6. Assessment of the rex sole stock in the Gulf of Alaska

By
Carey R. McGilliard ${ }^{1}$, Wayne Palsson ${ }^{2}$, and William Stockhausen ${ }^{1}$
${ }^{1}$ Resource Ecology and Fisheries Management Division
${ }^{2}$ Resource Assessment and Conservation Engineering Division
Alaska Fisheries Science Center
National Marine Fisheries Service
National Oceanic and Atmospheric Administration
7600 Sand Point Way NE., Seattle, WA 98115-6349

Executive Summary

GOA rex sole is assessed on a biennial cycle, following the availability of new survey data. Due to the federal government shutdown in October 2013, an update was conducted for rex sole in 2013 instead of a full assessment. The most recent full age-structured assessment for GOA rex sole occurred in 2011. This year, a full, age-structured assessment is presented for GOA rex sole and the biomass estimates of the assessment are used to calculate OFLs and ABCs using a Tier 5 management approach (as for previous assessments).
In September 2015, an alternative modeling framework for rex sole using Stock Synthesis, version 3.24 u , was presented to and accepted by the GOA Plan Team and was subsequently accepted by the SSC. The GOA Plan Team and SSC agreed that the base case model for GOA rex sole should use the Stock Synthesis framework. The assessment presented here uses the SS3 framework. The development of a rex sole model using the SS3 framework and a comparison to the accepted 2011 model are presented in Appendix 6C.

Summary of Changes in Assessment Inputs

(1) 2012-2015 catch biomass was added to the model
(2) 2011 catch biomass was updated to reflect October-December 2011 catches
(3) 2012-2015 fishery length composition data were added to the model and 2011 fishery length composition data were updated to reflect October - December 2011 catches.
(4) 2013 and 2015 GOA trawl survey biomass estimates were added to the model
(5) 2013 and 2015 GOA trawl survey length composition data were added to the model
(6) 2011 and 2013 GOA trawl survey age composition data were added to the model
(7) Effective sample sizes for fishery and survey length and age composition data were changed to the number of hauls where lengths or ages were observed, respectively.
(8) Data weights among data sources were adjusted such that input sample size matched the harmonic mean of effective sample sizes, as calculated following the methods described in McAllister and Ianelli (1997), Appendix 2.

Summary of Changes in Assessment Methodology

The following substantive structural changes were made to the assessment methodology. All changes were accepted by the GOA Plan Team and SSC following the September 2015 Plan Team meeting (see the section "Responses to SSC and Plan Team Comments Specific to this Assessment" below):
(1) The assessment was conducted in Stock Synthesis version 3.24u (SS3); Appendix 6C includes a full description of the transition from the 2011 rex sole assessment model to an equivalent model in SS3.
(2) The age-length transition matrix is constructed within the SS assessment model and is based on the same von-Bertalanffy growth functions and CVs as for the previously used age-length transition matrix, but is not an exact match.
(3) Recruitment deviations were estimated using simple deviations with a sigmaR of 0.6. Previously, no sigmaR was specified. Using simple deviations minimizes the impact of sigmaR. In addition, estimates of recruitment deviations were not subject to a "sum-to-zero" constraint.
(4) The fishery and survey selectivity curves were estimated using an age-based double-normal function without a descending limb instead of an age-based logistic function.

Summary of Results

The key results of the assessment, based on the author's preferred (base case) model, are compared to the key results of the accepted 2014 update assessment in the table below. An alternative table is shown in Appendix 6A, based on the SS3 version of the 2011 model with new data added.

Quantity	As estimated or recommended last year for:		As estimated orrecommended this year for:	
	2015	2016	2016*	2017*
M (natural mortality rate)	0.17	0.17	0.17	0.17
Tier	5	5	5	5
Projected total (3+) biomass (t)	82,972	81,414	67,941*	68,074*
Female spawning biomass (t)	49,804	48,554	43,808	46,292
$B_{100 \%}$	55,393	55,393	56,845	56,845
B40\%	22,159	22,159	22,738	22,738
$B_{35 \%}$	19,434	19,434	19,896	19,896
$F_{\text {OFL }}=M$	0.170	0.170	0.17	0.17
$\operatorname{maxF}_{A B C}=0.75 * M$	0.128	0.128	0.128	0.128
$F_{A B C}$	0.128	0.128	0.128	0.128
OFL (t)	11,957	11,733	9,791	9,810
$\operatorname{maxABC}(\mathrm{t})$	9,150	8,979	7,493	7,507
ABC (t)	9,150	8,979	7,493	7,507
Status	As determined in 2014 for:		As determined in 2015 for:	
	2013	2014	2014	2015
Overfishing	no	n/a	no	n/a
Overfished		no	n/a	no

* Projections are based on estimated catches of $1,817.6 \mathrm{t}, 3,188 \mathrm{t}$, and $8,979 \mathrm{t}$ that were used in place of maximum permissible ABC for 2015, 2016, and 2017 respectively. The 2015 projected catch was calculated as the current catch of GOA rex sole as of October 10, 2015 added to the average October 10 - December 31 GOA rex sole catches over the 5 previous years. The 2016 projected catch was calculated as the average catch from 2010-2014. The 2017 projected catch was set equal to the maxABC as recommended in 2014 for the year 2016, based on Tier 5 calculations. Projected total ($3+$) biomass for GOA rex sole is currently defined as numbers-at-age multiplied by maturity-at-age and weight-at-age, summed over males and females, as for previous assessments.

The table below shows apportionment of the 2016 and 2017 ABCs and among areas, based on random effects model predictions of survey biomass in each area for 2016-2017.

Quantity	Western	Central	West Yakutat	Southeast	Total
Area					
Apportionment	17.55%	59.32%	10.22%	12.90%	100.00%
2016 ABC (t)	1,315	4,445	766	967	7,493
2017 ABC (t)	1,318	4,453	767	969	7,507

Responses to SSC and Plan Team Comments on Assessments in General

GPT comment: The Teams recommend that the random effects survey smoothing model be used as a default for determining current survey biomass and apportionment among areas.
The random effects model was used in the current assessment to estimate 2016 and 2017 survey biomass, proportion of survey biomass expected in each management area in 2016 and 2017, and apportionment of ABCs according to these estimates of survey biomass in each area.

SSC comment: Of the options presented in the Joint Plan Teams minutes <for model numbering>, the SSC agrees that that Option 4 has several advantages and recommends that this Option be advanced next year. Under Option 4, analysts would number their models as follows: "Alpha-numeric model identifiers incorporating two-digit year labels of the form "yy.jx," where the digit after the decimal ("j") represents a major accepted model change and the alphabetic character (" x ") represents a proposed model change (e.g., "12.1c" and "13.4a" might describe two models introduced in 2012 and 2013, respectively)". Differences between major and minor changes would be calculated based on "average difference in spawning biomass" (ADSB: see equation in Team Procedures) or as noted in sub-option c below, some other improvement to the model.
The above system for numbering models will be adopted for the next assessment, as recommended by the SSC.

Responses to SSC and Plan Team Comments Specific to this Assessment

GPT comment: The Team recommends moving forward with the SS model, including a run mimicking the structure of the older model and updated with the most recent data available (e.g. trawl index, age and length comps, fishery lengths, etc). This should be brought forward in November.
In addition, the team recommends one or more alternative models should also be brought forward, reflecting the author's suggestions for minor changes: inclusion of fishery age composition data (the Team recommends that these data be prioritized and included in this assessment) to help inform fisheries selectivity, re-estimation of survey biomass using the random effects approach to estimate the contributions from the Eastern GOA for years where this area was not surveyed, exploration of age/length compositions to better understand whether they should be treated differently for years when the trawl survey omitted the deep strata, reevaluating effective sample sizes, adding externally estimated ageing error, explore other selectivity curves. Internal estimation of growth parameters could be included
for November, unless it produces substantially different results. Major changes (such as exploration of growth morphs) can be explored, but may need to wait until next year for inclusion.
The Team recognized that it is possible that not all of these changes will be completed for the November meeting.

The 2015 assessment model was completed using the SS3 assessment platform. Two models are presented in this assessment: (1) a model conducted in Stock Synthesis that that best mimics the previously accepted 2011 GOA rex sole assessment model, and (2) an alternative model where effective sample sizes for all length composition data were changed to reflect the number of hauls for which lengths of rex sole were collected (Volstad and Pennington 2004) and the weighting among data sources was adjusted by tuning to the harmonic mean of effective sample sizes, with effective sample sizes calculated according to methods described in McAllister and Ianelli (1997), Appendix 2. Both changes replaced arbitrary specifications in the model with scientifically defensible specifications. Further progress on alternative models incorporating the suggestions above is being made and will be presented to the GPT in the future.

SSC comment: The SSC supports the Plan Team's recommendations, including the recommendation to moving forward with the SS3 assessment platform.

The 2015 assessment model was completed using the SS3 assessment platform.

Introduction

Rex sole (Glyptocephalus zachirus) is a right-eyed flatfish occurring from southern California to the Bering Sea and ranging from shallow water $(<100 \mathrm{~m})$ to about 800 meters depth (Mecklenburg et al., 2002). They are most abundant at depths between 100 and 200 m and are found fairly uniformly throughout the Gulf of Alaska (GOA).
Rex sole appear to exhibit latitudinal changes in growth rates and size at sexual maturity. Abookire (2006) found marked differences in growth rates and female size at maturity between stocks in the GOA and off the coast of Oregon. Size at sexual maturity was greater for fish in the GOA than in Oregon, as was size-at-age. However, these trends offset each other such that age-at-maturity was similar between the two regions.
Rex sole are batch spawners with a protracted spawning season in the GOA (Abookire, 2006). The spawning season for rex sole spans at least 8 months, from October to May. Eggs are fertilized near the sea bed, become pelagic, and probably require a few weeks to hatch (Hosie et al. 1977). Hatched eggs produce pelagic larvae that are about 6 mm in length and are thought to spend about a year in a pelagic stage before settling out to the bottom as 5 cm juveniles.
Rex sole are benthic feeders, preying primarily on amphipods, polychaetes, and some shrimp.

Management units and stock structure

In 1993 rex sole was split out of the deep-water management category because of concerns regarding the Pacific ocean perch bycatch in the rex sole target fishery. The stock within the GOA is managed as a unit stock but with area-specific ABC and TAC apportionments to avoid the potential for localized depletion. Little is known on the stock structure of this species. However, otoliths exhibit two distinct growth patterns (pers. Comm. D. Anderl 2015), which could reflect different growth patterns among areas or different sub-stocks. Further research is needed to explore these patterns.

Fishery

Rex sole in the Gulf of Alaska are caught in a directed fishery using bottom trawl gear. Fishing seasons are driven by seasonal halibut PSC apportionments, with approximately 7 months of fishing occurring between January and November. Catches of rex sole occur primarily in the Western and Central management areas in the gulf (statistical areas 610 and $620+630$, respectively). Recruitment to the fishery begins at about age 5 .

Catch is currently reported for rex sole by management area (Table 1). Catches for rex sole were estimated from 1982 to 1994 by multiplying the deepwater flatfish catch by the fraction of rex sole in the observed catch. Historically, catches of rex sole have exhibited decadal-scale trends. Catches increased from a low of 93 t in 1986 to a high of $5,874 \mathrm{t}$ in 1996, then declined to $1,464 \mathrm{t}$ in 2004. The 2009 catch $(4,753 \mathrm{t})$ was the largest since 1996. Catches declined after 1996, but increased to $3,707 \mathrm{t}$ in 2013 . The current catch in 2015 (as of October 26, 2015) was $1,678 \mathrm{t}$.
The catch of rex sole is widely distributed along the outer margin of the continental shelf in the central and western portions of the Gulf (Table 1) and few, if any, catches occur in the Eastern Gulf.
Historical specifications from 1995-2015 are shown in Table 2. The ABC for rex sole has been specified as the TAC in each year since 1997. The fishery catches from 2010-2014 ranged from $25-39 \%$ of the TAC and ABC. As of October 10, catch in 2015 was 18% of the 2015 ABC and TAC.

Estimates of retained and discarded catch (t) in the rex sole fishery since 1995 were calculated from discard rates observed from at-sea sampling and industry reported retained catch (Table 2). Retention of rex sole is high and has generally been over 95%.

Data

The following data were included in the assessment model:

Source	Data	Years
NMFS Groundfish	Survey Biomass	$1984-1999$ (triennial); 2001-2015 (biennial) Survey
	Age Composition	1984, 1987, 1993, 1999; 2001-2013 (biennial)
	Length Composition	1984-1999 (triennial); 2001-2015 (biennial)
U.S. Trawl Fisheries	Catch	$1982-2015$
	Length Composition	$1982-1984,1990-2015$

Fishery Data

This assessment used fishery catches from 1982 through October 10, 2015 (Table 1, Figure 1), as well as estimates of the proportion of individuals caught by length group and sex for the years 1982-2015 (as of October 10, 2015;
http://www.afsc.noaa.gov/REFM/Docs/2015/FTP_GOA_Rex_Composition_Data_And_SampleSize_2015.xlsx). Sample sizes for the length composition data were set to the number of fishery hauls for which length data were collected (Table 4).

Survey Data

This assessment used estimates of total biomass for rex sole in the Gulf of Alaska from triennial (19841999) and biennial (2001-2015) groundfish surveys conducted by the AFSC's Resource Assessment and

Conservation Engineering (RACE) division to provide an index of population abundance (Table 5, Figure 3). Although survey depth coverage has been inconsistent for depth strata > 500 m (Table 5), the fraction of the rex sole stock occurring in these depth strata is typically small (Table 5), so we have not attempted to correct the survey estimates of total biomass for missing depth strata. We have, however, corrected the 2001 survey estimate of total biomass, because the eastern section of the Gulf was not sampled that year. We estimated the average stock biomass occurring in the unsampled area from the 1993, 1996 and 1999 surveys and expanded the 2001 estimate to correct for the missing area. As is evident from Figure 3, survey biomass has fluctuated on decadal time scales. From an initial low of $\sim 60,000 \mathrm{t}$ in 1984, estimated biomass increased to a high of almost 100,000 t in 1990, then declined during the 1990s to slightly above $70,000 \mathrm{t}$. Subsequently, survey biomass increased once again and was above 100,000 t in the 2005-2009 period. In the most recent period from 2011 - 2015, the survey biomass was slightly lower, between $95,000 \mathrm{t}$ and $101,000 \mathrm{t}$. The survey biomass for 2015 was $87,286 \mathrm{t}$. Consistently over time, survey biomass has been greatest in the central GOA and smallest in the western GOA, but occurs in all three regions (central, eastern, and western GOA; Table 5, Figure 2).

Estimates of the total number of individuals by length group (length compositions) from each RACE GOA groundfish survey
(http://www.afsc.noaa.gov/REFM/Docs/2015/FTP_GOA_Rex_Composition_Data_And_SampleSize_201 5.xlsx) were included in the assessment, as were estimates of the distribution of ages in each year (http://www.afsc.noaa.gov/REFM/Docs/2015/FTP_GOA_Rex_Composition_Data_And_SampleSize_201 5.xlsx). Survey age compositions were available for all survey years except for 2015 (1984, 1987, 1990, 1993, 1996, 1999, 2001, 2003, 2005, 2007, 2009, 2011, and 2013), although the age composition for 1990 was excluded from the model because the underlying ages may be biased due to the age reading technique (surface age reading) used to process the otoliths. Because age compositions were calculated from agelength data using the corresponding size compositions, size compositions were de-weighted in the model likelihood for years where age composition data was available to avoid double counting. Survey size composition data was fully weighted in the model likelihood only for years when age compositions were unavailable (1990 and 2011). Effective sample sizes used in the model are listed with length and age composition data at
http://www.afsc.noaa.gov/REFM/Docs/2015/FTP_GOA_Rex_Composition_Data_And_SampleSize_201 5.xlsx. Number of hauls and individuals that for which lengths were measured and otoliths collected and measured are shown in Table 7.

Analytic Approach

Model Structure

Age-structured model used to inform biomass for Tier 5 management

The assessment was a split sex, age-structured statistical catch-at-age model implemented in Stock Synthesis version 3.24u (SS3) using a maximum likelihood approach. SS3 equations can be found in Methot and Wetzel (2013) and further technical documentation is outlined in Methot (2009). Previous assessments were conducted using an ADMB-based, split-sex, age-structured population dynamics model (Stockhausen 2011). Briefly, the current assessment model covers 1982-2015. Age classes included in the model run from age 0 to 20 . Age at recruitment was set at 0 years in the model. The oldest age class in the model, age 20, serves as a plus group. Survey catchability was fixed at 1.0. A detailed description of the transition of the previous model to SS3 and potential benefits of transitioning the assessment to SS3 were presented at the 2013 September Plan Team Meeting and the September SAFE chapter is included in this document as Appendix 6C. The current model in SS3 mimics the behavior of the previously accepted rex sole assessment model. The modeling of fishery and survey selectivity, the
recruitment deviations, and the age-length transition matrix differ slightly from the previously accepted model and the techniques used in the current model are outlined below.

Fishery and Survey Selectivity

The fishery and survey selectivity curves were estimated using sex-specific, age-based double-normal functions without a descending limb (instead of a logistic function). The SS3 modeling framework does not currently include the option of estimating sex-specific, age-based logistic selectivity where both male and female selectivity maintain a logistic shape (as was used in the previous assessment model). Therefore, the double-normal curve without a descending limb was the closest match to the selectivity formulation used in the 2011 model (Appendix 6C).

Recruitment Deviations

Recruitment deviations were estimated for the period 1965-2012 and were forecast from 2013-2015 using simple deviations with a $\sigma_{\mathrm{R}}=0.6$. A bias adjustment factor was specified using the Methot and Taylor (2011) bias adjustment method. Recruitment deviations prior to the start of composition data and in the most recent years in the time-series are less informed than in the middle of the time-series. This creates a bias in the estimation of recruitment deviations and mean recruitment that is corrected using methods described in Methot and Taylor (2011).

Data Weighting

Effective sample sizes for all length and age composition data were set to the number of hauls for which lengths were measured for length compositions and number of hauls for which ages were measured for age compositions (Pennington and Volstad 1994). Data sources were weighted relative to one another using the McAllister-Ianelli method (McAllister and Ianelli 2007). Previous rex sole assessment models specified data weights arbitrarily.

Parameters Estimated Outside the Assessment Model

Natural mortality

Male and female natural mortality were fixed and equal to 0.17 .

Growth

Length-at-age was estimated externally using data from the GOA groundfish survey from 1984-1996 (Turnock et al. 2005) and assumed to follow the von-Bertalanffy growth curve:
$L_{t}=L_{\text {inf }}\left(1-e^{-k\left(t-t_{0}\right)}\right)$. The estimated values are as follows:

Sex	\mathbf{L}_{∞}	\mathbf{k}	$\mathbf{t}_{\mathbf{0}}$
Males	39.5	0.38	0.79
Females	44.9	0.31	0.69

Fixed sex-specific age-length conversion matrices are calculated within SS3 (Methot and Wetzel 2013) based on the parameters of the von-Bertalanffy growth curve and specified coefficients of variation (CVs) for length-at-age for the youngest and oldest age classes of 0.13 and 0.08 , respectively, for both males and females.

Weight-at-Age Relationship

The weight-at-age relationship was that used in the previous assessment (Stockhausen 2011) and is based on the weight-length relationship $w_{L}=\alpha L^{\beta}$ and the parameters of the von-Bertalanffy growth curve. The vectors of weight-at-age values were input directly to the assessment and are listed in Table 8.

Maturity

Abookire (2006) modeled female rex sole size-at-maturity using a logistic model, obtaining a value for size at 50% maturity of 351.7 mm with a slope of $0.0392 \mathrm{~mm}^{-1}$. About half of the maturity samples were obtained from fishery catches and half from research trawls during 2000-2001. Using the mean length-atage relationship estimated from the 1984-1996 survey data, the age at 50%-maturity was estimated at 5.6 years, (Table 6.9, Fig. 6.6). Estimates of mean size-at-age for the maturity samples were similar to those for mean size-at-age estimated from the survey data (Turnock et al., 2005).

Survey catchability

For the assessment, survey catchability was fixed at 1.

Parameters Estimated Inside the Assessment Model

Parameters estimated within the assessment model were the log of unfished recruitment (R_{0}), log-scale recruitment deviations, yearly fishing mortality, and selectivity parameters for the fishery and survey. The selectivity parameters are described in greater detail in Table 9.

Results

Model Evaluation

Comparison among models

Figure 3-Figure 6 compare the base case assessment model to the most recent previously accepted rex sole assessment model run in SS3 (the 2011 model) and to the 2011 model run in SS3 with new data added. Fits to survey biomass, recruitment deviations, and spawning stock biomass are very similar among the three models. The likelihood component for survey biomass was $-\operatorname{lnL}=-12.69$ for the base case model and $-\ln \mathrm{L}=-2.05$ for the previous model run in SS3 with new data (Table 11), which is an improvement in the model fit to the survey biomass index. Likelihood components for length and age compositions are not directly comparable because the effective sample sizes and data weighting changed. The base case model was chosen because fits to the survey biomass index were improved over the SS3 version of the 2011 model with new data added and because the effective sample sizes and data weighting approach have a scientific basis.

The base case model

The survey biomass index and fits to survey biomass show fluctuations over time with peak in 2009 and a small decline thereafter. Recruitment deviations have also fluctuated over time with above average recruitment in the early 1980s, mid-late 1990s to mid-2000s, and in 2011-2012, and below average recruitment prior to 1982, in the early 1990s, and from 2006-2009 (Figure 4, Figure 5, Table 12). Yearly fishing mortality rates are listed in Table 13.

Estimated survey selectivity showed that peak selectivity occurs by around age 5-6 for both males and females, while peak fishery selectivity is estimated to occur around age 12-13 for both males and females (Figure 7, Table 10). Plots of fits to survey and fishery length and age compositions aggregated over years are shown in Figure 8. The model predicted slightly more males and females between $35-40 \mathrm{~cm}$ in length in the fishery than were observed and slightly fewer larger ($45 \mathrm{~cm}+$) females in the fishery than were observed (Figure 8). Figure 9 shows the fits to survey age compositions, aggregated over years. Overall, the model predicted slightly more age 4-7 females than were observed, and fewer females in the plus group than were observed. The model predicted fewer age 4, 6, and 20+ males than were observed and more age 7-14 males than were observed. As for females, the model predicted fewer age 20+ males than were observed.

Figure 10 and Figure 11 show model fits to fishery length compositions by year. Fits for fishery length compositions are reasonable, with the exception of fits in 1982-1984 and 1988; it appears that fishery selectivity and/or availability were quite different in those years. Fits to survey length compositions appear skewed slightly towards older lengths than were observed (Figure 12), while fits to survey age compositions are reasonable and show no consistent skew (Figure 13). The effective sample sizes for survey length composition data are very low (1 in most years) and so the model is fitting primarily to age compositions. A pattern in fits to the length compositions, but not the age compositions is an indication that future assessments should explore the growth relationships in the model.

Time Series Results

Time series results are shown in Table 14 - Table 17 and Figure 14. Age 3 recruitment, age 0 recruitment, and standard deviations of age 0 recruitment are presented in Table 14. Total biomass for ages $3+$, spawning stock biomass, and standard deviations of spawning stock biomass estimates for the previous and current assessments are presented in Table 15. Female and male estimates of numbers-at-age for the current assessment are shown in Table 16 and Table 17. Figure 14 shows spawning stock biomass estimates and corresponding asymptotic 95% confidence intervals. A plot of biomass relative to $\mathrm{B}_{35 \%}$ and F relative to $\mathrm{F}_{35 \%}$ for each year in the time series, along with the OFL and ABC control rules is not shown for rex sole because it is thought that estimates of $\mathrm{F}_{35 \%}$ and $\mathrm{F}_{40 \%}$ are not reliable and these quantities are not used for management of the rex sole stock.

Retrospective analysis

Spawning stock biomass, recruitment, and recruitment deviations, and corresponding 95\% asymptotic confidence intervals from a retrospective analysis extending back 10 years are shown in Figure 15-Figure 16. Models excluding 7-10 years of data estimated lower values for recent spawning stock biomass, while models excluding 1-6 years of data estimated higher values for spawning stock biomass in recent years (Figure 15), but a consistent retrospective pattern over the 10 model runs is not evident. Historical recruitment deviations and age-0 recruitment estimates were similar among models (Figure 16).

Harvest Recommendations

Reference fishing mortality rates

Because $\mathrm{F}_{35 \%}$ and $\mathrm{F}_{40 \%}$ are highly uncertain, Tier 3 considerations cannot be used to set reference fishing mortality rates and make harvest specifications for the GOA rex sole stock. In 2009, the GOA Plan Team decided that reference rates and harvest specifications for rex sole should be set using Tier 5 considerations. For Tier 5 stocks, reference fishing mortality rates are given by Fofl $=\mathrm{M}$ (the rate of natural mortality) and max $\mathrm{F}_{\mathrm{ABC}}=0.75 \cdot \mathrm{M}$. Consequently, values for the reference fishing mortality rates for GOA rex sole are $\mathrm{F}_{\mathrm{OFL}}=0.17 \mathrm{yr}^{-1}$ and $\mathrm{F}_{\mathrm{ABC}}=0.128 \mathrm{yr}^{-1}$.

Acceptable Biological Catch and Overfishing Level

For Tier 5 stocks, harvest specifications are given by $O F L=F_{O F L} \cdot \bar{B}$ and $A B C=F_{A B C} \cdot \bar{B}$, where \bar{B} is an estimate of stock biomass. For most Tier 5 stocks, the estimate of survey biomass for the stock from the most recent groundfish survey is used as \bar{B}. For rex sole, however, the GOA Plan Team determined that estimates of "adult" biomass (i.e., total biomass-at-age weighted by the fraction mature-at-age) from the assessment model provided more appropriate estimates of stock biomass than the groundfish survey and should be used for setting harvest specifications. Estimating adult biomass in the assessment model for 2016 and 2017 requires predictions of the total catch taken in 2015 and 2016. Because the 2015 fishery is not yet complete, we estimated the total catch taken in 2015 as the current catch of GOA rex sole as of October 10, 2015 added to the average October 10 - December 31 GOA rex sole catches over
the 5 previous years. Total catch in 2016 as the average catch over the last five years (2010-2014). Using these values and the estimated numbers-at-age at the start of 2015 from the assessment model, we projected the stock ahead and calculated adult biomass $\left(B_{A}\right)$ at the start of 2016 and 2017 using the Baranov catch equation

$$
\bar{B}=\frac{\left(1-e^{-Z}\right)}{Z} \cdot B_{A}
$$

where $\mathrm{Z}=\mathrm{M}+\mathrm{F}$ and F was $\mathrm{F}_{\mathrm{ABC}}$ or $\mathrm{F}_{\text {OFL }}$.

The estimated ABCs for 2016 and 2017 are 7,493 and 7,507, respectively, while the estimated OFLs are 9,791 and 9,810.

Area allocation of harvests

The table below shows apportionment of the 2016 and 2017 ABCs among areas, based on random effects model predictions of survey biomass in each area for 2016-2017.

			West		
Quantity	Western	Central	Yakutat	Southeast	Total
Area					
Apportionment	17.55%	59.32%	10.22%	12.90%	100.00%
2016 ABC (t)	1,315	4,445	766	967	7,493
2017 ABC (t)	1,318	4,453	767	969	7,507

Ecosystem Considerations

Ecosystem effects on the stock

Prey availability/abundance trends

Based on results from an ecosystem model for the Gulf of Alaska (Aydin et al., 2007), rex sole in the Gulf of Alaska occupy an intermediate trophic level (Figure 17). Polychaetes, euphausiids, and miscellaneous worms were the most important prey for rex sole in the Gulf of Alaska (Figure 18). Other major prey items included benthic amphipods, polychaetes, and shrimp (Livingston and Goiney, 1983; Yang, 1993; Yang and Nelson, 2000). Little to no information is available to assess trends in abundance for the major benthic prey species of rex sole.

Predator population trends

Important predators on rex sole include longnosed skate and arrowtooth flounder (Figure 19). The flatfish-directed fishery constitutes the second-largest known source of mortality on rex sole. However, unexplained mortality is the second largest component of mortality.

Fishery Effects on the Ecosystem

Table 18 and Table 19 show the contribution of the GOA rex sole fishery to bycatch of non-target and prohibited species. No birds were recorded as bycatch in the GOA rex sole fishery. The GOA rex sole fishery caught 1% of the halibut PSC caught in 2015 and 2% of the halibut PSC caught in 2014.

Likewise, the GOA rex sole fishery was responsible for an estimated 1.7% and 3.4% of halibut mortality in 2015 and 2014, respectively (Table 19). The GOA rex sole fishery caught between 0 and 8% of the catch of any non-target species in 2014 and 2015 (Table 18).

Data gaps and research priorities

The rex sole fishery is primarily a bycatch fishery that takes mainly older, larger fish. Current estimates of optimum harvest levels based on Tier 3 calculations (e.g., at $\mathrm{F}_{40 \%}$ harvest rates) are very large but highly uncertain. The rex sole fishery should continue to be monitored to assess whether a directed rex sole fishery has developed; quantities such as $\mathrm{F}_{40 \%}$ ($=\mathrm{F}_{\mathrm{ABC}}$ in Tier 3a) will be sensitive to the characteristics of the resulting fishery selectivity curves. More information should be collected on fishery size and age compositions to inform selectivity parameters and potentially improve estimates of harvest rates.

The assessment is now conducted using Stock Synthesis (SS3), which will allow for further exploration of alternative selectivity formulations, stock-recruit curves, time-varying effects, and spatial effects. Inclusion of additional data sources could be explored, such as fishery age composition data, which may better inform estimation of reference points. The ADF\&G small mesh survey could be included as well, and an ageing error matrix could be developed.
GOA rex sole otoliths appear to show two different patterns for the same age and year of fish, indicating that some rex sole grow at different rates than others. Further research on genetics and growth should be conducted to explore these two growth patterns seen on the otoliths.

Literature Cited

Abookire, A.A. 2006. Reproductive biology, spawning season, and growth of female rex sole (Glyptocephalus zachirus) in the Gulf of Alaska. Fish. Bull. 104: 350-359.
Aydin, K., S. Gaichas, I. Ortiz, D. Kinzey, and N. Friday. 2007. A comparison of the Bering Sea, Gulf of Alaska, and Aleutian Islands large marine ecosystems through food web modeling. NOAA Tech Memo. NMFS-AFSC-178. 298 p.
Hosie, M. J. and H. F. Horton. 1977. Biology of the rex sole, Glyptocephalus zachirus, in waters off Oregon. Fish. Bull. 75: 51-60.
Livingston, P., and B. Goiney. 1983. Food habits literature of north pacific marine fishes: A review and selected bibliography. NOAA tech. Mem. NMFS F/NWC-54.
McAllister, M.K. and Ianelli, J.N. 1997. Bayesian stock assessment using catch-age data and the sampling -importance resampling algorithm. Can. J. Fish. Aquat. Sci. 54: 284-300.
Mecklenburg, C.W., T. A. Mecklenburg and L. K. Thorstein. 2002. Fishes of Alaska. Am. Fish. Soc., Bethesda, MD. 848 p.
Methot, R. D. 2009. User manual for stock synthesis, model version 3.04b. NOAA Fisheries, Seattle, WA.
Methot, R. D. and I. G. Taylor. 2011. Adjusting for bias due to variability of estimated recruitments in fishery assessment models. Canadian Journal of Fisheries and Aquatic Sciences 68:1744-1760.
Methot, R. D. and C. R. Wetzel. 2013. Stock synthesis: A biological and statistical framework for fish stock assessment and fishery management. Fisheries Research 142:86-99.
Pennington, M. and J. H. Volstad. 1994. Assessing the effect of intra-haul correlation and variable density on estimates of population characteristics from marine surveys. Biometrics 50:725-732.

Stockhausen, W.T., M.E. Wilkins and M.H. Martin. 2011. Gulf of Alaska Rex Sole Stock Assessment. In Stock Assessment and Fishery Evaluation Report for the Groundfish Resources of the Gulf of Alaska. pp. 629-690. North Pacific Fishery Management Council, P.O. Box 103136, Anchorage AK 99510.
Turnock, B. J. and Z. T. A’mar. 2005. Gulf of Alaska Rex Sole Stock Assessment. In Stock Assessment and Fishery Evaluation Document for Groundfish Resources in the Gulf of Alaska as Projected for 2006. pp. 399-434. North Pacific Fishery Management Council, P.O. Box 103136, Anchorage AK 99510.
Yang, M. S. 1993. Food habits of the commercially important groundfishes in the Gulf of Alaska in 1990. NOAA Tech. Memo. NMFS-AFSC-22, 150 p.
Yang, M.-S. and M.W. Nelson. 2000. Food habits of the commercially important groundfishes in the Gulf of Alaska in 1990, 1993, and 1996. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-112, 174 p.

Tables

Table 1. Fishery catches for GOA rex sole by management area. Catch for 2015 is through October 26, 2015.

	Total Catch	Western Gulf	Central Gulf	West Yakutat	Southeast
1982	959				--
1983	595				--
1984	365				--
1985	154				--
1986	93				--
1987	1151				--
1988	1192				--
1989	599				--
1990	1,269				--
1991	4,636				--
1992	3,000				--
1993	3,000				--
1994	3,673				--
1995	4,021				--
1996	5,874				--
1997	3,294				--
1998	2,669				--
1999	3060				--
2000	3,591				--
2001	2,940				--
2002	2,941				1
2003	3,485	767	2,716	1	1
2004	1,464	526	936	0	0
2005	2,176	576	1,600	0	0
2006	3,294	350	2,944	0	0
2007	2,852	413	2,438	1	0
2008	2,703	185	2,518	0	0
2009	4,753	342	4,410	1	0
2010	3,636	134	3,500	2	0
2011	2,594	105	2,488	1	0
2012	2,425	215	2,210	0	0
2013	3,707	104	3,603	0	0
2014	3,577	126	3,450	1	0
2015	1,678	75	1,603	0	0

Table 2. Historical catch specifications, percent of the catch retained, and percent of the TAC and ABC caught from 1995-2015.

Year	OFL (t)	ABC (t)	TAC (t)	Total Catch	\% Retained	\% of TAC caught	\% of ABC Caught
1995	13,091	11,210	9,690	4,021	90%	41%	36%
1996	13,091	11,210	9,690	5,874	95%	61%	52%
1997	11,920	9,150	9,150	3,294	92%	36%	36%
1998	11,920	9,150	9,150	2,669	97%	29%	29%
1999	11,920	9,150	9,150	3,060	96%	33%	33%
2000	12,300	9,440	9,440	3,591	97%	38%	38%
2001	12,300	9,440	9,440	2,940	95%	31%	31%
2002	12,320	9,470	9,470	2,941	95%	31%	31%
2003	12,320	9,470	9,470	3,485	95%	37%	37%
2004	16,480	12,650	12,650	1,464	92%	12%	12%
2005	16,480	12,650	12,650	2,176	91%	17%	17%
2006	12,000	9,200	9,200	3,294	95%	36%	36%
2007	11,900	9,100	9,100	2,852	98%	31%	31%
2008	11,933	9,132	9,132	2,703	97%	30%	30%
2009	11,756	8,996	8,996	4,753	99%	53%	53%
2010	12,714	9,729	9,729	3,636	98%	37%	37%
2011	12,499	9,565	9,565	2,594	97%	27%	27%
2012	12,561	9,612	9,612	2,425	96%	25%	25%
2013	12,492	9,560	9,560	3,707	98%	39%	39%
2014	12,207	9,341	9,341	3,577	99%	38%	38%
2015	11,957	9,150	9,150	1,678	98%	18%	18%

Table 3. GOA rex sole fishery closures by sub-area in 2015

Sub-Area	Program	Status	Reason	Effective Date
GOA - Central 620/630	All	Bycatch	Regulations	01-Jan
GOA - Western 610	All	Bycatch	Regulations	01-Jan
GOA - Central 620/630	All	Open	Regulations	20-Jan
GOA - Western 610	All	Open	Regulations	20-Jan
West Yakutat - 640	All	Open	Regulations	20-Jan
West Yakutat - 640	All	Bycatch	Regulations	01-Jan
GOA - Central 620/630	Catcher Vessel	Bycatch	Chinook Salmon	03-May
GOA - Western 610	Catcher Vessel	Bycatch	Chinook Salmon	03-May
GOA - Central 620/630	Catcher Vessel	Open	Regulations	10-Aug
GOA - Western 610	Catcher Vessel	Open	Regulations	10-Aug

Table 4. Number of hauls and number of individuals represented in the fishery length composition data used in the assessment (excludes unsexed fish).

	Total Number of Hauls	Total Number of Individuals	Number of hauls with females	Number of females	Number of hauls with males	Number of males
1982	75	9,516	74	3,547	73	5,856
1983	5	647	5	241	5	406
1984	2	297	2	60	2	237
1990	74	7,438	56	2,482	56	3,693
1991	257	18,652	120	4,724	118	4,339
1992	220	19,586	161	8,045	159	6,420
1993	372	25,972	245	9,067	242	7,293
1994	328	19,756	225	6,935	222	6,038
1995	257	11,868	133	3,282	111	1,897
1996	277	18,548	224	8,212	221	6,474
1997	194	10,391	182	4,982	183	5,136
1998	213	10,509	154	4,609	156	3,313
1999	393	8,294	392	4,466	388	3,816
2000	347	6,526	341	3,896	330	2,560
2001	194	3,484	194	1,931	187	1,550
2002	320	5,595	314	3,033	311	2,550
2003	352	6,357	346	2,644	342	3,667
2004	62	1,039	62	484	60	555
2005	71	1,190	70	606	67	584
2006	37	501	35	256	32	229
2007	140	2,138	139	1,115	126	1,008
2008	159	2,677	154	1,205	156	1,459
2009	230	4,189	223	1,992	226	2,114
2010	152	2,892	151	1,241	149	1,651
2011	164	3,153	162	1,417	161	1,733
2012	159	2,724	155	1,376	146	1,346
2013	278	5,600	275	2,454	269	3,137
2014	230	4,069	225	2,466	222	1,602
2015	135	2,116	129	1,204	124	910

Table 5. Survey biomass by area, depth, and year in metric tons

		Regulatory Area			
		Central	Eastern	Western	Total
1984		40,688	13,311	6,672	60,670
	1	1,423	2,235	329	3,987
	101	26,777	7,519	2,744	37,040
	201	8,557	2,041	2,485	13,083
	301	2,900	1,223	1,038	5,161
	501	689	292	76	1,057
	701	342	0	0	342
1987		39,722	15,304	8,801	63,826
	1	2,504	2,246	941	5,691
	101	24,515	9,351	6,379	40,244
	201	11,537	2,031	940	14,508
	301	711	767	335	1,812
	501	426	909	207	1,542
	701	30		0	30
1990		75,147	16,313	6,765	98,225
	1	8,717	5,472	1,272	15,460
	101	48,066	8,049	3,718	59,833
	201	17,970	2,097	1,724	21,791
	301	394	696	51	1,140
1993		55,310	20,901	10,700	86,911
	1	4,980	3,143	3,110	11,233
	101	36,890	11,115	6,059	54,064
	201	11,665	4,754	577	16,995
	301	1,775	1,889	954	4,619
1996		43,778	19,560	9,419	72,757
	1	4,421	2,460	3,522	10,403
	101	29,214	10,784	3,421	43,419
	201	9,049	4,036	1,844	14,929
	301	1,094	2,280	632	4,006
1999		42,750	19,464	12,755	74,969
	1	2,677	4,365	7,640	14,682
	101	30,570	7,271	2,399	40,239
	201	8,231	6,142	1,393	15,766
	301	1,001	1,523	1,317	3,841
	501	271	163	6	440
	701	0	0	0	0
2001		41,687		9,571	51,258
	1	6,458		1,284	7,742
	101	24,792		4,414	29,206
	201	8,964		2,081	11,045
	301	1,473		1,793	3,265
2003		57,973	28,659	13,265	99,897
	1	6,220	7,411	3,898	17,529
	101	37,610	14,832	6,345	58,787
	201	13,078	3,668	2,348	19,094
	301	985	2,368	664	4,017
	501	81	380	9	470
2005		60,600	27,795	12,766	101,161
	1	8,142	4,061	2,580	14,783

	101	40,766	15,392	8,902	65,060
	201	10,457	5,241	939	16,637
	301	1,136	3,063	335	4,535
	501	98	29	9	136
	701	0	10	0	10
2007		76,514	15,672	11,614	103,800
	1	4,505	2,022	2,577	9,105
	101	55,711	9,466	6,338	71,514
	201	13,371	3,050	1,947	18,368
	301	2,803	948	752	4,504
	501	124	186	0	309
	701	0	0	0	0
2009		82,091	22,873	19,780	124,744
	1	8,533	3,419	4,065	16,017
	101	52,749	13,539	13,375	79,662
	201	19,267	3,801	1,964	25,032
	301	1,332	1,272	376	2,980
	501	211	843	0	1,054
	701	0	0	0	0
2011		63,490	18,681	12,964	95,134
	1	4,614	3,421	3,934	11,969
	101	39,259	7,942	5,998	53,199
	201	18,749	3,980	2,442	25,171
	301	726	3,027	590	4,342
	501	143	311	0	454
2013		64,188	22,913	13,877	100,978
	1	4,784	7,110	837	12,731
	101	47,669	10,460	10,307	68,435
	201	10,686	2,998	1,899	15,583
	301	782	1,659	835	3,276
	501	267	686	0	952
2015		48,877	22,474	15,936	87,286
	1	5,090	7,437	2,839	15,365
	101	33,365	9,593	9,733	52,691
	201	9,431	2,890	3,096	15,416
	301	906	1,919	269	3,093
	501	85	636	0	721
	701	0	0	0	0

Table 6. Number of hauls and number of individuals represented in the survey length composition data used in the assessment (excludes unsexed fish).

Year	Total Number of Hauls	Total Number of Individuals	Number of hauls with females	Number of females	Number of hauls with males	Number of males
1984	227	13,930	225	6,739	221	7,191
1987	103	11,362	103	5,364	102	5,998
1990	237	14,386	237	7,593	227	6,793
1993	367	18,109	359	9,943	319	8,166
1996	517	14,486	487	6,768	401	7,718
1999	462	11,612	430	5,408	374	6,204
2001	278	7,675	255	3,861	229	3,814
2003	519	17,806	490	8,778	440	9,028
2005	546	18,981	511	9,373	459	9,608
2007	512	17,160	489	8,606	434	8,554
2009	555	19,910	536	9,969	470	9,941
2011	413	12,800	392	6,634	328	6,166
2013	337	10,249	321	4,829	272	5,420
2015	487	15,153	466	7,708	376	7,445

Table 7. Number of hauls and number of individuals represented in the survey age composition data used in the assessment (excludes unsexed fish).

	Total Number of	Total Number of Hauls	Number Individuals hauls with females	Number of females	Number of hauls with males	Number of males
1984	5	233	5	155	5	78
1987	5	159	5	91	5	87
1990	27	270	26	156	20	114
1993	29	332	26	193	20	139
1996	79	378	61	218	44	160
1999	59	410	52	218	45	192
2001	132	382	106	296	96	253
2003	94	594	82	328	69	266
2005	104	520	86	289	78	268
2007	55	416	48	220	38	196
2009	100	484	85	267	71	217
2011	89	509	75	283	60	226
2013	94	483	84	267	62	216

Table 8. Weight-at-age and maturity-at-age relationships used in the assessment model. The length- and weight-at-age relationships were estimated using data from 1984-1996.

Age	Female Weight- at-Age	Male Weight-at- Age	Maturity 0M.000
1	0.000	0.000	
2	0.000	0.000	0.000
3	0.060	0.000	0.000
4	0.150	0.064	0.009
5	0.241	0.130	0.082
6	0.328	0.253	0.323
7	0.405	0.298	0.620
8	0.469	0.331	0.889
9	0.519	0.356	0.925
10	0.558	0.373	0.946
11	0.588	0.386	0.958
12	0.611	0.394	0.965
13	0.628	0.400	0.969
14	0.641	0.404	0.972
15	0.650	0.407	0.974
16	0.657	0.409	0.975
17	0.662	0.410	0.976
18	0.665	0.411	0.977
19	0.668	0.412	0.977
20	0.670	0.412	0.977

Table 9. Configuration of fishery and survey age-based, sex-specific double-normal selectivity curves used in the assessment. A numeric value indicates the fixed value of a parameter. An asterisk indicates that the parameter was fixed at 0 for ages $0-2$.

Double-normal selectivity parameters	Fishery	Survey
Peak: beginning size for the plateau	Estimated	Estimated
Width: width of plateau	30	30
Ascending width (log space)	Estimated	Estimated
Descending width (log space) Initial: selectivity at smallest length or age bin	0*	0*
Final: selectivity at largest length or age bin	999	999
Male Peak Offset	Estimated	Estimated
Male ascending width offset (log space)	Estimated	Estimated
Male descending width offset (log space)	0	0
Male "Final" offset (transformation required)	0	0
Male apical selectivity	1	1

Table 10. Final parameter estimates for unfished recruitment and selectivity parameters for the current base case model. Estimates of yearly recruitment deviations and fishing mortality rates are listed in separate tables. "StDev" refers to the standard deviation about the parameter estimate.

		Parameter	Estimate
	LtDev		
Fishery selectivity	Peak: beginning size for the plateau (females)	11.569	0.038
	Ascending width (females; log space)	2.925	1.166
	Male peak offset	0.297	
	Male ascending width offset (log space)	0.651	1.047
Survey selectivity parameters	Peak: beginning size for the plateau (females)	6.590	0.313
	Ascending width (females; log space)	2.378	0.454
	Male peak offset	-0.697	0.572
	Male ascending width offset (log space)	-0.421	0.432

Table 11. Negative log likelihood components for three GOA rex sole models: the 2013 model run using SS3, the 2013 model updated with 2015 data, and the 2015 model. Likelihood component values cannot be compared between the 2013 model and the two models that include 2015 data. Only the survey likelihood component can be directly compared between the two models that include 2015 data.

		2013 Likelihood Component	2013 Model
Model w	New Data	2015	
Model			
TOTAL	607	657	256
Survey	-1.22	-2.05	-12.69
Length_comp	471	493	196
Age_comp	151	176	75
Recruitment	-14.188	-11.059	-3.096

Table 12. Estimated yearly recruitment deviations for the current base case model.

Year	Recruitment Deviations	Std. Dev.	Year	Recruitment Deviations	Std. Dev.
1965	-0.291	0.525	1995	-0.144	0.188
1966	-0.309	0.516	1996	0.124	0.167
1967	-0.348	0.509	1997	0.559	0.146
1968	-0.351	0.498	1998	0.438	0.161
1969	-0.404	0.492	1999	0.407	0.176
1970	-0.440	0.487	2000	0.378	0.173
1971	-0.451	0.480	2001	0.197	0.196
1972	-0.463	0.475	2002	-0.006	0.211
1973	-0.485	0.471	2003	0.393	0.180
1974	-0.487	0.464	2004	0.322	0.176
1975	-0.468	0.454	2005	0.378	0.168
1976	-0.475	0.445	2006	-0.428	0.235
1977	-0.469	0.430	2007	-0.363	0.238
1978	-0.539	0.430	2008	-1.213	0.346
1979	-0.320	0.413	2009	-1.018	0.410
1980	-0.283	0.423	2010	0.948	0.172
1981	-0.060	0.413	2011	0.299	0.292
1982	0.160	0.351	2012	0.588	0.194
1983	0.366	0.318	2013	0.000	0.000
1984	0.218	0.291	2014	0.000	0.000
1985	0.266	0.227	2015	0.000	0.000
1986	-0.114	0.222			
1987	0.153	0.166			
1988	-0.263	0.253			
1989	-0.315	0.242			
1990	-0.293	0.224			
1991	-0.535	0.245			
1992	-0.470	0.230			
1993	-0.636	0.244			
1994	-0.396	0.218			

Table 13. Estimated fishing mortality for the current base case model.

| Year | Estimate | StdDev | | Year | Estimate | StdDev |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 9 8 2}$ | 0.023 | 0.003 | | $\mathbf{2 0 0 1}$ | 0.114 | 0.013 |
| $\mathbf{1 9 8 3}$ | 0.015 | 0.002 | | $\mathbf{2 0 0 2}$ | 0.123 | 0.014 |
| $\mathbf{1 9 8 4}$ | 0.009 | 0.001 | | $\mathbf{2 0 0 3}$ | 0.148 | 0.018 |
| $\mathbf{1 9 8 5}$ | 0.004 | 0.000 | | $\mathbf{2 0 0 4}$ | 0.060 | 0.008 |
| $\mathbf{1 9 8 6}$ | 0.003 | 0.000 | | $\mathbf{2 0 0 5}$ | 0.082 | 0.012 |
| $\mathbf{1 9 8 7}$ | 0.032 | 0.003 | | $\mathbf{2 0 0 6}$ | 0.113 | 0.018 |
| $\mathbf{1 9 8 8}$ | 0.034 | 0.004 | | $\mathbf{2 0 0 7}$ | 0.090 | 0.015 |
| $\mathbf{1 9 8 9}$ | 0.017 | 0.002 | | $\mathbf{2 0 0 8}$ | 0.078 | 0.013 |
| $\mathbf{1 9 9 0}$ | 0.035 | 0.004 | | $\mathbf{2 0 0 9}$ | 0.128 | 0.020 |
| $\mathbf{1 9 9 1}$ | 0.130 | 0.016 | | $\mathbf{2 0 1 0}$ | 0.095 | 0.014 |
| $\mathbf{1 9 9 2}$ | 0.084 | 0.011 | | $\mathbf{2 0 1 1}$ | 0.073 | 0.010 |
| $\mathbf{1 9 9 3}$ | 0.082 | 0.011 | | $\mathbf{2 0 1 2}$ | 0.061 | 0.008 |
| $\mathbf{1 9 9 4}$ | 0.099 | 0.014 | | $\mathbf{2 0 1 3}$ | 0.092 | 0.012 |
| $\mathbf{1 9 9 5}$ | 0.110 | 0.015 | | $\mathbf{2 0 1 4}$ | 0.090 | 0.012 |
| $\mathbf{1 9 9 6}$ | 0.171 | 0.022 | | $\mathbf{2 0 1 5}$ | 0.040 | 0.005 |
| $\mathbf{1 9 9 7}$ | 0.101 | 0.012 | | | | |
| $\mathbf{1 9 9 8}$ | 0.085 | 0.010 | | | | |
| $\mathbf{1 9 9 9}$ | 0.103 | 0.011 | | | | |
| $\mathbf{2 0 0 0}$ | 0.130 | 0.014 | | | | |

Table 14. Time series of recruitment at ages 3 and 0 and standard deviation of age 0 recruits for the previous and current assessments.

	2011 Assessment			2015 Assessment		
Year	Recruits (Age 3)	Recruits (Age 0)	Std. dev	Recruits (Age 3)	Recruits (Age 0)	Std. dev
1981		48,127	7,098			
1982		95,588	10,969	41,482	109,895	39,073
1983		101,583	11,356	42,848	134,359	42,463
1984	28,900	109,576	12,130	53,239	115,260	33,387
1985	57,400	119,401	11,485	65,992	120,360	27,370
1986	61,000	104,081	9,033	80,682	81,861	18,470
1987	65,800	104,747	8,517	69,213	106,408	17,368
1988	71,700	85,596	7,614	72,275	69,799	17,618
1989	62,500	61,116	6,194	49,157	66,105	15,992
1990	62,900	70,608	6,710	63,897	67,566	15,105
1991	51,400	51,457	5,678	41,914	53,026	13,098
1992	36,700	58,285	5,936	39,696	56,642	13,125
1993	42,400	46,628	5,420	40,573	47,958	11,772
1994	30,900	72,107	6,839	31,842	60,975	13,314
1995	35,000	91,591	7,614	34,013	78,470	14,742
1996	28,000	111,908	8,646	28,799	102,590	17,303
1997	43,300	156,371	10,840	36,615	158,494	22,816
1998	55,000	138,719	10,324	47,121	140,311	22,102
1999	67,200	137,387	10,840	61,605	136,120	23,678
2000	93,900	130,725	10,840	95,175	132,195	22,752
2001	83,300	106,912	10,453	84,256	110,284	21,640
2002	82,500	73,439	9,162	81,739	90,007	19,115
2003	78,500	142,549	14,582	79,383	134,241	23,925
2004	64,200	122,565	15,227	66,225	124,948	21,982
2005	44,100	191,009	25,035	54,049	132,228	22,336
2006	85,600	83,098	7,872	80,611	59,067	14,231
2007	73,600	86,262	8,259	75,031	63,013	15,471
2008	114,700	82,265	7,872	79,402	26,933	9,624
2009	49,900			35,470	32,716	13,889
2010	51,800			37,839	233,793	41,012
2011	49,400			16,173	122,091	37,674
2012				19,646	163,140	32,474
2013				140,392	105,746	3,973
2014				73,315	105,746	3,973
2015				97,965	105,746	
Average	59,700	101,536		59,342	101,415	

Table 15. Time series of total and spawning biomass and standard deviation of spawning biomass (Std_Dev) for the previous and current assessments.

2011 Assessment				2015 Assessment		
Year	Total Biomass (age 3+)	Spawning Biomass	Stdev_SPB	Total Biomass (age 3+)	Spawning Biomass	Stdev_SPB
1982	76,500	34,800	1,900	128,146	40,287	3,342
1983	77,100	34,900	1,900	83,452	38,780	3,037
1984	77,100	35,100	1,800	81,587	37,781	2,724
1985	78,400	35,600	1,700	81,428	37,361	2,435
1986	80,900	36,000	1,700	83,327	37,672	2,196
1987	84,600	36,600	1,600	87,719	38,892	2,029
1988	88,400	37,300	1,600	92,967	40,523	1,932
1989	92,200	38,600	1,600	97,696	42,811	1,916
1990	96,600	40,800	1,500	100,960	45,444	1,971
1991	99,100	42,800	1,500	104,380	47,126	2,036
1992	96,400	42,600	1,500	105,170	46,247	2,049
1993	94,500	43,100	1,500	101,180	45,789	1,974
1994	91,400	42,800	1,500	98,051	44,586	1,850
1995	87,200	41,400	1,500	93,862	42,488	1,729
1996	82,000	39,400	1,400	88,646	39,874	1,637
1997	76,400	36,200	1,300	82,727	36,036	1,574
1998	74,500	34,300	1,300	75,557	33,813	1,522
1999	75,300	32,900	1,200	72,500	32,147	1,476
2000	79,200	32,200	1,200	72,131	30,893	1,449
2001	84,500	32,400	1,200	75,230	30,514	1,463
2002	91,300	34,600	1,300	80,016	32,193	1,527
2003	98,100	37,900	1,400	86,671	35,247	1,642
2004	103,000	41,100	1,500	93,426	38,519	1,761
2005	106,700	45,100	1,600	98,501	42,724	1,869
2006	110,100	47,800	1,700	103,483	45,726	1,966
2007	112,000	48,700	1,800	107,540	47,084	2,027
2008	116,900	49,400	1,900	110,056	48,232	2,022
2009	119,700	50,600	2,000	113,154	49,560	1,994
2010	118,600	51,300	2,300	113,501	49,667	1,997
2011	116,900	52,600	2,600	109,702	49,603	2,038
2012				104,087	48,466	2,080
2013				97,408	46,191	2,099
2014				98,124	42,728	2,119
2015				99,119	41,418	2,304
2016				108,340	43,808	0

Table 16. Time series of female numbers-at-age for the current base case assessment.

Year	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1982	54,948	37,399	25,394	20,741	14,138	12,858	10,839	9,254	7,702	6,542	5,673	4,871	4,177	3,671	3,281	2,793	2,462	2,125	2,479	2,092	11,287
1983	67,180	46,357	31,552	21,424	17,498	11,926	10,843	9,135	7,789	6,470	5,478	4,730	4,044	3,454	3,028	2,706	2,303	2,030	1,752	2,044	11,031
1984	57,630	56,677	39,110	26,620	18,074	14,760	10,058	9,141	7,695	6,553	5,431	4,586	3,949	3,367	2,871	2,517	2,249	1,914	1,688	1,456	10,868
1985	60,180	48,620	47,816	32,996	22,457	15,248	12,450	8,482	7,705	6,480	5,511	4,560	3,844	3,304	2,814	2,400	2,103	1,879	1,600	1,410	10,300
1986	40,930	50,772	41,019	40,341	27,837	18,946	12,863	10,502	7,153	6,495	5,460	4,640	3,836	3,231	2,776	2,365	2,016	1,767	1,579	1,344	9,839
1987	53,204	34,532	42,834	34,606	34,034	23,485	15,983	10,850	8,858	6,032	5,475	4,600	3,907	3,229	2,719	2,336	1,990	1,697	1,487	1,329	9,411
1988	34,899	44,886	29,133	36,138	29,194	28,706	19,801	13,464	9,125	7,427	5,035	4,544	3,794	3,205	2,640	2,222	1,909	1,626	1,386	1,215	8,775
1989	33,052	29,443	37,869	24,578	30,486	24,624	24,202	16,678	11,321	7,648	6,197	4,175	3,743	3,107	2,615	2,153	1,812	1,557	1,326	1,131	8,148
1990	33,783	27,885	24,840	31,949	20,735	25,716	20,767	20,402	14,047	9,520	6,417	5,183	3,481	3,111	2,578	2,169	1,786	1,503	1,291	1,100	7,696
1991	26,513	28,502	23,526	20,957	26,952	17,489	21,681	17,491	17,152	11,771	7,938	5,317	4,265	2,847	2,535	2,099	1,767	1,454	1,224	1,052	7,163
1992	28,321	22,368	24,046	19,848	17,675	22,716	14,717	18,180	14,566	14,115	9,515	6,270	4,094	3,211	2,114	1,879	1,556	1,309	1,078	907	6,088
1993	23,979	23,893	18,871	20,287	16,741	14,902	19,133	12,367	15,209	12,092	11,583	7,691	4,985	3,207	2,494	1,640	1,457	1,207	1,016	836	5,426
1994	30,488	20,230	20,158	15,921	17,112	14,115	12,552	16,079	10,348	12,630	9,929	9,371	6,123	3,912	2,496	1,938	1,274	1,133	938	789	4,866
1995	39,235	25,721	17,068	17,007	13,429	14,426	11,885	10,541	13,432	8,567	10,315	7,967	7,375	4,737	2,995	1,908	1,481	974	866	717	4,323
1996	51,295	33,101	21,700	14,399	14,344	11,320	12,144	9,976	8,795	11,096	6,970	8,229	6,219	5,649	3,587	2,264	1,442	1,120	736	654	3,810
1997	79,247	43,276	27,926	18,308	12,143	12,086	9,518	10,163	8,273	7,180	8,847	5,389	6,151	4,513	4,026	2,550	1,609	1,025	796	523	3,173
1998	70,155	66,858	36,510	23,561	15,442	10,237	10,176	7,992	8,488	6,845	5,859	7,089	4,233	4,748	3,447	3,070	1,944	1,227	782	607	2,819
1999	68,060	59,188	56,406	30,802	19,873	13,019	8,622	8,551	6,685	7,044	5,615	4,733	5,631	3,313	3,683	2,670	2,378	1,506	951	605	2,654
2000	66,098	57,420	49,934	47,587	25,980	16,753	10,961	7,239	7,140	5,529	5,744	4,495	3,713	4,339	2,526	2,803	2,032	1,810	1,146	723	2,480
2001	55,142	55,764	48,443	42,128	40,134	21,897	14,098	9,191	6,028	5,875	4,469	4,536	3,459	2,794	3,221	1,871	2,076	1,505	1,341	849	2,374
2002	45,003	46,521	47,046	40,870	35,532	33,831	18,432	11,830	7,666	4,975	4,773	3,557	3,530	2,639	2,106	2,424	1,408	1,562	1,133	1,009	2,425
2003	67,121	37,968	39,248	39,691	34,470	29,949	28,472	15,460	9,858	6,316	4,030	3,782	2,751	2,672	1,972	1,571	1,807	1,050	1,165	845	2,561
2004	62,474	56,627	32,032	33,112	33,474	29,048	25,193	23,854	12,851	8,084	5,075	3,154	2,874	2,038	1,949	1,435	1,143	1,315	764	848	2,479
2005	66,114	52,707	47,774	27,024	27,932	28,228	24,478	21,194	20,004	10,718	6,686	4,153	2,550	2,300	1,620	1,548	1,140	908	1,045	607	2,643
2006	29,534	55,778	44,467	40,306	22,795	23,550	23,776	20,572	17,734	16,613	8,801	5,410	3,306	2,002	1,790	1,259	1,203	886	706	812	2,526
2007	31,507	24,916	47,058	37,515	33,995	19,215	19,824	19,952	17,159	14,640	13,501	7,008	4,213	2,524	1,510	1,348	949	906	667	532	2,514
2008	13,466	26,581	21,021	39,701	31,643	28,661	16,182	16,654	16,682	14,230	11,991	10,882	5,550	3,285	1,950	1,165	1,040	732	699	515	2,349
2009	16,358	11,361	22,425	17,735	33,488	26,681	24,143	13,602	13,942	13,866	11,702	9,725	8,692	4,374	2,568	1,523	910	812	571	546	2,236
2010	116,897	13,801	9,585	18,920	14,957	28,225	22,452	20,246	11,329	11,476	11,213	9,247	7,493	6,550	3,252	1,905	1,130	675	602	424	2,064
2011	61,046	98,622	11,643	8,086	15,958	12,610	23,768	18,857	16,918	9,385	9,382	9,012	7,294	5,813	5,031	2,494	1,461	866	518	462	1,908
2012	81,570	51,502	83,204	9,823	6,821	13,456	10,623	19,983	15,793	14,074	7,728	7,625	7,219	5,769	4,563	3,944	1,955	1,146	679	406	1,858
2013	52,873	68,818	43,450	70,196	8,286	5,752	11,338	8,937	16,756	13,169	11,638	6,322	6,163	5,774	4,585	3,623	3,132	1,552	910	539	1,798
2014	52,873	44,607	58,059	36,658	59,208	6,986	4,844	9,525	7,471	13,890	10,780	9,371	4,999	4,797	4,451	3,530	2,789	2,411	1,195	700	1,799
2015	52,873	44,607	37,633	48,982	30,920	49,918	5,883	4,069	7,963	6,195	11,376	8,687	7,419	3,897	3,704	3,432	2,722	2,150	1,859	922	1,927

Table 17. Time series of male numbers-at-age for the current base case assessment.

Year	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1982	54,948	37,39	25,394	20,7	14,138	12,858	10,8	9,254	7,70	6,5	5,67	4,871	4,17	3,671	3,281	2,793	2,46	2,12	2,4	,09	11,287
1983	67,180	46,357	31,552	21,424	17,496	11,924	10,840	9,131	7,786	6,46	5,477	4,733	4,048	3,458	3,031	2,706	2,303	2,030	1,752	2,044	11,031
1984	57,630	56,677	39,110	26,620	18,073	14,758	10,055	9,136	7,689	6,548	5,429	4,587	3,954	3,374	2,877	2,519	2,249	1,914	1,688	1,456	10,868
1985	60,180	48,620	47,816	32,996	22,457	15,246	12,447	8,478	7,699	6,474	5,507	4,559	3,846	3,310	2,821	2,404	2,105	1,880	1,600	1,410	10,300
1986	40,930	50,772	41,019	40,341	27,837	18,945	12,860	10,498	7,149	6,490	5,455	4,637	3,836	3,234	2,781	2,370	2,020	1,769	1,579	1,344	9,839
1987	53,204	34,532	42,834	34,606	34,034	23,484	15,982	10,848	8,854	6,028	5,471	4,59	3,905	3,22	2,72	2,34	1,99	1,700	1,48	1,329	9,411
1988	34,899	44,886	29,133	36,138	29,190	28,700	19,792	13,455	9,117	7,420	5,031	4,544	3,797	3,209	2,643	2,224	1,912	1,630	1,389	1,216	8,775
1989	33,052	29,443	37,869	24,578	30,482	24,615	24,186	16,661	11,305	7,637	6,189	4,17	3,748	3,115	2,622	2,156	1,81	1,56	1,329	1,133	8,149
1990	33,783	27,885	24,840	31,949	20,734	25,710	20,755	20,383	14,027	9,503	6,406	5,179	3,483	3,119	2,58	2,175	1,788	1,50	1,294	1,102	7,698
1991	26,513	28,502	23,526	20,957	26,948	17,483	21,666	17,470	17,122	11,747	7,924	5,312	4,268	2,854	2,545	2,106	1,771	1,456	1,225	1,054	7,167
1992	28,321	22,368	24,046	19,848	17,667	22,692	14,689	18,125	14,508	14,058	9,491	6,275	4,114	3,237	2,131	1,886	1,561	1,313	1,079	08	6,093
1993	23,979	23,893	18,871	20,287	16,736	14,886	19,093	12,325	15,136	12,026	11,532	7,685	5,008	3,239	2,523	1,653	1,463	1,211	1,018	837	5,430
1994	30,488	20,230	20,158	15,921	17,106	14,103	12,526	16,022	10,294	12,551	9,871	9,34	6,141	3,949	2,529	1,961	1,285	1,137	941	791	4,870
1995	39,235	25,721	17,068	17,00	13,424	14,411	11,860	10,500	13,35	8,507	10,246	7,936	7,388	4,778	3,036	1,934	1,499	982	869	719	4,328
1996	51,295	33,101	21,700	14,399	14,338	11,307	12,115	9,935	8,741	11,011	6,919	8,192	6,227	5,695	3,634	2,295	1,462	1,133	742	657	3,815
1997	79,247	43,	27,926	18,3	12,1	12,066	9,487	10,108	208	7,114	8,773	5,368	6,172	4,564	4,088	2,584	1,631	1,039	05	528	3,179
1998	70,155	66,858	36,510	23,561	15,436	10,223	10,147	7,951	8,423	6,780	5,802	7,044	4,236	4,792	3,500	3,117	1,970	1,244	792	614	2,827
1999	68,	59,	56,40	30,8	19	13	8,601	8,513	6,639	6,980	5,559	4,69	5,61	3,332	3,7	2,711	2,41	1,5	964	614	,665
2000	66,098	57,420	49,934	47,587	25,970	16,736	10,937	7,208	7,093	5,481	5,690	4,460	3,700	4,354	2,550	2,839	2,063	1,838	1,161	733	2,495
2001	55	55,76	48,	42,12	40,116	21,869	14,	9,149	5,986	5,822	4,428	4,50	3,453	2,80	3,2	1,8	2,103	1,5	1,361	860	2,39
2002	45,003	46,521	47,046	40,870	35,517	33,788	18,382	11,774	7,612	4,930	4,728	3,532	3,524	2,652	2,125	2,446	1,422	1,583	1,150	1,024	2,447
2003	67,12	37,9	39,248	39,691	34,454	29,910	28,393	15,384	9,785	258	,991	3,756	2,747	2,686	1,991	1,585	1,824	1,060	1,180	858	2,589
2004	62,474	56,627	32,032	33,112	33,456	29,005	25,115	23,724	12,747	8,003	5,025	3,133	2,874	2,053	1,971	1,450	1,153	1,327	772	859	2,509
20	66,114	52,707	47,774	27,024	27,926	28,201	24,423	21,106	19,869	10,620	6,618	4,117	2,540	2,308	1,636	1,566	1,152	916	1,055	613	2,675
2006	29,534	55,778	44,467	40,306	22,788	23,532	23,729	20,495	17,629	16,476	8,717	5,364	3,290	2,003	1,802	1,272	1,217	895	712	820	2,556
2007	31,507	24,916	47,058	37,515	33,981	19,194	19,780	19,872	17,054	14,522	13,384	6,958	4,199	2,529	1,519	1,357	958	917	674	536	2,542
2008	13,466	26,581	21,021	39,701	31,633	28,631	16,146	16,591	16,58	14,119	11,891	10,808	5,53	3,291	1,960	1,172	1,047	739	707	520	2,375
2009	16,358	11,361	22,425	17,735	33,478	26,658	24,095	13,553	13,866	13,765	11,608	9,659	8,663	4,380	2,581	1,531	91	818	577	552	2,260
2010	116,897	13,801	9,585	18,920	14,950	28,192	22,397	20,158	11,257	11,386	11,125	9,197	7,486	6,577	3,273	1,915	1,136	679	607	428	2,087
2011	61,046	98,622	11,643	8,086	15,952	12,596	23,711	18,779	16,810	9,309	9,305	8,959	7,286	5,840	5,071	2,511	1,469	871	52	4	1,929
2012	81,570	51,502	83,204	9,823	6,819	13,444	10,601	19,909	15,702	13,965	7,663	7,574	7,201	5,787	4,598	3,976	1,968	1,151	683	408	1,877
2013	52,873	68,818	43,450	70,196	8,284	5,748	11,320	8,909	16,673	13,079	11,546	6,276	6,139	5,779	4,611	3,651	3,157	1,563	914	542	1,814
2014	52,873	44,607	58,059	36,658	59,188	6,980	4,835	9,494	7,433	13,798	10,702	9,314	4,984	4,804	4,472	3,550	2,810	2,430	1,203	704	1,814
2015	52,873	44,607	37,633	48,982	30,910	49,870	5,872	4,055	7,922	6,153	11,297	8,641	7,405	3,905	3,723	3,449	2,737	2,167	1,874	928	1,941

Table 18. Non-target catch in the directed GOA rex sole fishery as a proportion of total weight of bycatch of each species. Conditional highlighting from white (lowest numbers) to green (highest numbers) is applied. Birds (recorded in numbers) have not been recorded as bycatch in the GOA rex sole fishery.

Non-Target Species	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Benthic urochordata	0.12	0.02	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Bivalves	0.09	0.07	0.05	0.00	0.00	0.17	0.07	0.00	0.01	0.00	0.00	0.00	0.00
Brittle star unidentified	0.00	0.00	0.03	0.00	0.03	0.20	0.04	0.00	0.00	0.00	0.03	0.00	0.01
Capelin	0.00	0.00	0.00	0.00		0.06	0.68	0.00	0.00	0.00	0.02	0.00	0.01
Corals Bryozoans Unidentified	0.04	0.00	0.00	0.00	0.03	0.00	0.02	0.02	0.00	0.00	0.02	0.00	0.00
Corals Bryozoans -Red Tree Coral	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.56	0.00	0.00
Dark Rockfish						0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00
Eelpouts	0.00	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Eulachon	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Giant Grenadier	0.00	0.00	0.00	0.00	0.00	0.01	0.02	0.03	0.02	0.00	0.00	0.00	0.00
Greenlings	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.00	0.01	0.00
Ratail Grenadier Unidentified	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.00	0.00	0.00	0.00
Gunnels	0.00			0.00		0.70				0.00	0.00		0.00
Hermit crab unidentified	0.10	0.00	0.01	0.17	0.01	0.00	0.02	0.00	0.01	0.01	0.01	0.00	0.00
Invertebrate unidentified	0.00	0.01	0.00	0.00	0.03	0.06	0.01	0.03	0.00	0.00	0.00	0.00	0.05
Large Sculpins	0.02	0.03	0.02	0.01	0.01								
Large Sculpins - Bigmouth Sculpin						0.05	0.30	0.14	0.08	0.16	0.10	0.01	0.08
Large Sculpins - Great Sculpin						0.00	0.05	0.01	0.01	0.00	0.00	0.00	0.00
Large Sculpins - Hemilepidotus Unidentified						0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Large Sculpins - Yellow Irish Lord						0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00
Misc crabs	0.20	0.05	0.18	0.37	0.04	0.22	0.29	0.02	0.00	0.00	0.00	0.00	0.00
Misc crustaceans	0.85	0.00	0.22				0.00	0.00	0.08	0.34	0.00	0.00	0.00
Misc fish						0.01					0.00		0.00
Misc inverts (worms etc)			0.00	0.00	0.00	0.00	0.00	1.00	0.53			0.00	0.00
Other osmerids	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Other Sculpins	0.05	0.00	0.01	0.01	0.02	0.04	0.00	0.01	0.00	0.00	0.00	0.00	0.00
Pandalid shrimp	0.15	0.00	0.00	0.00	0.03	0.05	0.13	0.04	0.01	0.00	0.08	0.01	0.01
Polychaete unidentified	0.00		0.89		0.00	0.00	1.00	1.00	0.00		0.39		0.00
Scypho jellies	0.00	0.00	0.00	0.00	0.02	0.00	0.02	0.01	0.00	0.00	0.01	0.00	0.00
Sea anemone unidentified	0.03	0.01	0.00	0.00	0.00	0.00	0.07	0.01	0.00	0.00	0.00	0.00	0.00
Sea pens whips	0.04	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sea star	0.02	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
Snails	0.08	0.06	0.01	0.13	0.02	0.21	0.02	0.02	0.02	0.00	0.03	0.00	0.00
Sponge unidentified	0.05	0.00	0.00	0.00	0.02	0.00	0.05	0.00	0.03	0.00	0.21	0.03	0.01
Stichaeidae	0.17	0.00	0.01	0.00	0.09	0.12	0.01	0.01	0.00	0.00	0.01	0.00	0.05
urchins dollars cucumbers	0.32	0.01	0.15	0.00	0.02	0.01	0.22	0.29	0.03	0.06	0.10	0.02	0.02

Table 19. Prohibited species catch in the GOA rex sole directed fishery as a proportion of all prohibited species catch in the GOA in 2014 and 2015.

	2015		2014	
Species Group Name	PSCNQ Estimate	Halibut Mortality	PSCNQ Estimate	Halibut Mortality
Bairdi Tanner Crab	0.000	--	0.001	--
Blue King Crab				
Chinook Salmon	0.007	--	0.025	--
Golden (Brown) King	0.000	--	0.000	--
Crab	0.010	0.017	0.020	0.034
Halibut	0.000	--	0.000	--
Herring	0.000	--	0.038	--
Non-Chinook Salmon			0.000	--
Opilio Tanner (Snow)	0.000	--		
Crab			0.000	--
Other King Crab	0.000	--		
Red King Crab				

Figures

Figure 1. Fishery catches for GOA rex sole, 1982-2015. Catch for 2015 is through October 10, 2015.

Figure 2. Maps of GOA rex sole survey catch per unit effort (CPUE) for 2015, 2013, and 2011 (the three most recent survey years). Purple lines denote CPUE and pink dots denote trawls where no rex sole were captured.

Figure 3. GOA survey biomass estimates for rex sole (dots) and model fits to survey biomass (lines).

Figure 4. Estimates of recruitment deviations and corresponding 95% asymptotic confidence intervals for the 2011 model, the 2011 model structure with new data (in SS3), and the current base case model.

Figure 5. Estimates of age 0 recruitments with associated 95% asymptotic confidence intervals for the SS3 version of the 2011 model, the SS3 version of the 2011 model with new data added, and the current base case model.

Figure 6. Spawning biomass for the SS3 version of the 2011 model, the SS3 version of the 2011 model with new data added, and the current base case model.

Figure 7. Fishery and survey selectivity at age for the current base case model.

length comps, whole catch, aggregated across time by fleet

Figure 8. Observed (grey shaded area, black lines) and expected (red lines) proportions-at-length, aggregated over years for the fishery and survey and for females (above x-axes) and males (below xaxes).
age comps, whole catch, aggregated across time by fleet

Figure 9. Observed (grey shaded area, black lines) and expected (red lines) proportions-at-age, aggregated over years for the fishery and survey and for females (above x-axes) and males (below x-axes).

Figure 10. Observed (grey filled area and black line) and expected (red and blue lines) fishery length compositions for years 1982-2002 for males (blue lines) and females (red lines).

Figure 11. As for Figure 10, but for years 2003-2015.

Figure 12. Observed (grey filled area and black line) and expected (red and blue lines) survey length compositions for all years of survey data for males (blue lines) and females (red lines).

Figure 13. Observed (grey filled area and black line) and expected (red and blue lines) survey age compositions for all years of survey data for males (blue lines) and females (red lines).

Spawning biomass (mt) with ~95\% asymptotic intervals

Figure 14. Spawning stock biomass (solid blue line with dots) and 95\% asymptotic confidence intervals (dotted blue lines) for the current base case assessment model.

Figure 15. Spawning stock biomass and corresponding 95\% asymptotic confidence intervals for model runs, leaving out 0 to 10 years of the most recent data. All models were run until 2015, assuming mean recruitment for all years of data excluded in the run.

Figure 16. Recruitment deviations and corresponding 95\% asymptotic confidence intervals (top panel) and age 0 recruits (bottom panel) for all runs of a retrospective analysis excluding 0 to 10 years of the most recent data. All models were run until 2015, assuming mean recruitment for all years of data excluded in the run.

Figure 17. Gulf of Alaska food web from the GOA ecosystem model (Aydin et al., 2007) highlighting rex sole links to predators (blue boxes and lines) and prey (green boxes and lines). Box size reflects relative standing stock biomass.

Figure 18. Diet composition for Gulf of Alaska rex sole from the GOA ecosystem model (Aydin et al., 2007).

Figure 19. Decomposition of natural mortality for Gulf of Alaska rex sole from the GOA ecosystem model (Aydin et al., 2007).

Appendix 6A: Specifications for the 2011 model run in SS3 with new

 data| Quantity | As estimated or recommended this year for: | | As estimated or recommended this year for: | |
| :---: | :---: | :---: | :---: | :---: |
| | 2015 | 2016 | 2016 | 2017 |
| M (natural mortality rate) | 0.17 | 0.17 | 0.17 | 0.17 |
| Tier | 5 | 5 | 5 | 5 |
| Projected total (3+) biomass (t) | 82,972 | 81,414 | 74,860 | 75,006 |
| Female spawning biomass (t) | 49,804 | 48,554 | 44,616 | 44,733 |
| B100\% | 55,393 | 55,393 | 54,856 | 54,676 |
| $B_{40 \%}$ | 22,159 | 22,159 | 21,942 | 21,942 |
| B35\% | 19,434 | 19,434 | 19,200 | 19,200 |
| $F_{\text {OFL }}=M$ | 0.170 | 0.170 | 0.17 | 0.17 |
| maxF ${ }_{\text {ABC }}=0.75 * M$ | 0.128 | 0.128 | 0.128 | 0.128 |
| $F_{\text {ABC }}$ | 0.128 | 0.128 | 0.128 | 0.128 |
| OFL (t) | 11,957 | 11,733 | 10,788 | 10,809 |
| $\operatorname{maxABC}(\mathrm{t})$ | 9,150 | 8,979 | 8,256 | 8,272 |
| ABC (t) | 9,150 | 8,979 | 8,256 | 8,272 |
| Status | As determined in 2014 for: | | As determined in 2015 for: | |
| | 2013 | 2014 | 2014 | 2015 |
| Overfishing | no | n/a | no | n/a |
| Overfished | n/a | no | n/a | no |

* Projections are based on estimated catches of $1,817.6 \mathrm{t}, 3,188 \mathrm{t}$, and $8,979 \mathrm{t}$ that were used in place of maximum permissible ABC for 2015, 2016, and 2017 respectively. The 2015 projected catch was calculated as the current catch of GOA rex sole as of October 10, 2015 added to the average October 10 - December 31 GOA rex sole catches over the 5 previous years. The 2016 projected catch was calculated as the average catch from 2010-2014. The 2017 projected catch was set equal to the maxABC as recommended in 2014 for the year 2016, based on Tier 5 calculations.

Appendix 6B: Non-Commercial Catches of GOA Rex Sole

	ADF\&G Data Source			
Year	Large-Mesh Trawl Survey	Scallop Dredge Survey	Small-Mesh Trawl Survey	Subsistence Fishery
1991				392.65
1998	282.75	2.21		
1999	842.63			
2000	380.37	0.30	105.63	
2001	$1,294.13$			
2002	505.56	1.58	284.59	
2003	$1,964.35$		128.37	
2004	625.35	0.21	266.52	
2005	$1,468.14$	2.85	264.94	
2006	307.47	11.55	99.58	
2007	770.91	0.50		
2008	229.35			
2009	$1,075.48$	0.55	146.95	
2010	$5,452.67$	0.48	62.58	
2011	$4,367.69$		78.05	
2012	$3,828.64$	0.44		
2013	$3,923.75$			
2014	$1,810.35$			

NMFS Data Source

Year	Annual Longline Survey	Salmon EFP 13- $\mathbf{0 1}$	Shelikof Acoustic Survey	Shumigans Acoustic Survey
1992	0.915			
1994	5.489			
1995	0.915		8.928	36.258
2010				
2011				
2012	0.91			
2013	1.83	130		
2014		184		

Appendix 6C: An Exploration of Alternative Gulf of Alaska Rex Sole Assessment Models

http://www.afsc.noaa.gov/REFM/Docs/2015/McGilliard_SUPPLEMENTAL_September_2015_GOA_Rex.pdf

