 28,369                    | 16.7        | 70        |
| Unidentified                | 835                       | 0.5         | 12        |
| Bird                        | 125                       | 0.1         | 3         |
| Pebbles                     | Т                         | 0.0         | 11        |
| Organic material            | T                         | 0.0         | 1         |
| Isopoda                     | T                         | 0.0         | 6         |
| Crustacea                   | T                         | 0.0         | 1         |
| Gastropoda                  | T                         | 0.0         | 5         |
| Parasitic copepod<br>Total  | T<br>1 <del>69, 997</del> | 0.0         | 6         |
| Stomachs with food          | 323                       |             |           |
| Stomachs empty              | 133                       |             |           |

 $<sup>\</sup>underline{\mathbb{I}}'$  Otoliths identified by John E. Fitch, California Department of Fish and Game.

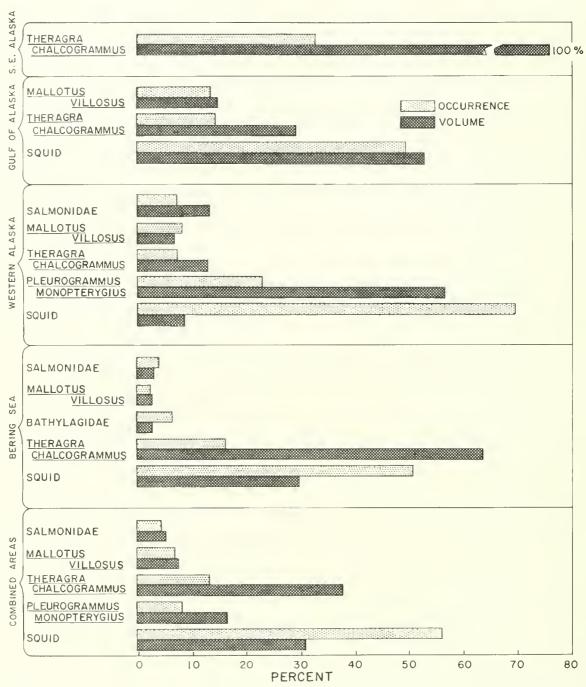



Figure 26.--Percentage volume and percentage occurrence of principal food species in fur seal stomachs collected off Alaska in 1968.




Figure 27.--Locations where fur seal stomachs collected off western Alaska and in the Bering Sea in 1968 contained Salmonidae (11 occurrences) and Gonatus magister (14 occurrences).

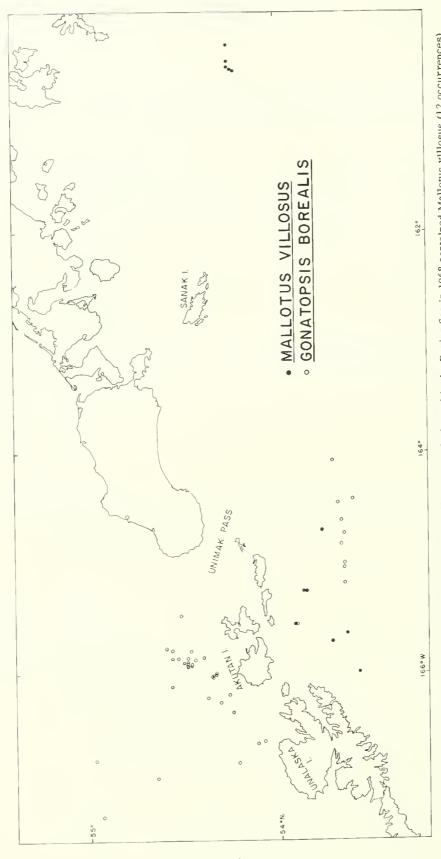



Figure 28,--Locations where fur seal stomachs collected off western Alaska and in the Bering Sea in 1968 contained <u>Mallotus villosus</u> (12 occurrences).



Figure 29.--Locations where fur seal stomachs collected in Gulf of Alaska in 1968 contained Mallotus villosus (14 occurrences) and Gonatopsis borealis (28 occurrences).

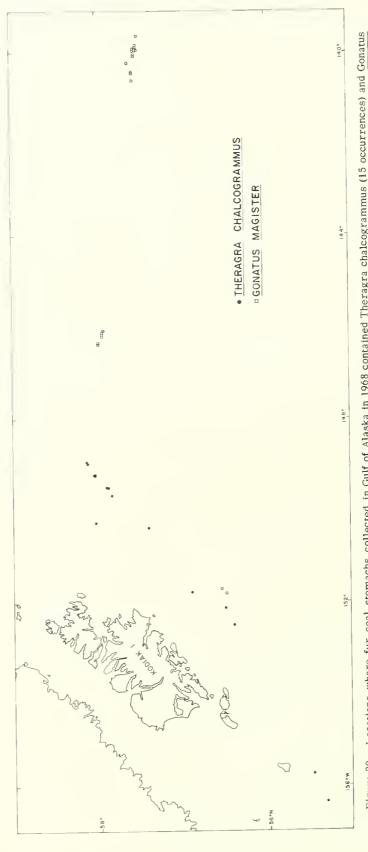



Figure 30,--Locations where fur seal stomachs collected in Gulf of Alaska in 1968 contained Theragra chalcogrammus (15 occurrences) and Gonatus magister (21 occurrences).

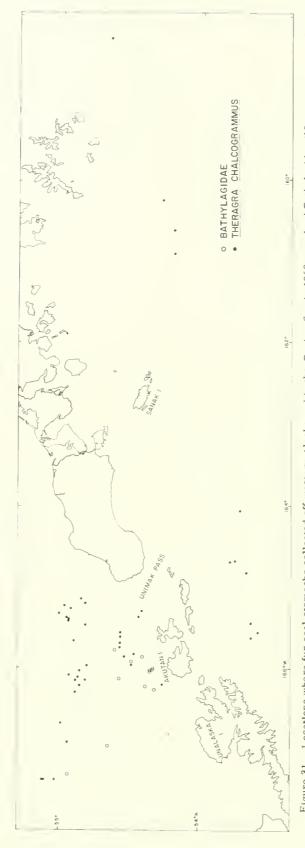



Figure 31,--Locations where fur seal stomachs collected off western Alaska and in the Bering Sea in 1968 contained Bathylagidae (13 occurrences) and Theragra chalcogrammus (44 occurrences),

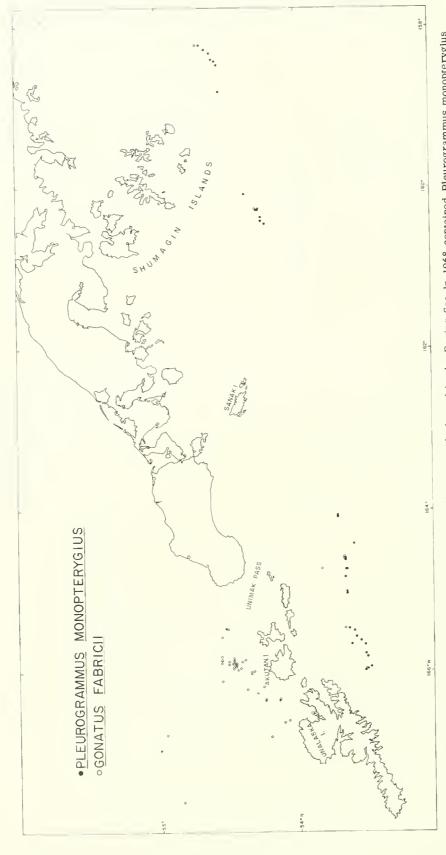



Figure 32,--Locations where fur seal stomachs collected off western Alaska and in the Bering Sea in 1968 contained Pleurogrammus monopteryglus (34 occurrences) and Gonatus fabricil (37 occurrences).

Considering the volume and frequency of occurrence of commercially important fishes found in fur seal stomachs and our limited knowledge of the ocean environment and its

ecology, we believe the effects of predation on food species with economic value are impossible to assess with any degree of confidence.

## SUMMARY

Pelagic research in 1968 was conducted for continuing studies of the distribution, feeding habits, migration, and pregnancy rates of fur seals.

The M/V Tonquin was chartered for research off Washington in November-December 1967 and January-February 1968. The M/V New St. Joseph was chartered for research in Alaska waters from May through August 1968.

Of 1,078 seals sighted off Washington, 374 were collected, 39 were wounded and lost, and 26 were killed and lost. Of 1,509 seals sighted in Alaska waters, 456 were collected, 27 were wounded and lost, and 78 were killed and lost. About 50 percent of the females taken were 1 to 7 years of age.

Seventy-four yearlings (1967 year class) were taken in January and February for continuing studies of these animals during their first year of life, a period when fur seals suffer the greatest mortality.

Thirty-eight tagged or marked seals were collected.

Five primiparous 4-year-old females were the youngest and one 21-year-old multiparous female was the oldest among pregnant seals taken.

Off Washington, salmon, anchovy, rockfish, eulachon, and capelin constituted 83.3 percent of the total food volume. Salmon (60 occurrences) was the leading species and contributed 31.7 percent of the total food volume.

Walleye pollock, squids, and Atka mackerel constituted 84.9 percent of the total food volume of seals from Alaska waters. Walleye pollock was the leading species in three of four areas surveyed and contributed 37.8 percent of the total food volume.

Sixty fecal samples were compared with corresponding stomach contents for a study of the feeding habits of yearling seals. Ninety-seven percent of the samples contained the remains of fish, and 33 percent of the corresponding stomachs were empty.

## LITERATURE CITED

- CHAPMAN, DOUGLAS G., and ANCEL M. JOHNSON.
  - 1968. Estimation of fur seal pup populations by randomized sampling. Trans. Amer. Fish. Soc., 97: 264-270.
- FISCUS, CLIFFORD H., GARY A. BAINES, and FORD WILKE.
  - 1964. Pelagic fur seal investigations, Alaskan waters, 1962. U.S. Fish Wildl. Serv., Spec. Sci. Rep. Fish. 475, iii+59 pp.
- FISCUS, CLIFFORD. H., and HIROSHI KAJIMURA.
  - 1967. Pelagic fur seal investigations, 1965. U.S. Fish Wildl. Serv., Spec. Sci. Rep. Fish. 537, iv + 42 pp.

- JOHNSON, ANCEL M.
  - 1968. Annual mortality of territorial male fur seals and its management significance. J. Wildl. Manage. 32: 94-99.
- MARINE MAMMAL BIOLOGICAL LABORA-TORY
  - 1969 Fur seal investigations, 1966. U.S. Fish Wildl. Serv., Spec. Sci. Rep. Fish. 584, vii + 123 pp.
  - 1970. Fur seal investigations, 1967. U.S. Fish Wildl. Serv., Spec. Sci. Rep. Fish. 597.
- STANDING SCIENTIFIC COMMITTEE OF THE NORTH PACIFIC FUR SEAL COMMISSION.
  - 1963. Glossary of terms used in fur seal research and management. U.S. Fish Wildl. Serv., Fish Leafl. 546, 9 pp.

APPENDIX A

Table A-1.--Age classification of male seals killed on St. Paul Island, 26 June to.2 August 1968

|      |            | 1                             | m                  |      |       | ls in eac |      |     |       |        | nated sea    |          |                   |
|------|------------|-------------------------------|--------------------|------|-------|-----------|------|-----|-------|--------|--------------|----------|-------------------|
| D-4- | Rookery 1/ | Males                         | Tooth              | 2    |       | up of sa  |      |     |       |        | each ag      |          | T /               |
| Date | Rookery    |                               | sample<br>  Number |      | 3     | <u>4</u>  | cent | 6   | 2     | 3      | 4            | 5        | 6                 |
| June |            | Number                        | Number             |      |       | Per       | cent |     |       |        | <u>Num</u> l | <u> </u> |                   |
| 26   | TZR        | 996                           | 186                | 0.5  | 27.4  | 64.6      | 7.0  | 0.5 | 5     | 273    | 643          | 70       | 5                 |
| 27   | NEP(east)  | 575                           | 100                | 0.9  | 22.0  | 62.4      | 12.9 | 1.8 | 5     | 126    | 360          | 74       | 10                |
| 27   | NEP(west)  | 251                           | 39                 | 2.6  | 15.4  | 48.7      | 33.3 | 1.0 | 6     |        |              | 84       |                   |
| 27   | POL        | 389                           | 79                 |      | 19. 0 | 72.2      |      | 1.2 |       | 39     | 122          |          | <del>-</del><br>5 |
|      |            |                               |                    |      |       |           | 7.6  |     | -     | 74     | 281          | 29       |                   |
| 28   | REEF       | 1, 02 1                       | 177                | -    | 19.2  | 66.1      | 14.1 | 0.6 | -     | 196    | 675          | 144      | 6                 |
| 28   | L-K        | 150                           | 29                 | -    | 17.2  | 69.0      | 13.8 | -   | -     | 26     | 104          | 20       | ~                 |
| July |            | = 2.2                         | 1.40               |      | 20.2  |           |      |     |       |        |              |          |                   |
| 1    | ZAP        | 732                           | 140                | -    | 29.3  | 62.1      | 7.1  | 1.5 | -     | 214    | 455          | 52       | 11                |
| 1    | POL        | 160                           | 33                 | -    | 36.4  | 51.5      | 12.1 | -   | -     | 58     | 82           | 20       | -                 |
| 2    | NEP(east)  | 408                           | 80                 | 1.2  | 33.8  | 55.0      | 10.0 | -   | 5     | 138    | 224          | 41       | -                 |
| 2    | NEP(west)  | 359                           | 61                 | -    | 31.2  | 60.6      | 8, 2 | -   | -     | 112    | 218          | 29       | ~                 |
| 2    | L-K        | 42                            | 11                 | -    | 18.2  | 72.7      | 9. 1 | -   | -     | 8      | 30           | 4        | -                 |
| 3    | REEF       | 442                           | 123                | -    | 35.8  | 52.0      | 11.4 | 0.8 | -     | 158    | 2 30         | 50       | 4                 |
| 3    | TZR        | 670                           | 91                 | 1.1  | 33.0  | 58.2      | 6.6  | 1.1 | 7     | 222    | 390          | 44       | 7                 |
| 5    | ZAP        | 276                           | 55                 | 3.6  | 34.6  | 54.5      | 7.3  | -   | 10    | 95     | 151          | 20       | -                 |
| 5    | POL        | 114                           | 22                 | -    | 27.3  | 63.6      | 9. 1 | -   | ~     | 31     | 73           | 10       | -                 |
| 6    | NEP(east)  | 524                           | 109                | 0.9  | 50.5  | 44.0      | 3.7  | 0.9 | 5     | 264    | 231          | 19       | 5                 |
| 6    | NEP(west)  | 302                           | 58                 | 3.4  | 41.4  | 48.3      | 6.9  | -   | 10    | 125    | 146          | 21       | -                 |
| 8    | TZR        | 1, 384                        | 257                | 2.7  | 54.5  | 38.9      | 3. 9 | -   | 37    | 755    | 538          | 54       | -                 |
| 9    | POL        | 281                           | 52                 | -    | 21.2  | 75.0      | 1.9  | 1.9 | -     | 60     | 211          | 5        | 5                 |
| 9    | REEF       | 422                           | 84                 | -    | 46.4  | 48.8      | 4.8  | -   | -     | 196    | 206          | 20       | -                 |
| 10   | ZAP        | 988                           | 194                | 1.5  | 46.9  | 46.4      | 5.2  | -   | 15    | 463    | 459          | 51       | _                 |
| 10   | L-K        | 139                           | 28                 | -    | 35.7  | 60.7      | 3.6  | _   | _     | 49     | 85           | 5        | _                 |
| 11   | NEP(east)  | 393                           | 92                 | 3.3  | 51.1  | 41.3      | 3.2  | 1.1 | 13    | 201    | 162          | 13       | 4                 |
| 1    | NEP(west)  | 208                           | 41                 | -    | 51, 2 | 43.9      | 4.9  | _   | _     | 107    | 91           | 10       | _                 |
| 12   | REEF       | 358                           | 70                 | 1.4  | 50.0  | 41.5      | 7. 1 | _   | 5     | 179    | 149          | 25       | _                 |
| .2   | TZR        | 139                           | 28                 | -    | 50.0  | 42.8      | 7.2  | _   | _     | 70     | 59           | 01       | _                 |
| 13   | TZR        | 894                           | 207                | 1.0  | 55.5  | 38.2      | 5. 3 | _   | 9     | 496    | 342          | 47       | -                 |
| 15   | ZAP        | 2, 227                        | 439                | 2.5  | 57.9  | 35. 8     | 3.6  | 0.2 | 56    | 1,290  | 797          | 80       | 4                 |
| 16   |            | 130                           | 22                 |      |       |           | 0.5  | 0.2 |       |        |              |          | **                |
|      | NEP(west)  |                               |                    | -    | 59.1  | 36.4      |      |     | -     | 77     | 47           | 6        | -                 |
| 16   | POL        | 709                           | 171                | 1.8  | 57.3  | 37.4      | 3.5  | -   | 13    | 406    | 265          | 25       | -                 |
| 17   | NEP(east)  | 774                           | 141                | 5.0  | 60.3  | 31.9      | 2.8  | -   | 39    | 467    | 247          | 2 1      | -                 |
| 17   | TZR        | 365                           | 71                 | 1.4  | 69.0  | 26.8      | 1.4  | 1.4 | 5     | 2.52   | 98           | 5        | 5                 |
| 18   | REEF       | 1, 249                        | 287                | 3.8  | 60.6  | 33.8      | 1.8  | -   | 47    | 757    | 422          | 23       | -                 |
| 1.8  | L-K        | 857                           | 184                | 3, 8 | 68.5  | 27.2      | 0.5  | -   | 33    | 587    | 233          | 4        | -                 |
| 19   | TZR        | 318                           | 65                 | 1.5  | 70.8  | 24.6      | 3. 1 | -   | 5     | 225    | 78           | 10       | -                 |
| 19   | ZAP        | 603                           | 104                | 1.0  | 49.0  | 44.2      | 5.8  | -   | 6     | 295    | 267          | 35       | -                 |
| 0.0  | TZR        | 454                           | 8.5                | 2.4  | 51.8  | 38.8      | 4.6  | 2.4 | 1.1   | 235    | 176          | 2.1      | 11                |
| 0.0  | POL        | 131                           | 14                 | -    | 28.6  | 64.3      | 7.1  | -   | -     | 38     | 84           | 9        | -                 |
| 22   | NEP(east)  | 1, 399                        | 203                | 5.4  | 64.5  | 28.1      | 2.0  | -   | 76    | 902    | 393          | 28       | -                 |
| 2.2  | NEP(west)  | 384                           | 70                 | 1.4  | 65.7  | 30.0      | 2.9  | -   | 6     | 252    | 115          | 11       | -                 |
| 2.3  | REEF       | 1,255                         | 2 5 2              | 8.3  | 60.3  | 30.2      | 1.2  | -   | 104   | 757    | 379          | 15       | -                 |
| .3   | L-K        | 410                           | 79                 | 11.4 | 59.5  | 27.8      | 1.3  | -   | 47    | 244    | 114          | 5        | -                 |
| 4    | ZAP        | 756                           | 151                | 5.3  | 57.6  | 35.8      | 1.3  | -   | 40    | 435    | 271          | 10       | -                 |
| 2.5  | TZR        | 1,443                         | 288                | 1.0  | 62.5  | 31.3      | 4.9  | 0.3 | 14    | 902    | 452          | 71       | 4                 |
| 6    | NEP(east)  | 32.5                          | 65                 | 15.4 | 67.7  | 16.9      | -    | _   | 50    | 220    | 55           | _        | _                 |
| 6    | NEP(west)  | 518                           | 106                | 8.5  | 63.2  | 24.5      | 3.8  | _   | 44    | 327    | 127          | 20       | _                 |
| 7    | POL        | 289                           | 54                 | 5, 6 | 57.4  | 35.2      | 1.8  | _   | 16    | 166    | 102          | 5        | _                 |
| 7    | L-K        | 415                           | 77                 | 10.4 | 55.8  | 31.2      | 2.6  | _   | 43    | 2 32   | 129          | 11       |                   |
| 9    | REEF       | 1, 470                        | 268                | 4.5  | 63.0  | 29. 1     | 3.0  | 0.4 | 66    | 926    | 428          | 44       | 6                 |
| 0    |            | 1, 470                        | 282                | 8.9  |       |           | 2.8  |     | 148   | 1, 139 | 331          | 47       | O                 |
|      | TZR<br>POL |                               |                    |      | 68.4  | 19. 9     |      | -   |       |        |              |          |                   |
| 1    |            | 267                           | 48                 | 1/ 5 | 75.0  | 22.9      | 2.1  | -   | 1.52  | 200    | 61           | 6        | -                 |
| 1    | ZAP        | 920                           | 176                | 16.5 | 60.8  | 21.6      | 1.1  | -   | 152   | 559    | 199          | 10       | -                 |
| lug. |            |                               |                    |      |       |           |      |     | 4 -   |        |              |          |                   |
| 1    | NEP(east)  | 793                           | 143                | 7.7  | 62.9  | 28.0      | 1.4  | -   | 61    | 499    | 222          | 11       | -                 |
| 1    | NEP(west)  | 760                           | 143                | 9. 1 | 64.3  | 25.2      | 1.4  | -   | 69    | 489    | 191          | 11       | ~                 |
| 2    | REEF       | 1,789                         | 326                | 21.8 | 61.1  | 15.6      | 1.5  |     | 390   | 1,093  | 279          | 27       | -                 |
|      |            | <u>2</u> / <sub>35, 292</sub> |                    |      |       |           |      |     |       |        |              |          |                   |
|      |            |                               | 6,769              |      |       |           |      |     | 1,673 | 18,706 |              | 1,542    | 92                |

<sup>1/</sup> NEP(east)=east or Morjovi side of Northeast Point; NEP(west)=west or Vostochni side of Northeast Point; TZR=Tolstoi, Zapadni Reef, and Little Zapadni; POL=Polovina and Little Polovina; ZAP=Zapadni; REEF=Reef, Gorbatch, and Ardiguen; L-K=Lukanin and Kitovi.

 $<sup>\</sup>frac{2}{2}$  The total kill of males was 36, 349; age was not determined for 1,057 young males killed 3-16 August.

Table A- 2. -- Cumulative age classification of male seals killed on St. Paul Island, 26 June to 2 August 1968

|          |                        |            |                    | ed seals k         |                |          |                    | 1    |              | als killed     |              |     |
|----------|------------------------|------------|--------------------|--------------------|----------------|----------|--------------------|------|--------------|----------------|--------------|-----|
|          | Rookery1/              |            |                    | ach age gr         |                |          | Total              |      |              | ch age gro     |              | 1   |
| Date     | Rookery-               | 2          | 3                  | Nt                 | 5              | 6        | kill               | 2    | 3            | 4              | 5            | 6   |
| June     |                        |            |                    |                    | шпрег          |          |                    |      |              | Percent        |              |     |
| 26       | TZR                    | 5          | 273                | 643                | 70             | 5        | 996                | 0.5  | 27.4         | 64.6           | 7.0          | 0.5 |
| 27       | NEP(east)              | 10         | 399                | 1,003              | 144            | 15       | 1,571              | 0.6  | 25.4         | 63.8           | 9. 2         | 1.0 |
| 27       | NEP(west)              | 16         | 438                | 1, 125             | 228            | 15       | 1,822              | 0.9  | 24.0         | 61.8           | 12.5         | 0.8 |
| 27       | POL                    | 16         | 512                | 1,406              | 257            | 20       | 2,211              | 0.7  | 23.2         | 63.6           | 11.6         | 0.9 |
| 28       | REEF                   | 16         | 708                | 2,081              | 401            | 26       | 3, 232             | 0.5  | 21.9         | 64.4           | 12.4         | 0.8 |
| 28       | L-K                    | 16         | 734                | 2, 185             | 421            | 26       | 3, 382             | 0.5  | 21.7         | 64.6           | 12.4         | 0.8 |
| July     |                        |            |                    |                    |                |          |                    |      |              |                |              |     |
| 1        | ZAP                    | 16         | 948                | 2,640              | 473            | 37       | 4, 114             | 0.4  | 23.0         | 64.2           | 11.5         | 0.9 |
| 1        | POL                    | 16         | 1,006              | 2,722              | 493            | 37       | 4, 274             | 0.4  | 23.5         | 63.7           | 11.5         | 0.9 |
| 2        | NEP(east)              | 21         | 1, 144             | 2, 946             | 534            | 37       | 4, 682             | 0.5  | 24.4         | 62.9           | 11.4         | 0.8 |
| 2        | NEP(west)              | 2 1<br>2 1 | 1,256              | 3, 164             | 563            | 37       | 5,041              | 0.4  | 24.9         | 62.8           | 11.2         | 0.7 |
| 3        | L-K<br>REEF            | 21         | 1,264<br>1,422     | 3, 194             | 567<br>617     | 37<br>41 | 5, 083             | 0.4  | 24.9<br>25.7 | 62.8           | 11.2         | 0.7 |
| 3        | TZR                    | 28         | 1, 422             | 3, 424<br>3, 814   | 661            | 48       | 5, 525<br>6, 195   | 0.4  | 26.5         | 62.0<br>61.6   | 11.2         | 0.7 |
| 5        | ZAP                    | 38         | 1,739              | 3, 965             | 681            | 48       | 6, 471             | 0.6  | 26.9         | 61.3           | 10.7         | 0.8 |
| 5        | POL                    | 38         | 1, 770             | 4, 038             | 691            | 48       | 6, 585             | 0.6  | 26. 9        | 61.3           | 10.5         | 0.7 |
| 6        | NEP(east)              | 43         | 2,034              | 4, 269             | 710            | 53       | 7, 109             | 0.6  | 28.6         | 60. 1          | 10.0         | 0.7 |
| 6        | NEP(west)              | 53         | 2, 159             | 4, 415             | 731            | 53       | 7, 411             | 0.7  | 29. 1        | 59.6           | 9. 9         | 0.7 |
| 8        | TZR                    | 90         | 2,914              | 4, 953             | 785            | 53       | 8,795              | 1.0  | 33. 2        | 56.3           | 8. 9         | 0.6 |
| 9        | POL                    | 90         | 2,974              | 5, 164             | 790            | 58       | 9,076              | 1.0  | 32.8         | 56.9           | 8.7          | 0.6 |
| 9        | REEF                   | 90         | 3, 170             | 5, 370             | 810            | 58       | 9, 498             | 1.0  | 33.4         | 56.5           | 8.5          | 0.6 |
| 10       | ZAP                    | 105        | 3,633              | 5, 829             | 861            | 58       | 10,486             | 1.0  | 34.6         | 55.6           | 8.2          | 0.6 |
| 10       | L-K                    | 105        | 3,682              | 5,914              | 866            | 58       | 10,625             | 1.0  | 34.6         | 55.7           | 8.2          | 0.5 |
| 11       | NEP(east)              | 118        | 3, 883             | 6,076              | 879            | 62       | 11,018             | 1.1  | 35.2         | 55.1           | 8.0          | 0.6 |
| 11       | NEP(west)              | 118        | 3, 990             | 6, 167             | 889            | 62       | 11,226             | 1.1  | 35.5         | 54.9           | 7.9          | 0.6 |
| 12       | REEF                   | 123        | 4, 169             | 6, 316             | 914            | 62       | 11,584             | 1.1  | 36.0         | 54.5           | 7.9          | 0.5 |
| 12       | TZR                    | 123        | 4,239              | 6, 375             | 924            | 62       | 11,723             | 1.0  | 36.2         | 54.4           | 7.9          | 0.5 |
| 13       | TZR                    | 132        | 4,735              | 6, 717             | 971            | 62       | 12,617             | 1.0  | 37.5         | 53.2           | 7.7          | 0.5 |
| 15       | ZAP                    | 188        | 6,025              | 7,514              | 1,051          | 66       | 14, 844            | 1.3  | 40.6         | 50.6           | 7. 1         | 0.4 |
| 16<br>16 | NEP(west               | 188        | 6, 102             | 7, 561             | 1,057          | 66       | 14, 974            | 1.3  | 40.7         | 50.5           | 7.1          | 0.4 |
| 17       | POL<br>NEP(east)       | 201<br>240 | 6, 508<br>6, 975   | 7, 826<br>8, 073   | 1,082<br>1,103 | 66<br>66 | 15, 683<br>16, 457 | 1.3  | 41.5<br>42.4 | 49. 9<br>49. 1 | 6.9<br>6.7   | 0.4 |
| 17       | TZR                    | 245        | 7, 227             | 8, 171             | 1, 108         | 71       | 16, 822            | 1.4  | 43.0         | 48.6           | 6.6          | 0.4 |
| 18       | REEF                   | 292        | 7, 984             | 8, 593             | 1, 131         | 71       | 18,071             | 1.6  | 44.2         | 47.5           | 6. 3         | 0.4 |
| 18       | L-K                    | 325        | 8, 571             | 8,826              | 1, 135         | 71       | 18, 928            | 1.7  | 45.3         | 46.6           | 6.0          | 0.4 |
| 19       | TZR                    | 330        | 8,796              | 8,904              | 1,145          | 71       | 19,246             | 1.7  | 45.7         | 46.3           | 5. 9         | 0.4 |
| 19       | ZAP                    | 336        | 9,091              | 9, 171             | 1, 180         | 71       | 19,849             | 1.7  | 45.8         | 46.2           | 5.9          | 0.4 |
| 20       | TZR                    | 347        | 9, 326             | 9, 347             | 1,201          | 82       | 20,303             | 1.7  | 45.9         | 46.1           | 5. 9         | 0.4 |
| 20       | POL                    | 347        | 9, 364             | 9, 431             | 1,210          | 82       | 20,434             | 1.7  | 45.8         | 46.2           | 5. 9         | 0.4 |
| 22       | NEP(east)              | 423        | 10, 266            | 9,824              | 1,238          | 82       | 21,833             | 1.9  | 47.0         | 45.0           | 5.7          | 0.4 |
| 22       | NEP(west)              | 429        | 10,518             | 9, 939             | 1,249          | 82       | 22,217             | 1.9  | 47.4         | 44.7           | 5.6          | 0.4 |
| 23       | Reef                   | 533        | 11, 275            | 10, 318            | 1,264          | 82       | 23, 472            | 2.3  | 48.0         | 43.9           | 5.4          | 0.4 |
| 2.3      | L-K                    | 580        | 11, 519            | 10, 432            | 1,269          | 82       | 23, 882            | 2.4  | 48.2         | 43.7           | 5. 3         | 0.4 |
| 24       | ZAP                    | 620        | 11, 954            | 10, 703            | 1,279          | 82       | 24, 638            | 2.5  | 48.5         | 43.5           | 5. 2         | 0.3 |
| 25       | TZR                    | 634<br>684 | 12, 856            | 11, 155            | 1,350          | 86       | 26, 081<br>26, 406 | 2.4  | 49.3         | 42.8           | 5.2          | 0.3 |
| 26       | NEP(east)<br>NEP(west) |            | 13, 076<br>13, 403 | 11, 210<br>11, 337 | 1,350<br>1,370 | 86<br>84 | 26, 924            | 2.6  | 49.5         | 42.5           | 5. 1         | 0.3 |
| 27       | POL                    | 744        | 13, 403            | 11, 337            | 1,370          | 86<br>86 | 26, 924            | 2.7  | 49.8<br>49.9 | 42.1<br>42.0   | 5. I<br>5. I | 0.3 |
| 27       | L-K                    | 787        | 13, 801            | 11, 439            | 1, 386         | 86       | 27, 628            | 2. 8 | 50.0         | 41.9           | 5. 0         | 0.3 |
| 29       | REEF                   | 853        | 14,727             | 11, 996            | 1, 430         | 92       | 29, 098            | 3. 0 | 50.6         | 41.2           | 4. 9         | 0.3 |
| 30       | TZR                    | 1,001      | 15, 866            | 12, 327            | 1, 477         | 92       | 30, 763            | 3, 2 | 51.6         | 40. 1          | 4. 8         | 0.3 |
| 31       | POL                    | 1,001      | 16,065             | 12, 388            | 1, 483         | 92       | 31,030             | 3.2  | 51.8         | 39. 9          | 4.8          | 0.3 |
| 31       | ZAP                    | 1, 153     | 16,625             | 12, 587            | 1, 493         | 92       | 31, 950            | 3.6  | 52.0         | 39. 4          | 4.7          | 0.3 |
| Aug.     |                        |            |                    |                    |                |          |                    |      |              |                |              |     |
| 1        | NEP(east)              | 1,214      | 17, 124            | 12,809             | 1,504          | 92       | 32,743             | 3.7  | 52.3         | 39.1           | 4.6          | 0.3 |
| 1        | NEP(west)              |            | 17,613             | 13,000             | 1,515          | 92       | 2/33, 503          | 3.8  | 52.6         | 38.8           | 4.5          | 0.3 |
| 2        | REEF                   | 1,673      | 18,706             | 13, 279            | 1,542          | 92       | -35, 292           | 4.7  | 53.0         | 37.6           | 4.4          | 0.3 |
|          |                        |            |                    |                    |                |          |                    |      |              |                |              |     |

<sup>1/</sup> NEP(east)=east or Morjovi side of Northeast Point; NEP(west)=west or Vostochni side of Northeast Point; TZR=Tolstoi, Zapadni Reef, and Little Zapadni; POL=Polovina and Little Polovina; ZAP=Zapadni; REEF=Reef, Gorbatch, and Ardiguen; L-K=Lukanin and Kitovi.

<sup>2/</sup> The total kill of males was 36, 349; age was not determined for 1,057 young males killed 3-16 August.

Table A-3. -- Age classification of male seals killed on St. George Island, 26 June to 5 August 1968

|        |            | Males            | Tooth  |      |      | s in eac |      |     |     |        | ated seals<br>each age |     |    |
|--------|------------|------------------|--------|------|------|----------|------|-----|-----|--------|------------------------|-----|----|
| Date   | Rookery 1/ | killed           | sample | 2    | 3    | 4        | 1 5  | 6   | 2   | 3      | 4                      | T 5 | 6  |
|        |            | Number           | Number |      | ]    | Percent  |      |     |     |        | Number                 |     |    |
| June   |            |                  |        |      | -    |          |      |     |     |        |                        |     |    |
| 26     | ZAP        | 394              | 75     | -    | 23.4 | 68.8     | 7.8  | -   | -   | 92     | 271                    | 31  | _  |
| 28     | NOR        | 254              | 51     | -    | 13.7 | 74.5     | 11.8 | -   | -   | 35     | 189                    | 30  | -  |
| July   |            |                  |        |      |      |          |      |     |     |        |                        |     |    |
| 1      | EAST       | 287              | 52     | -    | 26.9 | 71.2     | 1.9  | -   | -   | 77     | 204                    | 6   | -  |
| 1      | NOR        | 101              | 20     | -    | 30.0 | 60.0     | 10.0 | -   | -   | 30     | 61                     | 10  | -  |
| 3      | ZAP        | 475              | 92     | 2.2  | 40.2 | 55.4     | 2.2  | -   | 10  | 192    | 263                    | 10  | _  |
| 5      | EAST       | 83               | 17     | -    | 29.4 | 58.8     | 11.8 | -   | ~   | 24     | 49                     | 10  | -  |
| 5      | NOR        | 395              | 79     | 2.5  | 35.5 | 55.7     | 6.3  | -   | 10  | 140    | 220                    | 25  | _  |
| 8      | ZAP        | 282              | 56     | 3.6  | 30.3 | 58.9     | 5.4  | 1.8 | 10  | 86     | 166                    | 15  | 5  |
| 8      | NOR        | 113              | 23     | -    | 60.9 | 39.1     | -    | -   | -   | 69     | 44                     | **  | -  |
| 10     | EAST       | 130              | 26     | _    | 34.6 | 61.5     | 3.9  | -   | -   | 45     | 80                     | 5   | _  |
| 10     | NOR        | 228              | 46     | -    | 32.6 | 67.4     | -    | -   | -   | 74     | 154                    | -   | -  |
| 12     | ZAP        | 250              | 50     | -    | 36.0 | 62.0     | 2.0  | -   | -   | 90     | 155                    | 5   | -  |
| 15     | EAST       | 349              | 69     | 1.4  | 50.8 | 40.6     | 5.8  | 1.4 | 5   | 177    | 142                    | 20  | 5  |
| 17     | NOR        | 419              | 83     | 2.4  | 57.8 | 36.2     | 3.6  | _   | 10  | 242    | 152                    | 15  | _  |
| 17     | STAR       | 152              | 34     | -    | 50.0 | 47.0     | 3.0  | -   | -   | 76     | 71                     | 5   | -  |
| 19     | ZAP        | 354              | 70     | 4.3  | 38.6 | 51.4     | 5.7  | -   | 15  | 137    | 182                    | 20  | _  |
| 19     | NOR        | 442              | 90     | 2.2  | 63.4 | 31.1     | 3.3  | -   | 10  | 280    | 137                    | 15  | -  |
| 22     | EAST       | 287              | 56     | 3.6  | 55.4 | 33.9     | 7.1  | -   | 10  | 159    | 97                     | 21  | -  |
| 22     | NOR        | 683              | 134    | 6.7  | 55.2 | 33.6     | 4.5  | -   | 46  | 377    | 229                    | 31  | -  |
| 24     | ZAP        | 383              | 79     | 11.4 | 44.3 | 40.5     | 2.5  | 1.3 | 44  | 170    | 155                    | 9   | 5  |
| 24     | NOR        | 134              | 28     | -    | 64.3 | 35.7     | -    | -   | -   | 86     | 48                     | -   | -  |
| 26     | NOR        | 178              | 36     | 5.6  | 69.4 | 16.7     | 8.3  | -   | 10  | 123    | 30                     | 15  | -  |
| 26     | EAST       | 99               | 21     | 4.8  | 57.1 | 28.5     | 4.8  | 4.8 | 5   | 56     | 28                     | 5   | 5  |
| 29     | ZAP        | 444              | 91     | 5.5  | 65.9 | 24.2     | 4.4  | -   | 24  | 293    | 107                    | 20  | -  |
| 29     | NOR        | 437              | 89     | 9.0  | 62.9 | 24.7     | 3.4  | -   | 39  | 275    | 108                    | 15  | -  |
| 29     | STAR       | 269              | 58     | 13.8 | 53.5 | 20.7     | 10.3 | 1.7 | 37  | 144    | 56                     | 28  | 4  |
| 31     | NOR        | 201              | 41     | -    | 75.6 | 19.6     | 2.4  | 2.4 | -   | 152    | 39                     | 5   | 5  |
| 31     | EAST       | 273              | 60     | 6.7  | 73.3 | 18.3     | 1.7  |     | 18  | 200    | 50                     | 5   | -  |
| Aug.   |            |                  |        |      |      |          |      |     |     |        |                        |     |    |
| Z      | NOR        | 111              | 23     | 4.3  | 73.9 | 17.4     | 4.4  | _   | 5   | 82     | 19                     | 5   | _  |
| 2      | STAR       | 96               | 27     | 7.4  | 55.6 | 29.6     | 7.4  | _   | 7   | 54     | 28                     | 7   | _  |
| 2      | EAST       | 391              | 83     | 13.3 | 60.2 | 25.3     | 1.2  | _   | 52  | 235    | 99                     | 5   | -  |
| 5      | STAR       | 75               | 20     | 30.0 | 45.0 | 10.0     | 10.0 | 5.0 | 22  | 33     | 8                      | 8   | 4  |
| 5      | NOR        | 98               | 20     | 5.0  | 55.0 | 30.0     | 5.0  | 5.0 | 5   | 54     | 29                     | 5   | 5  |
| 5      | ZAP        | 133              | 27     | 29.6 | 63.0 | 7.4      | -    | -   | 39  | 84     | 10                     |     |    |
| Season | total      | <u>2/</u> 9, 000 | 1,826  |      |      |          |      |     | 433 | 4, 443 | 3,680                  | 406 | 38 |

<sup>1/</sup> ZAP=Zapadni and South; EAST=East Reef and East Cliffs; NOR=North; STAR=Staraya Artil.

<sup>2/</sup> The total kill of males was 9,276; age was not determined for 276 young males taken 7-12 August.

Table A-4 . -- Cumulative age classification of male seals killed on St. George Island, 26 June to 5 August 1968

|            |           |       | Estimate  | Estimated seals killed | led     |         |        |      | Seals | Seals killed from | om   |      |
|------------|-----------|-------|-----------|------------------------|---------|---------|--------|------|-------|-------------------|------|------|
|            |           |       | from each | ch age group           | dn      |         | Total  |      | eacl  | each age group    | d    |      |
| Date       | Rookery-  | 2     | 3         | 4                      | 5       | 9       | kill   | 2    | 3     | 4                 | 5    | 9    |
|            |           | 1 1 1 |           | Z                      | -Number | 1 1 1 1 | 1      | 1 1  | 1     | -Percent-         |      |      |
| June<br>26 | 7 A D     |       | 00        | 171                    |         |         |        |      |       |                   |      |      |
| 0 0        | TOIN TOIN | ı     | 76        | 117                    | 10      | 1       | 394    | ı    | 63.3  | 68.8              | 7.9  | 1    |
| Zuly.      | NOR       | 1     | 171       | 460                    | 19      | ı       | 648    | ı    |       |                   | 9.4  | t    |
| 1 1        | EAST      | t     | 204       | 664                    | 29      | ı       | 93.5   | 1    | 218   | 710               | ,    |      |
| I          | NOR       | 1     | 234       | 725                    | 77      | ı       | 1.036  |      | 22.6  |                   | 1.7  | ı    |
| 3          | ZAP       | 10    | 426       | 988                    | 87      | ı       | 1 511  | 9 0  |       |                   | r a  |      |
| 5          | EAST      | 10    | 450       | 1.037                  | 97      | ı       |        | 0.0  | 7.07  |                   | 7.0  | ı    |
| 5          | NOR       | 20    | 590       |                        | 122     | 1       | 1, 989 |      | 70.7  | 63.2              | 0.1  |      |
| 00         | ZAP       | 30    | 929       | 1,423                  | 137     | 5       |        | . 3  | 20.8  |                   |      | < 0  |
| 00         | NOR       | 30    | 745       | 1,467                  | 137     | S       |        | 1.3  | 31.3  | 61.5              | 2    | 2.0  |
| 10         | EAST      | 30    | 790       | 1,547                  | 142     | 5       | 2,514  | 1.2  | 31.4  |                   | 5.7  | 2 0  |
| 10         | NOR       | 30    | 864       | 1,701                  | 142     | 5       | 2,742  | 1, 1 | 31.5  |                   | 5, 2 | 0.2  |
| 12         | ZAP       | 30    | 954       | 1,856                  | 147     | 5       | 2,992  | 1.0  | 31.9  |                   |      | 0.2  |
| 15         | EAST      | 35    | 1, 131    | 1,998                  | 167     | 10      | 3,341  | 1.0  | 33.9  | 59.8              | 5.0  | 0.3  |
| 17         | NOR       | 45    | 1, 373    | 2,150                  | 182     | 10      | 3,760  | 1.2  | 36.5  | 57.2              | 4.8  | 0, 3 |
| 17         | STAR      | 45    | 1,449     | 2,221                  | 187     | 10      | 3, 912 | 1.2  | 37.0  | 56.8              | 4.8  | 0.2  |
| 19         | ZAP       | 09    | 1,586     | 2,403                  | 207     | 10      | 4,266  | 1.4  | 37.2  | 56.3              | 4.9  | 0.2  |
| 19         | NOR       | 2.0   | 1,866     | 2,540                  | 222     | 10      | 4,708  | 1.5  | 39.6  | 54.0              |      | 0.2  |
| 22         | EAST      | 80    | 2,025     | 2,637                  | 243     | 10      | 4,995  | 1.6  | 40.5  | 52.8              | 4.9  | 0.2  |
| 22         | NOR       | 126   | 2,402     | 2,866                  | 274     | 10      | 5,678  | 2.2  | 42.3  | 50.5              | 4.8  | 0,2  |
| 24         | ZAP       | 170   | 2,572     | 3,021                  | 283     | 15      | 6,061  | 2.8  | 42.5  | 49.8              | 4.7  | 0.2  |
| 24         | NOR       | 170   | 2,658     | 3,069                  | 283     | 15      | 6, 195 | 2.8  | 42.9  | 49.5              | 4.6  | 0.2  |
| 92         | NOR       | 180   | 2,781     | 3,099                  | 298     | 15      | 6,373  | 2.8  | 43.7  | 48.6              | 4.7  | 0.2  |
| 92         | EAST      | 185   | 2,837     | 3, 127                 | 303     | 2.0     | 6, 472 | 2.9  | 43.8  | 48.3              | 4.7  | 0.3  |
| 62         | ZAP       | 209   | 3, 130    | 3,234                  | 323     | 2.0     | 6,916  | 3.0  | 45.2  | 46.8              | 4.7  | 0.3  |
| 59         | NOR       | 248   | 3,405     | 3,342                  | 338     | 20      | 7,353  | 3.4  | 46.3  | 45.4              | 4.6  | 0.3  |
| 59         | STAR      | 285   | 3,549     | 3,398                  | 366     | 24      | 7,622  | 3, 7 | 46.6  | 44.6              | 4.8  | 0.3  |
| 31         | NOR       | 285   | 3,701     | 3,437                  | 371     | 59      | 7,823  | 3.7  | 47.3  | 43.9              | 4.7  | 0.4  |
| 31         | EAST      | 303   | 3, 901    | 3,487                  | 376     | 5.9     | 8,096  | 3, 7 | 48.2  | 43.1              | 4.6  | 0.4  |
| Aug.       |           |       |           |                        |         |         |        |      |       |                   |      |      |
| 2          | NOR       | 308   | 3, 983    |                        | 381     | 59      | 8,207  | 3,8  | 48.5  | 42.7              | 4.6  | 0.4  |
| 2          | STAR      | 315   |           |                        | 388     | 5.6     | 8, 303 | 3,8  | 48.6  | 42.5              | 4.7  | 0.4  |
| 7          | EAST      | 367   | 4,272     | 3,633                  | 393     | 59      | 8,694  | 4.2  | 49.1  | 41.8              | 4.5  | 0.4  |
| 5          | STAR      | 389   | 4,305     | 3,641                  | 401     | 33      | 8,769  | 4.4  | 49. 1 | 41.5              | 4.6  | 0.4  |
| rU.        | NOR       | 394   | 4,359     |                        | 406     | 38      | 8,867  | 4.4  | 49.2  | 41.4              | 4.6  | 0.4  |
| 2          | ZAP       | 433   | 4,443     | 3,680                  | 406     | 38      | 9,000  | 4.8  | 49.4  | 40.9              | 4,5  | 0.4  |
|            |           |       |           |                        |         |         |        |      |       |                   |      |      |

1/ ZAP=Zapadni and South; EAST=East Reef and East Cliffs; NOR=North; STAR=Staraya Artil.

Table A-5, -- Number of female seals killed, by age, St. Paul Island, 26 June to 16 August 1968

| 1 6           | Females |    |      |     |      |       |       |                       | Lat         | Luarea | Estimated seals killed from | tori pair | eacn | age gro | -dnorf      |      |      |            |       |     |          |          |     |
|---------------|---------|----|------|-----|------|-------|-------|-----------------------|-------------|--------|-----------------------------|-----------|------|---------|-------------|------|------|------------|-------|-----|----------|----------|-----|
| Date Rookery- | killed  | 2  | 3    | 4   | 2    | 9     | 7     | 8                     | 6           | 10     | =                           | 12        | 13   | 14      | 15          | 16   | 17   | 18         | 19    | 20  | 2.1      | 22       | 23  |
|               | Number  |    |      |     |      |       | 1 1   | 1<br>5<br>5<br>8<br>8 |             | N      | Number                      |           | 1 1  | 1 1     | 1 1 1 1 1 1 | 1 1  | 1    | 1          | 1 1 1 |     |          |          |     |
|               |         |    |      |     |      |       |       |                       |             |        |                             |           |      |         |             |      |      |            |       |     |          |          |     |
| 26 to         |         |    |      |     |      |       |       |                       |             |        |                             |           |      |         |             |      |      |            |       |     |          |          |     |
| 23 (3/)       | 81      | 1  | 1    | 2   | 10   | 11    | 15    | 2                     | 3           | 9      | 9                           | ,         | m    | 2       | Ŋ           | 9    | 3    | m          | 1     | 2   | ,        | ì        | 1   |
|               |         |    |      |     |      |       |       |                       |             |        |                             |           |      |         |             |      |      |            |       |     |          |          |     |
| ZAP           | 6       | 1  |      | 1   | 1    | 9     | ,     | 1                     | 1           | 1      | -                           | 1         | 1    | r       | 1           | 1    | 1    | ,          | 1     | 3   | 1        | ,        | ı   |
| TZR           | 2.0     | 1  |      | 4   | 4    | 7     | 1     | 1                     | _           | -      | -                           | 1         | -    | r       |             | ,    | ,    | _          | ,     |     |          |          | 1   |
| NE Diwest)    | 2.2     |    |      |     | _    | 4     | 1     | 1                     | -           | 7      | -                           | -         | -    |         | 1           |      | 4    |            | 1     |     | ,        |          |     |
| DOI           | 3 1     |    |      |     | u    |       | 4     | -                     |             | . ~    | 9                           | ^         | ^    |         |             |      |      |            | -     |     |          |          |     |
|               | 4 4     |    |      |     | ) 1  | J -   | ^     | -                     | ^           | 1      | 0 1                         | 2 1       | 3 1  |         |             | ٠ ١  | 4 1  |            | 4 1   |     |          |          |     |
| 0000          | 6.4     |    |      | 0   | 7    | + 0   | 2 ~   | 4 (1                  | 3 <         | -      | 7                           |           |      |         |             |      | -    |            |       | 1 0 | 1 0      |          |     |
| 755           | ***     | 1  |      | 0 / | 0 (  | 30    | n (   | 2                     | <b>1.</b> ( |        | 0 0                         | t -       |      | t .     | + 5         | j    | → (  | → <u>c</u> | 1 1   | 0 1 | η .      |          | 1 / |
| 12K           | 191     | 1  | -    | 07  | 7 0  | 63    | 7     | O¥                    | *           | 4.     | ٠,                          | 1         | 4.   | 0 1     | 71          | d" : | , .  | C 7        | 0.7   |     | <b>-</b> | <b>→</b> | 7   |
| ZAP           | 117     | 1  |      | 14  | X) 4 | 13    | 4     | 20                    | 2           | 9      | 7                           | 2         | 9 .  | 5       | S.          | 11   | 9    | 9          | 9     | 7   | <b>-</b> | 1        | ı   |
| POL           | 0.7     |    | 1    | 0   | ī    | 1     | 7     | 1                     |             | 1      | 1                           | ı         | 7    |         | ı           |      | ı    |            | ı     | 7   | ı        |          |     |
|               |         |    |      |     |      |       |       |                       |             |        |                             |           |      |         |             |      |      |            |       |     |          |          |     |
| NEP(east)     | 19      | 1  | 2    | 3   | 약    | 3     | 2     | 7                     | 4           | 6      | 5                           | 00        | 5    | 2       | 7           | 2    | ,    |            | 7     | _   |          | 1        | ,   |
| NEP(west)     | 509     | 1  | 1    | 13  | 2.5  | 24    | 17    | 9                     | 13          | 1.2    | 10                          | 11        | 17   | 10      | 13          | 13   | 00   | 11         | ~     | 2   | 1        | ,        | 1   |
| REEF          | 422     | 1  | 12   | 50  | 46   | 89    | 28    | 19                    | 2.5         | 82     | 16                          | 22        | 28   | 12      | 19          | 6    | 91   | 6          | 9     | 3   | 9        | 1        | 1   |
| TZR           | 154     |    | 4    | 23  | 2.0  | 23    |       | 80                    | 4           | 4      | 4                           | 4         | 16   | 4       | 12          | 80   | 47   | 4          | 4     | 7   | 4        |          | ,   |
| IK            | 63      |    | 1    |     | 12   | 1.2   | 65    | ~                     | 2           | 7.     | ιc                          | 55        |      | 7       | 3           |      | 2    |            | ,     |     |          |          | ,   |
| 7.A.D         | 456     | er | σ    | 4.2 | 0.5  | 1 6   | 42    | 10                    | 2.8         | 2.8    | 10                          | 3.4       | 2.2  | . 25    | 17          | 2.8  | 1 10 | 4          | 0     | 0   | ,        |          | ,   |
| NF D(weep)    | 2.4.2   |    | 14   | 33  | 2.5  | 30    | 9     | 1.4                   | 2 5         | 14     | 14                          | 10        | 000  | 17      |             | -    | - 4  |            |       |     |          |          |     |
| NED(0364)     | 300     |    | 27   | 67  | 3.6  | 3 6   | 1 9 1 | * 4                   | 1 2         | + 00   | 31                          | 16        | 0 00 | 16      | ٦ ٦         | 4 4  | 0 4  | Φ          | 1 00  | 1   |          |          |     |
| 100           | 0 10    |    | o co | 12  | . 16 | 12    | 9 14  | ۳ ۷                   | 0 7         | )      | · Lif                       | 2         | -    | -       |             | +    | 2    |            | > 1   |     |          |          |     |
| NIE Dimensi   | 7 2 2   | ,  | 9 4  | 03  | 103  | 3 7 7 | 36    | 33                    | 3 00        | 3.0    | 20                          | 2.2       | - 1  | 3.3     | 4 0 7       | 3.5  | 3 0  | 3 7 6      | 2.3   |     | 1,4      |          |     |
| NE F (West)   | # C 0 7 |    | 67   | 121 | 101  | 0 0   | 2 -   | 35                    |             | 2 0    | 23                          | 2.1       | 10   |         |             | 700  | 1.7  | 0 0        | 1 0   | 1   | 2 6      |          |     |
| 7 1           | 000     | 1  | 0 :  | 121 | 100  | † · · | 10    | 7.0                   | 00          | # 0    | 00                          | 1 7       | 0,   |         |             | 00   | 6.1  | 0 0        | 7.0   | ŧ   | n        | n        | ŧ   |
| 보기            | 400     | 1  | 4.   | 153 | 50   | 54    | 91    | 91                    | 61          | 5      | 16                          | φ,        | 51   | 0       | 0           | ٥    |      | 9          | ı     |     | ŧ        |          | ı   |
| ZAP           | 378     | ,  | 14   | 98  | 64   | 44    | 37    | 2                     | 20          | 22     | 24                          | m         | 2    |         |             | 1    | 14   | _          | 1     | 23  | ı        | ,        | 1   |
| NEP(east)     | 917     | 1  | 83   | 212 | 152  | 104   | 87    | 45                    | 36          | 2.2    | 15                          | 6         | 24   | 15      |             | 36   | 18   | 1.5        | 12    | 9   | h        | ,        | ì   |
| NEP(west)     | 291     | 1  | 90   | 63  | 44   | 28    | 20    | 12                    | 20          | 16     | 4                           | 91        | 4    | 44      | 12          | 80   | 12   | 1.2        | 47"   | ,   | ,        | ,        | ,   |
| TZR           | 546     | 1  | 50   | 110 | 96   | 72    | 36    | 19                    | 5           | 12     | 6                           | 7         | 12   | 17      | 6           | 17   | 24   | 11         | 17    | 6   | 14       | 2        | 1   |
| REEF          | 421     | 1  | 2.1  | 212 | 47   | 3.1   | 28    | 01                    | 3           | 3      | 18                          | 3         |      | 3       | 3           | 5    | 00   | 5          | 5     | 00  | 00       | ,        | 1   |
| ZAP           | 1, 303  | 9  | 106  | 293 | 198  | 151   | 119   | 63                    | 50          | 50     | 99                          | 17        | 39   | 46      | 39          | 36   | 9    | 10         | 9     | 434 | ,        | 471      | ı   |
| L-K           | 529     | 6  | 25   | 114 | 69   | 68    | 19    | 15                    | 40          | 34     | 22                          | 9         | 12   | 22      | 15          | 15   | 12   | 9          | 1     | 3   | ı        | ٠        | 1   |
| POL           | 192     | h  | 17   | 37  | 27   | 2.4   | 14    | 10                    | 10          | 20     | 7                           | 60        | 14   | 3       | m           | ,    | ,    | 3          | 1     | 1   | 1        | 1        | 1   |
| REEF          | 969     | 1  | 64   | 151 | 77   | 74    | 45    | 23                    | 5.8         | 26     | 16                          | 6         | 6    | 3       | 7           | 2    | 2    | 7          | 3     | 23  | 7        | ŀ        | ,   |
| NEP(west)     | 425     | 7  | 13   | 29  | 64   | 46    | 43    | 2.7                   | 30          | 13     | 2.0                         | 13        | 10   | 2       | 23          | 13   | 13   | 1          | 13    | 3   |          | 1        | 1   |
| POL           | 446     | 1  | 33   | 7.0 | 09   | 47    | 37    | 2.7                   | 30          | 2.3    | 10                          | 16        | 16   | 7       | 7           | 2.0  | 13   | 10         | 16    | ,   | 44       | ,        | ,   |
| TZR           | 262     | 7  | 17   | 20  | 37   | 2.7   | 2.7   | 34                    | 10          | 7      | 13                          | 7         | 3    | 10      | '           | -    | 7    | 3          | 9     | '   | '        | '        | 1   |
|               |         |    |      |     |      |       |       |                       |             |        |                             |           |      |         |             |      |      |            |       |     |          |          |     |
|               |         |    |      |     |      |       |       |                       |             |        |                             |           |      |         |             |      |      |            |       |     |          |          |     |

1] Number in each age was calculated from the age composition determined from samples of canine teeth.

2/ NEP(east)=east or Morjovi sude of Northeast Point; NEP(west)=west or Vostochni side of Northeast Point; TZR=Tolstoi, Zapadni Reef, and Little Zapadni; POL=Polovuna and Little Polovuna; ZAP=7apadni; REEF=Reef, Gorbatch, and Ardiguen; L-K-Lukanin and Kitovi.

3/ The females killed at all rookeries during this period were combined because of the small number taken from each rookery.

Table A-6. -- Percentage age classification of female seals in sample, St. Paul Island, 26 June to 16 August 1968

| 2.0 4.0 8.0 8.0 . 4.0 2.0 6.0 10.0 4.0 4.0 . 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 2.0 4.0 8.0 8.0 . 4.0 2.0 6.0 10.0 4.0 4.0 . 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rookery 1/ sample 2           | Tooth                     |                                         |                  | 3           | 4      | 5    | 9                                       | 7    | 00                                      | Seals<br>9 10 | ils in each | 930 | group of | sample<br>3 14 | 1 15  | 16   | 17  | 8    | 101 | 20  | -     | 2.2 | 2.3 | 1 2 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------|-----------------------------------------|------------------|-------------|--------|------|-----------------------------------------|------|-----------------------------------------|---------------|-------------|-----|----------|----------------|-------|------|-----|------|-----|-----|-------|-----|-----|-----|
| 6.6.7 - 6.7 - 6.7 - 6.7 - 6.0 10.0 4.0 4.0 - 2.0 . 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7 - 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.6.7 6.7 6.0   0.0   4.0   4.0   5.0   6.0   0.0   4.0   4.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0   5.0            | Number                        | Number                    | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                  |             |        |      | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |      | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |               |             |     |          | -              | -     |      |     |      | , y | 200 | 6 8 1 | 77  | 6.2 | 47  |
| 6. 2. 0 4.0 8.0 8.0 9.0 - 4.0 2.0 6.0 10.0 4.0 4.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                           |                                         |                  |             |        |      |                                         |      |                                         |               |             |     |          |                |       |      |     |      |     |     |       |     |     |     |
| 66.7 - 6.7 6.6 6.7 - 6.7 6.7 6.7 13.3 6.7 6.7 6.7 13.3 6.7 6.7 6.7 13.3 6.7 6.7 6.7 13.3 6.7 6.7 6.7 13.3 6.7 6.7 6.7 13.3 6.7 6.7 6.7 13.3 6.7 6.7 6.7 13.3 6.7 6.7 6.7 13.3 6.7 6.7 6.7 6.7 13.3 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7 - 6.7 26.6 6.7 6.7 6.7 6.7 13.3 6.7 6.7 6.7 13.3 6.7 6.7 6.7 13.3 6.7 6.7 6.7 13.3 6.7 6.7 6.7 13.3 6.7 6.7 6.7 13.3 6.7 6.7 6.7 13.3 6.7 6.7 6.7 13.3 6.7 6.7 6.7 13.3 6.7 6.7 6.7 13.3 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (2/) 50 - 2.0 12.0 14.        | 2.0 12.0 14.              | 12.0 14.                                | 12.0 14.         | 12.0 14.    | 0 14.  |      | 0                                       |      |                                         |               | 0           |     | 4        | 0              | 0 6.  | 10.  | 4.  |      |     |     |       | ,   | ٠,  |     |
| 16.7 33.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                           |                                         |                  |             |        | ٠    |                                         | -    | r-                                      |               |             |     |          |                |       | 1    |     |      |     |     |       |     |     |     |
| 16.7 26.6 6.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16.7 26.6 6.7 9.7 9.7 - 6.7 13.3 - 7 - 4.0 4.0 4.0 - 4.0 4.0 - 4.0 4.0 - 4.0 4.0 - 4.0 4.0 - 4.0 4.0 - 4.0 4.0 - 4.0 4.0 - 4.0 4.0 - 4.0 4.0 - 4.0 4.0 - 4.0 4.0 - 4.0 4.0 - 4.0 4.0 - 4.0 4.0 - 4.0 4.0 - 4.0 4.0 - 4.0 4.0 - 4.0 4.0 - 4.0 4.0 - 4.0 4.0 - 4.0 4.0 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.0 1 0.6 0.6 1.2 5.1 5.0 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15 - 20.0 20.0 26.            | 15 - 20.0 20.0 26.        | 20.0 26.                                | 20.0 26.         | 20.0 26.    | 0 26.  |      |                                         | 6.7  |                                         | 2             | 7           |     |          |                | 4     |      |     |      |     |     |       |     |     |     |
| 4.0         8.0         10.0         8.0         10.0         8.0         10.0         9.0         10.0         9.0         10.0         9.0         10.0         9.0         10.0         9.0         10.0         10.0         9.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16.7 33.3 2 2 4.9 6.7 6.7 6.7 6.7 2.2 2 4.9 4.4 4.4 4.4 4.4 5.2 2.2 4.9 6.6 2.5 3.1 6.7 6.7 2.2 2 2 4.9 7.4 4.4 4.4 4.4 5.1 2.0 4.0 6.6 2.5 3.1 6.7 6.7 2.2 2 2 4.9 7.4 6.4 3.8 5.4 1.6 11.0 6.0 6.1 1.2 6.4 5.9 4.8 5.4 8.1 4.0 5.1 2.0 4.0 5.1 2.0 1.0 6.0 6.1 2.2 7.4 6.4 5.9 4.8 5.4 8.1 4.4 6.4 5.4 5.4 1.6 11.1 0.5 6.4 5.9 4.8 5.4 8.1 4.4 6.4 5.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7 13.                         | 15 6.7 13.                | 7 13.                                   | 7 13.            | 7 13.       | 7 13.  |      |                                         | 1    |                                         | 2             | 9           | 7   | 7        | 2              |       | 9    | 13  | ,    |     |     | ,     |     |     | b   |
| 4.4         4.7 <td>44         6.7         2.2         2.2         2.2         3.7         2.5         4.4         4.4         4.4         4.7         2.5         2.2         2.2         2.2         2.2         3.7         2.5         4.9         3.7         2.5         3.7         2.5         3.7         2.5         4.9         3.7         2.5         3.7         2.5         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7</td> <td>.8</td> <td>.8</td> <td>.8</td> <td>.8</td> <td>.8</td> <td>.8</td> <td></td> <td></td> <td>16.0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td>7</td> <td>17</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 44         6.7         2.2         2.2         2.2         3.7         2.5         4.4         4.4         4.4         4.7         2.5         2.2         2.2         2.2         2.2         3.7         2.5         4.9         3.7         2.5         3.7         2.5         3.7         2.5         4.9         3.7         2.5         3.7         2.5         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7         3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .8                            | .8                        | .8                                      | .8               | .8          | .8     |      |                                         | 16.0 | 0                                       | 0             | 0           | 0   | 0        | 0              |       | 7    | 17  |      |     |     |       |     |     | 1   |
| 4 4 6 6.7         2.2         8.9         6.7         -         6.7         6.7         2.5         4.9         7.4         4.4         4.4         6.7         2.5         4.9         7.4         8.0         3.7         0.6         0.6         1.2         2.5         4.9         7.4         4.9         7.4         4.4         4.4         4.4         4.4         6.0         6.0         6.0         6.0         1.2         6.0         6.0         1.2         1.0         6.0         1.2         1.0         6.0         1.2         1.0         6.0         1.2         1.0         6.0         1.2         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 4 6.7 2.2 8 9 6.7 - 6.7 6.7 6.7 2.2 2.2 2.2 - 4.4 4.4 6.7 6.7 2.5 4.9 7.4 8.0 0.6 1.2 4.0 5.1 2.0 4.0 6.1 8.1 4.0 9.1 5.1 5.1 5.1 5.1 5.0 5.0 6.1 1.2 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.0 0.6 1.2 5.1 4.0 5.1 2.0 4.0 6.1 8.1 4.0 9.1 5.1 5.1 5.1 5.1 5.1 5.1 5.0 5.0 6.1 1.2 5.1 6.4 5.9 4.8 6.4 6.4 3.8 5.4 1.6 1.1 0.5 5.1 5.2 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6 16.                         | - 16.                     | - 16.                                   | - 16.            | - 16.       | 16.    |      |                                         | 33.3 | ~                                       | 3             |             |     |          |                | ١     |      | 1   |      |     |     |       |     |     |     |
| 5,5         3,7         2,5         4,9         0,6         2,5         3,1         6,7         2,5         4,9         7,1         4,0         9,1         5,1         6,1         9,1         5,1         5,1         6,0         0,6         1,2         1         6,1         1,2         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5,5         3,7         2.5         4.9         0.6         5.1         6.7         2.5         4.9         7.2         3.1         6.7         2.5         4.9         7.1         4.0         9.1         5.1         5.1         5.0         1.0         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2 <td>F 45 11.1 8.9 13.</td> <td> 11.1 8.9 13.</td> <td>11.1 8.9 13.</td> <td>11.1 8.9 13.</td> <td>8.9 13.</td> <td>9 13.</td> <td></td> <td></td> <td>4.4</td> <td>4.</td> <td>2</td> <td>2</td> <td>6</td> <td>2</td> <td></td> <td>9</td> <td>6.</td> <td>2.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F 45 11.1 8.9 13.             | 11.1 8.9 13.              | 11.1 8.9 13.                            | 11.1 8.9 13.     | 8.9 13.     | 9 13.  |      |                                         | 4.4  | 4.                                      | 2             | 2           | 6   | 2        |                | 9     | 6.   | 2.  |      |     |     |       |     |     |     |
| 4.0         5.1         8.1         4.0         9.1         5.1         5.1         2.0         1.0         2.1         2.1         2.1         2.1         2.1         2.1         2.1         2.0         3.1         2.2         1.0         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         4.8         6.4         6.4         3.8         5.4         1.0         5.2         6.6         2.9         4.4         2.2         3.7         2.1         1.5         1.7         1.5         1.5         1.0         3.7         1.1         1.5         1.2         1.0         3.7         1.0         3.4         3.1         3.4         3.2         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6 <td>4.0         5.1         8.1         4.0         9.1         5.1         5.1         2.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0<td>11.7 15.</td><td>- 0.6 86 11.7 15.</td><td>8 6 11.7 15.</td><td>8 6 11.7 15.</td><td>11.7 15.</td><td>7 15.</td><td></td><td></td><td>4.9</td><td>· ·</td><td>2</td><td>'n.</td><td>6</td><td>9</td><td>5</td><td>9</td><td>2.</td><td>4</td><td></td><td></td><td></td><td></td><td></td><td>1.2</td><td>1</td></td>                       | 4.0         5.1         8.1         4.0         9.1         5.1         5.1         2.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0 <td>11.7 15.</td> <td>- 0.6 86 11.7 15.</td> <td>8 6 11.7 15.</td> <td>8 6 11.7 15.</td> <td>11.7 15.</td> <td>7 15.</td> <td></td> <td></td> <td>4.9</td> <td>· ·</td> <td>2</td> <td>'n.</td> <td>6</td> <td>9</td> <td>5</td> <td>9</td> <td>2.</td> <td>4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.2</td> <td>1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.7 15.                      | - 0.6 86 11.7 15.         | 8 6 11.7 15.                            | 8 6 11.7 15.     | 11.7 15.    | 7 15.  |      |                                         | 4.9  | · ·                                     | 2             | 'n.         | 6   | 9        | 5              | 9     | 2.   | 4   |      |     |     |       |     | 1.2 | 1   |
| 3.4         6.9         13.8         8.6         12.1         8.4         5.2         10.4         3.4         -         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8 <td>3.4         6.9         13.8         8.6         12.1         8.6         5.2         10.4         3.4         7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7<td></td><td>37.5 12.5 12.</td><td>12.5 12.5</td><td>12.5 12.5</td><td>12.5 12.5</td><td>5 12,</td><td></td><td></td><td>3.0</td><td></td><td>5</td><td>_</td><td>2</td><td>-<br/>-</td><td>~ ~</td><td>4.</td><td>6</td><td>5</td><td></td><td></td><td></td><td></td><td>,</td><td>,</td><td>1</td></td>                                    | 3.4         6.9         13.8         8.6         12.1         8.6         5.2         10.4         3.4         7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7         1.7 <td></td> <td>37.5 12.5 12.</td> <td>12.5 12.5</td> <td>12.5 12.5</td> <td>12.5 12.5</td> <td>5 12,</td> <td></td> <td></td> <td>3.0</td> <td></td> <td>5</td> <td>_</td> <td>2</td> <td>-<br/>-</td> <td>~ ~</td> <td>4.</td> <td>6</td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td>,</td> <td>1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | 37.5 12.5 12.             | 12.5 12.5                               | 12.5 12.5        | 12.5 12.5   | 5 12,  |      |                                         | 3.0  |                                         | 5             | _           | 2   | -<br>-   | ~ ~            | 4.    | 6    | 5   |      |     |     |       | ,   | ,   | 1   |
| 4         3.4         6.9         13.8         8.6         12.1         8.6         5.2         10.4         3.4         .         1.7         1.7         .         1.1         0.5         .         1.1         0.5         .         1.1         0.5         .         1.1         0.5         .         1.1         0.5         .         .         1.1         0.5         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         . <t< td=""><td>4         3.4         6.9         13.8         8.6         12.1         8.6         5.2         10.4         3.4         .         1.7         1.7         .         1.1         1.7         .         1.1         1.7         .         1.1         1.7         .         .         1.1         1.7         .         .         .         1.1         1.7         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .&lt;</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>,</td><td>,</td><td></td></t<>                                                                                                                                                                                                                                   | 4         3.4         6.9         13.8         8.6         12.1         8.6         5.2         10.4         3.4         .         1.7         1.7         .         1.1         1.7         .         1.1         1.7         .         1.1         1.7         .         .         1.1         1.7         .         .         .         1.1         1.7         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                           |                                         |                  |             |        |      |                                         |      |                                         |               |             |     | 4        | 1              |       |      |     |      |     |     |       | ,   | ,   |     |
| 1         2.7         6.4         5.9         4.8         5.4         8.1         4.8         6.4         3.8         5.4         1.1         0.5         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.2.7         6.4         5.9         4.8         5.4         8.1         4.8         6.4         3.8         5.4         11.0         0.5         1.5         0.6         3.7         5.2         0.6         3.7         5.2         0.6         3.7         5.2         0.6         2.9         4.4         5.2         3.7         2.2         1.5         0.7         1.5         0.7         1.5         0.7         1.5         0.7         1.5         0.7         1.5         0.7         1.5         0.7         1.5         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 58 - 3.4 5.2 6.9              | 58 - 3.4 5.2 6.9          | 6                                       | 6                | 6           | 6      | 5.2  |                                         | 4    | 7                                       | 6             | 00          | 9   |          | 6 5.           | 2 10. | 3,   | 6   | 1    |     | 1.7 |       |     |     |     |
| 6         4.4         5.9         6.6         2.9         4.4         2.2         3.7         2.2         1.5         0.7         1.5         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6 44 5.9 6.6 3.7 5.2 6.6 2.9 44 2.2 3.7 2.2 1.5 0.7 1.5 2  1 4.0 8.0 8.0 8.0 4.0 10.2 2.6 7.7 5.1 2.6 2.6 2.6 2.6 2.6  2 4.3 6.1 6.1 4.3 7.4 4.9 5.5 3.7 6.1 1.2 3.1 1.9 1.9 1.9  3 1.3 5.3 2.6 10.5 5.3 2.6 5.9 1.1 4.6 2.3 1.1 1.9 1.9 1.9  7.3 5.0 5.0 3.2 2.7 5.4 4.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rest) 186 6.4 11.3            | 186 6.4 11.3              | 3                                       | 2                | 2           | 2      | 10.8 |                                         | _    | ~                                       | 47            | 6           | 00  | 4        | 1 4.           | 8 6.  | .9   | 3,  |      |     | -   |       |     |     |     |
| 2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.6         2.7         2.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1 <td>2 6 7.6 2.6 2.6 2.6 7.7 5.1 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.7 3 6.1 1.2 3 6.1 6.1 6.1 4.3 7.4 4.9 5.8 5.8 8.0 3.5 6.9 1.1 4.6 2.3 - 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1</td> <td>F 136 - 2.9 11.8 11.0 16.2</td> <td>- 2.9 11.8 11.0 16.2</td> <td>8 11.0 16.2</td> <td>8 11.0 16.2</td> <td>8 11.0 16.2</td> <td>0 16.2</td> <td></td> <td></td> <td>9</td> <td>4</td> <td>6</td> <td>9</td> <td>7</td> <td>2</td> <td>6 2.</td> <td>9 4.</td> <td>2.</td> <td>6</td> <td></td> <td></td> <td>0.7</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 6 7.6 2.6 2.6 2.6 7.7 5.1 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.7 3 6.1 1.2 3 6.1 6.1 6.1 4.3 7.4 4.9 5.8 5.8 8.0 3.5 6.9 1.1 4.6 2.3 - 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F 136 - 2.9 11.8 11.0 16.2    | - 2.9 11.8 11.0 16.2      | 8 11.0 16.2                             | 8 11.0 16.2      | 8 11.0 16.2 | 0 16.2 |      |                                         | 9    | 4                                       | 6             | 9           | 7   | 2        | 6 2.           | 9 4.  | 2.   | 6   |      |     | 0.7 |       |     |     |     |
| 4.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0 <td>4.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0<td>39 - 2.6 15.4 12.8 15.4</td><td>- 2.6 15.4 12.8 15,4</td><td>4 12.8 15.4</td><td>4 12.8 15.4</td><td>4 12.8 15.4</td><td>8 15,4</td><td></td><td></td><td>~</td><td>. 9</td><td></td><td>9</td><td>9</td><td>9</td><td>2 2.</td><td>6 7.</td><td>5,</td><td>2.</td><td></td><td></td><td>7.6</td><td></td><td></td><td>,</td><td></td></td> | 4.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0 <td>39 - 2.6 15.4 12.8 15.4</td> <td>- 2.6 15.4 12.8 15,4</td> <td>4 12.8 15.4</td> <td>4 12.8 15.4</td> <td>4 12.8 15.4</td> <td>8 15,4</td> <td></td> <td></td> <td>~</td> <td>. 9</td> <td></td> <td>9</td> <td>9</td> <td>9</td> <td>2 2.</td> <td>6 7.</td> <td>5,</td> <td>2.</td> <td></td> <td></td> <td>7.6</td> <td></td> <td></td> <td>,</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39 - 2.6 15.4 12.8 15.4       | - 2.6 15.4 12.8 15,4      | 4 12.8 15.4                             | 4 12.8 15.4      | 4 12.8 15.4 | 8 15,4 |      |                                         | ~    | . 9                                     |               | 9           | 9   | 9        | 2 2.           | 6 7.  | 5,   | 2.  |      |     | 7.6 |       |     | ,   |     |
| 2         4.3         6.1         4.3         7.4         4.9         5.5         3.7         6.1         1.2         3.1         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.9         1.0         1.0         1.0         5.3         2.6         1.1         4.6         2.3         2.7         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 4.3 6.1 6.1 4.3 7.4 4.9 5.5 3.7 6.1 1.2 3.1 1.9 19 19 13 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25 - 4.0 20.0 20.0            | 4.0 20.0 20.0             | 0 20.0                                  | 0 20.0           | 0 20.0      | 0 20.0 |      | 4                                       | 0    | 0                                       | 0             | 0           | 0   | 0        | 12.            | 0 4.  | 1    | 4   |      |     |     |       | ,   | ,   |     |
| 3         5.7         10.4         5.8         5.8         8.0         3.5         6.9         1.1         46         2.3         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.2         1.2         4.0         2.9         3.9         3.4         1.4         4.6         2.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3         5.7         10.4         5.8         5.8         8.0         3.5         6.9         1.1         4.6         2.3         .         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 163 0.6 1.9 9.2 11.0 11.7     | 163 0.6 1.9 9.2 11.0 11.7 | 6 1.9 9.2 11.0 11.7                     | 0 11.7           | 0 11.7      | 0 11.7 |      |                                         | 2    | 3                                       | ~             |             | 3   | 4        | 9 5.           | 5 3.  | 9    | _   |      |     | 1 9 |       | 4   |     |     |
| 3         1.3         5.3         2.6         1.3         1.3         1.3         2.6         2.3         1.3         1.3         1.3         1.5         2.6         2.3         1.3         1.3         1.5         2.6         2.7         2.7         2.9         2.9         2.9         2.9         2.9         2.9         2.9         2.9         2.9         2.9         2.9         2.9         2.9         2.9         2.9         2.9         2.9         2.9         2.9         2.9         2.9         2.9         2.9         2.9         2.9         2.9         3.9         3.9         3.9         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3       1.3       5.3       2.6       6.3       1.3       1.3       1.3       1.3       2.6       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ) 87 - 5.8 13.8 9.2 12.6      | 87 - 5.8 13.8 9.2 12.6    | 2 12.6                                  | 2 12.6           | 2 12.6      | 2 12.6 |      | 2                                       | 3    | _                                       | 4             | 90          | OD  | 0        | 5 6.           | 9 1.  | 4.   | 2.  |      |     | 1.1 |       | 1   | ,   |     |
| 8         7.3         2.0         -         5.8         -         1.4         1.4         1.4         -         2.9         2.9         -         2.9         2.9         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8       7,3       2,0       -       5,8       -       1,4       1,4       -       2,9       2,9       2,9       2,9       2,9       2,9       2,9       2,9       2,9       2,9       3,9       3,4       1,4       3,4       3,4       2,4       4,9       2,9       2,9       3,9       3,9       1,4       1,4       -       2,9       2,9       3,9       3,9       3,4       1,4       1,4       -       0.9       3,9       3,1       1,6       1,6       -       0.9       0.9       2,7       -       0.8       -       0.9       0.9       2,7       -       0.9       0.9       2,7       -       0.9       0.9       2,7       -       0.9       0.9       0.9       2,7       -       0.9       0.9       0.9       0.9       0.7       -       0.9       0.9       0.9       0.9       0.9       0.9       0.9       0.9       0.9       0.9       0.9       0.9       0.9       0.9       0.9       0.9       0.9       0.9       0.9       0.9       0.9       0.9       0.9       0.9       0.9       0.9       0.9       0.9       0.9       0.9       0.9       0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | east) 76 - 9.2 22.4 11.9 10.5 | - 9.2 22.4 11.9 10.5      | 22.4 11.9 10.5                          | 22.4 11.9 10.5   | 4 11.9 10.5 | 9 10.5 |      | un                                      | 3    | 3                                       | ~             | 9           | 5   | 3        | 6 5.           | 3 1.  | numi | _   | 1.3  |     |     | ,     | +   |     |     |
| 4         5.8         4.4         5.8         4.4         3.4         2.4         4.9         9.2         4.9         2.9         3.9         3.4         1.4         2.4         4.9         2.9         3.9         3.4         1.4         2.1         2.7         2.1         2.1         2.1         2.1         2.1         2.1         2.1         3.1         1.4         2.7         3.0         3.7         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4       5.8       4.4       5.8       4.4       5.8       4.4       5.4       4.9       9.2       4.9       2.9       3.9       3.4       1.4       2.4       4.9       2.9       3.9       3.4       1.4       2.4       6.2       3.9       3.4       1.4       2.4       6.2       3.9       3.4       1.4       2.4       6.2       3.9       3.4       1.4       2.7       6.3       3.9       3.4       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 69 - 10.2 21.7 20.3 16.0      | 69 - 10.2 21.7 20.3 16.0  | 21.7 20.3 16.0                          | 21.7 20.3 16.0   | 7 20.3 16.0 | 3 16.0 |      | 41                                      | 00   | 9                                       | 0             |             | 00  |          | 4 1            | 4 1.  | 1    | 2.  | 2.9  | ,   |     | ı     | ı   | ,   |     |
| 8 7.8 9.1 3.6 5.0 3.2 2.7 2.7 2.3 4.6 2.3 0.5 2.7 - 0.5 0.4 - 0.5 0.4 1.8 5.3 7.1 6.2 0.9 0.9 2.7 - 3.6 1.6 1.8 - 0.9 1.6 1.6 1.0 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8 7.8 9.1 3.6 5.0 3.2 2.7 2.7 2.3 4.6 2.3 0.5 2.7 - 0.5 0.4 - 0.8 1.8 5.3 7.1 6.2 0.9 2.7 - 0.8 1.6 5.3 7.1 6.2 0.9 2.7 1.6 1.6 1.6 1.6 1.6 1.6 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | west) 206 - 2.4 14.1 15.5 5.8 | 206 - 2.4 14.1 15.5 5.8   | 14.1 15.5 5.8                           | 14.1 15.5 5.8    | 1 15.5 5.8  | 00 i   |      |                                         | 6    | 6                                       | 4             | 00          | 4.  | 4        | 4 4.           | 9 9.  | 4    | 2.  | 3, 9 |     | 1.4 |       | ,   | ,   | -   |
| 9, 3, 9, 4, 7, 2, 3         3, 9, 1, 6, 3, 1         1, 6, 1, 6         -         0, 8         -         -         0, 8         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td< td=""><td>9 4.7 7.1 5 3.9 1.6 3.1 1.6 1.6 1.6 - 0.8 0.8 0.8 4.6 3.9 2.9 1.6 1.0 2.6 1.6 2.0 3.9 2.0 1.6 1.3 0.7 0.8 4.6 3.9 2.9 1.6 1.0 2.6 1.6 2.6 3.9 2.0 1.6 1.3 0.7 0.8 4.1 6.8 2.5 1.4 1.4 4.1 2.7 4.1 4.1 1.4 - 1.2 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9</td><td>10.9 18.3 12.8 12.8</td><td>10.9 18.3 12.8 12.8</td><td>16.3 12.8 12.8</td><td>16.3 12.8 12.8</td><td>3 12.8 12.8</td><td>8 77 8</td><td></td><td></td><td>x0 0</td><td>nn (</td><td>- 1</td><td>9 0</td><td>0</td><td>~</td><td>7 2.</td><td>2 .</td><td>4.</td><td>2.</td><td>0.5</td><td></td><td></td><td></td><td>0.4</td><td>,</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9 4.7 7.1 5 3.9 1.6 3.1 1.6 1.6 1.6 - 0.8 0.8 0.8 4.6 3.9 2.9 1.6 1.0 2.6 1.6 2.0 3.9 2.0 1.6 1.3 0.7 0.8 4.6 3.9 2.9 1.6 1.0 2.6 1.6 2.6 3.9 2.0 1.6 1.3 0.7 0.8 4.1 6.8 2.5 1.4 1.4 4.1 2.7 4.1 4.1 1.4 - 1.2 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.9 18.3 12.8 12.8           | 10.9 18.3 12.8 12.8       | 16.3 12.8 12.8                          | 16.3 12.8 12.8   | 3 12.8 12.8 | 8 77 8 |      |                                         | x0 0 | nn (                                    | - 1           | 9 0         | 0   | ~        | 7 2.           | 2 .   | 4.   | 2.  | 0.5  |     |     |       | 0.4 | ,   |     |
| 4.6         3.9         2.9         1.6         1.0         2.6         1.6         3.9         2.0         1.6         1.0         2.6         1.6         1.3         2.6         1.4         4.1         2.7         4.1         4.1         1.1         1.1         1.1         2.0         1.6         1.3         0.9         2.6         1.7         3.0         1.7         2.0         0.0         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9         0.9 <td>4.6       3.9       2.9       1.6       1.6       2.6       1.6       1.0       2.6       1.6       1.0       2.6       1.6       1.0       2.6       1.6       1.3       0.9       2.7       1.6       1.0       2.6       1.4       1.4       4.1       2.7       4.1       1.4       1.1       2.0       1.6       1.3       0.9       2.2       1.6       1.0       1.6       1.9       1.7       2.0       1.9       2.0       1.2       1.4       1.4       1.1       2.0       1.9       2.0       1.2       2.0       1.7       3.0       4.4       1.6       2.0       1.0       1.2       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.0       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1</td> <td>112 - 3 6 25 9 17 0 11 6</td> <td>3 6 25 9 17 0 11 6</td> <td>25.9 12.3 6.3</td> <td>25.9 12.3 6.3</td> <td>0.00 12.0</td> <td>0.0</td> <td></td> <td></td> <td>r o</td> <td>7- O</td> <td>- 6</td> <td>η -</td> <td>۰ ۲</td> <td>٥</td> <td>1.0</td> <td>0 i.</td> <td>~</td> <td>1 0</td> <td>0.8</td> <td>٠</td> <td>1 4</td> <td>,</td> <td>r</td> <td>,</td> <td>-1</td>                                                       | 4.6       3.9       2.9       1.6       1.6       2.6       1.6       1.0       2.6       1.6       1.0       2.6       1.6       1.0       2.6       1.6       1.3       0.9       2.7       1.6       1.0       2.6       1.4       1.4       4.1       2.7       4.1       1.4       1.1       2.0       1.6       1.3       0.9       2.2       1.6       1.0       1.6       1.9       1.7       2.0       1.9       2.0       1.2       1.4       1.4       1.1       2.0       1.9       2.0       1.2       2.0       1.7       3.0       4.4       1.6       2.0       1.0       1.2       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.0       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 112 - 3 6 25 9 17 0 11 6      | 3 6 25 9 17 0 11 6        | 25.9 12.3 6.3                           | 25.9 12.3 6.3    | 0.00 12.0   | 0.0    |      |                                         | r o  | 7- O                                    | - 6           | η -         | ۰ ۲ | ٥        | 1.0            | 0 i.  | ~    | 1 0 | 0.8  | ٠   | 1 4 | ,     | r   | ,   | -1  |
| 4.1         6.8         5.5         1.4         5.5         1.4         4.1         2.7         4.1         4.1         1.4         4.1         2.7         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1 <td>8 4.1 6.8 5.5 1.4 5.5 1.4 1.4 4.1 2.7 4.1 1.1 1.1 1.2 0.9 1.2 2.5 1.7 3.0 4.4 2.0 3.0 1.7 2.6 0.9 1.4 4.8 3.8 3.8 4.3 1.3 2.2 2.1 1.7 3.0 4.4 2.0 3.0 1.7 2.6 0.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1</td> <td>east) 307 - 9.1 23.1 16.6</td> <td>9.1 23.1 16.6</td> <td>23.1 16.6</td> <td>23.1 16.6</td> <td>16.6</td> <td>, ,9</td> <td>11.4</td> <td></td> <td>0 00</td> <td></td> <td>10</td> <td>4 0</td> <td>1 ~</td> <td>٠. ٥</td> <td>6 - 0.</td> <td>7 6.</td> <td>1 6</td> <td>ń</td> <td>1.0</td> <td></td> <td>0.0</td> <td></td> <td></td> <td></td> <td>+</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8 4.1 6.8 5.5 1.4 5.5 1.4 1.4 4.1 2.7 4.1 1.1 1.1 1.2 0.9 1.2 2.5 1.7 3.0 4.4 2.0 3.0 1.7 2.6 0.9 1.4 4.8 3.8 3.8 4.3 1.3 2.2 2.1 1.7 3.0 4.4 2.0 3.0 1.7 2.6 0.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | east) 307 - 9.1 23.1 16.6     | 9.1 23.1 16.6             | 23.1 16.6                               | 23.1 16.6        | 16.6        | , ,9   | 11.4 |                                         | 0 00 |                                         | 10            | 4 0         | 1 ~ | ٠. ٥     | 6 - 0.         | 7 6.  | 1 6  | ń   | 1.0  |     | 0.0 |       |     |     | +   |
| 6 3.5 0.9 2.2 1.7 1.3 2.2 2.2 1.7 3.0 4.4 2.0 3.0 1.7 2.6 0.9 1.4 4.8 3.8 3.8 4.4 3.1 3.2 2.2 2.2 1.7 3.0 4.4 2.0 3.0 1.7 2.6 0.9 1.4 4.8 3.8 3.8 4.3 1.3 3.0 3.5 3.0 2.8 0.5 0.8 0.5 0.3 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6 3.5 0.9 2.2 1.7 1.3 2.2 2.2 1.7 3.0 4.4 2.0 3.0 1.7 2.6 0.9 2.5 0.6 0.6 4.4 0.6 - 0.6 0.6 112 1.9 1.2 1.2 1.9 1.9 1.9 2.9 2.9 7.5 6.4 4.1 1.2 2.3 4.1 2.9 2.9 2.9 2.9 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0. | 9 15.1 9.6                    | - 2.7 21.9 15.1 9.6       | 9 15.1 9.6                              | 9 15.1 9.6       | 9 15.1 9.6  | 1 9.6  |      |                                         | 00   |                                         | - 30          |             | . 4 | o un     | 4              | . 4   | 5 0  | ; 4 | 7.0  |     |     |       |     |     | 1 - |
| 8 2.5 0.6 0.6 4.4 0.6 - 0.6 0.6 1.2 1.9 1.2 1.2 1.9 1.9 1.7 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8 2.5 0.6 0.6 4.4 0.6 - 0.6 0.6 11.2 11.9 11.2 11.9 11.9 11.9 11.9 11.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 229 ~ 9.2 20.1 17.5           | - 9.2 20.1 17.5           | 2 20.1 17.5                             | 2 20.1 17.5      | 17.5        | 5      | 13.1 |                                         | 9    | 10                                      | 6             | 2           | ~   | ~        | 2 2.           | 2 1.  | i    | 4   | 2.0  |     | 1.7 | 2 6   |     |     | -   |
| 1 4.8 3.8 3.8 4.3 1.3 3.0 3.5 3.0 2.8 0.5 0.8 0.5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 4.8 3.8 3.8 4.3 1.3 3.0 3.5 3.0 2.8 0.5 0.8 0.5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 161 - 5.0 50.3 11.2         | - 5.0 50.3 11.2           | 50.3 11.2                               | 50.3 11.2        | 3 11.2      | 2      | 7.5  |                                         | 90   | 10                                      | 9             | 9           | 4   | 9        | 0              | 6 0.  | -    | -   | 1.2  |     | 0 - | · -   |     |     |     |
| 5 2.9 7.5 6.4 4.1 12 2.3 4.1 2.9 2.9 2.3 1.2 . 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 2.9 7.5 6.4 4.1 12 2.3 4.1 2.9 2.9 2.3 1.2 . 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 395 0.5 8.1 22.5 15.2 11.6    | 0.5 8.1 22.5 15.2 11.6    | 5 8.1 22.5 15.2 11.6                    | 1 22.5 15.2 11.6 | 5 15.2 11.6 | 2 11.6 |      |                                         | ~    | an                                      | αņ            | 05          | 3   | ~        | 0 3.           | 5     | ~    | 0   | 0.8  |     | 0.3 | : .   | . 0 |     |     |
| 6 3.8 9.7 4.3 2.7 1.6 1.6 1.6 1.6 1.1 1.1 1.1 1.1 0.5 0.5 1.1 2. 6.0 6.7 5.2 2.2 3.7 3.7 1.5 1.5 1.5 1.5 4.5 3.1 3.1 2. 6.0 6.7 5.2 2.5 3.7 3.7 3.8 2.6 5.1 2.6 1.3 3.8 2.6 5.1 3.3 2.2 3.7 2.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 5.2 5.2 10.5 3.5 1.8 7.0 1.8 1.8 7.0 1.8 1.8 7.0 1.8 1.8 7.0 1.8 1.8 7.0 1.8 1.8 7.0 1.8 1.8 7.0 1.8 1.8 7.0 1.8 1.8 7.0 1.8 1.8 7.0 3.1 4.7 3.1 2.3 1.6 0.5 1.1 1.1 1.1 0.5 0.5 1.1 7.0 3.1 4.7 3.1 2.3 1.5 1.5 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 12.8                        | 1.7 9.9 21.5 12.2 12.8    | 5 12.2 12.8                             | 5 12.2 12.8      | 5 12.2 12.8 | 2 12.8 |      |                                         | 5    | 0                                       | 5             | 4           | _   | ~        | 3              | 1 2.  | 7    | 2.  | - 2  |     | 9 6 |       | ,   | ,   |     |
| 6 3.8 9.7 4.3 2.7 1.6 1.6 0.5 1.1 1.1 1.1 1.1 0.5 0.5 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6 3.8 9.7 4.3 2.7 1.6 1.6 0.5 1.1 1.1 1.1 1.1 0.5 0.5 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 57 " 8.8 19.3 14.0 12.3       | - 8.8 19.3 14.0 12.3      | 19.3 14.0 12.3                          | 19.3 14.0 12.3   | 3 14.0 12.3 | 0 12.3 |      |                                         | 0    | - 61                                    | 2             | - 5         | 5   | 00       | 0              | 8     | 1    | j   | × :  |     | 2   |       |     |     | ,   |
| 2 6.3 7.0 3.1 4.7 3.1 2.3 1.6 5.5 3.1 3.1 3.1 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 6.3 7.0 3.1 4.7 3.1 2.3 1.6 5.5 3.1 3.1 . 3.1 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 185 - 10.8 25.4 13.0          | 185 - 10.8 25.4 13.0      | 25.4 13.0                               | 25.4 13.0        | 4 13.0      | 0      | 12.4 |                                         | 9    | 20                                      | 7             |             | ~   | 9        | 6 0.           | 5 1.  |      | -   |      |     | 0.5 | -     |     | . , |     |
| 2 6.0 6.7 5.2 2.2 3.7 3.7 1,5 1,5 4,5 3.0 2.2 3.7 0.8 3 12.8 3.8 2.6 5.1 2.6 1,3 3.8 2.6 1,3 1,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 6.0 6.7 5.2 2.2 3.7 3.7 1.5 1.5 4.5 3.0 2.2 3.7 . 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | west] 128 1.6 3.1 15.6 14.9   | 128 1.6 3.1 15.6 14.9     | 6                                       | 6                | 6           | 6      | 10.9 |                                         | ~    | 6                                       | 0             | _           | ~   | -        | 3              | 6 5.  | 6    |     |      |     | 0.8 |       |     |     |     |
| 3 12.8 3.8 2.6 5.1 2.6 1.3 3.8 - 2.6 1.3 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 12.8 3.8 2.6 5.1 2.6 1.3 3.8 2.6 1.3 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 134 - 7.5                     | 134 - 7.5 15.7 13.4       | 7 13.4                                  | 7 13.4           | 7 13.4      | 47"    | 10.5 |                                         | 7    | 0                                       | 7             | ~           | . 7 | _        | 7 1.           | 5 1.  | 4    | 'n  | 2.2  |     | >   | 0,8   |     | ) I | ,   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                             | 4 19.2 14.1               | 4 19.2 14.1                             | 4 19.2 14.1      | 2 14.1      | _      | 10.3 |                                         | en   | m                                       | 90            | 9           | _   | 9        | 3 3.           | 90    | 1    | 2.  | 1.3  |     | •   | ,     | ,   |     | •   |

1/ NEP(east)=east or Morjovi side of Northeast Point, NEP(west)=west or Vostochni side of Northeast Point; TZR=Tolstoi, Zapadni Reef, and Little Zapadni, POL=Polovina and Little Polovina, ZAP=Zapadni, REEF=Reef, Gorbatch, and Ardiguen: L-K=Lukanin and Kitovi.

2/ The tooth samples from all rookeries were combined during this period because of the small number of female seals taken from each rookery

Table A-7 -- Cumulative numbers of female seals killed, by age, St Paul Island, 26 June to 16 August 1968

| Ĭ          | -        | ١.          |      |       |      |      |      |     |     |           |      |      |      |     |      |     |     |           |           |       |       |       |        |           |           |     |           |       |       |     |           |           |       |       |        |        |       |       |           |         |        |
|------------|----------|-------------|------|-------|------|------|------|-----|-----|-----------|------|------|------|-----|------|-----|-----|-----------|-----------|-------|-------|-------|--------|-----------|-----------|-----|-----------|-------|-------|-----|-----------|-----------|-------|-------|--------|--------|-------|-------|-----------|---------|--------|
|            | 24       |             |      |       |      |      |      | •   |     |           |      |      |      |     |      |     |     |           |           |       |       |       |        |           |           |     |           |       |       | ,   |           | 41        | 4     | 4     | 90     | 80     | 90    | 90    | 30        | 00      | Φ      |
|            | 23       |             |      |       |      | '    |      |     |     |           |      |      |      | 2   | 7    | 2   |     | 2         | 2         | 2     | 2     | 2     | 2      | 2         | 2         | 2   | 2         | 2     | 2     | 2   | 2         | 2         | 2     | 2     | 2      | 2      | 2     | 2     | 2         | 2       | 2      |
|            | 22       |             |      |       |      | •    |      | •   |     | ,         |      |      |      |     | _    | _   |     | 1         | _         | _     | -     | _     | _      | _         | _         | -   | -         | 471   | 4     | 4   | 4         | 寸         | 6     | C     | 13     | 13     | 13    | 13    | 13        | 13      | 13     |
|            | 2.1      |             |      |       |      |      |      | 1   |     | 1         |      |      | ~    | ) 4 | . 10 | S   |     | 70        | 9         | 12    | 16    | 16    | 16     | 16        | 16        | 16  | 32        | 3.5   | 35    | 35  | 3.5       | 35        | 49    | 57    | 57     | 57     | 57    | 64    | 64        | 99      | 99     |
|            | 2.0      |             |      |       |      | 2    |      | 10  | 9   | 9         | 2    | 0 .0 | 0    | 9   | 18   | 19  |     | 2.0       | 22        | 25    | 50    | 29    | 38     | 41        | 4.1       | 41  | 9.0       | 50    | 50    | 53  | 65        | 5.9       | 89    | 76    | 80     | 63     | 83    | 86    | 89        | 89      | 89     |
|            | 61       |             |      |       |      | ı    |      | 1   | ,   | 1         | -    | -    | -    | 16  | 22   | 22  |     | 23        | 97        | 3.2   | 36    | 36    | 45     | 48        | 56        | 95  | 7.8       | 96    | 96    | 96  | 108       | 1.12      | 129   | 134   | 140    | 140    | 140   | 143   | 156       | 172     | 175    |
|            | - 18     |             |      |       |      | ٣    |      | 3   | 77  | 4         | . 47 | . 4  |      | 18  | 2.4  | 24  |     | 2.4       | 3.5       | 44    | 48    | 48    | 6.2    | 62        | 99        | 89  | 94        | 26    | 100   | 107 | 122       | 134       | 145   | 150   | 160    | 166    | 169   | 176   | 176       | 186     | 189    |
|            | 17       |             |      |       |      | 3    |      | ~   | ~1  | 7         | - 00 | 00   | 0    | 18  | 24   | 24  |     | 24        | 3.2       | 87    | 52    | 54    | 59     | 9         | 69        | 7.1 | 06        | 105   | 105   | 119 | 137       | 149       | 173   | 181   | 187    | 199    | 199   | 506   | 219       | 232     | 239    |
|            | 16       | 1 1 1 1 1 1 |      |       |      | œ    |      | 00  | 00  | 0         | 10   | 10   | 14   | 18  | 50   | 5.6 |     | 3.1       | 44        | 53    | 19    | 6.1   | 89     | 100       | 104       | 104 | 136       | 166   | 172   | 172 | 208       | 216       | 233   | 238   | 274    | 589    | 289   | 296   | 309       | 329     | 329    |
|            | 1.5      |             |      |       |      | 9    |      | 2   | 5   | 9         | . 4  | 9    | 10   | 22  | 2.7  | 2.7 |     | 34        | 47        | 99    | 7.8   | 8.1   | 9.8    | 101       | 105       | 106 | 166       | 181   | 187   | 197 | 221       | 233       | 242   | 245   | 284    | 299    | 302   | 309   | 332       | 339     | 339    |
|            | 14       |             |      |       |      | 2    |      | 2   | 7   | 2         | 2    | 7    | 9    | 1.2 | 2.1  | 2.1 |     | 2.4       | 3.4       | 46    | 50    | 57    | 8.2    | 66        | 115       | 116 | 148       | 166   | 172   | 175 | 190       | 194       | 907   | 509   | 255    | 277    | 280   | 283   | 290       | 297     | 307    |
| group      | 13       | 1           |      |       |      | 6    |      | ~   | 3   | -7        | 9    | 9    | 9    | 10  | 16   | 17  |     | 2.2       | 3.9       | 67    | 83    | 83    | 501    | 113       | 121       |     |           | 155   |       |     |           |           |       |       |        |        |       |       | 295       |         |        |
| each age g | 12       |             |      |       |      | í    |      | ,   | 1   | -         | m    | ~    | 7    | 00  | 13   | 1.3 |     | 2.1       | 32        | 54    | 58    | 6.1   | 9.6    | 4         | 30        |     |           | 173   |       |     |           |           | 214 2 | 217 2 | 234 2  |        | 243 2 |       |           | 281     |        |
| from eac   |          | H           |      |       |      | 9    |      | 9   | 9   | 7         | 13   | 13   | 19   | 2.8 | 3.0  | 30  |     | 35        | 45        | 5.1   | 6.5   | 2.0   | 89     | 0.3 1     |           | _   |           | 201 1 |       |     | 256 1     |           |       |       |        |        |       |       |           |         | 431 2  |
| killed fr  | 0 1      | Number      |      |       |      | 9    |      | 9   | 7   | 4         | 9    | 91   |      |     |      |     |     |           |           |       | 80    |       |        | ~         |           |     |           |       |       |     |           |           |       |       |        |        |       |       | •         |         |        |
| seals k    | 0        | 0 0 0       |      |       |      | 3    |      | 23  | 4   | - 2       |      | 6    |      |     |      |     |     |           |           |       |       |       |        |           |           |     |           |       |       |     |           |           |       |       |        |        |       |       | 7 434     |         |        |
| nated      | -        | 1 1 1 1     |      |       |      |      |      |     |     |           |      |      | _    | 20  |      |     |     |           |           |       | 7 1   |       | 104    |           |           | 147 |           |       |       |     |           |           |       |       |        |        |       | •     | 527       | 557     |        |
| Estir      | ∞.       |             |      |       |      | 7    |      | 2   | 2   | 2         | ~    | 77   | 7    | 17  | 25   | 25  |     | 27        | 33        | 52    | 09    | 63    | 8.2    | 96        | 100       | 106 | 138       | 189   | 205   | 212 | 254       | 266       | 285   | 295   | 358    | 373    | 383   | 406   | 433       | 460     | 464    |
|            | _        |             |      |       |      | 15   |      | 15  | 16  | 16        | 22   | 2.4  | 2.7  | 36  | 40   | 41  |     | 43.3      | 09        | 88    | 88    | 16    | 133    | 139       | 155       | 160 | 186       | 237   | 253   | 290 | 377       | 397       | 433   | 461   | 580    | 599    | 613   | 658   | 701       | 738     | 765    |
|            | 9        | 1 1         |      |       |      | Ξ    |      | 17  | 2.4 | 28        | 30   | 3.1  | 40   | 69  | 82   | 83  |     | 98        | 110       | 178   | 201   | 213   | 266    | 296       | 327       | 339 | 377       | 461   | 495   | 539 | 643       | 671       | 743   | 774   | 925    | 993    | 1,017 | 1,091 | 1, 137    | 1, 184  | 1,211  |
|            | 2        |             |      |       |      | 10   |      | 10  | 14  | 1.5       | 2.0  | 2.0  | 26   | 47  | 55   | 99  |     | 09        | 8 5       | 131   | 151   | 163   | 213    | 235       | 271       | 287 | 389       | 473   | 526   | 290 | 742       | 786       | 882   | 929   | 1, 127 | 1, 192 | 1,219 | 962'  | ,360      | 1,420   | ,457   |
|            | *7*      |             |      |       |      | 2    |      | 2   | 9   | 9         | 9    | ٥    | 4    | 30  | 44   | 49  |     | 5.2       | 9         | 115   | 138   | 141   | 183    | 216       | 283       | 300 | 392       | 513   | 999   | 764 | 926       | 1,039     | 1,149 | 1,361 | 1,654  | 1,768  | 1,805 | 1,956 |           |         | 2,143  |
|            | 2        |             |      |       |      | (    |      |     | 1   | 1         | -    | 1    | +    | _   | _    | _   |     | 3         | 3         | 15    | 19    | 61    | 2.8    | 12        | 69        | 17  | 26        | 98    | 142   | 156 |           |           |       |       | 424 1, |        |       |       |           |         | 620 2, |
|            | 7        |             |      |       |      |      |      |     |     | -         |      | ,    |      | 1   | 1    |     |     |           |           | 1     | 1     | ì     | 3      | 3         | 3         | m   | 2         | 2     |       |     |           |           | 3 29  |       |        | 18 47  |       |       |           |         | 32 62  |
|            |          |             |      |       |      | 81   |      | 06  | 110 | 132       | 163  | 169  | 33   | 4   | _    | 11  |     | 12        | 1         | 33    | 1.5   | 0.5   | 94     | 90        | 8         | 9:  | 0         | 90    | 00    | 9   | 33        | 4         | 0.    | 1     |        |        |       |       |           |         |        |
|            | k1       | -           |      |       |      | SU.  |      | 0   |     |           |      | 16   | 233  | 414 | 531  | 541 |     |           |           | 1,233 | 1,387 | 1,450 | 1, 906 | _         |           |     |           | 3,838 | 4,238 |     |           |           |       | 6,79  | 8,094  | 8,62   | 8,81  |       |           | 10, 282 | 10,54  |
| 1          | Rookery- |             |      |       |      | (2/) |      | ZAP | TZR | NEP(west) | POL  | L-K  | REEF | TZR | ZAP  | POL |     | NEP(east) | NEP(west) | REEF  | TZR   | L-K   | ZAP    | NEP(west) | NEP(east) | POL | NEP(west) | POL   | REEF  | ZAP | NEP(east) | NEP(west) | TZR   | REEF  | ZAP    | L-K    | POL   | REEF  | NEP(west) | POL     | TZR    |
|            | Date     |             | June | 26 to | July | 23   | July | 2.4 | 2.5 | 26        | 27   | 2.2  | 67   | 3.0 | 3.1  | 3.1 | Aug | _         | _         | 2     | ~     | ~     | 5      | 9         | 9         | 7   | -         | 93    |       | 6   | 1.2       | 12        | 13    |       | 14     | 15     | 15    | 15    | 16        | 16      | 91     |

1/ NEP(east)-east or Morjovi side of Northeast Point; NEP(west)-west or Vostochni side of Northeast Point; TZR-Tolston, Zapadni Reef, and Little Zapadni; POL-Polovina and Little Polovina; ZAP-Zapadni, REEF-Reef, Gorbatch, and Ardiguen; L-K-Lukanin and Kitovi.

2/ The females killed at all rookeries during this period were combined because of the small number taken from each rookery

Table A-8 . -- Cumulative percentages of female seals killed, by age, St. Paul Island, 26 June to 16 August 1968

|            | 1          | Total   |      |             |      |      |               |                                         |                                         | Sea's   | killed       | trom each | h age p | roup |     |          |        |       |      |       |       |       |     |     |
|------------|------------|---------|------|-------------|------|------|---------------|-----------------------------------------|-----------------------------------------|---------|--------------|-----------|---------|------|-----|----------|--------|-------|------|-------|-------|-------|-----|-----|
| Date       | Rookery =  |         | 2    | 3           | -7"  | 5    | 9             | 7                                       | 00                                      | 6       | 10           | =         | 2       | 13   | 1.4 | 1.5      | 16     | 17 1  | 8    | 2 6   | 20 21 | 2.2   | 2.3 | 2.4 |
|            |            | Number  | -    | 1 1 1 1 1 1 |      |      | 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 | 9 9 1        | д         | Percent |      |     |          |        |       |      |       | H     |       |     | -   |
| June       |            |         |      |             |      |      |               |                                         |                                         |         |              |           |         |      |     |          |        |       |      |       |       |       |     |     |
| 26 to      |            |         |      |             |      |      |               |                                         |                                         |         |              |           |         |      |     |          |        |       |      |       |       |       |     |     |
| July       |            |         |      |             |      |      |               |                                         |                                         |         |              |           |         |      |     |          |        |       |      |       |       |       |     |     |
| 23<br>July | (/7)       | 8 1     | 1    | 1           | 2.0  | 12.0 | 14.0          | 18.0                                    | 2.0                                     | 4.0     | 8.0          | 8.0       |         | 4.0  | 5.0 | 6.0      | 0.0    | 0     | 0    | - 2   | - 0   | ,     | 1   |     |
| 24         | ZAP        | 06      | ŀ    |             |      |      | 18.9          |                                         | 2.2                                     |         |              |           | ,       |      |     | 4        | 0      |       | ~    |       |       |       |     |     |
| 5.2        | TZR        | 110     | ŀ    | ,           |      | 12.7 | 21.8          |                                         | 00                                      |         |              |           |         |      |     | ) (r     |        | 7     | . 4  |       | i u   |       | 1   | r   |
| 26         | NEP(west)  | 1 32    | 1    |             |      | 11.4 | 21.2          |                                         | 1.5                                     |         |              |           |         |      |     | 1 9      | 3 00   | ~ ~   | 0 0  |       | 0 4   |       | 1   |     |
| 2.2        | POL        | 163     | 1    | 1           |      | 12.3 | 18.4          |                                         | 1.8                                     |         |              |           |         |      |     | 7        | . ~    | , 0   | ) if | 4     | -     |       | 1   |     |
| 2.2        | L-K        | 691     | 1    | 1           |      | 11.8 | 18, 3         |                                         | 2.3                                     |         |              |           |         |      |     | . 9      | . 0    |       |      | 0 40  | - 4   |       | ,   |     |
| 67         | REEF       | 233     | 1    | ı           |      | 1.1  | 17, 2         |                                         | 3, 0                                    |         |              |           |         |      |     | m        | 0      | . 6   |      | 7     | 0     | ۲۰۰   | , , | , , |
| 30         | TZR        | 414     | 1    | 0.2         |      | 11.4 | 16.7          |                                         | 4. 1                                    |         |              |           |         |      |     |          | . ~    | . ~   |      | . 0   | . 0   |       |     |     |
| 3.1        | ZAP        | 531     | 1    | 0.2         | 8.3  | 10.4 | 15.4          | 7.5                                     | 4.7                                     | 4.7     | 5. 1         | 5.7       | 2.4     | 3.0  | 4.0 | 5, 1     | 5.5    | 5     | . 5  | 3     | 0     |       | i 0 |     |
| 31         | POL        | 541     | 1    | 0, 2        |      | 10.4 | 15.3          |                                         | 4.6                                     |         |              |           |         |      |     | 4        | 0      | 47    | 4    | _     | - 6   | 0     |     |     |
| Aug        |            |         |      |             |      |      |               |                                         |                                         |         |              |           |         |      |     |          |        |       | ,    |       |       |       | ,   |     |
| 1          | NEP(east)  |         | 1    | 0.5         | 0,00 |      | 14.3          | 7.1                                     |                                         |         | 6.0          | 5.8       |         | 7    | 0   | 7        | _      | 0     | 0    | 00    | 3     |       |     |     |
| -          | NEP(west)  |         | ,    | 0.4         | 8.0  |      | 13.6          | 7.4                                     |                                         |         | 6.6          | 5.6       |         | 00   | 2   | 00       | -7     | 0     | . ~  | ~     | 0 0   |       |     |     |
| 2          | REEF       | 1,233   | 1    | 1, 2        | 9.3  |      | 14.4          | 7.1                                     |                                         |         | 6.2          | 5, 0      |         | al.  | 2   | 4        | 27     | 6     | 9    | - 9   |       |       |     |     |
| 250        | TZR        | 1, 387  | ,    | 1.4         | 6.6  |      | 14.5          | 6.3                                     |                                         |         | 5.8          | 4.7       |         | 0    | 9   | .0       | 17     | 2     | ur.  | 9     |       |       |     |     |
| 3          | L-X        | 1,450   | ,    | 1.3         | 9.7  |      | 14.7          | 6.3                                     |                                         |         | 5, 9         | 90        |         | 2    | 6   | 9        | 2      | 2     | ~    |       | - 0   |       |     |     |
| 2          | ZAP        | 1,906   | 0.2  | 1.5         | 9.6  |      | 14.0          | 7.0                                     |                                         |         | 5.9          | 4.7       |         | 2    | 3   | _        | 7      | _     | 2    | - 17  | 0 0   |       |     |     |
| 9          | NEP(west)  | 2, 148  | 0, 1 | 2.0         | 10.1 | 10,9 | 13.8          | 6.5                                     | 4.5                                     | 6.0     | 6.6          | 00<br>7°  | 5, 3    | 5.3  | 4.6 | 4.7      | 4.7 3. | .0 2. |      | . 2   | 0     | 1     |     |     |
| 9          | NEP(cast)  | 2,448   | 0.1  | 7.8         | 11 6 |      | 13.4          | 6.3                                     |                                         |         | 5,5          | 5.5       |         | 6    | 7   | 3        | 7      | 00    | 1    | 3     | 7 0.  |       |     |     |
| 7          | POL        | 2,526   | 0. 1 | 3, 1        | 11.9 |      | 13.4          | 6.3                                     |                                         |         | 5.4          | 5,5       |         | 00   | ٩   | 2        | _      | 00    | 2    | 2     | 6 0.  |       |     |     |
| 2          | NEP(west)  | 3, 180  | 0.1  | 5.0         | 12.3 |      | 11.9          | 00                                      |                                         |         | 5.4          | 5.3       |         | 3    | 2   | 2        | ~      | 00    | 0    | 70    | b 1.  |       |     |     |
| ac (       | POL        | 3, 838  | 0.1  | 2. b        | 13.4 |      | 12.0          | 6.2                                     |                                         |         | 5.1          | 5.2       |         | 0    | 3   | <i>←</i> | ~      | ~     | 5    | 2     | 3 0.  | 0     | 0   |     |
| 5 0        | REEF       | 4, 238  | 0.1  | w           | 15.7 |      | 11.7          | 6.0                                     |                                         |         | 4.9          | 5.1       |         | 0    | 0   | -1-      | 0      | S     | 4    | 3     | 2 0.  | 0     |     | ۲   |
| 5 6        | ZAP        | 4,616   | 0.0  | 7.          | 9.0  |      | 11.7          | 6,3                                     |                                         |         | 5.0          | 5.2       |         | 1    | 00  | 60       | -1     | 9     | ~    | 0     | 1 0.  | 0     |     | ,   |
| 13         | NEP(east)  | 7, 733  | 0.1  | 9 .         | 0.71 |      | 11.6          | 0,0                                     |                                         |         | 4.7          | 4.6       |         | 2    | 4   | 0        | 20     | 2     | 2    | 0     | 1 0.  | 0     |     | ,   |
| 1.2        | NEP (west) | 5,624   | 0.1  | 7 :         | 16.8 |      | 11.5          | 6.0                                     |                                         |         | 4.7          | 4.5       |         | 4    | 2   | 0        | 7      | 9     | m    | 6     | 0 0.  | 0     |     | 0.1 |
| 1.5        | TZR        | 6, 570  | ř    | 4. 7        |      |      | 11,7          | 00.00                                   |                                         |         | 4.           | 4.2       |         | 2    | 2   | 00       | 2      | 2     | 3    | 0     | 1 0.  | 0     |     | 0 1 |
| 1.5        | REEF       | 6, 791  |      | 4           | 20.0 |      | 11 4          | 6.8                                     |                                         |         | 4.3          | 4. 2      |         | _    |     | 9        | 2      | 7     | 2    | 0     | 1 0.  | 0     |     | 0.1 |
|            | CAP.       | 8,094   | 0. 1 | 2.0         | 20.4 |      | 11.4          | 7.2                                     |                                         |         | 4.2          | 4. 2      |         | _    | 2   | 9        | 77     | 3     | 0    | 7     | 0 0.  | 0     |     | 0 1 |
| 15         | 1. X       | 8, 623  | 0.2  | 'n          | 20.5 |      | 11.5          | 7.0                                     |                                         |         | 4.3          | 4, 2      |         | 0    | 2   | 2        | 42.    | 3     | 6    | ٥     | 0 0.  | 0     |     | 0.1 |
| 57         | Pol        | 8,815   | 0.5  | 0           | 50.5 |      | 11,5          | 7.0                                     |                                         |         | un<br>"7"    | 4.2       |         | _    | 2   | 44       | 3      | 3     | 6    | 9     | 9 0.  | 0     |     | 0.1 |
| 5 .        | REEF       | 9, 411  | 0.2  | 5.9         |      |      | 11.6          | 7.0                                     |                                         |         | 4.5          |           |         | 0    | 0   | 3        | _      | 7     | 6    | 2     | 9 0.  | 0     |     | 0 1 |
| 91         | NEP(west)  | 9,836   | 0, 3 | 2.00        |      |      | 11.6          | 7.1                                     |                                         |         | 4.4          |           |         | 0    | 0   | 4.       | _      | 7     | 00   | 9     | 9 0.  | 0     |     | 0   |
| 91         | POL        | 10, 282 | 0.2  | 6.6         | 20.3 |      | 11.5          | 7.2                                     |                                         |         | ****<br>**** |           |         | 0    | 6   | 2        | 2      | 3     | 80   | 1-    | 9 0.  | 0     |     | 0   |
| 16         | TZR        | 10, 544 | 0.3  | 5.9         | 20.3 |      | 11.5          | 7.3                                     |                                         |         | 4.4          |           |         | 0    | 0   | 2        | _      | 3     | GC   | .7 0. | 8 0.  | 6 0.1 |     | 0.1 |

1/ NEPleast) east or Morjovi side of Northeast Point, NEPlwest)-west or Vostochni side of Northeast Point, TZR Tolston, Zapadni Reef, and Little Zapadni, POL Polovina and Little Polovina. ZAP-Zapadni, REEF Reef, Gorbatch, and Ardiguen, L-K-Eukanin and Kitovi.

2/ The females killed at all rookeries during this period were combined because of the small number taken from each rookery.

Table A-9. -- Number of female seals killed, by age, St. George Island, 29 July to 12 August 1968

|                                              | 2.1     |                                         |      |     | ,    |      | 3    | ,    |     | 2   | 2    | ,   | 1    | 13           | 00           |
|----------------------------------------------|---------|-----------------------------------------|------|-----|------|------|------|------|-----|-----|------|-----|------|--------------|--------------|
|                                              |         | 1 1 1 1 1                               |      |     | ì    |      |      | F    | ,   | 6   | 2    |     |      | 2            | 1 5          |
|                                              | 2.0     |                                         |      |     |      |      |      |      |     |     |      |     |      | 3            |              |
|                                              | 19      |                                         |      | _   | -    |      | 3    | 1    | 1   | 13  | 2    | ı   | ď    | 1            | 2.4          |
|                                              | 18      | 1                                       |      | 1   | -    |      | 1    | ŀ    | 9   | 16  | 11   | t   | 1    | 1            | 3.4          |
|                                              | 17      |                                         |      | ŧ   | m    |      | 1    | -    | 1   | 97  | 11   | 00  | 3    | 13           | 99           |
|                                              | 16      | 1 1 1 1                                 |      |     | 3    |      | ı    | ı    | ı   | 38  | 00   | 4   | 1    | 13           | 99           |
|                                              | 1.5     |                                         |      | ı   | ı    |      | ,    | _    | ı   | 16  | 19   | 00  | 3    | 13           | 09           |
| 15-d                                         | 14      | 1 1 1 1 1                               |      | 1   | 1    |      | 10   | Ţ    | 1   | 5.6 | 2.1  | 16  | 9    | 48           | 133          |
| Estimated seals killed from each age group-/ | 13      | 1 1 1                                   |      |     | _    |      | 2    | 7    |     | 38  | 2    | 12  | 9    | 31           | 66           |
| each a                                       | 12      | 11111                                   |      | _   | ŧ    |      | 1    | 3    | _   | 67  | 24   | 1.2 | ,    | 21           | 91           |
| d from                                       | 11      | 1 1                                     |      | _   |      |      | 47"  | 2    | _   | 35  | 16   | 2.5 | 3    | 17           | 501          |
| ls kılle                                     | 10      | Number                                  |      | 1   | 1    |      | 4    | 3    | ı   | 97  | 34   | 1.2 | 6    | 31           | 120 1        |
| ted sea                                      | 6       |                                         |      | 7   | ı    |      | 7    |      | ı   | 61  | 2.4  | 36  | 12   | 48           | 190          |
| Estima                                       | 00      | 1 1 1 1                                 |      | _   | ı    |      | ,    | 1    | _   | 55  | 42   | 20  | 12   | 34           | 166 1        |
|                                              | 7       | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |      | 1   | 4    |      | ,    | 2    |     | 61  | 42   | 57  |      | 89           | 253 1        |
|                                              | _       | 0 1 1 1 5 1                             |      | 1   |      |      |      | -    |     |     |      |     |      | ·            |              |
|                                              | 9       | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |      | ,   |      |      | •    | 74   | '   | 105 | 26   | 73  | 3.1  | 65           | 370          |
|                                              | 5       |                                         |      | _   | 9    |      | 10   | ı,   | 1   | 114 | 63   | 69  | 43   | 68           | 379          |
|                                              | 4       | 1                                       |      |     | ed   |      | 10   | 00   | ,   | 154 | 8.7  | 701 | 53   | 72           | 487          |
|                                              | 3       | 1                                       |      |     |      |      |      |      |     |     |      |     |      |              |              |
|                                              | 2 3     |                                         |      |     |      |      |      |      |     | 7.6 | _    | 3.6 | 16   | <del>1</del> | 80           |
|                                              | L       |                                         |      | 1   | 1    |      | 1    | ,    | 1   | 33  | 1    | 1   | 1    | - 1          | 8            |
| Females                                      | killed  | Number                                  |      | 7   | 22   |      | 58   | 34   | 14  | 854 | 513  | 470 | 219  | 562          | 3/2,753      |
| - 1                                          |         |                                         |      |     |      |      |      |      |     |     |      |     |      |              | W 1          |
|                                              | Rookery |                                         |      | NOR | STAR |      | STAR | STAR | ZAP | ZAP | EAST | NOR | STAR | NOR          | total        |
|                                              | Date    |                                         | July | 5.6 | 67   | Aug. | 2    | 5    | 5   | 7   | 6    | 6   | 12   | 12           | Season total |

1/ ZAP=Zapadni and South; EAST=East Reef and East Cliffs; NOR=North; STAR=Staraya Artil.
2/ Number in each age was calculated from the age composition determined from samples of canine teeth.
3/ The total kill of females was 2, 791; age was not determined for an additional 38 females taken 26 June to 5 August.

| NOR 7 - 14.3 - 14.3 - 14.3 - 14.3 STAR 18 - 18.3 STAR 19 - 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6                                                                                                                                                                          | Seals in each age group of sample       | th age group | p of sample | ole     |       |      |                                         |               |          |        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------|-------------|---------|-------|------|-----------------------------------------|---------------|----------|--------|
| NOR 7 - 5.5  STAR 18 - 5.5  STAR 31 - 22.5  ZAP 267 0.4 3.0 18.0  EAST 195 - 2.1 16.9  NOR 116 - 3.4 21.6  NOR 165 - 2.4 12.7                                                                                                                                               | 1                                       | 10 11        | 12          | 13 14   | 15    | 16   | 17                                      | 18            | 19 2     | 20 21  |
| STAR 18 14.3 - 16.7 STAR 18 17.6 17.6 17.6 - 16.7 STAR 31 - 22.5 12.9 - 16.7 STAR 31 - 25.5 12.9 9.7 6.5 STAR 18 - 8.3 - 81.3 - 27.1 EAST 195 - 2.1 16.9 12.3 17.9 8.2 NOR 116 - 3.4 21.6 14.7 15.5 12.1 STAR 71 - 7.1 24.0 19.7 14.1 8.5 NOR 165 - 2.4 12.7 12.1 11.5 12.1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | - Percent -  |             | 1 1 1 1 |       |      | 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 |          |        |
| STAR 18 5.5 22.2 - 16.7 STAR 18 17.6 17.6 17.6 17.6 5.5 22.2 - 16.7 STAR 31 - 22.5 12.9 9.7 6.5 2AP 267 0.4 3.0 18.0 13.4 12.3 7.1 EAST 195 - 2.1 16.9 12.3 17.9 8.2 NOR 116 - 3.4 21.6 14.7 15.5 12.1 STAR 71 - 7.1 24.0 19.7 14.1 8.5 NOR 165 - 2.4 12.7 12.1 11.5 12.1   |                                         | 7            | 14.3        |         |       |      |                                         | -             | 14.3 14. | ιn     |
| STAR 18 5.5 22.2 - 16.7  STAR 17 17.6 17.6 5.5  ZAP 12 - 8.3 - 8.3 - 8.3 - 6.5  ZAP 267 0.4 3.0 18.0 13.4 12.3 7.1  EAST 195 - 2.1 16.9 12.3 7.1  STAR 71 - 7.1 24.0 19.7 14.1 8.5  NOR 165 - 2.4 12.7 12.1 11.5 12.1                                                       | 14.5                                    |              | 7           | ,       |       |      |                                         |               |          |        |
| STAR 17 17.6 17.6 5.5  ZAP 12 - 8.3 - 8.3 8.3  ZAP 267 0.4 3.0 18.0 13.4 12.3 7.1  EAST 195 - 2.1 16.9 12.3 7.1  NOR 165 - 2.4 12.7 12.1 11.5 12.1  NOR 165 - 2.5 5.5 12.9 9.7 6.5                                                                                          | 1                                       | 5.6 5.6      |             | 5.6 5.6 |       | 1:.1 | 1.1                                     | 0.0           | 0,0      |        |
| STAR 17 - 17.6 17.6 - 6.5  STAR 31 - 22.5 12.9 9.7 6.5  ZAP 12 - 8.3 - 8.3 - 7.1  ZAP 267 0.4 3.0 18.0 13.4 12.3 7.1  EAST 195 - 2.1 16.9 12.3 17.9 8.2  NOR 116 - 3.4 21.6 14.7 15.5 12.1  NOR 165 - 2.4 12.7 12.1 11.5 12.1                                               |                                         | -            | •           |         |       |      |                                         |               | C        | ď      |
| STAR 31 - 22.5 12.9 9.7 6.5  ZAP 12 - 8.3 - 8.3 - 8.3 - 7.1  EAST 195 - 2.1 16.9 12.3 7.1  STAR 71 - 7.1 24.0 19.7 14.1 8.5  NOR 165 - 2.4 12.7 12.1 11.5 12.1                                                                                                              | 11.8                                    | 5.9 5.9      | T           | 2       | 1     |      | ı                                       |               | _        | ,      |
| ZAP 12 - 8.3 - 8.3 - 8.3 - 8.8 S - 8.8 S - 8.8 S ZAP 267 0.4 3.0 18.0 13.4 12.3 7.1 6. EAST 195 - 2.1 16.9 12.3 17.9 8.2 8. NOR 116 - 3.4 21.6 14.7 15.5 12.1 4. STAR 71 - 7.1 24.0 19.7 14.1 8.5 5. NOR 165 - 2.4 12.7 12.1 11.5 12.1 6.                                   | 3.2                                     | 9.7 6.5      | 9.7         | 6.5 3.2 | 3, 2  | ı    |                                         |               |          | 1      |
| ZAP 267 0.4 3.0 18.0 13.4 12.3 7.1 6. EAST 195 - 2.1 16.9 12.3 17.9 8.2 8. NOR 116 - 3.4 21.6 14.7 15.5 12.1 4. NOR 165 - 2.4 12.7 12.1 11.5 12.1 6.                                                                                                                        | 3                                       | - 8,3        | 8, 3        | - 8.3   | 1     | ı    | 8,3                                     | 67            | 8.3      | 1      |
| EAST 195 - 2.1 16.9 12.3 17.9 8.2 8. NOR 116 - 3.4 21.6 14.7 15.5 12.1 4. STAR 71 - 7.1 24.0 19.7 14.1 8.5 5. NOR 165 - 2.4 12.7 12.1 11.5 12.1 6.                                                                                                                          | 4 7.1                                   | 3.0 4.1      | 3,4         | 4.5 3.4 | 1.9   | 4.5  | 3.0                                     | 1.9           | 1.5      | 1.1    |
| NOR 116 - 3.4 21.6 14.7 15.5 12.1 4. STAR 71 - 7.1 24.0 19.7 14.1 8.5 5. NOR 165 - 2.4 12.7 12.1 11.5 12.1 6.                                                                                                                                                               | 2 4.6                                   | 6.7 3.1      | 4.6         | 0.5 4.1 | 3.6   | 1.5  | 2.1                                     | 2.1           | 0.5      | 0,5 0. |
| 71 - 7.1 24.0 19.7 14.1 8.5 5.<br>165 - 2.4 12.7 12.1 11.5 12.1 6.                                                                                                                                                                                                          | 3 7.7                                   | 2.6 5.2      | 2.6         | 2.6 3.4 | 1.7   | 6.0  | 1.7                                     | ,             | ,        | 1      |
| 165 - 2.4 12.7 12.1 11.5 12.1                                                                                                                                                                                                                                               | 5.6                                     | 4.2 1.4      | ,           | 2.8 2.8 | 1.4   | 1    | 1 4                                     | ,             | 1.4      |        |
|                                                                                                                                                                                                                                                                             | 1 8.5                                   | 5,5 3.0      | 3,7         | 5.5 8.5 | 5 2.4 | 2.4  | 2.4                                     |               | -        | 0.6 0. |
| 0000                                                                                                                                                                                                                                                                        |                                         |              |             |         |       |      |                                         |               |          |        |

1/ ZAP=Zapadni and South; EAST=East Reef and East Cliffs; NOR=North; STAR=Staraya Artil,

Table A-11. -- Cumulative numbers of female seals killed, by age, St. George Island, 29 July to 12 August 1968

|                                            | 2.1        |                                         | 1          | •    | 3    | 3    | 3   | 3   | 5     | 2     | 5        | ∞       |
|--------------------------------------------|------------|-----------------------------------------|------------|------|------|------|-----|-----|-------|-------|----------|---------|
|                                            | 7.0        |                                         | -          | -    | -    | -    | -   | 10  | 12    | 12    | 12       | 15      |
|                                            | 19         |                                         | -          | 2    | ιc   | 2    | 9   | 19  | 2.1   | 2 1   | 24       | 2.4     |
|                                            | 00         |                                         | 1          | -    | -    | -    | 7   | 2.3 | 3.4   | 3.4   | 34       | 3.4     |
|                                            | 17         |                                         | 1          | 3    | en   | 47   | 5   | 3.1 | 42    | 20    | 53       | 99      |
|                                            | 91         |                                         | 1          | 3    | m    | 3    | Ж   | 41  | 49    | 53    | 53       | 99      |
|                                            | 1.5        |                                         | ř          | ı    |      | -    |     | 1.7 | 36    | 44    | 47       | 09      |
|                                            | 14         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ı          | -    | Ξ    | 12   | 13  | 45  | 63    | 44    | 4ñ<br>30 | 133     |
|                                            | 13         | 1 1 1 1                                 | ı          | 1    | 00   | 10   | 10  | 80  | 90    | 62    | 89       | 66      |
|                                            | 12         | 1                                       | 7          |      | -    | 4.   | 2   | 3.4 | 5.8   | 20    | 7.0      | 9.1     |
| Estimated seals killed from each age group | 11         |                                         | -          | 2    | 9    | 00   | 6   | 44  | 09    | 85    | 88       | 105     |
| each ag                                    | 10         | er                                      | ı          | -    | 5    | 00   | 00  | 34  | 89    | 80    | 8 6      | 120     |
| no J pa                                    | 6          | Number                                  | 7          | -    | œ    | 6    | 6   | 7.0 | 94    | 130   | 142      | 190     |
| als kille                                  | α,         |                                         | ewel .     | -    | 7    | 2    | 3   | 28  | 100   | 120   | 132      | 166     |
| ated se                                    | 7          |                                         | 1          | 47   | 4    | 9    | 9   | 29  | 109   | 991   | 185      | 253     |
| Estim                                      | 9          |                                         | 1          | •    |      | 4    | 4   | 109 | 201   | 274   | 305      | 370     |
|                                            | 2          |                                         | -          | 9    | 16   | 2.1  | 22  | 136 | 199   | 268   | 311      | 379     |
|                                            | 4          |                                         | 1          | ***  | Ξ    | 19   | 19  | 173 | 260   | 362   | 415      | 487     |
|                                            | 3          |                                         | 1          | 1    | ,    |      | -   | 2.2 | 38    | 54    | 7.0      | 84      |
|                                            | 7          |                                         |            |      |      |      |     |     |       |       |          | ~       |
| L                                          | L_         |                                         | '          | 1    | •    | 1    | ,   | 3   | 6     | 60    | m.       | <u></u> |
| Total                                      | _          | '                                       | 7          | 29   | 87   | 121  | 135 | 686 | 1,502 | 1,972 | 2, 191   | 2,753   |
|                                            | Rookery 1/ |                                         | NOR        | STAR | STAR | STAR | ZAP | ZAP | EAST  | NOR   | STAR     | NOR     |
|                                            | Date       |                                         | July<br>29 | 5.9  | Aug. | 2    | ıc. | 7   | 6     | 6     | 12       | 12      |

1/ ZAP-Zapadni and South; EAST-East Reef and East Cliffs; NOR-North; STAR-Staraya Artil.

Table A-12. -- Cumulative percentages of female seals killed, by age, St. George Island, 29 July to 12 August 1968

|      |                 | Total  |     |         |      |       |      |      | Seals killed | lled fron | n each a | rom each age group | d)    |      |      |     |      |      |      |         |             |      |
|------|-----------------|--------|-----|---------|------|-------|------|------|--------------|-----------|----------|--------------------|-------|------|------|-----|------|------|------|---------|-------------|------|
| Date | Date Rookery 1/ | kill   | 7   | 3       | 4    | 5     | 9    | 2    | .00          | 6         | 10       | 11                 | 12    | 1.3  | 14   | 15  | 91   | 17   | 18   | 161     | 70          | 7    |
|      |                 | Number | ;   | 1 1 1 1 | 1    |       |      |      |              |           | Percent  | cent               | 1 1   |      | 1    |     |      |      |      | 1 1 1 1 | 1 1 1 1 1 1 | ;    |
| July |                 |        |     |         |      |       |      |      | •            |           |          | c                  |       |      |      |     |      |      |      |         |             |      |
| 53   | NOR             | -      | ı   |         | ,    | 14. 3 | ı    | 1    | 14. 3        | 14. 3     | 1        | 14. 3              | 14. 3 | ı    | 1    | ı   | (    |      | 1    | 4.5     | 14. 3       | ,    |
| 29   | STAR            | 2.9    | 1   | •       | 3.4  | 20.7  | ,    | 13,8 | 3.4          | 3, 4      | 3.4      | 6.9                | 3.4   | 3, 4 | 3.4  |     | 10.4 | 10.4 | 3.4  | 6.9     | 3,4         | ,    |
| A    |                 |        |     |         |      |       |      |      |              |           |          |                    |       |      |      |     |      |      |      |         |             |      |
| 7 g  | STAR            | 87     | P   |         | 12.6 | 18.4  | 1    | 4.6  | -:           | 9.2       | υ.<br>00 | 6.9                |       | 9.2  | 12.6 | 1   | 3, 5 | 3, 5 | 1. 1 | 35, 35  | 1.1         | 3, 5 |
| 10   | STAR            | 121    | 1   |         | 15,7 | 17.4  | 3, 3 | 5.0  | 1.7          | 7.4       | 9.9      | 9.9                | 3, 3  | 8.3  | 6.6  | 0,8 | 2.5  | 3, 3 | 8.0  | 4. 1    | 0.8         | 2.5  |
| ıΩ   | ZAP             | 135    | 1   | 7.0     | 14.1 | 16.3  | 3, 0 | 4,5  | 2.2          | 6.7       | 6.9      | 6.7                | 3.7   | 7.4  | 9.6  | 0.7 | 2.2  | 3.7  | 5.2  | 4.5     | 0.7         | 2.2  |
| 7    | ZAP             | 686    | 0,3 | 2.7     | 17.5 | 13.8  | 11.0 | 6.8  | 5.9          | 7.1       | 3, 4     | 4.5                | 3.4   | 4.9  | 4.3  | 1.7 | 4.1  | 3. 1 | 2.3  | 1.9     | 1.0         | 0.3  |
| 6    | EAST            | 1, 502 | 0.2 | 2.5     | 17.3 | 13.2  | 13.4 | 7.2  | 6.7          | 6.3       | 4.5      | 4.0                | 3.9   | 3,3  | 4.2  | 2.4 | 3, 3 | 2.8  | 2.3  | 1.4     | 0.8         | 0.3  |
| 6    | NOR             | 1, 972 | 0.2 | 2.7     | 18.4 | 13.6  | 13.9 | 8.4  | 6.1          | 9.9       | 4.1      | 4.3                | 3.5   | 3.1  | 4, 0 | 2.2 | 2.7  | 2.5  | 1.7  | 1.1     | 9.0         | 0, 3 |
| 12   | STAR            | 2, 191 | 0.1 | 3.2     | 18.9 | 14.2  | 13.9 | 4,   | 0.9          | 6.5       | 4. 1     | 4.0                | 3, 2  | 3, 1 | 3.9  | 2.2 | 2.4  | 2.4  | 1.6  | 1.1     | 9.0         | 0.2  |
| 12   | NOR             | 2,753  | 0.1 | 3, 1    | 17.7 | 13,8  | 13.4 | 9.2  | 6.0          | 6.9       | 4.4      | 3.8                | 3, 3  | 3.6  | 4.8  | 2.2 | 2.4  | 2.4  | 1.2  | 6.0     | 0.5         | 0.3  |
|      |                 |        |     |         |      |       |      |      |              |           |          |                    |       |      |      |     |      |      |      |         |             |      |

1/ ZAP Zapadni and South; EAST=East Reef and East Cliffs; NOR-North; STAR=Staraya Artil.

Table A-13. -- Dead seal pups counted, by rookery, Pribilof Islands, Alaska, 1959-68

| Rookery                    | 1959    | 1960                                    | 1961                                    | 1962     | 1963    | 1964    | 1965                                    | 1966    | 1967    | 1968                                    |
|----------------------------|---------|-----------------------------------------|-----------------------------------------|----------|---------|---------|-----------------------------------------|---------|---------|-----------------------------------------|
|                            |         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 |          | Number  | LIS     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |         |         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| St. Paul Island<br>Morjovi | 4,560   |                                         | 5, 259                                  | 4,881    | 2, 348  | 1,830   | 2,649                                   | 1, 686  | 1,072   | 2,285                                   |
| Vostochni                  | 7,105   | 11, 333                                 | 10, 173                                 | 8, 565   | 5,057   | 3,404   | 4,214                                   | 2, 785  | 1, 969  | 4, 195                                  |
| Little Polovina            | 1, 597  | 2, 427                                  | 2,415                                   | 2, 121   | 923     | 631     | 1, 132                                  | 449     | 233     | . 509                                   |
| Polovina Cliffs            | 2,586   | 3, 462                                  | 4,576                                   | 2,957    | 2, 160  | 1,097   | 2,856                                   | 809     | 825     | 1,616                                   |
| Polovina                   | 3, 311  | 5, 268                                  | 2, 499                                  | 1,880    | 1,237   | 783     | 1, 176                                  | 312     | 319     | 487                                     |
| Ardiguen                   | 141     | 331                                     | 411                                     | 225      | 141     | 102     | 459                                     | 160     | 06      | 118                                     |
| Gorbatch                   | 2, 100  |                                         | 3,550                                   | 37       | 2, 431  | 1,549   | 3, 123                                  | 1,593   | 874     | 1,446                                   |
| Reef                       | 6,052   | 9,664                                   | 10,047                                  | 7,897    | 5, 688  | 3,000   | 7,664                                   | 3, 562  | 2,008   | 3, 064                                  |
| Kitovi                     | 882     | 2,006                                   | 2, 215                                  | 2,081    | 881     | 462     | 2, 202                                  | 406     | 522     | 755                                     |
| Lukanin                    | 631     | 1,037                                   | 1,294                                   | 099      | 546     | 405     | 1, 126                                  | 432     | 240     | 265                                     |
| Tolstoi                    | 3,691   | 5, 237                                  | 4,761                                   | 3,004    | 3, 274  | 2,614   | 3, 955                                  | 3, 425  | 2,251   | 3, 315                                  |
| Little Zapadni             | 1,691   | 4, 148                                  | 3,047                                   | 2,399    | 2,580   | 1, 101  | 2, 461                                  | 1,634   | 1,098   | 1, 781                                  |
| Zapadni Reef               | 809     | 1, 472                                  | 1,291                                   | 598      | 718     | 425     | 723                                     | 451     | 380     | 689                                     |
| Zapadni                    | 5,009   | 6, 450                                  | 6,329                                   | 6,627    | 4,614   | 4, 172  | 5, 384                                  | 3,710   | 2, 195  | 4,445                                   |
| Counted total              | 39, 964 | 62,828                                  | 57,867                                  | 45,268   | 32, 598 | 21,572  | 39, 124                                 | 21,414  | 14,076  | 25, 298                                 |
| Estimated                  | 000     | 2 946                                   | 7 803                                   | 2 263    | 1 630   | 1 079   | 1 956                                   | 1,071   | 704     | 26                                      |
| Total                      | 41,962  | 65, 774                                 | 60, 760                                 | 47, 531  | 34, 228 | 22, 651 | 41,080                                  | 22, 485 | 14,780  | 26, 563                                 |
| St. George Island          | ס       |                                         |                                         |          |         |         |                                         |         |         |                                         |
| North                      | 2,653   | 3, 489                                  | 3,883                                   | 2,242    | 2,525   | 792     | 1,854                                   | 1,561   | 971     | 1,567                                   |
| Zapadni                    | 1,633   | 1, 902                                  | 2,019                                   | 1,740    | 704     | 446     | 1, 263                                  | 1, 196  | 578     | 1, 197                                  |
| East                       | 664     | 1, 112                                  |                                         | 504      | 505     | 272     | 929                                     | 764     | 201     | 824                                     |
| Staraya Artil              | 1, 987  | 2,000                                   | 2,514                                   | 1, 435   | 1,041   | 167     | 1, 186                                  | 1, 152  | 770     | 1,055                                   |
| Counted total              | 6,937   | 8, 503                                  | 9, 763                                  | 5, 921   | 4,772   | 2,277   | 4,979                                   | 4,673   | 2,520   | 4,643                                   |
| oversight 5%               | 347     | 425                                     | 488                                     | 296      | 239     | 114     | 249                                     | 234     | 126     | 232                                     |
| Total                      | 7,284   | 8, 928                                  | 10,251                                  | 6,217    | 5,011   | 2, 391  | 5, 228                                  | 4,907   | 2,646   | 4,875                                   |
| Pribilof Islands           | 10 246  | 207 702                                 | 71 011                                  | 7.3 7.48 | 39 239  | 25 042  | 46. 308                                 | 27. 392 | 17. 426 | 31, 438                                 |
| -10101                     | 7, 640  | 701 15                                  | 11,011                                  | 0.00     | (01,10  |         | 000                                     |         |         |                                         |

1/Not included in the total are 2, 228 dead pups counted on Sea Lion Rock (Sivutch) in 1966.

Table A-14. -- Dead seal pups counted, by rookery sections, St. Paul Island, 22-27 August 1968

|                         |       |       |     |     |     |     | Section 1/ | 1/  |     |     |     |     |       |         |
|-------------------------|-------|-------|-----|-----|-----|-----|------------|-----|-----|-----|-----|-----|-------|---------|
| Rookery                 |       | 2     | 3   | 4   | 5   | 9   | 7          | ∞   | 6   | 10  | 11  | 12  | 13&14 | Total   |
| Morjovi                 | 1     | 1,274 | ı   | 381 | 256 | 374 | 1          | ı   | 1   | ı   | ı   | ı   | 1     | 2, 285  |
| Vostochni               | 199   | 138   | 200 | 165 | 390 | 833 | 291        | 461 | 335 | 127 | 221 | 291 | 544   | 4, 195  |
| Little Polovina         | 347   | 162   | 1   | 1   | 1   | 1   | 1          | ı   | 1   | 1   | ı   | t   | ı     | 609     |
| Polovina Cliffs         | 229   | 270   | 234 | 192 | 301 | 214 | 176        | ı   | ŧ   | 1   | ı   | t   | 1     | 1,616   |
| Polovina                | 300   | 187   | ì   | ı   | 1   | 1   | t          | ŧ   | •   | ı   | ı   | ŧ   | 1     | 487     |
| Ardiguen <sup>2</sup> / | 1     | 1     | •   | 1   | 1   | 1   | 1          | t   | ı   | 1   | ı   | ı   |       | 118     |
| Gorbatch                | 309   | 360   | 273 | 115 | 389 | ŧ   | •          | 1   | ř   | 1   | 1   | ı   | ı     | 1,446   |
| Reef                    | 236   | 308   | 391 | 338 | 274 | 483 | 389        | 244 | 154 | 173 | 74  |     | ,     | 3,064   |
| Kitovi                  | 3/231 | 11    | 238 | 176 | 66  | ı   | •          | ı   | ı   | ı   | t   | ı   | 1     | 755     |
| Lukanin                 | 249   | 348   | t   | 1   | ŧ   | t   | ,          | ŧ   | 1   | 1   | 1   | 1   | ì     | 597     |
| Tolstoi                 | 237   | 233   | 259 | 125 | 421 | 663 | 573        | 804 | 1   | 1   | ,   | ı   | 1     | 3, 315  |
| Little Zapadni          | 118   | 265   | 394 | 503 | 312 | 189 | 1          | ı   | ı   | 1   | 1   | r   | 1     | 1,781   |
| Zapadni Reef            | 488   | 197   | ı   | ı   | ı   | 1   | 1          | 1   | ı   | 1   | 1   | 1   | 1     | 689     |
| Zapadni                 | 310   | 979   | 707 | 894 | 587 | 441 | 613        | 267 | 1   | •   | 1   | ı   | 1     | 4, 445  |
| Total                   |       |       |     |     |     |     |            |     |     |     |     |     |       | 25, 298 |

<sup>1/</sup> Where possible, each rookery was divided into sections containing about 100 Class 3 males in mid-July and the sections were numbered consecutively.

<sup>2/</sup> No numbered sections

<sup>3/</sup> Includes 54 dead pups counted in amphitheater.

Table A.15. -- Lesions and circumstances associated with cases of multiple hemorrhage-perinatal complex among seal pups, St. Paul Island, 1964 and 1966-68

|                                                                                                                                                                                                                  |                                                  |                                                   |         | No bite<br>wounds                       | Subscapsular<br>hemorrhage                                | Focal<br>necrosis      | Intraocular |                                      | Placenta<br>or fresh                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|---------|-----------------------------------------|-----------------------------------------------------------|------------------------|-------------|--------------------------------------|-------------------------------------|
| 964<br>cery                                                                                                                                                                                                      | Pups<br>examined                                 | Pups<br>affected                                  | pa      | or                                      | of liver and                                              | of the<br>liver        | hemorrhage  | Stillborn                            | cord                                |
| 9 July to<br>22 Aug. 1964<br>Reef Rookery                                                                                                                                                                        | Number                                           | Number                                            | Percent |                                         |                                                           |                        |             |                                      |                                     |
| Old catwalk                                                                                                                                                                                                      | 109                                              | 9                                                 | 5.5     | 1                                       | 1                                                         | ı                      | - 1         | 1                                    | m                                   |
| 28 June to<br>22 Aug. 1966<br>Reef Rookery<br>Old catwalk                                                                                                                                                        | 164                                              | 7.                                                | 3.0     | 8                                       |                                                           | ,                      | ,           | 1                                    | 2                                   |
| 29 June to 15 Aug. 1967 Reef Rookery Old catwalk New catwalk Northeast Point Rookery Total Percent 4 July to 15 Aug. 1968 Reef Rookery Old catwalk New catwalk New catwalk Northeast Point Rookery Total Percent | 80<br>54<br>98<br>232<br>232<br>132<br>97<br>150 | 14)<br>10)<br>16)<br>1/40<br>4)<br>9)<br>9)<br>19 | 17. 2   | 2<br>8<br>8<br>15<br>15<br>37.5<br>37.5 | 3<br>3<br>9<br>22.5<br>1<br>1<br>1<br>1<br>1<br>1<br>16.7 | 1 2 5 5 12.5 12.5 16.7 | 20.00       | 3<br>6<br>11<br>11<br>27.5<br>7<br>7 | 10<br>8<br>32<br>32<br>80.0<br>80.0 |

1/ Includes 33 pups affected as the primary cause and 7 as the secondary cause of death.

Table A-16.--Primary causes of death among 379 seal pups, by 7-day periods, St. Paul Island, 5 July to 15 August 1968.

| Cause of death                    | 5-11<br>July | 12-18<br>July | 19-25<br>July | 20 July<br>to 1 Aug. | 2-8<br>Aug. | 9-15<br>Aug. | Total |
|-----------------------------------|--------------|---------------|---------------|----------------------|-------------|--------------|-------|
|                                   |              |               |               | <u>Number</u>        |             |              |       |
| Malnutrition                      | 16           | 34            | 33            | 65                   | 19          | 14           | 181   |
| Hookworm disease                  | 2            | 11            | 19            | 22                   | 6           | 4            | 64    |
| Trauma                            | 8            | 10            | 0             | 1                    | 0           | 2            | 21    |
| Microbial infection               | 1            | 8             | 2             | 6                    | 0           | 3            | 20    |
| Perinatal complex                 | 7            | 4             | 7             | 0                    | 0           | 1            | 19    |
| Miscellaneous                     | 3            | 2             | 0             | 1                    | 1           | 0            | 7     |
| Undetermined                      | 4            | 1             | 3             | 2                    | 1           | 11           | 12    |
| Total                             | 41           | 70            | 64            | 97                   | 27          | 25           | 324   |
| Unsuitable for examination        | 10           | 4             | 4             | 1                    | 1           | 1            | 1 55  |
| Total                             | 51           | 74            | 68            | 98                   | 28          | 26           | 1 379 |
| Advanced post mortem degeneration | 16           | 17            | 26            | <b>1</b> 6           | 2           | 1            | 1 112 |

<sup>1</sup> Includes 34 pups, unsuitable for examination, that died before 5 July.

Table A-17.--Adult male seals counted, by class and rookery, St. George Island, 21-22 June 1968.

|             |            |     | Class | s of adult mal | e <sup>2</sup> |     | Total |
|-------------|------------|-----|-------|----------------|----------------|-----|-------|
| Rookery     | Date       | 1   | 2     | 3              | 4              | 5   | 10001 |
|             |            |     |       | <u>Numb</u>    |                |     |       |
| oadni       | June<br>21 | 13  | 151   | 83             | 16             | 344 | 607   |
| 1th         | 21         | 42  | 225   | 129            | 34             | -   | 430   |
| at Reef     | 21         | _   | 77    | 30             | 17             | 186 | 310   |
| t Cliffs    | 21         | 18  | 135   | 82             | 65             | 97  | 397   |
| araya Artil | 21         | 7   | 183   | 56             | 13             | 122 | 381   |
| rth         | 22         | 69  | 288   | 226            | 48             | 132 | 763   |
| Total       |            | 149 | 1,059 | 606            | 193            | 881 | 2,888 |

<sup>1</sup> The adult males on St. George Island were not counted by section in June because section boundaries were not established until July.

<sup>&</sup>lt;sup>2</sup> Class 1 Shoreline - Full-grown males about age 10 and older without females but apparently with established territories at the high tide mark.

Class 2 Territorial without females - Full-grown males about age 10 and older without females but with established

territories on the rookery.

Class 3 Territorial with females - Full-grown males about age 10 and older with females and established territories

on the rookery.

Class 4 Back fringe - Full-grown and partly grown males about age 7 and older without females and territories that are found along the inland fringe of the rookery.

Class 5 Hauling ground - Full-grown and partly grown males about age 7 and older without females that are found on traditional hauling grounds.

Class 3 males were formerly called harem bulls, and Classes 1, 2, 4, and 5 were collectively called idle bulls.

Table A-18. --Adult male seals counted, by class  $\frac{1}{2}$  and rookery section,  $\frac{2}{2}$  St. George 1sland, 13 July 1968

| Rookery and             |     |     | Sectio | ns   |           |     |       |
|-------------------------|-----|-----|--------|------|-----------|-----|-------|
| class of male           | 1   | _ 2 | 3      | 4    | 5         | 6   | Total |
|                         |     |     |        | Numb | <u>er</u> |     |       |
| Zapadni                 |     |     |        |      |           |     |       |
| 1                       | 4   | 4   | 4      | -    | -         | -   | 12    |
| 2                       | 14  | 29  | 35     | -    | -         | -   | 78    |
| 3                       | 73  | 112 | 42     | -    | -         | -   | 227   |
| 4                       | -   | 3   | 5      | -    | -         | -   | 8     |
| 5                       | 323 | -   | -      | -    | -         | -   | 323   |
| South                   |     |     |        |      |           |     |       |
| 1                       | 8   | 11  | 6      | -    | -         | -   | 25    |
| 2                       | 2   | 4   | 4      | -    | -         | -   | 10    |
| 3                       | 103 | 107 | 109    | -    | -         | -   | 319   |
| 4                       | -   | _   | _      | -    | -         | -   | -     |
| 5                       | 72  | ~   | 19     | -    | -         | -   | 91    |
| North                   |     |     |        |      |           |     |       |
| 1                       | 6   | 7   | 7      | 10   | 2         | 3   | 35    |
| 2                       | 7   | 14  | 3      | 11   | 10        | 20  | 65    |
| 3                       | 79  | 114 | 111    | 114  | 108       | 110 | 636   |
| 4                       | -   | 1   | 3      | 4    | 1         | 19  | 28    |
| 5                       | 75  | -   | -      | -    | 1         | 101 | 177   |
| East Reef <sup>3/</sup> |     |     |        |      |           |     |       |
| 1                       | 4   | _   | _      | -    | -         | -   | 4     |
| 2                       | 12  | _   | _      | -    | -         | -   | 12    |
| 3                       | 116 | _   | _      | _    | -         | -   | 116   |
| 4                       | 2   | -   | _      | _    | -         | _   | 2     |
| 5                       | 12  | -   | -      | -    | •         | -   | 12    |
| East Cliffs             |     |     |        |      |           |     |       |
| 1                       | 8   | 8   | -      | -    | -         | -   | 16    |
| 2                       | 23  | 8   | -      | -    | -         | -   | 31    |
| 3                       | 120 | 117 | _      | -    | -         | -   | 237   |
| 4                       | 2   | -   | -      | -    | -         | -   | 2     |
| 5                       | 144 | 7   | -      | -    | -         | -   | 151   |
| Staraya Artil           |     |     |        |      |           |     |       |
| 1                       | 9   | -   | -      | -    | -         | -   | 9     |
| 2                       | 20  | 33  | -      | -    | -         | -   | 53    |
| 3                       | 112 | 101 | _      | -    | _         | -   | 213   |
| 4                       | -   | 19  | _      | _    | _         | _   | 19    |
| 5                       | 90  | 30  |        | _    | _         | _   | 120   |

 $<sup>\</sup>ensuremath{\mathrm{l}}\xspace/$  For description of classes, see table A-17 or glossary.

<sup>2/</sup> In 1968, each rookery was divided into sections containing about 100 class 3 males in mid-July and the sections numbered consecutively throughout the rookery.

<sup>3/</sup> No numbered sections.

Table A-19.--Adult male seals counted by class  $\frac{1}{2}$  and rookery section,  $\frac{2}{2}$  St. Paul Island, 21-26 June 1968

| Rookery<br>and class  |          |          |          |          |          |          | Section |         |           |    |         |    |    |    |            |
|-----------------------|----------|----------|----------|----------|----------|----------|---------|---------|-----------|----|---------|----|----|----|------------|
| of male               | 1        | 2        | 3        | 4        | 5        | 6        | 7       | 8       | 9         | 10 | 11      | 12 | 13 | 14 | Total      |
| To a long of the      |          |          |          |          |          |          |         | Numb    | <u>er</u> |    |         |    |    |    |            |
| Lukanin<br>l          | 4        | 4        | _        |          | _        |          | _       | _       | _         | _  | _       | _  | _  | _  | 8          |
| 2                     | 29       | 3 3      | _        | _        | _        | _        | -       | -       | -         | -  | -       | -  | -  | -  | 62         |
| 3                     | 17       | 28       | -        | -        | -        | -        | -       | -       | -         | -  | -       | -  | -  | -  | 45         |
| 4                     | -        | 1        | -        | -        | -        | -        | -       | -       | -         | -  | -       | -  | -  | -  | 1          |
| 5                     | 15       | -        | -        | -        | -        | -        | -       | -       | -         | -  | -       | -  | -  | -  | 15         |
| Kitovi <sup>3</sup> / |          |          |          |          |          |          |         |         |           |    |         |    |    |    |            |
| 1                     | 3(1)     | 12       | 6        | 4        | 5        | -        | -       | -       | -         | -  | -       | -  | -  | -  | 31         |
| 2                     | 26(22)   | 14       | 35       | 40       | 42       | -        | -       | -       | -         | -  | -       | -  | -  | -  | 179        |
| 3                     | 26(15)   | 12       | 22       | 29       | 18       | -        | -       | -       | -         | ~  | -       | -  | -  | -  | 122        |
| 4<br>5                | -        | -        | -        | -        | -<br>49  | _        | _       | -       | -         | -  | -       | -  | -  | -  | 49         |
| 3                     | -        | -        | -        | -        | 72.7     | -        | -       | -       | -         | _  | _       | -  |    |    | 7.7        |
| Reef                  |          |          |          |          |          |          |         |         |           |    |         |    |    |    |            |
| 1                     | 2        | 14       | 7        | 1        | 3        | 3        | -       | 12      | 7         | 6  | 2       | -  | -  | -  | 57         |
| 2                     | 60       | 76       | 63       | 38       | 51       | 35       | 114     | 63      | 50        | 44 | 22      | -  | -  | -  | 616        |
| 3<br>4                | 29<br>6  | 32<br>5  | 23       | 12<br>10 | 16       | 52       | 7       | 27<br>8 | 19        | 21 | 17<br>4 | -  | -  | -  | 255<br>42  |
| 5                     | -        | -        | _        | -        | 350      | _        | _       | -       | _         | _  | 50      | _  | _  | _  | 400        |
|                       |          |          |          |          |          |          |         |         |           |    |         |    |    |    |            |
| Gorbatch              |          |          |          |          |          |          |         |         |           |    |         |    |    |    |            |
| 1                     | 7        | 10       | 1        | -        | 10       | 4        | -       | -       | -         | -  | -       | -  | -  | -  | 32         |
| 2                     | 66<br>30 | 48<br>26 | 46<br>28 | 45<br>6  | 61<br>17 | 75<br>21 | _       | -       | -         | -  | -       | -  | -  | -  | 341<br>128 |
| 4                     | 5        | 2        | 4        | 3        | 5        | 6        | _       | _       | _         | _  | _       | _  | _  | _  | 25         |
| 5                     | 209      | _        | -        | 33       | -        | -        | -       | -       | -         | -  | _       | -  | -  | -  | 242        |
| 4/                    |          |          |          |          |          |          |         |         |           |    |         |    |    |    |            |
| Ardiguen 4/           |          |          |          |          |          |          |         |         |           |    |         |    |    |    | 2          |
| 1 2                   |          |          |          |          |          |          |         |         |           |    |         |    |    |    | 2<br>62    |
| 3                     |          |          |          |          |          |          |         |         |           |    |         |    |    |    | 42         |
| 4                     |          |          |          |          |          |          |         |         |           |    |         |    |    |    | -          |
| 5                     |          |          |          |          |          |          |         |         |           |    |         |    |    |    | 50         |
| . 5/                  |          |          |          |          |          |          |         |         |           |    |         |    |    |    |            |
| Morjovi -             | 4(1)     | 7        | 4        | 9        | 4        | 6        | _       | _       | _         |    |         | _  | _  | _  | 35         |
| 2                     | 50(20)   | 22       | 38       | 65       | 55       | 59       | _       | _       | _         | -  | -       | _  | _  | _  | 309        |
| 3                     | 33(10)   | 36       | 23       | 47       | 38       | 41       | -       | -       | -         | -  | -       | -  | -  | -  | 228        |
| 4                     | 4(0)     | 1        | 4        | 8        | -        | 4        | -       | -       | -         | -  | -       | -  | -  | -  | 21         |
| 5                     | 146( 0)  | -        | -        | -        | -        | -        | -       | -       | -         | -  | -       | -  | -  | -  | 146        |
| Vostochni             |          |          |          |          |          |          |         |         |           |    |         |    |    |    |            |
| l                     | 2        | 1        | 3        | 1        | _        | 5        | 2       | 5       | 9         | 6  | 9       | 5  | 16 | 3  | 67         |
| 2                     | 66       | 51       | 43       | 36       | 35       | 101      | 53      | 65      | 70        | 48 | 57      | 73 | 70 | 36 | 804        |
| 3                     | 28       | 21       | 19       | 24       | 23       | 43       | 30      | 50      | 42        | 24 | 31      | 49 | 52 | 26 | 462        |
| 4                     | 1        | -        | -        | 2        | 1        | -        | -       | 5       | -         | -  | -       | -  | -  | 2  | 11         |
| 5                     | 72       | -        | **       | 59       | -        | -        | 102     | -       | -         | -  | -       | 92 | 13 | 51 | 389        |
| Little Polovi         | na       |          |          |          |          |          |         |         |           |    |         |    |    |    |            |
| l                     | 2        | 10       | _        | _        | _        | -        | _       | _       | -         | _  | -       | _  | -  | _  | 12         |
| 2                     | 42       | 65       | -        | -        | -        | -        | -       | -       | -         | -  | -       | -  | -  | -  | 107        |
| 3                     | 37       | 34       | -        | -        | -        | -        | -       | -       | -         | -  | -       | -  | -  | -  | 71         |
| 4                     | 7        | 7        | -        | -        | -        | -        | -       | -       | -         | -  | -       | -  | -  | -  | 14         |
| 5                     | 4        | 71       | -        | -        | -        | -        | -       | -       | -         | -  | -       | -  | -  | -  | 75         |

See footnotes at end of table.

Table A-19.--Adult male seals counted by class  $\frac{1}{2}$  and rookery section,  $\frac{2}{2}$  St. Paul Island, 21-26 June 1968--Continued

| Rookery<br>and class   |        |    |    |    |     | S  | ection | ı     |    |    |    |    |    |    |      |
|------------------------|--------|----|----|----|-----|----|--------|-------|----|----|----|----|----|----|------|
| of male                | 1      | 2  | 3  | 4  | . 5 | 6  | 7      | 8     | 9  | 10 | 11 | 12 | 13 | 14 | Tota |
| Polovina               |        |    |    |    |     |    |        | -Numb | er |    |    |    |    |    |      |
| 1                      | 5      | 3  | _  | -  | _   | _  | _      | _     | -  | _  | _  | _  | _  | _  | 8    |
| 2                      | 53     | 36 | _  | _  | _   | _  | _      | _     | -  |    | _  | _  | _  | _  | 89   |
| 3                      | 45     | 23 | _  | _  | -   | -  | _      | _     | _  | -  | _  | _  | _  | _  | 68   |
| 4                      | 1      | _  | -  | _  | -   | ~  | -      | -     | -  | -  | -  | -  | -  | _  |      |
| 5                      | 163    | 14 | -  | ~  | -   | -  | -      | -     | -  | -  | -  | -  | -  | -  | 177  |
| Polovina Clif          | lfs.   |    |    |    |     |    |        |       |    |    |    |    |    |    |      |
| 1                      | 1      | 4  | 7  | 12 | 8   | 6  | 14     | _     | _  | _  |    | _  | _  | _  | 52   |
| 2                      | 49     | 42 | 33 | 31 | 43  | 44 | 73     | -     | -  | -  | -  | -  | -  | -  | 31   |
| 3                      | 26     | 25 | 34 | 33 | 49  | 37 | 52     | -     | -  | -  | ~  | -  | -  | -  | 256  |
| 4                      | 2      | 5  | 3  | 4  | -   | -  | 16     | -     | -  | -  | ~  | -  | -  | -  | 16   |
| 5                      | -      | -  | ~  | -  | -   | 74 | ~      | -     | -  | -  | -  | -  | -  | -  | 74   |
| Γolstoi                |        |    |    |    |     |    |        |       |    |    |    |    |    |    |      |
| 1                      | 5      | 7  | 7  | 7  | 10  | 5  | 4      | 4     | -  | -  | -  | -  | -  | -  | 4    |
| 2                      | 22     | 32 | 36 | 20 | 63  | 57 | 46     | 74    | -  | -  | -  | -  | -  | -  | 350  |
| 3                      | 39     | 30 | 35 | 19 | 61  | 60 | 37     | 28    | -  | -  | -  | ~  | -  | -  | 30   |
| 4                      | -      | 1  | -  | -  | -   | 5  | -      | 19    | -  | -  | -  | -  | -  | ~  | 2.   |
| 5                      | -      | -  | -  | -  | -   | ~  | -      | 150   | -  | ~  | -  | -  | -  | -  | 150  |
| Zapadni Reef           |        |    |    |    |     |    |        |       |    |    |    |    |    |    |      |
| 1                      | 1      | 2  | -  | -  | -   | -  | -      | -     | -  | -  | -  | -  | -  | -  |      |
| 2                      | 56     | 16 | -  | -  | -   | -  | -      | -     | -  | -  | -  | -  | -  | -  | 72   |
| 3                      | 42     | 33 | -  | -  | -   | -  | -      | -     | -  | -  | -  | -  | -  | -  | 7    |
| 4                      | 3      | -  | -  | -  | -   | -  | -      | -     | -  | -  | -  | -  | -  | -  |      |
| 5                      | 7      | 52 | -  | -  | -   | -  | -      | -     | -  | -  | ~  | -  | -  | -  | 5    |
| Little Zapadr          | ni     |    |    |    |     |    |        |       |    |    |    |    |    |    |      |
| 1                      | -      | 1  | 6  | 8  | 11  | 1  | -      | -     | -  | -  | -  | -  | -  | -  | 2.   |
| 2                      | 23     | 23 | 47 | 54 | 28  | 43 | ~      | ~     | -  | -  | -  | -  | -  | -  | 218  |
| 3                      | 20     | 35 | 44 | 62 | 34  | 39 | -      | -     | -  | -  | -  | -  | -  | -  | 23   |
| 4                      | 2      | -  | -  | 3  | 4   | -  | -      | -     | -  | -  | -  | ~  | -  | -  |      |
| 5                      | 24     | -  | -  | -  | ~   | 60 | -      | -     | ~  | -  | -  | -  | -  | -  | 8    |
| Zapadni <sup>6</sup> / |        |    |    |    |     |    |        |       |    |    |    |    |    |    |      |
| 1                      | 3(0)   | 6  | 9  | 11 | 6   | 11 | 8      | 1     | -  | -  | -  | -  | -  | -  | 5 5  |
| 2                      | 56(0)  | 83 | 74 | 90 | 69  | 53 | 64     | 19    | -  | -  | -  | -  | ~  | -  | 508  |
| 3                      | 38( 0) | 62 | 41 | 58 | 38  | 58 | 40     | 22    | -  | -  | -  | -  | -  | -  | 357  |
| 4                      | -( 0)  | 17 | -  | 2  | 2   | 5  | 7      | 1     | -  | -  | -  | -  | -  | -  | 3 (  |
| 5                      | -(126) | -  | -  | -  | -   | -  | -      | 174   | -  | -  | -  | ~  | -  | -  | 300  |
| Sea Lion Roc           | k4/    |    |    |    |     |    |        |       |    |    |    |    |    |    |      |
| 1                      |        |    |    |    |     |    |        |       |    |    |    |    |    |    | 7    |
| 2                      |        |    |    |    |     |    |        |       |    |    |    |    |    |    | 288  |
| 3<br>4                 |        |    |    |    |     |    |        |       |    |    |    |    |    |    | 166  |
| 5                      |        |    |    |    |     |    |        |       |    |    |    |    |    |    | 150  |

<sup>1/</sup> For description of classes, see table A-17 or glossary.

<sup>2</sup>/ In 1966, each rookery was divided into sections containing about 100 Class 3 males in midJuly and the sections numbered consecutively throughout the rookery.

<sup>3/</sup> Numbers in parentheses are the adult males counted in Kitovi Amphitheater.

<sup>4/</sup> No numbered sections.

<sup>5/</sup> Numbers in parentheses are the adult males counted on the second point south of Sea Lion Neck.

<sup>6/</sup> Numbers in parentheses are the adult males counted on Zapadni Point Reef.

Table A-20. --Adult male seals counted, by class  $\frac{1}{2}$  and rookery section,  $\frac{2}{2}$  St. Paul Island, 10-11 July 1968

| Rookery and        |         |    |    |    |     |     | ctions | 5   |    |    |    |     |     |    |       |
|--------------------|---------|----|----|----|-----|-----|--------|-----|----|----|----|-----|-----|----|-------|
| class of male      | 1       | 2  | 3  | 4  | 5   | 6   | 7      | 8   | 9  | 10 | 11 | 12  | 13  | 14 | Total |
|                    |         |    |    |    |     | Nu  | ımber  | -   |    |    |    |     |     |    |       |
| Reef               |         |    |    |    |     |     |        |     |    |    |    |     |     |    |       |
| 1                  | 7       | 12 | 12 | -  | 6   | 6   | -      | 6   | 3  | 3  | -  | -   | -   | -  | 55    |
| 2                  | 6       | 14 | 9  | 12 | 14  | 9   | 36     | 6   | 6  | 5  | 6  | -   | -   | -  | 123   |
| 3                  | 84      | 92 | 79 | 52 | 59  | 82  | 82     | 111 | 72 | 76 | 54 | -   | -   | -  | 843   |
| 4                  | 5       | 8  | -  | 24 | 4   | -   | 2      | -   | 2  | 9  | 3  | -   | ~   | -  | 57    |
| 5                  | -       | -  | ~  | -  | 227 | -   | -      | -   | -  | -  | 52 | -   | -   | -  | 279   |
| Zapadni Reef       |         |    |    |    |     |     |        |     |    |    |    |     |     |    |       |
| I                  | 5       | 4  | -  | -  | -   | -   | -      | -   | -  | -  | -  | -   | -   | -  | 9     |
| 2                  | 5       | -  | -  | -  | -   | -   | -      | -   | -  | -  | -  | -   | -   | -  | 5     |
| 3                  | 98      | 46 | _  | -  | -   | -   | -      | -   | -  | -  | -  | -   | -   | -  | 144   |
| 4                  | 3       | 1  | -  | -  | -   | -   | -      | -   | -  | -  | -  | -   | -   | -  | 4     |
| 5                  | 11      | 39 | -  | -  | -   | -   | -      | -   | -  | ~  | ~  | -   | -   | -  | 50    |
| Vostochni          |         |    |    |    |     |     |        |     |    |    |    |     |     |    |       |
| 1                  | 2       | 2  | 2  | 2  | 2   | 4   | 3      | 5   | 10 | 3  | 1  | 5   | 8   | 3  | 52    |
| 2                  | 12      | -  | 6  | 13 | 7   | 27  | 41     | 24  | 28 | 16 | 17 | 18  | 15  | 5  | 229   |
| 3                  | 84      | 64 | 59 | 52 | 53  | 124 | 71     | 91  | 98 | 53 | 87 | 111 | 113 | 56 | 1,116 |
| 4                  | 2       | 2  | -  | 1  | 1   | -   | -      | 1   | 1  | -  | -  | -   | 1   | -  | 9     |
| 5                  | 44      | -  | -  | 28 | -   | -   | 20     | -   | -  | -  | -  | 86  | -   | 29 | 207   |
| Morjovi <u>3</u> / |         |    |    |    |     |     |        |     |    |    |    |     |     |    |       |
| 1                  | 5 (-)   | 5  | _  | 6  | 3   | 6   | -      | -   | -  | -  | -  | -   | -   | -  | 25    |
| 2                  | 10 (2)  | 2  | 11 | 6  | 7   | 28  | -      | _   | -  | -  | -  | -   | -   | -  | 66    |
| 3                  | 68 (40) | 70 | 59 | 94 | 86  | 88  | -      | -   | -  | -  | -  | -   | -   | -  | 505   |
| 4                  | 1 (-)   | 4  | 2  | 6  | 2   | _   | _      | -   | _  | _  | -  | -   | _   | -  | 15    |
| 5                  | 85 (-)  | _  | _  | _  | -   | _   | -      | -   | _  | -  | _  | _   | ~   | _  | 85    |

<sup>1/</sup> For description of classes, see table A-17 or glossary.

<sup>2/</sup> In 1966, each rookery was divided into sections containing about 100 class 3 males in mid- $\overline{J}$ uly and the sections numbered consecutively throughout the rookery.

<sup>3/</sup> Numbers in parentheses are the adult males counted on the second point south of Sea Lion Neck.

Table A-21.--Adult male seals counted on Reef, Zapadni Reef, Morjovi, and Vostochni Rookeries, St. Paul Island, 9-14 July 1966 and 1968

| Rookery                      | Class of<br>adult male <sup>1</sup> | 1966         | 1968         |
|------------------------------|-------------------------------------|--------------|--------------|
|                              |                                     | Number       | Number       |
| Reef<br>Reef                 | 1, 2, 4, 5                          | 1,070<br>678 | 843<br>514   |
| Total                        |                                     | 1,748        | 1,357        |
| Zapadni Reef<br>Zapadni Reef | 3<br>1, 2, 4, 5                     | 203<br>210   | 144<br>68    |
| Total                        |                                     | 413          | 212          |
| Morjovi<br>Morjovi           | 3<br>1, 2, 4, 5                     | 645<br>534   | 505<br>191   |
| Total                        |                                     | 1,179        | 696          |
| Vostochni<br>Vostochni       | 3<br>1, 2, 4, 5                     | 1,449<br>970 | 1,116<br>497 |
| Total                        |                                     | 2,419        | 1,613        |

 $<sup>^{\</sup>mathrm{1}}$  For description of classes, see table A-17 or glossary.

Table A-22.--Harem and idle male seals counted in mid-July, Pribilof Islands, Alaska, 1959-68.

| 3/                | St. Paul    | Island | St. Georg   | e Island | Both is     | slands     |
|-------------------|-------------|--------|-------------|----------|-------------|------------|
| Year              | Harem       | Idle   | Harem       | Idle     | Harem       | Idle       |
|                   | <u>Nu</u> r | mber   | <u>Nu</u> r | ber      | <u>N</u> um | <u>ber</u> |
| 1959              | 10,003      | 11,485 | 2,527       | 2,699    | 12,530      | 14,184     |
| 1960              | 10,247      | 10,407 | 2,552       | 2,630    | 12,799      | 13,037     |
| 1961              | 11,163      | 11,791 | 2,843       | 2,489    | 14,006      | 14,280     |
| 1962              | 10,332      | 9,109  | 2,342       | 2,650    | 12,674      | 11,759     |
| 1963              | 9,212       | 7,650  | 2,071       | 1,890    | 11,283      | 9,540      |
| 1964              | 9,085       | 7,095  | 1,989       | 1,489    | 11,074      | 8,584      |
| 1965              | 8,553       | 5,616  | 1,917       | 1,113    | 10,470      | 6,729      |
| 1966              | 7,974       | 5,839  | 1,974       | 1,017    | 9,948       | 6,856      |
| .967 <sup>1</sup> | 7,230       | 4,439  | 1,646       | 1,268    | 8,876       | 5,707      |
| 1968 <sup>1</sup> | 6,176       | 3,100  | 1,748       | 1,283    | 7,924       | 4,383      |

<sup>&</sup>lt;sup>1</sup> Counts of harem and idle male seals on St. Paul Island were extrapolated from actual counts on Reef, Lukanin, Kitovi, Tolstoi, and Zapadni Reef Rookeries in 1967 and on Reef, Zapadni Reef, Vostochni, and Morjovi Rookeries in 1968.

Table A-23.--Mean weights of untagged and unmarked seal pups about 1 September, St. Paul Island, 1957-68

[Numbers in parentheses are sample sizes]

|         |              |               |               |               |      | Υ e          | ear          |              |      |               |              |      | Mean    |
|---------|--------------|---------------|---------------|---------------|------|--------------|--------------|--------------|------|---------------|--------------|------|---------|
| Sex     | 1957         | 1958          | 1959          | 1960          | 1961 | 1962         | 1963         | 1964         | 1965 | 1966          | 1967         | 1968 | 1957-68 |
|         |              |               |               |               |      |              | <u>Kg</u>    |              |      |               |              |      |         |
| Males   |              | 11.4<br>(127) | 9. 4<br>(444) |               |      |              | 8.9<br>(300) |              |      | 9.6<br>(300)  | 10.2         |      | 9.5     |
| Females | 7.7<br>(351) | 9. 9<br>(121) | 8. 1<br>(386) | 9. 1<br>(363) |      | 8.2<br>(300) | 8.0<br>(300) | 7.7<br>(300) |      | 8. 4<br>(300) | 9.0<br>(400) |      | 8.4     |

Table A-24.--Seal pups tagged and marked, Pribilof Islands, Alaska, 1959-68

| V    |                               | St. Paul                   | St. George<br>Island | Location of tag                           | Checkmarks or marks                                                                                                                    |
|------|-------------------------------|----------------------------|----------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Year | Series                        | Island                     | ber                  | Location of tag                           | Checkmarks or marks                                                                                                                    |
| 1959 | L 1-10000<br>L 10001-50000    | 39, 901                    | 9, 980               | Left front flipper                        | Tip of left front flipper sliced off Do.                                                                                               |
| 1960 | M 1-12000<br>M 12001-60000    | 47, 989                    | 11, 992              | Right front flipper                       | Tip of right front flipper sliced off Do.                                                                                              |
| 1961 | N 1-10000<br>N 10001-50000    | 39, 933                    | 9, 988               | Left front flipper                        | "V" notch near tip left front flippe: Do.                                                                                              |
| 1962 | O 1-10000<br>O 10001-50000    | 39, 928                    | 9, 980               | Right front flipper                       | "V" notch near tip right front flipp Do.                                                                                               |
| 1963 | P 1-5000<br>P 5001-25000      | 19, 978                    | 4, 993               | Left front flipper                        | Tip of left front flipper sliced off Do.                                                                                               |
| 1964 | Q 1-5000<br>Q 5001-25000      | 19, 998                    | 4, 993               | Right front flipper                       | Tip of right front flipper sliced off Do.                                                                                              |
| 1965 | R 1-10000<br>Marked<br>Marked | 10,000<br>10,007<br>10,080 |                      | Left front flipper<br>Not tagged<br>do    | "V" notch near tip left front flippe: "V" notch near tip right front flipp Tip of 1st digit (big toe) on right hind flipper sliced off |
| 1966 | S 1-2500<br>S 2501-12500      | 10,000                     | 2, 499               | Left front flipper<br>Right front flipper | Tip of left front flipper sliced off<br>Tip of 2d digit on right hind flipper<br>sliced off                                            |
|      | Marked                        | 9, 578                     |                      | Not tagged                                | Tip of 3d digit on right hind flipper sliced off                                                                                       |
|      | Marked                        |                            | 2,503                | do                                        | Tip of 2d digit on left hind flipper<br>sliced off                                                                                     |
| 967  | T 9-2500<br>T 5001-15000      | 9, 980                     | 2, 492               | Right front flipper                       | Tip of right front flipper sliced off Do.                                                                                              |
| 968  | U 1-2500<br>U 2501-12500      | 9,200                      | 2,4 <b>7</b> 5       | Left front flipper                        | "V" notch near tip left front flipper<br>Do.                                                                                           |

Table A-25.--Record of tags applied to male seals selected as yearlings and as 2-, 3-, and 4-year-olds on the basis of body length or size, St. Paul Island, 1961-63 and 1965-68

| Age category and year                                     | Tag<br>series                 | Tag<br>numbers                                                                         | Effective tags <sup>2</sup>                               |
|-----------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Yearlings <sup>3</sup> 1961 1962 1963 1965 1966 1967 1968 | M<br>N<br>O<br>1R<br>1S<br>1T | 1-2000<br>50001-51000<br>50001-51000<br>1-1000<br>20001-21500<br>1-1500<br>20001-21500 | Number<br>754<br>929<br>799<br>991<br>1,495<br>835<br>714 |
| Ages 2-4  1966 1967 1968                                  | 2S<br>2T<br>2U                | 20001-31500<br>1-1500<br>30001-31500                                                   | 1,483<br>1,220<br>1,495                                   |

<sup>1</sup> Each seal was double tagged; one tag was attached to each front flipper at the hairline. Some seals with tags that had been attached when they were pups were given another tag.

Table A-27.--Seal pups tagged and checkmarked, St. George Island, 26-27 August 1968

| Rookery               | Tag numbers<br>(U-series) | Pups<br>marked <sup>1</sup> |
|-----------------------|---------------------------|-----------------------------|
|                       |                           | Number                      |
| Zapadni-South         | 1-700                     | <sup>2</sup> 675            |
| Staraya Artil         | 701-1000                  | 300                         |
| East Reef-East Cliffs | 1001-1500                 | 500                         |
| North                 | 1501-2500                 | 1,000                       |
| Total                 |                           | 2,475                       |

<sup>1</sup> Tags were attached to the rear edge of the left front flipper at the hairline; as a checkmark, a V-notch was cut into the leading edge of the same flipper near the tip. No tags were discarded in 1968 as unfit for application.

Table A-26.--Seal pups tagged and checkmarked, St. Paul Island, 5-17 September 1968

| Rookery                                                                                                       | Tag numbers<br>(U-series)                                                                                                                                       | Pups<br>marked <sup>1</sup>                                                              |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
|                                                                                                               |                                                                                                                                                                 | Number                                                                                   |
| Zapadni Zapadni Reef Little Zapadni Reef Gorbatch Polovina Cliffs. Little Polovina. Vostochni Tolstoi Lukanin | 2501-3600<br>3601-3900<br>3901-4550<br>4551-6650<br>6651-6800<br>6801-7100<br>7101-7800<br>7801-8200<br>9001-10700<br>10701-11700<br>11701-11950<br>11951-12500 | 1,100<br>300<br>650<br>2,100<br>150<br>300<br>700<br>400<br>1,700<br>1,000<br>250<br>550 |
| Total                                                                                                         |                                                                                                                                                                 | 9,200                                                                                    |

<sup>1</sup> Tags were attached to the rear edge of the left front flipper at the hairline; as a checkmark, a V-notch was cut into the leading edge of the same flipper near the tip. No pups were tagged and checkmarked on Morjovi Rookery.

Table A-28.--Record of 714 yearling male seals tagged, St. Paul Island, September and October 1968

| Area                    | Tag numbers<br>(2U-series) | Effective<br>tags <sup>1</sup> |
|-------------------------|----------------------------|--------------------------------|
|                         |                            | Number                         |
| English Bay and Zapadni | 20001-20500<br>20901-20962 | 549                            |
| Northeast Point         | 20501-20597                | 96                             |
| Polovina                | 20801-20839                | 39                             |
| Reef                    | 20601-20630                | 30                             |
| Total                   |                            | 714                            |

Number of tags used within the series; in addition to the number of effective tags listed, two tags were attached to 2-year-olds, one (1U-20051) to a seal with Soviet tag Y2875 and one (1U-20176) to an untagged seal.

<sup>&</sup>lt;sup>2</sup> Total number of seals tagged within the series. <sup>3</sup> Seals of both sexes were intentionally tagged in 1961-63, and 1965. Only males were intentionally tagged in 1966-68.

<sup>&</sup>lt;sup>2</sup> A total of 675 tags within the series 1-700 were used.

Table A-29.--Record of 28 male seals marked as pups in 1967 and given an additional tag as yearlings, St. Paul Island, September and October 1968

| Seals with U.                                                                                   | S.A. pup tags                                                                            | Seals with U.S.A. pup tag lost | Seals with pup t                                                                                                           |                                                                                                                            | Seals with a mark Yearling tag (1U-series) 20565 |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Yearling tag<br>(1U-series)                                                                     | Pup tag<br>(T-series)                                                                    | Yearling tag<br>(lU-series)    | Yearling tag<br>(1U-series)                                                                                                | U.S.S.R. tag<br>(X-series)                                                                                                 |                                                  |
| 20020<br>20066<br>20240<br>20254<br>20304<br>20315<br>20470<br>20471<br>20527<br>20583<br>20607 | 9161<br>8461<br>13706<br>1415<br>2038<br>12126<br>6165<br>6577<br>12143<br>12856<br>8911 | 20413<br>20443                 | 20096<br>20119<br>20121<br>20127<br>20189<br>20213<br>20221<br>20313<br>20379<br>20484<br>20503<br>20547<br>20936<br>20957 | 37098<br>19325<br>12175<br>32272<br>35058<br>37151<br>19924<br>32569<br>33398<br>31974<br>23492<br>20390<br>20887<br>19825 | 20565                                            |

<sup>&</sup>lt;sup>1</sup> Marked by freeze branding on St. Paul Island in 1967--a "T" on the forearm of the right front flipper parallel to the spinal column, and a "T" on the forearm of the left front flipper perpendicular to the spinal column.

Table A-30.--Record of 1,495 male seals tagged at age≥2 years, St. Paul Island, September and October 1968

| Area                    | Tag number<br>(2U-series)  | Effective<br>tags |
|-------------------------|----------------------------|-------------------|
|                         |                            | Number            |
| English Bay and Zapadni | 30001-30500<br>31001-31500 | 998               |
| Northeast Point         | 30501-30638                | 137               |
| Polovina                | 30639-31000                | 360               |
| Total                   |                            | 1,495             |

Table A-31. -- Record of 86 male seals marked as pups in 1966 and given additional tags, St. Paul Island, September and October 1968

| Seals with U.S.       | S. A. pup tag | Seals with U.S.A. (S-series)           | A. pup tag lost<br>ies)                             | Seals with U.         | with U.S.S.R<br>puptags    | Seals w                                | Seals with a mark                        |
|-----------------------|---------------|----------------------------------------|-----------------------------------------------------|-----------------------|----------------------------|----------------------------------------|------------------------------------------|
| >2 tag<br>(2U-series) | . 1           | >2 tag (2U-series)<br>and mark (RH2) 1 | >2 tag (2U-series)<br>and mark (LFS) <sup>2</sup> / | >2 tag<br>(2U-series) | U.S.S.R. tag<br>(Y-series) | >2 tag (2U-series)<br>and mark (RH3)3/ | > 2 tag (2U-series)<br>and mark (LH2) 4/ |
|                       |               |                                        |                                                     |                       |                            |                                        |                                          |
| 30071                 | 10642         | 30046                                  | 30025                                               | 30690                 | 21599                      | 30056                                  | 30194                                    |
| 30078                 | 7847          | 30210                                  |                                                     | 30895                 | 21753                      | 30059                                  | 30930                                    |
| 30082                 | 6930          | 30503                                  |                                                     | 31396                 | 31939                      | 30069                                  |                                          |
| 30145                 | 3971          | 30512                                  |                                                     |                       |                            | 30075                                  |                                          |
| 30170                 | 7999          | 30626                                  |                                                     |                       |                            | 30153                                  |                                          |
| 30208                 | 10517         | 30640                                  |                                                     |                       |                            | 30317                                  |                                          |
| 30223                 | 1872          | 30887                                  |                                                     |                       |                            | 30395                                  |                                          |
| 30246                 | 6903          | 30923                                  |                                                     |                       |                            | 30428                                  |                                          |
| 30295                 | 6926          | 30927                                  |                                                     |                       |                            | 30447                                  |                                          |
| 30432                 | 10222         | 30940                                  |                                                     |                       |                            | 30483                                  |                                          |
| 30448                 | 2537          | 30960                                  |                                                     |                       |                            | 30531                                  |                                          |
| 30449                 | 9145          | 31115                                  |                                                     |                       |                            | 30553                                  |                                          |
| 30548                 | 8811          | 31330                                  |                                                     |                       |                            | 30556                                  |                                          |
| 30616                 | 10387         | 31342                                  |                                                     |                       |                            | 30575                                  |                                          |
| 30651                 | 4904          |                                        |                                                     |                       |                            | 30589                                  |                                          |
| 30716                 | 11053         |                                        |                                                     |                       |                            | 30634                                  |                                          |
| 30727                 | 7437          |                                        |                                                     |                       |                            | 30641                                  |                                          |
| 30745                 | 7298          |                                        |                                                     |                       |                            | 30654                                  |                                          |
| 30755                 | 4004          |                                        |                                                     |                       |                            | 30720                                  |                                          |
| 30767                 | 8981          |                                        |                                                     |                       |                            | 30735                                  |                                          |
| 30781                 | 5449          |                                        |                                                     |                       |                            | 30805                                  |                                          |
| 30784                 | 12198         |                                        |                                                     |                       |                            | 30874                                  |                                          |
| 30822                 | 453           |                                        |                                                     |                       |                            | 30965                                  |                                          |
| 30833                 | 2619          |                                        |                                                     |                       |                            | 30973                                  |                                          |
| 30975                 | 7536          |                                        |                                                     |                       |                            | 31000                                  |                                          |
| 31050                 | 3438          |                                        |                                                     |                       |                            | 31084                                  |                                          |
| 31105                 | 3802          |                                        |                                                     |                       |                            | 31129                                  |                                          |
| 31111                 | 4594          |                                        |                                                     |                       |                            | 31137                                  |                                          |
| 31363                 | 6924          |                                        |                                                     |                       |                            | 31147                                  |                                          |
|                       |               |                                        |                                                     |                       |                            | 31154                                  |                                          |
|                       |               |                                        |                                                     |                       |                            | 31166                                  |                                          |
|                       |               |                                        |                                                     |                       |                            | 31202                                  |                                          |
|                       |               |                                        |                                                     |                       |                            | 31370                                  |                                          |
|                       |               |                                        |                                                     |                       |                            | 31421                                  |                                          |
|                       |               |                                        |                                                     |                       |                            | 31431                                  |                                          |
|                       |               |                                        |                                                     |                       |                            | 31443                                  |                                          |
|                       |               |                                        |                                                     |                       |                            | 31475                                  |                                          |

<sup>1/</sup> RH2 = tip of second digit, right hind flipper, removed.  $\frac{2}{2}$ / LFS = tip of left front flipper sliced off.  $\frac{3}{2}$ / RH3 = tip of third digit, right hind flipper, removed.  $\frac{4}{2}$ / LH2 = tip of second digit, left hind flipper, removed.

Table A-32. --Marked, tagged, and lost-tag seals recovered, by age and sex, Pribilof Islands, Alaska, 26 June to 16 August 1968

| Date, sex, and                                                                                                                                                                                                                                                                     |                                                                                                                       |                                                                                                                     | arks or tags                                                           |                                                                                                           | Lo                                                                    | st-tags 1/       |                                                     |                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| mark or tag series                                                                                                                                                                                                                                                                 |                                                                                                                       |                                                                                                                     | St. George                                                             |                                                                                                           | St. Paul                                                              | St. George       |                                                     | Grand                                                                                                       |
|                                                                                                                                                                                                                                                                                    | Age                                                                                                                   | Island                                                                                                              | Island<br>Number                                                       | Total                                                                                                     | Island                                                                | Island<br>Number | Total                                               | total                                                                                                       |
|                                                                                                                                                                                                                                                                                    | Years                                                                                                                 |                                                                                                                     | Number                                                                 |                                                                                                           |                                                                       | Number           |                                                     | Number                                                                                                      |
| 6 June through 2 August                                                                                                                                                                                                                                                            |                                                                                                                       |                                                                                                                     |                                                                        |                                                                                                           |                                                                       |                  |                                                     |                                                                                                             |
| Males                                                                                                                                                                                                                                                                              |                                                                                                                       |                                                                                                                     |                                                                        |                                                                                                           |                                                                       |                  |                                                     |                                                                                                             |
| S 2/                                                                                                                                                                                                                                                                               | 2                                                                                                                     | 35                                                                                                                  | 6                                                                      | 41                                                                                                        | 22                                                                    | 10               | 32                                                  | 73                                                                                                          |
| Hind flipper $(RH3)^{\frac{2}{2}}$                                                                                                                                                                                                                                                 | 2                                                                                                                     | 38                                                                                                                  | 7                                                                      | 45                                                                                                        | -                                                                     | -                | -                                                   | 45                                                                                                          |
| Front Hipper (KFV) -                                                                                                                                                                                                                                                               | 3                                                                                                                     | 618                                                                                                                 | 55                                                                     | 673                                                                                                       | -                                                                     | -                | ~                                                   | 673                                                                                                         |
| Hind flipper (RH1)2/                                                                                                                                                                                                                                                               | 3                                                                                                                     | 633                                                                                                                 | 76                                                                     | 709                                                                                                       | **                                                                    | -                | -                                                   | 709                                                                                                         |
| R                                                                                                                                                                                                                                                                                  | - 3                                                                                                                   | 358                                                                                                                 | 2.4                                                                    | 382                                                                                                       | 177                                                                   | 29               | 206                                                 | 588                                                                                                         |
| Q                                                                                                                                                                                                                                                                                  | 4                                                                                                                     | 580                                                                                                                 | 162                                                                    | 742                                                                                                       | 272                                                                   | 36               | 308                                                 | 1,050                                                                                                       |
| P                                                                                                                                                                                                                                                                                  | 5                                                                                                                     | 53                                                                                                                  | 27                                                                     | 80                                                                                                        | 24                                                                    | 8                | 32                                                  | 112                                                                                                         |
| 0                                                                                                                                                                                                                                                                                  | 6                                                                                                                     | 4                                                                                                                   | -                                                                      | 4                                                                                                         | 8                                                                     | 10               | 18                                                  | 22                                                                                                          |
| N                                                                                                                                                                                                                                                                                  | 7                                                                                                                     | 3                                                                                                                   | -                                                                      | 3                                                                                                         | -                                                                     | -                | ~                                                   | 3                                                                                                           |
| 3 /                                                                                                                                                                                                                                                                                |                                                                                                                       |                                                                                                                     |                                                                        |                                                                                                           |                                                                       |                  |                                                     |                                                                                                             |
| Females 3/                                                                                                                                                                                                                                                                         |                                                                                                                       |                                                                                                                     |                                                                        |                                                                                                           |                                                                       |                  |                                                     |                                                                                                             |
| Front flipper (RFV)2/                                                                                                                                                                                                                                                              | 3                                                                                                                     | 1                                                                                                                   | -                                                                      | 1                                                                                                         | **                                                                    | -                | -                                                   | 1                                                                                                           |
| Hind flipper (RH1)2/                                                                                                                                                                                                                                                               | 3                                                                                                                     | 1                                                                                                                   | -                                                                      | 1                                                                                                         | -                                                                     | -                | -                                                   | 1                                                                                                           |
| Q                                                                                                                                                                                                                                                                                  | 4                                                                                                                     | 4                                                                                                                   | -                                                                      | 4                                                                                                         | 2                                                                     | -                | 2                                                   | 6                                                                                                           |
| P                                                                                                                                                                                                                                                                                  | 5                                                                                                                     | 2                                                                                                                   | -                                                                      | 2                                                                                                         | 4                                                                     |                  | 4                                                   | 6                                                                                                           |
| 0                                                                                                                                                                                                                                                                                  | 6                                                                                                                     | 8                                                                                                                   | _                                                                      | 8                                                                                                         | 1                                                                     |                  | 1                                                   | 9                                                                                                           |
| N                                                                                                                                                                                                                                                                                  | 7                                                                                                                     | 7                                                                                                                   | _                                                                      | 7                                                                                                         | _                                                                     | _                | _                                                   | 7                                                                                                           |
| M                                                                                                                                                                                                                                                                                  | 8                                                                                                                     | 1                                                                                                                   | _                                                                      | i                                                                                                         | _                                                                     | _                |                                                     | i                                                                                                           |
| L                                                                                                                                                                                                                                                                                  | 9                                                                                                                     | 3                                                                                                                   | -                                                                      | 3                                                                                                         |                                                                       | -                |                                                     | 3                                                                                                           |
| ĸ                                                                                                                                                                                                                                                                                  | 10                                                                                                                    | 3                                                                                                                   | _                                                                      | 3                                                                                                         |                                                                       | -                | -                                                   | 3                                                                                                           |
| 1                                                                                                                                                                                                                                                                                  | 12                                                                                                                    | 2                                                                                                                   | -                                                                      | 2                                                                                                         | _                                                                     | -                | -                                                   |                                                                                                             |
| E                                                                                                                                                                                                                                                                                  | 16                                                                                                                    | 2                                                                                                                   | -                                                                      | 2                                                                                                         | -                                                                     | -                | ~                                                   | 2 2                                                                                                         |
|                                                                                                                                                                                                                                                                                    |                                                                                                                       |                                                                                                                     |                                                                        |                                                                                                           |                                                                       |                  |                                                     |                                                                                                             |
| August through 16 August Males  S Hind flipper (RH3) <sup>2</sup>                                                                                                                                                                                                                  | 2<br>2                                                                                                                | 1 5                                                                                                                 | 4 -                                                                    | 5<br>5                                                                                                    | 2 -                                                                   | -                | 2                                                   | 7                                                                                                           |
| Males S Hind flipper (RH3)2/                                                                                                                                                                                                                                                       |                                                                                                                       | 5                                                                                                                   | -                                                                      | 5                                                                                                         | -                                                                     |                  | -                                                   | 5                                                                                                           |
| Males S Hind flipper (RH3) <sup>2</sup> / Front flipper (RFV) <sup>2</sup> /                                                                                                                                                                                                       |                                                                                                                       | 5<br>10                                                                                                             | _<br>I                                                                 | 5<br>11                                                                                                   | -                                                                     | -                | -                                                   | 5<br>1 I                                                                                                    |
| Males  S Hind flipper (RH3) 2/ Front flipper (RFV)2/ Hind flipper (RH1)2/                                                                                                                                                                                                          | 2<br>2<br>3<br>3                                                                                                      | 5<br>10<br>6                                                                                                        | -<br>I<br>1                                                            | 5<br>11<br>7                                                                                              | -<br>-<br>-                                                           | -                | ~                                                   | 5<br>11<br>7                                                                                                |
| S Hind flipper (RH3) <sup>2</sup> / Front flipper (RFV) <sup>2</sup> / Hind flipper (RH1) <sup>2</sup> / R                                                                                                                                                                         | 2<br>2<br>3<br>3<br>3                                                                                                 | 5<br>10<br>6<br>6                                                                                                   | -<br>I<br>1<br>5                                                       | 5<br>11<br>7<br>11                                                                                        | -<br>-<br>-<br>2                                                      | -<br>-<br>-      | ~ 2                                                 | 5<br>11<br>7<br>13                                                                                          |
| Males  S Hind flipper (RH3) 2/ Front flipper (RFV)2/ Hind flipper (RH1)2/ R Q                                                                                                                                                                                                      | 2<br>2<br>3<br>3<br>3<br>4                                                                                            | 5<br>10<br>6<br>6                                                                                                   | -<br>I<br>1                                                            | 5<br>11<br>7<br>11<br>9                                                                                   | -<br>-<br>2<br>4                                                      | -<br>-<br>-      | -<br>-<br>2<br>4                                    | 5<br>11<br>7<br>13<br>13                                                                                    |
| Males  S Hind flipper (RH3) <sup>2</sup> / Front flipper (RFV) <sup>2</sup> / Hind flipper (RH1) <sup>2</sup> / R Q P                                                                                                                                                              | 2<br>2<br>3<br>3<br>3                                                                                                 | 5<br>10<br>6<br>6                                                                                                   | -<br>I<br>1<br>5                                                       | 5<br>11<br>7<br>11                                                                                        | -<br>-<br>-<br>2                                                      | -<br>-<br>-      | ~ 2                                                 | 5<br>11<br>7<br>13                                                                                          |
| Males  S Hind flipper (RH3) <sup>2</sup> / Front flipper (RFV) <sup>2</sup> / Hind flipper (RH1) <sup>2</sup> / R Q P                                                                                                                                                              | 2<br>2<br>3<br>3<br>3<br>4                                                                                            | 5<br>10<br>6<br>6                                                                                                   | -<br>I<br>1<br>5                                                       | 5<br>11<br>7<br>11<br>9                                                                                   | -<br>-<br>2<br>4                                                      | -<br>-<br>-      | -<br>-<br>2<br>4                                    | 5<br>11<br>7<br>13<br>13                                                                                    |
| Aales  S Hind flipper (RH3) <sup>2</sup> / Front flipper (RFV) <sup>2</sup> / Hind flipper (RH1) <sup>2</sup> / R Q P  Cemales <sup>3</sup> /                                                                                                                                      | 2<br>2<br>3<br>3<br>3<br>4<br>5                                                                                       | 5<br>10<br>6<br>6<br>6<br>0                                                                                         | 1<br>1<br>5<br>3                                                       | 5<br>11<br>7<br>11<br>9<br>2                                                                              | -<br>-<br>2<br>4<br>2                                                 | -<br>-<br>-<br>- | -<br>-<br>2<br>4<br>2                               | 5<br>11<br>7<br>13<br>13<br>4                                                                               |
| Males  S Hind flipper (RH3) <sup>2</sup> / Front flipper (RFV) <sup>2</sup> / Hind flipper (RH1) <sup>2</sup> / R Q P  Semales <sup>3</sup> / S                                                                                                                                    | 2<br>2<br>3<br>3<br>3<br>4<br>5                                                                                       | 5<br>10<br>6<br>6<br>6<br>2                                                                                         | -<br>I<br>1<br>5<br>3                                                  | 5<br>11<br>7<br>11<br>9<br>2                                                                              | -<br>-<br>2<br>4<br>2                                                 |                  | -<br>-<br>2<br>4<br>2                               | 5<br>11<br>7<br>13<br>13<br>4                                                                               |
| Males  S Hind flipper (RH3) <sup>2</sup> / Front flipper (RFV) <sup>2</sup> / Hind flipper (RH1) <sup>2</sup> / R Q P  Semales <sup>3</sup> / S Front flipper (RFV) <sup>2</sup> /                                                                                                 | 2<br>2<br>3<br>3<br>3<br>4<br>5                                                                                       | 5<br>10<br>6<br>6<br>6<br>2                                                                                         | 1<br>1<br>5<br>3<br>-                                                  | 5<br>11<br>7<br>11<br>9<br>2                                                                              | -<br>-<br>2<br>4<br>2                                                 | :                | 2 4 2                                               | 5<br>11<br>7<br>13<br>13<br>4                                                                               |
| Males  S Hind flipper (RH3) <sup>2</sup> / Front flipper (RFV) <sup>2</sup> / Hind flipper (RH1) <sup>2</sup> / R Q P  Semales <sup>3</sup> / Front flipper (RFV) <sup>2</sup> / Hind flipper (RH1) <sup>2</sup> /                                                                 | 2<br>2<br>3<br>3<br>3<br>4<br>5                                                                                       | 5<br>10<br>6<br>6<br>6<br>2<br>2                                                                                    | 1<br>1<br>5<br>3<br>-                                                  | 5<br>11<br>7<br>11<br>9<br>2                                                                              | -<br>-<br>2<br>4<br>2                                                 |                  | 2 4 2                                               | 5<br>11<br>7<br>13<br>13<br>4<br>7<br>14                                                                    |
| Alles  S Hind flipper (RH3) <sup>2</sup> / Front flipper (RFV) <sup>2</sup> / Hind flipper (RH1) <sup>2</sup> /  R Q P Semales <sup>3</sup> / S Front flipper (RFV) <sup>2</sup> / Hind flipper (RFV) <sup>2</sup> / R                                                             |                                                                                                                       | 5<br>10<br>6<br>6<br>6<br>2<br>2<br>1<br>14<br>14<br>14                                                             | 1<br>1<br>5<br>3<br>-                                                  | 5<br>11<br>7<br>11<br>9<br>2                                                                              | -<br>-<br>2<br>4<br>2                                                 |                  | -<br>-<br>2<br>4<br>2                               | 5<br>11<br>7<br>13<br>13<br>4<br>7<br>14<br>14<br>20                                                        |
| Alles  S Hind flipper (RH3) <sup>2</sup> / Front flipper (RFV) <sup>2</sup> / Hind flipper (RH1) <sup>2</sup> /  R Q P  Cemales <sup>3</sup> / S Front flipper (RFV) <sup>2</sup> / Hind flipper (RH1) <sup>2</sup> / R Q                                                          | 2<br>2<br>3<br>3<br>3<br>4<br>5                                                                                       | 5<br>10<br>6<br>6<br>6<br>5<br>2<br>1<br>14<br>14<br>14<br>11<br>65                                                 | - I I I I I I I I I I I I I I I I I I I                                | 5<br>11<br>7<br>11<br>9<br>2<br>4<br>14<br>14<br>11<br>86                                                 | -<br>-<br>2<br>4<br>2<br>3<br>-<br>9<br>36                            | :                | 2<br>4<br>2<br>3<br>-<br>9<br>36                    | 5<br>11<br>7<br>13<br>13<br>4<br>7<br>14<br>14<br>20                                                        |
| Alles  S Hind flipper (RH3) <sup>2</sup> / Front flipper (RFV) <sup>2</sup> / Hund flipper (RH1) <sup>2</sup> /  R Q P  Cemales <sup>3</sup> / S Front flipper (RFV) <sup>2</sup> / Hind flipper (RFV) <sup>2</sup> / R Q P                                                        |                                                                                                                       | 5<br>10<br>6<br>6<br>6<br>2<br>1<br>14<br>14<br>14<br>11<br>65<br>35                                                | 3<br>                                                                  | 5<br>11<br>7<br>11<br>9<br>2<br>4<br>14<br>14<br>11<br>86<br>57                                           | -<br>-<br>2<br>4<br>2<br>3<br>-<br>-<br>9<br>36<br>25                 |                  | 2<br>4<br>2<br>3<br>-<br>9<br>36<br>25              | 5<br>11<br>7<br>13<br>13<br>4<br>7<br>14<br>14<br>20<br>122<br>82                                           |
| Alles  S Hind flipper (RH3) <sup>2</sup> / Front flipper (RFV) <sup>2</sup> / Hund flipper (RH1) <sup>2</sup> / R Q P  Semales <sup>3</sup> / S Front flipper (RFV) <sup>2</sup> / Hind flipper (RFV) <sup>2</sup> / R Q P O                                                       | 2<br>2<br>3<br>3<br>3<br>4<br>5                                                                                       | 5<br>10<br>6<br>6<br>6<br>2<br>1<br>14<br>14<br>11<br>65<br>35<br>73                                                | - I I I I I I I I I I I I I I I I I I I                                | 5<br>11<br>7<br>11<br>9<br>2<br>4<br>14<br>14<br>11<br>86<br>57                                           | 3<br>-<br>-<br>-<br>2<br>4<br>2<br>2                                  |                  | 3<br>-<br>-<br>9<br>36<br>25<br>21                  | 5<br>11<br>7<br>13<br>13<br>4<br>7<br>14<br>14<br>20<br>122<br>82<br>128                                    |
| Aales  S Hind flipper (RH3) <sup>2</sup> / Front flipper (RFV) <sup>2</sup> / Hind flipper (RH1) <sup>2</sup> / R Q P  S Front flipper (RFV) <sup>2</sup> / Hind flipper (RFV) <sup>2</sup> / Hind flipper (RH1) <sup>2</sup> / R Q P O N                                          | 2<br>2<br>3<br>3<br>3<br>4<br>5<br>2<br>3<br>3<br>4<br>5                                                              | 5<br>10<br>6<br>6<br>6<br>2<br>2<br>1<br>14<br>14<br>14<br>11<br>65<br>35<br>73<br>47                               | - I I I I I I I I I I I I I I I I I I I                                | 5<br>11<br>7<br>11<br>9<br>2<br>4<br>14<br>14<br>11<br>86<br>57<br>107<br>66                              | -<br>-<br>2<br>4<br>2<br>3<br>-<br>-<br>9<br>36<br>25                 |                  | 2<br>4<br>2<br>3<br>-<br>9<br>36<br>25              | 5<br>11<br>7<br>13<br>13<br>4<br>7<br>14<br>14<br>20<br>122<br>82<br>128<br>66                              |
| Alles  S Hind flipper (RH3) <sup>2</sup> / Front flipper (RFV) <sup>2</sup> / Hind flipper (RH1) <sup>2</sup> /  R Q P  Semales <sup>3</sup> / S Front flipper (RFV) <sup>2</sup> / Hind flipper (RFV) <sup>2</sup> / R Q P O N M                                                  | 2<br>2<br>3<br>3<br>3<br>4<br>5                                                                                       | 5<br>10<br>6<br>6<br>6<br>2<br>2<br>1<br>14<br>14<br>11<br>65<br>35<br>73<br>47<br>12                               | 3<br>-<br>-<br>-<br>21<br>22<br>34<br>19                               | 5<br>11<br>7<br>11<br>9<br>2<br>4<br>14<br>11<br>86<br>57<br>107<br>66<br>16                              | 3<br>-<br>-<br>-<br>2<br>4<br>2<br>2                                  |                  | 3<br>-<br>-<br>9<br>36<br>25<br>21                  | 5<br>11<br>7<br>13<br>13<br>4<br>7<br>14<br>14<br>20<br>122<br>82<br>128                                    |
| Alles  S Hind flipper (RH3) <sup>2</sup> / Front flipper (RFV) <sup>2</sup> / Hund flipper (RH1) <sup>2</sup> /  R Q P  Cemales <sup>3</sup> / S Front flipper (RFV) <sup>2</sup> / Hind flipper (RH1) <sup>2</sup> / R Q P O N M L                                                | 2<br>2<br>3<br>3<br>3<br>4<br>5<br>2<br>3<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                          | 5<br>10<br>6<br>6<br>6<br>2<br>1<br>14<br>14<br>14<br>11<br>65<br>35<br>73<br>47<br>12                              | 3<br>-<br>21<br>22<br>34<br>19<br>4                                    | 5<br>11<br>7<br>11<br>9<br>2<br>4<br>14<br>14<br>11<br>86<br>57<br>107<br>66<br>16                        | 3<br>-<br>-<br>-<br>2<br>4<br>2<br>2                                  |                  | 3<br>-<br>9<br>36<br>25<br>21                       | 5<br>11<br>7<br>13<br>13<br>4<br>7<br>14<br>14<br>20<br>122<br>82<br>128<br>66<br>16                        |
| Alles  S Hind flipper (RH3) <sup>2</sup> / Front flipper (RFV) <sup>2</sup> / Hund flipper (RH1) <sup>2</sup> /  R Q P  Cemales 3/ S Front flipper (RFV) <sup>2</sup> / Hind flipper (RFV) <sup>2</sup> / Hind flipper (RH1) <sup>2</sup> /  R Q P O N M L K                       | 2<br>2<br>3<br>3<br>3<br>4<br>5<br>2<br>3<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                          | 5<br>10<br>6<br>6<br>6<br>2<br>1<br>14<br>14<br>14<br>11<br>65<br>35<br>73<br>47<br>12<br>11<br>14                  | 3<br>-<br>-<br>-<br>21<br>22<br>34<br>19<br>4<br>1                     | 5<br>11<br>7<br>11<br>9<br>2<br>4<br>14<br>14<br>11<br>86<br>57<br>107<br>66<br>16<br>12                  | 3<br>-<br>-<br>-<br>2<br>4<br>2<br>2                                  |                  | 3<br>-<br>9<br>36<br>25<br>21                       | 5<br>11<br>7<br>13<br>13<br>4<br>7<br>14<br>14<br>20<br>122<br>82<br>128<br>66<br>16<br>12                  |
| Alles  S Hind flipper (RH3) <sup>2</sup> / Front flipper (RFV) <sup>2</sup> / Hund flipper (RH1) <sup>2</sup> /  R Q P  Cemales <sup>3</sup> / S Front flipper (RFV) <sup>2</sup> / Hind flipper (RH1) <sup>2</sup> / R Q P O N M L                                                | 2<br>2<br>3<br>3<br>3<br>4<br>5<br>2<br>3<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                          | 5<br>10<br>6<br>6<br>6<br>2<br>1<br>14<br>14<br>14<br>11<br>65<br>35<br>73<br>47<br>12                              | 3<br>-<br>21<br>22<br>34<br>19<br>4                                    | 5<br>11<br>7<br>11<br>9<br>2<br>4<br>14<br>14<br>11<br>86<br>57<br>107<br>66<br>16                        | 3<br>-<br>-<br>2<br>4<br>2<br>2<br>3<br>-<br>-<br>9<br>36<br>25<br>21 |                  | 3<br>2<br>4<br>2<br>3<br>-<br>9<br>36<br>25<br>21   | 5<br>11<br>7<br>13<br>13<br>4<br>7<br>14<br>14<br>20<br>122<br>82<br>128<br>66<br>16<br>12                  |
| Alles  S Hind flipper (RH3) <sup>2</sup> / Front flipper (RFV) <sup>2</sup> / Hund flipper (RH1) <sup>2</sup> /  R Q P  Cemales 3/ S Front flipper (RFV) <sup>2</sup> / Hind flipper (RFV) <sup>2</sup> / Hind flipper (RH1) <sup>2</sup> /  R Q P O N M L K                       | 2<br>2<br>3<br>3<br>3<br>4<br>5<br>2<br>3<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                          | 5<br>10<br>6<br>6<br>6<br>2<br>1<br>14<br>14<br>14<br>11<br>65<br>35<br>73<br>47<br>12<br>11<br>14                  | 3<br>-<br>-<br>-<br>21<br>22<br>34<br>19<br>4<br>1                     | 5<br>11<br>7<br>11<br>9<br>2<br>4<br>14<br>14<br>11<br>86<br>57<br>107<br>66<br>16<br>12                  | 3<br>-<br>-<br>2<br>4<br>2<br>2<br>3<br>-<br>-<br>9<br>36<br>25<br>21 |                  | 3<br>-<br>-<br>9<br>36<br>25<br>21                  | 5<br>11<br>7<br>13<br>13<br>4<br>7<br>14<br>14<br>20<br>122<br>82<br>128<br>66<br>16<br>12                  |
| Aales  S Hind flipper (RH3) <sup>2</sup> / Front flipper (RFV) <sup>2</sup> / Hind flipper (RH1) <sup>2</sup> / R Q P  S Front flipper (RFV) <sup>2</sup> / Hind flipper (RFV) <sup>2</sup> / O N M L K J                                                                          | 2<br>2<br>3<br>3<br>3<br>4<br>5<br>2<br>3<br>3<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                     | 5<br>10<br>6<br>6<br>6<br>2<br>1<br>14<br>14<br>11<br>65<br>35<br>73<br>47<br>12<br>11<br>14<br>8                   | 3<br>-<br>-<br>-<br>21<br>22<br>34<br>19<br>-<br>1                     | 5<br>11<br>7<br>11<br>9<br>2<br>4<br>14<br>14<br>11<br>86<br>57<br>107<br>66<br>16<br>12<br>17            | 3<br>-<br>-<br>2<br>4<br>2<br>2<br>3<br>-<br>-<br>9<br>36<br>25<br>21 |                  | 3<br>-<br>-<br>9<br>36<br>25<br>21                  | 5<br>11<br>7<br>13<br>13<br>4<br>7<br>14<br>14<br>20<br>122<br>128<br>66<br>16<br>12<br>17                  |
| Alles  S Hind flipper (RH3) <sup>2</sup> / Front flipper (RFV) <sup>2</sup> / Hind flipper (RH1) <sup>2</sup> /  R Q P  Semales <sup>3</sup> / S Front flipper (RFV) <sup>2</sup> / Hind flipper (RFV) <sup>2</sup> / R Q P O N M L K J 1                                          | 2<br>2<br>3<br>3<br>3<br>4<br>5<br>2<br>3<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12                        | 5<br>10<br>6<br>6<br>6<br>2<br>2<br>1<br>14<br>14<br>14<br>11<br>65<br>35<br>73<br>47<br>12<br>11<br>14<br>8<br>1   | 3<br>-<br>-<br>3<br>-<br>-<br>21<br>22<br>34<br>19<br>4<br>1<br>3<br>2 | 5<br>11<br>7<br>11<br>9<br>2<br>4<br>14<br>14<br>11<br>86<br>57<br>107<br>66<br>16<br>12<br>17            | 3<br>-<br>-<br>9<br>36<br>25<br>21                                    |                  | 3<br>4<br>2<br>4<br>2<br>3<br>6<br>2<br>5<br>2<br>1 | 5<br>11<br>7<br>13<br>13<br>4<br>7<br>14<br>14<br>20<br>122<br>82<br>128<br>66<br>16<br>12<br>17<br>10<br>2 |
| Alles  S Hind flipper (RH3) <sup>2</sup> / Front flipper (RFV) <sup>2</sup> / Hind flipper (RH1) <sup>2</sup> /  R Q P  S Front flipper (RFV) <sup>2</sup> / Hind flipper (RFV) <sup>2</sup> / Hind flipper (RHI) <sup>2</sup> / R Q P O N M L K J I H                             | 2<br>2<br>3<br>3<br>3<br>4<br>5<br>2<br>3<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                  | 5<br>10<br>6<br>6<br>6<br>2<br>1<br>14<br>14<br>14<br>11<br>65<br>35<br>73<br>47<br>12<br>11<br>14<br>8<br>11<br>13 | 3<br>-<br>-<br>2<br>1<br>22<br>34<br>19<br>4<br>1<br>3<br>2            | 5<br>11<br>7<br>11<br>9<br>2<br>2<br>4<br>14<br>14<br>11<br>86<br>57<br>107<br>66<br>16<br>12<br>17       | 3<br>-<br>-<br>9<br>36<br>25<br>21                                    |                  | 3<br>4<br>2<br>4<br>2<br>3<br>6<br>2<br>5<br>2<br>1 | 5<br>11<br>7<br>13<br>13<br>4<br>7<br>14<br>14<br>20<br>122<br>82<br>128<br>66<br>16<br>12<br>17<br>10<br>2 |
| Aales  S Hind flipper (RH3) <sup>2</sup> / Front flipper (RFV) <sup>2</sup> / Hind flipper (RH1) <sup>2</sup> / R Q P  Semales <sup>3</sup> / S Front flipper (RFV) <sup>2</sup> / Hind flipper (RH1) <sup>2</sup> / Hind flipper (RH1) <sup>2</sup> / R Q P O N M L K J I H G G F | 2<br>2<br>3<br>3<br>3<br>4<br>5<br>2<br>3<br>3<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15 | 5<br>10<br>6<br>6<br>6<br>2<br>1<br>14<br>14<br>14<br>11<br>65<br>35<br>73<br>47<br>12<br>11<br>14<br>8<br>1        | 3<br>-<br>-<br>21<br>22<br>34<br>19<br>4<br>1<br>1<br>3<br>2           | 5<br>11<br>7<br>11<br>9<br>2<br>4<br>14<br>14<br>11<br>86<br>57<br>107<br>66<br>16<br>12<br>17<br>10<br>2 | 3<br>-<br>-<br>9<br>36<br>25<br>21                                    |                  | 3<br>4<br>2<br>4<br>2<br>3<br>6<br>2<br>5<br>2<br>1 | 5<br>11<br>7<br>13<br>13<br>4<br>7<br>14<br>14<br>20<br>122<br>82<br>128<br>66<br>16<br>12<br>17<br>10<br>2 |
| Alles  S Hind flipper (RH3) <sup>2</sup> / Front flipper (RFV) <sup>2</sup> / Hund flipper (RH1) <sup>2</sup> /  R Q P  S Front flipper (RFV) <sup>2</sup> / Hind flipper (RFV) <sup>2</sup> / Hind flipper (RH1) <sup>2</sup> /  R Q P O N M L K J I H G                          | 2<br>2<br>3<br>3<br>3<br>4<br>5<br>2<br>3<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                  | 5<br>10<br>6<br>6<br>6<br>2<br>1<br>14<br>14<br>14<br>11<br>65<br>35<br>73<br>47<br>12<br>11<br>14<br>8<br>11<br>13 | 3<br>-<br>-<br>2<br>1<br>22<br>34<br>19<br>4<br>1<br>3<br>2            | 5<br>11<br>7<br>11<br>9<br>2<br>4<br>14<br>14<br>11<br>86<br>57<br>107<br>66<br>16<br>12<br>17            | 3<br>-<br>-<br>9<br>36<br>25<br>21                                    |                  | 3<br>4<br>2<br>4<br>2<br>3<br>6<br>2<br>5<br>2<br>1 | 5<br>11<br>7<br>13<br>13<br>4<br>7<br>14<br>14<br>20<br>122<br>82<br>128<br>66<br>16<br>12<br>17<br>10<br>2 |

<sup>1/2</sup> Seals tagged as pups were also marked by removing part of a flipper. The mark is used to identify seals that lose their tags. In addition to those seals listed, 23 males and 1 female recovered on St. Paul Island and 17 males recovered on St. George Island had lost their tag but did not have a checkmark.

<sup>2/</sup> Seals marked but not tagged--V-notch right front flipper (RFV), tip of first digit right hind flipper sliced off (RH1), and tip of third digit right hind flipper sliced off (RH3).

<sup>3/</sup> Tag loss from females older than 6 years cannot be determined from checkmarks.

Table A-33.--Tag recoveries from male seals that had been selected and tagged as yearlings and at age 2 or older in previous years, Pribilof Islands, Alaska, 1968.

| Age, year                 | Age                       | when:       |                   | Adjusted           |
|---------------------------|---------------------------|-------------|-------------------|--------------------|
| tagged, and<br>tag series | Tagged                    | Recovered   | Total             | total <sup>2</sup> |
| Yearlings                 | **                        | **          |                   |                    |
| 1965                      | Years                     | Years       | Number            | Number             |
| lR                        | 1                         | 4           | 62                | 76                 |
| 1R<br>1R                  | 2<br>Unknown <sup>3</sup> | 5           | 3<br>2            | 4                  |
|                           | Unknown                   |             | 67                | 80                 |
| Total                     |                           |             | 07                | 00                 |
| 1966                      | _                         |             | 252               | 02.2               |
| ls<br>ls                  | 1<br>2                    | 3<br>4      | 25 <b>1</b><br>27 | 311<br>34          |
| 1S                        | Unknown <sup>3</sup>      | 7           | 14                | 2.1                |
| Total                     |                           |             | 292               | 345                |
| 1967                      |                           |             |                   |                    |
| lT                        | 1 2                       | 2           | 60                | 74                 |
| 1T<br>1T                  | 2<br>Unknown <sup>3</sup> | 3           | 25<br>5           | 32                 |
|                           | Officiowii                |             | 90                | 106                |
| Total                     |                           |             | 90                | 700                |
| Age 2 and Older           |                           |             |                   |                    |
| 1966                      |                           |             |                   |                    |
| 2S<br>2S                  | 2                         | 4<br>5      | 96<br>11          | 119<br>13          |
| 2S                        | Unknown <sup>3</sup>      | ,           | 5                 | 10                 |
| Total                     |                           |             | 112               | 132                |
| 1967                      |                           |             |                   |                    |
| 2T                        | 1                         | 2           | 4                 | 5                  |
| 2T<br>2T                  | 1<br>2<br>3               | 2<br>3<br>4 | 396<br>21         | 483<br>26          |
| 2T                        | Unknown <sup>3</sup>      | 7           | 14                | 20                 |
| Total                     |                           |             | 435               | 514                |

<sup>1</sup> In addition to the seals listed, 166 males on St. Paul Island and 22 on St. George Island that had lost two tags were taken.

<sup>2</sup> See footnote 3, table 24.

<sup>3</sup> The tags were recovered but age could not be determined, either because the flippers or the heads were separated from the carcasses during the skinstripping process.

Table A-34 --Recovery location of tagged male seals killed, by age and rookery, Pribilof Islands, Alaska, 26 June to 2 August 1968

| Tag series, age, and |           |           |             |           | Ro  | okery o | f recover | .y <u>l</u> / |     |            |      |          |      |
|----------------------|-----------|-----------|-------------|-----------|-----|---------|-----------|---------------|-----|------------|------|----------|------|
| rookery              |           |           |             | ul Island |     |         |           |               |     | eorge ls   |      |          | Gran |
| of tagging 1         | ZAP-1     | TOL       | L-K         | REEF      | POL | NEP     | Total     | ZAP-2         | NOR | EAST       | STAR | Total    | tota |
|                      |           |           | <u>Nurr</u> | ber       |     |         |           |               |     | <u>Nur</u> | nber |          |      |
| -series -            | age 2     |           |             |           |     |         |           |               |     |            |      |          |      |
| ZAP-1                | -         | -         | -           | -         | 1   | 2       | 3         | -             | -   | Ţ          | -    | 1        | 4    |
| ZR                   | -         | Z         | -           | 1         | -   | 2       | 5         | -             | -   | -          | -    | -        | 5    |
| K                    | -         | -         | 1           | -         | -   | -       | 1         | -             | -   | -          | -    | -        | 1    |
| REEF                 | 1         | 1         | -           | 7         | 1   | 1       | 11        | -             | -   | -          | -    | -        | 11   |
| OL                   | 1         | -         | -           | -         | -   | -       | 1 7       | -             | -   | -          | -    | -        | 7    |
| EP<br>AP-2           | -         | 3         | 1           | 1 _       | -   | 3       | 1         | -             | -   | -          | _    | _        | 1    |
| IOR                  | -         | 1         | 1           | 1         | -   | 3       | 5         | _             | _   | _          | 2    | 2        | 7    |
| CAST                 | 1         | -         | _           |           |     | _       | 1         | _             | -   | 1          | -    | 1        | 2    |
| TAR                  | -         | _         | _           | _         | _   | -       | -         | -             | -   | 2          | -    | 2        | 2    |
| Tags lost            | 5         | 2         | -           | 7         | -   | 8       | 22        | 1             | 4   | 5          | -    | 10       | 32   |
| Total                | 8         | 9         | Z           | 17        | 2   | 19      | 57        | I             | 4   | 9          | 2    | 16       | 7.3  |
|                      |           |           |             |           |     |         |           |               |     |            |      |          |      |
| R-series -           |           | 2.2       |             |           |     |         | 4.1       | 2             |     |            | 2    | 5        | 66   |
| ZAP-1                | 17        | 32        | 4           | 4         | -   | 4       | 61        | 3 2           | 1   | -          | 2    | 5        | 43   |
| ZR                   | 10        | 17        | 2           | 5<br>7    | -   | 4 2     | 38<br>20  | -             | 1   | 4          | _    | 4        | 24   |
| L-K<br>REEF          | 2<br>7    | 6         | 1           | 36        | 1   | 1       | 57        | 1             | 1   | 1          | _    | 3        | 60   |
| POL                  | 3         | 8         | 2           | 7         | 14  | 12      | 46        | 2             | 1   | -          | _    | 3        | 49   |
| VEP                  | 8         | 9         | 3           | 15        | 7   | 93      | 135       | 1             | 1   | 1          | -    | 3        | 138  |
| ZAP-2                | _         | _         | -           | -         | -   | -       | -         | -             | -   | -          | +    | -        |      |
| NOR                  | -         | 1         | -           | -         | -   | -       | 1         | -             | -   | -          | -    | -        |      |
| EAST                 | -         | -         | -           | ~         | -   | -       | -         | -             | -   | -          | 1    | 1        |      |
| STAR                 | -         | -         | -           | -         | -   | -       | -         | -             | -   | -          | -    | -        |      |
| Tags lost            | 26        | 46        | 18          | 34        | 15  | 32      | 171       | 7             | 16  | 4          |      | 2.7      | 198  |
| Total                | 7.3       | 130       | 33          | 108       | 37  | 148     | 529       | 16            | 20  | 10         | 5    | 51       | 580  |
| 2                    | 0.00 4    |           |             |           |     |         |           |               |     |            |      |          |      |
| Q-series -<br>ZAP-1  | 63        | 36        | 1           | 6         | 3   | 7       | 116       | 2             | 2   | 1          | _    | 5        | 121  |
| rzr                  | 10        | 35        | _           | 4         | -   | 2       | 51        | 2             | -   | -          | -    | 2        | 5.3  |
| L-K                  | 5         | 8         | 16          | 5         | 2   | 6       | 42        | _             | 3   | -          | -    | 3        | 4    |
| REEF                 | 16        | 3.5       | 4           | 70        | 4   | 5       | 134       | 3             | 2   | I          | -    | 6        | 140  |
| POL                  | 3         | 8         | 4           | 5         | 37  | 13      | 70        | 1             | 1   | -          | -    | 2        | 7.   |
| NEP                  | 1         | 11        | -           | 6         | 1   | 116     | 135       | 3             | -   | 1          | -    | 4        | 13   |
| ZAP-2                | 6         | 3         | -           | 1         | 1   | 1       | 12        | 31            | 8   | 11         | -    | 50       | 6.   |
| NOR                  | 1         | 3         | 1           | 1         | -   | 2       | 8         | 2             | 37  | 3          | 1    | 43<br>24 | 5    |
| EAST                 | 4         | -         | -           | 2         | -   | 2 2     | 8         | 1 2           | 3   | 20<br>4    | 8    | 23       | 2    |
| STAR                 | 6.2       | 1         | 18          | 45        | 20  | 62      | 4<br>272  | 10            | 17  | 5          | 4    | 36       | 30   |
| Tags lost<br>Total   | 53<br>162 | 74<br>214 | 44          | 145       | 69  | 218     | 852       | 57            | 82  | 46         | 13   | 198      | 1,05 |
| IOIAI                | 102       | 217       | 77          | 147       | 0 / |         | 0.50      |               |     |            |      |          |      |
| P-series -           | age 5     |           |             |           |     |         |           |               |     |            |      |          |      |
| ZAP-I                | 4         | 4         | -           | -         | -   | 1       | 9         | -             | -   | -          | -    | -        |      |
| TZR                  | 2         | 3         | 1           | -         |     | -       | 6         | -             | -   | -          | -    | -        |      |
| L-K                  | -         | -         | 3           | -         | -   | 1       | 4         | -             | -   | 1          | -    | 1        | 1    |
| REEF                 | -         | 2         | -           | 11        | -   | 1       | 14        | -             | -   | -          | -    | -        | 1    |
| POL                  | 1         | -         | -           | 1         | 5   | 1.1     | 7         | -             | -   | -          | -    | -        | 1    |
| NEP                  | 1         | ~         | -           | 7         |     | 11      | 12        | 5             | 1   |            | _    | 6        |      |
| ZAP-2                | -         | -         | -           | -         | -   | 1       | 1         |               | 9   | -          | -    | 9        |      |
| NOR<br>EAST          | -         | -         | -           | -         | _   |         |           | -             | _   | 8          | -    | 8        |      |
| STAR                 | -         | -         | _           | -         | -   | _       | _         | -             | 3   | -          | -    | 3        |      |
| Tags lost            | 4         | 5         | 5           | 4         | 2   | 4       | 2.4       | 2             | 4   | 2          | -    | 8        | 3    |
| Total                | 12        | 14        | 9           | 16        | 7   | 19      | 77        | 7             | 17  | 11         | -    | 35       | 11   |
|                      |           |           |             |           |     |         |           |               |     |            |      |          |      |
| O-series -           |           |           |             |           |     |         | ,         |               |     |            |      |          |      |
| ZAP-1                | 1         | -         | -           | -         | -   | -       | 1         | -             | -   | -          |      | _        |      |
| REEF                 | -         | -         | -           | 1         | 2   | -       | 1 2       |               |     |            | -    | _        |      |
|                      |           | -         | -           | -         | 4   | -       | 4         | -             | ~   |            |      |          |      |
| POL<br>Tags lost     | 3         |           |             | 3         | 1   | 1       | 8         | 1             | 8   | 1          | -    | 10       | 1    |

<sup>1/</sup> ZAP-1=Zapdni of St. Paul Island; TZR=Tolstoi and Zapadni Reef; L-K-Lukanin-Kitovi, REEF-Reef, Gorbatch, and Ardiguen; POL=Polovina, Polovina Gliffs, and Little Polovina; NEP-Northeast Point (Vostochni-Morjovi); NOR=North; EAST=East Cliffs and East Reef, STAR=Staraya Artii, ZAP-Z=Zapadni of St. George Island.

<sup>2/</sup> Pups were not tagged on St. George Island in 1965 (R-series tags)

Table A-35. --Recovery location of tagged female seals killed, by age and rookery, Pribilof Islands, Alaska, 26 June to 16 August 1968

| Tag series, age,            |       |        |     |            |     |     |         |        |                   |      |        |         | Gran  |
|-----------------------------|-------|--------|-----|------------|-----|-----|---------|--------|-------------------|------|--------|---------|-------|
| and rookery<br>of tagging I | E A D | 1      |     | aul Island |     |     |         |        | St. George Island |      |        |         |       |
|                             | ZAP-1 | TZR    | L-K | REEF       | POL | NEP | Total   | ZAP-2  |                   | EAST | STAR   | Total   | total |
|                             |       |        |     | -Number-   |     |     |         |        |                   | Nu   | mber   |         |       |
| S-series - a                | ige 2 |        |     |            |     |     |         |        |                   |      |        |         |       |
| NOR                         | -     | -      | -   | -          | 1   | _   | 1       | 1      | 1                 | 1    | _      | 3       |       |
| Tags lost                   | 1     | -      | -   | 1          | 1   | _   | 3       | -      | ~                 | _    | _      | _       |       |
| Total                       | 1     | -      | -   | 1          | 2   | -   | 4       | 1      | 1                 | 1    | -      | 3       |       |
|                             |       |        |     |            |     |     |         |        |                   |      |        |         |       |
| R-series - a                |       |        |     |            |     |     |         |        |                   |      |        |         |       |
| ZAP-1                       | 2     | 1      | -   | -          | -   | -   | 3       | -      | -                 | -    | -      | -       |       |
| L-K<br>REEF                 | -     | -      | -   | 1          | -   | -   | 1       | -      | -                 | -    | wir    | -       |       |
| POL                         | -     | -      | -   | 3          | -   | 2   | 3<br>2  | -      | -                 | -    | -      | -       |       |
| NEP                         | _     | _      | -   | 46         | 1   | 1   | 2       | -      | -                 | -    | -      | -       |       |
| Γags lost                   | 1     | 3      | _   | 4          | _   | 1   | 9       | -      | -                 | -    | -      | -       |       |
| Total                       | 3     | 4      |     | 8          | 1   | 4   | 20      |        | <u> </u>          |      |        |         | 2     |
| 2 0 4 1 1                   |       | _      |     | 0          | •   |     | 20      |        |                   | -    | -      | -       | 2     |
| Q-series - a                | age 4 |        |     |            |     |     |         |        |                   |      |        |         |       |
| ZAP-I                       | 6     | 8      | _   | 2          | _   | -   | 16      | ~      | -                 | -    | 1      | 1       | 1     |
| ΓZR                         | ~     | 1      | -   | 1          | -   | 2   | 4       | -      | _                 | -    | -      | _       | -     |
| L-K                         | -     | 1      | 3   | -          | -   | -   | 4       | -      | ~                 | -    | -      | -       |       |
| REEF                        | 1     | 1      | -   | 17         | -   | 2   | 21      | -      | -                 | -    | -      | -       | 2     |
| POL                         | 1     | -      | I   | 1          | 5   | 2   | 10      | -      | -                 | -    | -      | -       | 1     |
| VEP                         | 1     | 2      | -   | -          | -   | 6   | 9       | 1      | -                 | -    | -      | 1       | 1     |
| ZAP-2                       | -     | -      | -   | -          | 1   | -   | 1       | 3      | -                 | -    | ~      | 3       |       |
| VOR                         | -     | -      | -   | 1          | -   | 2   | 3       | -      | 9                 | -    | -      | 9       | 1     |
| EAST                        | -     | -      | 1   | -          | -   | -   | 1       | -      | 2                 | 5    | -      | 7       |       |
| Tags lost                   | 2     | 5      | 1   | 15         | 5   | 10  | 38      |        | -                 | -    | -      | -       | 3     |
| Total                       | 11    | 18     | 6   | 37         | 11  | 24  | 107     | 4      | 11                | 5    | 1      | 21      | 12    |
| P-series - a                | age 5 |        |     |            |     |     |         |        |                   |      |        |         |       |
| ZAP-1                       | 8     | 2      | _   | 1          | _   | _   | 11      |        |                   |      | 1      | 1       | 1     |
| REEF                        | 1     | _      | 1   | 9          | _   | _   | 11      | _      | _                 | -    | 1      | 1       | 1     |
| POL                         | -     | _      | _   | _          | 3   | _   | 3       | _      | _                 | _    | -      | _       |       |
| VEP                         | _     | _      | _   | 1          | _   | 9   | 10      | _      | _                 | _    | _      | _       | 1     |
| ZAP-2                       | 1     | -      | _   | _          | ~   | -   | 1       | 3      | -                 | 1    | -      | 4       |       |
| NOR                         | -     | -      | -   | -          | -   | -   | -       | -      | 14                | -    | -      | 14      | 1     |
| EAST                        | -     | -      | -   | -          | -   | -   | -       | -      | -                 | 4    | -      | 4       |       |
| Γags lost                   | 11    | 4      |     | 13         | 3   | 8   | 29      | -      | -                 | -    | -      | -       | 2     |
| Total                       | 1 1   | 6      | 1   | 24         | 6   | 17  | 65      | 3      | 14                | 5    | 1      | 23      | 8     |
|                             |       |        |     |            |     |     |         |        |                   |      |        |         |       |
| D-series - a                |       |        |     |            |     |     |         |        |                   |      |        |         |       |
| ZAP-1<br>[ZR                | 8     | 9      | -   | 3          | -   | 1   | 21      | 7      | +                 | -    | -      | 7       | 2     |
| L-K                         | -     | 3<br>1 | 3   | -          | -   | 2   | 5       | -      | -                 | -    | -      | -       |       |
| REEF                        | 1     | 2      | 1   | 12         | -   | -   | 4<br>16 | -      | 1                 | -    | 1      | 2       | 1     |
| POL                         | -     | 1      | -   | -          | 12  | _   | 13      |        | 1                 | -    | 1      | -       | 1     |
| NEP                         | -     | -      | -   | _          | 2   | 14  | 16      | _      |                   |      | -      |         | 1     |
| ZAP-2                       | 1     | _      | _   | _          | ~   | -   | 1       | _      | -                 | -    | -      | _       | 1     |
| NOR                         | ~     | 1      | _   | -          | 1   | 1   | 3       | -      | 16                | 1    | 1      | 18      | 2     |
| EAST                        | -     | -      | -   | 1          | -   | -   | 1       | -      |                   | 6    | _      | 6       |       |
| TAR                         | -     | 1      | -   | -          | -   | _   | 1       | 1      | -                 | -    | -      | 1       |       |
| Tags lost                   | -     | 6      | 1   | 11         | 2   | 2   | 22      | -      | -                 | -    | -      | -       | 2     |
| Total                       | 10    | 24     | 5   | 27         | 1 7 | 20  | 103     | 8      | 17                | 7    | 2      | 34      | 13    |
|                             |       |        |     |            |     |     |         |        |                   |      |        |         |       |
| V-series - a                |       |        |     |            |     |     |         |        |                   |      |        |         |       |
| CAP-1                       | 7     | 6      | -   | -          | 2   | 1   | 16      | -      | -                 | -    | -      | -       | 1     |
| ZR                          | 1     | 2      | -   | -          | -   | 2   | 5       | -      | -                 | -    | -      | -       |       |
| -K                          | -     | 1      | 1   | -          | -   | -   | 2       | -      | -                 | -    | **     | -       |       |
| REEF                        | 1     | 1      | -   | 7          | 1.3 | -   | 9       | -      | -                 | -    | -      | -       | ,     |
| POL                         | 2     | -      | -   | -          | 12  | 1   | 13      | -      | -                 | -    | -      | -       | 1     |
| NEP<br>CAP-2                | 2     | -      | -   | -          | -   | 7   | 9       | 3      | -                 | -    | -      | - 2     |       |
| -6                          | -     | -      | -   |            | -   | -   | -       | -      | 11                | 1    | -      | 3<br>12 | 1     |
| IOR                         |       | -      | -   | -          | -   | -   | -       | -      | 1.1               | 1    | -      |         | 1     |
|                             | _     | _      | _   | -          | _   |     | _       |        | _                 | 1    | _      | 1       |       |
| NOR<br>EAST<br>STAR         | -     | -      | -   | -          | -   | -   | -       | -<br>1 | 1                 | 1    | -<br>1 | 1 3     |       |

<sup>1/</sup> See footnote end of table.

Table A-35. --Recovery location of tagged female seals killed, by age and rookery, Pribilof Islands, Alaska, 26 June to 16 August 1968--Continued

| Tag series, age,                                                             |                                       |     | Ca D   | 1 Y. 1 1 |     | Kookery | of reco  | very        | C. C                  |             |                       |        | -    |
|------------------------------------------------------------------------------|---------------------------------------|-----|--------|----------|-----|---------|----------|-------------|-----------------------|-------------|-----------------------|--------|------|
| and rookery<br>of tagging 1                                                  | ZAP-1                                 | TZR | St. P. | REEF     | POL | NEP     | 77 4 - 1 | ZAP-2       | NOR                   | EAST        | STAR                  | I T    | Gran |
|                                                                              | ZAF-I                                 | 128 |        | Number   |     | NEF     | Total    | 7.AP-2      |                       | Nu          |                       | Total  | tota |
|                                                                              |                                       |     |        |          |     |         |          |             |                       |             |                       |        |      |
| -series -                                                                    | age 8                                 |     |        |          |     |         |          |             |                       |             |                       |        |      |
| AP-1                                                                         | 3                                     | Z   | -      | -        | -   | -       | 5        | -           | -                     | -           | -                     | -      |      |
| -K                                                                           | -                                     | -   | 1      | -        | 2   | 1       | 4        | -           | _                     | -           | _                     | -      |      |
| EEF                                                                          | -                                     | -   | -      | 1        | -   | -       | 1        | -           | -                     |             |                       |        |      |
| OL                                                                           | -                                     | -   | -      | -        | 1   |         | 1        | _           | -                     | -           | -                     | -      |      |
| EP                                                                           | -                                     | -   |        | -        | -   | 1       | 1        | _           | _                     | _           | _                     | _      |      |
| AP-2                                                                         | -                                     |     | _      | _        |     |         |          | 2           |                       |             |                       | 2      |      |
| OR                                                                           | _                                     | _   | -      | _        | -   | _       |          | -           | 2                     |             |                       | 2      |      |
| TAR                                                                          |                                       |     | _      | 1        | _   | _       | 1        | _           | -                     | _           | _                     | -      |      |
| Total                                                                        | 3                                     | 2   | 1      | 2        | 3   | 2       | 13       | 2           | 2                     | -           |                       | 4      |      |
| -series - a                                                                  | ave 9                                 |     |        |          |     |         |          |             |                       |             |                       |        |      |
| AP-1                                                                         | 3                                     | 1   | -      | 1        | -   | _       | 5        | _           | _                     | ~           | _                     | _      |      |
| ZR                                                                           | -                                     | _   | -      |          | _   | 1       | 1        | _           |                       |             | _                     | _      |      |
| -K                                                                           | _                                     |     | _      | _        |     | i       | i        |             |                       |             |                       |        |      |
| EEF                                                                          | _                                     | _   | -      | 4        | -   |         |          | -           | -                     | -           | -                     | -      |      |
|                                                                              | ~                                     | -   | -      | 4        | -   | -       | 4        | -           | -                     | -           | -                     | -      |      |
| OL SE                                                                        | -                                     | -   | -      | -        | 2   | -       | 2        | -           | -                     | -           | -                     | -      |      |
| EP                                                                           | -                                     | ~   | -      | -        | ~   | 1       | 1        | -           | -                     | -           | -                     | -      |      |
| AP-2                                                                         | -                                     | -   | -      | -        |     | -       | -        | 1           | -                     | -           | -                     | 1      |      |
| Total                                                                        | 3                                     | 1   | -      | 5        | 2   | 3       | 14       | 1           | -                     | -           | -                     | 1      |      |
| series - a                                                                   |                                       |     |        |          |     |         |          |             |                       |             |                       |        |      |
| 4P-1                                                                         | 2                                     | -   | -      | 1        | -   | -       | 3        | -           | -                     | -           |                       | -      |      |
| ZR                                                                           | -                                     | 1   | -      | -        |     | -       | 1        | -           | -                     | -           | -                     | -      |      |
| EEF                                                                          | 1                                     | -   | -      | 4        |     | 1       | 6        | -           | -                     | -           | -                     |        |      |
| OL                                                                           | -                                     | _   |        | _        | 2   | -       | 2        | _           | _                     | -           |                       |        |      |
| EP                                                                           | 1                                     | -   |        |          | -   | 3       | 4        | -           |                       | _           |                       |        |      |
| OR                                                                           | 1                                     |     |        | 1        | -   | -       | 1        |             | 3                     |             |                       | 3      |      |
| Total                                                                        | 4                                     | 1   | -      | 6        | 2   | 4       | 17       | -           | 3                     | -           |                       | 3      |      |
|                                                                              |                                       |     |        |          |     |         |          |             |                       |             |                       |        |      |
| series - a                                                                   | ige II                                | 2   |        |          |     |         | 2        |             |                       |             |                       |        |      |
|                                                                              |                                       |     | _      | -        | _   | -       |          | -           | -                     | -           | -                     | -      |      |
| EEF                                                                          | 2                                     | 1   | -      | -        | -   | -       | 3        | -           | -                     | -           | ~                     | -      |      |
| OL                                                                           | -                                     | -   | -      | -        | 1   | -       | 1        | 7           | -                     | -           | -                     | -      |      |
| EP                                                                           | -                                     | -   | -      | -        | -   | 2       | 2        |             | -                     | -           | -                     | -      |      |
| AP-2                                                                         | -                                     | -   | -      | -        | -   | -       | -        | 1           | -                     | -           | -                     | 1      |      |
| OR                                                                           | -                                     | -   | ~      | _        | -   | -       | -        | -           | 1                     | -           | -                     | 1      |      |
| Total                                                                        | 2                                     | 3   | -      | ~        | 1   | 2       | 8        | 1           | 1                     | -           | -                     | 2      |      |
| series - a                                                                   | ge 12                                 |     |        |          |     |         |          |             |                       |             |                       |        |      |
| AP-1                                                                         | 1                                     | _   | _      | _        |     | _       | 1        | _           | _                     | _           |                       | _      |      |
|                                                                              |                                       |     |        | 1        |     |         |          |             |                       |             |                       |        |      |
| ZR                                                                           | -                                     | -   | -      | 1        | -   | -       | 1        | -           | -                     | -           | -                     |        |      |
| OR<br>To to b                                                                | -                                     |     | -      | 1        |     | 1       | 1        | ~           | 1                     | -           |                       | 1      |      |
| Total                                                                        | 1                                     | -   | -      | 1        | -   | 1       | 3        | -           | 1                     | -           | -                     | 1      |      |
| -series - a                                                                  | age 13                                |     |        |          |     |         |          |             |                       |             |                       |        |      |
| AP-1                                                                         | 4                                     | 2   | -      | -        | -   | -       | ь        | -           | -                     | -           |                       | -      |      |
| EEF                                                                          | 1                                     | -   | -      | -        | -   | -       | 1        | -           | -                     | -           | -                     | -      |      |
| OL                                                                           | -                                     | -   | -      | _        | 2   | _       | 2        | _           | _                     | -           | -                     | -      |      |
| EP                                                                           | -                                     | _   | -      | _        |     | 2       | 2        | -           | _                     | -           |                       | _      |      |
| Total                                                                        | - 5                                   | 2   |        |          | 2   | 2       | 11       | -           | -                     | ~           | -                     | -      |      |
|                                                                              | age 14                                |     |        |          |     |         |          |             |                       |             |                       |        |      |
| - 507105                                                                     | CINC AN                               |     |        |          |     |         | 2        |             |                       |             |                       |        |      |
|                                                                              |                                       |     |        | _        | -   |         | 2        | -           | -                     | -           | -                     | -      |      |
| AP-l                                                                         | 2                                     | -   | -      |          |     |         |          |             |                       |             |                       |        |      |
| AP-1<br>EP                                                                   | 2 -                                   | -   | -      | -        | 1   | -       | 1 3      | -           |                       | -           |                       | -      |      |
| AP-1<br>EP<br>Fotal                                                          | 2 - 2                                 | -   | -      | -        | 1   | -       |          | -           |                       | -           | -                     | -      |      |
| -series - a AP-1 EP Total -series - a AP-1                                   | 2 - 2                                 | -   | -      | -        | 1   | -       |          |             | <u>-</u><br>-         | -           | -                     | -      |      |
| AP-1<br>EP<br>Fotal<br>-series - a                                           | 2<br>-<br>2<br>age 15                 | -   | -      | -        | 1   | -       | 3        |             | -                     | -           | -                     | -      |      |
| AP-1<br>EP<br>Fotal<br>-series - a<br>AP-1                                   | 2<br>-<br>2<br>age 15<br>1            | -   | -      | -        | 1   | -       | 3        |             | -                     | -           | -                     | -      |      |
| AP-1 EP Fotal -series - a AP-1 -series - a EEF                               | 2<br>-<br>2<br>age 15<br>1            | -   | -      | 2        | 1   | -       | 3        |             | -                     | -           | -                     | -      |      |
| AP-1 EP Total -series - 3 AP-1 -series - 3 EEF OL                            | 2<br>-2<br>age 15<br>1<br>age 16<br>2 | -   | -      | -        | 1   | -       | 1 4      |             | -<br>-<br>-           | -           | -                     | -      |      |
| AP-1 EP Total -series - 3 AP-1 -series - 3 EEF OL                            | 2<br>-<br>2<br>age 15<br>1            | -   | -      |          | 1   | -       | 3        |             | -<br>-<br>-           | -<br>-<br>- | -<br>-<br>-<br>-      | -      |      |
| AP-1 EP Total -series - : AP-1 -series - : EEF OL Total -series - :          | 2 age 15 1 age 16 2 - 2 age 20        | -   | -      | 2        | 1   | -       | 4 - 4    | -<br>1<br>1 | -<br>-<br>-<br>-<br>- | -<br>-<br>- |                       | -<br>1 |      |
| AP-1<br>EP<br>Total<br>-series - a                                           | 2 age 15 1 age 16 2 - 2 age 20        | -   | -      | -        | 1   | -       | 1 4      |             | -                     | -           | -<br>-<br>-<br>-<br>- | -      |      |
| AP-1<br>EP<br>Total  -series - : AP-1  -series - : EEF OL Total  -series - : | 2 - 2 age 15 1 age 16 2 - 2 age 20 -  | -   | -      | 2        | 1 1 | -       | 4 - 4    | -<br>1<br>1 |                       | -           |                       | -<br>1 |      |

<sup>1/</sup> ZAP-1=Zapadni of St. Paul Island, TZR=Tolstoi and Zapadni Reef; L-K=Lukanin-Kitovi; REEF-Reef, Gorbatch, and Ardiguen; POL Polovina, Polovina Cliffs, and Little Polovina, NEP Northeast Point (Vostochni-Morjovi), NOR=North; EAST=East Cliffs and East Reef; STAR=Staraya Artil; ZAP-2=Zapadni of St. George Island.

Table A-36.--Soviet tags recovered in the United States kill of fur seals, Pribilof Islands, Alaska, 26 June to 5 August 1968

| Island and date   | Tag number         | Age   | Sex    | Island of tagging | Rookery of recovery         |
|-------------------|--------------------|-------|--------|-------------------|-----------------------------|
|                   |                    | Years |        |                   |                             |
| St. Paul Island   |                    |       |        |                   |                             |
| 9 July            | Y-18923            | 2     | M      | Medny             | Reef                        |
| 1 Aug             | Y-25820, Y-25847   | 2     | M      | Bering            | Northeast Point             |
| 18 July           | Y-32619            | 2     | M      | Medny             | Reef                        |
| 2 Aug             | Y-33723            | 2     | M      | Medny             | Reef                        |
| 22 July           | T-16962            | 3     | M      | Medny             | Northeast Point             |
| 30 July           | T-17058            | 3     | M      | Medny             | Tolstoi-Zapadni Reef        |
| 30 July           | T-17161            | 3     | M      | Medny             | Tolstoi-Zapadni Reef        |
| 25 July           | T-17228            | 3     | M      | Medny             | Tolstoi-Zapadni Reef        |
| 13 Aug            | T-17275            | 3     | M      | Medny             | Tolstoi-Zapadni Reef        |
| 2 Aug             | T-17612            | 3     | M      | Medny             | Reef                        |
| 27 June           | T-17643            | 3     | M      | Medny             | Northeast Point             |
| 29 July           | T-17803            | 3     | M      | Medny             | Reef                        |
| 22 July           | T-18274            | 3     | M      | Medny             | Northeast Point             |
| 29 July           | T-18416<br>T-19939 | 3     | M<br>M | Medny             | Reef                        |
| 15 Aug            | T-20372            | 3     | M      | Medny<br>Medny    | Northeast Point<br>Polovina |
| 29 July           | T-20588            | 3     | M      | Medny             | Reef                        |
| 18 July           | T-20628            | 3     | M      | Medny             | Lukanin-Kitovi              |
| 2 Aug             | T-21783            | 3     | M      | Medny             | Reef                        |
| 15 July           | T-23514, T-23585   | 3     | M      | Medny             | Zapadni                     |
| 12 July           | P-20542            | 4     | M      | Bering            | Reef                        |
| 31 July           | P-22264            | 4     | M      | Bering            | Zapadni                     |
| 3 July            | P-23174, P-23157   | 4     | M      | Bering            | Tolstoi-Zapadni Reef        |
| 3 July            | P-24143            | 4     | M      | Medny             | Reef                        |
| 2 Aug             | P-24306            | 4     | M      | Medny             | Reef                        |
| 27 June           | P-25252            | 4     | M      | Medny             | Polovina                    |
| 23 July           | P-26933            | 4     | M      | Medny             | Lukanin-Kitovi              |
| 29 July           | P-31686            | 4     | M      | Medny             | Reef                        |
| 17 July           | H-5265             | 5     | M      | Robben            | Northeast Point             |
| 13 Aug            | K-19955            | 6     | F      | Bering            | Reef                        |
| 13 Aug            | C-48220            | 8     | F      | Medny             | Tolstoi-Zapadni Reef        |
| St. George Island |                    |       |        |                   |                             |
| 29 July           | Y-33907            | 2     | M      | Medny             | Zapadni                     |
| 26 July           | T-23241, T-23281   | 3     | M      | Medny             | North                       |
| 30 July           | P-19568            | 4     | M      | Bering            | Zapadni                     |
| 12 July           | P-26546            | 4     | M      | Medny             | Zapadni                     |
| 17 July           | P-27219            | 4     | M      | Medny             | Zapadni                     |
| 22 July           | P-28798            | 4     | M      | Medny             | North                       |
| 28 June           | H-27325, H-27799   | 5     | M      | Medny             | North                       |
| 17 July           | H-28008            | 5     | M      | Medny             | East                        |

### APPENDIX B

# PERSONS ENGAGED IN FUR SEAL RESEARCH ON THE PRIBILOF ISLANDS IN 1968

### Work schedule on islands

| Name                                                                                                                                       | Start                                                          | Finish                                                         | Affiliation                                                                                            | Work                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
|                                                                                                                                            |                                                                | Peri                                                           | manent employees                                                                                       |                                                                     |
| Alton Y. Roppel<br>Raymond E. Anas<br>Mark C. Keyes                                                                                        | 19 June<br>19 June<br>3 July                                   | 8 Aug.<br>1 Aug.<br>1 Aug.                                     | Bureau of Commercial Fisheries                                                                         | Seal research, general<br>Do.<br>Seal research, mor-<br>tality      |
| Fork Wilke<br>Lavrenty Stepetin                                                                                                            | 10 July<br>When need<br>seal rese                              | ded for                                                        | St. Paul Island resident                                                                               |                                                                     |
|                                                                                                                                            |                                                                | Tem                                                            | porary employees                                                                                       |                                                                     |
| Don L. McClary Patrick Kozloff Gilbert L. Moore William Bemmel Jerry S. Stearns Thomas A. Gornall                                          | 11 June<br>17 June<br>19 June<br>26 June<br>3 July<br>3 July   | 29 Aug.<br>4 Sept.<br>15 Aug.<br>4 Sept.<br>21 Aug.<br>15 Aug. | School teacher Student, U. of Alaska School teacherdo Student, Oregon State U. Student, Wash. State U. | Seal research, general Do. Do. Do. Do. Do. Seal research, mortality |
| Dionsey Bourdukofsky<br>David Galaktionoff<br>Agafon Krukoff, Jr.<br>Ronald G. Pletnikoff<br>Perfenia Pletnikoff, Jr.<br>Anthony Merculief | 26 June<br>26 June<br>26 June<br>26 June<br>26 June<br>26 June | 2 Oct.<br>2 Oct.<br>4 Sept.<br>29 Aug.<br>29 Aug.<br>29 Aug.   | St. Paul Island residentdo,do, St. George Island resident                                              | Seal research, general Do. Do. Do. Do. Do. Do.                      |

#### APPENDIX C

Table C-1.--Itinerary of pelagic investigations, 1967-68

| Name           | Vessel             | Area of operation | Period                  |
|----------------|--------------------|-------------------|-------------------------|
| . H. Fiscus    | M/V Tonquin        | Washington        | 27 Nov. to 21 Dec. 1967 |
| Do             | M/V New St. Joseph | Alaska            | 15 May to 21 June 1968  |
| . Kajimura     | do                 | Alaska            | 10 June to 16 July 1968 |
| . A. McCoy     | do                 | Alaska            | 21 June to 30 Aug. 1968 |
| . W. Marshall  | M/V Tonquin        | Washington        | 2 Jan. to 28 Feb. 1968  |
| . K. Stroud    | do                 | Washington        | Do.                     |
| Do             | M/V New St. Joseph | Alaska            | 15 July to 30 Aug. 1968 |
| . L. Ward      | do                 | Alaska            | 21 June to 30 Aug. 1968 |
| . A. Petterson |                    | Assisted in labor | ratory                  |

Table C-2.--List of chart squares occupied by a research vessel off Washington in November 1967, showing hours in square, seals seen per hour, and number of seals seen and collected 1

| Square  | Hours  | Seals<br>seen per | S      | Seals     | Square  | Hours<br>in | Seals<br>seen per | 5      | Seals     |
|---------|--------|-------------------|--------|-----------|---------|-------------|-------------------|--------|-----------|
| Dquare  | square | hour              | Seen   | Collected | bquare  | square      | hour              | Seen   | Collected |
|         | Number | Number            | Number | Number    |         | Number      | Number            | Number | Number    |
| V26-H 9 | 0.3    | 0                 | 0      | 0         | V39-H12 | 4.1         | 0                 | 0      | 0         |
| V26-H10 | 0.5    | 0                 | 0      | 0         | V39-H13 | 2.6         | 0                 | 0      | 0         |
| V27-H10 | 0.8    | 0                 | 0      | 0         | V39-H14 | 3.1         | 0                 | 0      | 0         |
| V27-H11 | 1.2    | 1.7               | 2      | 0         | V39-H15 | 1.2         | 0                 | 0      | 0         |
| V28-Hll | 0.2    | 0                 | 0      | 0         | V39-H16 | 0.8         | 0                 | 0      | 0         |
| V37-H13 | 0.2    | 0                 | 0      | 0         | V39-H17 | 1.2         | 0                 | 0      | 0         |
| V37-H14 | 0.7    | 0                 | 0      | 0         | V39-H18 | 0.7         | 0                 | 0      | 0         |
| V38-H12 | 0.8    | 0                 | 0      | 0         | V40-H12 | 0.3         | 0                 | 0      | 0         |
| V38-H13 | 2.6    | 0.4               | 1      | 0         | V40-H13 | 0.8         | 0                 | 0      | 0         |
| V38-H16 | 0.2    | 0                 | 0      | 0         | V40-H16 | 0.8         | 0                 | 0      | 0         |
| V38-H17 | 0.2    | 0                 | 0      | 0         | V40-H17 | 1.1         | 0                 | 0      | 0         |
| V39-H11 | 2.2    | 0                 | 0      | 0         | V40-H18 | 1.4         | 4.3               | 6      | 3         |

¹The base chart is USCGS No. 5052. The side of each chart square measures 18.52 km. (10 nautical miles); a square covers an area of 343 km.² (100 square nautical miles). Squares are located by a system of vertical and horizontal numbers. Horizontal numbering begins at the lower right corner of the chart (fig. 10) and vertical numbering at the lower left corner.

Table C-3.--List of chart squares occupied by a research vessel off Washington in December 1967, showing hours in square, seals seen per hour, and number of seals seen and collected 1

| Number         Number         Number         Number         Number           V26-H10         1.2         0.8         1         1           V26-H11         2.9         5.2         15         7           V27-H11         2.2         5.0         11         6           V28-H11         1.9         4.2         8         3           V28-H12         0.8         3.8         3         1           V29-H12         1.5         2.7         4         1           V30-H11         0.8         0         0         0           V30-H12         2.1         3.8         8         1           V31-H11         1.7         1.2         2         1           V32-H12         1.2         1.7         2         0           V33-H12         3.7         4.6         17         7                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                 |                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number         Number         Number         Number         Number           V26-H10         1.2         0.8         1         1           V26-H11         2.9         5.2         15         7           V27-H11         2.2         5.0         11         6           V28-H11         1.9         4.2         8         3           V28-H12         0.8         3.8         3         1           V29-H12         1.5         2.7         4         1           V30-H11         0.8         0         0         0           V30-H12         2.1         3.8         8         1           V31-H11         1.7         1.2         2         1           V32-H12         1.2         1.7         2         0           V33-H12         3.7         4.6         17         7                                                                                                                                                                                                                                                                     | Square                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Se                                                                                                                                                                                                              | als                                                                                                                                                            |
| V26-H10       1.2       0.8       1       1         V26-H11       2.9       5.2       15       7         V27-H11       2.2       5.0       11       6         V28-H11       1.9       4.2       8       3         V28-H12       0.8       3.8       3       1         V29-H12       1.5       2.7       4       1         V30-H11       0.8       0       0       0         V30-H12       2.1       3.8       8       1         V31-H11       1.7       1.2       2       1         V32-H12       1.2       1.7       2       0         V33-H12       3.7       4.6       17       7                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Seen                                                                                                                                                                                                            | Collected                                                                                                                                                      |
| V26-H11       2.9       5.2       15       7         V27-H11       2.2       5.0       11       6         V28-H11       1.9       4.2       8       3         V28-H12       0.8       3.8       3       1         V29-H12       1.5       2.7       4       1         V30-H11       0.8       0       0       0         V30-H12       2.1       3.8       8       1         V31-H11       1.7       1.2       2       1         V32-H12       1.2       1.7       2       0         V33-H12       3.7       4.6       17       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                 | Number                                                                                                                                                                                                                                                                                   | Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Number                                                                                                                                                                                                          | Number                                                                                                                                                         |
| V34-H12         0.4         2.5         1         0           V35-H13         0.8         1.2         1         0           V35-H14         1.0         3.0         3         2           V36-H13         0.4         2.5         1         0           V36-H13         0.4         2.5         1         0           V36-H13         0.4         2.5         1         0           V36-H15         2.6         4.2         11         5           V37-H13         0.3         0         0         0           V37-H15         1.8         3.3         6         2           V37-H16         0.9         4.4         4         2           V38-H12         0.6         5.0         3         0           V38-H13         4.8         1.5         7         0           V38-H15         0.8         2.5         2         1           V38-H16         1.8         3.3         6         1           V39-H11         7.8         0         0         0           V39-H12         13.0         0.1         1         0           V39-H13         3.8 | V26-H11 V27-H11 V28-H12 V29-H12 V30-H11 V30-H12 V31-H11 V32-H12 V34-H13 V35-H13 V35-H14 V36-H15 V37-H16 V38-H12 V38-H15 V37-H16 V38-H17 V39-H11 V39-H12 V39-H13 V39-H17 V39-H16 V39-H17 V39-H18 V40-H12 V40-H15 V40-H16 V40-H17 | 2.9<br>2.2<br>1.9<br>0.8<br>1.5<br>0.8<br>2.1<br>1.7<br>1.2<br>3.7<br>0.4<br>4.4<br>0.8<br>1.0<br>0.4<br>3.2<br>2.6<br>3.1<br>8<br>0.9<br>0.6<br>8<br>1.8<br>0.7<br>7.8<br>13.0<br>3.8<br>2.4<br>1.9<br>0.2<br>0.2<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3 | 5.2<br>5.2<br>5.0<br>4.2<br>3.8<br>2.7<br>4.5<br>5.9<br>1.0<br>2.5<br>10.0<br>2.5<br>10.0<br>2.5<br>10.0<br>2.5<br>10.0<br>2.5<br>10.0<br>2.5<br>10.0<br>2.5<br>10.0<br>2.5<br>10.0<br>2.5<br>10.0<br>2.5<br>10.0<br>2.5<br>10.0<br>2.5<br>10.0<br>2.5<br>10.0<br>2.5<br>10.0<br>2.5<br>10.0<br>2.5<br>10.0<br>2.5<br>10.0<br>2.5<br>10.0<br>2.5<br>10.0<br>2.5<br>10.0<br>2.5<br>10.0<br>2.5<br>10.0<br>2.5<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10 | 15<br>11<br>8<br>3<br>4<br>0<br>8<br>2<br>2<br>17<br>1<br>39<br>1<br>32<br>11<br>0<br>6<br>4<br>3<br>7<br>2<br>6<br>0<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 6<br>3<br>1<br>0<br>1<br>0<br>7<br>0<br>16<br>0<br>2<br>0<br>14<br>5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |

¹The base chart is USCGS no. 5052. The side of each chart square measures 18.52 km. (10 nautical miles); a square covers an area of 343 km.² (100 square nautical miles). Squares are located by a system of vertical and horizontal numbers. Horizontal numbering begins at the lower right corner of the chart (fig. 11) and vertical numbering at the lower left corner.

Table C-4.--List of chart squares occupied by a research vessel off Washington in January 1968, showing hours in square, seals seen per hour, and number of seals seen and collected 1

| Square                                                                                                                                                                                                                                                  | Hours                                                                                                                                                                                                                                                     | Seals<br>seen per                                                                                                                                                                                                                                                          | Se                                                                                                                                                                                                                   | als                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                         | square                                                                                                                                                                                                                                                    | hour                                                                                                                                                                                                                                                                       | Seen                                                                                                                                                                                                                 | Collected                                                                                                                                                                 |
|                                                                                                                                                                                                                                                         | Number                                                                                                                                                                                                                                                    | Number                                                                                                                                                                                                                                                                     | Number                                                                                                                                                                                                               | Number                                                                                                                                                                    |
| V26-H 9 V26-H10 V26-H11 V27-H10 V27-H11 V28-H10 V28-H11 V28-H12 V29-H10 V29-H11 V29-H12 V30-H 9 V30-H11 V30-H13 V31-H11 V31-H13 V32-H11 V32-H13 V37-H14 V37-H15 V37-H16 V38-H12 V38-H13 V39-H10 V39-H11 V39-H11 V39-H11 V39-H12 V40-H12 V40-H13 V40-H14 | 3.0<br>4.8<br>2.7<br>3.3<br>2.4<br>2.1<br>6.2<br>0.3<br>1.9<br>10.0<br>8.2<br>0.5<br>4.2<br>0.9<br>1.5<br>2.4<br>1.6<br>1.7<br>2.5<br>1.2<br>2.7<br>1.0<br>0.5<br>4.2<br>1.7<br>2.5<br>4.2<br>1.7<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0 | 0.3<br>1.0<br>1.5<br>1.2<br>2.9<br>3.3<br>5.0<br>0.3<br>2.1<br>4.2<br>4.3<br>0<br>1.7<br>6.8<br>4.4<br>1.1<br>1.3<br>2.5<br>5.0<br>0.7<br>7.3<br>1.2<br>3.2<br>0<br>0.3<br>1.2<br>0<br>0.3<br>1.2<br>0<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0 | 1<br>5<br>4<br>4<br>7<br>7<br>31<br>1<br>4<br>235<br>0<br>7<br>113<br>27<br>1<br>2<br>8<br>0<br>1<br>1<br>1<br>2<br>8<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0 | 0<br>2<br>1<br>3<br>4<br>3<br>9<br>1<br>15<br>12<br>0<br>2<br>26<br>6<br>0<br>0<br>2<br>2<br>2<br>0<br>4<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |

¹The base chart is USCGS no. 5052. The side of each chart square measures 18.52 km. (10 nautical miles); a square covers an area of 343 km.² (100 square nautical miles). Squares are located by a system of vertical and horizontal numbers. Horizontal numbering begins at the lower right corner of the chart (fig. 12) and vertical numbering at the lower left corner.

Table C-5.--List of chart squares occupied by a research vessel off Washington in February 1968, showing hours in square, seals seen per hour, and number of seals seen and collected 1

| Caucano | Hours  | Seals<br>seen per | S      | eals      | Square  | Hours  | Seals<br>seen per | S      | Seals     |
|---------|--------|-------------------|--------|-----------|---------|--------|-------------------|--------|-----------|
| Square  | square | hour              | Seen   | Collected | Equare  | square | hour              | Seen   | Collected |
|         | Number | Number            | Number | Number    |         | Number | Number            | Number | Number    |
| V25-Hll | 0.8    | 0                 | 0      | 0         | V33-H12 | 10.7   | 10.1              | 108    | 50        |
| V26-H 9 | 5.6    | 1.4               | 8      | 2         | V35-H13 | 3.1    | 2.6               | 8      | 6         |
| V26-H10 | 10.1   | 3.4               | 34     | 17        | V36-Hl3 | 1.2    | 4.2               | 5      | 1         |
| V26-Hll | 16.7   | 3.2               | 54     | 20        | V36-H14 | 3.9    | 1.3               | 5      | 2         |
| V27-H 9 | 1.4    | 0                 | 0      | 0         | V36-H15 | 1.4    | 0                 | 0      | 0         |
| V27-H10 | 1.6    | 1.2               | 2      | 1         | V37-H14 | 1.5    | 2.0               | 3      | 3         |
| V27-H11 | 6.1    | 2.3               | 14     | 7         | V37-H15 | 1.1    | 0                 | 0      | 0         |
| V27-H12 | 0.7    | 1.4               | 1      | 1         | V38-H12 | 1.2    | 0                 | 0      | 0         |
| V28-H 9 | 1.2    | 0                 | 0      | 0         | V38-Hl3 | 1.2    | 1.7               | 2      | 0         |
| V28-H10 | 0.4    | 0                 | 0      | 0         | V38-H14 | 0.8    | 0                 | 0      | 0         |
| V28-Hll | 1.2    | 8.3               | 10     | 4         | V38-H15 | 0.4    | 0                 | 0      | 0         |
| V28-H12 | 2.1    | 3.3               | 7      | 5         | V38-H16 | 1.8    | 0                 | 0      | 0         |
| V29-H 9 | 1.4    | 0.7               | 1      | 1         | V38-H17 | 0.8    | 1.2               | 1      | 1         |
| V29-H10 | 0.7    | 0                 | 0      | 0         | V39-H12 | 0.4    | 0                 | 0      | 0         |
| V29-H11 | 9.2    | 8.3               | 76     | 19        | V39-Hl3 | 0.3    | 3.3               | 1      | 0         |
| V29-H12 | 1.7    | 4.7               | 8      | 2         | V39-H14 | 1.6    | 0                 | 0      | 0         |
| V30-H 9 | 0.9    | 1.1               | 1      | 0         | V39-H15 | 1.6    | 0.6               | 1      | 1         |
| V30-H10 | 5.8    | 0.5               | 3      | 1         | V39-H16 | 1.5    | 0.7               | 1      | 0         |
| V30-H11 | 5.8    | 1.7               | 10     | 1         | V39-H17 | 1.3    | 0                 | 0      | 0         |
| V30-H12 | 4.5    | 6.7               | 30     | 5         | V40-H16 | 0.3    | 0                 | 0      | 0         |
| V31-H10 | 0.5    | 0                 | 0      | 0         | V40-H17 | 2.9    | 0.7               | 2      | 1         |
| V31-H11 | 3.2    | 5.3               | 17     | 2         | V40-H18 | 1.3    | 0                 | 0      | 0         |
| V31-H12 | 4.8    | 7.1               | 34     | 12        | V40-H19 | 0.8    | 0                 | 0      | 0         |
| V32-Hll | 1.0    | 14.0              | 14     | 3         | V41-H19 | 0.8    | 0                 | 0      | 0         |
| V32-H12 | 1.2    | 15.0              | 18     | 6         | V41-H20 | 0.2    | 0                 | 0      | 0         |

<sup>&</sup>lt;sup>1</sup>The base chart is USCGS no. 5052. The side of each chart square measures 18.52 km. (10 nautical miles); a square covers an area of 343 km.<sup>2</sup> (100 square nautical miles). Squares are located by a system of vertical and horizontal numbers. Horizontal numbering begins at the lower right corner of the chart (fig. 13) and vertical numbering at the lower left corner.

Table C-6.--List of chart squares occupied by a research vessel off Alaska (Area III) in May 1968, showing hours in square, seals seen per hour, and number of seals seen and collected

| Number   N |         | Hours  | Seals  | S      | eals      |         | Hours  | Seals  | S      | eals      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|--------|--------|-----------|---------|--------|--------|--------|-----------|
| V 1-H 4 0.9 0 0 0 V16-H72. 0.9 0 0 0 0 V1-H69. 1.5 0 0 0 V 1-H 5 0.8 0 0 0 V17-H69. 1.5 0 0 0 0 V 1-H 6. 1.2 0 0 0 V17-H71. 1.9 0 0 0 0 0 V 1-H 7. 1.7 0.6 1 1 1 V17-H72. 2.3 0.4 1 1 1 V 1-H 8. 1.0 0 0 0 0 V18-H66. 1.5 0.7 1 1 1 V 2-H 8. 0.5 0 0 0 0 V18-H66. 0.9 1.1 1 1 1 V 2-H 9. 1.0 0 0 0 V18-H66. 0.9 1.1 1 1 1 V 2-H 9. 1.0 0 0 0 V18-H66. 0.9 1.1 1 1 1 1 V 2-H 9. 1.0 0 0 0 V18-H66. 1.2 0.8 1 1 1 V 6-H12. 0.5 0 0 0 V18-H69. 1.5 0 0 0 0 V 7-H12. 0.5 0 0 0 V18-H69. 1.5 0 0 0 0 V 7-H12. 0.7 0 0 0 V18-H69. 1.5 0 0 0 0 V 7-H12. 0.7 0 0 0 V18-H70. 1.1 0 0 0 0 V 7-H12. 0.7 0 0 0 V18-H70. 1.1 0 0 0 0 V 7-H12. 0.7 0 0 0 V18-H70. 1.1 0 0 0 0 V 7-H12. 0.7 0 0 0 V18-H70. 1.1 0 0 0 0 V 7-H12. 0.7 0 0 0 V18-H70. 0.7 0 0 0 V18-H70. 1.1 0 0 0 0 V 7-H14. 0.2 0 0 0 V19-H29. 0.7 5.7 4 1 V 9-H15. 1.2 0 0 0 0 V19-H29. 0.7 5.7 4 1 V 9-H15. 1.2 0 0 0 0 V19-H29. 0.7 5.7 4 1 V 9-H15. 1.2 0 0 0 0 V19-H29. 0.7 5.7 4 1 V 9-H15. 1.2 0 0 0 0 V19-H29. 0.7 5.7 4 1 V 9-H15. 1.2 0 0 0 0 V19-H29. 0.7 5.7 4 1 V 9-H15. 1.2 0 0 0 0 V19-H29. 1.1 1 18.0 20 3 V10-H73. 3.0 0.2 0 6 2 V19-H33. 1.1 1 18.0 20 3 V10-H73. 3.0 0.2 0 6 2 V19-H33. 1.1 1 18.0 20 3 V10-H73. 3.0 0 0 0 V19-H35. 1.2 0 0 0 V19-H36. 1.4 7 8 H1 0 V11-H73. 0.7 0 0 0 V19-H36. 1.4 7 8 H1 0 0 V11-H73. 0.7 0 0 0 V19-H36. 1.4 7 8 H1 0 0 V11-H73. 0.7 0 0 0 V19-H36. 1.4 7 8 H1 0 0 V11-H73. 0.7 0 0 0 V19-H36. 1.4 7 8 H1 0 0 V11-H79. 0.2 0 0 0 V19-H36. 1.4 7 8 H1 0 0 V11-H79. 0.2 0 0 0 V19-H36. 1.4 7 8 H1 0 0 V11-H79. 0.2 0 0 0 V19-H36. 1.4 7 8 H1 0 0 V11-H79. 0.2 0 0 0 V19-H36. 1.4 7 8 H1 0 0 V11-H79. 0.2 0 0 0 V19-H36. 1.4 7 8 H1 1 0 0 V11-H79. 0.2 0 0 0 V19-H36. 1.4 7 8 H1 1 0 0 V11-H79. 0.2 0 0 0 V19-H36. 1.4 7 8 H1 1 0 0 V11-H79. 0.2 0 0 0 0 V19-H36. 1.4 7 8 H1 1 0 0 V11-H79. 0.2 0 0 0 0 V19-H36. 1.4 7 8 H1 1 0 0 0 0 0 V19-H36. 1.4 7 8 H1 1 0 0 0 0 0 V19-H36. 1.4 7 8 H1 1 0 0 0 0 0   | Square  |        |        | Seen   | Collected | Square  |        | _      | Seen   | Collected |
| V 1-H 5.         0.8         0         0         0         V17-H69.         1.5         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Number | Number | Number | Number    | Number  | Number | Number | Number | Number    |
| V 1-H 5.         0.8         0         0         V 17-H6.         1.5         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V 1-H 4 | 0.9    | 0      | 0      | 0         | V16-H72 | 0.9    | 0      | 0      | 0         |
| V 1.H 6.         1.2         0         0         0         V17-H71.         1.9         0         0         0           V 1.H 8.         1.0         0         0         0         V18-H65.         1.5         0.7         1         1           V 2.H 8.         0.5         0         0         0         V18-H66.         0.9         1.1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |        | 0      | 0      |           | V17-H69 | 1.5    |        | 0      |           |
| V 1-H 7.         1.7         0.6         1         1         V17-H72.         2.3         0.4         1         1         V 1-H 8.         1.0         0         0         0         V18-H66.         1.5         0.7         1         1         V 2-H 9.         1.0         0         0         0         V18-H66.         0.9         1.1         1         1         V 2-H 9.         1.0         0         0         0         V18-H66.         0.9         1.1         1         1         V 2-H 9.         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | 1.2    | 0      | 0      | 0         | V17-H71 |        |        |        |           |
| V 2-H 8         0.5         0         0         V18-H66.         0.9         1.1         1         1         V 2-H 9         1.0         0         0         0         V18-H67.         0.9         0         0         0         V18-H67.         0.9         0         0         0         V18-H69.         1.2         0.8         1         1         1         V 6-H12.         0.0         0         0         V18-H69.         1.5         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | 1.7    | 0.6    |        |           |         |        |        |        |           |
| V 2-H 9.         1.0         0         0         V18-H67.         0.9         0         0           V 3-H 9.         0.7         0         0         0         V18-H68.         1.2         0.8         1         1           V 6-H11.         1.0         0         0         0         V18-H70.         1.1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |        | _      |        |           |         |        |        |        |           |
| V 3-H 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |        |        |        | -         |         |        |        |        |           |
| V 6-H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |        | _      |        |           |         |        |        |        |           |
| V 6-H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |        | _      |        |           |         |        |        |        |           |
| Y 7-H112         0.7         0         0         0         V18-H71         3.2         0         0         0         V7-H13         1.0         0         0         0         V18-H72         0.4         0         0         0         V7-H14         0.2         0         0         0         V19-H32         0.7         5.7         4         1         V 8-H14         1.6         0         0         0         V19-H30         3.3         2.1         7         4         V 9-H15         1.2         0         0         0         V19-H31         3.0         3.0         9         7         V 9-H15         1.2         0         0         0         V19-H32         2.5         8.0         20         3         V10-H73         3.0         2.0         6         2         V19-H33         1.1         18.0         20         3         V10-H73         3.3         4         0         V11-H73         3.0         2.0         6         2         V19-H39         1.1         18.0         20         3         V10-H73         1.2         8         1         0         V11-H73         4.2         1.2         5         5         V19-H39 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |        |        |        |           |         |        |        |        |           |
| V 7-HILL.         1.0         0         0         0         V18-H72.         0.4         0         0         0         V7-HILL.         0.2         0         0         0         V19-H29.         0.7         5.7         4         1         4         V9-H1L.         0.2         0         0         0         V19-H30.         3.3         2.1         7         4         V9-H1L.         0.2         0         0         0         V19-H31.         3.0         3.0         9         7         V9-H15.         1.2         0         0         0         V19-H32.         2.5         8.0         20         3         V10-H31.         3.0         2.0         6         2         V19-H33.         1.1         18.0         20         3         V10-H32.         2.5         8.0         20         3         V11-H66.         1.2         0         0         0         V19-H35.         1.2         3.3         4         0         V11-H72.         0.8         0         0         V19-H36.         1.4         7.8         11         0         VV11-H72.         0.8         11         0         0         V19-H39.         0.3         3.3         1         0         VV12-H71.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |        |        |        |           |         |        |        |        |           |
| V 7-HL4       0.2       0       0       0       V19-H29       0.7       5.7       4       1         V 8-H14       1.6       0       0       0       V19-H30       3.3       2.1       7       4         V 9-H15       1.2       0       0       0       V19-H31       3.0       3.0       9       7         V 10-H15       1.2       0       0       0       V19-H32       2.5       8.0       20       3         V10-H173       3.0       2.0       6       2       V19-H34       1.1       18.0       20       3         V11-H16       1.2       0       0       0       V19-H34       1.3       12.0       15       0         V11-H16       1.2       0       0       0       V19-H36       1.4       7.8       11       0         V11-H16       1.2       0       0       0       V19-H36       1.4       7.8       11       0         V11-H173       4.2       1.2       5       5       V19-H37       1.2       10.8       13       0         V12-H16       1.2       1.2       0       0       V19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |        |        |        | _         |         |        |        |        |           |
| V 8-H14       1.6       0       0       0       V19-H30       3.3       2.1       7       4         V 9-H15       1.2       0       0       0       V19-H31       3.0       9       7         V 9-H15       1.2       0       0       0       V19-H32       2.5       8.0       20       3         V10-H73       3.0       2.0       6       2       V19-H34       1.3       12.0       15       0         V11-H16       1.2       0       0       0       V19-H35       1.2       3.3       4       0         V11-H73       0.8       0       0       0       V19-H36       1.4       7.8       11       0         V11-H73       4.2       1.2       5       5       V19-H37       1.2       10.8       13       0         V11-H73       4.2       1.2       0       0       0       V19-H36       1.4       0       0       V11-H37       1.4       1       0       V11-H73       1.2       0.8       13       0       0       V12-H73       1.2       0.8       1       0       0       0       V12-H37 </td <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>5.7</td> <td>4</td> <td>1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |        |        |        | -         |         |        | 5.7    | 4      | 1         |
| V 9-H14       0.2       0       0       0       V19-H31       3.0       9       7         V 9-H15       1.2       0       0       0       V19-H32       2.5       8.0       20       3         V10-H15       1.2       0       0       0       V19-H33       1.1       18.0       20       3         V10-H73       3.0       2.0       6       2       V19-H34       1.3       12.0       15       0         V11-H72       0.8       0       0       0       V19-H35       1.2       3.3       4       0         V11-H72       0.8       0       0       0       V19-H35       1.2       10.8       11       0         V12-H73       4.2       1.2       5       5       V19-H37       1.2       10.8       13       0         V12-H70       0.5       0       0       0       V19-H38       0.7       1.4       1       0       0       12-H38       1.0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 </td <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>V19-H30</td> <td>3.3</td> <td>2.1</td> <td>7</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |        | 0      | 0      | 0         | V19-H30 | 3.3    | 2.1    | 7      |           |
| V10-H15.         1.2         0         0         0         V19-H33.         1.1         18.0         20         3           V10-H73.         3.0         2.0         6         2         V19-H34.         1.3         12.0         15         0           V11-H72.         0.8         0         0         0         V19-H36.         1.2         3.3         4         0           V11-H73.         4.2         1.2         5         5         V19-H36.         1.4         7.8         11         0           V12-H6.         1.2         0         0         0         V19-H36.         1.4         7.8         11         0           V12-H70.         0.5         0         0         0         V19-H38.         0.7         1.4         1         0           V12-H70.         0.5         0         0         0         V19-H39.         0.3         3.3         1         0           V12-H71.         0.9         0         0         0         V19-H39.         0.3         3.3         1         0           V12-H71.         0.9         0         0         0         0         0         0         0         0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 0.2    | 0      | 0      | 0         |         |        |        |        |           |
| V10-H73         3.0         2.0         6         2         V19-H34         1.3         12.0         15         0           V11-H16         1.2         0         0         0         V19-H35         1.2         3.3         4         0           V11-H72         0.8         0         0         0         V19-H37         1.2         10.8         11         0           V11-H73         4.2         1.2         5         5         V19-H37         1.2         10.8         13         0           V12-H70         0.5         0         0         0         V19-H37         1.2         10.8         13         0           V12-H71         0.9         0         0         0         V19-H39         0.3         3.3         1         0           V12-H71         0.9         0         0         0         V19-H36         0.5         0         0         0           V12-H72         0.0         0         0         V19-H39         0.3         3.3         1         0           V12-H71         0.0         0         0         V19-H36         0.5         0         0         0     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V 9-H15 | 1.2    | 0      |        | _         |         |        |        |        |           |
| V11-H16 1.2 0 0 0 V19-H35 1.2 3.3 4 0 V11-H72 0.8 0 0 0 V19-H36 1.4 7.8 11 0 V11-H73 4.2 1.2 5 5 5 V19-H37 1.2 10.8 13 0 V12-H16 1.2 0 0 0 V19-H38 0.7 1.4 1 0 V12-H70 0.5 0 0 0 V19-H39 0.3 3.3 1 0 V12-H70 0.5 0 0 0 V19-H39 0.3 3.3 1 0 V12-H71 0.9 0 0 0 V19-H39 0.5 0 0 0 V19-H39 0.3 3.3 1 0 V12-H72 5.1 1.4 7 4 V19-H70 1.9 0 0 0 V12-H73 0.7 0 0 0 V19-H31 1.4 0 0 0 0 V13-H16 1.2 0 0 0 V20-H65 1.2 0.8 1 0 V13-H69 0.2 0 0 0 V20-H71 1.7 0 0 0 0 V20-H71 1.7 0 0 0 0 V13-H70 3.2 2.5 8 5 V21-H50 1.2 0.8 1 0 V13-H71 4.1 1.2 5 4 V21-H51 2.4 2.9 7 6 V13-H71 4.1 1.2 5 4 V21-H51 2.4 2.9 7 6 V13-H71 4.1 1.2 5 4 V21-H52 1.6 5.0 8 5 V14-H66 1.2 0 0 0 V21-H62 2.3 2.2 5 4 V14-H69 2.0 0 1.0 2 0 V21-H62 2.3 2.2 5 4 V14-H70 1.6 0.6 1 0 V21-H63 1.8 1.1 2 2 V14-H70 1.6 0.6 1 0 V21-H63 1.8 1.1 2 2 V14-H72 3.2 0.9 3 1 V21-H65 1.9 0.5 1 0 V15-H16 2.5 0 0 0 V22-H52 0.5 2.0 1 0 V15-H16 2.5 0 0 0 V22-H55 1.3 2.3 3 2 V15-H77 0.2 0 0 0 V22-H55 1.3 2.3 3 2 V15-H77 0.2 0 0 0 V22-H55 1.3 2.3 3 2 V15-H79 1.0 0 0 0 V22-H55 1.3 2.3 3 2 V15-H79 1.0 0 0 0 V22-H55 1.3 2.3 3 2 V15-H79 1.0 0 0 0 V22-H55 1.0 0 0 0 V22-H55 1.0 0 0 0 V15-H15 0.6 0 0 0 0 V22-H55 1.0 0 0 0 V22-H55 1.0 0 0 0 V15-H79 1.0 0 0 0 V22-H55 1.0 0 0 0 V22-H59 0.7 2.8 2 2 V16-H19 0.9 0 0 0 0 V22-H58 0.7 2.8 2 2 V16-H19 0.9 0 0 0 0 V22-H58 0.7 2.8 2 2 V16-H19 0.9 0 0 0 0 V22-H58 0.7 2.8 2 2 V16-H19 1.2 0.8 1 1 V22-H65 5.5 5 2.2 12 6 V16-H20 1.2 0.8 1 1 V22-H65 5.5 5 2.2 12 6 V16-H20 1.2 0.8 1 1 V22-H65 5.5 5 2.2 12 6 V16-H20 1.2 0.8 1 1 0 V23-H60 0.3 6.6 2 2 V16-H19 1.2 0.8 1 1 V22-H65 5.5 5 2.2 12 6 V16-H20 1.2 0.8 1 1 0 V23-H60 0.3 6.6 2 2 V16-H19 1.2 0.8 1 1 0 V23-H60 0.3 6.6 2 2 V16-H19 1.2 0.8 1 1 0 V23-H60 0.3 6.6 2 2 V16-H19 1.2 0.8 1 1 0 V23-H60 0.3 6.6 2 2 0 V33-H59 0.2 0.9 3 1 1 V16-H68 3.8 1.0 0 0 0 V33-H59 3.2 0.9 3 1 1 V16-H68 3.8 1.0 0 0 0 V33-H59 3.2 0.9 3 1 1 V16-H68 3.8 1.0 0 0 0 V33-H59                                                                                                                                                                                         |         |        |        |        | -         |         |        |        |        |           |
| V11-H72 0.8 0 0 0 V19-H36 1.4 7.8 11 0 V11-H73 4.2 1.2 5 5 V19-H37 1.2 10.8 13 0 V12-H16 1.2 0 0 0 V19-H38 0.7 1.4 1 0 V12-H70 0.5 0 0 0 V19-H38 0.7 1.4 1 0 V12-H70 0.5 0 0 0 V19-H39 0.3 3.3 1 0 V12-H71 0.9 0 0 0 V19-H365 0.5 0 0 0 V19-H37 1.9 0 0 0 V12-H73 0.7 0 0 0 V19-H70 1.9 0 0 0 0 V12-H73 0.7 0 0 0 V19-H71 1.4 0 0 0 0 V12-H73 0.7 0 0 0 V19-H71 1.4 0 0 0 0 V13-H36 1.2 0 0 0 0 V20-H65 1.2 0.8 1 0 V13-H69 0.2 0 0 0 0 V20-H65 1.2 0.8 1 0 V13-H70 3.2 2.5 8 5 V21-H50 1.2 0.8 1 0 V13-H71 4.1 1.2 5 4 V21-H51 2.4 2.9 7 6 V13-H72 2.0 0 0 0 V21-H52 1.6 5.0 8 5 V14-H6 1.2 0 0 0 V21-H62 2.3 2.2 5 4 V14-H69 2.0 1.0 2 0 V21-H63 1.8 1.1 2 2 V14-H70 1.6 0.6 1 0 V21-H64 5.7 3.2 18 9 V14-H72 3.2 0.9 3 1 V21-H64 5.7 3.2 18 9 V14-H72 3.2 0.9 3 1 V21-H64 5.7 3.2 18 9 V14-H72 3.2 0.9 3 1 V21-H64 5.7 3.2 18 9 V15-H15 0.7 0 0 0 V22-H53 1.7 1.2 2 1 V15-H69 1.5 0.7 1 0 V22-H55 1.9 0.5 1 0 V15-H16 2.5 0 0 0 V22-H53 1.7 1.2 2 1 V15-H70 1.2 1.7 2 1 V22-H55 1.3 2.3 3 2 2 V15-H70 1.2 1.7 2 1 V22-H56 1.0 0 0 0 V22-H57 1.0 0 0 0 V21-H69 1.5 0.6 0 0 0 V22-H55 1.3 2.3 3 2 2 V15-H70 1.2 1.7 2 1 V22-H56 1.0 0 0 0 V22-H58 0.7 2.8 2 2 V16-H19 1.2 0.8 1 1 V22-H65 5.5 2.2 12 6 V16-H19 1.2 0.8 1 1 V22-H65 5.5 2.2 12 6 V16-H19 1.2 0.8 1 1 V22-H65 5.5 2.2 12 6 V16-H19 1.2 0.8 1 1 V22-H65 5.5 2.2 12 6 V16-H19 1.2 0.8 1 1 0 V23-H58 1.2 0.8 1 0 V15-H19 1.2 0.8 1 1 0 V23-H58 1.2 0.8 1 0 V16-H19 1.2 0.8 1 1 0 V23-H58 1.2 0.8 1 0 0 V23-H66 1.2 0.8 1 0 0 V23-H66 1.2 0.8 1 0 0 V23-H66 1.2 0.8 1 0 0 0 0 V22-H65 1.2 0.8 1 0 0 0 0 V22-H65 1.2 0.8 1 0 0 0 0 V22-H65 1.2 0.8 1 0 0 0 0 0 V22-H66 1.2 0.8 1 1 0 0 V23-H66 2.2 0.9 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                               |         |        |        |        |           |         |        |        |        |           |
| V11-H73         4.2         1.2         5         5         V19-H37         1.2         10.8         13         0           V12-H6         1.2         0         0         0         V19-H38         0.7         1.4         1         0           V12-H70         0.5         0         0         0         V19-H39         0.3         3.3         1         0           V12-H71         0.9         0         0         0         V19-H39         0.5         0         0         0           V12-H72         5.1         1.4         7         4         V19-H70         1.9         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |        |        |        | -         |         |        |        |        |           |
| V12-H16         1.2         0         0         0         V19-H38         0.7         1.4         1         0           V12-H70         0.5         0         0         0         V19-H39         0.3         3.3         1         0           V12-H71         0.9         0         0         0         V19-H70         1.9         0         0         0           V12-H72         5.1         1.4         7         4         V19-H70         1.9         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |        |        |           |         |        |        |        |           |
| V12-H70.         0.5         0         0         0         V19-H39.         0.3         3.3         1         0           V12-H71.         0.9         0         0         0         V19-H65.         0.5         0         0         0           V12-H72.         5.1         1.4         7         4         V19-H70.         1.9         0         0         0           V13-H3.         0.7         0         0         0         V19-H71.         1.4         0         0         0           V13-H6.         1.2         0         0         0         V20-H71.         1.4         0         0         0           V13-H70.         3.2         2.5         8         5         V21-H50.         1.2         0.8         1         0           V13-H71.         4.1         1.2         5         4         V21-H50.         1.2         0.8         1         0           V13-H72.         2.0         0         0         0         V21-H50.         1.2         2.9         7         6           V13-H72.         2.0         0         0         0         V21-H50.         1.2         2.9         7         6 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |        |        |        |           |         |        |        |        | -         |
| V12-H71.         0.9         0         0         V19-H65.         0.5         0         0           V12-H72.         5.1         1.4         7         4         V19-H71.         1.9         0         0           V12-H73.         0.7         0         0         0         V19-H71.         1.4         0         0           V13-H6.         1.2         0         0         0         V20-H65.         1.2         0.8         1         0           V13-H69.         0.2         0         0         0         V20-H71.         1.7         0         0         0           V13-H70.         3.2         2.5         8         5         V21-H50.         1.2         0.8         1         0           V13-H71.         4.1         1.2         5         4         V21-H50.         1.2         0.8         1         0           V13-H72.         2.0         0         0         0         V21-H50.         1.6         5.0         8         5           V14-H66.         1.2         0         0         0         V21-H62.         2.3         2.2         5         4           V14-H79.         1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |        |        |        |           |         |        |        |        |           |
| V12-H72         5.1         1.4         7         4         V19-H70         1.9         0         0         0         V19-H71         1.4         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |        |        |        |           |         |        |        | 0      | 0         |
| V13-H16       1.2       0       0       V20-H65       1.2       0.8       1       0         V13-H69       0.2       0       0       0       V20-H71       1.7       0       0       0         V13-H70       3.2       2.5       8       5       V21-H50       1.2       0.8       1       0         V13-H71       4.1       1.2       5       4       V21-H51       2.4       2.9       7       6         V13-H72       2.0       0       0       0       V21-H52       1.6       5.0       8       5         V14-H66       1.2       0       0       0       V21-H62       2.3       2.2       5       4         V14-H69       2.0       1.0       2       0       V21-H63       1.8       1.1       2       2         V14-H70       1.6       0.6       1       0       V21-H64       5.7       3.2       18       9         V15-H15       0.7       0       0       0       V22-H55       1.9       0.5       1       0         V15-H16       0.5       0       0       0       V22-H55       1.2 <td></td> <td></td> <td>1.4</td> <td>7</td> <td>4</td> <td>V19-H70</td> <td>1.9</td> <td>0</td> <td>0</td> <td>0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |        | 1.4    | 7      | 4         | V19-H70 | 1.9    | 0      | 0      | 0         |
| V13-H69.       0.2       0       0       0       V20-H71.       1.7       0       0         V13-H70.       3.2       2.5       8       5       V21-H50.       1.2       0.8       1       0         V13-H71.       4.1       1.2       5       4       V21-H51.       2.4       2.9       7       6         V13-H72.       2.0       0       0       0       V21-H52.       1.6       5.0       8       5         V14-H66.       1.2       0       0       0       V21-H62.       2.3       2.2       5       4         V14-H69.       2.0       1.0       2       0       V21-H62.       2.3       2.2       5       4         V14-H70.       1.6       0.6       1       0       V21-H62.       5.7       3.2       18       9         V14-H72.       3.2       0.9       3       1       V21-H65.       1.9       0.5       1       0         V15-H15.       0.7       0       0       0       V22-H52.       0.5       2.0       1       0         V15-H16.       2.5       0       0       0       V22-H53.       1.7       1.2 </td <td>V12-H73</td> <td>0.7</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V12-H73 | 0.7    | 0      | 0      | 0         |         |        |        |        |           |
| V13-H70.       3.2       2.5       8       5       V21-H50.       1.2       0.8       1       0         V13-H71.       4.1       1.2       5       4       V21-H51.       2.4       2.9       7       6         V13-H72.       2.0       0       0       0       V21-H52.       1.6       5.0       8       5         V14-H16.       1.2       0       0       0       V21-H62.       2.3       2.2       5       4         V14-H69.       2.0       1.0       2       0       V21-H63.       1.8       1.1       2       2         V14-H70.       1.6       0.6       1       0       V21-H63.       1.8       1.1       2       2         V14-H72.       3.2       0.9       3       1       V21-H63.       1.9       0.5       1       0         V15-H15.       0.7       0       0       0       V22-H52.       0.5       2.0       1       0         V15-H16.       2.5       0       0       0       V22-H53.       1.7       1.2       2       1         V15-H79.       1.5       0.7       1       0       V22-H55.       1.3<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |        |        |        |           |         |        |        |        |           |
| V13-H71       4.1       1.2       5       4       V21-H51       2.4       2.9       7       6         V13-H72       2.0       0       0       0       V21-H52       1.6       5.0       8       5         V14-H16       1.2       0       0       0       V21-H52       1.6       5.0       8       5         V14-H69       2.0       1.0       2       0       V21-H62       2.3       2.2       5       4         V14-H69       2.0       1.0       2       0       V21-H63       1.8       1.1       2       2         V14-H70       1.6       0.6       1       0       V21-H63       1.8       1.1       2       2         V14-H70       1.6       0.6       1       0       V21-H65       1.9       0.5       1       0         V15-H15       0.7       0       0       0       V22-H52       0.5       2.0       1       0         V15-H16       2.5       0       0       0       V22-H52       0.5       2.0       1       0         V15-H17       0.2       0       0       0       V22-H52 </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |        |        |        |           |         |        |        |        |           |
| V13-H72       2.0       0       0       0       V21-H52       1.6       5.0       8       5         V14-H16       1.2       0       0       0       V21-H62       2.3       2.2       5       4         V14-H69       2.0       1.0       2       0       V21-H63       1.8       1.1       2       2         V14-H70       1.6       0.6       1       0       V21-H63       1.8       1.1       2       2         V14-H70       1.6       0.6       1       0       V21-H63       1.8       1.1       2       2         V14-H70       1.6       0.6       1       0       V21-H63       1.8       1.1       2       2         V14-H72       3.2       0.9       3       1       V21-H65       1.9       0.5       1       0         V15-H15       0.7       0       0       0       V22-H52       0.5       2.0       1       0         V15-H16       2.5       0       0       0       V22-H54       1.2       0.8       1       1         V15-H17       0.2       0       0       V22-H55       1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |        |        |        |           |         |        |        |        |           |
| V14-H16.       1.2       0       0       0       V21-H62.       2.3       2.2       5       4         V14-H69.       2.0       1.0       2       0       V21-H63.       1.8       1.1       2       2         V14-H70.       1.6       0.6       1       0       V21-H64.       5.7       3.2       18       9         V14-H72.       3.2       0.9       3       1       V21-H65.       1.9       0.5       1       0         V15-H15.       0.7       0       0       0       V22-H52.       0.5       2.0       1       0         V15-H16.       2.5       0       0       0       V22-H52.       0.5       2.0       1       0         V15-H16.       2.5       0       0       0       V22-H53.       1.7       1.2       2       1         V15-H17.       0.2       0       0       V22-H54.       1.2       0.8       1       1         V15-H69.       1.5       0.7       1       0       V22-H55.       1.3       2.3       3       2         V15-H73.       1.0       0       0       0       0       0       0       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |        |        |        |           |         |        |        |        |           |
| V14-H69       2.0       1.0       2       0       V21-H63       1.8       1.1       2       2         V14-H70       1.6       0.6       1       0       V21-H64       5.7       3.2       18       9         V14-H72       3.2       0.9       3       1       V21-H65       1.9       0.5       1       0         V15-H15       0.7       0       0       0       V22-H52       0.5       2.0       1       0         V15-H16       2.5       0       0       0       V22-H53       1.7       1.2       2       1         V15-H17       0.2       0       0       0       V22-H53       1.7       1.2       2       1         V15-H69       1.5       0.7       1       0       V22-H55       1.3       2.3       3       2         V15-H70       1.2       1.7       2       1       V22-H56       1.0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |        |        |        |           |         |        |        |        |           |
| V14-H70       1.6       0.6       1       0       V21-H64       5.7       3.2       18       9         V14-H72       3.2       0.9       3       1       V21-H65       1.9       0.5       1       0         V15-H15       0.7       0       0       0       V22-H52       0.5       2.0       1       0         V15-H16       2.5       0       0       0       V22-H53       1.7       1.2       2       1         V15-H17       0.2       0       0       0       V22-H54       1.2       0.8       1       1         V15-H69       1.5       0.7       1       0       V22-H55       1.3       2.3       3       2         V15-H70       1.2       1.7       2       1       V22-H56       1.0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |        |        |        | -         |         |        |        |        |           |
| V14-H72.       3.2       0.9       3       1       V21-H65.       1.9       0.5       1       0         V15-H15.       0.7       0       0       0       V22-H52.       0.5       2.0       1       0         V15-H16.       2.5       0       0       0       V22-H53.       1.7       1.2       2       1         V15-H17.       0.2       0       0       0       V22-H54.       1.2       0.8       1       1         V15-H69.       1.5       0.7       1       0       V22-H55.       1.3       2.3       3       2         V15-H70.       1.2       1.7       2       1       V22-H56.       1.0       0       0       0         V15-H73.       1.0       0       0       0       V22-H56.       1.0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |        |        |        | _         |         |        |        |        |           |
| V15-H15.       0.7       0       0       0       V22-H52.       0.5       2.0       1       0         V15-H16.       2.5       0       0       0       V22-H53.       1.7       1.2       2       1         V15-H17.       0.2       0       0       0       V22-H54.       1.2       0.8       1       1         V15-H69.       1.5       0.7       1       0       V22-H55.       1.3       2.3       3       2         V15-H70.       1.2       1.7       2       1       V22-H56.       1.0       0       0       0         V15-H73.       1.0       0       0       0       V22-H56.       1.0       0       0       0         V16-H15.       0.6       0       0       0       V22-H57.       1.0       2.0       2       1         V16-H17.       0.9       0       0       0       V22-H58.       0.7       2.8       2       2         V16-H18.       0.9       0       0       0       V22-H60.       0.3       6.6       2       2         V16-H19.       1.2       0.8       1       1       V22-H65.       5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |        |        |        |           |         |        |        |        |           |
| V15-H16       2.5       0       0       0       V22-H53       1.7       1.2       2       1         V15-H17       0.2       0       0       0       V22-H54       1.2       0.8       1       1         V15-H69       1.5       0.7       1       0       V22-H55       1.3       2.3       3       2         V15-H70       1.2       1.7       2       1       V22-H56       1.0       0       0       0         V15-H73       1.0       0       0       0       V22-H57       1.0       2.0       2       1         V16-H15       0.6       0       0       0       V22-H58       0.7       2.8       2       2         V16-H17       0.9       0       0       0       V22-H58       0.7       2.8       2       2         V16-H18       0.9       0       0       0       V22-H60       0.3       6.6       2       2         V16-H19       1.2       0.8       1       1       V22-H65       5.5       2.2       12       6         V16-H20       1.2       0.8       1       0       V23-H59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |        |        |        |           |         |        |        |        | 0         |
| V15-H17       0.2       0       0       0       V22-H54       1.2       0.8       1       1         V15-H69       1.5       0.7       1       0       V22-H55       1.3       2.3       3       2         V15-H70       1.2       1.7       2       1       V22-H56       1.0       0       0       0         V15-H73       1.0       0       0       0       V22-H57       1.0       2.0       2       1         V16-H15       0.6       0       0       0       V22-H58       0.7       2.8       2       2         V16-H17       0.9       0       0       0       V22-H60       0.3       6.6       2       2         V16-H18       0.9       0       0       0       V22-H61       4.5       2.2       10       7         V16-H19       1.2       0.8       1       1       V22-H65       5.5       2.2       12       6         V16-H21       0.9       2.2       2       0       V23-H58       1.2       0.8       1       0         V16-H68       3.8       1.0       4       0       V23-H60 </td <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>1.2</td> <td>2</td> <td>1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |        |        |        | 0         |         |        | 1.2    | 2      | 1         |
| V15-H70       1.2       1.7       2       1       V22-H56       1.0       0       0       0         V15-H73       1.0       0       0       0       V22-H57       1.0       2.0       2       1         V16-H15       0.6       0       0       0       V22-H58       0.7       2.8       2       2         V16-H17       0.9       0       0       0       V22-H60       0.3       6.6       2       2         V16-H18       0.9       0       0       0       V22-H61       4.5       2.2       10       7         V16-H19       1.2       0.8       1       1       V22-H65       5.5       2.2       12       6         V16-H20       1.2       0.8       1       0       V23-H58       1.2       0.8       1       0         V16-H21       0.9       2.2       2       0       V23-H59       3.2       0.9       3       1         V16-H68       3.8       1.0       4       0       V23-H60       2.2       0.9       2       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | 0.2    | 0      | 0      | 0         | V22-H54 | 1.2    | 0.8    |        |           |
| V15-H73       1.0       0       0       0       V22-H57       1.0       2.0       2       1         V16-H15       0.6       0       0       0       V22-H58       0.7       2.8       2       2         V16-H17       0.9       0       0       0       V22-H60       0.3       6.6       2       2         V16-H18       0.9       0       0       0       V22-H61       4.5       2.2       10       7         V16-H19       1.2       0.8       1       1       V22-H65       5.5       2.2       12       6         V16-H20       1.2       0.8       1       0       V23-H58       1.2       0.8       1       0         V16-H21       0.9       2.2       2       0       V23-H59       3.2       0.9       3       1         V16-H68       3.8       1.0       4       0       V23-H60       2.2       0.9       2       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 1.5    |        |        | 0         |         |        |        |        |           |
| V16-H15       0.6       0       0       0       V22-H58       0.7       2.8       2       2         V16-H17       0.9       0       0       0       V22-H60       0.3       6.6       2       2         V16-H18       0.9       0       0       0       V22-H61       4.5       2.2       10       7         V16-H19       1.2       0.8       1       1       V22-H65       5.5       2.2       12       6         V16-H20       1.2       0.8       1       0       V23-H58       1.2       0.8       1       0         V16-H21       0.9       2.2       2       0       V23-H59       3.2       0.9       3       1         V16-H68       3.8       1.0       4       0       V23-H60       2.2       0.9       2       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |        |        |           |         |        |        |        |           |
| V16-H17       0.9       0       0       0       V22-H60       0.3       6.6       2       2         V16-H18       0.9       0       0       0       V22-H61       4.5       2.2       10       7         V16-H19       1.2       0.8       1       1       V22-H65       5.5       2.2       12       6         V16-H20       1.2       0.8       1       0       V23-H58       1.2       0.8       1       0         V16-H21       0.9       2.2       2       0       V23-H59       3.2       0.9       3       1         V16-H68       3.8       1.0       4       0       V23-H60       2.2       0.9       2       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |        |        |        |           |         |        |        | 2      | Ţ         |
| V16-H18       0.9       0       0       0       V22-H61       4.5       2.2       10       7         V16-H19       1.2       0.8       1       1       V22-H65       5.5       2.2       12       6         V16-H20       1.2       0.8       1       0       V23-H58       1.2       0.8       1       0         V16-H21       0.9       2.2       2       0       V23-H59       3.2       0.9       3       1         V16-H68       3.8       1.0       4       0       V23-H60       2.2       0.9       2       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |        |        |        |           |         |        |        | 2      | 2         |
| V16-H19.     1.2     0.8     1     1     V22-H65.     5.5     2.2     12     6       V16-H20.     1.2     0.8     1     0     V23-H58.     1.2     0.8     1     0       V16-H21.     0.9     2.2     2     0     V23-H59.     3.2     0.9     3     1       V16-H68.     3.8     1.0     4     0     V23-H60.     2.2     0.9     2     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | _      |        |        |           |         |        |        |        | 7         |
| V16-H20     1.2     0.8     1     0     V23-H58     1.2     0.8     1     0       V16-H21     0.9     2.2     2     0     V23-H59     3.2     0.9     3     1       V16-H68     3.8     1.0     4     0     V23-H60     2.2     0.9     2     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |        |        |        |           |         |        |        |        |           |
| V16-H21 0.9 2.2 2 0 V23-H59 3.2 0.9 3 1<br>V16-H68 3.8 1.0 4 0 V23-H60 2.2 0.9 2 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |        |        |        |           |         |        |        |        |           |
| V16-H68. 3.8 1.0 4 0 V23-H60. 2.2 0.9 2 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |        |        |        |           |         |        |        |        |           |
| V16-H70 1.3 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |        |        |        | 0         |         |        | 0.9    |        | 0         |
| 120 11.01.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V16-H70 | 1.3    | 0      | 0      | 0         |         |        |        |        |           |

¹The base chart is USCGS no. 8500. The side of each chart square measures 18.52 km. (10 nautical miles); a square covers an area of 343 km.² (100 square nautical miles). Squares are located by a system of vertical and horizontal numbers. Horizontal numbering begins at the lower right corner of the chart (fig. 14) and vertical numbering at the lower left corner.

Table C-7.--List of chart squares occupied by a research vessel off Alaska (Area III) in June 1968, showing hours in square, seals seen per hour, and number of seals seen and collected 1

| Square  | Hours  | Seals<br>seen per | S      | eals      | Causans | Hours        | Seals            | S      | eals      |
|---------|--------|-------------------|--------|-----------|---------|--------------|------------------|--------|-----------|
| bquare  | square | hour              | Seen   | Collected | Square  | in<br>square | seen per<br>hour | Seen   | Collected |
|         | Number | Number            | Number | Number    |         | Number       | Number           | Number | Number    |
| V 2-H90 | 0.7    | 1.4               | 1      | 1         | V 9-H77 | 1.0          | 3.0              | 3      | ٦         |
| V 3-H88 | 0.9    | 1.1               | 1      | 1         | V 9-H78 | 1.3          | 0                | Ō      | Ō         |
| V 3-H89 | 1.2    | 0                 | 0      | 0         | V 9-H79 | 1.3          | 0                | 0      | 0         |
| V 3-H90 | 1.6    | 1.2               | 2      | 1         | V 9-H80 | 1.5          | 0                | 0      | 0         |
| V 4-H87 | 1.5    | 0.7               | 1      | 0         | V10-H75 | 0.8          | 3.8              | 3      | 2         |
| V 4-H88 | 0.7    | 0                 | 0      | 0         | V10-H76 | 0.5          | 0                | 0      | 0         |
| V 5-H85 | 2.7    | 1.5               | 4      | 4         | V11-H74 | 0.7          | 2.8              | 2      | 2         |
| V 5-H86 | 1.5    | 0                 | 0      | 0         | V11-H75 | 0.9          | 2.2              | 2      | 2         |
| V 6-H83 | 1.6    | 1.9               | 3      | 1         | V12-H74 | 0.7          | 0                | 0      | 0         |
| V 6-H84 | 1.2    | 0                 | 0      | 0         | V13-H73 | 0.7          | 0                | 0      | 0         |
| V 7-H81 | 0.1    | 0                 | 0      | 0         | V13-H74 | 0.2          | 0                | 0      | 0         |
| V 7-H82 | 1.2    | 0                 | 0      | 0         | V14-H73 | 1.2          | 0                | 0      | 0         |
| V 7-H83 | 0.5    | 0                 | 0      | 0         | V15-H73 | 1.0          | 0                | 0      | 0         |
| V 9-H76 | 0.8    | 0                 | 0      | 0         |         |              |                  |        |           |

¹The base chart is USCGS no. 8500. The side of each chart square measures 18.52 km. (10 nautical miles); a square covers an area of 343 km.² (100 square nautical miles). Squares are located by a system of vertical and horizontal numbers. Horizontal numbering begins at the lower right corner of the chart (fig. 15) and vertical numbering at the lower left corner.

Table C-8.--List of chart squares occupied by a research vessel off Alaska (Area III) in August 1968, showing hours in square, seals seen per hour, and number of seals seen and collected 1

|         | Hours  | Seals<br>seen per | 5      | Seals     | Square   | Hours<br>in | Seals<br>seen per | S      | eals      |
|---------|--------|-------------------|--------|-----------|----------|-------------|-------------------|--------|-----------|
| Square  | square | hour              | Seen   | Collected | bquare   | square      | hour              | Seen   | Collected |
|         | Number | Number            | Number | Number    |          | Number      | Number            | Number | Number    |
| V 6-H87 | 1.7    | 0.6               | 1      | 0         | V17-H71  | 1.7         | 0.6               | 1      | 0         |
| V 7-H87 | 0.7    | 0                 | 0      | 0         | V18-H43  | 0.3         | 0                 | 0      | 0         |
| V 7-H86 | 1.6    | 0.6               | 1      | 0         | V18-H44  | 1.2         | 0                 | 0      | 0         |
| V 8-H84 | 1.0    | 0                 | 0      | 0         | V18-H45  | 1.2         | 0                 | 0      | 0         |
| V 8-H85 | 1.5    | 0.6               | 1      | 0         | V18-H46  | 1.2         | 0                 | 0      | 0         |
| V 9-H83 | 1.0    | 0                 | 0      | 0         | V18-H47  | 1.2         | 0                 | 0      | 0         |
| V 9-H84 | 0.5    | 2.0               | 1      | 0         | V18-H48  | 1.2         | 0                 | 0      | 0         |
| V10-H80 | 0.7    | 0                 | 0      | 0         | V18-H49  | 1.2         | 0                 | 0      | 0         |
| V10-H81 | 1.4    | 0                 | 0      | 0         | V18-H50  | 1.3         | 0                 | 0      | 0         |
| V10-H82 | 1.5    | 0.6               | 1      | 0         | V18-H51  | 1.2         | 0                 | 0      | 0         |
| V10-H83 | 0.3    | 0                 | 0      | 0         | V18-H52  | 0.4         | 0                 | 0      | 0         |
| V14-H71 | 0.7    | 0                 | 0      | 0         | V18-H70  | 0.8         | 1.2               | 1      | 0         |
| V14-H72 | 0.8    | 2.5               | 2      | 0         | V18-H71  | 0.7         | 0                 | 0      | 0         |
| V15-H71 | 1.2    | 0.8               | 1      | 0         | V19-H52  | 0.9         | 0                 | 0      | 0         |
| V16-H71 | 1.7    | 1.1               | 2      | 0         | V19-H53  | 0.7         | 0                 | 0      | 0         |
| V17-H24 | 0.7    | 0                 | 0      | 0         | V19-H63  | 0.7         | 0                 | 0      | 0         |
| V17-H25 | 1.2    | 0.8               | 1      | 1         | V19-H70  | 1.0         | 0                 | 0      | 0         |
| V17-H26 | 1.3    | 0                 | 0      | 0         | V20-H64  | 1.1         | 0                 | 0      | 0         |
| V17-H27 | 1.2    | 0                 | 0      | 0         | V20-H65  | 1.1         | 0                 | 0      | 0         |
| V17-H28 | 1.2    | 0                 | 0      | 0         | V20-H66  | 1.1         | 0                 | 0      | 0         |
| V17-H29 | 1.3    | 0                 | 0      | 0         | V20-H67  | 1.0         | 0                 | 0      | 0         |
| V17-H30 | 1.5    | 0                 | 0      | 0         | V20-H68  | 1.2         | 0                 | 0      | 0         |
| V17-H31 | 1.2    | 0                 | 0      | 0         | V20-H69  | 1.2         | 0                 | 0      | 0         |
| V17-H32 | 1.0    | 0                 | 0      | 0         | V20-H71  | 1.5         | 0.6               | 1      | 0         |
| V17-H33 | 1.1    | 0                 | 0      | 0         | V21-H70. | 1.5         | 0                 | Q      | 0         |
| V17-H34 | 0.2    | 0                 | 0      | 0         | V21-H71  | 0.7         | 0                 | 0      | 0         |

<sup>1</sup>The base chart is USCGS no. 8500. The side of each chart square measures 18.52 km. (10 nautical miles); a square covers an area of 343 km.<sup>2</sup> (100 square nautical miles). Squares are located by a system of vertical and horizontal numbers. Horizontal numbering begins at the lower right corner of the chart (fig. 18) and vertical numbering at the lower left corner.

Table C-9.--List of chart squares occupied by a research vessel off Alaska (Area IV) in June 1968, showing hours in square, seals seen per hour, and number of seals seen and collected 1

| Caucas  | Hours        | Seals            | ,      | Seals     |         | Hours        | Seals            | 1      | Seals     |
|---------|--------------|------------------|--------|-----------|---------|--------------|------------------|--------|-----------|
| Square  | in<br>square | seen per<br>hour | Seen   | Collected | Square  | in<br>square | seen per<br>hour | Seen   | Collected |
|         | Number       | Number           | Number | Number    |         | Number       | Number           | Number | Number    |
| V27-H27 | 1.4          | 2.1              | 3      | 3         | V31-H18 | 0.7          | 0                | 0      | 0         |
| V28-H22 | 5.3          | 1.9              | 10     | 7         | V31-H19 | 0.7          | 0                | 0      | 0         |
| V28-H23 | 2.2          | 1.4              | 3      | 2         | V31-H20 | 3.6          | 3.0              | 11     | 2         |
| V28-H24 | 1.5          | 10.0             | 15     | 6         | V31-H21 | 1.7          | 2.9              | 5      | 4         |
| V28-H25 | 1.9          | 6.8              | 13     | 4         | V31-H22 | 1.0          | 2.0              | 2      | 0         |
| V28-H26 | 13.6         | 2.8              | 38     | 19        | V31-H23 | 8.6          | 0.5              | 4      | 0         |
| V28-H27 | 5.0          | 4.2              | 21     | 2         | V31-H24 | 6.3          | 1.1              | 7      | 0         |
| V28-H28 | 4.2          | 3.1              | 13     | 0         | V31-H25 | 4.8          | 0                | 0      | 0         |
| V28-H29 | 1.7          | 1.2              | 2      | 0         | V31-H26 | 6.8          | 1.3              | 9      | 0         |
| V29-H19 | 0.6          | 0                | 0      | 0         | V31-H27 | 0.3          | 1.0              | 3      | 0         |
| V29-H20 | 0.7          | 0                | 0      | 0         | V31-H28 | 1.2          | 0                | 0      | 0         |
| V29-H21 | 6.0          | 1.5              | 9      | 3         | V32-H 8 | 2.2          | 3.2              | 7      | 6         |
| V29-H22 | 9.9          | 1.8              | 18     | 6         | V32-H 9 | 4.8          | 2.5              | 12     | 8         |
| V29-H23 | 8.1          | 2.1              | 17     | 9         | V32-H10 | 1.8          | 1.6              | 3      | 3         |
| V29-H24 | 6.4          | 0.6              | 4      | 0         | V32-Hll | 1.9          | 2.6              | 5      | 3         |
| V29-H25 | 1.4          | 1.4              | 2      | 2         | V32-H12 | 0.8          | 1.2              | 1      | 0         |
| V29-H26 | 4.8          | 1.4              | 7      | 0         | V32-H14 | 1.2          | 0                | 0      | 0         |
| V29-H27 | 3.8          | 3.2              | 12     | 0         | V32-H15 | 1.0          | 0                | 0      | 0         |
| V29-H28 | 2.8          | 0.4              | 1      | 0         | V32-H18 | 1.6          | 0                | 0      | 0         |
| V30-H19 | 1.6          | 0.6              | 1      | 0         | V32-H19 | 0.4          | 0                | 0      | 0         |
| V30-H20 | 1.6          | 0.6              | 1      | 0         | V32-H20 | 0.7          | 5.7              | 4      | 0         |
| V30-H21 | 6.8          | 2.2              | 15     | 9         | V32-H23 | 5.2          | 0.4              | 2      | 1         |
| V30-H22 | 14.5         | 1.4              | 20     | 6         | V32-H24 | 1.3          | 0                | 0      | 0         |
| V30-H23 | 10.9         | 0.7              | 8      | 1         | V33-H 5 | 2.2          | 2.2              | 5      | 1         |
| V30-H24 | 6.8          | 0.6              | 4      | 2         | V33-H 6 | 1.8          | 0.6              | l      | 0         |
| V30-H25 | 4.6          | 0                | 0      | 0         | V33-Н 7 | 1.2          | 0.3              | 3      | 1         |
| V30-H26 | 3.6          | 1.6              | 6      | 0         | V33-H 8 | 0.4          | 0                | 0      | 0         |
| V30-H27 | 7.5          | 2.9              | 22     | 0         | V34-H 2 | 2.2          | 3.6              | 8      | 4         |
| V30-H28 | 1.8          | 0.5              | 1      | 0         | V34-H 3 | 2.0          | 2.5              | 5      | 3         |
| V31-H15 | 0.5          | 0                | 0      | 0         | V34-H 4 | 2.0          | 0.5              | 1      | 0         |
| V31-H16 | 1.3          | 0                | 0      | 0         | V35-H 1 | 1.8          | 1.1              | 2      | 2         |
| V31-H17 | 1.8          | 1.1              | 2      | 0         |         |              |                  |        |           |

¹The base chart is USCGS no. 8802. The side of each chart square measures 18.52 km. (10 nautical miles); a square covers an area of 343 km.² (100 square nautical miles). Squares are located by a system of vertical and horizontal numbers. Horizontal numbering begins at the lower right corner of the chart (fig. 16) and vertical numbering at the lower corner.

Table C-10.--List of chart squares occupied by a research vessel off Alaska (Area IV) in July 1968, showing hours in square, seals seen per hour, and number of seals seen and collected 1

| Square  | Hours<br>in | Seals<br>seen per |        | Seals     | Square  | Hours  | Seals<br>seen per | S      | eals      |
|---------|-------------|-------------------|--------|-----------|---------|--------|-------------------|--------|-----------|
| bquare  | square      | hour              | Seen   | Collected | Square  | square | hour              | Seen   | Collected |
|         | Number      | Number            | Number | Number    |         | Number | Number            | Number | Number    |
| V27-H27 | 0.7         | 0                 | 0      | 0         | V33-H26 | 11.0   | 0.8               | 9      | 5         |
| V28-H26 | 1.7         | 1.7               | 3      | 3         | V33-H27 | 14.3   | 4.7               | 68     | 31        |
| V28-H27 | 2.6         | 3.8               | 10     | 4         | V33-H28 | 3.3    | 1.8               | 6      | 1         |
| V28-H28 | 3.0         | 2.0               | 6      | 2         | V33-H30 | 1.7    | 3.5               | 6      | 1         |
| V29-H23 | 2.1         | 0.9               | 2      | 1         | V34-H24 | 1.3    | 0.8               | 1      | 0         |
| V29-H24 | 2.3         | 1.3               | 3      | 1         | V34-H25 | 1.5    | 2.6               | 4      | 1         |
| V29-H25 | 0.6         | 5.0               | 3      | 1         | V34-H26 | 7.1    | 2.2               | 16     | 2         |
| V29-H26 | 3.1         | 1.0               | 3      | 3         | V34-H27 | 5.9    | 2.7               | 16     | 6         |
| V29-H28 | 2.6         | 0                 | 0      | 0         | V34-H28 | 3.6    | 1.9               | 7      | 0         |
| V30-H22 | 0.9         | 0                 | 0      | 0         | V34-H30 | 2.4    | 3.3               | 8      | 2         |
| V30-H23 | 3.2         | 1.8               | 6      | 2         | V35-H24 | 1.2    | 1.6               | 2      | 1         |
| V30-H25 | 2.5         | 2.8               | 7      | 2         | V35-H25 | 5.0    | 1.4               | 7      | 4         |
| V30-H26 | 1.9         | 1.6               | 3      | 1         | V35-H26 | 3.5    | 1.7               | 6      | 0         |
| V30-H27 | 0.8         | 1.2               | 1      | 0         | V35-H27 | 3.2    | 2.1               | 7      | 2         |
| V30-H28 | 4.2         | 0.2               | 1      | 0         | V35-H28 | 2.5    | 0.4               | 1      | 1         |
| V30-H29 | 3.7         | 0                 | 0      | 0         | V35-H29 | 2.1    | 0.9               | 2      | 0         |
| V31-H23 | 6.3         | 0.9               | 6      | 0         | V35-H30 | 2.2    | 1.8               | 4      | 0         |
| V31-H24 | 4.4         | 0.9               | 4      | 1         | V36-H24 | 1.2    | 2.5               | 3      | 3         |
| V31-H26 | 1.7         | 3.5               | 6      | 0         | V36-H25 | 4.6    | 2.2               | 10     | 6         |
| V31-H28 | 3.2         | 0.3               | 1      | 0         | V36-H26 | 1.2    | 1.6               | 2      | 2         |
| V31-H29 | 7.8         | 1.1               | 9      | 2         | V36-H27 | 3.3    | 1.8               | 6      | 4         |
| V32-H23 | 0.3         | 0                 | 0      | 0         | V36-H28 | 5.5    | 3.3               | 18     | 7         |
| V32-H24 | 10.8        | 2.7               | 29     | 2         | V36-H29 | 5.1    | 1.4               | 7      | 3         |
| V32-H25 | 5.1         | 1.0               | 5      | 0         | V36-H30 | 6.9    | 0.7               | 5      | 2         |
| V32-H26 | 13.2        | 0                 | 0      | 0         | V36-H31 | 1.7    | 1.8               | 3      | 0         |
| V32-H27 | 4.0         | 0                 | 0      | 0         | V36-H32 | 2.5    | 2.0               | 5      | 2         |
| V32-H28 | 6.7         | 0.4               | 3      | 1         | V37-H25 | 2.7    | 1.5               | 4      | 1         |
| V32-H29 | 1.2         | 0.8               | 1      | 1         | V37-H29 | 1.1    | 0                 | 0      | 0         |
| V32-H30 | 1.2         | 4.2               | 5      | 1         | V37-H30 | 1.1    | 1.8               | 2      | 1         |
| V33-H24 | 2.4         | 1.6               | 4      | 2         | V37-H31 | 2.5    | 1.6               | 4      | 1         |
| V33-H25 | 12.4        | 1.1               | 14     | 6         | V37-H32 | 2.6    | 3.5               | 9      | 4         |

¹The base chart is USCGS no. 8802. The side of each chart square measures 18.52 km. (10 nautical miles); a square covers an area of 343 km.² (100 square nautical miles). Squares are located by a system of vertical and horizontal numbers. Horizontal numbering begins at the lower right corner of the chart (fig. 17) and vertical numbering at the lower left corner.

Table C-ll.--List of chart squares occupied by a research vessel off Alaska (Area IV) in August 1968, showing hours in square, seals seen per hour, and number of seals seen and collected 1

| Canana  | Hours  | Seals            |        | Seals     | Square  | Hours  | Seals<br>seen per |        | Seals     |
|---------|--------|------------------|--------|-----------|---------|--------|-------------------|--------|-----------|
| Square  | square | seen per<br>hour | Seen   | Collected | Square  | square | hour              | Seen   | Collected |
|         | Number | Number           | Number | Number    |         | Number | Number            | Number | Number    |
| V30-H14 | 0.8    | 1.2              | 1      | 0         | V33-H26 | 2.8    | 1.1               | 3      | 0         |
| V30-H15 | 0.7    | 0                | 0      | 0         | V33-H27 | 14.2   | 5.8               | 82     | 36        |
| V30-H22 | 1.2    | 0.8              | 1      | 0         | V33-H28 | 1.8    | 3.3               | 6      | 1         |
| V30-H23 | 1.2    | 0                | 0      | 0         | V33-H31 | 2.2    | 15.9              | 35     | 5         |
| V30-H24 | 1.2    | 0.8              | 1      | 0         | V34-H 4 | 0.3    | 6.6               | 2      | 0         |
| V30-H25 | 1.1    | 0                | 0      | 0         | V34-H25 | 1.2    | 6.6               | 8      | 4         |
| V30-H26 | 1.2    | 1.6              | 2      | 0         | V34-H26 | 4.8    | 4.2               | 20     | 8         |
| V30-H28 | 1.0    | 0                | 0      | 0         | V34-H27 | 9.9    | 6.4               | 64     | 22        |
| V31-H11 | 1.2    | 2.5              | 3      | 0         | V34-H28 | 1.1    | 4.5               | 5      | 3         |
| V31-H12 | 1.1    | 2.7              | 3      | 0         | V34-H31 | 1.0    | 6.0               | 6      | 0         |
| V31-H13 | 1.0    | 3.0              | 3      | 0         | V34-H32 | 1.0    | 9.0               | 9      | 0         |
| V31-H27 | 1.2    | 0                | 0      | 0         | V35-H32 | 2.1    | 10.5              | 22     | 5         |
| V31-H28 | 3.9    | 0.5              | 2      | 1         | V36-H33 | 2.6    | 9.2               | 24     | 3         |
| V31-H29 | 0.7    | 0                | 0      | 0         | V36-H34 | 1.0    | 4.0               | 4      | 0         |
| V32-H 7 | 0.7    | 0.3              | 2      | 0         | V37-H33 | 1.2    | 20.0              | 24     | 0         |
| V32-H 8 | 0.9    | 1.1              | 1      | 0         | V37-H34 | 1.3    | 6.9               | 9      | 0         |
| V32-H 9 | 1.0    | 1.0              | 1      | 0         | V38-H35 | 2.3    | 6.5               | 15     | 0         |
| V32-H10 | 1.1    | 2.7              | 3      | 0         | V39-H36 | 1.8    | 18.3              | 33     | 0         |
| V32-H26 | 2.4    | 0                | 0      | 0         | V40-H37 | 1.2    | 11.7              | 14     | 0         |
| V32-H27 | 0.9    | 0                | 0      | 0         | V41-H37 | 1.3    | 3.0               | 4      | 0         |
| V32-H28 | 4.8    | 1.2              | 6      | 3         | V42-H38 | 1.6    | 2.5               | 4      | 0         |
| V32-H30 | 2.5    | 9.6              | 24     | 1         | V43-H38 | 0.2    | 0                 | 0      | 0         |
| V33-H 4 | 0.9    | 0                | 0      | 0         | V47-H40 | 0.7    | 1.4               | 1      | 0         |
| V33-H 5 | 1.0    | 0.3              | 3      | 0         | V48-H40 | 0.5    | 6.0               | 3      | 0         |
| V33-H 6 | 0.9    | 1.1              | 1      | 0         | V48-H41 | 1.2    | 7.5               | 9      | 0         |
| V33-H 7 | 0.3    | 0                | 0      | 0         | V49-H41 | 0.2    | 35.0              | 7      | 0         |

¹The base chart is USCGS no. 8802. The side of each chart square measures 18.52 km. (10 nautical miles); a square covers an area of 343 km.² (100 square nautical miles). Squares are located by a system of vertical and horizontal numbers. Horizontal numbering begins at the lower right corner of the chart (fig. 18) and vertical numbering at the lower left corner.

Table C-12.--Total seals sighted, collected, wounded and lost, and killed and lost, 1958-68

| 3/                | Total              |        |         | Sighte  | ed seals |          |         |
|-------------------|--------------------|--------|---------|---------|----------|----------|---------|
| Year              | seals<br>sighted 1 | Coll   | ected   | Wounded | and lost | Killed a | nd lost |
|                   | Number             | Number | Percent | Number  | Percent  | Number   | Percent |
| 1958              | 7,024              | 1,503  | 21.4    | 302     | 4.3      | 255      | 3.6     |
| 1959              | 5,919              | 1,548  | 26.2    | 316     | 5.3      | 286      | 4.8     |
| 1960              | 6,287              | 1,495  | 23.8    | 271     | 4.3      | 241      | 3.8     |
| 1961              | 3,415              | 1,352  | 40.0    | 176     | 5.2      | 124      | 3.6     |
| 1962              | 6,111              | 1,483  | 24.3    | 178     | 2.9      | 133      | 2.2     |
| 1963              | 5,790              | 1,355  | 23.4    | 202     | 3.5      | 143      | 2.5     |
| 1964              | 2,864              | 883    | 30.8    | 97      | 3.4      | 68       | 2.4     |
| 1965              | 1,627              | 419    | 27.8    | 50      | 3.1      | 45       | 2.8     |
| 1966              | 2,704              | 444    | 16.4    | 78      | 2.9      | 67       | 2.5     |
| 1967 <sup>2</sup> | 897                | 132    | 14.7    | 27      | 3.0      | 22       | 2.5     |
| 1968 <sup>3</sup> | 2,587              | 830    | 32.1    | 66      | 2.6      | 104      | 4.0     |
| Total             | 45,225             | 11,444 | 25.3    | 1,763   | 3.9      | 1,488    | 3.3     |

Table C-13.--Number and percentage of seals shot at sea that were collected, wounded and lost, and killed and lost, 1958-68

| Year              | Total         |        |         | Seals   | shot     |        |          |
|-------------------|---------------|--------|---------|---------|----------|--------|----------|
| iear              | seals<br>shot | Coll   | ected   | Wounded | and lost | Killed | and lost |
|                   | Number        | Number | Percent | Number  | Percent  | Number | Percent  |
| .958              | 2,060         | 1,503  | 73.0    | 302     | 14.6     | 255    | 12.4     |
| .959              | 2,150         | 1,548  | 72.0    | 316     | 14.7     | 286    | 13.3     |
| .960              | 2,007         | 1,495  | 74.5    | 271     | 13.5     | 241    | 12.0     |
| .961              | 1,652         | 1,352  | 81.8    | 176     | 10.7     | 124    | 7.5      |
| .962              | 1,794         | 1,483  | 82.7    | 178     | 9.9      | 133    | 7.4      |
| 963               | 1,700         | 1,355  | 79.7    | 202     | 11.9     | 143    | 8.4      |
| 964               | 1,048         | 883    | 84.3    | 97      | 9.3      | 68     | 6.4      |
| 965               | 514           | 419    | 81.5    | 50      | 9.7      | 45     | 8.8      |
| .966              | 589           | 444    | 75.4    | 78      | 13.2     | 67     | 11.4     |
| .967 <sup>1</sup> | 181           | 132    | 72.9    | 27      | 14.9     | 22     | 12.2     |
| .968 <sup>2</sup> | 1,000         | 830    | 83.0    | 66      | 6.6      | 104    | 10.4     |
| Total             | 14,695        | 11,444 | 77.9    | 1,763   | 12.0     | 1,488  | 10.1     |

<sup>&</sup>lt;sup>1</sup>All seals sighted are not hunted.

<sup>2</sup>Includes 16 days during November and December 1966.

<sup>3</sup>Includes 25 days during November and December 1967.

<sup>&</sup>lt;sup>1</sup>Includes 16 days during November and December 1966. <sup>2</sup>Includes 25 days during November and December 1967.

Table C-14.--Number of seals seen, and number seen per boat-hunting day, by 10-day periods, off
Washington, 27 November 1967 to 26 February 1968

| 10-day period | Boat-hunting days 1 | Total seals<br>seen | Seals<br>seen per<br>boat-hunting<br>day | Seals<br>seen per<br>10-day<br>interval |
|---------------|---------------------|---------------------|------------------------------------------|-----------------------------------------|
|               | Number              | Number              | Number                                   | Percent                                 |
| 21-30 Nov     | 3.00                | 9                   | 3.0                                      | 0.8                                     |
| 1-10 Dec      | 3.25                | 12                  | 3.7                                      | 1.1                                     |
| l1-20 Dec     | 6.00                | 203                 | 33.8                                     | 18.8                                    |
| 21-31 Dec     | No sealing          |                     |                                          |                                         |
| 1-10 Jan      | 6.25                | 174                 | 27.8                                     | 16.2                                    |
| 1-20 Jan      | 2.25                | 11                  | 4.9                                      | 1.0                                     |
| 21-31 Jan     | 5.75                | 190                 | 33.0                                     | 17.6                                    |
| 1-10 Feb      | 5.50                | 311                 | 56.5                                     | 28.9                                    |
| 1-20 Feb      | 4.25                | 62                  | 14.6                                     | 5.8                                     |
| 21-29 Feb     | 3.00                | 106                 | 35.3                                     | 9.8                                     |
| Total         | 39.25               | 1,078               | 27.5                                     | 100.0                                   |

<sup>&</sup>lt;sup>1</sup>A boat-hunting day is a day in which a vessel is used for 8 hours or more; units of boat-hunting days are 0.25, 0.50, 0.75, and 1.00.

Table C-15.--Number of seals seen, and number seen per boat-hunting day, by 10-day periods, in Alaska waters, 18 May to 24 August 1968

| 10-day period | Boat-hunting days 1 | Total seals<br>seen | Seals<br>seen per<br>boat-hunting<br>day | Seals<br>seen per<br>10-day<br>interval |
|---------------|---------------------|---------------------|------------------------------------------|-----------------------------------------|
|               | Number              | Number              | Number                                   | Percent                                 |
| 11-20 May     | 2.50                | 7                   | 2.8                                      | 0.5                                     |
| 21-31 May     | 9.50                | 245                 | 25.8                                     | 16.2                                    |
| 1-10 June     | 7.00                | 89                  | 12.7                                     | 5.9                                     |
| 1-20 June     | 4.75                | 130                 | 27.4                                     | 8.6                                     |
| 21-30 June    | 9.00                | 171                 | 19.0                                     | 11.3                                    |
| 1-10 July     | 6.50                | 105                 | 16.2                                     | 6.9                                     |
| .1-20 July    | 7.00                | 113                 | 16.1                                     | 7.5                                     |
| 21-31 July    | 6.50                | 165                 | 25.4                                     | 10.9                                    |
| 1-10 Aug      | 4.25                | 196                 | 46.1                                     | 13.1                                    |
| L1-20 Aug     | 6.25                | 287                 | 45.9                                     | 19.0                                    |
| 21-31 Aug     | 3.00                | 1                   | 0.3                                      | 0.1                                     |
| Total         | 66.25               | 1,509               | 22.8                                     | 100.0                                   |

 $<sup>^{1}</sup>$ A boat-hunting day is a day in which a vessel is used for 8 hours or more; units of boat-hunting days are 0.25, 0.50, 0.75, and 1.00.

Table C-16.--Number of seals collected, and number collected per boat-hunting day, by 10-day periods, off Washington, 27 November 1967 to 26 February 1968

| 10-day    | Boat-                        |        | Seals collected |        | Seals co   | ollected   |
|-----------|------------------------------|--------|-----------------|--------|------------|------------|
| period    | hunting<br>days <sup>1</sup> | Males  | Females         | Total  | per boat-h | unting day |
|           | Number                       | Number | Number          | Number | Number     | Percent    |
| 21-30 Nov | 3.00                         | 0      | 3               | 3      | 1.0        | 0.8        |
| 1-10 Dec  | 3.25                         | 0      | 0               | 0      | 0.0        | 0.0        |
| 11-20 Dec | 6.00                         | 1      | 81              | 82     | 13.7       | 21.9       |
| 21-31 Dec | No sealing                   |        |                 |        |            |            |
| 1-10 Jan  | 6.25                         | 3      | 56              | 59     | 9.4        | 15.8       |
| 11-20 Jan | 2.25                         | 4      | 1               | 5      | 2.2        | 1.3        |
| 21-31 Jan | 5.75                         | 7      | 44              | 51     | 8.9        | 13.6       |
| 1-10 Feb  | 5.50                         | 4      | 104             | 108    | 19.6       | 29.0       |
| 11-20 Feb | 4.25                         | 3      | 18              | 21     | 4.9        | 5.6        |
| 21-29 Feb | 3.00                         | 12     | 33              | 45     | 15.0       | 12.0       |
| Total     | 39.25                        | 34     | 340             | 374    | 9.5        | 100.0      |

<sup>&</sup>lt;sup>1</sup>A boat-hunting day is a day in which a vessel is used for 8 hours or more; units of boat-hunting days are 0.25, 0.50, 0.75, and 1.00.

Table C-17.--Number of seals collected, and number collected per boat-hunting day, by 10-day periods, in Alaska waters, 18 May to 24 August 1968

| 10-day     | Boat-          |        | Seals collected |        | Seals c    | ollected   |
|------------|----------------|--------|-----------------|--------|------------|------------|
| period     | hunting days 1 | Males  | Females         | Total  | per boat-h | unting day |
|            | Number         | Number | Number          | Number | Number     | Percent    |
| 11-20 May  | 2.50           | 1      | 2               | 3      | 1.2        | 0.7        |
| 21-31 May  | 9.50           | 28     | 69              | 97     | 10.2       | 21.2       |
| 1-10 June  | 7.00           | 12     | 37              | 49     | 7.0        | 10.8       |
| 11-20 June | 4.75           | 7      | 37              | 44     | 9.3        | 9.7        |
| 21-30 June | 9.00           | 4      | 37              | 41     | 4.6        | 9.0        |
| 1-10 July  | 6.50           | 7      | 14              | 21     | 3.2        | 4.6        |
| 11-20 July | 7.00           | 9      | 34              | 43     | 6.1        | 9.4        |
| 21-31 July | 6.50           | 10     | 55              | 65     | 10.0       | 14.2       |
| 1-10 Aug   | 4.25           | 14     | 64              | 78     | 18.4       | 17.1       |
| L1-20 Aug  | 6.25           | 0      | 14              | 14     | 2.2        | 3.1        |
| 21-31 Aug  | 3.00           | Ō      | 1               | 1      | 0.3        | 0.2        |
| Total      | 66.25          | 92     | 364             | 456    | 6.9        | 100.0      |

 $<sup>^{1}</sup>$ A boat-hunting day is a day in which a vessel is used for 8 hours or more; units of boat-hunting days are 0.25, 0.50, 0.75, and 1.00

Table C-18.--Number of seals per group among 1,078 seals sighted off Washington, 27 November 1967 to 26 February 1968

| Number of<br>seals in<br>group | Groups | Se     | eals    |
|--------------------------------|--------|--------|---------|
| ·                              | Number | Number | Percent |
| 1                              | 440    | 440    | 40.8    |
| 2                              | 134    | 268    | 24.9    |
| 3                              | 49     | 147    | 13.6    |
|                                | 25     | 100    | 9.3     |
| 5                              | 11     | 55     | 5.1     |
| 5                              | 6      | 36     | 3.3     |
| 7                              | 2      | 14     | 1.3     |
| 9                              | 2      | 18     | 1.7     |
| Total                          | 669    | 1,078  | 100.0   |

Table C-19.--Number of seals per group among 1,509 seals sighted in Alaska waters, 18 May to 24 August 1968

| Number of<br>seals in<br>group | Groups                       | Sea                             | ils                               |
|--------------------------------|------------------------------|---------------------------------|-----------------------------------|
|                                | Number                       | Number                          | Percent                           |
| 1<br>2<br>3<br>4               | 1,025<br>168<br>35<br>7<br>3 | 1,025<br>336<br>105<br>28<br>15 | 68.0<br>22.2<br>7.0<br>1.8<br>1.0 |
| Total                          | 1,238                        | 1,509                           | 100.0                             |

Table C-20 --Thickness of subcutaneous fat in yearling fur scals collected pelagically off Washington, 1968

| US-68      |           |        | Measur   | ement of |          |              | T                                                       |             |
|------------|-----------|--------|----------|----------|----------|--------------|---------------------------------------------------------|-------------|
| field      | Date      |        | fat thic | kness    | Boo      |              |                                                         | 2/          |
| number     | collected | Sex    | Sternum  | Pelvic   | Length   | Weight       | Remarks                                                 | Examiner 2/ |
|            | Jan.      |        | Mm.      | Mm.      | Cm.      | Kg.          |                                                         |             |
| 5          | 3         | F      | 17       | 13       | 7.5      | 8.0          | Frozen, examined in lab.                                | MK          |
| 10         | 3         | F      | 1        | 0        | 72       | 6.0          | do                                                      | MK          |
| 30         | 3         | F      | 17       | 1.1      | 70       | 6.5          | do                                                      | MK          |
| 3.3        | 4         | F      | 2.5      | 18       | 78       | 9.5          | do,                                                     | MK          |
| 53         | 8         | F      | 17<br>34 | 6        | 70       | 8.0          | do                                                      | MK          |
| 56<br>57   | 8<br>10   | F<br>M | 29       | 8<br>21  | 78<br>80 | 7.5<br>10.0  | do                                                      | MK<br>MK    |
| 58         | 10        | M      | 13       | 9        | 84       | 10.0         | do                                                      | MK          |
| 61         | 12        | M      | 11       | 9        | 82       | 9. 0         | do,                                                     | MK          |
| 62         | 1.3       | M      | 10       | 3        | 7.4      | 7.5          | do                                                      | MK          |
| 63         | 13        | M      | 20       | 12       | 86       | 13.0         | do                                                      | MK          |
| 65         | 21        | F      | 20       | 13       | 77       | 10.0         | do                                                      | MK          |
| 69         | 2.1       | M      | 22       | 10       | 79       | 10.5         | do                                                      | MK          |
| 71         | 21        | F      | 21       | 20       | 80       | 11.5         | do,                                                     | MK          |
| 72         | 21        | M      | 25       | 8        | 81       | 10.5         | do                                                      | MK          |
| 79         | 23        | M      | 5        | 0        | 79       | 9. 5<br>8. 0 | do                                                      | MK          |
| 81<br>82   | 23<br>23  | M<br>F | 8<br>16  | 8        | 76<br>68 | 6.5          | do                                                      | MK<br>MK    |
| 85         | 23        | F      | 25       | 13       | 74       | 8. 5         | do                                                      | MK          |
| 88         | 27        | F      | 0        | 0        | 78       | 8. 0         | Blubber too thin to measure                             | RKS         |
| 89         | 27        | F      | 0        | 0        | 75       | 8. 0         | do,                                                     | RKS         |
| 93         | 30        | M      | 9        | 5        | 77       | 9 0          | Not frozen, examined in field                           | RKS         |
| 98         | 30        | F      | 0        | 0        | 78       | 5. 0         | Found floating dead in water,                           | MK          |
|            |           |        |          |          |          |              | carcass frozen, examined at                             |             |
|            |           |        |          |          |          |              | lab, animal in poor shape                               |             |
| 99         | 30        | F      | 16       | 13       | 78       | 10.0         | Examined in field, not frozen                           | RKS         |
| 101        | 30        | F      | 1        | 1        | 72       | 6.0          | do                                                      | RKS         |
| 117        | Feb.      | -      | 1        | 1        | 2.4      | 8.0          | 3 -                                                     | RKS         |
| 116<br>120 | 1<br>5    | F      | 1 8      | 1 4      | 74<br>73 | 8.0          | do                                                      | RKS         |
| 121        | 7         | F      | 20       | 16       | 74       | 10.0         | do                                                      | RKS         |
| 124        | 7         | F      | 14       | 12       | 71       | 8, 0         | do                                                      | RKS         |
| 133        | 7         | F      | 8        | 6        | 76       | 7.0          | do                                                      | RKS         |
| 146        | 8         | M      | 7        | 3        | 87       | 12.0         | do                                                      | RKS         |
| 147        | 8         | M      | 5        | 2        | 87       | 10.0         | do                                                      | RKS         |
| 148        | 8         | F      | 13       | 10       | 7.5      | 8.5          | do                                                      | RKS         |
| 175        | 10        | F      | 12       | 10       | 79       | 8.0          | do,                                                     | RKS         |
| 176        | 10        | F      | 16       | 10       | 72       | 9. 0         | do,                                                     | RKS         |
| 177        | 10        | F      | 17       | 12<br>10 | 81<br>80 | 10.0         | do                                                      | RKS<br>RKS  |
| 178<br>180 | 10        | F<br>F | 13       | 10       | 70       | 8.0          | do.                                                     | RKS         |
| 181        | 10        | M      | 20       | 15       | 80       | 10.0         | do                                                      | RKS         |
| 192        | 10        | F      | 2.5      | 16       | 78       | 10.0         | do                                                      | RKS         |
| 215        | 10        | F      | 12       | 10       | 69       | 6.0          | do                                                      | RKS         |
| 217        | 10        | F      | 15       | 11       | 72       | 9.0          | do                                                      | RKS         |
| 221        | 10        | F      | 14       | 9        | 79       | 9. 0         | do                                                      | RKS         |
| 223        | 10        | F      | 20       | 18       | 72       | 8.0          | do                                                      | RKS         |
| 224        | 11        | F      | 12       | 9        | 7.5      | 8. 0         | do                                                      | RKS         |
| 225        | 11        | M      | 14       | 7        | 82       | 10.5         | do                                                      | RKS         |
| 227        | 11        | F      | 15<br>13 | 12<br>7  | 82<br>74 | 11,0<br>8.5  | do                                                      | RKS<br>RKS  |
| 231        | 14<br>15  | M      | 9        | 10       | 81       | 9.5          | do                                                      | RKS         |
| 233        | 15        | F      | 13       | 9        | 75       | 7. 5         | do,                                                     | RKS         |
| 239        | 20        | F      | 16       | 10       | 75       | 10.0         | do                                                      | RKS         |
| 245        | 22        | M      | 4        | 5        | 81       | 9.5          | do                                                      | RKS         |
| 249        | 22        | F      | 19       | 16       | 78       | 9.0          | do                                                      | RKS         |
| 255        | 22        | F      | 13       | 11       | 81       | 9.0          | do                                                      | RKS         |
| 256        | 22        | F,     | 14       | 7        | 78       | 10.5         | do                                                      | RKS         |
| 257        | 2.5       | M      | 16       | 13       | 81       | 12.0         | do                                                      | RKS         |
| 258        | 2.5       | M      | 10       | 8        | 84       | 10.5         | do                                                      | RKS<br>RKS  |
| 260<br>261 | 25<br>25  | F      | 10<br>16 | 8<br>13  | 71<br>75 | 8.0<br>8.0   | do,                                                     | RKS         |
| 263        | 25        | M      | 15       | 11       | 75       | 10.0         | do,                                                     | RKS         |
| 264        | 25        | M      | 12       | 9        | 79       | 10.0         | do                                                      | RKS         |
| 265        | 25        | M      | 2.1      | 8        | 86       | 10.0         | Frozen, examined in lab.                                | MK          |
| 266        | 25        | F      | 18       | 11       | 75       | 6.5          | do                                                      | MK          |
| 267        | 2.5       | M      | 2.3      | 12       | 77       | 7.0          | do                                                      | MK          |
| 269        | 25        | F      | 1.5      | 3        | 7 1      | 6.0          | do                                                      | MK          |
| 270        | 2.5       | M      | 25       | 12       | 78       | 7.0          | Francisco (cold and (conse                              | MK          |
| 272        | 2.5       | M      | 12       | 10       | 82       | 8. 0         | Examined in field, not frozen                           | RKS         |
| 273        | 25        | M      | 0        | 0<br>14  | 82<br>85 | 7.0<br>10.0  | Frozen, examined in lab.  Examined in field, not frozen | MK<br>RKS   |
| 276        | 25<br>25  | M<br>F | 16<br>10 | 6        | 70       | 5.5          | do,                                                     | RKS         |
| 280<br>281 | 25        | F      | 15       | 10       | 75       | 6.0          | Frozen, examined in lab.                                | MK          |
| 282        | 25        | F      | 20       | 11       | 75       | 8. 0         | do                                                      | MK          |
| 286        | 26        | F      | 10       | 6        | 75       | 6.0          | Examined in field, not frozen                           | RKS         |
|            |           |        |          |          |          |              |                                                         |             |

<sup>1/</sup> These seals were born in late June and July 1967.

<sup>2/</sup> MK=Mark Keyes; RKS= Richard K. Stroud.

Table C-21. -- Monthly mean lengths of pregnant fur seals collected pelagically by the United States in the eastern Pacific, 1967-68

|       | Nove  | November | December | pher  | January | rv    | February | arv   | May    | 5      | June   | 16    | July   | 1      |
|-------|-------|----------|----------|-------|---------|-------|----------|-------|--------|--------|--------|-------|--------|--------|
| *     |       | Mean     |          | Mean  | 0       | Mean  | 21000    | Mean  | 0      | 1      | 000    | Mean  |        | 1      |
| Age   | Seals | Cm.      | Number   | Cm.   | Number  | Cm.   | Number   | Cm.   | Number | Cm.    | Number | Cm.   | Number | Cm.    |
| 4     | ,     | t        | 1        | 1     | 1       | 110.0 | ı        | ı     | ı      | 1      | 2      | 118.5 | 1      | Þ      |
| 5     | 1     | ı        | 2        | 121.5 | 1       | 116.0 | 4        | 119.5 | _      | 119.0  | 7      | 124.0 | 7      | 119.5  |
| 9     | -     | 117.0    | 3        | 122.3 | 2       | 121.8 | 1.1      | 122.2 | 7      | 125.0  | 10     | 125.4 | -      | 123.0  |
| 2     | ı     | 1        | 5        | 125.2 | 5       | 124.4 | 6        | 125.8 | 9      | 128.0  | 1.1    | 126.1 | ĸ      | 122. 4 |
| ∞     |       | •        | 7        | 125.1 | 4       | 127.0 | 1        | 123.0 | 3      | 127.3  | 6      | 126.7 | 2      | 126.5  |
| 6     | 1     | 133.0    | 7        | 125.9 | 5       | 124.6 | 7        | 129.7 | 3      | 130.3  | S      | 126.8 | _      | 133.0  |
| 10    | 1     | ı        | J        | 126.0 | ∞       | 129.5 | ∞        | 127.5 | 3      | 133.0  | 2      | 131.9 | 6      | 125.0  |
| 11    | 1     | 1        | T T      | 129.0 | 4       | 125.7 | 6        | 128.0 | 4      | 125.7  | 6      | 131.4 | -      | 138.0  |
| 12    | ,     | 1        | ď        | 130.6 | ∞       | 127.2 | 2        | 127.3 | 9      | 131,8  | 2      | 131.7 | 1      | 1      |
| 13    | 1     | ı        | 1        | 130.0 | 2       | 124.5 | 7        | 131.5 | 9      | 129.8  | 4      | 135.0 | _      | 134.0  |
| 14    | ı     | •        | 1        | 144.0 | 1       | 125.0 | 3        | 130.7 | 7      | 133, 5 | ĸ      | 133.4 | 2      | 122.0  |
| 15    |       | 1        | 2        | 132.0 | 3       | 133.0 | 2        | 132.6 | -      | 123.0  | 9      | 124.8 | 1      | 1      |
| 16    |       | ,        | 2        | 136.5 | 4       | 128.2 | 4        | 127.2 | 4      | 128, 5 | 5      | 134.0 | 1      | t      |
| 17    |       | ,        | 1        | ,     | 4       | 127.2 | 1        | 119.0 | 2      | 134.0  | 5      | 133.8 | 7      | 129.5  |
| 18    | ,     | •        | 2        | 127.5 | 1       | ı     | П        | 130.0 | 2      | 137.5  | 2      | 134.5 | 1      | •      |
| 19    | 3     | 1        | 2        | 136.5 | ı       | ı     | r        | ı     | 2      | 129.0  | 1      | 125.0 | ,      | ı      |
| 20    | ı     | 1        | 1        | 129.0 | ı       | 1     | 1        | ı     | -      | 131.0  |        | 127.0 | ı      | 1      |
| 2.1   | *     | ŧ        | 1        | 1     | 1       | ı     | '        | ı     | 7      | 126.0  | 1      | ,     | '      | ,      |
| Total | 2     |          | 45       |       | 55      |       | 74       |       | 90     |        | 91     |       | 2.0    |        |
|       |       |          |          |       |         |       |          |       |        |        |        |       |        |        |

Table C-22. -- Monthly mean weights of pregnant fur seals collected pelagically by the United States in the eastern Pacific, 1967-68

|          | Mean  | K. 89. | 1    | 42.7 | 41.0 | 42.8 | 47.0 | 54.0 | 51.8  | 56.0 |       | 96.0 | 52.7  |      | ı    | 48.2 | 1    | •    |      |      |       |
|----------|-------|--------|------|------|------|------|------|------|-------|------|-------|------|-------|------|------|------|------|------|------|------|-------|
| July     | Seals | Number | ı    | 2    | П    | r.   | 2    | -    | 3     | -    | t     | -1   | 2     | t    |      | 7    | 1    | ı    | 1    | 1    | 20    |
|          | Mean  | Kg.    | 36.5 | 37.7 | 39.6 | 42.7 | 45.4 | 45.0 | 49.3  | 48.9 | 49. 1 | 50.7 | 51.6  | 47.8 | 51.4 | 51.7 | 56.5 | 47.0 | 47.0 | •    |       |
| June     | Seals | Number | 2    | 2    | 10   | 11   | 6    | 5    | 7     | 6    | 7     | 4    | 5     | 9    | 9    | 5    | 2    | _    | _    | '    | 91    |
|          | Mean  | Kg.    | ı    | 33.5 | 38.5 | 41.0 | 39.7 | 44.5 | 45.3  | 42.0 | 46.4  | 44.3 | 51, 1 | 41.0 | 45.5 | 48.0 | 54.0 | 47.5 | 47.0 | 45.0 |       |
| May      | Seals | Number |      | П    | _    | 9    | 8    | ٣    | ~     | 4    | 9     | 9    | 4     | 1    | 4    | 2    | 2    | 2    | _    | ~    | 50    |
| ıry      | Mean  | X 8.   | 1    | 27.2 | 32.0 | 34.6 | 32.0 | 38.4 | 38. 1 | 36.7 | 37.9  | 39.5 | 44.0  | 43.0 | 40.7 | 30.0 | 37.0 |      |      |      |       |
| February | Seals | Number | t    | 4    | 11   | 6    | П    | 7    | ∞     | 6    | 7     | 7    | 8     | 7    | 4    | Т    | ı    | 1    | ı    | '    | 7.4   |
| ry       | Mean  | 1      | 26.0 | 23.0 | 32.8 | 33.4 | 33.9 | 35.5 | 38.4  | 39.2 | 38.4  | 36.5 | 40.0  | 43,7 | 40.5 | 45.5 |      |      |      | 1    |       |
| January  | Seals | Number | -    | _    | 5    | 5    | 4    | 5    | ∞     | 4    | œ     | 2    |       | 3    | 4    | 41   |      | •    | 1    | 1    | 5.2   |
| December | Mean  | Kg.    | 1    | 30.5 | 28.3 | 29.0 | 31.6 | 34.0 | 40.0  | 36.2 | 36.0  | 37.0 | 45.0  | 39.5 | 42.0 | ı    | 35.0 | 41.5 | 37.0 | ,    |       |
| Decei    | Seals | - 51   | ŧ    | 7    | 3    | 5    | 7    | 2    | П     | 4    | 5     | -    | _     | 2    | 2    |      | 2    | 2    | 1    | '    | 45    |
| November | Mean  | X Sg.  | ,    | ı    | 25.0 | i    | 1    | 40.0 | ı     | ı    | ı     | ı    | t     | ı    | ,    | ı    | ,    | ı    | ı    | 1    |       |
| Nove     | 0 0 0 | Number | t    | 1    |      | t    | ı    | -    | ,     | 1    | 1     |      |       | •    |      | ı    | 1    |      |      | '    | 2     |
|          | 0 5   | Years  | 4    | 2    | 9    | 2    | œ    | 6    | 10    | 11   | 12    | 13   | 14    | 15   | 16   | 17   | 18   | 19   | 20   | 2.1  | Total |

Table C-23. --Monthly mean lengths of post partum fur seals collected pelagically by the United States in the eastern Pacific, 1968

|       | Jun    | е      | Jul    | У .    | Augu   | ıst    | Comi   | oined leng | th        |
|-------|--------|--------|--------|--------|--------|--------|--------|------------|-----------|
|       |        | Mean   |        | Mean   |        | Mean   |        |            | Standard  |
| Age   | S⊬als  | length | Seals  | length | Seals  | length | Seals  | Mean       | deviation |
| Years | Number | Cm.    | Number | Cm.    | Number | Cm.    | Number | Cm.        | Cm.       |
| 4     | -      | -      | -      | -      | 2      | 115.0  | 2      | 115.0      | 4.2       |
| 5     | -      | -      | l      | 112.0  | 1      | 116.0  | 2      | 114.0      | 2.8       |
| 6     | -      | -      | 2      | 120.0  | 2      | 122.5  | 4      | 121.2      | 6.4       |
| 7     | -      | -      | 2      | 121.0  | 7      | 125.1  | 9      | 124.2      | 6.8       |
| 8     | 1      | 123.0  | 1      | 126.0  | 2      | 124.0  | 4      | 124.2      | 3.5       |
| 9     | -      | -      | 2      | 125.0  | 2      | 123.5  | 4      | 124.2      | 2.8       |
| 10    | -      | -      | -      | -      | 1      | 127.0  | 1      | 127.0      | -         |
| 11    | -      | -      | 1      | 127.0  | 2      | 124.0  | 3      | 125.0      | 2.6       |
| 12    | -      | -      | -      | -      | 3      | 127.3  | 3      | 127.3      | 1.2       |
| 13    | -      | -      | 2      | 128.0  | 2      | 118.5  | 4      | 123.2      | 5.9       |
| 14    | -      | -      | 2      | 126.0  | 3      | 126.0  | 5      | 126.0      | 6.2       |
| 15    | -      | -      | 4      | 123.7  | 3      | 131.3  | 7      | 127.0      | 7.7       |
| 16    | -      | -      | 1      | 130.0  | 5      | 134.2  | 6      | 133.5      | 8.6       |
| 17    | -      | -      | 1      | 123.0  | 2      | 127.5  | 3      | 126.0      | 2.6       |
| 18    | -      | -      | 1      | 123.0  | -      | -      | 1      | 123.0      | -         |
| 19    | -      | -      | 1      | 129.0  | -      | -      | 1      | 129.0      | -         |
| 20    |        | -      |        | -      | 2      | 125.0  | 2      | 125.0      | 2.8       |
| Total | 1      |        | 21     |        | 39     |        | 61     |            |           |

Table C-24. --Monthly mean weights of post partum fur seals collected pelagically by the United States in the eastern Pacific, 1968

|       | Ju     | ne     | July   | 7      | Aug    | ust    | Comb   | ined weigh | nt        |
|-------|--------|--------|--------|--------|--------|--------|--------|------------|-----------|
|       |        | Mean   |        | Mean   |        | Mean   |        |            | Standard  |
| Age   | Seals  | weight | Seals  | weight | Seals  | weight | Seals  | Mean       | deviation |
| Years | Number | Kg.    | Number | Kg.    | Number | Kg.    | Number | Kg.        | Kg.       |
| 4     | -      | -      | -      | -      | 2      | 26.0   | 2      | 26.0       | 3.5       |
| 5     | -      | -      | 1      | 26.0   | l      | 22.0   | 2      | 24.0       | 2.8       |
| 6     | -      | -      | 2      | 30.7   | 2      | 33.7   | 4      | 32.2       | 2.3       |
| 7     | -      | -      | 2      | 34.2   | 7      | 33.8   | 9      | 33.9       | 3.3       |
| 8     | 1      | 33.5   | 1      | 37.0   | 2      | 35.7   | 4      | 35.5       | 3.4       |
| 9     | -      | -      | 2      | 33.5   | 2      | 29.0   | 4      | 31.2       | 2.9       |
| 10    |        | -      | -      | -      | 1      | 32.0   | 1      | 32.0       | -         |
| 11    | -      | -      | 1      | 31.5   | 2      | 34.7   | 3      | 33.7       | 4.2       |
| 12    | -      | -      | -      | -      | 3      | 37.3   | 3      | 37.3       | 2.0       |
| 13    | -      | -      | 2      | 47.2   | 2      | 32.0   | 4      | 39.6       | 8.8       |
| 14    | -      | -      | 2      | 35.2   | 3      | 34.5   | 5      | 34.8       | 3, 8      |
| 15    | -      | -      | 4      | 42.6   | 3      | 40.5   | 7      | 41.7       | 4.9       |
| 16    | -      | ~      | 1      | 41.0   | 5      | 43.3   | 6      | 42.9       | 4.0       |
| 17    | -      | -      | l      | 37.0   | 2      | 40.7   | 3      | 39. 5      | 2.3       |
| 18    | -      | -      | 1      | 40.0   | -      | -      | 1      | 40.0       | -         |
| 19    | -      | -      | 1      | 50.0   | -      | -      | 1      | 50.0       | -         |
| 20    |        | -      |        | -      | 2      | 37.5   | 2      | 37.5       | 3.5       |
| Total | 1      |        | 21     |        | 39     |        | 61     |            |           |

Table C-25. -- Monthly mean lengths of nonpregnant female seals collected pelagically by the United States in the eastern Pacific, 1967-68

|       | November     | ber    | December | nber   | January                  | ırv    | February | arv    | Mav    | >      | June.  | 6      | Tuly   |        | Angr   |                |
|-------|--------------|--------|----------|--------|--------------------------|--------|----------|--------|--------|--------|--------|--------|--------|--------|--------|----------------|
|       |              | Mean   |          | Mean   |                          | Mean   |          | Mean   |        | Mean   |        | Moon   | 2 0.00 | NA     | renghy | 15             |
| Age   | Seals        | length | Seals    | length | Seals                    | length | Seals    | length | Seals  | length | Seals  | length | Seals  | length | Seals  | Mean<br>length |
| Years | Years Number | Cm.    | Number   | Cm.    | Number                   | Cm.    | Number   | Cm.    | Number | Cm.    | Number | Cm.    | Number | Cm.    | Number | Cm.            |
| _     | 1            | ,      | 1        | ı      | 15                       | 74.9   | 32       | 75.0   | 1      | 1      | 1      | ı      | ,      | r      | t      | 1              |
| 2     | -            | 91.0   | 3        | 92.3   | ~                        | 86.0   | 7        | 87.5   | 1      | 0.66   | ,      | ,      | 7      | 0.56   | ,      | 1              |
| κ.    | 1            | ,      | 7        | 102.1  | 7                        | 102.5  | 7        | 102.7  | 3      | 103.0  | ,      | 1      | 6      | 105.6  | 10     | 109.3          |
| 77"   | ,            | 1      | 11       | 111.5  | 15                       | 110.4  | 18       | 111.2  | 5      | 110.4  | 9      | 114.2  | 18     | 113.7  | 17     | 112.3          |
| 5     |              |        | 7        | 115.5  | 5                        | 118.0  | 3        | 121.7  | 3      | 110.7  | 7      | 114.0  | 9      | 118.0  | 7      | 119.0          |
| 9     | 1            | ,      | 7        | 123.0  | -                        | 124.0  | 1        | 114.0  | 1      | 0.66   | ,      | 1      | 5      | 125.6  | 7      | 122.0          |
| 7     | ,            | ,      | 5        | 123.4  | ব                        | 123.5  | 2        | 124.7  | 1      |        | ,      | ,      | 3      | 122.3  | ,      | ı              |
| ∞     | ,            | ,      | 1        | 129.0  | 1                        | 1      | -        | 131.0  | ı      | 1      | 3      | 123.7  | 7      | 123.5  | -      | 125.0          |
| 6     |              | ,      | -        | 131.0  | 2                        | 135.0  | 7        | 127.0  | 7      | 127.0  | 1      |        | 1      | 127.0  | 1      | à              |
| 01    | 1            | 1      | ~3       | 118.0  | 1                        | 131.0  | 3        | 129.3  | 1      |        |        | ,      | €      | 125.7  | ,      | ı              |
| 1 1   | ,            | ,      | 1        | 121.0  | 1                        | ŧ      | ~        | 129.0  | П      | 127.0  | ,      | ,      | 1      | ı      |        | ı              |
| 1.2   |              | 1      | ,        | ı      | ,                        | ı      | 2        | 130.0  | t      |        | -      | 129.0  | 1      | 124.0  | ,      | ,              |
| 13    | ı            | 1      |          | 1      | 1                        | 1      | 1        | ı      | -      | 135.0  | ı      | ı      | 7      | 129.0  | ~      | 128.0          |
| 14    | 1            | ı      | 1        | 1      | ,                        | ,      | _        | 130.0  | -      | 135.0  | ı      | ı      | 2      | 124.5  | _      | 126.0          |
| 15    | ı            | 1      |          | 1      | 1                        | 1      |          | 142.0  | ı      | ı      | -      | 138.0  | 1      | 134,0  | _      | 124.0          |
| 16    | ı            | 1      |          | 1      | ı                        | 1      |          | ı      | 1      | 132.0  | 1      |        | ı      | ,      | ,      | ı              |
| 17    | ,            | 1      | 1        | 1      | ,                        | 1      | -        | 124.0  | ı      | ı      | 1      |        | 1      | 121.0  | 7      | 137.5          |
| 18    | ,            | 1      | 1        | 1      | 1                        | ı      | 1        | ı      | ı      | 1      | -      | 133.0  | -      | 120.0  | _      | 127.0          |
| 19    | ı            | 1      | 1        | 1      | 1                        | 1      | ŧ        | ı      | ı      | ŧ      | -      | 121.0  | 2      | 129.0  |        | 127.0          |
| 2.0   | ı            | -1     | 1        | 1      | 1                        | ı      |          | ı      | 1      | 134.0  |        | *      | 1      | 1      | -      | 124.0          |
| 2.1   | ı            | ř      | ı        | ı      | 1                        | 1      | 1        | ı      | ı      |        | ŧ      | 1      | 2      | 126.5  |        | ì              |
| 2.2   | ı            | 1      | -        | 135.0  | 1                        | ı      | b        | ı      | -      | 132.0  | 1      |        | -      | 127.0  | 1      | ı              |
| 23    | '            | ı      | ~        | 135.0  | 1                        | 1      | 1        | t      | 1      | 1      | -      | 1      | * ]    | 1      | 1      |                |
| Total | 1            |        | 36       |        | 46                       |        | 8 1      |        | 20     |        | 15     |        | 61     |        | 40     |                |
|       |              |        |          |        | The second second second |        |          |        |        |        |        |        |        |        |        |                |

Table C-26. --Monthly mean weights of nonpregnant female seals collected pelagically by the United States in the eastern Pacific, 1967-68

| Weight   Scalis   Winnber   Kg. Number   K | -leh   |          | g  | 15 | Mean | January | ary<br>Mean   | February      | uary<br>Mean  | $\boxtimes$ | May<br>Mean   | June  |               | July  |               | August | Mean          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|----|----|------|---------|---------------|---------------|---------------|-------------|---------------|-------|---------------|-------|---------------|--------|---------------|
| 15         7.0         32         8.2         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - </th <th>Seals</th> <th>Seals</th> <th>_</th> <th>3</th> <th></th> <th>Seals</th> <th>weight<br/>Kg.</th> <th>Seals</th> <th>weight<br/>Kg.</th> <th>Seals</th> <th>weight<br/>Kg.</th> <th>Seals</th> <th>weight<br/>Kg.</th> <th>Seals</th> <th>weight<br/>Kg.</th> <th>Seals</th> <th>weight<br/>Kg.</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Seals  | Seals    | _  | 3  |      | Seals   | weight<br>Kg. | Seals         | weight<br>Kg. | Seals       | weight<br>Kg. | Seals | weight<br>Kg. | Seals | weight<br>Kg. | Seals  | weight<br>Kg. |
| 1         11.0         2         10.5         1         18.0         -         1         15.0         -         1         15.0         -         1         15.0         -         1         15.0         -         1         15.0         -         1         1         15.0         -         1         1         15.0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2 <t< td=""><td></td><td>,</td><td></td><td></td><td>1</td><td>15</td><td>7.9</td><td>32</td><td>8.2</td><td>1</td><td>1</td><td>1</td><td>1</td><td>r</td><td>1</td><td>t</td><td>t</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | ,        |    |    | 1    | 15      | 7.9           | 32            | 8.2           | 1           | 1             | 1     | 1             | r     | 1             | t      | t             |
| 2         18.0         4         18.9         3         17.7         -         -         9         21.0         10           15         22.7         18         23.2         22.1         6         25.3         18         26.7         17           2         28.2         3         24.0         2         22.1         6         25.3         18         26.7         17           4         30.6         1         28.0         1         30.0         2         29.0         6         29.0         6         29.2         17           4         30.6         1         28.0         1         30.0         2         39.0         2         39.0         2         39.0         2         39.0         2         39.0         2         39.0         2         39.0         2         39.0         2         39.0         2         39.0         2         39.0         2         39.0         3         39.0         3         39.0         3         39.0         3         39.0         3         39.0         3         39.0         3         39.0         3         39.0         3         39.0         3         39.0 <td< td=""><td>13.0 3</td><td>0</td><td></td><td></td><td>13.0</td><td>_</td><td>11.0</td><td>2</td><td></td><td></td><td>18.0</td><td>,</td><td>,</td><td>-</td><td></td><td>,</td><td>,</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.0 3 | 0        |    |    | 13.0 | _       | 11.0          | 2             |               |             | 18.0          | ,     | ,             | -     |               | ,      | ,             |
| 15         22.7         18         23.2         5         22.1         6         25.3         18         26.7         17           5         28.2         3         29.3         3         24.0         2         29.0         6         29.2         2           4         30.5         1         28.0         1         30.0         1         29.0         6         29.2         29.0         6         29.2         29.2         29.0         2         29.0         6         29.2         29.2         29.0         2         29.0         2         29.0         2         29.0         2         29.0         2         29.0         2         29.0         2         29.0         2         29.0         2         2         2         2         2         2         2         2         2         2         2         2         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -      | -        | 7  |    | 17.0 | 2       | 18.0          | 77            | 18.9          | 3           | 17.7          | ,     |               | 6     | 21.0          | 10     | 23.0          |
| 5         28.2         3         24.0         2         29.0         6         29.2         2           1         30.0         1         28.0         1         30.0         -         -         5         34.6         2           4         30.5         7         32.3         -         -         -         -         5         34.6         2           2         42.5         7         32.3         -         -         -         -         3         34.8         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td>. 11</td> <td></td> <td></td> <td></td> <td>22.3</td> <td>15</td> <td>22.7</td> <td>18</td> <td>23.2</td> <td>5</td> <td>22.1</td> <td>9</td> <td>25.3</td> <td>18</td> <td>26.7</td> <td>17</td> <td>25.9</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 11   |          |    |    | 22.3 | 15      | 22.7          | 18            | 23.2          | 5           | 22.1          | 9     | 25.3          | 18    | 26.7          | 17     | 25.9          |
| 1         30.0         1         28.0         1         30.0         1         39.0         2         34.6         2           4         30.5         7         32.3         1         30.0         2         31.8         31.8         2           2         42.5         2         35.0         1         38.0         2         33.0         2         31.8         1           1         41.0         3         35.0         1         32.5         2         33.0         2         37.2         1           1         41.0         3         35.8         1         36.0         2         37.2         1         31.0         2           1         41.0         3         35.8         1         36.0         2         37.2         1           1         41.0         41.0         41.0         41.0         41.0         41.0         41.0         41.0         41.0         41.0         41.0         41.0         41.0         41.0         41.0         41.0         41.0         41.0         41.0         41.0         41.0         41.0         41.0         41.0         41.0         41.0         41.0         41.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 2    |          |    |    | 24.0 | 5       | 28.2          | ~             | 29.3          | М           | 24.0          | 2     | 29.0          | 9     | 2.67          | 2      | 29.5          |
| 4         30.5         7         32.3         -         -         -         31.8         31.8         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | <b>.</b> | _  |    | 30.0 | П       | 30.0          |               | 28.0          | -           | 30.0          | 1     | ı             | 5     | 34.6          | 2      | 32.0          |
| -         -         1         38.0         -         -         37.2         37.2         1           2         42.5         2         35.0         1         32.5         -         -         1         31.0         -           1         41.0         3         35.0         1         32.5         -         -         1         31.0         -           1         41.0         3         35.8         1         36.0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td>rQ.</td> <td></td> <td></td> <td></td> <td>32.4</td> <td>4</td> <td>30.5</td> <td>2</td> <td>32.3</td> <td>1</td> <td>4</td> <td>ı</td> <td>1</td> <td>23</td> <td>31.8</td> <td>ŀ</td> <td>1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rQ.    |          |    |    | 32.4 | 4       | 30.5          | 2             | 32.3          | 1           | 4             | ı     | 1             | 23    | 31.8          | ŀ      | 1             |
| 2         42.5         2         35.0         1         32.5         -         1         31.0         -         1         31.0         -         1         31.0         -         -         1         31.0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1      |          |    |    | 32.0 | 1       | ,             | _             | 38.0          | 1           | 1             | 3     | 33.0          | 2     | 37.2          | -      | 32.0          |
| 1       41.0       3       34.3       -       -       -       3       38.8       -       -       -       -       3       38.8       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -        -       -       -       -       -       -       -       -       -       -       -       -       -       -       -        -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |          | _  |    | 37.0 | 2       | 42.5          | 2             | 35.0          | П           | 32.5          | 1     | 1             |       | 31.0          | 1      | ı             |
| -         -         35.8         1         36.0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - </td <td>- 2</td> <td></td> <td></td> <td></td> <td>29.5</td> <td></td> <td>41.0</td> <td>3</td> <td>34.3</td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td>٣</td> <td>33.8</td> <td>1</td> <td>ı</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 2    |          |    |    | 29.5 |         | 41.0          | 3             | 34.3          | 1           | 1             | 1     |               | ٣     | 33.8          | 1      | ı             |
| -         -         2         35.5         -         -         1         44.0         1         32.0         -           -         -         -         1         44.0         -         -         2         41.7         1           -         -         1         36.0         1         38.5         -         -         2         41.7         1           -         -         1         46.0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -      |          |    |    | 30.0 |         | ı             | 3             | 35.8          | 7           | 36.0          | ı     | ,             | 1     | 1             | 1      | ı             |
| -         -         -         1         41.0         -         -         2         41.7         1           -         -         1         36.0         1         38.5         -         -         2         41.7         1           -         -         1         46.0         -         -         1         34.5         1           -         -         1         46.0         -         -         -         -         -           -         -         1         40.0         -         -         1         34.5         1           -         -         1         44.0         1         38.5         2           -         -         -         -         -         -         -         -           -         -         -         -         -         -         -         -         -           -         -         -         -         -         -         -         -         -         -           -         -         -         -         -         -         -         -         -         -           -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1      | 1        | 1  |    | ŧ    |         | 1             | 2             | 35, 5         | 1           | 1             | -     | 44.0          | _     | 32.0          | ,      | ı             |
| -         1         36.0         1         38.5         -         2         2         39.2         1           -         1         46.0         -         -         1         49.0         1         34.5         1           -         -         1         46.0         -         -         -         -         -           -         -         1         49.0         -         -         1         34.5         1           -         -         1         44.0         -         -         -         -           -         -         -         -         -         -         -         -           -         -         -         -         -         -         -         -         -           -         -         -         -         -         -         -         -         -         -           -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <t< td=""><td>1</td><td>ı</td><td></td><td></td><td>1</td><td>1</td><td>ŧ</td><td>1</td><td>1</td><td>-</td><td>41.0</td><td>,</td><td>1</td><td>7</td><td>41.7</td><td>-</td><td>37.0</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1      | ı        |    |    | 1    | 1       | ŧ             | 1             | 1             | -           | 41.0          | ,     | 1             | 7     | 41.7          | -      | 37.0          |
| -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 1        | 1  |    | 1    | ı       | 1             | $\rightarrow$ | 36.0          | _           | 38, 5         | 1     | 1             | 2     |               | p1     | 41.0          |
| -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1      | ,        | 1  |    | 1    | ı       | 1             | _             | 46.0          | 1           | 1             |       | 49.0          | ,4    | 34.5          |        | 41.0          |
| -       -       1       43.0       -       -       -       1       38.5       2         -       -       -       -       -       -       1       38.5       2         -       -       -       -       -       1       44.0       1       30.0       1         -       -       -       -       -       1       41.5       2       44.7       1         -       -       -       -       1       40.0       -       -       -       1       1         -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | ı        |    |    | 1    | 1       | r             | •             | ı             | -           | 40.0          | 1     | 1             |       |               | ,      | ı             |
| 1 44.0 1 30.0 1  1 44.0 1 30.0 1  1 41.5 2 44.7 1  1 40.0 1  1 40.0 1  1 40.0 1  1 40.0 1  1 40.0 1  1 40.0 1  1 40.0 1  1 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,      | 7        | 7  |    | 1    | ı       | ,             | 1             | 43.0          | 1           | 1             | ì     | •             | _     |               | 2      | 47.7          |
| 1 41.5 2 44.7 1  1 1 40.0 1  1 40.0 1  1 40.0 1  1 40.0 1  1 40.0 1  1 40.0 1  1 40.0 1  1 40.0 1  1 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,      | 1        | 1  |    | 1    | 1       |               | ı             | ı             | 1           | 7             | -     | 44.0          | _     | 30.0          | -      | 32.0          |
| 1 40.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,      | 1        | 1  |    | 1    | 1       |               | 1             | 1             | 1           | t             |       | 41,5          | 2     | 44.7          | -      | 38.0          |
| 1 43.5 1 49.5 1 49.5 41.7 - 46 81 20 15 61 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 1        | 1  |    | 1    | ,       |               | ,             | ı             | 1           | 40.0          | 1     | 1             | 1     | 1             |        | 36.5          |
| 1 43.5 1 49.5 1 49.5 1 49.5 1 49.5 1 49.5 1 49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1      | ř        | r  |    | 1    | ,       |               | 1             | ı             | 1           | 1             | -1    | 1             | 2     | 41.7          | ,      | ı             |
| 46 81 20 15 61 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -      | 1        |    |    | 34 0 | 1       | -1            | 1             | i             | 1           | 43.5          | 1     | ŧ             | п     | 49.5          | 1      | 1             |
| 81 20 15 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |          | -  |    | 43.0 |         | 1             | 1             | 1             | 1           | 1             | 1     | 1             | 1     |               | '      | ,             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 36   | 36       | 36 |    |      | 46      |               | 81            |               | 20          |               | 15    |               | 61    |               | 40     |               |

Table C-27. --Monthly mean lengths of male seals collected pelagically by the United States in the eastern Pacific, 1967-68

| ıst       | Moon | length | Cm.    | ı    | 105.8 | 117.7 | 116.0 | 1     | 1     |       | 176.5 | 1     | 1     | 1     | 190.0 | 179.0 | 191.0 |       |
|-----------|------|--------|--------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| August    |      | Seals  | Number | 1    | 2     | 3     |       | 1     | ı     | ,     | 2     | ı     | ı     | 1     | 1     | 1     |       | 14    |
|           | Mean | length | Cm.    | 1    | 103.0 | 113.8 | 121.7 | 135.0 | 9     | 177.0 | 126.0 | 178.0 | 1     | 1     | •     | ı     | 1     |       |
| July      |      | Seals  | Number | 1    | 9     | 13    | 3     |       | 1     | П     |       | П     | . •   | 1     | 1     | 1     | 1     | 26    |
|           | Mean | length | Cm.    | ,    | 105.0 | 114.9 | 128.5 | 133.7 | 1     | 161.0 | ı     | 184.0 | 200.0 | 186.0 | 1     | 1     | 1     |       |
| June      |      | Seals  | Number | ,    | _     | 12    | 2     | 3     | ı     | 7     | 1     | ~     | ~     |       | 1     | 1     | '     | 2.3   |
| \ \ \ \ \ | Mean | length | Cm.    | 90.5 | 98.0  | 111.7 | 121.3 | 122.0 | 149.0 | 1     | 1     | ,     | 189.0 | ì     | 1     | 1     | 1     |       |
| May       | -    | Seals  | Number | 2    | ∞     | 6     | 9     | 2     | _     |       | 1     | 1     | П     | ı     |       | 1     | 1     | 59    |
| uary      | Mean | length | Cm.    | 81.7 | 101.0 | 109.5 | ,     | 1     | ı     | 1     |       | 7     | Ť     | 1     | 1     | ı     | 1     |       |
| February  |      | Seals  | Number | 16   | П     | 2     | •     | ı     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | ı     | ,     | 19    |
| arv       | Mean | length | Cm.    | 80.5 |       | 112.5 | 114.0 | 1     | 1     | 1     | 1     | 1     | 1     | ı     | 1     | 1     | 1     |       |
| January   |      | Seals  | Number | 11   | ,     | 2     | 1     | ı     | 1     | 1     | ,     | 1     | 1     | ı     | ,     | 1     | 1     | 14    |
|           | Mean | length | Cm.    | ,    | 1     | ,     | 119.0 | 1     | ı     | 1     | 9     | 1     | 1     | ı     | ,     | 1     | ı     |       |
| December  |      | Seals  | Number | 1    | ,     | 1     |       | ı     | ı     | à     | ,     | ı     | 1     | •     | ı     | ı     | '     | _     |
|           |      | Age    | Years  | П    | 2     | ς.    | 4.    | 2     | 9     | 7     | 6     | 10    | 11    | 13    | 15    | 16    | 17    | Total |

Table C-28. --Monthly mean weights of male seals collected pelagically by the United States in the eastern Pacific, 1967-68

| August   | Mean | weight | X<br>Sg | 1    | 22.1 | 32.7 | 30.0 | 1     | 1    | 1    | 101.2 | ı     | 1      | ,     | 137.0 | 107.0 | 145.0 |       |
|----------|------|--------|---------|------|------|------|------|-------|------|------|-------|-------|--------|-------|-------|-------|-------|-------|
| Aug      |      | Seals  | Number  | ,    | 5    | 3    | 7    | 1     | ı    | ı    | 2     | ı     | 1      | ı     | _     | -     |       | 14    |
|          | Mean | weight | Xg.     | •    | 20.3 | 28.2 | 35.5 | 53.0  | 1    | 98.0 | 39.0  | 105.0 | E<br>I | 1     | 1     | ,     |       |       |
| July     |      | Seals  | Number  | 1    | 9    | 13   | 3    | -     | 1    | -    |       |       | 1      | ŧ     | 1     | ,     | 1     | 56    |
| 9        | Mean | weight | Kg.     | 1    | 19.0 | 25.7 | 40.0 | 44.3  | 1    | 79.5 | ,     | 158.0 | 213.0  | 185.0 | ı     | ,     | r     |       |
| June     |      | Seals  | Number  | 1    | П    | 12   | 2    | 3     | ı    | 2    | ı     | Ι     |        | -     | ı     | ,     | '     | 23    |
|          | Mean | weight | Kg.     | 14.5 | 17.3 | 24.6 | 29.6 | 35, 5 | 61.0 | ı    | 1     | t     | 207.0  | ŧ     | 1     | ,     |       |       |
| May      |      | Seals  | Number  | 2    | ∞    | 6    | 9    | 2     | П    | ı    | ı     | 1     |        | ı     | ı     | 1     | 1     | 59    |
| ary      | Mean | weight | Kg.     | 9.6  | 19.0 | 22.5 | 1    | 1     | 1    | 1    | ,     | 1     | ı      | ,     | 1     | 1     | ı     |       |
| February |      | Seals  | Number  | 16   |      | 7    | ,    | t     | t    |      | 1     |       | ,      | ı     | 1     | ı     | 1     | 19    |
| arv      | Mean | weight | Kg.     | 6.6  | 1    | 23.0 | 27.0 | ı     | ı    | ,    | ì     | 1     | 1      | 1     | 1     | 1     | 1     |       |
| January  |      | Seals  | Number  | 1.1  | ,    | 2    | 7    | 1     | 1    | ,    |       |       | ,      | 1     |       | 1     | 1     | 14    |
| December | Mean | weight | X 80    | 1    | 1    | 1    | 31.0 | r     | ı    | 1    | ı     | ı     | ı      | ,     | 1     | t     | ı     |       |
| Dece     |      | Seals  | Number  | 1    | ,    | 1    |      |       |      | 1    |       |       | 1      | ŧ     |       | 1     | ,     | П     |
|          |      | Age    | Years   | -    | 2    | 8    | 4    | 5     | 9    | 7    | 6     | 10    | 1.1    | 13    | 15    | 16    | 17    | Total |

Table C-29.--Monthly mean lengths (crown rump) and weights of fur seal fetuses collected pelagically by the United States off Washington, 1967-681

|                                    |              | Male              |                     |              | Female            |                    |
|------------------------------------|--------------|-------------------|---------------------|--------------|-------------------|--------------------|
| Period                             | Fetuses      | Mean<br>length    | Mean<br>weight      | Fetuses      | Mean<br>length    | Mean<br>weight     |
|                                    | Number       | Cm.               | <u>G.</u>           | Number       | Cm.               | G.                 |
| 21-30 Nov<br>11-21 Dec<br>1-10 Jan | 1<br>17<br>6 | 5.0<br>6.3<br>8.3 | 5.2<br>10.0<br>24.8 | 1<br>27<br>5 | 1.8<br>5.2<br>7.3 | 0.7<br>7.7<br>19.7 |

<sup>&</sup>lt;sup>1</sup>Measurements were taken after the fetuses were preserved in formaldehyde.

Table C-30.--Monthly mean lengths and weights of fur seal fetuses collected pelagically by the United States in the eastern Pacific,  $1968^{\circ}$ 

|             |         | Male           |                |         | Female         |                |
|-------------|---------|----------------|----------------|---------|----------------|----------------|
| Period      | Fetuses | Mean<br>length | Mean<br>weight | Fetuses | Mean<br>length | Mean<br>weight |
|             | Number  | Cm.            | Kg.            | Number  | Cm.            | Kg.            |
| 1-10 Jan    | 10      | 13.9           | 0.1            | 8       | 14.8           | 0.1            |
| 21-30 Jan   | 5       | 20.9           | 0.2            | 12      | 21.0           | 0.3            |
| 1-10 Feb    | 22      | 28.0           | 0.6            | 26      | 24.8           | 0.4            |
| 11-20 Feb   | 3       | 29.2           | 0.7            | 3       | 28.7           | 0.6            |
| 21-28 Feb   | 8       | 30.9           | 0.7            | 3       | 31.0           | 0.7            |
| 21-30 May   | 24      | 59.1           | 4.3            | 26      | 56.6           | 3.7            |
| 1-10 June.  | 14      | 61.1           | 4.8            | 17      | 59.6           | 4.3            |
| 11-20 June. | 14      | 64.1           | 5.5            | 21      | 60.3           | 5.0            |
| 21-30 June. | 9       | 64.4           | 5.9            | 16      | 61.3           | 4.9            |
| 1-10 July.  | 8       | 63.6           | 5.9            | 2       | 60.7           | 5.2            |
| 11-20 July. | 4       | 64.6           | 5.8            | 3       | 60.7           | 5.1            |
| 21-30 July. |         |                |                | 3       | 62.3           | 5.5            |
| Total       | 121     |                |                | 140     |                |                |

<sup>1</sup>Measurements were taken from fetuses not preserved in formaldehyde.

Table C-31 --Reproductive condition of female seals collected pelagically by the United States in the eastern Pacific, 1967-68

|          |             | F           | rimipa rous | s       | Mu          | ltiparous |                  |        |
|----------|-------------|-------------|-------------|---------|-------------|-----------|------------------|--------|
| Age      | Nulliparous | Nonpregnant |             | gnant   | Nonpregnant |           | gnant            | Total  |
| Years    | Number      | Number      | Number      | Percent | Number      | Number    | Percent          | Number |
|          |             |             |             | Nor     | ember       |           |                  |        |
| 2        | 1           | _           | -           | 1100    | ember       | _         | _                | 1      |
| 6        | -           | -           | 1           | 100.0   | -           | -         | -                | i      |
| 9        | -           | -           | -           | -       |             | 1         | 100.0            | 1      |
| Total    | 1           | -           | 1           |         |             | 1         |                  | 3      |
| Perce    | nt          |             |             | 100.0   |             |           | 100.0            |        |
|          |             |             |             | Doo     | ember       |           |                  |        |
| 2        | 3           |             | -           | Dec     | ember       | _         | _                | 3      |
| 3        | 7           | -           | -           | -       | -           | -         | -                | 7      |
| 4        | 11          | -           | -           |         | -           | -         | -                | 11     |
| 5        | 2           | -           | 2           | 100.0   | -           | -         | -                | 4      |
| 6        | 1           | -           | 2           | 100.0   | -           | ı.        | 100.0            | 4      |
| 7        | 2           | -           | 4 2         | 100.0   | 3           | 1 5       | 25.0<br>100.0    | 10     |
| 8        | -           | 1           | -           | 66.7    | 1           | 7         | 87.5             | 8      |
| 10       | -           | -           | _           | _       | 2           | í         | 33. 3            | 3      |
| 11       | _           | -           | -           |         | 1           | 4         | 80.0             | 5      |
| 12       | -           | -           | -           | -       | -           | 5         | 100.0            | 5      |
| 1.3      | -           | -           | -           | -       | -           | 1         | 100.0            | 1      |
| 14       | -           | -           | -           | -       | -           | 1         | 100.0            | 1      |
| 15       | -           | -           | -           | -       | -           | 2         | 100.0            | 2 2    |
| 16       | -           | -           | - Sak       | -       | -           | 2         | 100. 0<br>100. 0 | 2      |
| 18<br>19 | _           |             |             | -       | _           | 2         | 100.0            | 2      |
| 20       | -           | _           | -           | _       | -           | 1         | 100.0            | 1      |
| 22       | -           | -           | _           | -       | 1           | -         | 0.0              | 1      |
| 23       |             |             |             |         | 1           |           | 0.0              | 1      |
|          |             |             |             |         |             |           |                  |        |
| Total    | 26          | 1           | 10          | 00.0    | 9           | 3.5       | 70 5             | 81     |
| Perce    | nt          |             |             | 90.9    |             |           | 79.5             |        |
|          |             |             |             | Jan     | uary        |           |                  |        |
| 1        | 15          | -           | _           | - 0077  | -           | _         | -                | 15     |
| 2        | 1           | ~           | -           | -       | -           | -         | -                | 1      |
| 3        | 2           | -           | ~           | -       | ~           | -         | -                | 2      |
| 4        | 15          | -           | 1           | 100.0   | vis.        | -         | -                | 16     |
| 5        | 5           | -           | 1           | 100.0   | -           | 1         | 100.0            | 6      |
| 6<br>7   | 1 4         | -           | 4           | 100.0   | -           | 5         | 100.0            | 9      |
| 8        | 4           | _           | _           | -       | -           | 4         | 100.0            | 4      |
| 9        | _           | -           | -           | -       | 2           | 5         | 71.4             | 7      |
| 10       | -           | -           | -           |         | 1           | 8         | 88.9             | 9      |
| I 1      | -           | -           | -           | -       | -           | 4         | 100.0            | 4      |
| 12       | ~           | -           | -           | -       | -           | 8         | 100.0            | 8      |
| 13       | -           | -           | -           | -       | -           | 2         | 100.0            | 2      |
| 14<br>15 | -           | -           | -           | -       | -           | 3         | 100.0            | 3      |
| 16       | -           | -           | _           | _       | _           | 4         | 100.0            | 4      |
| 17       | -           | -           | _           | ~       | -           | 4         | 100.0            | 4      |
| Total    | 43          |             | 6           |         | 3           | 49        |                  | 101    |
| Perce    | nt          |             |             | 100.0   |             |           | 94.2             |        |
|          |             |             |             | F - L   |             |           |                  |        |
| 1        | 32          |             |             | reo     | ruary       | -         | _                | 32     |
| 1<br>2   | 2           | _           | _           | -       | -           | _         | -                | 2      |
| 3        | 4           | _           | -           | -       | -           | ~         | -                | 4      |
| 4        | 18          | -           | -           | -       | -           | -         | -                | 18     |
| 5        | 3           | -           | 4           | 100.0   | -           | -         | -                | 7      |
| 6        | 1           | -           | 6           | 100.0   | -           | 5         | 100.0            | 12     |
| 7        | 5           | 1           | 2           | 66.7    | 1           | 7         | 87.5             | 16     |
| 8        | -           | 1           | **          | 0.0     | 1           | 1 7       | 50.0<br>87.5     | 2      |
| 9        | _           | 1           | -           | -       | 3           | 8         | 72.7             | 11     |
| 11       | -           | -           | 1           | 100.0   | 3           | 8         | 72.7             | 12     |
| 12       | _           | -           | -           | -       | 2           | 7         | 77.8             | 9      |
| 13       | -           | -           | -           | -       |             | 2         | 100.0            | 2      |
| 14       | -           | -           | -           | -       | 1           | 3         | 75.0             | 4      |
| 15       | -           | -           | -           | -       | 1           | 7         | 87.5             | 8      |
| 16       | -           | -           | -           | -       | - 1         | 4         | 100.0<br>50.0    | 4<br>2 |
| 17<br>18 | -           |             | -           | -       | 1           | 1         | 100.0            | 1      |
| Total    | 65          |             | 13          |         | 14          | 61        |                  | 155    |
| Perce    |             |             |             | 86.7    | •           |           | 81.3             |        |
|          |             |             |             |         |             |           |                  |        |

Table C-31 ··Reproductive condition of female seals collected pelagically by the United States in the castern Pacific, 1967-68--Continued

|                   |             |               | imiparous |         |                 | tiparous |             |        |
|-------------------|-------------|---------------|-----------|---------|-----------------|----------|-------------|--------|
| Age               | Nulliparous | Nonpregnant   |           | nant    | Nonpregnant     | Preg     |             | Total  |
| Years             | Number      | Number        | Number    | Percent | Number          | Number   | Percent     | Number |
|                   |             |               |           | ,       | to :            |          |             |        |
| 2                 | 1           |               |           | Ī       | May             |          |             |        |
| 3                 | 3           | -             | _         | _       | -               | -        | -           | 1 3    |
| 4                 | 5           | -             | _         | _       |                 | _        | _           | 5      |
| 5                 | 3           |               | 1         | 100.0   | _               | _        |             | 4      |
| ь                 | -           | 1             | _         | 0.0     | _               | 1        | 100.0       | 2      |
| 7                 | _           | _             | 1         | 100.0   | _               | 5        | 100.0       | 6      |
| 8                 | -           | -             | -         | -       | -               | 3        | 100.0       | 3      |
| 9                 | ~           | -             | -         | -       | 1               | 3        | 75.0        | 4      |
| 10                | -           | -             | -         | -       | _               | 3        | 100.0       | 3      |
| 11                | ~           | -             | -         | -       | 1               | 4        | 80.0        | 5      |
| 12                | ~           | ~             | -         | -       | -               | 6        | 100.0       | 6      |
| 13                | -           | -             | -         | -       | I               | ь        | 85.7        | 7      |
| 14                | -           | -             | -         | -       | I               | 4        | 80.0        | 5      |
| 15                | -           | -             | -         | -       | -               | 1        | 100.0       | 1      |
| 16                | -           | -             | ~         | -       | 1               | 4        | 80.0        | 5      |
| 17                | -           | -             | -         | -       | -               | 2        | 100.0       | 2      |
| 18                | -           | -             | -         | -       | -               | 2        | 100.0       | 2      |
| 19                | -           | -             | -         | -       | -               | 2        | 100.0       | 2      |
| 20                | -           | -             | -         | -       | 1               | 1        | 50.0        | 2      |
| 21                | ~           | -             | -         | -       | -               | 1        | 100.0       | 1      |
| Total             | 12          |               | 2         |         |                 |          | 0.0         | 1      |
| Percen            |             | 1             | 2         | 66.7    | /               | 48       | 07 3        | 70     |
| reiten            | t.          |               |           | 00.7    |                 |          | 87.3        |        |
|                   |             |               |           | Ju      | n e             |          |             |        |
| 4                 | ь           | _             | 2         | 100.0   | 110             |          | _           | 8      |
| 5                 | 2           | -             | 1         | 100.0   | _               | 1        | 100.0       | 4      |
| 6                 | _           | _             | 5         | 100.0   | _               | 5        | 100.0       | 10     |
| 7                 | ~           | -             | Ĩ         | 100.0   | -               | 10       | 100.0       | 11     |
| 8                 | _           | -             | 1         | 100.0   | 3               | 9        | 75.0        | 13     |
| 9                 |             | _             | _         | _       |                 | 5        | 100.0       | 5      |
| 10                | -           | -             | -         | ~       | _               | 7        | 100.0       | 7      |
| 1.1               | -           | -             | -         | -       | -               | 9        | 100.0       | 9      |
| 12                | -           | -             | _         | -       | 1               | 7        | 87.5        | 8      |
| 13                | -           | ~             | -         | -       | -               | 4        | 100.0       | 4      |
| 14                | -           | -             | -         | -       | -               | 5        | 100.0       | 5      |
| 15                | -           | -             | -         | -       | 1               | 6        | 85.7        | 7      |
| 16                | -           | -             | -         | -       | -               | 5        | 100,0       | 5      |
| 17                | ~           | -             | -         | -       | -               | 5        | 100.0       | 5      |
| 18                | -           | *             | -         | -       | 1               | 2        | 66.7        | 3      |
| 19                | -           | -             | -         | -       | 1               | 1        | 50.0        | 2      |
| 20                |             |               |           |         |                 | 1        | 100.0       | 1      |
| Total             | 8           | ~             | 10        |         | 7               | 82       | 0.3         | 107    |
| Percen            | τ           |               |           | 90.0    |                 |          | 92.1        |        |
|                   |             |               |           | Ju      | L               |          |             |        |
| 2                 | 1           | _             |           |         | - Y             |          |             | 1      |
| 3                 | 9           | _             | -         |         | -               | -        | _           | 9      |
| 4                 | 18          | _             |           | _       | _               |          | _           | 18     |
| 5                 | 5           | 1             | 3         | 75.0    | -               |          | -           | 9      |
| 6                 | 3           | 1             | 3         | 75.0    | ı               | 3        | 75.0        | 8      |
| 7                 | ĩ           | 2             | 1         | 33.3    | -               | 6        | 100.0       | 10     |
| 8                 | i           | -             | 1         | - 33.3  | 1               | 3        | 75.0        | 5      |
| 9                 | -           | _             | _         | -       | 1               | 3        | 75.0        | 4      |
| 10                | _           | 1             | -         | 0.0     | 2               | 3        | 60.0        | 6      |
| 1                 | -           | -             | -         | -       | -               | 2        | 100.0       | 2      |
| .2                | -           | -             | -         | -       | 1               | -        | 0.0         | 1      |
| 13                | -           | -             | -         | -       | 2               | 3        | 60.0        | 5      |
| 14                | -           | -             | -         | -       | 2               | 4        | 66.7        | 6      |
| 15                | -           | -             | -         | -       | 1               | 4        | 80.0        | 5      |
| 16                | -           | -             | -         | -       | -               | 1        | 100.0       | 1      |
| 17                | -           | -             | -         | -       | 1               | 3        | 75.0        | 4      |
| 18                | -           | -             | -         | -       | 1               | 1        | 50.0        | 2      |
| 19                | -           | -             | -         | -       | 2               | 1        | 33.3<br>0.0 | 3      |
|                   | -           | -             | -         | -       | 2               | -        | 0.0         | 2      |
| 21                |             |               |           |         |                 |          |             |        |
| 21<br>22<br>Total | 38          | <del></del> 5 | 4         | 44.4    | $-\frac{1}{18}$ | 37       | 0.0         | 102    |

Table C-31 --Reproductive condition of female seals offlected pelagically by the United States in the eastern Pacific, 1967-68 --Continued

|       |             | Pri         | miparous |         | Mult        | iparous |         |        |
|-------|-------------|-------------|----------|---------|-------------|---------|---------|--------|
| Age   | Nulliparous | Nonpregnant | Preg     | nant    | Nonpregnant | Preg    | nant    | Total  |
| lears | Number      | Number      | Num be r | Percent | Number      | Number  | Percent | Number |
|       |             |             |          | Au      | gust        |         |         |        |
| 3     | 10          | _           | -        | -       | -           | -       | _       | 10     |
| -1    | 17          | -           | 2        | 100 0   | -           | _       | -       | 19     |
| 5     | 2           | -           | 1        | 100.0   | -           | -       | _       | 3      |
| 6     | 2           | -           | 1        | 100.0   | -           | 1       | 100.0   | 4      |
| 7     | -           | -           | 1        | 100.0   | ~           | 6       | 100.0   | 7      |
| 8     | -           | 1           | -        | 0.0     | -           | 2       | 100.0   | 3      |
| 9     | -           | -           | -        | -       | -           | 2       | 100.0   | 2      |
| 0     | -           | -           | -        | -       | -           | 1       | 100.0   | 1      |
| 1     | -           | -           | 1        | 100.0   | -           | 1       | 100.0   | 2      |
| 2     | -           | -           | -        | -       | -           | 3       | 100.0   | 3      |
| 3     | -           | -           | -        | -       | 1           | 2       | 66.7    | 3      |
| 4     | -           | -           | -        | -       | 1           | 3       | 75.0    | 4      |
| 5     | -           | -           | -        | -       | 1           | 3       | 75.0    | 4      |
| 6     | -           | -           | -        | -       | -           | 5       | 100.0   | 5      |
| 7     | -           | -           | -        | -       | 2           | 2       | 50.0    | 4      |
| 8     | -           | -           | -        | -       | 1           | ~       | 0.0     | 1      |
| Q     | -           | -           | -        | -       | 1           | -       | 0.0     | 1      |
| 0     | -           | -           | 1        | 100.0   | 1           | 1       | 50.0    | 3      |
| Total | 31          | 1           | 7        |         |             | 32      |         | 79     |
| Perce | nt          |             |          | 87.5    |             |         | 80.0    |        |

Table G-32. --Pregnancy rates of female seals collected by the United States in the eastern Pacific, by area and month, 1967-68

|       |                |        |         |               |        | Washi    | ngton        |          |         |              |          |         |
|-------|----------------|--------|---------|---------------|--------|----------|--------------|----------|---------|--------------|----------|---------|
| Age   | November 1967  |        |         | December 1967 |        |          | January 1968 |          |         | February 908 |          |         |
|       | Seals Pregnant |        |         | Seals         | Pre    | Pregnant |              | Pregnant |         | Seals        | Pregnant |         |
| Years | Number         | Number | Percent | Number        | Number | Percent  | Number       | Number   | Percent | Number       | Number   | Percent |
|       |                |        |         |               |        |          | 2            | 0        | 0       | 4            | 0        | 0       |
| 5     |                | -      | -       |               | 0      | 0        | 16           | 1        | 6.2     | 18           |          | 0       |
| 4     | -              | -      | -       | 11            | 0      |          | 6            | 1        | 16.7    | 7            | 4        | 57 1    |
| 5     | -              | -      | -       | * <u>f</u>    | 2      | ¬0.0     |              |          |         | 1.3          |          |         |
| 6     | 1              | 1      | 100.0   | 4             | 3      | 75.0     | 6            | 5        | 83, 3   | 12           | 1 1      | 91.7    |
| 7     | -              | -      | -       | 10            | 5      | 50.0     | 9            | 5        | 55.6    | 16           | 9        | 56.2    |
| 8     | _              | _      | -       | 8             | 7      | 87.5     | 4            | 4        | 100.0   | 2            | 1        | 50.0    |
| 9     | 1              | 1      | 100.0   | 8             | 7      | 87.5     | 7            | 5        | 71.4    | 9            | 7        | 77.8    |
| 10    |                |        | _       | 3             | 1      | 33.3     | 9            | 8        | 88, 9   | 1.1          | 8        | 72.7    |
| 11    |                |        |         | 5             | i      | 20.0     | 4            | 4        | 100.0   | 12           | 8        | 66.7    |
| 12    | ~              | -      |         | 5             | 5      | 100.0    | 8            | 8        | 100.0   | 9            | 7        | 77.8    |
| 13    | -              | -      | -       | í             | í      | 100.0    | 2            | 2        | 100.0   | 2            | 2        | 100.0   |
|       | -              | -      | -       | ı.            | 1      | 100.0    | 1            | 1        | 100.0   | 4            | 3        | 75.0    |
| 14    | -              | -      | -       | i.            | 2      | 100.0    | 3            | 3        | 100.0   | 8            | 7        | 87.5    |
| 15    | -              | -      | -       | 2             |        |          | 4            | 4        | 100.0   | Δ.           | 4        | 100.0   |
| 16    | -              | -      | -       | 2             | 2      | 100.0    | 4            | 4        | 100.0   | 7            | 7        | 50.0    |
| 17    | ~              | -      | -       | -             | 44     | -        | 4            |          | 100.0   | 2            | 1        |         |
| 18    | -              | ~      | -       | 2             | 2      | 100.0    | -            | -        | -       | 1            | 1        | 100.0   |
| 19    | -              | -      | -       | 2             | 2      | 100.0    | ~            | -        | -       | ~            | -        | -       |
| 20    | -              | _      | -       | 1             | 1      | 100.0    | -            | -        | -       | -            | -        | -       |
| 21_   | -              | _      | -       | -             | -      | *        | -            | -        | -       | -            | -        | -       |
| 22    | _              | -      | _       | 1             | 0      | 0        | -            | -        | -       | to to        | -        | -       |
| 23    | _              | _      | -       | 1             | 0      | 0        | -            | -        | ~       | -            | -        | -       |

|     |          |   |       |           |     | Alasi | ca        |   |       |             |   |       |
|-----|----------|---|-------|-----------|-----|-------|-----------|---|-------|-------------|---|-------|
|     | May 1968 |   |       | June 1968 |     |       | July 1968 |   |       | August 1968 |   |       |
| 3   | 3        | 0 | 0     | -         | _   | _     | 9         | 0 | 0     | 10          | 0 | 0     |
| 4   | 5        | 0 | 0     | 8         | 2   | 25.0  | 18        | 0 | 0     | 19          | 2 | 10.5  |
| 5   | 4        | 1 | 25.0  | 4         | 2   | 50.0  | 9         | 3 | 33.3  | 3           | 1 | 33.3  |
| 6   | 2        | 1 | 50.0  | 10        | 10  | 100.0 | 8         | 3 | 37.5  | 4           | 2 | 50.0  |
| 7   | 6        | 6 | 100.0 | 1.1       | 1.1 | 100.0 | 10        | 7 | 70.0  | 7           | 7 | 100.0 |
| 8   | 3        | 3 | 100.0 | 13        | 10  | 76.9  | 5         | 3 | 60.0  | 3           | 2 | 66.7  |
| 9   | 4        | 3 | 75.0  | 5         | 5   | 100.0 | 4         | 3 | 75.0  | 2           | 2 | 100.0 |
| 10  | 3        | 3 | 100.0 | 7         | 7   | 100.0 | 6         | 3 | 50.0  | 1           | 1 | 100.0 |
| 11  | 5        | 4 | 80.0  | 9         | 9   | 100.0 | 2         | 2 | 100 0 | 2           | 2 | 100.0 |
| 12  | 6        | 6 | 100.0 | 8         | 7   | 87.5  | 1         | 0 | 0     | 3           | 3 | 100.0 |
| 13  | 7        | b | 85.7  | 4         | 4   | 100.0 | 5         | 3 | 60.0  | 3           | 2 | 66.7  |
| 14  | 5        | 4 | 80.0  | 5         | 5   | 100.0 | 6         | 4 | 66.7  | 4           | 3 | 75.0  |
| 15  | 1        | 1 | 100.0 | 7         | ь   | 85.7  | 5         | 4 | 80.0  | 4           | 3 | 75.0  |
| 16  | 5        | 4 | 80.0  | 5         | 5   | 100.0 | 1         | 1 | 100.0 | 5           | 5 | 100.0 |
| 17  | 2        | 2 | 100.0 | 5         | 5   | 100.0 | 4         | 3 | 75.0  | 4           | 2 | 50.0  |
| 18  | 2        | 2 | 100.0 | 3         | 2   | 66.7  | 2         | 1 | 50 0  | 1           | 0 | 0     |
| 19  | 2        | 2 | 100.0 | 2         | 1   | 50.0  | 3         | 1 | 33.3  | 1           | 0 | 0     |
| 20  | 2        | 1 | 50.0  | 1         | 1   | 100.0 | -         | - | -     | 3           | 2 | 66.7  |
| 2.1 | 1        | 1 | 100.0 | -         | -   | -     | 2         | 0 | 0     | -           | - | -     |
| 22  | 1        | 0 | 0     | -         | -   | -     | 1         | 0 | 0     | -           | - | -     |

|     |            |          | 1958-68     |
|-----|------------|----------|-------------|
|     |            |          | pelagic     |
|     | Washington | Alaska   | collections |
|     | Pregnant   | Pregnant | Pregnant    |
|     | Percent    | Percent  | Percent     |
| 3   | 0          | 0        | 0.4         |
| 4   | 2.2        | 8.0      | 3.4         |
| 5   | 41.2       | 35.0     | 38.5        |
| 6   | 87.0       | 66.7     | 72.9        |
| 7   | 54.3       | 91.2     | 80.3        |
| 8   | 85.7       | 75.0     | 86.5        |
| 9   | 80.0       | 86.7     | 89.8        |
| 10  | 73.9       | 82.4     | 89.2        |
| 1.1 | 61.9       | 94.4     | 89.4        |
| 12  | 90.9       | 88.9     | 88.3        |
| 13  | 100.0      | 78.9     | 87.5        |
| 14  | 83.3       | 80.0     | 83.4        |
| 15  | 92.3       | 82.4     | 82.1        |
| 16  | 100.0      | 93.8     | 80.2        |
| 17  | 83.3       | 80.0     | 68.5        |
| 18  | 100.0      | 62.5     | 68.8        |
| 19  | 100.0      | 50.0     | 55.4        |
| 20  | 100.0      | 66.7     | 48.4        |
| 21  | -          | 33, 3    | 60.7        |
| 22  | 0          | -        | 30.8        |
| 23  | 0          | _        | 12.5        |





## UNITED STATES DEPARTMENT OF COMMERCE

NATIONAL OCEANIC & ATMOSPHERIC ADMINISTRATION
NATIONAL MARINE FISHERIES SERVICE
SCIENTIFIC PUBLICATIONS UNIT
BLDG. 67, NAVAL SUPPORT ACTIVITY
SEATTLE, WASHINGTON 98115

OFFICIAL BUSINESS

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE

Return this sheet to above address if you ao NOT wish to receive this materia [], or if change of address is needed [] indicate change and give ZIP Code.