Chapter 1: Assessment of the Walleye Pollock Stock in the Gulf of Alaska

Martin Dorn ${ }^{1}$, Kerim Aydin ${ }^{1}$, Steven Barbeaux ${ }^{1}$, Michael Guttormsen ${ }^{1}$, Kally Spalinger ${ }^{2}$, and Wayne Palsson ${ }^{1}$
${ }^{1}$ National Marine Fisheries Service, Alaska Fisheries Science Center, Seattle, WA
${ }^{2}$ Alaska Department of Fish and Game, Division of Commercial Fisheries, Kodiak, AK

Executive Summary

Summary of Changes in Assessment Inputs

Changes in input data

1. Fishery: 2010 total catch and catch at age.
2. NMFS bottom trawl survey: 2011 biomass and length composition.
3. ADF\&G crab/groundfish trawl survey: 2011 biomass and length composition.

Changes in assessment methodology

The age-structured assessment model developed using ADModel Builder (a $\mathrm{C}++$ software language extension and automatic differentiation library) and used for assessments in 1999-2010 was used again for this year's assessment.

Summary of Results

The model projection of spawning biomass in 2012 is $227,723 \mathrm{t}$, which is 33.6% of unfished spawning biomass (based on average post-1977 recruitment) and below $B_{40 \%}(271,000 \mathrm{t})$, thereby placing Gulf of Alaska pollock in sub-tier "b" of Tier 3. New NFMS bottom trawl and ADF\&G crab/groundfish surveys were conducted in 2011. The 2011 NMFS bottom trawl survey biomass estimate was very close to the 2009 estimate ($<1 \%$ increase). The ADF\&G crab/groundfish survey biomass estimate declined 19% from the 2010 biomass estimate, but is 32% above the mean for 2006-2008. Recent estimates from both surveys are fit adequately by the model, and there are no large residuals to the fit to recent age data. No acoustic surveys were conducted in winter of 2011, increasing the uncertainty of the assessment model relative to previous years. The estimated abundance of mature fish in 2012 is projected to be 11% higher than in 2011 , and is projected to increase gradually over the next five years.

The author's 2012 ABC recommendation for pollock in the Gulf of Alaska west of $140^{\circ} \mathrm{W}$ lon. (W/C/WYK) is $108,440 \mathrm{t}$, an increase of 22% from the 2011 ABC . This recommendation is based on a more conservative alternative to the maximum permissible $F_{A B C}$ introduced in the 2001 SAFE. The OFL in 2012 is $143,716 \mathrm{t}$. In 2013, the recommended ABC and OFL are $117,325 \mathrm{t}$ and $155,402 \mathrm{t}$, respectively.

For pollock in southeast Alaska (East Yakutat and Southeastern areas), the ABC recommendations for 2012 and 2013, presented in Appendix A, are 10,774 t and the OFL recommendation for 2012 and 2013 is $14,366 \mathrm{t}$. These recommendations are based on the estimated biomass in the southeast Alaska from the 2011 NMFS bottom trawl survey.

Status Summary Table

	Last year		This year	
Quantity/Status	2011	2012	$\mathbf{2 0 1 2}$	2013
M (natural mortality)	0.3	0.3	$\mathbf{0 . 3}$	0.3
Specified/recommended Tier	3 b	3 b	$\mathbf{3 b}$	3 b
Projected biomass (ages 3+)	893,700	988,580	$\mathbf{8 6 3 , 8 4 0}$	926,890
Female spawning biomass (t)				
Projected	198,767	227,345	$\mathbf{2 2 7 , 7 2 3}$	232,632
$B_{100 \%}$	690,000		$\mathbf{6 7 8 , 0 0 0}$	
$B_{40 \%}$	276,000		$\mathbf{2 7 1 , 0 0 0}$	
$B_{35 \%}$	242,000		$\mathbf{2 3 7 , 0 0 0}$	
$F_{\text {FFL }}$	0.16	0.18	$\mathbf{0 . 1 9}$	0.19
maxF $F_{\text {ABC }}$	0.14	0.16	$\mathbf{0 . 1 7}$	0.17
Specified/recommended $F_{A B C}$	0.12	0.14	$\mathbf{0 . 1 4}$	0.15
Specified/recommended OFL (t)	118,030	151,030	$\mathbf{1 4 3 , 7 2 0}$	155,400
Specified/recommended Max. Permissible ABC (t)	102,940	127,990	$\mathbf{1 2 5 , 5 6 0}$	135,790
Specified/recommended ABC (t)	88,620	114,054	$\mathbf{1 0 8 , 4 4 0}$	117,330
Is the stock being subjected to overfishing?	No		No	
Is the stock currently overfished?	No		No	
Is the stock approaching a condition of being				
overfished?	No		No	

Responses to Comments of the Scientific and Statistical Committee (SSC)

The SSC did not make any comments specific to the Gulf of Alaska pollock assessment in its December 2010 minutes. A CIE review of the Gulf of Alaska pollock assessment is scheduled for 2012. We anticipate providing full a new assessment for initial review by the CIE panel, followed by plan team and SSC review. The SSC may wish to give guidance on priority issues that the CIE panel should address during its review. The CIE review will also give the assessment authors the opportunity to address earlier SSC comments on data weighting, survey catchability, and extending the age range of the model.

Introduction

Walleye pollock (Theragra chalcogramma) is a semi-pelagic schooling fish widely distributed in the North Pacific Ocean. Pollock in the Gulf of Alaska are managed as a single stock independently of pollock in the Bering Sea and Aleutian Islands. The separation of pollock in Alaskan waters into eastern Bering Sea and Gulf of Alaska stocks is supported by analysis of larval drift patterns from spawning locations (Bailey et al. 1997), genetic studies of allozyme frequencies (Grant and Utter 1980), mtDNA variability (Mulligan et al. 1992), and microsatellite allele variability (Bailey et al. 1997).

The results of studies of stock structure in the Gulf of Alaska are equivocal. There is evidence from allozyme frequency and mtDNA that spawning populations in the northern part of the Gulf of Alaska (Prince William Sound and Middleton Island) may be genetically distinct from the Shelikof Strait spawning population (Olsen et al. 2002). However significant variation in allozyme frequency was found between Prince William Sound samples in 1997 and 1998, indicating a lack of stability in genetic structure for this spawning population. Olsen et al. (2002) suggest that interannual genetic variation may be due to variable reproductive success, adult philopatry, source-sink population structure, or utilization of the same spawning areas by genetically distinct stocks with different spawning timing. Peak spawning at the two major spawning areas in the Gulf of Alaska occurs at different times. In the Shumagin Island area, peak spawning apparently occurs between February 15-March 1, while in Shelikof Strait peak spawning occurs later, typically between March 15 and April 1. It is unclear whether the difference in timing is genetic, or a response to differing environmental conditions in the two areas.

Fishery

The commercial fishery for walleye pollock in the Gulf of Alaska started as a foreign fishery in the early 1970s (Megrey 1989). Catches increased rapidly during the late 1970s and early 1980s (Table 1.1). A large spawning aggregation was discovered in Shelikof Strait in 1981, and a fishery developed for which pollock roe was an important product. The domestic fishery for pollock developed rapidly in the Gulf of Alaska with only a short period of joint venture operations in the mid-1980s. The fishery was fully domestic by 1988 .

The fishery for pollock in the Gulf of Alaska is entirely shore-based with approximately 90% of the catch taken with pelagic trawls. During winter, fishing effort targets pre-spawning aggregations in Shelikof Strait and near the Shumagin Islands (Fig. 1.1). Fishing in summer is less predictable, but typically occurs on the east side of Kodiak Island and along the Alaska Peninsula.

Incidental catch in the Gulf of Alaska directed pollock fishery is low. For tows classified as pollock targets in the Gulf of Alaska between 2006 and 2010, on average about 93% of the catch by weight of FMP species consisted of pollock (Table 1.2). Nominal pollock targets are defined by the dominance of pollock in the catch, and may include tows where other species were targeted, but where pollock were caught instead. The most common managed species in the incidental catch are arrowtooth flounder, Pacific cod, flathead sole, Pacific ocean perch, miscellaneous flatfish, and the shortraker/rougheye rockfish complex. The most common non-target species are squid, eulachon, various shark species (e.g., Pacific sleeper sharks, spiny dogfish, salmon shark), jellyfish, and grenadiers. Bycatch estimates for prohibited species over the period 2006-2010 are given in Table 1.3. Bycatch of Chinook salmon is the most consequential prohibited species caught as bycatch in the pollock fishery. The peak in Chinook salmon bycatch in 2010 led the Council to adopt management measures to reduce Chinook salmon bycatch.

Kodiak is the major port for pollock in the Gulf of Alaska, with 65% of the 2006-2010 landings. In the western Gulf of Alaska, Sand Point, Dutch Harbor, King Cove, and Akutan are important ports, sharing

35\% of 2006-2010 landings. Secondary ports, including Alitak Bay, Cordova, Homer, Juneau, Ketchikan, Ninilchik, Seward, and Sitka account for less than 1\% of the 2006-2010 landings.

Since 1992, the Gulf of Alaska pollock Total Allowable Catch (TAC) has been apportioned spatially and temporally to reduce potential impacts on Steller sea lions. The details of the apportionment scheme have evolved over time, but the general objective is to allocate the TAC to management areas based on the distribution of surveyed biomass, and to establish three or four seasons between mid-January and autumn during which some fraction of the TAC can be taken. The Steller Sea Lion Protection Measures implemented in 2001 established four seasons in the Central and Western GOA beginning January 20, March 10, August 25, and October 1, with 25% of the total TAC allocated to each season. Allocations to management areas 610, 620 and 630 are based on the seasonal biomass distribution as estimated by groundfish surveys. In addition, a new harvest control rule was implemented that requires suspension of directed pollock fishing when spawning biomass declines below 20% of the reference unfished level.

Data Used in the Assessment

The data used in the assessment model consist of estimates of annual catch in tons, fishery age composition, NMFS summer bottom trawl survey estimates of biomass and age composition, acoustic survey estimates of biomass and age composition in Shelikof Strait, egg production estimates of spawning biomass in Shelikof Strait, ADF\&G bottom trawl survey estimates of biomass and length and age composition, and historical estimates of biomass and length and age composition from surveys conducted prior to 1984 using a 400 -mesh eastern trawl. Binned length composition data are used in the model only when age composition estimates are unavailable, such as the fishery in the early part of the modeled time period and the most recent survey. The FOCI year class prediction is used qualitatively along with other information to evaluate the likely strength of incoming year classes.

Total Catch

Estimated catch was derived by the NMFS Regional Office from shoreside electronic logbooks and observer estimates of at-sea discards (Table 1.4). Catches include the state-managed pollock fishery in Prince William Sound (PWS). Non-commercial catches and pollock bycatch in the halibut fishery are reported in Appendix D. Since 1996 the pollock Guideline Harvest Level (GHL) for the PWS fishery has been deducted from the Acceptable Biological Catch (ABC) by the NPFMC Gulf of Alaska Plan Team for management purposes.

Fishery Age Composition

Estimates of fishery age composition were derived from at-sea and port sampling of the pollock catch for length and ageing structures (otoliths). Pollock otoliths collected during the 2010 fishery were aged using the revised criteria described in Hollowed et al. (1995), which involved refinements in the criteria to define edge type. Catch age composition was estimated using methods described by Kimura and Chikuni (1989). Age samples were used to construct age-length keys by sex and stratum. These keys were applied to sex and stratum specific length frequency data to estimate age composition, which were then weighted by the catch in numbers in each stratum to obtain an overall age composition. Age and length samples from the 2010 fishery were stratified by half year and statistical area as follows:

Time strata	Shumagin-610	Chirikof-620	Kodiak-630	W. Yakutat and PWS-640 and 649	
1st half (A and B seasons)	No. ages	354	361	357	137
	No. lengths	3112	8444	6490	1112
	Catch (t)	9,826	19,514	7,597	3,130
2nd half (C and D	No. ages	345	344	352	----
seasons)	No. lengths	2934	2957	3906	----
	Catch (t)	16,225	8,832	11,738	----

In area 630 , the age- 4 fish (2006 year class) were the dominant mode in the age composition in both seasons (Fig. 1.2). In areas 610 and 620, the age-4 fish were not as prominent, and instead either the age3 or the age- 5 fish were dominant, depending on the season. This suggests some heterogeneity in the age composition by area.

Fishery catch at age in 1976-2010 is presented in Table 1.5 (See also Fig. 1.3). Sample sizes for ages and lengths are given in Table 1.6.

Gulf of Alaska Bottom Trawl Survey

Trawl surveys have been conducted by Alaska Fisheries Science Center (AFSC) every three years (beginning in 1984) to assess the abundance of groundfish in the Gulf of Alaska (Table 1.7). Starting in 2001, the survey frequency was increased to every two years. The survey uses a stratified random design, with 49 strata based on depth, habitat, and management area (Martin 1997). Area-swept biomass estimates are obtained using mean CPUE (standardized for trawling distance and mean net width) and stratum area. The survey is conducted from chartered commercial bottom trawlers using standardized poly-Nor'eastern high opening bottom trawls rigged with roller gear. In a typical survey, 800 tows are completed. On average, 70% of these tows contain pollock (Table 1.8).

The time series of pollock biomass used in the assessment model is based on the surveyed area in the Gulf of Alaska west of $140^{\circ} \mathrm{W}$ lon., obtained by adding the biomass estimates for the Shumagin, Chirikof, Kodiak INPFC areas, and the western portion of Yakutat INPFC area. Biomass estimates for the west Yakutat region were obtained by splitting strata and survey CPUE data at $140^{\circ} \mathrm{W}$ lon. (M. Martin, AFSC, Seattle, WA, pers. comm. 2009). For surveys in 1984 and 1987, the average percent in West Yakutat in the 1990-99 surveys was used. The average was also used in 2001, when West Yakutat was not surveyed.

An adjustment was made to the survey time series to account for unsurveyed pollock in Prince William Sound. This adjustment was derived from an area-swept biomass estimate for PWS from a trawl survey conducted by ADF\&G in 1999, using a standard ADF\&G 400 mesh eastern trawl. The 1999 biomass estimate for PWS was $6,304 \mathrm{t} \pm 2,812 \mathrm{t}(95 \% \mathrm{CI})$ (W. Bechtol, ADF\&G, 1999, pers. comm.). The PWS biomass estimate should be considered a minimum estimate because ADF\&G survey gear is less effective at catching pollock compared to the NMFS survey gear (von Szalay and Brown 2001). For 1999, the biomass estimates for the NMFS bottom trawl survey and the PWS survey were simply added to obtain a total biomass estimate. The adjustment factor for the 1999 survey, (PWS + NMFS)/NMFS, was applied to other triennial surveys, and increased biomass by 1.05%.

The Alaska Fisheries Science Center's (AFSC) Resource Assessment and Conservation Engineering (RACE) Division conducted the twelfth comprehensive bottom trawl survey since 1984 during the summer of 2011. The spatial distribution of pollock is consistent with previous surveys (Fig. 1.4). Areas with higher CPUE included the east side of Kodiak Island, and nearshore along the Alaska Peninsula. The 2010 gulfwide biomass estimate of pollock was $708,092 \mathrm{t}$, which is very close to 2009 estimate ($<1 \%$ increase). The biomass estimate for the portion of the Gulf of Alaska west of $140^{\circ} \mathrm{W}$ long. is $667,131 \mathrm{t}$.

Bottom Trawl Age Composition

Estimates of numbers at age from the bottom trawl survey were obtained from random otolith samples and length frequency samples (Table 1.9). Numbers at age were estimated by INPFC area (Shumagin, Chirikof, Kodiak, Yakutat and Southeastern) using a global age-length key and CPUE-weighted length frequency data by INPFC area. The combined Shumagin, Chirikof and Kodiak age composition was used in the assessment model. Ages are not yet available for the 2011 survey, and instead lengths were used in the assessment model. Length composition by statistical area showed a mode of age- 1 fish in all areas that increased in size from the Shumagin area to the Southeast area, most likely due to seasonal growth during the course of the survey (Fig. 1.5). This pattern has been seen in previous bottom trawl surveys. Mean size generally decreased from west to east (ranging from 49 cm in the Shumagin area to 28 cm years in the Yakutat area).

Shelikof Strait Acoustic Survey

Acoustic surveys to assess the biomass of pollock in the Shelikof Strait area have been conducted annually since 1981 (except 1982 and 1999). Survey methods and results for 2010 are presented in a NMFS processed report (Guttormsen et. al. in review). Biomass estimates using the Simrad EK echosounder from 1992 onwards were re-estimated to take into account recently published work of eulachon acoustic target strength (Gauthier and Horne 2004). Previously, acoustic backscatter was attributed to eulachon based on the percent composition of eulachon in trawls, and it was assumed that eulachon had the same target strength as pollock. Since Gauthier and Horne (2004) determined that the target strength of eulachon was much lower than pollock, the acoustic backscatter could be attributed entirely to pollock even when eulachon were known to be present. In 2008, the noise-reduced R / V Oscar Dyson became the designated survey vessel for acoustic surveys in the Gulf of Alaska. In winter of 2007, a vessel comparison experiment was conducted between the R / V Miller Freeman (MF) and the R / V Oscar Dyson (OD), which obtained an OD/MF ratio of 1.132 in Shelikof Strait.

The Shelikof Strait acoustic survey was not conducted in 2011 due to scheduled repairs to the R / V Oscar Dyson. This is the first interruption in the annual Shelikof Strait acoustic survey time series since 1999 (Fig. 1.6). Winter acoustic surveys in other regions of the Gulf of Alaska (Chirikof, Shumagin Islands, Sanak Gully) (Fig 1.7) were also canceled due to the scheduled repairs.

Since the assessment model only includes age 2 and older pollock, the biomass of age- 1 fish in the 1995, 2000, 2005, and 2008 surveys was subtracted from the total biomass for those years, reducing the biomass by $15 \%, 13 \%, 5 \%$ and 9% respectively (Table 1.7). In all other years, the biomass of age- 1 fish was less than 2% of the total acoustic biomass estimate.

Acoustic Survey Length Frequency

Annual biomass distributions by length from the Shelikof Strait acoustic survey show the progression of strong year classes through the population (Fig. 1.8). Since age composition estimates are available for all surveys, size composition data were not used in the assessment model.

Acoustic Trawl Survey Age Composition

Estimates of numbers at age from the Shelikof Strait acoustic survey (Table 1.10) were obtained from
random otolith samples and length frequency samples. Otoliths collected during the 1994-2010 acoustic surveys were aged using the criteria described in Hollowed et al. (1995). Sample sizes for ages and lengths are given Table 1.11.

Summer acoustic survey

Scientists from AFSC conducted an acoustic survey on NOAA Ship Oscar Dyson in the Gulf of Alaska from June 12 to August 12, 2011 (Fig. 1.9). Although the objective of the survey was to cover the shelf and nearshore areas of Gulf of Alaska from the Islands of Four Mountains (170° long. W) to Yakutat Bay (140° long. W), equipment failure, crew injuries and ensuing staffing issues prevented this objective from being achieved. The survey extended approximately to the eastern end of Kodiak Island, and did not cover the area for the assessment model, and therefore was not considered for inclusion in the model. Using results from the 2011 NMFS bottom trawl survey for comparison, the biomass from strata covered (in full or in part) by the acoustic survey was approximately 85% of the total bottom trawl biomass for the assessment area. A preliminary estimate of the biomass for the acoustic survey is $454,023 \mathrm{t}$, which is 80% of bottom trawl estimate for this area. While there are a number of reasons not to rely too much on these comparisons, they are useful to establish that abundance estimates from the bottom trawl survey and acoustic survey are broadly similar in magnitude, and that the acoustic survey covered most but not all of the area where pollock are found in high abundance.

The length composition for the acoustic survey in 2011 compared to bottom trawl suggests that larger fish were relatively more available to bottom trawl (Figure 1.10). The acoustic survey abundance estimate of pollock $<22 \mathrm{~cm}$ (considered a reliable proxy for age-1 pollock) is 1.6 billion, more than three times the bottom trawl estimate, suggesting that the acoustic survey is more effective at sampling age-1 pollock. Age-1 pollock were found primarily in Shelikof Strait. If an estimate of this magnitude had occurred during the winter survey in Shelikof Strait, it would rank 5th out of 28 age- 1 estimates (82 nd quantile), suggesting that the 2010 year class is relatively strong. The summer estimate is likely be a conservative estimate in this comparison due to the high mortality rates experienced by juvenile pollock.

Egg Production Estimates of Spawning Biomass

Estimates of spawning biomass in Shelikof Strait based on egg production methods were included in the assessment model. A complete description of the estimation process is given in Picquelle and Megrey (1993). The estimates of spawning biomass in Shelikof Strait show a pattern similar to the acoustic survey (Table 1.7). The annual egg production spawning biomass estimate for 1981 is questionable because of sampling deficiencies during the egg surveys for that year (Kendall and Picquelle 1990). Coefficients of variation (CV) associated with these estimates were included in the assessment model. Egg production estimates were discontinued because the Shelikof Strait acoustic survey provided similar information.

Alaska Department of Fish and Game Crab/Groundfish Trawl Survey

The Alaska Department of Fish and Game (ADF\&G) has conducted bottom trawl surveys of nearshore areas of the Gulf of Alaska since 1987. Although these surveys are designed to monitor population trends of Tanner crab and red king crab, walleye pollock and other fish are also sampled. Standardized survey methods using a 400-mesh eastern trawl were employed from 1987 to the present. The survey is designed to sample a fixed number of stations from mostly nearshore areas from Kodiak Island to Unimak Pass, and does not cover the entire shelf area. The average number of tows completed during the survey is 360 . Details of the ADF\&G trawl gear and sampling procedures are in Blackburn and Pengilly (1994).

The 2010 biomass estimate for pollock for the ADF\&G crab/groundfish survey was $100,839 \mathrm{t}$, down 19% from the 2010 biomass estimate, but still an increase of approximately 32% from the mean during 20062008 (Table 1.7).

ADF\&G Survey Length Frequency

Pollock length-frequencies for the ADF\&G survey in 1989-2011 (excluding 1991 and 1995) typically show a mode at lengths greater than 45 cm (Fig. 1.11). The predominance of large fish in the ADF\&G survey may result from the selectivity of the gear, or because of greater abundance of large pollock in the areas surveyed. Length composition in 2011 is similar to previous surveys, with a mean length of 53 cm .

ADF\&G Survey Age Composition

Ages were determined by age readers in the AFSC age and growth unit from samples of pollock otoliths collected during the 2000, 2002, 2004, 2006, 2008, and 2010 ADF\&G surveys ($\mathrm{N}=559$, 538, 591,588, 597, and 585). Comparison with fishery age composition shows that older fish (> age-8) are more common in the ADF\&G crab/groundfish survey. This is consistent with the assessment model, which estimates a domed-shaped selectivity pattern for the fishery, but an asymptotic selectivity pattern for the ADF\&G survey.

Pre-1984 bottom trawl surveys

Considerable survey work was carried out in the Gulf of Alaska prior to the start of the NMFS triennial bottom trawl surveys in 1984. Between 1961 and the mid-1980s, the most common bottom trawl used for surveying was the 400 -mesh eastern trawl. This trawl (or minor variants thereof) was used by IPHC for juvenile halibut surveys in the 1960s, 1970s, and early 1980s, and by NMFS for groundfish surveys in the 1970s.

Comparative work using the ADF\&G 400-mesh eastern trawl and the NMFS poly-Nor'eastern trawl produced estimates of relative catchability (von Szalay and Brown 2001), making it possible to evaluate trends in pollock abundance from these earlier surveys in the pollock assessment. Von Szalay and Brown (2001) estimated a fishing power correction (FPC) for the ADF\&G 400-mesh eastern trawl of 3.84 (SE = 1.26), indicating that 400 -mesh eastern trawl CPUE for pollock would need to be multiplied by this factor to be comparable to the NMFS poly-Nor'eastern trawl.

In most cases, earlier surveys in the Gulf of Alaska were not designed to be comprehensive, with the general strategy being to cover the Gulf of Alaska west of Cape Spencer over a period of years, or to survey a large area to obtain an index for group of groundfish, i.e., flatfish or rockfish. For example, Ronholt et al. (1978) combined surveys for several years to obtain gulfwide estimates of pollock biomass for 1973-6. There are several difficulties with such an approach, including the possibility of doublecounting or missing a portion of the stock that happened to migrate between surveyed areas.

An annual gulfwide index of pollock abundance was obtained using generalized linear models (GLM). Based on examination of historical survey trawl locations, four index sites were identified (one per INPFC area) that were surveyed relatively consistently during the period 1961-1983, and during the triennial survey time series (1984-99). The index sites were designed to include a range of bottom depths from nearshore to the continental slope. A generalized linear model (GLM) was fit to pollock CPUE data with year, site, depth strata ($0-100 \mathrm{~m}, 100-200 \mathrm{~m}, 200-300 \mathrm{~m},>300 \mathrm{~m}$), and a site-depth interaction as factors. Both the pre-1984 400-mesh eastern trawl data and post-1984 triennial trawl survey data were used. For the earlier period, analysis was limited to sites where at least 20 trawls were made during the summer (May 1-Sept 15).

Pollock CPUE data consist of observations with zero catch and positive values otherwise, so a GLM
model with Poisson error and a logarithmic link was used (Hastie and Tibshirani 1990). This form of GLM has been used in other marine ecology applications to analyze trawl survey data (Smith 1990, Swartzman et al. 1992). The fitted model was used to predict mean CPUE by site and depth for each year with survey data. Predicted CPUEs $\left(\mathrm{kg} \mathrm{km}^{-2}\right)$ were multiplied by the area within the depth strata $\left(\mathrm{km}^{2}\right)$ and summed to obtain proxy biomass estimates by INPFC area. Since each INPFC area contained only a single non-randomly selected index site, these proxy biomass estimates are potentially biased and would not incorporate the variability in relationship between the mean CPUE at an index site and the mean CPUE for the entire INPFC area. A comparison between these proxy biomass estimates by INPFC area and the actual NMFS triennial survey estimates by INPFC area for 1984-99 was used to obtain correction factors and variance estimates. Correction factors had the form of a ratio estimate (Cochran 1977), in which the sum of the NMFS survey biomass estimates for an INPFC area for 1984-99 is divided by the sum of the proxy biomass estimates for the same period.

Variances were obtained by bootstrapping data within site-depth strata and repeating the biomass estimation algorithm. A parametric bootstrap assuming a lognormal distribution was used for the INPFC area correction factors. Variance estimates do not reflect the uncertainty in the FPC estimate. In the assessment model, the FPC is not applied to the biomass estimates, but instead information about the FPC estimate (mean and variance) was used as a likelihood component for relative survey catchability,

$$
\log L=\frac{\left(q_{1} / q_{2}-\hat{F P C}\right)^{2}}{2 \sigma_{F P C}^{2}},
$$

where q_{1} is the catchability of the NMFS bottom trawl survey, q_{2} is the catchability of historical 400mesh eastern trawl surveys, $\hat{F P C}$ is the estimated fishing power correction (=3.84), and $\sigma_{F P C}$ is the standard error of the FPC estimate ($=1.26$).

Estimates of pollock biomass were very low ($<300,000 \mathrm{t}$) between 1961 and 1971, increased by at least a factor of ten in 1974 and 1975, and then declined to approximately $900,000 \mathrm{t}$ in 1978 (Table 1.12). No trend in pollock abundance is noticeable since 1978, and biomass estimates during 1978-1982 are in the same range as the post-1984 triennial survey biomass estimates. The coefficients of variation (CV) for GLM-based biomass estimates range between 0.24 and 0.64 , and, as should be anticipated, are larger than the triennial survey biomass estimates, which range between 0.12 and 0.38 .

Results were generally consistent with the multi-year combined survey estimates published previously (Table 1.12), and indicate a large increase in pollock biomass in the Gulf of Alaska occurred between the early 1960s ($\sim 200,000 \mathrm{t})$ and the mid 1970s ($>2,000,000 \mathrm{t}$). Increases in pollock biomass between the 1960s and 1970s were also noted by Alton et al. (1987). In the 1961 survey, pollock were a relatively minor component of the groundfish community with a mean CPUE of $16 \mathrm{~kg} / \mathrm{hr}$ (Ronholt et al. 1978). Arrowtooth flounder was the most common groundfish with a mean CPUE of $91 \mathrm{~kg} / \mathrm{hr}$. In the 1973-76 surveys, the CPUE of arrowtooth flounder was similar to the 1961 survey ($83 \mathrm{~kg} / \mathrm{hr}$), but pollock CPUE had increased 20 -fold to $321 \mathrm{~kg} / \mathrm{hr}$, and was by far the dominant groundfish species in the Gulf of Alaska. Meuter and Norcross (2002) also found that pollock was low in the relative abundance in 1960s, became the dominant species in Gulf of Alaska groundfish community in the 1970s, and subsequently declined in relative abundance.

Questions concerning the comparability of pollock CPUE data from historical trawl surveys with later surveys probably can never be fully resolved. However, because of the large magnitude of the change in CPUE between the surveys in the 1960s and the early 1970s using similar trawling gear, the conclusion that there was a large increase in pollock biomass seems robust. Model results suggest that population
biomass in 1961, prior to large-scale commercial exploitation of the stock, may have been lower than at any time since then. Early speculation about the rise of pollock in the Gulf of Alaska in the early 1970s implicated the large biomass removals of Pacific ocean perch, a potential competitor for euphausid prey (Somerton et al. 1979, Alton et al. 1987). More recent work has focused on role of climate change (Anderson and Piatt 1999, Bailey 2000). The occurrence of large fluctuations in pollock abundance without large changes in direct fishing impacts suggests a need for precautionary management. If pollock abundance is controlled primarily by the environment, or through indirect ecosystem effects, it may be difficult to reverse population declines, or to achieve rebuilding targets should the stock become depleted. Reliance on sustained pollock harvests in the Gulf of Alaska, whether by individual fishermen, processing companies, or fishing communities, may be difficult over the long-term.

Qualitative trends

To assess qualitatively recent trends in abundance, each survey time series was standardized by dividing the annual estimate by the average since 1987. Shelikof Strait acoustic survey estimates prior to 2008 were rescaled to be comparable to subsequent surveys conducted by the R / V Oscar Dyson. Although there is considerable variability in each survey time series, a fairly clear downward trend is evident to 2000 , followed by a stable, though variable, trend to 2008 (Fig. 1.12). All surveys show a strong increase since 2008.

Indices derived from fisheries catch data were also evaluated for trends in biological characteristics (Fig. 1.13). The percent of females in the catch is close to $50-50$, but shows a slight downward trend, which may be related to changes in the seasonal distribution of the catch. The percent female was 48.8% in 2009. The mean age shows interannual variability due to strong year classes passing through the population, but no downward trends that would suggest excessive mortality rates. The percent of old fish in the catch (nominally defined as age 8 and older) is also highly variable due to variability in year class strength. The percent of old fish increased to a peak in 1997, declined due to weaker recruitment in the 1990s and increases in total mortality (both from fishing and predation), but increased from 2005 to 2008 as the large 1999 and 2000 year classes entered the old fish category. The percent of old fish dropped in 2009 and again in 2010 as the fishery began to catch greater numbers of young fish from year classes recruiting to the fishery. Under a constant $F_{40 \%}$ harvest rate, the mean percent of age 8 and older fish in the catch is approximately 17%. An index of catch at age diversity was computed using the ShannonWiener information index,

$$
-\sum p_{a} \ln p_{a},
$$

where p_{a} is the proportion at age. Increases in fishing mortality would tend to reduce age diversity, but year class variability would also influence age diversity. The index of age diversity is relatively stable during 1976-2010 (Fig. 1.13).

McKelvey Index

McKelvey (1996) found a significant correlation between the abundance of age-1 pollock in the Shelikof Strait acoustic survey and subsequent estimates of year-class strength. The McKelvey index is defined as the estimated abundance of $9-16 \mathrm{~cm}$ fish in the Shelikof Strait acoustic survey, and is an index of recruitment at age 2 in the following year (Table 1.13). The relationship between the abundance of age- 1 pollock in the Shelikof Strait acoustic survey and year-class strength provides a recruitment forecast for the year following the most recent Shelikof Strait acoustic survey. No estimate of age-1 pollock abundance is available in 2011 due to cancellation of the Shelikof Strait acoustic survey.

Analytic Approach

Model Structure

An age-structured model covering the period from 1961 to 2011 (51 yrs) was used to assess Gulf of Alaska pollock. The modeled population includes individuals from age 2 to age 10 , with age 10 defined as a "plus" group, i.e., all individuals age 10 and older. The same fundamental model structure and assumptions have been used since the 1999 assessment, although some minor changes have been implemented to deal with novel situations. Population dynamics were modeled using standard formulations for mortality and fishery catch (e.g. Fournier and Archibald 1982, Deriso et al. 1985, Hilborn and Walters 1992). Year- and age-specific fishing mortality was modeled as a product of a year effect, representing the full-recruitment fishing mortality, and an age effect, representing the selectivity of that age group to the fishery. The age effect was modeled using a double-logistic function with timevarying parameters (Dorn and Methot 1990, Sullivan et al. 1997). The model was fit to time series of catch biomass, survey indices of abundance, and estimates of age and length composition from the fishery and surveys. Details of the population dynamics and estimation equations are presented in Appendix B.

Model parameters were estimated by maximizing the log likelihood of the data, viewed as a function of the parameters. Lognormal likelihoods were used for survey biomass and total catch estimates, and multinomial likelihoods were used for age and length composition data.

Likelihood component	Statistical model for error	Variance assumption
Fishery total catch (1964-2011)	Log-normal	$\mathrm{CV}=0.05$
POP fishery length comp. (1964-71)	Multinomial	Sample size $=60$
Fishery age comp. (1972-2010)	Multinomial	Year-specific sample size $=60-400$
Shelikof acoustic survey biomass (1981-2010)	Log-normal	Survey-specific CV $=0.10-0.35$
Shelikof acoustic survey age comp. (1981-2010)	Multinomial	Sample size $=60$
NMFS bottom trawl survey biom. (1984-2011)	Log-normal	Survey-specific CV $=0.12-0.38$
NMFS bottom trawl survey age comp. (19842009)	Multinomial	Survey-specific sample size $=38-74$
NMFS bottom trawl survey length comp. (2011)	Multinomial	Survey-specific sample size $=38-74$
ADF\&G trawl survey biomass (1989-2011)	Log-normal	$\mathrm{CV}=0.25$
ADF\&G survey age comp. (2000, 2002, 2004, 2006, 2008, 2010)	Multinomial	Sample size $=10$
ADF\&G survey length comp. (1989-2011)	Multinomial	Sample size $=10$
Historical trawl survey biomass (1961-1982)	Log-normal	Survey-specific CV $=0.24-0.64$
Historical trawl survey age comp. (1973)	Multinomial	Sample size $=60$
Historical trawl survey length comp. (19611982)	Multinomial	Sample size $=10$
Fishery selectivity random walk process error	Log-normal Normal	Slope CV $=0.10$ (0.001 for 1961-71) Inflection age $\mathrm{SD}=0.40$ (0.004 for 1961-71)
Recruit process error (1961-1968,2011)	Log-normal	$\sigma_{\mathrm{R}}=1.0$

Recruitment

In most years, year-class abundance at age 2 was estimated as a free parameter. A prior constraint was imposed on recruitment at the start of the modeled time period to improve parameter estimability. Instead of estimating the abundance of each age of the initial age composition independently, we parameterized
the initial age composition with mean log recruitment plus a log deviation from an equilibrium age structure based on that mean initial recruitment. A penalty was added to the log likelihood so that the log deviations would have the same variability as recruitment during the assessment period ($\sigma_{R}=1.0$). We also used the same constraint for log deviations in recruitment for 1961-68, and in 2011. Log deviations were estimated as free parameters in other years. These relatively weak constraints were sufficient to obtain fully converged parameter estimates while retaining an appropriate level of uncertainty (e.g. the CV of recruitment in $2011 \approx \sigma_{\mathrm{R}}$).

Modeling fishery data

To accommodate changes in selectivity during the development of the fishery, we allowed the parameters of the double logistic function to vary according to a random walk process (Sullivan et al. 1997). This approach allows selectivity to vary from one year to the next, but restricts the amount of variation that can occur. The resulting selectivity patterns are similar to those obtained by grouping years, but transitions between selectivity patterns occur gradually rather than abruptly. Constraining the selectivity pattern for a group of years to be similar can be done simply by reducing the year-specific standard deviation of the process error term. Since limited data are available from the Pacific ocean perch fishery years (1964-71) and in 2011, the process error standard deviation for those years was assumed to be very small, so that annual changes in selectivity are very restricted during these years.

Modeling survey data

Survey abundance was assumed to be proportional to total abundance as modified by the estimated survey selectivity pattern. Expected population numbers at age for the survey were based on the mid-date of the survey, assuming constant fishing and natural mortality throughout the year. Standard deviations in the log-normal likelihood were set equal to the sampling error CV (coefficient of variation) associated with each survey estimate of abundance (Kimura 1991).

Survey catchability coefficients can be fixed or freely estimated. The NMFS bottom trawl survey catchability was fixed at one in this and previous assessments as a precautionary constraint on the total biomass estimated by the model. A likelihood profile on trawl catchability showed that the maximum likelihood estimate of trawl catchability was approximately 0.68 . This result is reasonable because pollock are known to form pelagic aggregations and occur in nearshore areas not well sampled by the NMFS bottom trawl survey. Catchability coefficients for other surveys were estimated as free parameters. Egg production estimates of spawning stock biomass were included in the model by setting the age-specific selectivity equal to the estimated percent mature at age estimated by Hollowed et al. (1991).

The Simrad EK acoustic system has been used to estimate biomass in the acoustic surveys since 1992. Earlier surveys (1981-91) were obtained with an older Biosonics acoustic system (Table 1.7). Biomass estimates similar to the Biosonics acoustic system can be obtained using the Simrad EK when a volume backscattering $\left(\mathrm{S}_{\mathrm{v}}\right)$ threshold of -58.5 dB is used (Hollowed et al. 1992). Because of the newer system's lower noise level, abundance estimates since 1992 have been based on a S_{v} threshold of -70 dB . The Shelikof Strait acoustic survey time series was split into two periods corresponding to the two acoustic systems, and separate survey catchability coefficients were estimated for each period. For the 1992 and 1993 surveys, biomass estimates using both noise thresholds were used to provide to provide information on relative catchability.

A vessel comparison (VC) experiment was conducted in March 2007 during the Shelikof Strait acoustictrawl survey. The VC experiment involved the R / V Miller Freeman (MF, the survey vessel used to conduct Shelikof Strait surveys since the mid-1980s), and the R/V Oscar Dyson (OD), a noise-reduced survey vessel designed to conduct surveys that have traditionally been done with the R / V Miller Freeman. The vessel comparison experiment was designed to collect data either with the two vessels running beside
one another at a distance of 0.7 nmi , or with one vessel following nearly directly behind the other at a distance of about 1 nmi . The methods were similar to those used during the 2006 Bering Sea VC experiment (De Robertis et al. 2008). Results indicate that the ratio of 38 kHz pollock backscatter from the R / V Oscar Dyson relative to the R / V Miller Freeman was significantly greater than one (1.13), as would be expected if the quieter OD reduced the avoidance response of the fish. Because this difference was significant, several methods were evaluated in the 2008 assessment for incorporating this result in the assessment model. The method that was adopted was to treat the MF and the OD time series as independent survey time series, and to include the vessel comparison results directly in the log likelihood of the assessment model. This likelihood component is given by

$$
\log L=-\frac{1}{2\left(\sigma_{S}^{2}\right)}\left[\log \left(q_{O D}\right)-\log \left(q_{M F}\right)-\delta_{O D: M F}\right]^{2}
$$

where $\log \left(q_{O D}\right)$ is the \log catchability of the $R / V \operatorname{Oscar} \operatorname{Dyson}, \log \left(q_{M F}\right)$ is the \log catchability of the R / V Oscar Dyson, $\delta_{O D: M F}=0.1240$ is the mean of \log scale paired difference in backscatter, mean $\left[\log \left(\mathrm{s}_{\mathrm{A}} \mathrm{OD}\right)\right.$ $\left.\log \left(\mathrm{s}_{\mathrm{A}} \mathrm{MF}\right)\right]$ obtained from the vessel comparison, and $\sigma_{S}=0.0244$ is the standard error of the mean.

Ageing error

An ageing error conversion matrix is used in the assessment model to translate model population numbers at age to expected fishery and survey catch at age (Table 1.14). Dorn et al. (2003) estimated this matrix using an ageing error model fit to the observed percent reader agreement at ages 2 and 9 . Mean percent agreement is close to 100% at age 1 and declines to 40% at age 10. Annual estimates of percent agreement are variable, but show no obvious trend; hence a single conversion matrix for all years in the assessment model was adopted. The model is based on a linear increase in the standard deviation of ageing error and the assumption that ageing error is normally distributed. The model predicts percent agreement by taking into account the probability that both readers are correct, both readers are off by one year in the same direction, and both readers are off by two years in the same direction (Methot 2000). The probability that both agree and were off by more than two years was considered negligible. A recent study evaluated pollock ageing criteria using radiometric methods and found them to be unbiased (Kastelle and Kimura 2006).

Length frequency data

The assessment model was fit to length frequency data from various sources by converting predicted age distributions (as modified by age-specific selectivity) to predicted length distributions using an age-length conversion matrix. Because seasonal differences in pollock length at age are large, several conversion matrices were used. For each matrix, unbiased length distributions at age were estimated for several years using age-length keys, and then averaged across years. A conversion matrix estimated by Hollowed et al. (1998) was used for length-frequency data from the early period of the fishery. A conversion matrix was estimated using 1992-98 Shelikof Strait acoustic survey data and used for winter survey length frequency data. The following length bins were used: 17-27, 28-35, 36-42, 43-50, 51-55, 56-70 (cm). Finally, a conversion matrix was estimated using second and third trimester fishery age and length data during the years (1989-98) and was used for the ADF\&G survey length frequency data. The following length bins were used: 25-34, 35-41, 42-45, 46-50, 51-55, 56-70 (cm), so that the first three bins would capture most of the summer length distribution of the age- 2 , age- 3 and age- 4 fish, respectively. Bin definitions were different for the summer and the winter conversion matrices to account for the seasonal growth of the younger fish (ages 2-4).

Parameters Estimated Independently

Pollock life history characteristics, including natural mortality, growth, and maturity, were estimated independently. These parameters are used in the model to estimate spawning and population biomass and obtain predictions of fishery and survey biomass. Pollock life history parameters include:

- Natural mortality (M)
- Proportion mature at age
- Weight at age and year by fishery and by survey

Natural mortality

Hollowed and Megrey (1990) estimated natural mortality (M) using a variety of methods including estimates based on: a) growth parameters (Alverson and Carney 1975, and Pauly 1980), b) GSI (Gunderson and Dygert, 1988), c) monitoring cohort abundance, and d) estimation in the assessment model. These methods produced estimates of natural mortality that ranged from 0.24 to 0.30 . The maximum age observed was 22 years. For the assessment modeling, natural mortality was assumed to be 0.3 for all ages.

Hollowed et al. (2000) developed a model for Gulf of Alaska pollock that accounted for predation mortality. The model suggested that natural mortality declines from 0.8 at age 2 to 0.4 at age 5 , and then remains relatively stable with increasing age. In addition, stock size was higher when predation mortality was included. In a simulation study, Clark (1999) evaluated by the effect of an erroneous M on both estimated abundance and target harvest rates for a simple age-structured model. He found that "errors in estimated abundance and target harvest rate were always in the same direction, with the result that, in the short term, extremely high exploitation rates can be recommended (unintentionally) in cases where the natural mortality rate is overestimated and historical exploitation rates in the catch-at-age data are low." He proposed that this error could be avoided by using a conservative (low) estimate of natural mortality. This suggests that the current approach of using a potentially low but still credible estimate of M for assessment modeling is consistent with the precautionary approach. However, it should be emphasized that the role of pollock as prey in the Gulf of Alaska ecosystem cannot be fully evaluated using a single species assessment model (Hollowed et al. 2000).

Maturity at age

Maturity stages for female pollock describe a continuous process of ovarian development between immature and post-spawning. For the purposes of estimating a maturity vector (the proportion of an age group that has been or will be reproductively active during the year) for stock assessment, all fish greater than or equal to a particular maturity stage are assumed to be mature, while those less than that stage are assumed to be immature. Maturity stages in which ovarian development had progressed to the point where ova were distinctly visible were assumed to be mature. Maturity stages are qualitative rather than quantitative, so there is subjectivity in assigning stages, and a potential for different technicians to apply criteria differently. Because the link between pre-spawning maturity stages and eventual reproductive activity later in the season is not well established, the division between mature and immature stages is problematic. Changes in the timing of spawning could also affect maturity at age estimates. Merati (1993) compared visual maturity stages with ovary histology and a blood assay for vitellogenin and found general consistency between the different approaches. Merati (1993) noted that ovaries classified as late developing stage (i.e., immature) may contain yolked eggs, but it was unclear whether these fish would spawn later in the year. The average sample size of female pollock maturity stage data per year since 2000 from winter acoustic surveys in the Gulf of Alaska is 360 (Table 1.15).

Estimates of maturity at age in 2010 from winter acoustic surveys were above the long-term average for all ages (Fig. 1.14). Inter-annual changes in maturity at age may reflect environmental conditions, pollock population biology, effect of strong year classes moving through the population, or simply ageing error. Because there did not appear to be an objective basis for excluding data, the 1983-2010 average maturity at age was used in the assessment.

Logistic regression (McCullagh and Nelder 1983) was also used to estimate the age and length at 50\% maturity at age for each year. Annual estimates of age at 50% maturity are highly variable and range from 3.7 years in 1984 to 6.1 years in 1991, with an average of 4.9 years. Length at 50% mature is less variable than the age at 50% mature, suggesting that at least some of the variability in the age at maturity can be attributed to changes in length at age (Fig 1.15). Changes in year-class dominance could also potentially affect estimates of maturity at age. There is less evidence of trends in the length at 50% mature, with only the 1983 and 1984 estimates as unusually low values. The average length at 50% mature for all years is approximately 43 cm .

Weight at age

Year-specific weight-at-age estimates are used in the model to obtain expected catches in biomass. Where possible, year and survey-specific weight-at-age estimates are used to obtain expected survey biomass. For each data source, unbiased estimates of length at age were obtained using year-specific age-length keys. Bias-corrected parameters for the length-weight relationship, $W=a L^{b}$, were also estimated. Weights at age were estimated by multiplying length at age by the predicted weight based on the length-weight regressions. A plot of weight-at-age from the Shelikof Strait acoustic survey indicates that there has been a substantial increase in weight at age for older pollock (Fig. 1.16). For pollock greater than age 6, weight-at-age has nearly doubled since 1983-1990. Further analyses are proposed to evaluate whether these changes are a density-dependent response to declining pollock abundance, or whether they are environmentally forced. Since these changes are highly auto-correlated, a fairly sophisticated analysis would be needed to attribute causation. Changes in weight-at-age have potential implications for status determination and harvest policy. For example, if the mean weight-at-age and maturity-at-age from 1983-90 is considered representative of an unfished stock, and the current weight-atage is attributed to a density-dependent response, current stock status would be at 51% of unfished stock size, rather than 28.8% of unfished stock size.

Parameter Estimation

A large number of parameters are estimated when using this modeling approach. More than half of these parameters are year-specific deviations in fishery selectivity coefficients. Parameters were estimated using ADModel Builder, a C++ software language extension and automatic differentiation library. Parameters in nonlinear models are estimated in ADModel Builder using automatic differentiation software extended from Greiwank and Corliss (1991) and developed into C++ class libraries. The optimizer in ADModel builder is a quasi-Newton routine (Press et al. 1992). The model is determined to have converged when the maximum parameter gradient is less than a small constant (set to 1×10^{-6}). ADModel builder includes post-convergence routines to calculate standard errors (or likelihood profiles) for any quantity of interest.

A list of model parameters is shown below:

Population process modeled	Number of parameters	Estimation details
Initial age structure	Ages 3-10 $=8$	Estimated as \log deviances from the \log mean; constrained by random deviation process error from an equilibrium unfished age structure
Recruitment	Years 1961-2011 $=51$	Estimated as \log deviances from the \log mean; recruitment in 1961-68, and 2011 constrained by random deviation process error.
Natural mortality	Age- and year-invariant $=1$	Not estimated in the model
Fishing mortality	Years 1961-2011 $=51$	Estimated as log deviances from the log mean
Mean fishery selectivity	4	Slope parameters estimated on a log scale, intercept parameters on an arithmetic scale
Annual changes in fishery selectivity	$4 *($ No. years- 1) $=200$	Estimated as deviations from mean selectivity and constrained by random walk process error
Survey catchability	No. of surveys $+2=8$	AFSC bottom trawl survey catchability not estimated, other catchabilities estimated on a log scale. Three catchability periods were estimated for the acoustic survey.
Survey selectivity	10 (acosutic survey: $2, \mathrm{BT}$ survey: 4 , ADF\&G survey: 2, Historical 400-mesh eastern trawls: 2)	Slope parameters estimated on a \log scale. The egg production survey uses a fixed selectivity pattern equal to maturity at age.
Total	131 primary parameters +200 process error parameters +2 fixed parameters $=333$	

Results

Model evaluation

Model fit to age composition data was evaluated using plots of observed and predicted age composition in the fishery (Fig. 1.17), Shelikof Strait acoustic survey (Fig. 1.18), and the NMFS trawl survey (Fig. 1.19). Model fits to fishery age composition data are good in most years. The fit of Shelikof Strait acoustic survey age composition shows large residuals at age 2 and age 3 in 2006-2009 due to inconsistencies between the initial estimates of abundance and subsequent information about the magnitude of these year classes.

Model fits are similar to previous assessments, and general trends in survey time series are fit reasonably well (Dorn et al. 2009) (Figs. 1.20-1.22). The discrepancy between the NMFS trawl survey and the Shelikof Strait acoustic survey biomass estimates in the 1980s accounts for the poor model fit to both time series during those years. All survey time series in the last three years (2009 and 2010) are consistent showing in showing a strong increase, but the magnitude of the increase is not same for all time series. Therefore it was not possible for the model to fit all survey estimates simultaneously.

A likelihood profile for NMFS trawl survey catchability shows that the likelihood is higher for models with catchability equal to 0.68 (Fig. 1.23), compared to the estimate of 0.64 in the 2010 assessment. The change in log likelihood is about 2.9 between models with fixed and estimated catchability, and as expected there is a relatively large increase in stock size when catchability is estimated (34% increase in

2011 spawning biomass). These results are similar to previous assessments. To be consistent with recommendations in previous assessments, we used a base model with fixed trawl survey catchability of 1.0 .

Time series results

Parameter estimates and model output are presented in a series of tables and figures. Estimated survey selectivity and fishery selectivity for different periods given in Table 1.16 (see also Figure 1.24). Table 1.17 gives the estimated population numbers at age for the years 1961-2011. Table 1.18 gives the estimated time series of age $3+$ population biomass, age- 2 recruitment, and harvest rate (catch/3+ biomass) for 1977-2010 (see also Fig. 1.25). Table 1.19 gives coefficients of variation and 95\% confidence intervals for age-2 recruitment and spawning stock biomass. Stock size peaked in the early 1980s at approximately 1.1 times the proxy for unfished stock size ($\mathrm{B} 100 \%=$ mean 1979-2009 recruitment multiplied by the spawning biomass per recruit in the absence of fishing (SPR at $F=0$). In 1998, the stock dropped below the $\mathrm{B}_{40 \%}$ for the first time since the 1970s, reached a minimum in 2003 of 20% of unfished stock size. Over the last five years (2007-2011) stock size has varied between 25% and 35% of unfished stock size.

Retrospective comparison of assessment results

A retrospective comparison of assessment results for the years 1993-2011 indicates the current estimated trend in spawning biomass for 1990-2010 is consistent with previous estimates (Fig. 1.26, top panel). All time series show a similar pattern of decreasing spawning biomass in the 1990s followed by a period of greater stability in 2000s. There appear to be no consistent pattern of bias in estimates of ending year biomass, but assessment errors are clearly correlated over time, such that there are runs of over estimates and under estimates. The estimated 2011 age composition from the current assessment is similar to projected 2011 age composition in the 2010 assessment (Fig. 1.26, bottom panel). The largest change is the estimate of the age-2 fish (2009 year class), which is about half the size of the project value of 0.7 billion ($=$ mean recruitment) in last year's assessment.

Stock productivity

Recruitment of Gulf of Alaska pollock is more variable ($\mathrm{CV}=1.09$) than Eastern Bering Sea pollock (CV $=0.62$). Other North Pacific groundfish stocks, such as sablefish and Pacific ocean perch, also have high recruitment variability. However, unlike sablefish and Pacific ocean perch, pollock have a short generation time ($<10 \mathrm{yrs}$), so that large year classes do not persist in the population long enough to have a buffering effect on population variability. Because of these intrinsic population characteristics, the typical pattern of biomass variability for Gulf of Alaska pollock will be sharp increases due to strong recruitment, followed by periods of gradual decline until the next strong year class recruits to the population. Gulf of Alaska pollock is more likely to show this pattern than any other groundfish stock in the North Pacific due to the combination of a short generation time and high recruitment variability.

Since 1980, strong year classes have occurred every four to six years (Fig. 1.25). Because of high recruitment variability, the functional relationship between spawning biomass and recruitment is difficult to estimate despite good contrast in spawning biomass. Strong and weak year classes have been produced at high and low level of spawning biomass. The 1972 year class (one of the largest on record) was produced by an estimated spawning biomass close to current levels, suggesting that the stock has the potential to produce strong year classes. Spawner productivity is higher on average at low spawning biomass compared to high spawning biomass, indicating that survival of eggs to recruitment is densitydependent (Fig. 1.27). However, this pattern of density-dependent survival only emerges on a decadal scale, and could be confounded with environmental variability on the same temporal scale. These decadal trends in spawner productivity have produced the pattern of increase and decline in the GOA pollock
population. The last two decades have been a period of relatively low spawner productivity.
We summarize information on recent year classes in the table below. Unfortunately, little information exists on the magnitude of incoming year classes. The initial estimate of the 2009 year class is 0.388 billion, which is below average. Although abundance at age 1 in the NMFS bottom trawl survey correlates weakly with year class strength, age-1 fish were widely distributed throughout the Gulf of Alaska during the 2011 survey, and that abundance was relatively high, suggesting that the 2010 year class may be above the median in size.

Year of recruitment	2011	2012	2013
Year class	2009	2010	2011
FOCI prediction	Average	Not available	Not available
Survey information	2010 Shelikof acoustic survey age-1 estimate is 0.090 billion (14th in abundance out of 26 surveys)	2011 bottom trawl survey age-1 estimate is 0.250 billion (3rd out of 12 surveys)	

Projections and Harvest Alternatives

Reference fishing mortality rates and spawning biomass levels

Since 1997, Gulf pollock have been managed under Tier 3 of NPFMC harvest guidelines. In Tier 3, reference mortality rates are based on the spawning biomass per recruit (SPR), while biomass reference levels are estimated by multiplying the SPR by average recruitment. Estimates of the $F_{S P R}$ harvest rates were obtained using the life history characteristics of Gulf of Alaska pollock (Table 1.20). Spawning biomass reference levels were based on mean 1979-2010 recruitment (690 million), which is slightly lower than the post-1979 mean in the 2010 assessment. The average did not include the recruitment in 2011 (2009 year class) due to uncertainty in the estimate of year class strength. Spawning was assumed to occur on March 15th, and female spawning biomass was calculated using mean weight at age for the Shelikof Strait acoustic surveys in 2006-2010 to estimate current reproductive potential. A substantial increase in pollock weight-at-age has been observed (Fig. 1.16), which may be a density-dependent response to low abundance or due to environmental forcing. The SPR at $\mathrm{F}=0$ was estimated as 0.982 $\mathrm{kg} /$ recruit. This estimate is not changed from the 2010 because no new data are available. $F_{S P R}$ rates depend on the selectivity pattern of the fishery. Selectivity in the Gulf of Alaska pollock fishery changed as the fishery evolved from a foreign fishery occurring along the shelf break to a domestic fishery on spawning aggregations and in nearshore waters (Fig. 1.1). For SPR calculations, selectivity was based on the average for 2006-2010 to reflect current selectivity patterns. Gulf of Alaska pollock $F_{\text {SPR }}$ harvest rates are given below:

Equilibrium under average 1979-2010 recruitment

		Equilibrium under average 1979-2010 recruitment				
$F_{\text {SPR }}$ rate	Fishing mortality	Avg. Recr. (Million)	$\left.\begin{array}{c}\text { Total 3+ biom. } \\ (1000 \\ t\end{array}\right)$	$\left.\begin{array}{c}\text { Female spawning } \\ \text { biom. }(1000 \\ t\end{array}\right)$	$\left.\begin{array}{c}\text { Catch } \\ (1000 \\ t\end{array}\right)$	Harvest rate
100.0%	0.000	690	2081	678	0	0.0%
50.0%	0.150	690	1302	339	161	12.4%
45.0%	0.175	690	1220	305	176	14.5%
40.0%	0.203	690	1136	271	191	16.8%
35.0%	0.236	690	1050	237	205	19.5%

The $B_{40 \%}$ estimate of $271,000 t$ represents a 2% decrease from the $B_{40 \%}$ estimate of $276,000 \mathrm{t}$ in the 2010 assessment, and is due the small reduction in average recruitment. The model projection of spawning biomass in 2012 is $227,723 \mathrm{t}$, which is 33.6% of unfished spawning biomass and below $B_{40 \%}(271,000 \mathrm{t})$, thereby placing Gulf of Alaska pollock in sub-tier "b" of Tier 3. In sub-tier "b" the OFL and maximum permissible ABC fishing mortality rates are adjusted downwards as described by the harvest guidelines (see SAFE Summary Chapter).

2012 acceptable biological catch

The definitions of OFL and maximum permissible $F_{A B C}$ under Amendment 56 provide a buffer between the overfishing level and the intended harvest rate, as required by NMFS national standard guidelines. Since estimates of stock biomass from assessment models are uncertain, the buffer between OFL and ABC provides a margin of safety so that assessment error will not result in the OFL being inadvertently exceeded. For Gulf of Alaska pollock, the maximum permissible $F_{A B C}$ harvest rate is 86.0% of the OFL harvest rate. In the 2001 assessment, based on an analysis that showed that the buffer between the maximum permissible $F_{A B C}$ and OFL decreased when the stock is below approximately $\mathrm{B}_{50 \%}$, we developed a more conservative alternative that maintains a constant buffer between ABC and $F_{A B C}$ at all stock levels (Table 1.21). While there is always some probability of exceeding $F_{O F L}$ due to imprecise stock assessments, it seemed unreasonable to reduce safety margin as the stock declines.

This alternative is given by the following

Define $B^{*}=B_{40 \%} \frac{F_{35 \%}}{F_{40 \%}}$

Stock status: $B / B^{*}>1$, then $F=F_{40 \%}$
Stock status: $0.05<B / B^{*} \leq 1$, then $F=F_{40 \%} x\left(B / B^{*}-0.05\right) /(1-0.05)$
Stock status: $B / B^{*} \leq 0.05$, then $F=0$

This alternative has the same functional form as the maximum permissible $F_{A B C}$; the only difference is that it declines linearly from $B^{*}\left(=B_{47 \%}\right)$ to $0.05 B^{*}$ (Fig. 1.28).

Projections for 2012 for $F_{O F L}$, the maximum permissible $F_{A B C}$, and an adjusted $F_{40 \%}$ harvest rate with a constant buffer between $F_{A B C}$ and $F_{O F L}$ are given in Table 1.22.

ABC recommendation

There were two new surveys in 2011, the NMFS bottom trawl survey and ADF\&G crab/groundfish survey. The 2011 NMFS bottom trawl survey biomass estimate was very close to the 2009 estimate ($<1 \%$ increase). The ADF\&G crab/groundfish survey biomass estimate declined 19% from the 2010 biomass estimate, but is 32% above the mean for 2006-2008. Recent estimates from both surveys are fit adequately by the model, and there are no large residuals to the fit to recent age data. No acoustic surveys were conducted in winter of 2011, increasing the uncertainty of the assessment model relative to previous years. The estimated abundance of mature fish in 2012 is projected to be 11% higher than in 2011, and is projected to increase gradually over the next five years.

While there are concerns about the lack of Shelikof Strait acoustic survey in 2011, in the author's opinion they do not raise to the level that precautionary reduction in the ABC is justified, especially since trends in the other data used in the assessment are reasonably consistent and consistent with model results. The recommended ABC was based on a standard model projection using the more conservative adjusted $F_{40 \%}$ harvest rate described above. The author's recommended 2012 ABC is therefore $108,440 \mathrm{t}$, which is an increase of 22% from the 2011 ABC . While there are some elements of risk-aversion in this recommendation, such as fixing trawl catchability at 1.0 , our recommendation is to delay treating those elements until an ABC framework is in place that deals explicitly with scientific uncertainty. In 2013, the ABC based an adjusted $F_{40 \%}$ harvest rate is $117,325 \mathrm{t}$ (Table 1.22). The OFL in 2012 is $143,716 \mathrm{t}$, and the OFL in 2013 if the recommended ABC is taken in 2012 is $155,402 \mathrm{t}$.

To evaluate the probability that the stock will drop below the $\mathrm{B}_{20 \%}$ threshold, we projected the stock forward for five years and removed catches based on the spawning biomass in each year and the author's recommended fishing mortality schedule. This projection incorporates uncertainty in stock status, uncertainty in the estimate of $\mathrm{B}_{20 \%}$, and variability in future recruitment. We then sampled from the likelihood of future spawning biomass using Markov chain Monte Carlo (MCMC) (Fig. 1.29). A chain of $1,000,000$ samples was thinned by selecting every 200th sample. Analysis of the thinned MCMC chain indicates that probability of the stock dropping below $B_{20 \%}$ will be negligible in all years.

Projections and Status Determination

A standard set of projections is required for stocks managed under Tier 3 of Amendment 56. This set of projections encompasses seven harvest scenarios designed to satisfy the requirements of Amendment 56, the National Environmental Protection Act, and the Magnuson-Stevens Fishery Conservation and Management Act (MSFCMA). For each scenario, the projections begin with the 2011 numbers at age as estimated by the assessment model, and assume the 2011 catch will be equal to the TAC of $88,620 \mathrm{t}$. In each year, the fishing mortality rate is determined by the spawning biomass in that year and the respective harvest scenario. Recruitment is drawn from an inverse Gaussian distribution whose parameters consist of maximum likelihood estimates determined from recruitments during 1979-2010 as estimated by the assessment model. Spawning biomass is computed in each year based on the time of peak spawning (March 15) using the maturity and weight schedules in Table 1.20. This projection scheme is run 1000 times to obtain distributions of possible future stock sizes, fishing mortality rates, and catches.

Five of the seven standard scenarios are used in an Environmental Assessment prepared in conjunction with the final SAFE. These five scenarios, which are designed to provide a range of harvest alternatives
that are likely to bracket the final TAC for 2012, are as follows (" $m a x F_{A B C}$ " refers to the maximum permissible value of $F_{A B C}$ under Amendment 56):

Scenario 1: In all future years, F is set equal to $\max F_{A B C}$. (Rationale: Historically, TAC has been constrained by ABC , so this scenario provides a likely upper limit on future TACs.)

Scenario 2: In all future years, F is set equal to the $F_{A B C}$ recommended in the assessment.
Scenario 3: In all future years, F is set equal to the five-year average F (2007-2011). (Rationale: For some stocks, TAC can be well below ABC, and recent average F may provide a better indicator of $F_{T A C}$ than $F_{A B C}$.)

Scenario 4: In all future years, F is set equal to $F_{75 \%}$. (Rationale: This scenario represents a very conservative harvest rate and was requested by the Regional Office based on public comment.)

Scenario 5: In all future years, F is set equal to zero. (Rationale: In extreme cases, TAC may be set at a level close to zero.)

Two other scenarios are needed to satisfy the MSFCMA's requirement to determine whether a stock is currently in an overfished condition or is approaching an overfished condition. These two scenarios are as follow (for Tier 3 stocks, the MSY level is defined as $B_{35 \%}$):

Scenario 6: In all future years, F is set equal to $F_{\text {OFL }}$. (Rationale: This scenario determines whether a stock is overfished. If the stock is expected to be 1) above its MSY level in 2011 or 2) above $1 / 2$ of its MSY level in 2011 and above its MSY level in 2021 under this scenario, then the stock is not overfished)

Scenario 7: In 2012 and 2013, F is set equal to $\max F_{A B C}$, and in all subsequent years, F is set equal to $F_{\text {OFL }}$. (Rationale: This scenario determines whether a stock is approaching an overfished condition. If the stock is expected to be 1) above its MSY level in 2014, or 2) above $1 / 2$ of its MSY level in 2014 and above its MSY level in 2024 under this scenario, then the stock is not approaching an overfished condition.)

Results from scenarios $1-5$ are presented in Table 1.22. A Under all harvest policies, mean spawning biomass is projected remain stable or to increase gradually over the next five years (Fig. 1.30). Plots of individual projection runs are highly variable (Fig. 1.31), and may provide a more realistic view of potential pollock abundance in the future.

Under the MSFCMA, the Secretary of Commerce is required to report on the status of each U.S. fishery with respect to overfishing. This report involves the answers to three questions: 1) Is the stock being subjected to overfishing? 2) Is the stock currently overfished? 3) Is the stock approaching an overfished condition?

The catch estimate for the most recent complete year (2010) is $76,860 t$, which is less than the 2010 OFL of $103,210 \mathrm{t}$. Therefore, the stock is not being subject to overfishing.

Scenarios 6 and 7 are used to make the MSFCMA's other required status determination as follows:
Spawning biomass is estimated to be $237,607 \mathrm{t}$ in 2011 which is above $B_{35 \%}(237,000 \mathrm{t})$. Therefore, Gulf of Alaska pollock is not currently overfished.

Under scenario 7, projected mean spawning biomass in 2014 is $224,954 \mathrm{t}$, which less than $B_{35 \%}$, but greater than $1 / 2$ the MSY level. In 2024, the projected mean spawning biomass is $267,397 \mathrm{t}$, which is 113% of $B_{35 \%}$. Therefore, Gulf of Alaska pollock is not approaching an overfished condition.

Ecosystem considerations

Prey of pollock

An ECOPATH model was assembled to characterize food web structure in Gulf of Alaska using diet data and population estimates during 1990-93. We use ECOPATH here simply as a tool to integrate diet data and stock abundance estimates in a consistent way to evaluate ecosystem interactions. We focus primarily on first-order trophic interactions: prey of pollock and the predators of pollock.

Pollock trophic interactions occur primarily in the pelagic pathway in the food web, which leads from phytoplankton through various categories of zooplankton to planktivorous fish species such as capelin and sandlance (Fig. 1.32); the primary prey of pollock are euphausiids. Pollock also consume shrimp, which are more associated with the benthic pathway, and make up approximately 18% of age $2+$ pollock diet. All ages of GOA pollock are primarily zooplanktivorous during the summer growing season ($>80 \%$ by weight zooplankton in diets for juveniles and adults; Fig 1.33). While there is an ontogenetic shift in diet from copepods to larger zooplankton (primarily euphausiids) and fish, cannibalism is not as prevalent in the Gulf of Alaska as in the Eastern Bering Sea, and fish consumption is low even for large pollock (Yang and Nelson 2000).

There are no extended time series of zooplankton abundance for the shelf waters of the Gulf of the Alaska. Brodeur and Ware (1995) provide evidence that biomass of zooplankton in the center of the Alaska Gyre was twice as high in the 1980s than in the 1950s and 1960s, consistent with a shift to positive values of the PDO since 1977. The percentage of zooplankton in diets of pollock is relatively constant throughout the 1990s (Fig. 1.33). While indices of stomach fullness exist for these survey years, a more detailed bioenergetics modeling approach would be required to examine if feeding and growth conditions have changed over time, especially given the fluctuations in GOA water temperature in recent years (Fig. 15, Ecosystem Considerations Appendix), as water temperature has a considerable effect on digestion and other energetic rates.

Predators of pollock

Initial ECOPATH model results show that the top five predators on pollock $>20 \mathrm{~cm}$ by relative importance are arrowtooth flounder, Pacific halibut, Pacific cod, Steller sea lion (SSL), and the directed pollock fishery (Fig. 1.36). For pollock less than 20 cm , arrowtooth flounder represent close to 50% of total mortality. All major predators show some diet specialization, and none depend on pollock for more than 50% of their total consumption (Fig. 1.35). Pacific halibut is most dependent on pollock (48\%), followed by SSL (39%), then arrowtooth flounder (24% for juvenile and adult pollock combined), and lastly Pacific cod (18\%). It is important to note that although arrowtooth flounder is the largest single source of mortality for both juvenile and adult pollock (Fig 1.34), arrowtooth depend less on pollock in their diets then do the other predators.

Arrowtooth consume a greater number of smaller pollock than do Pacific cod or Pacific halibut, which consume primarily adult fish. However, by weight, larger pollock are important to all three predators (Fig. 1.36). Length frequencies of pollock consumed by the western stock of Steller sea lions tend towards larger fish, and generally match the size frequencies of cod and halibut (Zeppelin et al. 2004). The diet of Pacific cod and Pacific halibut are similar in that the majority of their diet besides pollock is from the benthic pathway of the food web. Alternate prey for Steller sea lions and arrowtooth flounder are similar, and come primarily from the pelagic pathway.

Predation mortality, as estimated by ECOPATH, is extremely high for GOA pollock $>20 \mathrm{~cm}$. Estimates for the 1990-1993 time period indicate that known sources of predation sum to $90 \%-120 \%$ of the total production of walleye pollock calculated from 2004 stock assessment growth and mortality rates; estimates greater than 100% may indicate a declining stock (as shown by the stock assessment trend in the early 1990s; Fig 1.37, top), or the use of mortality rates which are too low. Conversely, as $>20 \mathrm{~cm}$ pollock include a substantial number of 2-year olds, it may be that mortality rate estimates for this age range is low. In either case, predation mortality for pollock in the GOA is much greater a proportion of pollock production than as estimated by the same methods for the Bering Sea, where predation mortality (primarily pollock cannibalism) was up to 50% of total production.

Aside from long-recognized decline in Steller sea lion abundance, the major predators of pollock in the Gulf of Alaska are stable to increasing, in some cases notably so since the 1980s (Fig. 1.37, top). This high level of predation is of concern in light of the declining trend of pollock with respect to predator increases. To assess this concern, it is important to determine if natural mortality may have changed over time (e.g. the shifting control hypothesis; Bailey 2000). To examine predator interactions more closely than in the initial model, diet data of major predators in trawl surveys were examined in all survey years since 1990.

Trends in total consumption of walleye pollock were calculated by the following formula:
Consumption $=\sum B_{\text {preed,size,subregion }} \cdot D C_{\text {pred,size,subregion }} \cdot W L F_{\text {pred, ,size,GOA }} \cdot$ Ration $_{\text {pred, size }}$
where B (pred, size, subregion) is the biomass of a predator size class in the summer groundfish surveys in a particular survey subregion; DC is the percentage by weight of pollock in that predator group as measured from stomach samples, WLF is the weight frequency of pollock in the stomachs of that predator group pooled across the GOA region, calculated from length frequencies in stomachs and length-weight relationships from the surveys. Finally, ration is an applied yearly ration for that predator group calculated by fitting weight-at-age to the generalized von Bertalanffy growth equations as described in Essington et al. (2001). Ration is assumed fixed over time for a given size class of predator.

Fig. 1.37 (bottom) shows annual total estimates of consumption of pollock (all age classes) in survey years by the four major fish predators. Other predators, shown as constant, are taken from ECOPATH modeling results and displayed for comparison. Catch is shown as reported in Table 1.1. In contrast, the line in the figure shows the historical total production (tons/year) plus yearly change in biomass (positive or negative) from the stock assessment results. In a complete accounting of pollock mortality, the height of the bars should match the height of the line. As shown, estimates of consumption greatly surpass estimates of production; fishing mortality is a relatively small proportion of total consumption. Overestimates in consumption rates could arise through seasonal differences in diets; while ration is seasonally adjusted, diet proportions are based on summer data. Also, better energetic estimates of consumption would improve these estimates. In terms of the stock assessment, underestimates of production could result from underestimating natural mortality, especially at ages $2-3$, underestimating the rate of decline which occurred between 1990-present, or underestimates of the total biomass of pollock; this analysis should be revisited using higher mortality at younger ages than assumed in the current stock assessment.

To better judge natural mortality, consumption was calculated for two size groups of pollock, divided at 30 cm fork length. This size break, which differs from the break in the ECOPATH analysis, is based on finding minima between modes of pollock in predator diets (Fig. 1.36). This break is different from the conversion matrices used in the stock assessment; perhaps due to differences in size selection between
predators and surveys. For this analysis, it is assumed that pollock $<30 \mathrm{~cm}$ are ages $0-2$ while pollock $\geq 30 \mathrm{~cm}$ are age $3+$ fish.

Consumption of age $0-2$ pollock per unit predator biomass (using survey biomass) varied considerably through survey years, although within a year all predators had similar consumption levels (Fig. 1.38, top). Correlation coefficients of consumption rates were 0.98 between arrowtooth and halibut, and 0.90 for both of these species with pollock. Correlation coefficients of these three species with cod were ~ 0.55 for arrowtooth and halibut and ~ 0.20 with pollock. The majority of this predation by weight occurred on age 2 pollock.

Plotted against age 2 pollock numbers calculated from the stock assessment, consumption/biomass and total consumption by predator shows a distinct pattern (Fig. 1.38, lower two graphs). In "low" recruitment years consumption is consistently low, while in high recruitment years consumption is high, but does not increase linearly, rather consumptions seems to level out at high numbers of juvenile pollock, resembling a classic "Type II" functional response. This suggests the existence bottom-up control of juvenile consumption, in which strong year classes of pollock "overwhelm" feeding rates of predators, resulting in potentially lower juvenile mortality in good recruitment years which may amplify the recruitment. However, this result should be examined iteratively within the stock assessment, as the back-calculated numbers at age 2 assume a constant natural mortality rate. Assuming a lower mortality rate due to predator satiation would lead to lower estimates of age 2 numbers, which would make the response appear more linear.

Consumption of pollock $\geq 30 \mathrm{~cm}$ shows a different pattern over time. A decline of consumption per unit biomass is evident for halibut and cod (Fig. 1.39, top). Arrowtooth shows an insignificant decline; it is possible that the noise in the arrowtooth trend, mirroring the consumption of $<30 \mathrm{~cm}$ fish, is due to the choice of 30 cm as an age cutoff. As a function of age $3+$ assessment biomass, consumption per unit biomass and total consumption remained constant as the stock declined, and then fell off rapidly at low biomass levels in recent years (Fig. 1.39, middle and bottom). Again, this result should be approached iteratively, but it suggests increasing predation mortality on age 3+ pollock during 1990-2005, possibly requiring increased foraging effort from predators.

There has been a marked decline in Pacific halibut weight at age since the 1970s that Clark et al. (1999) attributed to the 1977 regime shift without being able to determine the specific biological mechanisms that produced the change. Possibilities suggested by Clark et al. (1999) include the physiological effect of an increase in temperature, intra- and interspecific competition for prey, or a change in prey quality. The two species most dependent on pollock in the early 1990s (Pacific halibut and Steller sea lion) have both shown an exceptional biological response during the post-1977 period consistent with a reduction in carrying capacity (growth for Pacific halibut, survival for Steller sea lions). In contrast, the dominant predator on pollock in the Gulf of Alaska (arrowtooth flounder) has increased steadily in abundance over the same period and shows no evidence of decline in size at age. Given that arrowtooth flounder has a range of potential prey types to select from during periods of low pollock abundance (Fig. 1.35), we do not expect that arrowtooth would decline simply due to declines in pollock.

Taken together, Figs. 1.38 and 1.39 suggest that recruitment remains bottom-up controlled even under the current estimates of high predation mortality, and may lead to strong year classes. However, top-down control seems to have increased on age $3+$ pollock in recent years, perhaps as predators have attempted to maintain constant pollock consumption during a period of declining abundance. It is possible that natural mortality on adult pollock will remain high in the ecosystem in spite of decreasing pollock abundance.

Ecosystem modeling

To examine the relative role of pollock natural versus fishing mortality within the GOA ecosystem, a set of simulations were run using the ECOPATH model shown in Fig. 1.32. Following the method outlined in Aydin et al. (2005), 20,000 model ecosystems were drawn from distributions of input parameters; these parameter sets were subjected to a selection/rejection criteria of species persistence resulting in approximately 500 ecosystems with nondegenerate parameters. These models, which did not begin in an equilibrium state, were projected forward using ECOSIM algorithms until equilibrium conditions were reached. For each group within the model, a perturbation experiment was run in all acceptable ecosystems by reducing the species survival (increasing mortality) by 10%, or by reducing gear effort by 10%, and reporting the percent change in equilibrium of all other species or fisheries catches. The resulting changes are reported as ranges across the generated ecosystems, with 50% and 95% confidence intervals representing the distribution of percent change in equilibrium states for each perturbation.

Fig. 1.40 shows the changes in other species when simulating a 10% decline in adult pollock survival (top graph), a 10% decline in juvenile pollock survival (middle graph), and a 10% decline in pollock trawl effort. Fisheries in these simulations are governed by constant fishing mortality rates rather than harvest control rules. Only the top 20 effects are shown in each graph; note the difference in scales between each graph.

The model results indicate that the largest effects of declining adult pollock survival would be declines in halibut and Steller sea lion biomass. Declines in juvenile survival would have a range of effects, including halibut and Steller sea lions, but also releasing a range of competitors for zooplankton including rockfish and shrimp. The pollock trawl itself has a lesser effect throughout the ecosystem (recall that fishing mortality is small in proportion to predation mortality for pollock); the strongest modeled effects are not on competitors for prey but on incidentally caught species (Table 1.2), with the strongest effects being on sharks.

The results presented above are taken from Gulfwide weighted averages of consumption; Steller sea lions and the fishing fleet are central place foragers, making foraging trips from specific locations (ports in the case of the fishing fleet, and rookeries or haulouts for Steller sea lions). Foraging bouts (or trawl sets) begin at the surface, and foragers attack their prey from the top down. For such species, directed and local changes in fishing may have a disproportionate effect compared to the results shown here.

In contrast, predation by groundfish is not as constrained geographically, and captures are likely to occur when the predator swims upwards from the bottom. Changes in the vertical distribution of pollock may tend to favor one mode of foraging over another. For example, if pollock move deeper in the water column due to surface warming, foraging groundfish might obtain an advantage over surface foragers. Alternatively, pollock may respond adaptively to predation risks from groundfish or surface foragers by changing its position in the water column.

Of species affecting pollock (Fig. 1.41), arrowtooth have the largest impact on adult pollock, while bottom-up processes (phytoplankton and zooplankton) have the largest impact on juvenile pollock. It is interesting to note that the link between juvenile and adult pollock is extremely uncertain (wide error bars) within these models.

Finally, of the four major predators of pollock (Fig 1.42), all are affected by bottom-up forcing; Steller sea lions, Pacific cod, and Pacific halibut are all affected by pollock perturbations, while pollock effects on arrowtooth are much more minor.

Pair-wise correlations in predator trends were examined for consistent patterns (Fig. 1.43). For each pairwise comparison, we used the maximum number of years available. Time series for Steller sea lions and Pacific cod begin in mid 1970s, while other time series extend back to the early 1960s. We make no attempt to evaluate statistical significance (biomass trends are highly autocorrelated), and emphasize that correlation does not imply causation. If two populations are strongly correlated in time, there are many possible explanations: both populations are responding to similar forcing, one or other is causative agent, etc.

Pollock abundance, fishery catches, and Steller sea lions are positively correlated (Fig. 1.43). Since the harvest policy for pollock is modified fixed harvest rate strategy, a positive correlation between catch and abundance would be expected. The Steller sea lion trend is more strongly correlated with pollock abundance than pollock catches, but this correlation is based on data since 1976, and does not include earlier years of low pollock abundance. The only strong inverse correlation is between arrowtooth flounder and Steller sea lions. A strong positive correlation exists between Pacific cod and Pacific halibut, and, from the 1960s to the present, between Pacific halibut and arrowtooth flounder.

Several patterns are apparent in abundance trends and the diet data. First, the two predators with alternate prey in the benthic pathway, Pacific cod and Pacific halibut, covary and have been relatively stable in the post-1977 period. Second, the long term increases in both Pacific halibut and arrowtooth flounder (with quite different diets apart from pollock) may be linked to similarities in their reproductive behavior. Both spawn offshore in late winter, and conditions that enhance onshore advection, such as El Niños, may play an important role in recruitment to nursery areas for these species (Bailey and Picquelle 2002).

Finally, it is apparent that the potential for competition between Steller sea lions and arrowtooth flounder is underappreciated, perhaps because arrowtooth flounder seem poorly designed to compete as forager in the pelagic zone. However, arrowtooth flounder consume both the primary prey of Steller sea lions (pollock), and alternate pelagic prey also utilized by Steller sea lions (capelin, herring, sandlance, salmon). Arrowtooth predation on pollock occurs at a smaller size than pollock targeted by Steller sea lions. The arrowtooth flounder population is nearly unexploited, is increasing in abundance, may be increasing it's per unit consumption of pollock, and shows no evidence of density-dependent growth. And lastly, since 1976 there has been a strong inverse correlation between arrowtooth flounder and Steller sea lion abundance that is at least consistent with competition between these species.

Literature Cited

Alton, M., S. Hughes, and G. Hirschhorn. 1977. Gulf of Alaska pollock-its fisheries and resource potential. Unpubl. Manuscr., 25 p. Alaska Fisheries Science Center. National Marine Fisheries Service National Oceanic and Atmospheric Administration. 7600 Sand Point Way, NE Seattle, Washington 98115-6349. Submitted to the International North Pacific Fisheries Commission in 1977 as INPFC doc. 2019.

Alton, M. S., M. O. Nelson, and B. A. Megrey. 1987. Changes in the abundance and distribution of walleye pollock (Theragra chalcogramma) in the western Gulf of Alaska. Fish. Res. 5: 185-197.

Alverson, D. L. And M. J. Carney. 1975. A graphic review of the growth and decay of population cohorts. Cons. int. Explor. Mer, 133-143.

Anderson, P. J. and J. F. Piatt 1999. Community reorganization in the Gulf of Alaska following ocean climate regime shift. Mar. Ecol. Prog. Ser. 189:117-123.

Aydin, K., GA. McFarlane, JR. King, BA. Megrey, and KW. Myers. 2005. Linking oceanic food webs to coastal production and growth rates of Pacific salmon (Oncorhynchus spp.), using models on three scales. Deep-sea Res, II. 52: 757-780.

Bailey, K.M., P.J. Stabeno, and D.A. Powers. 1997. The role of larval retention and transport features in mortality and potential gene flow of walleye pollock. J. Fish. Biol. 51(Suppl. A):135-154.

Bailey, K.M., T.J. Quinn II, P. Bentzen, and W.S. Grant. 1999. Population structure and dynamics of walleye pollock, Theragra chalcogramma. Advances in Mar. Biol. 37: 179-255.

Bailey, K.M. 2000. Shifting control of recruitment of walleye pollock Theragra chalcogramma after a major climatic and ecosystem change. Mar. Ecol. Prog. Ser 198:215-224.

Bailey, K. M and S. J. Picquelle. 2002. Larval distribution of offshore spawning flatfish in the Gulf of Alaska: potential transport pathways and enhanced onshore transport during ENSO events. Mar. Ecol. Prog. Ser. 236:205-217.

Baranov, F.I. 1918. On the question of the biological basis of fisheries. Nauchn. Issed. Ikhtiologicheskii Inst. Izv. 1:81-128.
Blackburn, J. and D. Pengilly. 1994. A summary of estimated population trends of seven most abundant groundfish species in trawl surveys conducted by Alaska Department of Fish and Game in the Kodiak and Alaska Peninsula areas, 1988 through 1993. Alaska Department of Fish and Game, Regional Information Report No. 4K94-31. 19p.

Brodeur, R. D. and Ware, D.M. 1995. Interdecadal variability in distribution and catch rates of epipelagic nekton in the Northeast Pacific Ocean. pp. 329-356 in R. J. Beamish [Ed.] Climate change and northern fish populations. Canadian Special Publication of Fisheries and Aquatic Sciences 121. National Research Council of Canada, Ottawa.

Kastelle, C. R. and D. K. Kimura. 2006. Age validation of walleye pollock (Theragra chalcogramma) from the Gulf of Alaska using the disequilibrium of $\mathrm{Pb}-210$ and Ra-226. ICES Journal of Marine Science 63:1520-1529.

Clark, W.G. 1999. Effects of an erroneous natural mortality rate on a simple age-structured model. Can. J. Fish. Aquat. Sci. 56:1721-1731.

Clark, W. G., S. R. Hare, A. M. Parma, P. J. Sullivan, and R. J. Trumble. 1999. Decadal changes in growth and recruitment of Pacific halibut (Hippoglossus stenolepis). Can. J. Fish. Aquat. Sci. 56(2): 242-252.

Cochran, W. G. 1977. Sampling Techniques. John Wiley and Sons. New York. 428 p.
Deriso, R.B., T.J. Quinn II, and P.R. Neal. 1985. Catch-age analysis with auxiliary information. Can. J. Fish. Aquat. Sci. 42: 815-824.

De Robertis, A., Hjellvik, V., Williamson, N. J., and Wilson, C. D. 2008. Silent ships do not always encounter more fish: comparison of acoustic backscatter recorded by a noise-reduced and a conventional research vessel. - ICES Journal of Marine Science, 65: 623-635.

Dorn, M. W. 2004. Extending separable age-structured assessment models to evaluate trends in juvenile mortality of walleye pollock in the Gulf of Alaska. International Council for the Exploration of the Sea, CM 2004/ FF:31.

Dorn, M. W., and R. D. Methot. 1990. Status of the coastal Pacific whiting resource in 1989 and recommendation to management in 1990. U.S. Dep. Commer., NOAA Tech. Memo. NMFS F/NWC-182, 84 p.

Dorn, M.W., A.B. Hollowed., E. Brown, B.A. Megrey, C. Wilson and J. Blackburn. 1999. Walleye pollock. In Stock Assessment and Fishery Evaluation Report for Groundfish Resources of the Gulf of Alaska. Prepared by the Gulf of Alaska Groundfish Plan Team, North Pacific Fishery Management Council, P.O. Box 103136, Anchorage, AK 99510. North Pacific Fisheries Management Council, Anchorage, AK.

Dorn, M.W., Hollowed, A.B., E. Brown, B. Megrey, C. Wilson, and J. Blackburn. 2001. Assessment of the walleye pollock stock in the Gulf of Alaska. In Stock Assessment and Fishery Evaluation Report for Groundfish Resources of the Gulf of Alaska. Prepared by the Gulf of Alaska Groundfish Plan Team, North Pacific Fishery Management Council, P.O. Box 103136, Anchorage, AK 99510. North Pacific Fisheries Management Council, Anchorage, AK.

Dorn, M.W., S. Barbeaux, B, M. Guttormsen, B. Megrey, A. Hollowed, M. Wilkins, and K. Spalinger. 2003. Assessment of the walleye pollock stock in the Gulf of Alaska. In Stock Assessment and Fishery Evaluation Report for Groundfish Resources of the Gulf of Alaska. Prepared by the Gulf of Alaska Groundfish Plan Team, North Pacific Fishery Management Council, P.O. Box 103136, Anchorage, AK 99510. North Pacific Fisheries Management Council, Anchorage, AK.

Doubleday, W.G. 1976. A least-squares approach to analyzing catch at age data. Res. Bull. Int. Comm. Northw. Atl. Fish. 12:69-81.

Fournier, D. and C. P. Archibald. 1982. A general theory for analyzing catch at age data. Can. J. Fish. Aquat. Sci. 39:11951207.

Fritz, L. W. 1993. Trawl locations of walleye pollock and Atka mackerel fisheries in the Bering Sea, Aleutian Islands, and Gulf of Alaska from 1977-92. AFSC Processed Report 93-08. NMFS, AFSC, 7600 Sand Point Way, NE, Seattle, WA 98115. 162 p.

Gauthier, S. and J. K. Horne 2004. Acoustic characteristics of forage fish species in the Gulf of Alaska and Bering Sea. Can. J. Aquat. Fish. Sci. 61: 1839-1850.

Grant, W.S. and F.M. Utter. 1980. Biochemical variation in walleye pollock Theragra chalcogramma: population structure in the southeastern Bering Sea and Gulf of Alaska. Can. J. Fish. Aquat. Sci. 37:1093-1100.

Greiwank, A., and G.F. Corliss (eds.) 1991. Automatic differentiation of algorithms: theory, implementation and application. Proceedings of the SIAM Workshop on the Automatic Differentiation of Algorithms, held Jan. 6-8, Breckenridge, CO. Soc. Indust. and Applied Mathematics, Philadelphia.

Gunderson, D. R. and P. H. Dygert. 1988. Reproductive effort as a predictor of natural mortality rate. J. Cons. int. Mer, 44:200209.

Guttormsen , M. A., C. D. Wilson, and S. Stienessen. 2001. Echo integration-trawl survey results for walleye pollock in the Gulf of Alaska during 2001. In Stock Assessment and Fishery Evaluation Report for Gulf of Alaska. Prepared by the Gulf of Alaska Groundfish Plan Team, North Pacific Fishery Management Council, P.O. Box 103136, Anchorage, AK 99510. North Pacific Fisheries Management Council, Anchorage, AK.

Guttormsen, M. A., C. D. Wilson, and S. Stienessen. 2002. Echo integration-trawl survey results for walleye pollock in the Gulf of Alaska during February and March 2002. In Stock Assessment and Fishery Evaluation Report for Gulf of Alaska. Prepared by the Gulf of Alaska Groundfish Plan Team, North Pacific Fishery Management Council, P.O. Box 103136, Anchorage, AK 99510. North Pacific Fisheries Management Council, Anchorage, AK.

Guttormsen, M. A., C. D. Wilson, and S. Stienessen. 2003. Results of the February and March 2003 Echo integration-trawl surveys of walleye pollock (Theragra chalcogramma) conducted in the Gulf of Alaska, Cruises MF2003-01 and MF2003-05. In Stock Assessment and Fishery Evaluation Report for Gulf of Alaska. Prepared by the Gulf of Alaska Groundfish Plan Team, North Pacific Fishery Management Council, P.O. Box 103136, Anchorage, AK 99510. North Pacific Fisheries Management Council, Anchorage, AK.

Guttormsen, M. A. 2004. Results of the March-April 2004 echo integration-trawl surveys of walleye pollock (Theragra chalcogramma) conducted in the Gulf of Alaska, Cruise MF0403. In Stock Assessment and Fishery Evaluation Report for Gulf of Alaska. Prepared by the Gulf of Alaska Groundfish Plan Team, North Pacific Fishery Management Council, P.O. Box 103136, Anchorage, AK 99510. North Pacific Fisheries Management Council, Anchorage, AK.

Guttormsen, M.A., A. McCarthy, and D. Jones. In review. Results of the February-March 2008 Echo Integration-Trawl Surveys of Walleye Pollock (Theragra chalcogramma) Conducted in the Gulf of Alaska, Cruises MF2008-01 and MF2008-04. AFSC Processed Rep. Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv., 7600 Sand Point Way NE, Seattle WA 98115.

Hastie, T., and R. Tibshirani. 1990. Generalized additive models. Chapman and Hall, London. 289 pp.
Heifetz, J., D. Anderl, N.E. Maloney, and T.L. Rutecki. 1999. Age validation and analysis of ageing error from marked and recaptured sablefish, Anoplopoma fimbria. Fish. Bull. 97:256-263.

Hilborn, R. and C.J. Walters. 1992. Quantitative fisheries stock assessment: choice, dynamics, and uncertainty. Chapman and Hall, New York, N.Y. 570 p.

Hollowed, A.B. and B.A. Megrey. 1990. Walleye pollock. In Stock Assessment and Fishery Evaluation Report for the 1991 Gulf of Alaska Groundfish Fishery. Prepared by the Gulf of Alaska Groundfish Plan Team, North Pacific Fishery Management Council, P.O. Box 103136, Anchorage, AK 99510.

Heino, M., U. Dieckmann, and O. R. Godø. 2002a. Estimation of reaction norms for age and size at maturation with reconstructed immature size distributions: a new technique illustrated by application to Northeast Arctic cod. ICES Journal of Marine Science 59:562-575.

Hollowed, A.B., B.A. Megrey, P. Munro, and W. Karp. 1991. Walleye pollock. In Stock Assessment and Fishery Evaluation Report for the 1992 Gulf of Alaska Groundfish Fishery. Prepared by the Gulf of Alaska Groundfish Plan Team, North Pacific Fishery Management Council, P.O. Box 103136, Anchorage, AK 99510.

Hollowed, A. B., B.A. Megrey, and W. Karp. 1992. Walleye pollock. In Stock Assessment and Fishery Evaluation Report for the 1993 Gulf of Alaska Groundfish Fishery. Prepared by the Gulf of Alaska Groundfish Plan Team, North Pacific Fishery Management Council, P.O. Box 103136, Anchorage, AK 99510.

Hollowed, A.B., C. Wilson, E. Brown, and B.A. Megrey. 1994. Walleye pollock. In Stock Assessment and Fishery Evaluation Report for the 1995 Gulf of Alaska Groundfish Fishery. Prepared by the Gulf of Alaska Groundfish Plan Team, North Pacific Fishery Management Council, P.O. Box 103136, Anchorage, AK 99510.

Hollowed, A.B., E. Brown, P. Livingston, B.A. Megrey and C. Wilson. 1995. Walleye pollock. In Stock Assessment and Fishery Evaluation Report for Gulf of Alaska As Projected for 1996. Prepared by the Gulf of Alaska Groundfish Plan Team, North Pacific Fishery Management Council, P.O. Box 103136, Anchorage, AK 99510. North Pacific Fisheries Management Council, Anchorage, AK.

Hollowed, A.B., E. Brown, J. Ianelli, B.A. Megrey and C. Wilson. 1998. Walleye pollock. In Stock Assessment and Fishery Evaluation Report for Groundfish Resources of the Gulf of Alaska. Prepared by the Gulf of Alaska Groundfish Plan Team, North Pacific Fishery Management Council, P.O. Box 103136, Anchorage, AK 99510. North Pacific Fisheries Management Council, Anchorage, AK.

Hollowed, A.B., J.N. Ianelli, P. Livingston. 2000. Including predation mortality in stock assessments: a case study for Gulf of Alaska pollock. ICES J. Mar. Sci. 57:279-293.

Hollowed, A.B., S. R. Hare and W. S. Wooster. 2001. Pacific Basin climate variability and patterns of Northeast Pacific marine fish production. Progress In Oceanography 49: 257-282.

Hughes, S. E. and G. Hirschhorn. 1979. Biology of walleye pollock, Theragra chalcogramma, in Western Gulf of Alaska. Fish. Bull., U.S. 77:263-274.

Karp, W. A. 1990. Results of echo integration midwater-trawl surveys for walleye pollock in the Gulf of Alaska in 1990. Appendix 3 of Stock Assessment and Fishery Evaluation Report for Groundfish Resources of the Gulf of Alaska. Prepared by the Gulf of Alaska Groundfish Plan Team, North Pacific Fishery Management Council, P.O. Box 103136, Anchorage, AK 99510. North Pacific Fisheries Management Council, Anchorage, AK.

Kendall, A.W. Jr. and S.J. Picquelle. 1990. Egg and larval distributions of walleye pollock Theragra chalcogramma in Shelikof Strait, Gulf of Alaska. Fish. Bull., U.S. 88:133-154.

Kimura, D.K. 1989. Variability, tuning, and simulation for the Doubleday-Deriso catch-at-age model. Can. J. Fish. Aquat. Sci. 46:941-949.

Kimura, D.K. 1990. Approaches to age-structured separable sequential population analysis. Can. J. Fish. Aquat. Sci. 47:23642374.

Kimura, D.K. 1991. Improved methods for separable sequential population analysis. Unpublished. Alaska Fisheries Science Center, 7600 Sand Point Way NE, Seattle, Washington 98115.

Kimura, D. K. and S. Chikuni. 1989. Variability in estimating catch-in-numbers-at-age and its impact on cohort analysis. In R.J. Beamish and G.A. McFarlane (eds.), Effects of ocean variability on recruitment and an evaluation of parameters used in stock assessment models. Can. Spec. Publ. Fish. Aquat. Sci. 108:57-66.

Large, W.G., and S. Pond (1982) Sensible and latent heat flux measurement over the ocean. J. Phys. Oceanogr. 2: 464-482.
Lee, Y-W, Megrey, B.A., and Macklin, S.A. in prep. Using a resampling strategy to evaluate Gulf of Alaska walleye pollock recruitment forecast performance.

McCullagh, P., and J. A. Nelder. 1983. Generalized linear models. Chapman and Hall, London. 261 p.
McKelvey, D. 1996. Juvenile walleye pollock, Theragra chalcogramma, distribution and abundance in Shelikof Strait-What can we learn from acoustic survey results? p. 25-34. In U.S. Dep. Commer. NOAA Tech. Rep. NMFS 126.

McKelvey, D.R. 1996. Juvenile walleye pollock, Theragra chalcogramma, distribution and abundance in Shelikof Strait—what can we learn from acoustic surveys. Ecology of Juvenile Walleye Pollock, Theragra chalcogramma. NOAA Technical Report NMFS 126, p 25-34.

Macklin, S.A., R.L. Brown, J. Gray, and R.W. Lindsay (1984) METLIB-II - A program library for calculating and plotting atmospheric and oceanic fields. NOAA Tech. Memo. ERL PMEL-54, NTIS PB84-205434, 53 pp.

Macklin, S.A., P.J. Stabeno, and J.D. Schumacher (1993) A comparison of gradient and observed over-the-water winds along a mountainous coast. J. Geophys. Res. 98: 16,555-16,569.

Megrey, B.A. 1989. Exploitation of walleye pollock resources in the Gulf of Alaska, 1964-1988: portrait of a fishery in transition. Proc. International Symp. on the Biology and Management of Walleye Pollock, Lowell Wakefield Fisheries Symp., Alaska Sea Grant Rep. 89-1, 33-58.

Megrey, B.A. and Macklin, S.A. unpublished. Critical Analysis of FOCI Walleye Pollock Recruitment Prediction for the Gulf of Alaska, 1992-2005.

Megrey, B.A., Lee, Y-W, and Macklin, S.A. 2005. Comparative analysis of statistical tools to identify recruitment-environment relationships and forecast recruitment strength. ICES Journal of Marine Science 62(7): 1256-1269.

Merati, N. 1993. Spawning dynamics of walleye pollock, Theragra chalcogramma, in Shelikof Strait, Gulf of Alaska. Unpublished MS thesis. University of Washington. 134 p.

Martin, M.H. 1997. Data Report: 1996 Gulf of Alaska bottom trawl survey. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-82, 235 p .

Methot, R.D. 2000. Technical description of the stock synthesis assessment program. U.S. Dept. Commer., NOAA Tech. Memo. NMFS-NWFSC-43, 46 p .

Meuter, F.J. and B.L. Norcross. 2002. Spatial and temporal patterns in the demersal fish community on the shelf and upper slope regions of the Gulf of Alaska. Fish. Bull. 100:559-581.

Mulligan, T.J., Chapman, R.W. and B.L. Brown. 1992. Mitochondrial DNA analysis of walleye pollock, Theragra chalcogramma, from the eastern Bering Sea and Shelikof Strait, Gulf of Alaska. Can. J. Fish. Aquat. Sci. 49:319-326.

Olsen, J.B., S.E. Merkouris, and J.E. Seeb. 2002. An examination of spatial and temporal genetic variation in walleye pollock (Theragra chalcogramma) using allozyme, mitochondrial DNA, and microsatellite data. Fish. Bull. 100:752-764.

Parada, C. Hinckley, S., Dorn, M., Hermann, A.J., Megrey, B.A. submitted. Estimating walleye pollock recruitment in the Gulf of Alaska using a biophysical model: Analysis of physical processes and comparison with stock assessment models ad data. Marine Ecology Progress Series.

Pauly, D.. 1980. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. J. Cons. int. Explor. Mer, 39(2):175-192.

Press, W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. 1992. Numerical recipes in C. Second ed. Cambridge University Press. 994 p.

Picquelle, S.J., and B.A. Megrey. 1993. A preliminary spawning biomass estimate of walleye pollock, Theragra chalcogramma, in Shelikof Strait, Gulf of Alaska, based on the annual egg production method. Bulletin of Marine Science 53(2):728:749.

Ronholt, L. L., H. H. Shippen, and E. S. Brown. 1978. Demersal fish and shellfish resources of the Gulf of Alaska from Cape Spencer to Unimak Pass 1948-1976 (A historical review). Northwest and Alaska Fisheries Center Processed Report.

Rothschild, B. J. and Mullin, A.J. 1985. The information content of stock-and-recruitment data and its non-parametric classification. Journal du Conseil International pour l'Exploration de la Mer. 42: 116-124.

Saunders, M.W., G.A. McFarlane, and W. Shaw. 1988. Delineation of walleye pollock (Theragra chalcogramma) stocks off the Pacific coast of Canada. Proc. International Symp. on the Biology and Management of Walleye Pollock, Lowell Wakefield Fisheries Symp., Alaska Sea Grant Rep. 89-1, 379-402.

Schnute, J.T. and L.J. Richards. 1995. The influence of error on population estimates from catch-age models. Can. J. Fish.

Aquat. Sci. 52:2063-2077.
Smith, S. J. 1990. Use of statistical models for the estimation of abundance from groundfish trawl survey data. Can. J. Fish. Aquat. Sci. 47:894-903.

Somerton, D. 1979. Competitive interaction of walleye pollock and Pacific Ocean perch in the northern Gulf of Alaska. In
J. Lipovsky and C.A. Simenstad (eds.) Gutshop '78, Fish food habits studies: Proceedings of the second Pacific Northwest Technical Workshop, held Maple Valley, WA (USA), 10-13 October, 1978., Washington Sea Grant, Seattle, WA.

StatSci. 1993. S-Plus for DOS reference manual. Statistical Sciences Inc., Seattle, Wash.
Sullivan, P.J., A.M. Parma, and W.G. Clark. 1997. Pacific halibut assessment: data and methods. Int. Pac. Halibut Comm. SCI. Rept. 97.84 p .

Swartzman, G., C. Huang, and S. Kaluzny. 1992. Spatial analysis of Bering Sea groundfish survey data using generalized additive models. Can. J. Fish. Aquat. Sci. 49:1366-1378.

Tribuzio, C.A., S. Gaichas, J. Gasper, H. Gilroy, T. Kong, O. Ormseth, J. Cahalan, J. DiCosimo, M. Furuness, H. Shen, K. Green. 2011. Methods for the estimation of non-target species catch in the unobserved halibut IFQ fleet. August Plan Team document. Presented to the Joint Plan Teams of the North Pacific Fishery Management Council.
von Szalay, P. G., and E. Brown. 2001. Trawl comparisons of fishing power differences and their applicability to National Marine Fisheries Service and the Alaska Department of Fish and Game trawl survey gear. Alaska Fishery Research Bulletin 8:85-95.

Wilson, C. 1994. Echo integration-trawl survey results for pollock in the Gulf of Alaska during 1994. Appendix D of Stock Assessment and Fishery Evaluation Report for Groundfish Resources of the Gulf of Alaska. Prepared by the Gulf of Alaska Groundfish Plan Team, North Pacific Fishery Management Council, P.O. Box 103136, Anchorage, AK 99510. North Pacific Fisheries Management Council, Anchorage, AK.

Wilson, C., M. Guttormsen, and D. McKelvey. 1995. Echo integration-trawl survey results for pollock in the Gulf of Alaska during 1995. Appendix D of Stock Assessment and Fishery Evaluation Report for Groundfish Resources of the Gulf of Alaska. Prepared by the Gulf of Alaska Groundfish Plan Team, North Pacific Fishery Management Council, P.O. Box 103136, Anchorage, AK 99510. North Pacific Fisheries Management Council, Anchorage, AK.

Wilson, C.D., M.A. Guttormsen, and S.K. de Blois. 1996. Echo integration-trawl survey results for pollock in the Gulf of Alaska during 1996. In Stock Assessment and Fishery Evaluation Report for Groundfish Resources of the Gulf of Alaska. Prepared by the Gulf of Alaska Groundfish Plan Team, North Pacific Fishery Management Council, P.O. Box 103136, Anchorage, AK 99510. North Pacific Fisheries Management Council, Anchorage, AK.

Yang, M-S. and M. W. Nelson. 2000. Food habits of the commercially important groundfishes in the Gulf of Alaska in 1990, 1993, and 1996. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-112, 174 p.

Zeppelin, TK., DJ. Tollit, KA. Call, TJ. Orchard, and CJ. Gudmundson. 2004. Sizes of walleye pollock (Theragra chalcogramma) and Atka mackerel (Pleurogrammus monopterygius) consumed by the western stock of Steller sea lions (Eumetopias jubatus) in Alaska from 1998 to 2000. Fish. Bull. 102:509-521.

Table 1.1. Walleye pollock catch (t) in the Gulf of Alaska. The TAC for 2011 is for the area west of $140^{\circ} \mathrm{W}$ lon. (Western, Central and West Yakutat management areas) and includes the guideline harvest level for the state-managed fishery in Prince William Sound (1650 t). Research catches are reported in Appendix D.

Year	Foreign	Joint Venture	Domestic	Total	TAC
1964	1,126			1,126	---
1965	2,749			2,749	---
1966	8,932			8,932	---
1967	6,276			6,276	---
1968	6,164			6,164	---
1969	17,553			17,553	---
1970	9,343			9,343	---
1971	9,458			9,458	---
1972	34,081			34,081	---
1973	36,836			36,836	---
1974	61,880			61,880	---
1975	59,512			59,512	---
1976	86,527			86,527	---
1977	117,834		522	118,356	150,000
1978	96,392	34	509	96,935	168,800
1979	103,187	566	1,995	105,748	168,800
1980	112,997	1,136	489	114,622	168,800
1981	130,324	16,857	563	147,744	168,800
1982	92,612	73,917	2,211	168,740	168,800
1983	81,358	134,131	119	215,608	256,600
1984	99,260	207,104	1,037	307,401	416,600
1985	31,587	237,860	15,379	284,826	305,000
1986	114	62,591	25,103	87,809	116,000
1987		22,823	46,928	69,751	84,000
1988		152	65,587	65,739	93,000
1989			78,392	78,392	72,200
1990			90,744	90,744	73,400
1991			100,488	100,488	103,400
1992			90,857	90,857	87,400
1993			108,908	108,908	114,400
1994			107,335	107,335	109,300
1995			72,618	72,618	65,360
1996			51,263	51,263	54,810
1997			90,130	90,130	79,980
1998			125,098	125,098	124,730
1999			95,590	95,590	94,580
2000			73,080	73,080	94,960
2001			72,076	72,076	90,690
2002			51,937	51,937	53,490
2003			50,666	50,666	49,590
2004			63,934	63,934	65,660
2005			80,846	80,846	86,100
2006			71,976	71,976	81,300
2007			53,062	53,062	63,800
2008			52,500	52,500	53,590
2009			44,003	44,003	43,270
2010			76,860	76,860	77,150
2011					88,620
Average (1977-2010)				102,519	117,775

Sources: 1964-85--Megrey (1988); 1986-90--Pacific Fishery Information Network (PacFIN), Pacific Marine Fisheries Commission. Domestic catches in 1986-90 were adjusted for discard as described in Hollowed et al. (1991). 1991-2010 --NMFS Alaska Regional Office.

Table 1.2. Incidental catch (t) of FMP species (upper table) and non-target species (bottom table) in the walleye pollock directed fishery in the Gulf of Alaska in 2006-2010. Incidental catch estimates include both retained and discarded catch.

Managed species/species group	2006	2007	2008	2009	2010
Pollock	69774.9	50646.3	47383.1	39334.5	73033.1
Arrowtooth flounder	2749.1	1630.1	1569.6	761.0	2071.8
Pacific cod	709.8	275.1	579.2	557.0	1497.9
Flathead sole	594.5	327.7	423.5	215.7	360.2
Other species, sleeper shark	153.5	58.9	47.6	31.1	155.7
Other species, squid	1517.8	410.0	91.8	320.9	129.0
Other species, salmon shark	31.4	141.6	6.4	6.9	103.7
Pacific ocean perch	71.2	29.8	49.9	36.1	96.6
Shallow water flatfish	438.8	157.0	230.0	17.0	78.5
Rex sole	153.7	43.0	58.1	35.5	60.7
Big skate	23.0	38.1	21.7	33.8	47.1
Rougheye rockfish	25.4	30.2	42.9	12.9	30.5
Other species, spiny dogfish	50.0	47.6	59.6	17.9	19.8
Longnose skate	12.7	26.7	23.6	35.1	9.8
Shortraker rockfish	71.2	55.9	70.3	26.2	9.4
Other species, sculpin	7.6	24.9	8.5	8.1	8.4
Other skates	5.0	9.1	5.9	2.6	7.0
Pelagic shelf rockfish	9.0	6.4	4.1	1.5	5.8
Other species, other sharks	40.9	13.9	4.3	10.4	3.7
Deep water flatfish	11.7	5.5	5.8	2.4	3.1
Northern rockfish	14.5	12.0	7.9	11.7	2.2
Sablefish	5.6	3.2	1.3	0.1	1.3
Other species, octopus	3.4	1.5	0.0	0.1	0.8
Other rockfish	2.5	2.0	4.5	0.2	0.4
Atka mackerel	15.2	200.2	0.1	0.0	0.4
Thornyhead rockfish	0.2	0.3	0.2	0.1	0.1
Percent non-pollock	8.8\%	6.6\%	6.5\%	5.2\%	6.1\%
Non target species/species group	2006	2007	2008	2009	2010
Eulachon	392.25	220.98	760.17	217.62	227.44
Jellyfish	69.02	24.06	191.51	11.30	121.72
Miscellaneous fish	38.44	24.18	35.36	42.90	42.25
Grenadiers	18.70	0.00	26.81	0.00	9.23
Other osmerids	167.94	49.42	401.86	149.79	6.78
Sea stars	1.98	4.73	6.58	0.00	4.74
Giant Grenadier	54.38	4.71	217.09	26.35	1.93
Pandalid shrimp	3.13	1.89	0.83	0.17	1.12
Sea anemone unidentified	0.21	0.68	0.26	0.00	0.47
Eelpouts	0.00	0.00	0.00	0.13	0.09
Hermit crab unidentified	0.00	0.00	0.01	0.00	0.09
Stichaeidae	0.07	0.29	0.00	0.00	0.07
Bivalves	0.00	0.09	0.05	0.00	0.05
Miscellaneous crabs	0.00	0.93	0.07	0.00	0.01
Capelin	0.10	0.00	0.00	0.01	0.00
Invertebrate unidentified	0.00	0.20	0.00	0.00	0.00
Lanternfishes (myctophidae)	0.01	0.00	0.00	0.00	0.00
Misc inverts (worms etc)	0.00	0.03	0.00	0.00	0.00
Snails	0.00	0.00	0.33	0.01	0.00
Surf smelt	0.00	0.00	0.16	0.00	0.00
Echinoderms	0.00	0.00	0.04	0.00	0.00

Table 1.3. Bycatch of prohibited species for trawls in the Gulf of Alaska during 2006-2010 where pollock was the predominant species in the catch. Herring and halibut bycatch is reported in metric tons, while crab and salmon are reported in number of fish.

Species/species group	2006	2007	2008	2009	2010
Herring (t)	8.789	19.529	0.421	7.821	0.858
Halibut (t)	115.576	135.392	120.041	62.481	49.192
Bairdi Tanner Crab (nos.)	84,005	19,458	322	6,565	108
Red King Crab (nos.)	0	0	0	0	0
Chinook Salmon (nos.)	15,943	35,042	10,382	2,617	44,755
Non-chinook salmon (nos.)	1,413	982	847	329	749

Table 1.4. Catch (retained and discarded) of walleye pollock (t) by management area in the Gulf of Alaska during 2000-2010 compiled by the Alaska Regional Office.

Year	Utilization	Shumagin 610	Chirikof 620	Kodiak 630	West Yakutat 640	Prince William Sound 649 (state waters)	Southeast and East Yakutat 650 \& 659	Total	Percent discard
2000	Retained	21,380	11,314	35,078	1,917	1,181	0	70,870	
	Discarded	694	443	854	191	22	4	2,209	3.0\%
	Total	22,074	11,757	35,933	2,108	1,203	4	73,080	
2001	Retained	30,298	17,186	19,942	2,327	1,590	0	71,344	
	Discarded	173	205	330	24	0	0	732	1.0\%
	Total	30,471	17,391	20,272	2,351	1,590	0	72,076	
2002	Retained	17,046	20,106	10,615	1,808	1,216	0	50,791	
	Discarded	416	425	287	10	6	2	1,146	2.2\%
	Total	17,462	20,531	10,902	1,818	1,222	2	51,937	
2003	Retained	16,347	18,972	12,225	940	1,118	0	49,603	
	Discarded	161	658	210	2	31	0	1,063	2.1\%
	Total	16,508	19,630	12,435	943	1,149	0	50,666	
2004	Retained	23,226	24,221	13,896	215	1,100	0	62,658	
	Discarded	342	438	459	11	26	0	1,276	2.0\%
	Total	23,568	24,659	14,355	226	1,127	0	63,934	
2005	Retained	30,791	27,286	18,986	1,876	740	0	79,680	
	Discarded	136	621	350	9	50	0	1,166	1.4\%
	Total	30,927	27,908	19,336	1,885	790	0	80,846	
2006	Retained	24,489	26,409	16,127	1,570	1,475	0	70,070	
	Discarded	203	750	951	2	1	0	1,906	2.6\%
	Total	24,691	27,159	17,078	1,572	1,476	0	71,976	
2007	Retained	17,694	18,846	13,777	84	NA	0	50,401	
	Discarded	262	516	701	3	NA	1	1,483	2.8\%
	Total	17,956	19,362	14,478	87	1,179	1	53,062	
2008	Retained	15,100	18,691	13,335	1,155	NA	0	48,281	
	Discarded	2,157	367	1,052	6	NA	2	3,584	6.8\%
	Total	17,257	19,058	14,387	1,161	635	2	52,500	
2009	Retained	14,475	13,579	10,974	1,190	NA	0	40,219	
	Discarded	461	421	1,263	31	NA	0	2,177	4.9\%
	Total	14,936	14,000	12,238	1,221	1,608	0	44,003	
2010	Retained	25,960	28,015	18,373	1,625	1,660	2	75,635	
	Discarded	91	330	783	12	9	1	1,226	1.6\%
	Total	26,051	28,345	19,156	1,637	1,669	3	76,860	
Average (2000-2010)		21,991	20,891	17,324	1,364	1,241	1	62,813	

Table 1.5. Catch at age $(000,000 \mathrm{~s})$ of walleye pollock in the Gulf of Alaska in 1976-2010.

Age																
Year	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Total
1976	0.00	1.91	24.21	108.69	39.08	16.37	3.52	2.25	1.91	0.31	0.00	0.00	0.00	0.00	0.00	198.25
1977	0.01	2.76	7.06	23.83	89.68	30.35	8.33	2.13	1.79	0.67	0.44	0.10	0.02	0.00	0.00	167.17
1978	0.08	12.11	48.32	18.26	26.39	51.86	12.83	4.18	1.36	1.04	0.32	0.04	0.01	0.00	0.00	176.80
1979	0.00	2.53	48.83	76.37	14.15	10.13	16.70	5.02	1.27	0.60	0.16	0.04	0.00	0.00	0.00	175.81
1980	0.25	19.01	26.50	58.31	36.63	11.31	8.61	8.00	3.89	1.11	0.50	0.21	0.08	0.03	0.00	174.42
1981	0.14	2.59	31.55	73.91	47.97	20.29	4.87	4.83	2.73	0.26	0.03	0.02	0.00	0.00	0.00	189.19
1982	0.01	10.67	55.55	100.77	71.73	54.25	10.46	1.33	0.93	0.55	0.03	0.02	0.02	0.00	0.00	306.31
1983	0.00	3.64	20.64	110.03	137.31	67.41	42.01	7.38	1.24	0.06	0.28	0.07	0.00	0.00	0.00	390.07
1984	0.34	2.37	33.00	38.80	120.80	170.72	62.55	19.31	5.42	0.10	0.07	0.03	0.03	0.00	0.00	453.54
1985	0.04	12.74	5.53	33.22	42.22	86.02	128.95	41.19	10.84	2.20	0.70	0.00	0.00	0.00	0.00	363.64
1986	0.66	8.63	20.34	10.12	19.13	7.32	8.70	9.78	2.13	0.80	0.00	0.00	0.00	0.00	0.00	87.59
1987	0.00	8.83	14.03	8.00	6.89	6.44	7.18	4.19	9.95	1.94	0.00	0.00	0.00	0.00	0.00	67.44
1988	0.17	3.05	20.80	26.95	11.94	5.10	3.45	1.62	0.34	3.21	0.00	0.00	0.00	0.00	0.00	76.62
1989	1.08	0.27	1.47	19.39	28.89	16.96	8.09	4.76	1.69	1.10	3.62	0.43	0.01	0.00	0.00	87.77
1990	0.00	2.77	2.40	2.99	9.49	40.39	13.06	4.90	1.08	0.41	0.01	0.56	0.01	0.07	0.06	78.20
1991	0.00	0.59	9.68	5.45	2.85	5.33	26.67	3.12	16.10	0.87	5.65	0.42	2.19	0.21	0.77	79.90
1992	0.05	3.25	5.57	50.61	14.13	4.02	8.77	19.55	1.02	1.49	0.20	0.73	0.00	0.00	0.00	109.41
1993	0.02	1.97	9.43	21.83	47.46	15.72	6.55	6.29	8.52	1.81	2.07	0.49	0.72	0.13	0.24	123.25
1994	0.06	1.26	4.49	9.63	35.92	31.32	12.20	4.84	4.60	6.15	1.44	1.02	0.29	0.09	0.08	113.37
1995	0.00	0.06	1.01	5.11	11.52	25.83	12.09	2.99	1.52	2.00	1.82	0.19	0.28	0.03	0.15	64.61
1996	0.00	1.27	1.37	1.12	3.50	5.11	12.87	10.60	3.14	1.53	0.80	1.43	0.35	0.23	0.16	43.48
1997	0.00	1.07	6.72	3.77	3.28	6.60	10.09	16.52	12.24	5.06	2.06	0.79	0.54	0.17	0.02	68.92
1998	0.31	0.27	26.44	36.44	15.06	6.65	7.50	11.36	14.96	10.76	3.75	0.75	0.38	0.21	0.11	134.95
1999	0.00	0.42	2.21	22.74	36.10	8.99	6.89	3.72	5.71	7.27	4.01	1.07	0.56	0.12	0.10	99.92
2000	0.08	0.98	2.84	3.47	14.65	24.63	6.24	5.05	2.30	1.24	3.00	1.52	0.30	0.14	0.04	66.48
2001	0.74	10.13	6.59	7.34	9.42	12.59	14.44	4.73	2.70	1.35	0.65	0.83	0.61	0.00	0.04	72.14
2002	0.16	12.31	20.72	6.76	4.47	8.75	5.37	6.06	1.33	0.82	0.43	0.30	0.33	0.22	0.13	68.16
2003	0.14	2.69	21.47	22.95	5.33	3.25	4.66	3.76	2.58	0.54	0.19	0.04	0.09	0.04	0.05	67.79
2004	0.85	6.28	11.91	31.84	25.09	5.98	2.43	2.63	0.77	0.22	0.25	0.00	0.00	0.00	0.00	88.24
2005	1.14	1.21	5.33	6.85	41.25	21.73	6.10	0.74	0.91	0.35	0.18	0.13	0.00	0.00	0.00	85.91
2006	2.20	7.79	4.16	2.75	5.97	27.38	12.80	2.45	0.83	0.46	0.23	0.10	0.07	0.03	0.00	67.22
2007	0.82	18.89	7.46	2.51	2.31	3.58	10.19	6.70	1.59	0.29	0.23	0.09	0.00	0.00	0.01	54.68
2008	0.32	6.29	21.94	6.76	2.15	1.16	2.27	5.60	2.84	0.87	0.36	0.21	0.06	0.04	0.02	50.89
2009	0.24	6.38	14.84	13.47	3.82	1.19	0.72	0.95	1.90	1.45	0.47	0.06	0.01	0.00	0.00	45.50
2010	0.01	5.29	23.35	21.32	18.14	3.68	1.11	0.73	0.92	1.02	0.64	0.05	0.06	0.01	0.00	76.31

Table 1.6. Number of aged and measured fish in the Gulf of Alaska pollock fishery used to estimate fishery age composition (1989-2010).

Number aged					Number measured			
Year	Males	Females	Total	Males	Females	Total		
1989	882	892	1,774	6,454	6,456	12,910		
1990	453	689	1,142	17,814	24,662	42,476		
1991	1,146	1,322	2,468	23,946	39,467	63,413		
1992	1,726	1,755	3,481	31,608	47,226	78,834		
1993	926	949	1,875	28,035	31,306	59,341		
1994	136	129	265	24,321	25,861	50,182		
1995	499	544	1,043	10,591	10,869	21,460		
1996	381	378	759	8,581	8,682	17,263		
1997	496	486	982	8,750	8,808	17,558		
1998	924	989	1,913	78,955	83,160	162,115		
1999	980	1,115	2,095	16,304	17,964	34,268		
2000	1,108	972	2,080	13,167	11,794	24,961		
2001	1,063	1,025	2,088	13,731	13,552	27,283		
2002	1,036	1,025	2,061	9,924	9,851	19,775		
2003	1,091	1,119	2,210	8,375	8,220	16,595		
2004	1,217	996	2,213	4,446	3,622	8,068		
2005	1,065	968	2,033	6,837	6,005	12,842		
2006	1,127	969	2,096	7,248	6,178	13,426		
2007	998	1,064	2,062	4,504	5,064	9,568		
2008	961	1,090	2,051	7,430	8,536	15,966		
2009	1,011	1,034	2,045	9,913	9,447	19,360		
2009	1,195	1,055	2,250	14,958	13,997	28,955		

Table 1.7. Biomass estimates (t) of walleye pollock from NMFS echo integration trawl surveys in Shelikof Strait, NMFS bottom trawl surveys (west of 140 W. long.), egg production surveys in Shelikof Strait, and ADF\&G crab/groundfish trawl surveys. The biomass of age-1 fish is not included in Shelikof Strait acoustic survey estimates in 1995, 2000, 2005 and 2008 (114,200, 57,300, 18,100 t and 19,090 t respectively). An adjustment of $+1.05 \%$ was made to the AFSC bottom trawl biomass time series to account for unsurveyed biomass in Prince William Sound. In 2001, when the NMFS bottom trawl survey did not extend east of 147° W lon., an expansion factor of 2.7% derived from previous surveys was used for West Yakutat.

Year	Shelikof Strait acoustic survey			NMFS bottom trawl west of 140° W lon.	Shelikof Strait egg production	ADF\&G crab/groundfish survey
	R/V Miller Freeman		R / V Oscar Dyson			
1981	2,785,755				1,788,908	
1982						
1983	2,278,172					
1984	1,757,168			720,548		
1985	1,175,823				768,419	
1986	585,755				375,907	
1987				732,660	484,455	
1988	301,709				504,418	
1989	290,461				433,894	214,434
1990	374,731			825,609	381,475	114,451
1991	380,331				370,000	
1992	580,000	713,429			616,000	127,359
1993	295,785	435,753		755,786		132,849
1994		492,593				103,420
1995		649,401				
1996		777,172		666,521		122,477
1997		583,017				93,728
1998		504,774				81,215
1999				607,409		53,587
2000		391,327				102,871
2001		432,749		219,072		86,967
2002		256,743				96,237
2003		317,269		398,469		66,989
2004		330,753				99,358
2005		338,038		358,017		79,089
2006		293,609				69,044
2007		180,881		282,356		76,674
2008			188,942			83,476
2009			265,971	669,505		145,438
2010			429,730			124,110
2011				667,131		100,839

Table 1.8. Survey sampling effort and biomass coefficients of variation (CV) for pollock in the Gulf of Alaska bottom trawl survey. The number of measured pollock is approximate due to subsample expansions in the database, and the total number measured includes both sexed and unsexed fish.

Year	No. of tows	No. of tows with pollock	Survey biomass\qquad	Number aged			Number measured		
				Males	Females	Total	Males	Females	Total
1984	929	536	0.14	1,119	1,394	2,513	8,985	13,286	25,990
1987	783	533	0.20	672	675	1,347	15,843	18,101	34,797
1990	708	549	0.12	503	560	1,063	15,014	20,053	42,631
1993	775	628	0.16	879	1,013	1,892	14,681	18,851	35,219
1996	807	668	0.15	509	560	1,069	17,698	19,555	46,668
1999	764	567	0.38	560	613	1,173	10,808	11,314	24,080
2001	489	302	0.30	395	519	914	9,135	10,281	20,272
2003	807	508	0.12	514	589	1,103	10,561	12,706	25,052
2005	839	516	0.15	639	868	1,507	9,108	10,893	27,114
2007	820	554	0.14	646	675	1,321	10,018	11,638	24,768
2009	823	563	0.15	684	870	1,554	13,084	14,697	30,876
2011	670	492	0.15	NA	NA	NA	11,851	13,832	27,326

Table 1.9. Estimated number at age $(000,000 \mathrm{~s})$ from the NMFS bottom trawl survey. Estimates are for the Western and Central Gulf of Alaska only (Management areas 610-630).

Year	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Total
1984	0.93	10.02	67.81	155.78	261.17	474.57	145.10	24.80	16.59	1.66	0.21	1.32	0.00	0.00	0.00	1159.96
1987	25.45	363.02	172.99	138.97	91.13	168.27	78.14	43.99	175.39	22.41	7.81	3.51	1.82	0.00	0.00	1292.88
1989	208.88	63.49	47.56	243.15	301.09	104.43	54.47	28.39	26.14	5.98	10.66	0.00	0.00	0.00	0.00	1094.23
1990	64.04	251.21	48.34	46.68	209.77	240.82	74.41	110.41	26.13	34.23	5.03	27.73	5.70	1.07	1.63	1147.19
1993	139.31	71.15	50.94	182.96	267.12	91.51	33.12	68.98	76.62	26.36	11.85	6.29	3.82	1.82	4.41	1036.25
1996	194.23	128.79	17.30	26.13	50.04	63.18	174.41	87.62	52.37	27.73	12.10	18.46	7.16	9.68	19.70	888.90
1999	109.73	19.17	20.94	66.76	118.94	56.80	59.04	47.71	56.40	81.97	65.18	9.67	8.28	2.50	0.76	723.85
2001	412.83	117.03	34.42	33.39	25.05	33.45	37.01	8.20	5.74	0.59	4.48	2.52	1.28	0.00	0.18	716.19
2003	75.46	18.40	128.41	140.74	73.27	44.72	36.10	25.27	14.51	8.61	3.23	1.79	1.26	0.00	0.00	571.77
2005	270.37	33.72	34.41	35.86	91.78	78.82	45.24	20.86	9.61	9.98	4.81	0.57	0.64	0.00	0.00	636.68
2007	174.01	95.96	88.59	37.11	19.23	18.90	54.98	31.11	6.64	3.04	2.78	1.00	1.13	0.00	0.00	534.48
2009	222.94	87.33	106.82	129.35	101.26	27.21	17.59	26.60	53.90	29.46	9.68	7.00	2.78	1.61	0.00	823.53

Table 1.10. Estimated number at age $(000,000$ s) from the acoustic survey in Shelikof Strait. For the acoustic survey in 1987, when total abundance could not be estimated, the percent at age is given.

Year	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Total
1981	77.65	3,481.18	1,510.77	769.16	2,785.91	1,051.92	209.93	128.52	79.43	25.19	1.73	0.00	0.00	0.00	0.00	10,121.37
1983	1.21	901.77	380.19	1,296.79	1,170.81	698.13	598.78	131.54	14.48	11.61	3.92	1.71	0.00	0.00	0.00	5,210.93
1984	61.65	58.25	324.49	141.66	635.04	988.21	449.62	224.35	41.03	2.74	0.00	1.02	0.00	0.00	0.00	2,928.07
1985	2,091.74	544.44	122.69	314.77	180.53	347.17	439.31	166.68	42.72	5.56	1.77	1.29	0.00	0.00	0.00	4,258.67
1986	575.36	2,114.83	183.62	45.63	75.36	49.34	86.15	149.36	60.22	10.62	1.29	0.00	0.00	0.00	0.00	3,351.78
1987	7.5\%	25.5\%	55.8\%	2.9\%	1.7\%	1.2\%	1.6\%	1.2\%	2.1\%	0.4\%	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	100.0\%
1988	17.44	109.93	694.32	322.11	77.57	16.99	5.70	5.60	3.98	8.96	1.78	1.84	0.20	0.00	0.00	1,266.41
1989	399.48	89.52	90.01	222.05	248.69	39.41	11.75	3.83	1.89	0.55	10.66	1.42	0.00	0.00	0.00	1,119.25
1990	49.14	1,210.17	71.69	63.37	115.92	180.06	46.33	22.44	8.20	8.21	0.93	3.08	1.51	0.79	0.24	1,782.08
1991	21.98	173.65	549.90	48.11	64.87	69.60	116.32	23.65	29.43	2.23	4.29	0.92	4.38	0.00	0.00	1,109.32
1992	228.03	33.69	73.54	188.10	367.99	84.11	84.99	171.18	32.70	56.35	2.30	14.67	0.90	0.30	0.00	1,338.85
1993	63.29	76.08	37.05	72.39	232.79	126.19	26.77	35.63	38.72	16.12	7.77	2.60	2.19	0.49	1.51	739.61
1994	185.98	35.77	49.30	31.75	155.03	83.58	42.48	27.23	44.45	48.46	14.79	6.65	1.12	2.34	0.57	729.49
1995	10,689.87	510.37	79.37	77.70	103.33	245.23	121.72	53.57	16.63	10.72	14.57	5.81	2.12	0.44	0.00	11,931.45
1996	56.14	3,307.21	118.94	25.12	53.99	71.03	201.05	118.52	39.80	13.01	11.32	5.32	2.52	0.03	0.38	4,024.36
1997	70.37	183.14	1,246.55	80.06	18.42	44.04	51.73	97.55	52.73	14.29	2.40	3.05	0.93	0.46	0.00	1,865.72
1998	395.47	88.54	125.57	474.36	136.12	14.22	31.93	36.30	74.08	25.90	14.30	6.88	0.27	0.56	0.56	1,425.05
2000	4,484.41	755.03	216.52	15.83	67.19	131.64	16.82	12.61	9.87	7.84	13.87	6.88	1.88	1.06	0.00	5,741.46
2001	288.93	4,103.95	351.74	61.02	41.55	22.99	34.63	13.07	6.20	2.67	1.20	1.91	0.69	0.50	0.24	4,931.27
2002	8.11	162.61	1,107.17	96.58	16.25	16.14	7.70	6.79	1.46	0.66	0.35	0.34	0.15	0.13	0.00	1,424.45
2003	51.19	89.58	207.69	802.46	56.58	7.69	4.14	1.58	1.46	0.85	0.28	0.00	0.10	0.00	0.00	1,223.60
2004	52.58	93.94	57.58	159.62	356.33	48.78	2.67	3.42	3.32	0.52	0.42	0.00	0.66	0.00	0.00	779.84
2005	1,626.13	157.49	55.54	34.63	172.74	162.40	36.02	3.61	2.39	0.00	0.76	0.00	0.00	0.00	0.00	2,251.71
2006	161.69	835.96	40.75	11.54	17.42	55.98	74.97	32.25	6.90	0.83	0.75	0.53	0.00	0.00	0.00	1,239.57
2007	53.54	231.73	174.88	29.66	10.14	17.27	34.39	20.85	1.54	1.05	0.69	0.00	0.00	0.00	0.00	575.74
2008	1,368.02	391.20	249.56	53.18	12.01	2.16	4.07	10.66	6.69	2.01	0.53	0.00	0.00	0.00	0.00	2,100.10
2009	331.94	1,204.50	110.22	98.69	60.21	9.91	2.90	0.86	5.07	6.13	1.37	0.24	0.00	0.00	0.00	1,832.03
2010	90.04	305.57	531.65	84.46	78.93	28.52	11.78	5.46	5.25	10.82	9.36	3.45	0.00	0.00	0.00	1,165.29

Table 1.11. Survey sampling effort and biomass coefficients of variation (CV) for pollock in the Shelikof Strait acoustic survey. Survey CVs are reported for 1981-91, while relative estimation error using a geostatistical method are reported for 1992-2009.

Year	No. of midwater tows	No. of bottom trawl tows	Survey biomass CV	Number aged		Number measured			
				Males	Females	Total	Males	Females	Total
1981	36	18	0.12	1,921	1,815	3,736	NA	NA	NA
1983	47	1	0.16	1,642	1,103	2,745	NA	NA	NA
1984	42	0	0.18	1,739	1,622	3,361	NA	NA	NA
1985	57	0	0.14	1,055	1,187	2,242	NA	NA	NA
1986	38	1	0.22	642	618	1,260	NA	NA	NA
1987	27	0	---	557	643	1,200	NA	NA	NA
1988	26	0	0.17	537	464	1,001	NA	NA	NA
1989	21	0	0.10	757	796	1,553	NA	NA	NA
1990	25	16	0.17	988	1,117	2,105	NA	NA	NA
1991	16	2	0.35	478	628	1,106	NA	NA	NA
1992	17	8	0.04	784	765	1,549	NA	NA	NA
1993	22	2	0.05	583	624	1,207	NA	NA	NA
1994	42	12	0.05	554	633	1,187	NA	NA	NA
1995	22	3	0.05	599	575	1,174	NA	NA	NA
1996	30	8	0.04	724	775	1,499	NA	NA	NA
1997	16	14	0.04	682	853	1,535	3,754	4,324	8,078
1998	22	9	0.04	863	784	1,647	5,448	4,951	10,399
2000	31	0	0.05	430	370	800	5,266	5,337	10,603
2001	15	9	0.05	314	378	692	5,266	5,337	10,603
2002	18	1	0.07	278	326	604	3,754	4,324	8,078
2003	17	2	0.05	294	322	616	4,175	4,534	8,709
2004	13	2	0.09	422	315	737	4,250	3,014	7,264
2005	22	1	0.04	543	335	878	3,208	2,842	6,050
2006	17	2	0.04	295	487	782	1,987	2,023	4,010
2007	9	1	0.06	335	338	673	3,966	4,275	8,241
2008	10	2	0.06	172	248	420	2,686	2,760	5,446
2009	9	3	0.06	254	301	555	1,583	1,632	3,215
2010	13	2	0.03	298	315	613	2,590	2,358	4,948

Table 1.12. Estimates of pollock biomass obtained from GLM model predictions of pollock CPUE and INPFC area expansions. Biomass estimates were multiplied by the von Szalay and Brown (2001) FPC of 3.84 for comparison to the NMFS triennial trawl survey biomass estimates. Coefficients of variation do not reflect the variance of the FPC estimate.

Year	Biomass (t)	FPC-adjusted	biomass (t)

Other published estimates of pollock biomass from surveys using 400-mesh eastern trawls

Year	Biomass (t)	Source
1961	57,449	Ronholt et al. 1978
$1961-62$	91,075	Ronholt et al. 1978
$1973-75$	$1,055,000$	Alton et al. 1977
$1973-76$	739,293	Ronholt et al. 1978
$1973-75$	610,413	Hughes and Hirschhorn 1979

Table 1.13. Predictions of Gulf of Alaska pollock year-class strength. The FOCI prediction is the prediction of year-class strength made in the natal year of the year class, and was derived from environmental indices, larval surveys, and the time series characteristics of pollock recruitment. The McKelvey index is the estimated abundance of 9-16 cm pollock from the Shelikof Strait acoustic survey.

Year class	Year of acoustic			Rank abundance of McKelvey index
	FOCI prediction	survey	McKelvey index	
1980		1981	0.078	15
1981				
1982		1983	0.001	27
1983		1984	0.062	18
1984		1985	2.092	3
1985		1986	0.579	6
1986				
1987		1988	0.017	25
1988		1989	0.399	7
1989		1990	0.049	23
1990		1991	0.022	24
1991		1992	0.228	11
1992	Strong	1993	0.063	17
1993	Average	1994	0.186	12
1994	Average	1995	10.688	1
1995	Average-Strong	1996	0.061	19
1996	Average	1997	0.070	16
1997	Average	1998	0.395	8
1998	Average			
1999	Average	2000	4.484	2
2000	Average	2001	0.291	10
2001	Average-Strong	2002	0.008	26
2002	Average	2003	0.051	22
2003	Average	2004	0.053	21
2004	Average	2005	1.626	4
2005	Average	2006	0.162	13
2006	Average	2007	0.054	20
2007	Average	2008	1.368	5
2008	Average	2009	0.332	9
2009	Average	2010	0.090	14
2010	---		--	---
2011	---		---	---

Table 1.14. Ageing error transition matrix used in the Gulf of Alaska pollock assessment model.

				Observed Age								
True Age St. dev.	1	2	3	4	5	6	7	8	9	10		
1	0.18	0.9970	0.0030	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
2	0.23	0.0138	0.9724	0.0138	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
3	0.27	0.0000	0.0329	0.9342	0.0329	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
4	0.32	0.0000	0.0000	0.0571	0.8858	0.0571	0.0000	0.0000	0.0000	0.0000	0.0000	
5	0.36	0.0000	0.0000	0.0000	0.0832	0.8335	0.0832	0.0000	0.0000	0.0000	0.0000	
6	0.41	0.0000	0.0000	0.0000	0.0001	0.1090	0.7817	0.1090	0.0001	0.0000	0.0000	
7	0.45	0.0000	0.0000	0.0000	0.0000	0.0004	0.1333	0.7325	0.1333	0.0004	0.0000	
8	0.50	0.0000	0.0000	0.0000	0.0000	0.0000	0.0012	0.1554	0.6868	0.1554	0.0012	
9	0.54	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0028	0.1747	0.6450	0.1775	
10	0.59	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0052	0.1913	0.8035	

Table 1.15. Proportion mature at age for female pollock based on maturity stage data collected during winter EIT surveys in the Gulf of Alaska (1983-2010).

									Sample	
Year	2	3	4	5	6	7	8	9	$10+$	size
1983	0.000	0.165	0.798	0.960	0.974	0.983	0.943	1.000	1.000	1333
1984	0.000	0.145	0.688	0.959	0.990	1.000	0.992	1.000	1.000	1621
1985	0.015	0.051	0.424	0.520	0.929	0.992	0.992	1.000	1.000	1183
1986	0.000	0.021	0.105	0.849	0.902	0.959	1.000	1.000	1.000	618
1987	0.000	0.012	0.106	0.340	0.769	0.885	0.950	0.991	1.000	638
1988	0.000	0.000	0.209	0.176	0.606	0.667	1.000	0.857	0.964	464
1989	0.000	0.000	0.297	0.442	0.710	0.919	1.000	1.000	1.000	796
1990	0.000	0.000	0.192	0.674	0.755	0.910	0.945	0.967	0.996	1844
1991	0.000	0.000	0.111	0.082	0.567	0.802	0.864	0.978	1.000	628
1992	0.000	0.000	0.040	0.069	0.774	0.981	0.990	1.000	0.983	765
1993	0.000	0.016	0.120	0.465	0.429	0.804	0.968	1.000	0.985	624
1994	0.000	0.007	0.422	0.931	0.941	0.891	0.974	1.000	1.000	872
1995	0.000	0.000	0.153	0.716	0.967	0.978	0.921	0.917	0.977	805
1996	0.000	0.000	0.036	0.717	0.918	0.975	0.963	1.000	0.957	763
1997	0.000	0.000	0.241	0.760	1.000	1.000	0.996	1.000	1.000	843
1998	0.000	0.000	0.065	0.203	0.833	0.964	1.000	1.000	0.989	757
2000	0.000	0.012	0.125	0.632	0.780	0.579	0.846	1.000	0.923	356
2001	0.000	0.000	0.289	0.308	0.825	0.945	0.967	0.929	1.000	374
2002	0.000	0.026	0.259	0.750	0.933	0.974	1.000	1.000	1.000	499
2003	0.000	0.029	0.192	0.387	0.529	0.909	0.750	1.000	1.000	301
2004	0.000	0.000	0.558	0.680	0.745	0.667	1.000	1.000	1.000	444
2005	0.000	0.000	0.706	0.882	0.873	0.941	1.000	1.000	1.000	321
2006	0.000	0.000	0.043	0.483	0.947	0.951	0.986	1.000	1.000	476
2007	0.000	0.000	0.333	0.667	0.951	0.986	0.983	1.000	1.000	313
2008	0.000	0.000	0.102	0.241	0.833	1.000	0.968	0.952	1.000	240
2009	0.000	0.000	0.140	0.400	0.696	1.000	1.000	1.000	1.000	296
2010	0.000	0.000	0.357	0.810	0.929	1.000	1.000	1.000	1.000	314
Average										
All years	0.001	0.018	0.263	0.559	0.819	0.913	0.963	0.985	0.992	
$2001-2010$	0.000	0.006	0.298	0.561	0.826	0.937	0.965	0.988	1.000	
$2006-2010$	0.000	0.000	0.195	0.520	0.871	0.987	0.987	0.990	1.000	

Table 1.16. Estimated selectivity at age for Gulf of Alaska pollock fisheries and surveys. The fisheries and surveys were modeled using double logistic selectivity functions with random walk process error for the fishery logistic parameters. Fishery selectivity at age reported below is the average of the annual selectivity for the indicated time period, rescaled so that the maximum is one

Age		POP fishery (1961-71)	Foreign (1972-84)	Historical domestic (1985-2001)	Recent domestic (2002-2010)	Acoustic survey	Bottom trawl survey	ADF\&G bottom trawl	$\begin{gathered} \text { 400-mesh } \\ \text { eastern trawl } \\ 1961-82 \end{gathered}$
	2	0.001	0.041	0.040	0.211	0.956	0.210	0.062	0.119
	3	0.021	0.258	0.146	0.570	0.923	0.330	0.142	0.386
	4	0.414	0.751	0.403	0.857	0.870	0.503	0.294	0.745
	5	1.000	1.000	0.730	0.961	0.789	0.723	0.514	0.931
	6	0.948	0.926	0.938	0.992	0.677	0.926	0.729	0.984
	7	0.704	0.684	1.000	1.000	0.539	1.000	0.876	0.997
	8	0.363	0.351	0.941	0.980	0.395	0.897	0.952	0.999
	9	0.131	0.131	0.740	0.750	0.267	0.698	0.986	1.000
	10	0.040	0.042	0.319	0.202	0.169	0.500	1.000	1.000

Table 1.17. Total estimated abundance at age (numbers in 000,000s) of Gulf of Alaska pollock from the agestructured assessment model.

	Age								
	2	3	4	5	6	7	8	9	10
1961	364	190	117	72	54	38	28	21	16
1962	402	269	141	86	54	40	28	20	27
1963	430	298	200	104	64	40	29	21	35
1964	96	319	221	148	77	47	29	22	41
1965	250	71	236	163	109	57	35	22	47
1966	132	185	53	174	119	80	42	26	51
1967	329	98	137	38	123	85	57	30	57
1968	387	244	72	100	27	88	61	42	64
1969	675	287	181	53	71	19	63	45	78
1970	317	500	212	126	34	46	13	44	90
1971	681	235	370	153	87	23	32	9	99
1972	1,268	505	174	269	108	62	17	23	80
1973	966	939	373	123	180	73	43	12	76
1974	3,164	715	694	265	82	120	50	31	65
1975	649	2,343	529	489	170	53	81	36	70
1976	413	480	1,713	369	338	118	38	59	78
1977	1,949	305	346	1,183	254	235	84	27	101
1978	2,737	1,441	222	237	802	174	164	60	94
1979	2,562	2,021	1,034	152	162	551	122	118	113
1980	3,627	1,893	1,462	711	103	111	388	88	170
1981	1,844	2,678	1,373	1,024	491	72	78	277	190
1982	448	1,362	1,948	959	702	338	50	56	343
1983	502	329	972	1,354	663	487	238	36	294
1984	208	368	233	658	903	444	336	171	244
1985	477	152	254	147	397	546	282	234	306
1986	1,623	347	105	156	82	215	307	181	393
1987	550	1,186	244	69	98	51	137	212	423
1988	160	404	855	169	46	64	33	92	464
1989	376	118	293	600	114	30	42	22	407
1990	1,643	278	86	209	407	74	19	27	312
1991	1,024	1,214	204	62	143	261	45	12	248
1992	407	757	892	147	43	94	168	29	171
1993	241	300	550	622	97	28	61	108	144
1994	145	177	218	384	414	63	18	39	173
1995	219	107	129	153	259	273	41	12	146
1996	857	161	78	92	106	176	185	28	112
1997	408	634	119	57	65	73	121	126	98
1998	174	301	463	84	38	41	46	75	144
1999	159	127	211	299	50	22	23	26	135
2000	217	116	91	142	184	29	12	13	102
2001	889	160	85	63	92	112	17	7	77
2002	816	649	114	57	40	56	68	10	58
2003	119	595	461	77	37	26	36	43	48
2004	88	86	421	315	52	25	17	24	64
2005	75	62	58	279	208	34	16	11	64
2006	228	53	42	37	176	130	21	10	54
2007	574	162	36	27	24	110	81	13	46
2008	458	409	110	24	18	16	72	54	43
2009	650	333	285	74	16	12	10	48	68
2010	323	475	235	197	51	11	8	7	82
2011	388	236	330	157	130	34	7	5	64
Average	739	543	392	269	180	118	78	54	137

Table 1.18. Estimates of population biomass, recruitment, and harvest of Gulf of Alaska pollock from the age-structured assessment model.
The harvest rate is the catch in biomass divided by the total biomass of age $3+$ fish at the start of the year.

Year	3+ total biomass $(1,000 t)$	Female spawn. biom.$(1,000 t)$	Age 2 recruits (million)	Catch (t)	Harvest rate	2010 Assessment results			
						$3+\text { total }$ biomass	Female spawn. biom.	Age 2 recruits	Harvest rate
1977	1,986	465	1,949	118,356	6\%	2,032	476	1,975	6\%
1978	2,155	502	2,737	96,935	4\%	2,203	515	2,763	4\%
1979	2,671	512	2,562	105,748	4\%	2,721	525	2,576	4\%
1980	3,173	569	3,627	114,622	4\%	3,222	582	3,635	4\%
1981	3,881	471	1,844	147,744	4\%	3,926	481	1,842	4\%
1982	4,042	553	448	168,740	4\%	4,080	562	447	4\%
1983	3,434	687	502	215,608	6\%	3,461	695	502	6\%
1984	2,783	725	208	307,401	11\%	2,804	732	208	11\%
1985	2,064	657	477	284,826	14\%	2,080	664	476	14\%
1986	1,664	536	1,623	87,809	5\%	1,678	542	1,620	5\%
1987	1,727	451	550	69,751	4\%	1,737	455	549	4\%
1988	1,630	409	160	65,739	4\%	1,637	412	159	4\%
1989	1,478	396	376	78,392	5\%	1,483	398	375	5\%
1990	1,259	356	1,643	90,744	7\%	1,262	358	1,635	7\%
1991	1,380	338	1,024	100,488	7\%	1,380	339	1,019	7\%
1992	1,701	298	407	90,857	5\%	1,698	299	405	5\%
1993	1,544	334	241	108,908	7\%	1,540	334	240	7\%
1994	1,295	385	145	107,335	8\%	1,291	384	144	8\%
1995	1,089	353	219	72,618	7\%	1,085	352	218	7\%
1996	902	319	857	51,263	6\%	898	317	854	6\%
1997	918	274	408	90,130	10\%	914	273	406	10\%
1998	840	208	174	125,098	15\%	836	207	173	15\%
1999	679	190	159	95,590	14\%	676	189	157	14\%
2000	599	178	217	73,080	12\%	595	177	216	12\%
2001	566	174	889	72,076	13\%	563	173	884	13\%
2002	712	147	816	51,937	7\%	707	146	811	7\%
2003	869	139	119	50,666	6\%	863	138	117	6\%
2004	767	153	88	63,934	8\%	761	152	86	8\%
2005	644	196	75	80,846	13\%	638	195	73	13\%
2006	553	208	228	71,976	13\%	547	206	224	13\%
2007	509	186	574	53,062	10\%	502	184	523	11\%
2008	688	179	458	52,500	8\%	663	177	420	8\%
2009	941	168	650	44,003	5\%	887	164	795	5\%
2010	1,127	208	323	76,860	7\%	1,136	198	347	7\%
2011	1,159	238	388						
Average									
1977-2011	1,527	348	776	102,519	8\%	1,544	353	790	8\%
1979-2010			690					692	

Table 1.19. Uncertainty of estimates of recruitment and spawning biomass of Gulf of Alaska pollock from the agestructured assessment model.

Year	Age-2	Spawning						
	Recruits		Lower	Upper 95\%	biomass		Lower 95\%	Upper 95\%
	(millions)	CV	95\% CI	CI	(1,000 t)	CV	CI	CI
1961	364	0.47	152	872	79	0.28	47	135
1962	402	0.43	179	905	90	0.23	57	141
1963	430	0.36	217	854	104	0.21	69	156
1964	96	0.59	33	282	122	0.20	82	182
1965	250	0.35	128	488	143	0.21	96	214
1966	132	0.48	54	323	155	0.21	103	233
1967	329	0.31	181	598	154	0.22	101	234
1968	387	0.32	210	713	146	0.22	96	221
1969	675	0.26	408	1117	139	0.21	92	211
1970	317	0.41	146	685	137	0.21	91	206
1971	681	0.28	397	1169	152	0.20	102	225
1972	1268	0.23	810	1985	169	0.20	114	251
1973	966	0.23	622	1499	186	0.21	123	281
1974	3164	0.16	2315	4324	218	0.21	144	330
1975	649	0.19	445	945	267	0.21	177	404
1976	413	0.21	276	617	373	0.19	255	544
1977	1949	0.13	1522	2495	465	0.19	323	669
1978	2737	0.10	2242	3342	502	0.19	349	722
1979	2562	0.09	2142	3064	512	0.18	363	722
1980	3627	0.08	3122	4213	569	0.15	423	766
1981	1844	0.09	1555	2186	471	0.13	368	604
1982	448	0.15	338	595	553	0.10	452	678
1983	502	0.12	398	634	687	0.09	578	816
1984	208	0.19	143	302	725	0.09	612	859
1985	477	0.12	379	599	657	0.09	546	791
1986	1623	0.07	1412	1865	536	0.11	437	659
1987	550	0.10	456	663	451	0.11	365	557
1988	160	0.17	115	221	409	0.11	333	502
1989	376	0.11	305	464	396	0.10	327	478
1990	1643	0.06	1450	1861	356	0.09	298	426
1991	1024	0.07	889	1179	338	0.09	282	405
1992	407	0.10	336	492	298	0.09	251	354
1993	241	0.11	195	297	334	0.08	287	389
1994	145	0.14	111	189	385	0.07	334	444
1995	219	0.11	176	271	353	0.07	306	408
1996	857	0.06	755	973	319	0.07	276	368
1997	408	0.08	347	480	274	0.08	236	319
1998	174	0.12	139	218	208	0.08	177	245
1999	159	0.11	127	198	190	0.08	161	224
2000	217	0.10	180	262	178	0.09	150	211
2001	889	0.06	792	997	174	0.09	145	209
2002	816	0.06	728	914	147	0.10	121	179
2003	119	0.12	94	149	139	0.10	115	168
2004	88	0.11	71	110	153	0.08	132	178
2005	75	0.13	58	96	196	0.07	170	227
2006	228	0.10	189	275	208	0.08	179	241
2007	574	0.09	479	687	186	0.08	158	219
2008	458	0.11	369	567	179	0.09	151	213
2009	650	0.14	496	851	168	0.09	141	200
2010	323	0.26	195	536	208	0.09	175	247
2011	388	0.43	172	875	238	0.09	197	286

Table 1.20. Gulf of Alaska pollock life history and fishery vectors used to estimate spawning biomass per recruit $\left(F_{S P R}\right)$ harvest rates. Population weight at age is based on a average for the bottom trawl survey conducted in June to August. Spawning weight at age is based on an average from the Shelikof Strait acoustic survey conducted March. Proportion mature females is the average from winter acoustic survey specimen data for 19832010.

	Natural mortality	Fishery selectivity (Avg. 2006-2010)	Weight at age (kg)			Proportion mature females
			Spawning (Avg. 2006-2010)	Population (Avg. 2005-2009)	Fishery (Avg. 2006-2010)	
2	0.3	0.209	0.077	0.201	0.296	0.001
3	0.3	0.625	0.251	0.419	0.565	0.018
4	0.3	0.916	0.509	0.749	0.929	0.263
5	0.3	0.987	0.852	1.042	1.287	0.559
6	0.3	0.999	1.219	1.269	1.516	0.819
7	0.3	1.000	1.582	1.462	1.672	0.913
8	0.3	0.981	1.743	1.652	1.815	0.963
9	0.3	0.776	1.904	1.804	1.909	0.985
10+	0.3	0.228	1.991	1.906	2.039	0.992

Table 1.21. Methods used to assess Gulf of Alaska pollock, 1977-2010. The basis for catch recommendation in 19771989 is the presumptive method by which the TAC was determined (based on the assessment and SSC minutes). The basis for catch recommendation given in 1990-2010 is the method used by the Plan Team to derive the ABC recommendation given in the SAFE summary chapter.

Year		Assessment method	Basis for catch recommendation in
following year			

Table 1.22. Projections of Gulf of Alaska pollock spawning biomass, full recruitment fishing mortality, and catch for 2012-2024 under different harvest policies. All projections begin with estimated age composition in 2011 using the base run model with a projected 2011 catch of $88,620 \mathrm{t}$. The values for $B_{100 \%}, B_{40 \%}$, and $B_{35 \%}$ are $678,000,271,000$, and $237,000 \mathrm{t}$, respectively.

Spawning biomass (t)	Max $F_{\text {ABC }}$	Author's recommended F	Average F	$F_{75 \%}$	$F=0$	$F_{\text {OFL }}$	$\operatorname{Max} F_{A B C}$ for two years, then $F_{\text {OFL }}$
2011	205,679	205,679	205,679	205,679	205,679	205,679	205,679
2012	226,756	227,723	229,206	231,085	233,522	225,715	226,756
2013	226,989	232,632	241,901	253,922	270,321	221,085	226,989
2014	226,007	235,323	252,882	275,568	307,994	216,556	224,954
2015	234,139	245,908	272,643	306,056	355,717	221,944	227,981
2016	251,602	264,663	303,315	348,153	416,909	236,517	240,463
2017	268,700	281,987	334,095	390,115	478,194	250,729	252,947
2018	280,169	293,081	358,041	423,980	529,820	259,675	260,733
2019	285,438	297,746	373,955	448,344	569,985	262,925	263,372
2020	287,627	299,349	384,230	464,945	598,918	263,774	263,954
2021	290,052	301,283	392,854	478,162	621,224	265,286	265,361
2022	293,186	304,105	401,254	490,254	640,541	267,707	267,739
2023	294,455	305,146	406,902	498,837	654,836	268,415	268,429
2024	293,752	304,225	409,183	503,170	663,326	267,391	267,397
Fishing mortality	Max $F_{\text {ABC }}$	Author's recommended F	Average F	$F_{75 \%}$	$F=0$	$F_{\text {OFL }}$	Max $F_{A B C}$ for two years, then $F_{\text {OFL }}$
2011	0.12	0.12	0.12	0.12	0	0.12	0.12
2012	0.17	0.14	0.11	0.06	0	0.19	0.17
2013	0.17	0.15	0.11	0.06	0	0.19	0.17
2014	0.17	0.15	0.11	0.06	0	0.18	0.19
2015	0.17	0.15	0.11	0.06	0	0.18	0.19
2016	0.17	0.16	0.11	0.06	0	0.19	0.19
2017	0.17	0.16	0.11	0.06	0	0.19	0.19
2018	0.17	0.17	0.11	0.06	0	0.20	0.20
2019	0.18	0.17	0.11	0.06	0	0.20	0.20
2020	0.18	0.17	0.11	0.06	0	0.20	0.20
2021	0.18	0.17	0.11	0.06	0	0.20	0.20
2022	0.18	0.17	0.11	0.06	0	0.20	0.20
2023	0.18	0.17	0.11	0.06	0	0.20	0.20
2024	0.18	0.17	0.11	0.06	0	0.20	0.20
Catch (t)	Max $F_{\text {ABC }}$	Author's recommended F	Average F	$F_{75 \%}$	$F=0$	$F_{\text {OFL }}$	$\operatorname{Max} F_{A B C}$ for two years, then $F_{\text {OFL }}$
2011	88,620	88,620	88,620	88,620	88,620	88,620	88,620
2012	125,556	108,438	81,632	46,779	0	143,716	125,556
2013	130,828	117,325	88,637	52,517	0	143,907	130,828
2014	142,742	132,482	98,608	59,817	0	153,737	163,477
2015	156,310	149,892	108,182	66,701	0	167,835	173,331
2016	168,703	164,608	116,486	72,669	0	181,280	183,849
2017	177,085	173,727	121,908	76,766	0	190,196	191,091
2018	181,839	178,691	126,083	80,101	0	194,662	194,824
2019	184,770	180,988	128,326	81,901	0	197,031	196,911
2020	186,751	182,942	129,543	82,728	0	198,979	198,814
2021	188,141	184,058	130,615	83,484	0	200,193	200,089
2022	188,002	183,781	130,453	83,477	0	199,795	199,741
2023	185,647	181,555	129,729	83,126	0	197,285	197,258
2024	183,727	179,823	128,875	82,702	0	195,181	195,169

Figure 1.1 Pollock catch in 2010 by 20 X 20 km blocks by season in the Gulf of Alaska as determined by observer-recorded haul retrieval locations. Blocks with less than 1.0 t of pollock catch are not shown. The size of the circle is proportional to the catch.

Figure 1.2. 2010 catch age composition by half year and statistical area.

Figure 1.3. Gulf of Alaska pollock catch age composition (1976-2010). The diameter of the circle is proportional to the catch. Diagonal lines show strong year classes (1972, 1975, 1976, 1977, 1978, 1979, 1984, 1988, 1994, 1995, 1999, 2000, and 2005).

Figure 1.4. Pollock CPUE for the 2011 NMFS bottom trawl survey.

Figure 1.5. Size composition of pollock by statistical area for the 2011 NMFS bottom trawl survey.

Biomass $\geq 43 \mathrm{~cm}$

Figure 1.6. Biomass estimates of juvenile pollock (top) and adult pollock (bottom) from 1986-2010 Shelikof Strait acoustic surveys. No winter surveys were conducted in 2011 due to scheduled repairs to the $R V$ Oscar Dyson. Bottom panel also shows the model estimate of total spawning biomass.

Figure 1.7. Trends in biomass estimates of from winter acoustic surveys of pre-spawning aggregations of pollock in the Gulf of Alaska. No winter surveys were conducted in 2011 due to scheduled repairs to the R / V Oscar Dyson.

Figure 1.8. Biomass by length for pollock in the Shelikof Strait acoustic survey (1981-2010, except 1982,1987 and 1999). No winter surveys were conducted in 2011 due to scheduled repairs to the R / V Oscar Dyson.

Figure 1.9. Relative distribution of pollock during the 2011 summer acoustic survey in the Gulf of Alaska.

Figure 1.10. Comparison of pollock abundance estimates by length for the NMFS bottom trawl and summer acoustic surveys in the Central and Western Gulf of Alaska. The abundance of pollock $<22 \mathrm{~cm}$ is a reliable proxy for the abundance of age- 1 pollock.

Figure 1.11. Length frequency of pollock in the ADF\&G crab/groundfish trawl survey (1989-2011, except 1991 and 1995).

Figure 1.12. Relative trends in pollock biomass since 1987 for the Shelikof Strait acoustic survey, the NMFS bottom trawl survey, and the ADF\&G crab/groundfish trawl survey. Each survey biomass estimate is standardized to the average since 1987. Shelikof Strait acoustic surveys prior to 2008 were re-scaled to be comparable to the surveys conducted from 2008 onwards by the R / V Oscar Dyson.

Figure 1.13. Gulf of Alaska pollock catch characteristics.

Figure 1.14. Estimates of the proportion mature at age from visual maturity data collected during 20062010 winter acoustic surveys in the Gulf of Alaska and long-term average proportion mature at age (19832010).

Figure 1.15. Age at 50% mature (top) and length at 50% mature (bottom) from annual logistic regressions for female pollock from winter acoustic survey data in the Gulf of Alaska, 1983-2010.

Figure 1.16. Estimated weight-at-age of Gulf of Alaska pollock (ages 2, 4, 6,10) from Shelikof Strait acoustic surveys in 1983-2010. In 1999, when the acoustic survey was not conducted, weights-at-age were interpolated from adjacent years.

Figure 1.17. Observed and predicted fishery age composition for Gulf of Alaska pollock from the base model. Continuous lines are model predictions and lines with + symbol are observed proportions at age.

Figure 1.18. Observed and predicted Shelikof Strait acoustic survey age composition for Gulf of Alaska pollock from the base model. Continuous lines are model predictions and lines with + symbol are observed proportions at age.

Figure 1.19. Observed and predicted NMFS bottom trawl age composition for Gulf of Alaska pollock from the base model. Continuous lines are model predictions and lines with + symbol are observed proportions at age.

Shelikof acoustic survey (MF-Biosonics, 1981-1993)

Shelikof acoustic survey (MF-EK500, Dyson, 1992-2010)

Figure 1.20. Model predicted and observed survey biomass for the Shelikof Strait acoustic survey. The Shelikof acoustic survey is modeled with three catchability periods corresponding to the two acoustic systems used on the R / V Miller Freeman (MF), with an additional catchability period for the R / V Dyson (DY) in 2008-2010. Error bars indicate plus and minus two standard deviations.

NMFS bottom trawl survey (1984-2011)

Figure 1.21. Model predicted and observed survey biomass for the NMFS bottom trawl survey (top), and the ADFG crab/groundfish survey (bottom). Error bars indicate plus and minus two standard deviations. Since variance estimates are unavailable for ADF\&G biomass estimates, an assumed CV of 0.25 is used in the assessment model.

Figure 1.22. Model predicted and observed survey biomass for the historical 400-mesh eastern trawl surveys (top), and the egg production survey (bottom). Error bars indicate plus and minus two standard deviations.

Figure 1.23. Uncertainty in the catchability coefficient for the NMFS trawl survey from a likelihood profile for the base model.

Figure 1.24. Estimates of time-varying fishery selectivity for Gulf of Alaska pollock. The maximum selectivity in each year is 1.0 .

Female spawning biomass

Recruitment

Figure 1.25. Estimated time series of Gulf of Alaska pollock spawning biomass (million t, top) and age-2 recruitment (billions of fish, bottom) from 1961 to 2011. Vertical bars represent two standard deviations. The B35\% and B40\% lines represent the current estimate of these benchmarks.

Figure 1.26. Retrospective plot of estimated Gulf of Alaska pollock female spawning biomass for stock assessments in the years 1993-2011 (top). For this figure, the time series of female spawning biomass for the 2011 assessment was calculated using the weight and maturity at age used in pre-1999 assessments to facilitate comparison. The bottom panel shows the estimated age composition in 2011 from the 2010 and 2011 assessments.

Figure 1.27. Gulf of Alaska pollock spawner productivity $\log (R / S)$ in 1961-2009 (top). A five-year running average is also shown. Spawner productivity in relation to female spawning biomass (bottom). The Ricker stock-recruit curve is linear in a plot of spawner productivity against spawning biomass.

Figure 1.28. Annual fishing mortality as measured in percentage of unfished spawning per recruit (top). Gulf of Alaska pollock spawning biomass relative to the unfished level and fishing mortality relative to $F_{M S Y}$ (bottom). The ratio of fishing mortality to $F_{M S Y}$ is calculated using the estimated selectivity pattern in that year. Estimates of $B_{100 \%}$ spawning biomass are based on current estimates of maturity at age, weight at age, and mean recruitment. Because these estimates change as new data become available, this figure can only be used in a general way to evaluate management performance relative to biomass and fishing mortality reference levels.

Figure 1.29. Uncertainty in spawning biomass in 2012-2016 based on a thinned MCMC chain from the joint marginal likelihood for the base model where catch is set to the author's recommended $F_{A B C}$.

Figure 1.30. Projected spawning biomass and catches in 2012-16 under different management strategies.

Figure 1.31. Variability in projected catch and spawning biomass in 2012-2024 under the author's recommended $F_{A B C}$.

Figure 1.32. Gulf of Alaska food web showing demersal (red) and pelagic (blue) pathways. Walleye pollock is shown in green. Pollock consumers stain green according to the importance of pollock in their diet.

Figure 1.33. Diet (percent wet weight) of GOA walleye pollock juveniles (top) and adults (bottom) from summer food habits data collected on NMFS bottom trawl surveys, 1990-2005.

Figure 1.34. Sources of mortality for walleye pollock juveniles (top) and adults (bottom) from an ECOPATH model of the Gulf of Alaska. Pollock less than 20 cm are considered juveniles.

Figure 1.35. Diet diversity of major predators of walleye pollock from an ECOPATH model for Gulf of Alaska during 1990-94.

Figure 1.36. Length frequencies and percent by weight of each length class of pollock prey (cm fork length) in stomachs of four major groundfish predators, from AFSC bottom-trawl surveys 1987-2005. Length of prey is uncorrected for digestion state.

Figure 1.37. (Top) Historical trends in GOA walleye pollock, Pacific cod, Pacific halibut, arrowtooth flounder, and Steller Sea Lions, from stock asessement data. (Bottom) Total catch and consumption of walleye pollock in survey years (bars) and production + biomass change as calculated from the current stock assessment results (line). See text for calculation methods.

Figure 1.38. (Top) Consumption per unit predator survey biomass of GOA walleye pollock $<30 \mathrm{~cm}$ fork length in diets, shown for each survey year. (Middle and bottom) Normalized consumption/biomass and normalized total consumption of pollock $<30 \mathrm{~cm}$ fork length, plotted against age 2 pollock numbers reported in Table 1.16.

Figure 1.39. (Top) Consumption per unit predator survey biomass of GOA walleye pollock $\geq 30 \mathrm{~cm}$ fork length in diets, shown for each survey year. (Middle and bottom) Normalized consumption/biomass and normalized total consumption of pollock $\geq 30 \mathrm{~cm}$ fork length, plotted against age $3+$ pollock biomass reported in Table 1.17.

GOA W. Pollock effects on other species

GOA W. Pollock_Juv effects on other species

GOA Pollock Trawl effects on other species

Figure 1.40. Ecosystem model output (percent change at future equilibrium of indicated groups) resulting from reducing adult pollock survival by 10% (top graph), reducing juvenile pollock survival by 10% (middle graph), and reducing pollock trawl effort by 10%. Dark bars indicate biomass changes of modeled species, while light bars indicate changes in fisheries catch (landings+discards) assuming a constant fishing rate within the indicated fishery. Graphs show 50% and 95% confidence intervals (bars and lines respectively) summarized over 20,000 ecosystems drawn from error ranges of input parameters (see Aydin et al. 2005 for methodology). Only the top 20 effects, sorted by median, are shown for each perturbation.

GOA Species affecting W. Pollock

GOA Species affecting W. Pollock_Juv

Figure 1.41. Ecosystem model output, shown as percent change at future equilibrium of adult pollock (top) and juvenile pollock, resulting from independently lowering the indicated species' survival rates by 10% (dark bars) or by reducing fishing effort of a particular gear by 10% (light bars). Graphs show 50% and 95% confidence intervals (bars and lines respectively) summarized over 20,000 ecosystems drawn from error ranges of input parameters (see Aydin et al. 2005 for methodology). Only the top 20 effects, sorted by median, are shown for each perturbation.

Figure 1.42. Ecosystem model output, shown as percent change at future equilibrium of four major predators on walleye pollock, resulting from independently lowering the indicated species' survival rates by 10% (dark bars) or by reducing fishing effort of a particular gear by 10% (light bars). Graphs show 50% and 95% confidence intervals (bars and lines respectively) summarized over 20,000 ecosystems drawn from error ranges of input parameters (see Aydin et al. 2005 for methodology). Only the top 20 effects, sorted by median, are shown for each perturbation.

Figure 1.43. Pair-wise Spearman rank correlation between abundance trends of walleye pollock, pollock fishery catches, Steller sea lions, arrowtooth flounder, Pacific halibut, and Pacific cod in the Gulf of Alaska. Rank correlations are based on the years in which abundance estimates are available for each pair.

Appendix A: Southeast Alaska pollock

Bottom trawl surveys indicate a substantial reduction in pollock abundance east of $140^{\circ} \mathrm{W}$. lon. Stock structure in this area is poorly understood. Bailey et al. (1999) suggest that pollock metapopulation structure in southeast Alaska is characterized by numerous fiord populations. In the 2009 bottom trawl survey, higher pollock CPUE in southeast Alaska occurred primarily from Cape Ommaney to Dixon Entrance, where the shelf is more extensive. Pollock length composition in the 2011 bottom trawl survey is dominated by age-1 pollock, with progressively decreasing proportions of larger pollock (Appendix Fig. 1.1). There are very few larger pollock (>50 cm). Juveniles in this area are unlikely to influence the population dynamics of pollock in the central and western Gulf of Alaska. Ocean currents are generally northward in this area, suggesting that juvenile settlement is a result of spawning further south. Spawning aggregations of pollock have been reported from the northern part of Dixon Entrance (Saunders et al. 1988).

Historically, there has been little directed fishing for pollock in Southeast Alaska (Fritz 1993). Pollock catch the Southeast and East Yakutat statistical areas has averaged about 1 t since 2000 (Table 1.4). The ban on trawling east of $140^{\circ} \mathrm{W}$. lon. prevents the development of a trawl fishery for pollock in Southeast Alaska.

Pollock biomass estimates from the bottom trawl survey are variable, in part due to year-to-year differences in survey coverage. Biomass in Southeast Alaska was estimated by splitting survey strata and CPUE data in the Yakutat INPFC area at $140^{\circ} \mathrm{W}$. lon. and combining the strata east of the line with comparable strata in the Southeastern INPFC area. Surveys since 1996 had the most complete coverage of shallow strata in southeast Alaska, and indicate that stock size is approximately 25-75,000 t (Appendix Figure 1.1). There are gradual increasing trend in biomass since 2005, but confidence intervals for biomass are large. We recommend placing southeast Alaska pollock in Tier 5 of NPFMC harvest policy, and basing the ABC and OFL on natural mortality (0.3) and the biomass for the 2011 survey $(47,885 \mathrm{t})$. This results in a 2012 ABC of $10,774 t(47,885 t * 0.75 \mathrm{M})$, and a 2012 OFL of $14,366 t(47,885 t$ * M).

Appendix Figure 1.1. Pollock size composition in 2011 (left) and biomass trend in southeast Alaska from NMFS bottom trawl surveys in 1990-2011 (right). Error bars indicate plus and minus two standard deviations.

Appendix B: Gulf pollock stock assessment model

Population dynamics

The age-structured model for pollock describes the relationships between population numbers by age and year. The modeled population includes individuals from age 2 to age 10, with age 10 defined as a "plus" group, i.e., all individuals age 10 and older. The model extends from 1961 to 2011 (51 years). The Baranov (1918) catch equations are assumed, so that

$$
\begin{gathered}
c_{i j}=N_{i j} \frac{F_{i j}}{Z_{i j}}\left[1-\exp \left(-Z_{i j}\right)\right] \\
N_{i+1 j+1}=N_{i j} \exp \left(-Z_{i j}\right) \\
Z_{i j}=\sum_{k} F_{i j}+M
\end{gathered}
$$

except for the plus group, where

$$
N_{i+1,10}=N_{i, 9} \exp \left(-Z_{i, 9}\right)+N_{i, 10} \exp \left(-Z_{i, 10}\right)
$$

where $N_{i j}$ is the population abundance at the start of year i for age j fish, $F_{i j}=$ fishing mortality rate in year i for age j fish, and $c_{i j}=$ catch in year i for age j fish. A constant natural mortality rate, M, irrespective of year and age, is assumed.

Fishing mortality is modeled as a product of year-specific and age-specific factors (Doubleday 1976)

$$
F_{i j}=s_{j} f_{i}
$$

where s_{j} is age-specific selectivity, and f_{i} is the annual fishing mortality rate. To ensure that the selectivities are well determined, we require that $\max \left(s_{j}\right)=1$. Following previous assessments, a scaled double-logistic function (Dorn and Methot 1990) was used to model age-specific selectivity,

$$
\begin{gathered}
s_{j}^{\prime}=\left(\frac{1}{1+\exp \left[-\beta_{1}\left(j-\alpha_{1}\right)\right]}\right)\left(1-\frac{1}{1+\exp \left[-\beta_{2}\left(j-\alpha_{2}\right)\right]}\right) \\
s_{j}=s^{\prime}{ }_{j} / \max \left(s^{\prime}{ }_{j}\right)
\end{gathered}
$$

where $\alpha_{1}=$ inflection age, $\beta_{1}=$ slope at the inflection age for the ascending logistic part of the equation, and $\alpha_{2}, \beta_{2}=$ the inflection age and slope for the descending logistic part.

Measurement error

Model parameters were estimated by maximum likelihood (Fournier and Archibald 1982, Kimura 1989, 1990, 1991). Fishery observations consist of the total annual catch in tons, C_{i}, and the proportions at age in the catch, $p_{i j}$. Predicted values from the model are obtained from

$$
\begin{aligned}
& \hat{C}_{i}=\sum_{j} w_{i j} c_{i j} \\
& \hat{p}_{i j}=c_{i j} / \sum_{j} c_{i j}
\end{aligned}
$$

where $w_{i j}$ is the weight at age j in year i. Year-specific weights at age are used when available.

Log-normal measurement error in total catch and multinomial sampling error in the proportions at age give a log-likelihood of

$$
\log L_{k}=-\sum_{i}\left[\log \left(C_{i}\right)-\log \left(\hat{C}_{i}\right)\right]^{2} / 2 \sigma_{i}^{2}+\sum_{i} m_{i} \sum_{j} p_{i j} \log \left(\hat{p}_{i j} / p_{i j}\right)
$$

where σ_{i} is standard deviation of the logarithm of total catch ($\sim C V$ of total catch) and m_{i} is the size of the age sample. In the multinomial part of the likelihood, the expected proportions at age have been divided by the observed proportion at age, so that a perfect fit to the data for a year gives a log likelihood value of zero (Fournier and Archibald 1982). This formulation of the likelihood allows considerable flexibility to give different weights (i.e. emphasis) to each estimate of annual catch and age composition. Expressing these weights explicitly as CVs (for the total catch estimates), and sample sizes (for the proportions at age) assists in making reasonable assumptions about appropriate weights for estimates whose variances are not routinely calculated.

Survey observations consist of a total biomass estimate, B_{i}, and survey proportions at age $\pi_{i j}$.
Predicted values from the model are obtained from

$$
\hat{B}_{i}=q \sum_{j} w_{i j} s_{j} N_{i j} \exp \left[\phi_{i} Z_{i j}\right]
$$

where $q=$ survey catchability, $w_{i j}$ is the survey weight at age j in year i (if available), $s_{j}=$ selectivity at age for the survey, and $\phi_{i}=$ fraction of the year to the mid-point of the survey. Although there are multiple surveys for Gulf pollock, a subscript to index a particular survey has been suppressed in the above and subsequent equations in the interest of clarity. Survey selectivity was modeled using a either a double-logistic function of the same form used for fishery selectivity, or simpler variant, such as single logistic function. The expected proportions at age in the survey in the ith year are given by

$$
\hat{\pi}_{i j}=s_{j} N_{i j} \exp \left[\phi_{i} Z_{i j}\right] / \sum_{j} s_{j} N_{i j} \exp \left[\phi_{i} Z_{i j}\right]
$$

Log-normal errors in total biomass and multinomial sampling error in the proportions at age give a loglikelihood for survey k of

$$
\log L_{k}=-\sum_{i}\left[\log \left(B_{i}\right)-\log \left(\hat{B}_{i}\right)\right]^{2} / 2 \sigma_{i}^{2}+\sum_{i} m_{i} \sum_{j} \pi_{i j} \log \left(\hat{\pi}_{i j} / \pi_{i j}\right)
$$

where σ_{i} is the standard deviation of the logarithm of total biomass ($\sim \mathrm{CV}$ of the total biomass) and m_{i} is the size of the age sample from the survey.

Process error

Process error refers to random changes in parameter values from one year to the next. Annual variation in recruitment and fishing mortality can be considered types of process error (Schnute and Richards 1995). In the pollock model, these annual recruitment and fishing mortality parameters are generally estimated as free parameters, with no additional error constraints. We use process error to describe changes in fisheries selectivity over time. To model temporal variation in a parameter γ, the year-specific value of the parameter is given by

$$
\gamma_{i}=\bar{\gamma}+\delta_{i}
$$

where $\bar{\gamma}$ is the mean value (on either a log scale or an arithmetic scale), and δ_{i} is an annual deviation subject to the constraint $\sum \delta_{i}=0$. For a random walk where annual changes are normally distributed, the log-likelihood is

$$
\log L_{\text {Proc. Er. }}=-\sum \frac{\left(\delta_{i}-\delta_{i+1}\right)^{2}}{2 \sigma_{i}^{2}}
$$

where σ_{i} is the standard deviation of the annual change in the parameter. We use a process error model for all four parameters of the fishery double-logistic curve. Variation in the intercept selectivity parameters is modeled using a random walk on an arithmetic scale, while variation in the slope parameters is modeled using a log-scale random walk.

The total log likelihood is the sum of the likelihood components for each fishery and survey, plus a term for process error,

$$
\log L=\sum_{k} \log L_{k}+\sum_{p} \log L_{\text {Proc.Err. }} .
$$

Appendix C: Seasonal distribution and apportionment of walleye pollock among management areas in the Gulf of Alaska

Since 1992, the Gulf of Alaska pollock TAC has been apportioned between management areas based on the distribution of biomass in groundfish surveys. Both single species and ecosystem considerations provide the rationale for apportioning the TAC. From an ecosystem perspective, apportioning the TAC will spatially distribute the effects of fishing on other pollock consumers (i.e., Steller sea lions), potentially reducing the overall intensity of any averse effects. Apportioning the TAC also ensures that no smaller component of the stock experiences higher mortality than any other. Although no sub-stock units of pollock have yet been identified in the Gulf of Alaska, it would be precautionary to manage the fishery so that if these sub-units do exist they would not be subject to high fishing mortality. Protection of sub-stock units would be most important during spawning season, when they are spatially separated. The Steller sea lion protection measures implemented in 2001 require apportionment of pollock TAC based on the seasonal distribution of biomass. Although spatial apportionment is intended to reduce the potential impact of fishing on endangered Steller sea lions, it is important to recognize that apportioning the TAC based on an inaccurate or inappropriate estimate of biomass distribution could be detrimental, both to pollock population itself, and on species that depend on pollock.

Walleye pollock in the Gulf of Alaska undergo an annual migration between summer foraging habitats and winter spawning grounds. Since surveying effort has been concentrated during the summer months and prior to spawning in late winter, the dynamics and timing of this migration are not well understood. Regional biomass estimates are highly variable, indicating either large sampling variability, large interannual changes in distribution, or, more likely, both. There is a comprehensive survey of the Gulf of Alaska in summer, but historically surveying during winter has focused on the Shelikof Strait spawning grounds. Recently there has been expanded EIT surveying effort outside of Shelikof Strait in winter, but no acoustic survey has been comprehensive, covering all areas where pollock could potentially occur.

Winter distribution

An annual acoustic survey on pre-spawning aggregations in Shelikof Strait has been conducted since 1981. Since 2000, several additional spawning areas have been surveyed multiple times, including Sanak Gully, the Shumagin Islands, the shelf break near Chirikof Island, and Marmot Bay. Although none of these spawning grounds are as important as Shelikof Strait, especially from a historical perspective, in recent years the aggregate biomass surveyed outside Shelikof Strait has been comparable to that within Shelikof Strait.

As in previous assessments, a "composite" approach was used to estimate the percent of the total stock in each management area. The estimated biomass for each survey was divided by the total biomass of pollock estimated by the assessment model in that year and then split into management areas for surveys that crossed management boundaries. The percent for each survey was added together to form a composite biomass distribution, which was then rescaled so that it summed to 100%. Model estimates of biomass at spawning took into account the total mortality between the start of the year and spawning, and used mean weight at age from Shelikof Strait surveys. Since no winter surveys were conducted in 2011, estimates of the percentage by area could not be updated with recent survey information.

Since time series of biomass estimates for spawning areas outside of Shelikof Strait are now available, we used the four most recent surveys at each spawning area, and used a rule that a minimum of three surveys was necessary to include an area. These criteria are intended to provide estimates that reflect recent biomass distribution while at the same time providing some stability in the estimates. The biomass in these secondary spawning areas tends to be highly variable from one year to the next. Areas meeting these criteria were Shelikof Strait, the shelf break near Chirikof Island, the Shumagin area, Sanak Gully, Morzhovoi Bay, and Marmot Bay. We excluded an acoustic survey in 1990 along the shelf break and on east side of Kodiak Island (Karp 1990), since this information is more than 20 years old and the survey overlaps with some of the other areas included in the calculations. While the spawning aggregations
found in 2010 along the Kenai Peninsula and in Prince William Sound are clearly important, before including them in the apportionment calculations the surveys in these areas need to be repeated to confirm stability of spawning in these areas There are also several potentially difficult issues that would need to dealt with, for example, whether including biomass along Kenai Peninsula would lead increased harvests on the east side of Kodiak, both of which are in area 630. In addition, the fishery inside Prince William Sound (area 649) is managed by the State of Alaska, and state management objectives for Prince William Sound need to be taken into account.

Vessel comparison experiments conducted between the R / V Miller Freeman and the R / V Oscar Dyson in Shelikof Strait in 2007, and in the Shumagin/Sanak area in 2008 found significant differences in the ratio of backscatter between the two vessels. The estimated R / V Oscar Dyson to R / V Miller Freeman ratio for the Shelikof Strait was 1.132, while the ratio for the Shumagin and Sanak areas (taken together) was 1.31. Since the R / V Oscar Dyson was designed to minimize vessel avoidance, biomass estimates produced by R / V Oscar Dyson should be considered better estimates of the true biomass than those produced by the R / V Miller Freeman. These results imply that the biomass in the western GOA (Sanak and Shumagin areas) has historically been underestimated relative to the central GOA. The leading hypothesis for the higher ratio in the western GOA is that the fish are distributed shallower than in Shelikof Strait, and consequently are exposed to a stronger stimulus from the vessel. When calculating the distribution of biomass by area, multipliers were applied to surveys conducted by the R / V Miller Freeman to make them comparable to the R / V Oscar Dyson (Appendix table 1.1). No vessel comparisons were conducted in the Chirikof area, Marmot Bay, or Morzhovoi Bay. A vessel specific multiplier of 1.0 was applied in the Chirikof area as differential avoidance is not expected at fish depths observed in the Chirikof area, where pollock are distributed primarily at depths greater than 300 m (e.g. in 200890% of pollock biomass was deeper than 275 m). A vessel specific multiplier of 1.31 was applied in Marmot Bay and Morzhovoi Bay because the fish in these areas were at similar depths as at the Sanak and Shumagin area.

The sum of the percent biomass for all surveys combined was 63.38%, which may reflect sampling variability, or interannual variation in spawning location, but also reflects the recent trend that the aggregate biomass of pollock surveyed acoustically in winter (at least in those area that have been surveyed repeatedly) is lower than the assessment model estimates of abundance. After rescaling, the resulting average biomass distribution was $22.64 \%, 67.25 \%, 10.11 \%$ in areas 610,620 , and 630 (Appendix table 1.1). In comparison to last year's assessment, the percentages by area are nearly identical due to the lack of new survey data.

A-season apportionment between areas 620 and 630

In the 2002 assessment, based on evaluation of fishing patterns which suggested that the migration to spawning areas was not complete by January 20, the plan team recommended an alternative apportionment scheme for areas 620 and 630 based on the midpoint of the summer and winter distributions in area 630. This approach was not used for area 610 because fishing patterns during the A season suggested that most of the fish captured in area 610 would eventually spawn in area 610 . The resulting A season apportionment using updated survey data is: 610, 22.64\%; 620, $54.76 \% ; 630,22.60 \%$.

Middleton Island winter EIT survey results in 2003

The apportionment for area 640, which is not managed by season, has previously been based on the summer distribution of the biomass. Fishing, however, takes places primarily in winter or early spring on a spawning aggregation near Middleton Island. During 28-29 March 2003, this area was surveyed by the NOAA ship Miller Freeman for the first time and biomass estimate of 6,900 t was obtained. Although maturity stage data suggested the timing of the survey was appropriate, discussions with fishing vessels contacted during the survey raised some questions about survey timing relative to peak biomass.
Notwithstanding, a tier 5 calculation based on this spawning biomass gives an ABC of $1,550 \mathrm{t}$ (6,901 t * 0.75 M), compared to $3,277 \mathrm{t}$ for the author's 2012 ABC recommendation and an apportionment based on
the summer biomass distribution. This suggests that the current approach of basing the area 640 apportionment on the gulfwide ABC and the summer biomass distribution is at least consistent with the biomass present near Middleton Island in the winter. We recommend continuing this approach until sufficient survey information during winter has accumulated to evaluate interannual variation in the biomass present in this area.

Summer distribution

The NMFS bottom trawl is summer survey (typically extending from mid-May to mid-August). Because of large shifts in the distribution of pollock between management areas one survey to the next, and the high variance of biomass estimates by management area, Dorn et al. (1999) recommended that the apportionment of pollock TAC be based upon an unweighted average of four most recent NMFS summer surveys. The four-survey average was updated with 2011 survey results in an average biomass distribution of $35.35 \%, 27.57 \%, 34.02 \%$, and 3.07% in areas 610, 620, 630, and 640 (Appendix Fig. 1.2). Including the 2011 survey and deleting the 2003 survey lowered the percentage in area 610 by 5 percentage points and raised the percentage in areas 620 and 630 by 2 and 3 percentage points respectively.

Example calculation of 2011 Seasonal and Area TAC Allowances for W/C/WYK

Warning: This example is based on hypothetical ABC of $\mathbf{1 0 0 , 0 0 0} \mathbf{t}$.

1) Deduct the Prince William Sound Guideline Harvest Level.
2) Use summer biomass distribution for the 640 allowance:

640

$$
0.0307 \times \text { Total TAC = 3,069 t }
$$

3) Calculate seasonal apportionments of TAC for the A, B, C, and D seasons at $25 \%, 25 \%, 25 \%$, and 25% of the remaining annual TAC west of $140^{\circ} \mathrm{W}$ lon.

A season	$0.25 \times($ Total TAC $-3,069)=24,333 \mathrm{t}$
B season	$0.25 \mathrm{x}($ Total TAC $-3,069)=24,333 \mathrm{t}$
C season	$0.25 \times($ Total TAC $-3,069)=24,333 \mathrm{t}$
D season	$0.25 \mathrm{x}($ Total TAC $-3,069)=24,333 \mathrm{t}$

4) For the A season, the allocation of TAC to areas 610, 620 and 630 is based on a blending of winter and summer distributions to reflect that pollock may not have completed their migration to spawning areas by Jan. 20, when the A season opens.

610	$0.2264 \times 24,333 \mathrm{t}=5,486 \mathrm{t}$
620	$0.5476 \times 24,333 \mathrm{t}=13,269 \mathrm{t}$
630	$0.2260 \times 24,333 \mathrm{t}=5,477 \mathrm{t}$

5) For the B season, the allocation of TAC to areas 610,620 and 630 is based on the composite estimate of winter biomass distribution1

610	$0.2264 \times 24,333 \mathrm{t}=5,486 \mathrm{t}$
620	$0.6725 \times 24,333 \mathrm{t}=16,296 \mathrm{t}$
630	$0.1011 \times 24,333 \mathrm{t}=2,451 \mathrm{t}$

6) For the C and D seasons, the allocation of remaining TAC to areas 610,620 and 630 is based on the average biomass distribution in areas 610, 620, 630, and 640 in the most recent four NMFS bottom trawl surveys of 35.35%, 27.57%, 34.02%, and 3.07%.

610	$0.3535 /(1-0.0307) \times 24,333=8,836 \mathrm{t}$
620	$0.2757 /(1-0.0307) \times 24,333=6,892 \mathrm{t}$
630	$0.3402 /(1-0.0307) \times 24,333=8,504 \mathrm{t}$
610	$0.3535 /(1-0.0307) \times 24,333=8,836 \mathrm{t}$
620	$0.2757 /(1-0.0307) \times 24,333=6,892 \mathrm{t}$
630	$0.3402 /(1-0.0307) \times 24,333=8,504 \mathrm{t}$

Appendix Table 1.1. Estimates of percent pollock in areas 610-630 during winter EIT surveys in the Gulf of Alaska. The biomass of age-1 pollock The biomass of age- 1 fish is not included in Shelikof Strait EIT survey estimates in $2008(19,090 \mathrm{t})$, and Shumagin survey estimates in 2006, 2008 and $2009(12,310 \mathrm{t}$, 9,339 t and $17,407 \mathrm{t}$ respectively).

Survey	Year	Model estimates of total 2+ biomass at spawning	Survey biomass estimate	Multiplier from vessel comparison (OD/MF)	Percent	Percen Area 610	by manage Area 620	ent area Area 630
Shelikof	2007	480,147	180,881	1.13	37.7\%	0.0\%	97.1\%	2.9\%
Shelikof	2008	557,824	188,942	1.00	33.9\%	0.0\%	93.4\%	6.6\%
Shelikof	2009	594,400	265,971	1.00	44.7\%	0.0\%	95.6\%	4.4\%
Shelikof	2010	752,883	429,730	1.00	57.1\%	0.0\%	93.7\%	6.3\%
Shelikof	Average				43.3\%	0.0\%	95.0\%	5.0\%
	Percent of total 2+ biomass					0.0\%	41.2\%	2.2\%
Chirikof	2007	480,147	35,573	1.00	7.4\%	0.0\%	24.0\%	76.0\%
Chirikof	2008	557,824	22,055	1.00	4.0\%	0.0\%	50.2\%	49.8\%
Chirikof	2009	594,400	396	1.00	0.1\%	0.0\%	0.0\%	100.0\%
Chirikof	2010	752,883	9,544	1.00	1.3\%	0.0\%	0.0\%	100.0\%
Chirikof	Average				3.2\%	0.0\%	18.5\%	81.5\%
	Percent of total 2+ biomass					0.0\%	0.6\%	2.6\%
Marmot	2007	480,147	3,157	1.31	0.9\%	0.0\%	0.0\%	100.0\%
Marmot	2009	594,400	19,759	1.00	3.3\%	0.0\%	0.0\%	100.0\%
Marmot	2010	752,883	5,585	1.00	0.7\%	0.0\%	0.0\%	100.0\%
Marmot	Average				1.6\%	0.0\%	0.0\%	100.0\%
	Percent of total 2+ biomass					0.0\%	0.0\%	1.6\%
Shumagin	2007	480,147	20,009	1.31	5.5\%	98.5\%	1.5\%	0.0\%
Shumagin	2008	557,824	21,244	1.31	5.0\%	77.2\%	22.8\%	0.0\%
Shumagin	2009	594,400	45,357	1.00	7.6\%	61.4\%	38.6\%	0.0\%
Shumagin	2010	752,883	18,295	1.00	2.4\%	94.9\%	5.1\%	0.0\%
Shumagin	Average				5.1\%	83.0\%	17.0\%	0.0\%
	Percent of total 2+ biomass					4.3\%	0.9\%	0.0\%
Sanak	2007	480,147	60,289	1.31	16.4\%	100.0\%	0.0\%	0.0\%
Sanak	2008	557,824	19,750	1.31	4.6\%	100.0\%	0.0\%	0.0\%
Sanak	2009	594,400	31,435	1.00	5.3\%	100.0\%	0.0\%	0.0\%
Sanak	2010	752,883	26,678	1.00	3.5\%	100.0\%	0.0\%	0.0\%
Sanak	Average				8.8\%	100.0\%	0.0\%	0.0\%
	Percent of total 2+ biomass					8.8\%	0.0\%	0.0\%
Mozhovoi	2006	511,760	11,679	1.31	3.0\%	100.0\%	0.0\%	0.0\%
Mozhovoi	2007	480,147	2,540	1.31	0.7\%	100.0\%	0.0\%	0.0\%
Mozhovoi	2010	752,883	1,650	1.00	0.2\%	100.0\%	0.0\%	0.0\%
Mozhovoi	Average				1.3\%	100.0\%	0.0\%	0.0\%
	Percent of total 2+ biomass					1.3\%	0.0\%	0.0\%
Total					63.38\%	14.35\%	42.62\%	6.41\%
Rescaled to					100.00\%	22.64\%	67.25\%	10.11\%

Appendix Figure 1.2. Percent distribution of Gulf of Alaska pollock biomass west of $140^{\circ} \mathrm{W}$ lon. in NMFS bottom trawl surveys in 1984-2011.

Appendix D: Supplemental catch data

To comply with the Annual Catch Limit (ACL) requirements, two new datasets have been generated to help estimate total catch and removals from NMFS stocks in Alaska. The first data set is more a comprehensive accounting of research removals than had been available previously. This data set is available only for 2010. The second data set provides estimates of incidental catch of groundfish in the Pacific halibut fishery during 2001-2010 using methods described in Tribuzio et. al (2011). Since some halibut fishery incidental catch as enters into the catch accounting system, it is unclear whether these catches have already been taken into account in the reported catch. However this seems unlikely for pollock. Research catches have been routinely reported in the pollock assessment, but these catches are only for survey data that have been included in RACEBASE, and are not a comprehensive accounting of all research removals.

Supplemental pollock catch data are presented in several tables. Appendix Table 1.2 provides research catches from RACEBASE for the period 1977-2011. Appendix Table 1.3 provides research catch by survey or research project for 2010. Appendix Table 1.4 provides incidental catches for the halibut fishery.

Comparison of research catches from RACEBASE with the more comprehensive information in 2010 suggests that research catches have been substantially underreported. The estimates from RACEBACE in 2010 are approximately 25% of the total research catch. Annual large-mesh and small-mesh trawl surveys conducted by ADG\&G account for most of the missing research catch of pollock. Even if research catches are four times those reported in RACEBACE, they would still amount to less than $1 / 2$ of a percent on average of the ABC during 2002-2011, and would have a negligible effect on the pollock stock and the stock assessment. Unreported catches in the halibut fishery are lower, and would likewise have a negligible effect. It is important to note that there is unreported incidental catch of pollock in other fisheries in Alaska, such as the salmon fishery, which, based on anecdotal reports, may be substantial on occasion.

Appendix Table 1.2. Estimates of pollock research catch (t) in the Gulf of Alaska from RACEBASE during 1977-2011.

Year	Pollock research catch (t)
1977	75.0
1978	99.7
1979	52.4
1980	229.4
1981	433.3
1982	110.4
1983	213.1
1984	310.7
1985	167.2
1986	1201.8
1987	226.6
1988	19.3
1989	72.7
1990	158.0
1991	16.2
1992	39.9
1993	116.4
1994	70.4
1995	44.3
1996	146.9
1997	75.5
1998	63.6
1999	34.7
2000	56.3
2001	77.1
2002	77.6
2003	127.6
2004	53.0
2005	71.7
2006	63.5
2007	47.1
2008	26.2
2009	89.9
2010	37.4
2011	43.0

Appendix Table 1.3. Estimates of pollock research catch (t) in the Gulf of Alaska by survey or research project in 2010.

Survey/Research Project	Pollock catch (t)
2010 Shelikof Strait Acoustic Survey	12.0
2010 Western GOA Acoustic Survey	25.4
IPHC halibut survey	0.8
ADF\&G large-mesh trawl survey	83.0
NMFS longline sablefish survey	3.7
ADF\&G small-mesh trawl survey	20.1
GOA IERP research	0.1
Western Gulf of Alaska Cooperative	
Acoustic Survey	12.4
Total	157.5

Appendix Table 1.4. Estimated incidental catch (t) of pollock in the Gulf of Alaska by the Pacific halibut fishery.

					Year					
Management area	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
610	0.029	0.000	0.000	0.550	0.632	0.002	0.047	3.817	2.006	1.061
620	0.000	0.000	0.137	1.116	0.225	0.901	1.393	3.492	11.182	10.042
630	0.052	0.030	0.339	0.250	0.000	2.110	1.044	1.576	17.747	2.812
$640 \& 649$	0.458	0.679	0.000	0.000	0.000	0.729	0.745	0.178	1.910	1.579
650	0.000	0.000	0.000	0.000	0.309	0.000	0.000	0.212	1.341	0.413
659	0.399	7.513	2.299	2.115	0.690	1.514	0.158	5.330	28.189	2.299
Total	0.937	8.222	2.774	4.032	1.856	5.256	3.387	14.606	62.376	18.206

(This page intentionally left blank)

