11. Assessment of the other flatfish stock complex in the Bering Sea and Aleutian Islands Thomas K. Wilderbuer and Daniel G. Nichol # **Executive Summary** # Summary of Changes in Assessment Inputs Changes in the Input Data - 1) The 2013 catch (total and discarded) was updated, and catch through 26 October, 2013 were included in the assessment. - 2) The 2013 Eastern Bering Sea shelf survey biomass estimates and standard errors of other flatfish species are included in the assessment. Changes in the Assessment Methodology 1) There were no changes in the assessment methodology. # Summary of Results A summary of the 2013 recommended ABCs and OFLs (in bold) relative to the 2012 recommendations for Other flatfish in the Bering Sea/Aleutian Islands (BSAI) is as follows: | | As estimated or specified last year for: | | recommended | nated or <i>l this</i> year for: | |-------------------------------------------|------------------------------------------|---------|-------------|----------------------------------| | Quantity | 2013 | 2014 | 2014 | 2015 | | M (natural mortality rate) for rex sole | 0.17 | 0.17 | 0.17 | 0.17 | | M (natural mortality rate) for Dover sole | 0.085 | 0.085 | 0.085 | 0.085 | | M (natural mortality rate) for all others | 0.15 | 0.15 | 0.15 | 0.15 | | Tier | 5 | 5 | 5 | 5 | | Biomass (t) | 114,200 | 114,200 | 107,500 | 107,500 | | F_{OFL} (F=M) for rex sole | 0.17 | 0.17 | 0.17 | 0.17 | | F_{OFL} (F=M) for Dover sole | 0.085 | 0.085 | 0.085 | 0.085 | | F_{OFL} (F=M) for all other species | 0.15 | 0.15 | 0.15 | 0.15 | | $maxF_{ABC}$ for rex sole | 0.13 | 0.13 | 0.13 | 0.13 | | $maxF_{ABC}$ for Dover sole | 0.064 | 0.064 | 0.064 | 0.064 | | $maxF_{ABC}$ for all other species | 0.113 | 0.113 | 0.113 | 0.113 | | F_{ABC} for rex sole | 0.13 | 0.13 | 0.13 | 0.13 | | F_{ABC} for Dover sole | 0.064 | 0.064 | 0.064 | 0.064 | | F_{ABC} for all other species | 0.113 | 0.113 | 0.113 | 0.113 | | OFL (t) | 17,800 | 17,800 | 16,700 | 16,700 | | maxABC (t) | 13,300 | 13,300 | 12,400 | 12,400 | | ABC (t) | 13,300 | 13,300 | 12,400 | 12,400 | | | As determined | d <i>last</i> year for: | As determined this year for: | | | |-------------|---------------|-------------------------|------------------------------|------|--| | Status | 2011 | 2012 | 2012 | 2013 | | | Overfishing | n/a | n/a | n/a | n/a | | #### Responses to SSC and Plan Team Comments to Assessments in General There were no comments relative to the other flatfish assessment. ## Responses to SSC and Plan Team Comments Specific to this Assessment There were no comments or requests from either the 2013 December SSC meeting or the September 2013 Plan Team meeting pertaining to BSAI Other flatfish. ## Introduction The Bering Sea/Aleutian Islands "other flatfish" group have typically included those flatfish besides northern rock sole, yellowfin sole, arrowtooth flounder, Kamchatka flounder and Greenland turbot. Flathead sole (*Hippoglossoides elassodon*) were part of the other flatfish complex until they were removed in 1995, and Alaska plaice was removed from the complex in 2002, as sufficient biological data exists for these species to construct age-structured population models. In contrast, survey biomass estimates are the principal data source used to assess the remaining other flatfish. Although over a dozen species of flatfish are found in the BSAI area, the other flatfish biomass consists primarily of starry flounder, rex sole, longhead dab, Dover sole and butter sole. A full list of the species in the other flatfish complex are shown in Table 11.1. At present, no evidence of stock structure is evident for these species in the Bering Sea/Aleutian Islands region, although no formal genetic or tagging study has been conducted on these species in this region. # **Fishery** The miscellaneous species of the other flatfish species category are listed in Table 11.1, and their catches from 1995-2013 are shown in Table 11.2 (with historical ABC and TAC). These species are not pursued as fishery targets but are captured in fisheries for other flatfish species and Pacific cod. Catch from 1995-2003 were obtained from the NMFS Regional Office "blend" data, and the catch for some species are reported by species and in an aggregate flatfish group. The catch estimates for these years were produced by applying the proportional catch, by species, from fishery observer data to the estimated total catch for the aggregate other flatfish group, and adding this total to the catch that was reported by species. In the current catch accounting system (in use since 2003), catches of other flatfish are reported only in an aggregate group, and the catch estimates for these years were produced by applying the proportional catch, by species, from fishery observer data to the estimated total catch of the aggregate group. In recent years, starry flounder (*Platichthys stellatus*) and rex sole (*Glyptocephalus zachirus*) account for most of the harvest of other flatfish, contributing 97% of the harvest of other flatfish in 2013. The 2013 catch of 1,508 t through late-October is well below the ABC of 13,300 t. Other flatfish fisheries are grouped with Alaska plaice, rock sole, and flathead sole in a single prohibited species group (PSC) classification, with seasonal and total annual allowances of prohibited bycatch applied to the group. In past years, this group of fisheries was closed due to the bycatch of halibut (Table 11.3); however, since the implementation of Amendment 80 in 2008 there have been no closures. #### Data # **Fishery** Data from the fishery includes blend estimates of total catch for the combined "other flatfish" species from the Alaska Regional office and species catch data from observer sampling to apportion the total catch to individual species. #### Survey The biomass of the other flatfish complex on the eastern Bering Sea shelf was relatively stable from 1983-1995, averaging 54,274 t, and then increased from 1996 to 2003, averaging 84,137 t (Table 11.4). Since 2003, the biomass estimates have been at a higher level, averaging 125,800 t. The 2013 shelf, slope and Aleutian Islands surveys combined estimate of 107,500 t, although lower than most years since 2002, is still at a high level relative to the time-series of observations since 1982. The estimated increases from the past five years are primarily due to the higher estimates of starry flounder on the Eastern Bering Sea shelf. In years when an AI survey was not conducted, such as 2013, total BSAI biomass was calculated by fitting a linear trend to the observed Aleutian Islands survey data (1991-2012 for this assessment), and then adding the predicted AI biomass estimate to the observed EBS estimate. For this assessment, the linear model estimates were used to calculate the 2013 biomass since an Aleutian Islands survey was not conducted. Individual species biomass estimates for the EBS and AI areas from 1997-2013 are shown in Table 11.5. Notable for 2013 is the marked decline in the amount of Dover and rex sole on the Bering Sea shelf. Estimates of total BSAI biomass (Table 11.6) were then used to compute species-specific exploitation rates (catch/biomass). Exploitation rates for starry flounder and rex sole have been low, not exceeding 0.05 from 1997 to 2013 (Table 11.6). The exploitation rates for butter sole have been higher, exceeding 0.14 in 1997, 2000, 2001, and 2003-2009 and 2011-2012. In 2008 the butter sole catch exceeded the trawl survey biomass estimate. However these biomass estimates calculated for butter sole have large sampling variances, with coefficients of variation ranging from 0.44 to 0.86 in recent EBS trawl surveys dating back to 1999. The 2013 exploitation rate is 0.02, as only 29 t are estimated to have been caught through the end of October, quite different from recent years. Closer inspection of the butter sole biomass variability suggests that occasional high exploitation rates may be an artifact of survey sampling. The 2003 and 2008 biomass estimates of butter sole were 429 t and 541 t, respectively, unusually low relative to biomass estimates from the past 20 years. These estimates are less than one-fourth the 2002 estimate of 2,382 t, and result in an estimated exploitation rate of nearly 70% in 2003 and 1.14 in 2008. However, butter sole were only captured in four hauls in the 2003 EBS trawl survey and in six hauls in the 2008 survey, causing a large coefficient of variation of 0.61 for the estimated biomass. Thus, it is likely that the population of butter sole is larger than that indicated from the survey, and the comparison of survey biomass to harvest should be interpreted accordingly. Biomass estimates since 2003 have been much higher, and variable. The 2012 biomass estimate of 619 t for butter sole was fairly low relative to the time-series since 1991 (4th lowest) and had a high CV (0.62). The timing of the butter sole fishery catches do not overlap with survey sampling and came primarily from waters less than 50 m in January and February, a depth and time not covered by the trawl survey. Butter sole are mostly caught by non-pelagic trawl catcher-processors in the rock sole and Pacific cod target fisheries in areas 509 and 516. The center of abundance for butter sole in Alaska is in the Gulf of Alaska whereas the survey and fishery catches on the north side of the Alaska Peninsula represent butter sole captured at the periphery of their distribution, where they are relatively rare. Several other species in this management category are relatively rare on the EBS shelf, including Dover sole, Sakhalin sole, and English sole, and it is useful to identify whether the EBS represents the edge of the distribution for these species. The distribution of English sole has been identified as Baja California to Unimak Island, and the distribution of Dover sole has been identified as from Baja California to the Bering Sea (Hart 1973). Thus, the eastern Bering Sea can be considered the periphery of the range for these species. They are much more abundant in the Gulf of Alaska. For example, the abundance of Dover sole in the 1984-2011 GOA surveys has fluctuated between 63,000 t and 99,000 t, the abundance of butter sole has ranged between 17,000 t and 31,000 t, and the abundance of English sole has varied between 3,000 t and 18,600 t (Turnock et al. 2011). Dover sole and English sole were most common in the eastern portion of the GOA, consistent with their reported distribution along the west coast of North America. In the case of Sakhalin sole, which prefer colder water and are caught at the northern extent of the survey, their perceived abundance from survey biomass estimates may be related to annual mean bottom water temperature, as they tended to be more abundant in colder years during the 1980s and 1990s. The recent trend from trawl surveys estimates Sakhalin sole at low abundance, however, sampling of the northern Bering Sea in 2010 indicated that their primary distribution is located to the north of the standard survey area (Fig. 11.1). The northern Bering Sea biomass estimate of Sakhalin sole is 2,180 t compared to the 152 t average for the past 5 years estimated for the standard survey area. # **Analytic Approach** #### **Model Structure** As Tier 5 constituents, no stock assessment modeling is conducted for the BSAI Other Flatfish. #### Parameter Estimates Natural mortality values for rex and Dover sole are available from age-structured assessments in the Gulf of Alaska SAFE document (Turnock et al. 2005 and Stockhausen et al. 2005) and those published values are used for rex and Dover sole in this stock assessment. For the remaining flatfish species, where less information is available, an assumption of M = 0.15 appears reasonable given the range of values shown above. For the case of starry flounder where estimates are available from a west coast stock assessment (Ralston 2005), the high estimates of M (male = 0.45, female = 0.3) are not used here due to the uncertainty of the estimates and the large spatial difference between the two management areas. The natural mortality rates used in age-structured BSAI flatfish assessments can be used as guidance and are presented below: | Species | Natural mortality rate used for stock assessment | |-------------------------|--------------------------------------------------| | BSAI yellowfin sole | 0.12 | | BSAI northern rock sole | 0.15 | | BSAI flathead sole | 0.20 | | BSAI Alaska plaice | 0.13 | | GOA rex sole | 0.17 | | GOA Dover sole | 0.085 | #### Results #### Harvest Recommendations Other flatfish are assessed under Tier 5 of Amendment 56 to the BSAI groundfish management plan, and thus have harvest recommendations which are directly calculated from estimates of biomass and natural mortality. The estimates of F_{abc} and F_{ofl} under tier 5 are 0.75 x M and M, respectively, and the ABC and OFL levels are the product of the fishing mortality rate and the biomass estimate. Given the F_{abc} and F_{ofl} levels of 0.11 and 0.15, and the biomass estimate of 107,500 t, the resulting ABC and OFL levels are 12,400 and 15,900 t. | | F _{ABC} | F _{OFL} | ABC | OFL | |--------------------|------------------|------------------|--------|--------| | Rex sole | 0.13 | 0.17 | 4,877 | 6,377 | | Dover sole | 0.064 | 0.085 | 183 | 243 | | Others | 0.1125 | 0.15 | 7,382 | 10,066 | | Total Other | | | 12,442 | 16,686 | | flatfish | | | | | # **Summary** In summary, several quantities pertinent to the management of the other flatfish are listed below. | Quantity | Value | |-------------------------|-----------| | Tier | 5 | | Year 2013 Total Biomass | 107,500 t | | OFL | 16,700 t | | Maximum allowable ABC | 12,400 t | | Recommended ABC | 12,400 t | # **Ecosystem Considerations** ### **Data Gaps and Research Priorities** # REFERENCES - Hart, J.L. 1973. Pacific fishes of Canada. Fisheries Research Board of Canada, Bulletin 180, Ottawa. 740 pp. - Ralston, S. 2005. Starry flounder. An assessment of starry flounder off California, Oregon and Washington. <u>In</u> Status of the Pacific coast groundfish fisheries through 2005. Stock assessment and fishery evaluation. Pacific Fishery Management Council, Portland Oregon. - Spencer, P.D., T.K. Wilderbuer, and C.I. Zhang. 2002. A mixed-species yield per recruit model for eastern Bering Sea flatfish fisheries. Can J. Fish. Aquat. Sci. 59:291-302. - Stockhausen, W.T., B. J. Turnock, A. T. A'mar, M. E. Wilkins and M. H. Martin. 2005. Gulf of Alaska Dover Sole. In Stock Assessment and Fishery Evaluation Document for Groundfish Resources in the Gulf of Alaska Region as Projected for 2002. North Pacific Fishery Management Council, P.O. Box 103136, Anchorage Alaska 99510. - Turnock, B.J., T.K. Wilderbuer, and E.S. Brown. 2011. Gulf of Alaska flatfish. <u>In</u> Stock Assessment and Fishery Evaluation Document for Groundfish Resources in the Gulf of Alaska Region as Projected for 2012. North Pacific Fishery Management Council, P.O. Box 103136, Anchorage Alaska 99510. - Turnock, B.J., Z. T. A'mar and T. Wilderbuer. 2009. Gulf of Alaska rex sole stock assessment. <u>In</u> Stock Assessment and Fishery Evaluation Document for Groundfish Resources in the Gulf of Alaska Region as Projected for 2006. North Pacific Fishery Management Council, P.O. Box 103136, Anchorage Alaska 99510. Table 11.1. Flatfish species of the Bering Sea/Aleutian Islands "other flatfish" management complex. | Common Name | Scientific Name | |-----------------|----------------------------| | Arctic flounder | Liopsetta glacialis | | butter sole | Isopsetta isolepis | | curlfin sole | Pleuronectes decurrens | | deepsea sole | Embassichths bathybius | | Dover sole | Microstomus pacificus | | English sole | Parophrys vetulus | | longhead dab | Limanda proboscidea | | Pacific sanddab | Citharichthys sordidus | | petrale sole | Eopsetta jordani | | rex sole | Glyptocephalus zachirus | | roughscale sole | Clidodoerma asperrimum | | sand sole | Psettichthys melanostictus | | slender sole | Lyopsetta exilis | | starry flounder | Platichthys stellatus | | Sakhalin sole | Pleuronectes sakhalinensis | Table 11.2. Harvest (t) of other flatfish from 1995-2013. 2013 catch is through October 26, 2013. | - | | | | | | | deep | | | | <u> </u> | |------|---------|-------|--------|----------|-------|---------|------|----------|-------|---------|----------| | | Starry | Rex | Butter | longhead | Dover | English | sea | Sakhalin | | | | | Year | Founder | Sole | Sole | dab | sole | sole | sole | sole | Total | ABC | TAC | | 1995 | 398 | 673 | 157 | 7 | 59 | 26 | 4 | 0 | 1,324 | 117,000 | 19,540 | | 1996 | 1,171 | 1,148 | 218 | 175 | 6 | 0 | 0 | 30 | 2,748 | 102,000 | 35,000 | | 1997 | 1,043 | 687 | 448 | 211 | 53 | 0 | 29 | 6 | 2,490 | 97,500 | 50,750 | | 1998 | 402 | 998 | 229 | 93 | 41 | 0 | 0 | 0 | 1,765 | 164,000 | 89,434 | | 1999 | 725 | 998 | 230 | 56 | 81 | 27 | 0 | 0 | 2,117 | 154,000 | 154,000 | | 2000 | 1,151 | 1,069 | 458 | 277 | 66 | 4 | 0 | 0 | 3,027 | 117,000 | 83,813 | | 2001 | 755 | 869 | 244 | 62 | 70 | 4 | 6 | 0 | 2,028 | 122,000 | 28,000 | | 2002 | 1,075 | 1,192 | 222 | 107 | 34 | 0 | 1 | 0 | 2,631 | 18,100 | 3,000 | | 2003 | 887 | 1,399 | 296 | 125 | 39 | 2 | 0 | 0 | 2,749 | 16,000 | 3,000 | | 2004 | 2,062 | 1,858 | 514 | 146 | 82 | 6 | 0 | 0 | 4,669 | 13,500 | 3,000 | | 2005 | 2,069 | 2,001 | 487 | 25 | 16 | 1 | 0 | 0 | 4,599 | 21,400 | 3,500 | | 2006 | 1,663 | 1,266 | 261 | 33 | 10 | 0 | 0 | 0 | 3,233 | 18,100 | 3,500 | | 2007 | 4,356 | 812 | 579 | 87 | 4 | 2 | <1 | <1 | 5,840 | 21,400 | 10,000 | | 2008 | 1,978 | 968 | 618 | 47 | 10 | 2 | <1 | <1 | 3,623 | 21,600 | 21,600 | | 2009 | 806 | 1,143 | 198 | 7 | 7 | 2 | 0 | <1 | 2,163 | 17,400 | 17,400 | | 2010 | 1,506 | 510 | 162 | 9 | 5 | <1 | <1 | <1 | 2,194 | 17,300 | 17,300 | | 2011 | 2,168 | 860 | 107 | 18 | 10 | 13 | 0 | <1 | 3,176 | 14,500 | 3,000 | | 2012 | 2,205 | 866 | 191 | 9 | 15 | 5 | 0 | 0 | 3,292 | 12,700 | 3,200 | | 2013 | 889 | 569 | 29 | 15 | 6 | 0 | 0 | <1 | 1,508 | 13,300 | 3,500 | Table11.3. Restrictions on the "other flatfish" fishery from 1995 to 2007 in the Bering Sea – Aleutian Islands management area. Note that in 1994, the other flatfish category included flathead sole. Unless otherwise indicated, the closures were applied to the entire BSAI management area. Zone 1 consists of areas 508, 509, 512, and 516, whereas zone 2 consists of areas 513, 517, and 521. | 1995 2/21 - 3/30 First Seasonal halibut cap 4/17 - 7/1 Second seasonal halibut cap Annual | Year | Dates | Bycatch Closure | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------|----------------------------------------| | 1996 2/26 - 4/1 | 1995 | 2/21 - 3/30 | First Seasonal halibut cap | | 1996 | | 4/17 - 7/1 | | | 4/13 - 7/1 | | 8/1 – 12/31 | Annual halibut allowance | | 1997 2/20 - 4/1 | 1996 | | | | 1997 | | | - | | 4/12 - 7/1 | | 7/31 – 12/31 | Annual halibut allowance | | 1998 3/5 - 3/30 First Seasonal halibut cap | 1997 | | • | | 1998 3/5 - 3/30 First Seasonal halibut cap Second seasonal halibut cap Second seasonal halibut cap Annual halibut allowance | | | - | | 4/21 - 7/1 | | 7/25 – 12/31 | Annual halibut allowance | | 1999 2/26 - 3/30 | 1998 | | | | 1999 | | | | | 4/27 - 7/04 Second seasonal halibut cap Annual halibut cap Annual halibut allowance | | 8/16 – 12/31 | Annual halibut allowance | | 2000 3/4 - 3/31 First Seasonal halibut cap 4/30 - 7/03 Second seasonal halibut cap Annual halibut allowance | 1999 | | • | | 2000 3/4 – 3/31 | | | - | | 4/30 - 7/03 Second seasonal halibut cap Annual halibut allowance | | 8/31 – 12/31 | Annual halibut allowance | | Solution | 2000 | 3/4 - 3/31 | First Seasonal halibut cap | | 2001 | | 4/30 - 7/03 | | | A/27 - 7/01 Second seasonal halibut cap | | 8/25 – 12/31 | Annual halibut allowance | | 8/24 - 12/31 | 2001 | 3/20 - 3/31 | First Seasonal halibut cap | | 2002 | | 4/27 - 7/01 | | | 3/1 - 3/31 First Seasonal halibut cap 4/20 - 6/29 Second seasonal halibut cap 7/29 - 12/31 Annual halibut allowance | | 8/24 – 12/31 | Annual halibut allowance | | 4/20 - 6/29 Second seasonal halibut cap | 2002 | 2/22 - 12/31 | Red King crab cap (Zone 1 closed) | | 7/29 – 12/31 Annual halibut allowance 2003 2/18 – 3/31 First Seasonal halibut cap 4/1 – 6/21 Second seasonal halibut cap 7/31 – 12/31 Annual halibut allowance 2004 2/24 – 3/31 First Seasonal halibut cap 4/10 – 12/31 Bycatch status 2005 3/1 – 3/31 First Seasonal halibut cap 4/22–6/30 Second Seasonal halibut cap | | 3/1 - 3/31 | | | 2003 $2/18 - 3/31$ First Seasonal halibut cap Second seasonal halibut cap Second seasonal halibut cap Annual halibut allowance 2004 $2/24 - 3/31$ First Seasonal halibut cap Bycatch status 2005 $3/1 - 3/31$ First Seasonal halibut cap Second Seasonal halibut cap Second Seasonal halibut cap | | | - | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 7/29 – 12/31 | Annual halibut allowance | | 7/31 – 12/31 Annual halibut allowance 2004 2/24 – 3/31 First Seasonal halibut cap 4/10 – 12/31 Bycatch status 2005 3/1 – 3/31 First Seasonal halibut cap 4/22–6/30 Second Seasonal halibut cap | 2003 | 2/18 - 3/31 | First Seasonal halibut cap | | 2004 $2/24 - 3/31$ First Seasonal halibut cap Bycatch status 2005 $3/1 - 3/31$ First Seasonal halibut cap Second Seasonal halibut cap Second Seasonal halibut cap | | 4/1 - 6/21 | | | 4/10 - 12/31 By catch status $3/1 - 3/31$ First Seasonal halibut cap $4/22-6/30$ Second Seasonal halibut cap | | 7/31 – 12/31 | Annual halibut allowance | | 2005 3/1 – 3/31 First Seasonal halibut cap 4/22–6/30 Second Seasonal halibut cap | 2004 | | First Seasonal halibut cap | | 4/22–6/30 Second Seasonal halibut cap | | 4/10 – 12/31 | Bycatch status | | | 2005 | 3/1 - 3/31 | First Seasonal halibut cap | | 5/9–12/31 Bycatch status, TAC attained | | | | | | | 5/9–12/31 | Bycatch status, TAC attained | | 2006 2/21 - 3/31 First Seasonal halibut cap | 2006 | | First Seasonal halibut cap | | 4/5 – 12/31 Red King crab cap (Zone 1 closed) | | 4/5 - 12/31 | | | 4/12 – 5/31 Second seasonal halibut cap | | | | | | | | TAC attained, 7,000 t reserve released | | 8/7 – 12/31 Annual halibut allowance | | 8/7 – 12/31 | Annual halibut allowance | | 2007 2/17 – 3/31 First Seasonal halibut cap | 2007 | 2/17 - 3/31 | First Seasonal halibut cap | | 4/9 - 5/31 Second seasonal halibut cap | | | | | 8/6 – 12/31 Annual halibut allowance | | 8/6 - 12/31 | Annual halibut allowance | Table 11.4. Estimated biomass (t) of other flatfish from the eastern Bering Sea (EBS) and Aleutian Islands (AI) AFSC trawl surveys. Species included are Dover sole, longhead dab, rex sole, Sakhalin sole, starry flounder, and butter sole. A linear regression between EBS and AI survey abundance was used to predict AI abundance in years in which an AI survey did not occur. | | | Area | | |------|---------|--------|---------| | Year | EBS | AI | total | | 1982 | 117,763 | | 129,518 | | 1983 | 66,131 | 2,700 | 68,831 | | 1984 | 59,647 | | 64,956 | | 1985 | 34,572 | | 37,101 | | 1986 | 39,517 | 6,100 | 45,617 | | 1987 | 49,764 | | 53,977 | | 1988 | 44,559 | | 48,195 | | 1989 | 49,663 | | 53,865 | | 1990 | 47,126 | | 51,047 | | 1991 | 72,453 | 2,144 | 74,597 | | 1992 | 53,954 | | 58,632 | | 1993 | 44,500 | | 48,130 | | 1994 | 54,368 | 5,464 | 59,832 | | 1995 | 37,891 | | 40,788 | | 1996 | 60,376 | | 65,766 | | 1997 | 71,545 | 7,580 | 79,125 | | 1998 | 74,672 | | 81,648 | | 1999 | 68,557 | | 74,855 | | 2000 | 70,866 | 8,149 | 79,015 | | 2001 | 78,930 | | 86,378 | | 2002 | 98,218 | 8,801 | 107,019 | | 2003 | 90,552 | | 99,289 | | 2004 | 128,740 | 14,980 | 143,720 | | 2005 | 43,970 | | 120,900 | | 2006 | 132,925 | 16,367 | 149,292 | | 2007 | 133,502 | | 149,507 | | 2008 | 104,608 | | 121,494 | | 2009 | 103,575 | | 121,342 | | 2010 | 114,253 | 13,076 | 127,329 | | 2011 | 94,217 | | 111,060 | | 2012 | 98,515 | 15,685 | 114,200 | | 2013 | 89,995 | | 107,481 | Table 11.5 --Estimated biomass (t) and coefficient of variation (in parentheses) for the miscellaneous species of the "other flatfish" management complex in the Bering Sea trawl and Aleutian Islands surveys. **Eastern Bering Sea Shelf survey** | Easte | | ea Shelf survey | | G 11 11 | | 1 | | | |-------|------------|-----------------|----------------|----------------------------|---------------|--------------|---------|-------------| | ** | Dover | Rex | longhead | Sakhalin | starry | butter | slender | sand | | Year | Sole | Sole | dab | sole | flounder | sole | sole | sole | | 1982 | | 5,994 (0.16) | 103,806 (0.16) | | 7,781 (0.32) | 182 (0.82) | | | | 1983 | | 7,272 (0.18) | 51,386 (0.38) | | 7,436 (0.25) | 37 (0.45) | | 1,559(0.94) | | 1984 | | 13,058 (0.28) | 35,308 (0.16) | 137 (0.43) | 8,913 (0.36) | 2,231 (0.64) | | | | 1985 | 10 (1.04) | 10,751 (0.20) | 9,107 (0.13) | 102 (0.37) | 12,181 (0.24) | 2,421 (0.83) | | | | 1986 | 15 (1.00) | 12,886 (0.22) | 10,889 (0.14) | 274 (0.48) | 9,112 (0.33) | 6,341 (0.58) | | | | 1987 | 81 (0.91) | 12,931 (0.19) | 11,897 (0.19) | 110 (0.58) | 22,702 (0.63) | 2,043 (0.38) | | | | 1988 | 38 (0.59) | 15,445 (0.15) | 16,710 (0.19) | 1,061 (0.40) | 9,222 (0.30) | 2,083 (0.47) | | 1,128(1.0) | | 1989 | | 12,939 (0.15) | 13,086 (0.16) | 129 (0.57) | 22,205 (0.35) | 1,304 (0.54) | | | | 1990 | 47 (0.58) | 11,857 (0.21) | 18,601 (0.15) | 587 (0.36) | 15,048 (0.26) | 986 (0.60) | | | | 1991 | 55 (0.70) | 16,014 (0.28) | 18,680 (0.14) | 345 (0.68) | 34,303 (0.23) | 3,056 (0.50) | | | | 1992 | 137 (0.58) | 14,001 (0.24) | 10,827 (0.17) | 212 (0.48) | 27,544 (0.22) | 1,233 (0.70) | | | | 1993 | 37 (0.75) | 14,567 (0.32) | 11,690 (0.21) | 179 (0.31) | 16,510 (0.22) | 1,517 (0.75) | | | | 1994 | 73 (0.72) | 15,943 (0.38) | 18,533 (0.26) | 506 (0.52) | 18,218 (0.22) | 1,095 (0.97) | | | | 1995 | | 10,420 (0.28) | 8,402 (0.15) | 214 (0.27) | 17,652 (0.29) | 1,203 (0.54) | | | | 1996 | | 10,532 (0.40) | 8,567 (0.20) | 185 (0.56) | 40,409 (0.45) | 683 (0.53) | | | | 1997 | | 8,233 (0.27) | 18,003 (0.21) | 1,407 (0.84) | 41,018 (0.21) | 2,884 (0.43) | | | | 1998 | 41 (0.44) | 7,588 (0.22) | 14,737 (0.19) | 770 (0.86) | 49,605 (0.30) | 1,942 (0.38) | | | | 1999 | 16 (0.65) | 8,020 (0.28) | 12,087 (0.21) | 907 <u>(</u> 0.63 <u>)</u> | 43,375 (0.25) | 4,152 (0.62) | | | | 2000 | 11 (1.02) | 9,348 (0.19) | 13,511 (0.30) | 473 (0.43) | 45,810 (0.19) | 1,713 (0.56) | | | | 2001 | 16 (0.84) | 21,660 (0.23) | 12,764 (0.26) | 117 (0.32) | 43,026 (0.25) | 796 (0.50) | | | | 2002 | 7 (0.80) | 26,053 (0.20) | 9,740 (0.22) | 173 (0.90) | 59,877 (0.23) | 2,254 (0.64) | | | | 2003 | 350 (0.66) | 28,023 (0.15) | 8,827(0.22) | 280 (0.75) | 52,893 (0.17) | 179 (0.61) | 3 | | | 2004 | 31(0.51) | 28,762 (0.19) | 11,290 (0.23) | 1,118 (0.98) | 86,698 (0.38) | 841 (0.86) | | | | 2005 | 157(0.19) | 23,171(0.19) | 11,556 (0.21) | 961(0.97) | 71,673(0.26) | 958(0.81) | | | | 2006 | 90(0.53) | 21,515(0.28) | 13,204(0.25) | 125(0.58) | 96,900(0.37) | 1,091(0.53) | | | | 2007 | 73(0.53) | 17,025(0.25) | 16,733(0.24) | 30(0.34) | 98,623(0.17) | 1,018(0.44) | | | | 2008 | 364(0.90) | 18,788(0.31) | 10,884(0.22) | 77(0.36) | 74,077(0.21) | 418(0.44) | | | | 2009 | 469(0.95) | 18,142(0.39) | 5,011(0.23) | 55(0.44) | 79,366(0.19) | 532(0.60) | | | | 2010 | 201(0.54) | 20,320(0.32) | 11,557(0.47) | 78(0.49) | 80,351(0.25) | 1,746(0.82) | | | | 2011 | 4,08(0.96) | 18,525(0.32) | 10,348(0.59) | 513(0.72) | 63,986(0.23) | 437(0.69) | | | | 2012 | 1,921(0.7) | 39,695(0.25) | 9,065(0.23) | 37(0.29) | 62,837(0.27) | 619(0.62) | | | | 2013 | 27(1) | 9,767(0.18) | 5,448(0.45) | 625(0.87) | 58,942(0.2) | 1,306(0.69) | | | **Table 11.5 . continued.** Estimated biomass (t) and coefficient of variation (in parentheses) for the miscellaneous species of the "other flatfish" management complex in the Aleutian Islands surveys. | | Dover | Rex | longhead | Sakhalin | starry | butter | English | |------|--------------|---------------|----------|----------|------------|------------|------------| | Year | Sole | Sole | dab | sole | flounder | sole | sole | | 1991 | 174 (0.45) | 1,694 (0.18) | | | 142 (0.85) | 86 (0.73) | 47 (0.80) | | 1994 | 438 (0.41) | 4,306 (0.15) | | | 134 (0.69) | 505 (0.98) | 83 (0.81) | | 1997 | 386 (0.34) | 6,378 (0.16) | | | 459 (0.90) | 346 (0.98) | 12 (0.72) | | 2000 | 630 (0.38) | 6,526 (0.18) | | | 590 (0.71) | 310 (0.99) | 95 (0.97) | | 2002 | 575 (0.28) | 7,381 (0.15) | | | 671 (0.72) | 127 (0.83) | 47 (0.94) | | 2004 | 870 (0.28) | 13,717 (0.18) | | | 123 (0.72) | 235 (0.93) | 35 (1.00) | | 2006 | 2,155 (0.57) | 14,230 (0.19) | | | 17 (0.97) | 13(0.98) | 25 (0.84) | | 2010 | 2,853 (0.43) | 9,762 (0.14) | | | 127 (0.14) | 180 (0.69) | 15 4(0.67) | | 2012 | 1,214 (0.24) | 14,102(0.24) | | | 209 (0.6) | 134 (0.1) | 26 (0.73) | Table 11.6. Estimated biomass (t), harvest amount (t), and exploitation rates of rex sole, starry flounder and butter sole from 1997 to 2013. | = | Rex sole | | | | Starry Flounder | | | Butter sole | | | |------|----------|-------|-----------|--------|-----------------|-----------|---------|-------------|-----------|--| | Year | Biomass | | Exp. Rate | | | Exp. Rate | Biomass | | Exp. Rate | | | 1007 | (t) | (t) | | (t) | (t) | | (t) | (t) | | | | 1997 | 14,611 | 401 | 0.03 | 41,477 | 814 | 0.02 | 3,230 | 336 | 0.10 | | | 1998 | 14,250 | 569 | 0.04 | 49,950 | 242 | 0.00 | 2,210 | 157 | 0.07 | | | 1999 | 15,415 | 516 | 0.03 | 43,750 | 597 | 0.01 | 4,416 | 167 | 0.04 | | | 2000 | 15,874 | 569 | 0.04 | 46,400 | 770 | 0.02 | 2,023 | 266 | 0.13 | | | 2001 | 30,524 | 507 | 0.02 | 43,829 | 479 | 0.01 | 1,059 | 147 | 0.14 | | | 2002 | 33,411 | 1,227 | 0.04 | 60,633 | 1,023 | 0.02 | 2,382 | 187 | 0.08 | | | 2003 | 38,349 | 1,399 | 0.04 | 53,353 | 887 | 0.02 | 429 | 296 | 0.69 | | | 2004 | 42,479 | 1,858 | 0.04 | 86,821 | 2,062 | 0.02 | 1,076 | 514 | 0.48 | | | 2005 | 34,963 | 1,830 | 0.05 | 72,176 | 1,892 | 0.03 | 1,201 | 445 | 0.37 | | | 2006 | 35,745 | 1,266 | 0.04 | 96,917 | 1,663 | 0.02 | 1,104 | 261 | 0.24 | | | 2007 | 31,052 | 812 | 0.03 | 98,941 | 4,356 | 0.04 | 1,153 | 579 | 0.50 | | | 2008 | 33,613 | 961 | 0.03 | 74,397 | 1,964 | 0.03 | 541 | 614 | 1.14 | | | 2009 | 33,766 | 1,132 | 0.03 | 79,688 | 797 | 0.01 | 642 | 196 | 0.31 | | | 2010 | 30,082 | 491 | 0.02 | 80,478 | 1,148 | 0.02 | 1,926 | 156 | 0.08 | | | 2011 | 32,544 | 826 | 0.03 | 64,218 | 2,082 | 0.03 | 562 | 103 | 0.18 | | | 2012 | 39,695 | 866 | 0.02 | 62,837 | 2,205 | 0.04 | 619 | 191 | 0.31 | | | 2013 | 9,767 | 569 | 0.015 | 58,942 | 889 | 0.015 | 1,306 | 29 | 0.02 | | Figure 11-1. Distribution and relative abundance of Sakhalin sole from the AFSC sampling of the Bering Sea in the summer of 2010.