Chapter 4.1: Assessment of the northern and southern rock sole (Lepidopsetta polyxystra and bilineata) stocks in the Gulf of Alaska for 2013

Teresa A'mar, Michael Martin, Wayne Palsson

Executive Summary

Summary of changes in assessment inputs

Relative to last year's assessment, the following changes have been made in the current assessment:

New Input data

1. Fishery: 2011 and 2012^{1} total shallow-water flatfish catch, total rock sole catch for 1991 through 2012, and fishery observer undifferentiated (U)/northern (N)/southern (S) rock sole catch-atlength
2. Survey: 2011 N and S rock sole age composition and mean size-at-age from the NMFS GOA bottom trawl survey

Changes in assessment methodology

There were several structural changes made to the 2011 model configuration in order to address selectivity and recruitment issues. An overview of these changes was presented to the GOA groundfish Plan Team in September 2012. The fishery selectivity was changed from 1 to 3 periods to allow for changes over time in fishing; the three periods are pre-1990, 1990-1999, and 2000 on. The selectivity curves for the first two selectivity periods for both fishery and survey selectivity have been changed from species- and sex-specific to sex-specific only, as most of the data for the fishery and all of the data for the survey for these two periods are for undifferentiated (U) rock sole. A penalty was added to the likelihood to restrict recruitment for southern (S) rock sole for 1974-1983 in order to address the high recruitment in 1979 in last year's results. The weight on fitting to the survey biomass indices was changed from 5.0 to 1.0 and the weight on fitting to the fishery observer catch-at-length data was changed from 0.5 to 1.0 , as the extrapolated fishery observer data represent on average 20% on the shallow-water flatfish catch, not less than 1%, which the sampled fishery observer data represent.

Seven new model configurations were evaluated, differentiated by the data used in the model. The model evaluation criteria included how well the model estimates fit to the survey estimates of biomass, the survey numbers-at-age, the annual U/N/S rock sole catch and the scaled fractions of shallow-water flatfish catch that is N and S rock sole, reasonable curves for fishery selectivity-at-length (logistic versus exponential), reasonable values for annual fishing mortality so that the catch did not come primarily from one species, reasonably smooth changes over time in annual fishing mortality, and that the model estimated the variance-covariance matrix.

Summary of results

Northern rock sole

[^0]| | As estimated or | | As estimated or | |
| :--- | ---: | ---: | ---: | ---: |
| Quantity | specified last year for: | recommended this year for: | | |
| | 2012 | | 2013 | 2013 |

for males; estimated

Southern rock sole

Quantity	As estimated or specified last year for:		As estimated orrecommended this year for:	
	2012	2013	2013	2014
M (natural mortality rate)	0.2, 0.260*	0.2, 0.260^{*}	0.2, 0.267^{*}	0.2, 0.267^{*}
Tier	3a	3a	3a	3a
Projected total (age 3+) biomass (t)	220,400	198,200	208,800	192,700
Female spawning biomass (t) Projected	93,600	84,000	82,800	72,500
$\mathrm{B}_{100 \%}$	123,000	122,500	112,900	112,900
$\mathrm{B}_{40 \%}$	49,200	49,000	45,100	45,100
$B_{35 \%}$	43,000	42,800	39,500	39,500
$F_{\text {OFL }}$	0.228	0.228	0.230	0.230
$\operatorname{maxF}_{A B C}$	0.191	0.191	0.193	0.193
$F_{\text {ABC }}$	0.191	0.191	0.193	0.193
OFL (t)	26,700	23,600	21,900	19,300
$\operatorname{maxABC}(\mathrm{t})$	22,700	20,000	18,600	16,400
$\mathrm{ABC}(\mathrm{t})$	22,700	20,000	18,600	16,400

Status	As determined last year for:		As determined this year for:	
	2010	2011	2011	2012
Overfishing	no	n / a	no	n / a
Overfished	n / a	no	n / a	no
Approaching overfished	n / a	no	n / a	no

for males; estimated

Responses to SSC and Plan Team comments

From the September 2012 Plan Team minutes: "The Team concluded that Model 1 should be retired, and Model 3 (fit to the age composition data) was the most promising. A full assessment document for Model 3 was requested for the Team to review at the November 2012 meeting."

The model referred to as Model 1 was the model configuration used in the 2011 stock assessment. The results for this model configuration, updated with the 2012 data, are included as Model 0.

A CIE review of several flatfish stock assessments was conducted in July 2012. An overview of the comments of the CIE reviewers was presented to the GOA groundfish Plan Team in September 2012. The comments specific to the 2011 GOA northern and southern rock sole stock assessment are in Appendix 1.

See the Chapter 4 for information on responses to SSC comments on the Gulf of Alaska shallow-water flatfish stocks

Introduction

Rock sole are demersal fish and can be found in shelf waters to 600 m (Allen and Smith, 1988). Two species of rock sole are known to occur in the north Pacific Ocean, northern rock sole (Lepidopsetta polyxystra) and southern rock sole (L. bilineata) (Orr and Matarese, 2000). Adults of the northern rock sole are found from Puget Sound through the Bering Sea and Aleutian Islands to the Kuril Islands, while the southern rock sole is known from the southeast Bering Sea to Baja California (Stark and Somerton, 2002). These species have an overlapping distribution in the Gulf of Alaska (Wilderbuer and Nichol, 2009). Rock sole are most abundant in the Kodiak and Shumagin areas. The northern rock sole spawns in midwinter and spring, and the southern rock sole spawns in summer (Stark and Somerton, 2002). Northern rock sole spawning occurred in areas where bottom temperatures averaged $3^{\circ} \mathrm{C}$ in January, and Southern rock sole spawning began in areas where bottom temperatures averaged $6^{\circ} \mathrm{C}$ in June (Stark and Somerton, 2002). Rock soles grow to approximately 60 cm and can live in excess of 20 years (http://www.afsc.noaa.gov/race/behavioral/rocksole_fbe.htm).

Both species are managed as part of the shallow-water flatfish complex, which also includes yellowfin sole (Pleuronectes asper), starry flounder (Platichthys stellatus), butter sole (Pleuronectes isolepis), English sole (Pleuronectes vetulus), Alaska plaice (Pleuronectes quadrituberculatus), and sand sole (Psettichthys melanostictus), as these species are caught in the shallow-water flatfish fishery (Turnock et al., 2009).

Fishery

Rock sole are caught in the shallow-water flatfish fishery and are not targeted specifically, as they cooccur with several other species. The rock sole species were differentiated in survey data beginning in 1996, and were differentiated in the fishery beginning in 1997. Data for more recent years have the species listed as northern, southern, or "undifferentiated" rock sole as adult northern and southern rock sole are difficult to differentiate visually (Orr and Matarese, 2000). Thus, the statistical catch-at-age population dynamics model describes both species (as stocks caught in a multispecies fishery) and is also sex-specific.

See the Chapter 4 for more information on the Gulf of Alaska shallow-water flatfish fishery

Data

The data available include total shallow-water flatfish catch, retained and discarded by year and area; fishery observer catch-at-length data for 1977 through 2012 for U/N/S rock sole; NMFS GOA bottom trawl survey biomass estimates by area for 1984, 1987, 1990, 1993, 1996, 1999, 2001, 2003, 2005, 2007, 2009, and 2011; survey numbers-at-length for all survey years; survey numbers-at-age for all survey years; survey estimates of mean length-at-age for all survey years. The survey data for 1984, 1987, 1990, and 1993 are for U rock sole; the survey data for N and S rock sole are separated out by species from 1996 on, and the fishery observer data for N and S rock sole are separated out by species from 1997 on.

The data from the NMFS GOA bottom trawl survey has been divided into three periods, 1984 - 1987, 1990 - 1993, and 1996 on, with respect to catchability and selectivity; catchability is set to 1.0 for both species and all three survey periods. Boldt and Zador (2009) state that "...the gears used by the Japanese vessels in the [NMFS GOA bottom trawl] surveys prior to 1990 were quite different from the survey gear used aboard American vessels in subsequent surveys and likely resulted in different catch rates for many of these groups" and Thompson et al. (2009) note that "the [NMFS GOA bottom trawl] survey used 30minute tows during that period [1984-1993], but 15-minute tows thereafter [from 1996 on]".

All fishery catch-at-length data were used in model fitting; the three fishery selectivity curves correspond to three periods, before 1990, 1990s, and 2000 on. Survey length composition data for the early (19841987) and middle (1990-1993) survey periods and survey age composition data for the later (1996 on) survey period were used in model fitting; when the survey age comps were used the survey length comps were not used and vice versa.

The annual total shallow-water flatfish (swff) and rock sole catch, and the percent of swff catch that is rock sole, are listed in Table 4.1.1. The estimated values for $\mathrm{U} / \mathrm{N} / \mathrm{S}$ rock sole catch in the shallow-water flatfish fishery are uncertain; on average 20% of the shallow-water flatfish catch by mass is observed (Table 4.1.2). The observed fractions of $\mathrm{U} / \mathrm{N} / \mathrm{S}$ rock sole in the shallow-water flatfish catch were used to estimate annual amounts of $\mathrm{U} / \mathrm{N} / \mathrm{S}$ rock sole catch (Table 4.1.3), which differ from the total rock sole catch in Table 4.1.1.

Analytical Approach

Model Structure

The stock assessment model is a two species two sex mixed fishery statistical catch-at-age population dynamics model using maximum likelihood estimation built with AD Model Builder (ADMB Project, 2009). The full model specification for the 2011 model is in the appendix of the 2011 GOA shallowwater flatfish SAFE document.

Parameters estimated independently

The growth and maturity parameters used in the model are from Stark and Somerton, 2002.

Northern rock sole

- Males: $\mathrm{L}_{\infty}=382 \mathrm{~mm}, k=0.261, t_{0}=0.160$;
- Females: $\mathrm{L}_{\infty}=429 \mathrm{~mm}, k=0.236, t_{0}=0.387, \mathrm{~L}_{\mathrm{T} 50}=328 \mathrm{~mm}$.

Southern rock sole

- Males: $\mathrm{L}_{\infty}=387 \mathrm{~mm}, k=0.182, t_{0}=-0.962$;
- Females: $\mathrm{L}_{\infty}=520 \mathrm{~mm}, k=0.120, t_{0}=-0.715, \mathrm{~L}_{\mathrm{T} 50}=347 \mathrm{~mm}$.

See the Chapter 4 for more information on growth, maturity, and natural mortality for GOA northern and southern rock sole

Parameters estimated conditionally

There were several structural changes made to the 2011 model configuration in order to address selectivity and recruitment issues. An overview of these changes was presented to the GOA groundfish Plan Team in September 2012. The fishery selectivity was changed from 1 to 3 periods to allow for changes over time in fishing and fishery observer data collection; the three periods are pre-1990, 19901999 , and 2000 on. The selectivity curves for the first two selectivity periods for both fishery and survey selectivity have been changed from species- and sex-specific to sex-specific only, as most of the fishery observer data and all of the survey data for these two periods are for undifferentiated (U) rock sole. A penalty was added to the likelihood to restrict recruitment for southern (S) rock sole for 1974-1983 in order to address the high recruitment in 1979 in last year's results. The weight on fitting to the survey biomass indices was changed from 5.0 to 1.0 and the weight on fitting to the fishery observer catch-atlength data was changed from 0.5 to 1.0 , as the extrapolated fishery observer data represent on average 20% on the shallow-water flatfish catch, not less than 1%, which the sampled fishery observer data represent.

Parameters that can be estimated in the model include:

- median and initial age-2 recruitment by species;
- steepness by species, if the Beverton-Holt or Ricker stock-recruitment relationship is selected;
- annual recruitment deviations by species;
- median fishing mortality by species;
- annual fishing mortality deviations by species;
- initial fishing mortality by species and sex;
- fishery selectivity-at-length by period, species, and sex;
- survey catchability by survey period and species;
- survey selectivity-at-length by survey period, species, and sex;
- growth parameters by species and sex;
- deviations from natural mortality by species and sex; and
- deviations from fishing mortality by species and sex.

The model configurations described below did not estimate survey catchability, initial fishing mortality, the growth parameters, deviations from natural mortality for females, or deviations from fishing mortality. The stock-recruitment relationship is an average level of recruitment unrelated to stock size for both
species. The numbers of age- 2 N and S recruits for 2012 are not estimated, as the data are not informative for this cohort; recruitment in 2012 is set to the median value for recruitment.

Estimation of deviations from the fixed value of natural mortality and deviations from the estimated value of fishing mortality were incorporated as options since the stock characteristics differed by sex, e.g., the fraction of females in the survey data was consistently above 50%. Since fishing pressure has been relatively low recently, it was useful to allow for different levels of total mortality by sex.

Results

Model evaluation

The 2011 model configuration, label as Model 0 , and seven new model configurations were evaluated, differentiated by the data used in model fitting. The model evaluation criteria included how well the model estimates fit to the survey estimates of biomass, the survey numbers-at-age, the annual U/N/S rock sole catch and the scaled fractions of shallow-water flatfish catch that is N and S rock sole, reasonable curves for fishery selectivity-at-length (logistic versus exponential), reasonable values for annual fishing mortality so that the catch did not come primarily from one species, reasonably smooth changes over time in annual fishing mortality, and that the model estimated the variance-covariance matrix.

The fishery and survey selectivity-at-length curves are modeled as logistic functions; each curve is described by two parameters per species and sex. Since there was no determination to species for the early and middle survey periods, there are only two years of data for each sex for these periods. Thus at most two selectivity-at-length parameters for each sex can be estimated, so one set of survey selectivity-at-length parameters were estimated for each sex and used for both N and S males and females. There are 8 years of data for the later survey period so all survey selectivity-at-length parameters were estimated in all models.

All model configurations, unless specified otherwise, estimate age-2 recruitment as deviations from a median value; have 3 periods for both fishery (before 1990, 1990 - 1999, and 2000 on) and survey (1984 and 1987, 1990 and 1993, and 1996 on) selectivity; estimate only one selectivity-at-length curve for males and females for the early and middle periods for both fishery and survey selectivity, as most of the fishery and all of the survey data are for U rock sole for these periods; estimate deviations from natural mortality for both N and S males; fit to survey length comp data for 1984 and 1987 and fit to survey age comp data for 1990 on; and fit to the survey mean size-at-age data for all survey years.

The 1984 and 1987 surveys may have had catchability and selectivity characteristics different from those for 1990 on, as Boldt and Zador (2009) state that "...the gears used by the Japanese vessels in the [NMFS GOA bottom trawl] surveys prior to 1990 were quite different from the survey gear used aboard American vessels in subsequent surveys and likely resulted in different catch rates for many of these groups". Some of these data were omitted from some model configurations to explore their impact on the model estimates.

All of the mean size-at-age data were omitted in two model configurations to explore their impact on model estimates.

Model 0 - the 2011 model configuration updated with 2012 data
Model 1 - Base model
Model 2 - Omit 1984 survey mean size-at-age data
Model 3 - Omit 1984 and 1987 survey mean size-at-age data
Model 4 - Fit to survey length comp data instead of survey age comp data for 1990 and 1993, omit 1984 and 1987 mean size-at-age data

Model 5 - Fit to survey length comp data instead of survey age comp data for 1990 and 1993, omit all survey mean size-at-age data

Model 6 - Omit all survey mean size-at-age data
Model 7 - Omit all 1984 and 1987 survey data

The parameters which can be estimated for both N and S rock sole by the model include:

S-R parameters	recruitment	initial recruitment	fishing mortality	initial fishing mortality	fishery selectivity	survey catchability	survey selectivity	deviation from natural mortality
1 or 2	$33+1$	$20+1$	$36+1$	0 to 4	[1] 0 to 4, [2] 0 to 4, [3] 0 to 4	0 to 3	[1] 0 to 4 , [2] 0 to 4 , [3] 0 to 4	0 to 4

For fishery selectivity, period 1 is for pre-1990, period 2 is for 1990-1999, and period 3 is for 2000 on. For survey selectivity, period 1 is for 1984 and 1987, period 2 is for 1990 and 1993, and period 3 is for 1996 on.

Table 4.1.4 lists the model configuration flags and weights similar across the seven new model configurations. All eight models assumed that there was no relationship between spawning biomass and recruitment. Table 4.1.5 lists the values for the objective function components.

The model configurations evaluated focused on exploring the impact of different sets of survey data on model fit. The estimated N and S rock sole total biomass, spawning biomass, and age- 2 recruitments are similar across all model configurations after 1990 (Figs. 4.1.9, 4.1.10, and 4.1.11, respectively). Spawning biomass is the biomass of mature females at the time of spawning, assumed to be 1 April and 15 July for N and S rock sole, respectively. Total biomass is the biomass of all males and females age 3 and older at the beginning of the year; age 30 is the plus group. The numbers of age- 2 recruits are the same for males and females.

The estimates of recruitment for 1990 on were very similar across all model configurations, although Models 5 and 6 , which omitted the survey mean size-at-age data, estimated higher N and lower S recruitment compared with the estimates from the other model configurations. The patterns for total and spawning biomass for 1995 on were similar across all model configurations. Models 5 and 6 estimated higher N and lower S biomass compared with the estimates from the other model configurations; Model 0
estimated lower N and S biomass in the 1990s and higher N and lower S biomass after 2000 compared with the estimates from the model configurations which included the survey mean size-at-age data.

The 2011 NMFS GOA bottom trawl survey biomass point estimates were 23% and 37% less than the 2009 estimates for northern and southern rock sole, respectively. None of the model configurations matched the trends in recent survey biomass estimates well, particularly for the southern rock sole survey biomass estimates, as recent annual fishing mortality estimates have been lower than $F_{A B C}$ and the models did not incorporate an additional source of mortality between 2009 and 2011.

All model configurations had similar estimates of total and spawning biomass, recruitment, and N and S rock sole catch and fully-selected fishing mortality for 1990 on. The survey biomass estimates for 1999 on were similar across model configurations. All model configurations produced variance-covariance matrices.

Model 3, which omits the survey mean size-at-age data for 1984 and 1987, was selected as the preferred model as the pre-1990 biomass estimates for N rock sole were moderate relative to the other model estimates; the biomass estimates for S rock sole were similar for all model configurations.

The estimated annual total and spawning biomass for Model 3 for N and S rock sole are in Table 4.1.6 and Figs. 4.1.11, 4.1.12, and 4.1.14; the estimated age-2 recruits are in Table 4.1.7 and Figs. 4.1.13 and 4.1.14. The estimated numbers-at-age for N and S rock sole are in Tables 4.1.8 and 4.1.9, respectively. Table 4.1.10 lists fishery selectivity-at-age, by species and sex, for the three fishery selectivity periods; Table 4.1.11 lists the survey selectivity-at-age, by species and sex, for the three survey selectivity periods. The list of parameter estimates for Model 3 is in Table 4.1.12. Total swff and rock sole catch and estimated N and S rock sole catch are in Fig. 4.1.15; the annual female and male fishing mortality are in Figs. 4.1.16 and 4.1.17, respectively. The estimates of survey biomass are in Fig. 4.1.18; fits to survey fraction female (by number) are in Fig. 4.1.19. Fishery selectivity-at-length and -at-age, by period, species, and sex are in Fig. 4.1.20, and survey selectivity-at-length and -at-age, by period, species, and sex are in Fig. 4.1.21. The fits to the survey length composition data are in Fig. 4.1.22, and the fits to the survey age composition data are in Fig. 4.1.23. The fits to the survey mean-size-at-age are in Fig. 4.1.24. The fits to the fishery length composition data are in Fig. 4.1.25. Mean length-at-age, by species and sex, are in Fig. 4.1.26. Histograms of 1 M cycles 1 k subsampled MCMC posterior distributions of $F_{A B C}, \mathrm{ABC}$, $F_{O F L}$, and OFL for N and S are in Figs. 4.1.27 and 4.1.28, respectively.

Model 3 estimated median age-2 recruitment to be 36.4 and 93.4 million, for N and S rock sole, respectively; median initial age-2 recruitment was 29.2 and 45.4 million, for N and S rock sole respectively. Estimated natural mortality was 0.275 and 0.267 for N and S males, respectively; natural mortality was fixed at 0.2 for N and S females. Initial fishing mortality was fixed at 0.1 ; median fishing mortality was estimated to be 0.023 and 0.026 for N and S rock sole, respectively.

Projections and harvest alternatives

The GOA northern and southern rock sole stocks were moved from Tier 4 to Tier 3 of the NPFMC harvest guidelines in 2011. In Tier 3, reference mortality rates are based on the spawning biomass per recruit (SPR), while biomass reference levels are estimated by multiplying the SPR by average
recruitment. Estimates of the FSPR harvest rates were obtained using the life history characteristics. Spawning biomass reference levels were based on average age-2 recruitment for 1979-2011. Spawning was assumed to occur on 1 April and 15 July for northern and southern rock sole, respectively, and female spawning biomass was calculated using the mean weight-at-age at the time of spawning.

	Northern	Southern
$\boldsymbol{S B}_{2013}$	42,700	82,800
$\boldsymbol{S B _ { 4 0 \% }}$	20,100	45,100
$\boldsymbol{S B _ { 3 5 \% }}$	17,600	39,500
$\boldsymbol{F}_{A B C}$	0.152	0.193
$\mathbf{A B C}$	9,700	18,600
$\boldsymbol{F}_{\text {OFL }}$	0.180	0.230
$\mathbf{O F L}$	11,400	21,900

Biomass projections

A standard set of projections is required for stocks managed under Tier 3 of Amendment 56. This set of projections encompasses seven harvest scenarios designed to satisfy the requirements of Amendment 56, the National Environmental Policy Act, and the Magnuson-Stevens Fishery Conservation and Management Act (MSFCMA).

For each scenario, the projections begin with the vector of 2012 numbers at age estimated in the assessment. This vector is then projected forward to the beginning of 2013 using the schedules of natural mortality and selectivity described in the assessment and the best available estimate of total annual catch for 2012. In each subsequent year, the fishing mortality rate is prescribed on the basis of the spawning biomass in that year and the respective harvest scenario. In each year, recruitment is drawn from an inverse Gaussian distribution whose parameters consist of maximum likelihood estimates determined from recruitments estimated in the assessment. Spawning biomass is computed in each year based on the time of peak spawning and the maturity and weight schedules described in the assessment. Total catch is assumed to equal the catch associated with the respective harvest scenario in all years. This projection scheme is run 1000 times to obtain distributions of possible future stock sizes, fishing mortality, and catches.

Five of the seven standard scenarios will be used in an Environmental Assessment prepared in conjunction with the final SAFE. These five scenarios, which are designed to provide a range of harvest alternatives that are likely to bracket the final TAC for 2013, are as follows ("max $F_{A B C}$ " refers to the maximum permissible value of $F_{A B C}$ under Amendment 56):

Scenario 1: In all future years, F is set equal to $\max F_{A B C}$. (Rationale: Historically, TAC has been constrained by ABC , so this scenario provides a likely upper limit on future TACs.)

Scenario 2: In all future years, F is set equal to a constant fraction of $\max F_{A B C}$, where this fraction is equal to the ratio of the $F_{A B C}$ value for 2013 recommended in the assessment to the max $F_{A B C}$ for 2013. (Rationale: When $F_{A B C}$ is set at a value below max $F_{A B C}$, it is often set at the value recommended in the stock assessment.)

Scenario 3: In all future years, F is set equal to 50% of $\max F_{A B C}$. (Rationale: This scenario provides a likely lower bound on $F_{A B C}$ that still allows future harvest rates to be adjusted downward when stocks fall below reference levels.)

Scenario 4: In all future years, F is set equal to the 2008-2012 average F. (Rationale: For some stocks, TAC can be well below ABC , and recent average F may provide a better indicator of $F_{T A C}$ than $F_{A B C}$.)

Scenario 5: In all future years, F is set equal to zero. (Rationale: In extreme cases, TAC may be set at a level close to zero.)

Two other scenarios are needed to satisfy the MSFCMA's requirement to determine whether a stock is currently in an overfished condition or is approaching an overfished condition. These two scenarios are as follows (for Tier 3 stocks, the MSY level is defined as $B_{35 \%}$):

Scenario 6: In all future years, F is set equal to $F_{O F L}$. (Rationale: This scenario determines whether a stock is overfished. If the stock is expected to be above its MSY level in 2012 and above its MSY level in 2024 under this scenario, then the stock is not overfished.)

Scenario 7: In 2013 and 2014, F is set equal to $\max F_{A B C}$, and in all subsequent years, F is set equal to $F_{\text {OFL. }}$. (Rationale: This scenario determines whether a stock is approaching an overfished condition. If the stock is expected to be above its MSY level in 2025 under this scenario, then the stock is not approaching an overfished condition.)

Simulation results indicate the northern (Table 4.1.13) and southern (Table 4.1.14) rock sole are not overfished currently and are not approaching an overfished condition.

The authors' recommendations for $F_{A B C}$ and ABC for northern and southern rock sole for 2013 are 0.152 and $9,700 \mathrm{mt}$ and 0.193 and $18,600 \mathrm{mt}$, respectively.

The harvest guidelines for Model 0 are in Appendix 2. Additional information on these results are available.

Ecosystem considerations

See the Chapter 4 for information on ecosystem considerations for the Gulf of Alaska shallow-water flatfish stocks

Ecosystem effects on the stocks

See the Chapter 4 for information on ecosystem considerations for the Gulf of Alaska shallow-water flatfish stocks

Fishery effects on the ecosystem

See the Chapter 4 for information on ecosystem considerations for the Gulf of Alaska shallow-water flatfish stocks

Data gaps and research priorities

From the September 2012 Plan Team minutes: "GOA ichthyoplankton abundance- Annual sampling is now biennial. Cod, pollock, and northern rock sole show a high degree of synchrony during 1990s and $1995+$ years. This is evidence of similar responses to environment among species with similar early life histories and environmental exposure."

There is considerable uncertainty about the fractions, by mass, of the shallow-water flatfish catch that is northern or southern rock sole. The fishery observer program samples on average 20% of the shallowwater flatfish catch by mass (Table 4.1.2, Fig. 4.1.3), and U/N/S rock sole is on average 70-80\% of the observed shallow-water flatfish catch by mass (Figure 4.1.4). Currently the observer program is being restructured, so that the fishery observer coverage rates should be considerably higher in the coming years.

The increase in random fishery observer samples throughout the year and across the entire GOA may provide more information about the distribution of northern and southern rock sole during the year. The NMFS bottom trawl survey takes place in the summer, when southern rock sole are spawning, so that the distribution of northern and southern rock sole determined by the survey may not represent the distribution of northern and southern rock sole at different times. The annual shallow-water flatfish catches come primarily from INPFC area 630 (Figure 4.1.1); the fishery observer data for shallow-water flatfish come primarily from INPFC area 630 as well (Figure 4.1.2). However, the survey data suggest that northern rock sole are located primarily in INPFC area 610 (Figure 4.1.6) and southern rock sole are distributed more widely across the GOA (Figure 4.1.7).

Another research question is how well the northern and southern rock sole animals are differentiated by fishery observers and survey personnel. Future sampling and genetic analysis of tissue samples would provide more information on the rates of misidentification.

References

ADMB Project. 2009 AD Model Builder: automatic differentiation model builder. Developed by David Fournier and freely available from http://admb-project.org/.

Allen, M.J., Smith, G.B., 1988. Atlas and Zoogeography of Common Fishes in the Bering Sea and Northeastern Pacific. NOAA Technical Report NMFS 66, 151 pp.

Berger, J., Wall, J., Nelson, Jr., R. 1987. Summary of U.S. Observer Sampling of Foreign and Joint Venture Fisheries in the Northeast Pacific Ocean and Eastern Bering Sea, 1985. NOAA Technical Memorandum NMFS F/NWC-112, 169 pp.
Blackburn, J., Pengilly, D., 1994. A summary of estimated population trends of seven most abundant groundfish species in trawl surveys conducted by Alaska Department of Fish and Game in the Kodiak and Alaska Peninsula areas, 1988 through 1993. Alaska Department of Fish and Game, Regional Information Report No. 4K94-31.

Boldt, J., Zador, S.G. (editors). 2009. Ecosystem Considerations for 2010. North Pacific Fishery Management Council, 605 West 4th Ave., Suite 306, Anchorage, AK 99501.
Britt, L.L., and Martin, M.H., 2000. Data report: 1999 Gulf of Alaska bottom trawl survey, NOAA Tech. Memo. NMFS-AFSC-121.

Dorn, M.W., K. Aydin, S. Barbeaux, B.M. Guttormsen, B.A. Megrey, K. Spalinger, and M. Wilkins. 2009. Assessment of the walleye pollock stock in the Gulf of Alaska for 2010. In: NPFMC Gulf of Alaska Groundfish Plan Team (ed.), Stock Assessment and Fishery Evaluation Report for Groundfish Resources in the Gulf of Alaska. North Pacific Fishery Management Council, Anchorage, AK.

Fournier, D. 2006. An introduction to AD Model Builder Version 7.1.1 for use in nonlinear modeling and statistics. Otter Research Ltd., Box 2040, Sidney, BC, Canada. 193 pp.

Martin, M.H., 1997. Data Report: 1996 Gulf of Alaska bottom trawl survey. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-82.

McAllister, M.K. and Ianelli, J.N. 1997. Bayesian stock assessment using catch-age data and the sampling-importance resampling algorithm. Canadian Journal of Fisheries and Aquatic Sciences, 54, pp. $284-300$.

NPFMC. 2010. Fishery Management Plan for Groundfish of the Gulf of Alaska. North Pacific Fishery Management Council, Anchorage, AK, USA.

Orr, J.W., Matarese, A.C. 2000. Revision of the genus Lepidopsetta Gill, 1862 (Teleostei: Pleuronectidae) based on larval and adult morphology, with a description of a new species from the North Pacific Ocean and Bering Sea. Fish. Bull. 98(3), 539-582.

Stark, J.W., Somerton, D.A. 2002. Maturation, spawning and growth of rock soles off Kodiak Island in the Gulf of Alaska. J. Fish. Bio., 61: 417 - 431.

Thompson, G.G., Ianelli, J.N., Wilkins, M. 2008. Assessment of the Pacific Cod Stock in the Gulf of Alaska for 2009. In: Stock Assessment and Fishery Evaluation Report for Groundfish Resources in the Gulf of Alaska. North Pacific Fishery Management Council, Anchorage, AK, USA.

Thompson, G.G., Ianelli, J.N., Wilkins, M. 2009. Assessment of the Pacific Cod Stock in the Gulf of Alaska for 2010. In: Stock Assessment and Fishery Evaluation Report for Groundfish Resources in the Gulf of Alaska. North Pacific Fishery Management Council, Anchorage, AK, USA.
Turnock, B.J., A'mar, Z.T., Wilderbuer, T.K. 2009. Assessment of the shallow-water flatfish stock assemblage in the Gulf of Alaska for 2010. In: Stock Assessment and Fishery Evaluation Report for Groundfish Resources in the Gulf of Alaska. North Pacific Fishery Management Council, Anchorage, AK, USA.
Wilderbuer, T.K, Nichol, D.G. 2009. Assessment of northern rock sole in the eastern Bering Sea and Aleutian Islands for 2010. In: Stock Assessment and Fishery Evaluation Report for Groundfish Resources in the Eastern Bering Sea and Aleutian Islands. North Pacific Fishery Management Council, Anchorage, AK, USA.

Table 4.1.1 - Estimated catch (in metric tonnes) for shallow water flatfish (SWFF) from the 2011 Stock Assessment and Fishery Evaluation (SAFE) report and SWFF and total rock sole catch from the Alaska Fisheries Information Network (AKFIN) (as of 2012-10-23).

Year	SWFF catch (2011 SAFE)	SWFF catch (AKFIN)	U/N/S rock sole catch (AKFIN)	\% U/N/S rock sole
1991	$5,298.0$	$5,224.6$	0.1	-
1992	$8,783.0$	$8,333.8$	42.0	-
1993	$9,715.0$	$9,113.7$	$8,112.1$	89.0
1994	$3,943.0$	$3,843.0$	$3,008.1$	78.3
1995	$5,430.0$	$5,436.9$	$3,923.9$	72.2
1996	$9,350.0$	$9,372.4$	$6,595.3$	70.4
1997	$7,775.0$	$7,779.6$	$5,466.8$	70.3
1998	$3,565.0$	$3,567.3$	$2,532.3$	71.0
1999	$2,577.0$	$2,578.4$	$1,765.4$	68.5
2000	$6,928.0$	$6,928.7$	$5,386.7$	77.7
2001	$6,162.0$	$6,163.3$	$4,771.7$	77.4
2002	$6,195.0$	$7,177.3$	$5,564.3$	77.5
2003	$4,465.0$	$4,648.5$	$3,554.6$	76.5
2004	$3,094.0$	$3,094.2$	$2,216.7$	71.6
2005	$4,769.0$	$4,805.1$	$4,130.5$	86.0
2006	$7,641.0$	$7,651.7$	$5,763.3$	75.3
2007	$8,793.0$	$8,719.2$	$6,727.4$	77.2
2008	$9,708.0$	$9,725.9$	$7,269.1$	74.7
2009	$8,483.0$	$8,484.9$	$6,538.7$	77.1
2010	$5,534.0$	$5,533.6$	$3,285.3$	59.4
2011	$3,617.0$	$3,992.5$	$3,094.4$	77.5
2012		$2,415.3$	$1,763.3$	73.0

Table 4.1.2 - Fishery observer extrapolated catch (based on sampled catch) in metric tonnes (as of 2012-10-23) for undifferentiated (U), northern (N), and southern (S) rock sole, and shallow water flatfish (SWFF)

Year	U rock sole	N rock sole	S rock sole	SWFF	\%SWFF catch observed
1990	$1,260.9$			$1,500.0$	18.8
1991	$1,285.8$			$1,458.6$	27.9
1992	$2,005.5$			$2,321.4$	27.9
1993	$1,117.1$			$1,373.7$	15.1
1994	409.0			662.2	17.2
1995	810.0			$1,067.6$	19.6
1996	877.6			$1,332.4$	14.2
1997	977.9	36.2	44.8	$1,331.9$	17.1
1998	344.9	78.3	144.5	769.5	21.6
1999	204.0	102.2	100.7	575.1	22.6
2000	772.7	124.0	153.6	$1,398.8$	20.2
2001	863.1	162.8	152.4	$1,401.4$	22.7
2002	$1,040.0$	158.5	110.1	$1,565.2$	21.8
2003	488.6	89.8	130.8	944.4	20.3
2004	232.5	48.1	155.5	706.3	22.8
2005	411.6	47.7	73.9	669.2	13.9
2006	618.6	144.3	55.7	$1,042.1$	13.6
2007	$1,114.0$	133.4	176.1	$1,671.1$	19.2
2008	$1,097.8$	169.2	281.2	$2,044.8$	21.0
2009	167.3	499.9	442.8	$1,468.5$	17.3
2010	125.6	373.3	366.1	$1,302.4$	23.5
2011	101.7	144.6	291.0	642.5	16.2
2012	9.1	166.8	169.4	408.2	19.4

Table 4.1.3 - Percent by mass of shallow-water flatfish fishery observer extrapolated weights that are U/N/S rock sole (as of 2012-10-23)

Year	$\%$	\% U	$\%$	$\%$ U U/N/S	Est. U/N/S catch (mt)
1990	84.1			84.1	$6,709.3$
1991	88.2			88.2	$4,605.6$
1992	86.4			86.4	$7,199.6$
1993	81.3			81.3	$7,411.1$
1994	61.8			61.8	$2,373.6$
1995	75.9			75.9	$4,124.9$
1996	65.9			65.9	$6,173.2$
1997	73.4	2.7	3.4	79.5	$6,184.4$
1998	44.8	10.2	18.8	73.8	$2,630.9$
1999	35.5	17.8	17.5	70.8	$1,801.6$
2000	55.2	8.9	11.0	75.1	$5,202.5$
2001	61.6	11.6	10.9	84.1	$5,182.3$
2002	66.4	10.1	7.0	83.6	$6,008.3$
2003	51.7	9.5	13.9	75.1	$3,491.0$
2004	32.9	6.8	22.0	61.7	$1,910.3$
2005	61.5	7.1	11.0	79.7	$3,828.7$
2006	59.4	13.8	5.3	78.6	$6,010.9$
2007	66.7	8.0	10.5	85.2	$7,417.9$
2008	53.7	8.3	13.8	75.7	$7,364.5$
2009	11.4	34.0	30.2	75.6	$6,413.4$
2010	9.6	28.7	28.1	66.4	$3,675.5$
2011	15.8	22.5	45.3	83.6	$3,322.7$
2012	2.2	40.9	41.5	84.6	$1,776.4$

Table 4.1.4 - List of model configuration components similar across the seven new model configurations

Parameter	Estimated
Initial recruitment	Yes
Deviations from initial recruitment	Yes
Average recruitment	Yes
Deviations from average recruitment	Yes
Initial F	No (fixed at 0.1)
Average F	Yes
Deviations from average F	Yes
Fishery selectivity	Yes
Survey catchability	No
Survey selectivity - later period	
Growth parameters	1.0)
	Value
Objective function component	0.05
Catch standard deviation	0.6
SigmaR	1.0
Weight on fitting to survey biomass indices	
Weight on fitting to fishery length comps	1.0
Weight on balancing annual F for N and S	1.0
Survey fraction female standard deviation	0.1
Weight on fitting to fishery catch fraction of	
N and S rock sole in U/N/S rock sole catch	5.0
Weight on interannual changes in early recruitment (1974 - 1983)	10.0
Standard deviation on interannual changes in fishing mortality	0.005

Table 4.1.5 - Model configurations, numbers of parameters, objective function values, and values of objective function components for the 2011 and the seven new model configurations

		rock sole catch	srv fraction female	srv biomass	fsh len comps	srv len comps	srv age comps	srv len-at-age	rec dev	init devs	$\begin{array}{\|l\|} \hline \text { F\& } \\ \text { N/S } \\ \text { frac } \\ \hline \end{array}$	$\begin{aligned} & \text { smooth } \\ & \mathrm{F} \\ & \hline \end{aligned}$	early rec	Total
Model 0														
Parameters	210													
Obj function	2690.24													
Species	U	0.71	9.23	41.30	154.38	66.77	0.00	164.29	0.00	0.00	0.00	0.00	0.00	436.69
Species	N	0.00	3.44	9.36	167.73	0.00	313.99	562.11	8.18	0.43	1.83	5.17	0.00	1072.24
Species	s	0.00	13.71	40.41	79.05	0.00	423.00	601.48	16.80	1.22	1.37	4.26	0.00	1181.31
Model 1														
Parameters	218													
Obj function	3315.83													
Species	U	0.33	10.16	30.48	284.19	23.43	87.17	417.34	0.00	0.00	3.53	0.00	0.00	856.63
Species	N	0.00	3.38	3.67	319.20	0.00	325.84	561.40	9.36	1.73	2.21	0.04	0.00	1226.83
Species	S	0.00	11.65	12.77	153.41	0.00	418.58	597.46	13.02	8.29	1.63	0.04	15.53	1232.38
Model 2														
Parameters	218													
Obj function	3179.34													
Species	U	0.28	9.35	22.51	282.37	23.40	88.04	292.67	0.00	0.00	3.69	0.00	0.00	722.31
Species	N	0.00	3.36	3.52	318.50	0.00	326.93	561.20	8.95	1.09	2.21	0.04	0.00	1225.79
Species	S	0.00	10.15	13.07	152.94	0.00	419.80	597.39	13.35	6.57	1.63	0.04	16.31	1231.24
Model 3														
Parameters	218													
Obj function	3063.4													

Species	U	0.21	7.25	11.69	282.25	33.91	88.92	185.24	0.00	0.00	2.68	0.00	0.00
Species	N	0.00	3.33	3.35	318.18	0.00	326.28	561.03	8.17	0.87	2.22	0.04	0.00
Species	S	0.00	8.97	13.55	152.40	0.00	419.85	596.77	13.60	4.20	1.58	0.04	16.83

Model 4

Parameters	218												
Obj function	2980												
Species	U	0.27	9.53	18.47	280.46	48.55	0.00	166.33	0.00	0.00	2.22	0.00	0.00
Species	N	0.00	3.35	3.47	319.38	0.00	320.31	561.25	8.58	0.36	2.25	0.04	0.00
Species	S	0.00	7.31	13.32	152.83	0.00	425.72	597.62	14.29	5.67	1.67	0.04	16.71

Model 5

Parameters	218													
Obj function	1611.45													
Species	U	0.20	5.36	7.63	281.76	59.94	0.00	0.00	0.00	0.00	1.48	0.00	0.00	356.37
Species	N	0.00	3.32	2.35	316.43	0.00	318.18	0.00	8.22	0.05	2.51	0.05	0.00	651.11
Species	S	0.00	12.48	19.55	149.57	0.00	379.86	0.00	16.86	4.01	2.21	0.04	19.40	603.98

Model 6

Parameters	218												
Obj function	1673.87												
Species	U	0.18	5.60	9.82	285.75	29.58	90.47	0.00	0.00	0.00	1.48	0.00	0.00
Species	N	0.00	3.36	2.33	316.30	0.00	319.59	0.00	8.10	0.10	2.46	0.05	0.00
Species	S	0.00	12.07	19.17	149.73	0.00	377.88	0.00	15.39	2.48	2.16	0.04	19.79

Model 7

Parameters	214													
$\begin{aligned} & \hline \text { Obj } \\ & \text { function } \end{aligned}$	3008.85													
Species	U	0.13	4.44	3.69	283.47	0.00	79.38	181.56	0.00	0.00	3.97	0.00	0.00	556.64

| Species | N | 0.00 | 3.37 | 3.23 | 315.22 | 0.00 | 335.33 | 560.69 | 7.99 | 0.96 | 2.12 | 0.04 | 0.00 | 1228.96 |
| :--- | ---: |
| Species | S | 0.00 | 9.69 | 14.19 | 151.60 | 0.00 | 417.76 | 596.08 | 13.47 | 2.77 | 1.55 | 0.04 | 16.09 | 1223.25 |

Table 4.1.6 - Estimated annual total and spawning biomass (in metric tonnes) with standard deviations by species for Model 3

	Northern rock sole				Southern rock sole			
Year	Total	Std dev	Spawnin	Std dev	Total	Std dev	pawning	Std dev
1977	54,811	13,857	20,092	5,982	65,511	9,772	17,596	3,940
1978	54,665	13,380	21,272	5,935	73,992	9,453	17,078	3,
1979	53,266	12,677	23,223	6,173	84,397	9,425	17,431	3,5
1980	53,473	12,184	24,652	6,424	103,398	9,955	19,135	3,492
1981	54,224	11,49	25,160	6,387	138,683	11,219	22,100	3,505
1982	54,852	10,698	25,336	6,275	167,838	12,502	26,661	3,618
1983	56,185	10,0	25,770	6,104	204,487	14,118	32,855	
198	56,293	9,338	26,442	5,717	229,800	15,134	41,123	,
198	56,771	8,617	27,68	5,409	251,	15,567	53,245	4,679
1986	57,342	7,945	28,599	5,110	270,838	15,978	69,358	5,
1987	58,861	7,365	28,785	4,748	284,	15,910	86,732	6,418
1988	63,498	6,87	28,545	4,322	291,730	15,453	102,263	7,215
1989	70,916	6,477	28,611	3,936	292,598	14,87	113,807	7,642
1990	80,977	6,219	29,100	3,650	292,	14,20	120,658	7,730
199	89,920	5,993	30,839	3,395	283,284	13,358	123,716	7,542
19	94,051	5,717	34,57	3,198	271,161	12,358	123,767	7,204
1993	95,250	5,471	39,339	3,112	253,666	11,28	120,368	6,
1994	94,610	5,19	43,92	3,099	235,	10,2	117,099	6,
1995	93,499	4,971	46,489	3,076	223,470	9,51	113,75	5,871
19	90,640	4,693	46,418	2,956	212,787	8,88	107,133	5,403
199	87,602	4,42	45,50	2,817	198,	8,24	98,896	4,947
199	86,047	4,264	44,421	2,697	188,184	7,805	92,000	4,548
99	85,535	4,15	42,928	2,562	183,286	7,573	86,645	4,205
2000	86,639	4,111	41,033	2,405	183,872	7,636	81,589	3,
2001	86,324	4,128	39,36	2,293	190,113	8,042	76,945	3,
2002	90,512	4,326	39,174	2,250	192,395	8,413	73,540	3,437
2003	93,7	4,618	38,777	2,224	193,742	8,78	71,214	3,333
2004	96,942	4,873	40,130	2,258	195,	9,28	70,200	3,322
200	98,880	5,067	43,255	2,380	199, 069	10,024	71,023	3,411
2006	98,229	5,234	46,823	2,604	206,210	11,176	73,955	3,653
2007	95,024	5,475	47,623	2,772	211,409	12,252	76,084	3,918
2008	94,452	5,875	46,018	2,810	211,789	13,316	76,004	4,141
2009	92,427	6,330	43,268	2,835	205,419	13,801	75,985	4,406
2010	88,410	6,665	41,599	2,925	198,100	14,059	77,961	4,791
2011	85,731	6,945	42,072	3,122	192,502	14,309	81,064	5,304
2012	82,974	7,146	43,043	3,378	184,227	14,329	84,357	5,88

Table 4.1.7 - Estimated age-2 recruitment and standard deviation by species, in millions, for Model 3; the numbers of male and female recruits are the same

	Northern rock sole		Southern rock sole	
Year	Age-2	Std dev	Age-2	Std dev
1977	26.116	14.538	96.480	25.848
1978	21.974	11.955	106.033	29.834
1979	26.494	13.260	168.523	46.274
1980	32.720	16.347	309.164	61.594
1981	28.337	13.118	173.160	44.926
1982	21.821	9.942	232.549	39.394
1983	18.914	7.984	128.140	25.417
1984	25.606	10.215	132.806	25.435
1985	26.316	10.810	142.425	24.193
1986	34.398	11.964	128.322	22.143
1987	64.633	14.333	119.599	19.968
1988	68.760	13.721	71.698	15.913
1989	77.894	11.339	127.594	15.165
1990	55.042	8.520	54.828	10.551
1991	29.927	5.280	57.382	8.461
1992	35.296	4.568	45.175	7.095
1993	37.434	4.103	70.565	7.877
1994	29.675	3.426	56.805	6.984
1995	21.867	2.844	85.530	8.079
1996	34.893	3.386	68.071	6.963
1997	48.186	3.941	72.422	7.195
1998	38.872	3.417	76.089	7.528
1999	43.871	3.729	121.261	10.441
2000	52.946	4.405	168.916	13.733
2001	77.209	5.966	92.238	9.404
2002	60.136	5.228	70.500	8.332
2003	26.470	3.107	97.119	10.592
2004	28.987	3.360	113.441	12.709
2005	38.731	4.262	159.325	17.477
2006	49.222	5.441	96.663	13.114
2007	51.851	6.159	105.457	15.333
2008	36.226	5.354	33.788	8.159
2009	23.254	4.649	36.543	10.314
2010	27.728	6.897	56.280	18.727
2011	24.277	9.672	49.576	21.569
2012	36.465	2.211	93.456	4.887
$1979-2011$	39.333	2.141	106.730	5.051

Table 4.1.8 - Estimated numbers-at-age for northern rock sole, in millions, for Model 3

Males	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20+
1977	26.1	20.1	17.6	22.1	10.1	5.6	4.1	3.1	1.9	1.2	0.8	0.5	0.4	0.3	0.2	0.1	0.1	0.1	0.1
1978	22.0	19.8	14.9	12.6	15.4	7.0	3.9	2.8	2.1	1.3	0.8	0.5	0.4	0.3	0.2	0.1	0.1	0.1	0.1
1979	26.5	16.6	14.7	10.7	8.8	10.7	4.8	2.7	1.9	1.5	0.9	0.5	0.4	0.3	0.2	0.1	0.1	0.1	0.1
1980	32.7	20.1	12.5	10.8	7.8	6.4	7.7	3.5	1.9	1.4	1.1	0.7	0.4	0.3	0.2	0.1	0.1	0.1	0.1
1981	28.3	24.8	15.1	9.2	7.9	5.7	4.6	5.6	2.5	1.4	1.0	0.8	0.5	0.3	0.2	0.1	0.1	0.1	0.2
1982	21.8	21.5	18.7	11.2	6.8	5.8	4.1	3.4	4.1	1.8	1.0	0.7	0.6	0.3	0.2	0.1	0.1	0.1	0.2
1983	18.9	16.6	16.3	14.1	8.4	5.1	4.3	3.1	2.5	3.1	1.4	0.8	0.6	0.4	0.3	0.2	0.1	0.1	0.2
1984	25.6	14.4	12.5	12.2	10.5	6.3	3.8	3.2	2.3	1.9	2.3	1.0	0.6	0.4	0.3	0.2	0.1	0.1	0.2
1985	26.3	19.4	10.9	9.5	9.2	7.9	4.7	2.8	2.4	1.7	1.4	1.7	0.8	0.4	0.3	0.2	0.1	0.1	0.2
1986	34.4	20.0	14.7	8.2	7.1	7.0	6.0	3.6	2.1	1.8	1.3	1.1	1.3	0.6	0.3	0.2	0.2	0.1	0.2
1987	64.6	26.1	15.2	11.2	6.2	5.4	5.3	4.5	2.7	1.6	1.4	1.0	0.8	1.0	0.4	0.2	0.2	0.1	0.2
1988	68.8	49.1	19.8	11.5	8.4	4.7	4.1	4.0	3.4	2.0	1.2	1.0	0.7	0.6	0.7	0.3	0.2	0.1	0.3
1989	77.9	52.2	37.2	15.0	8.6	6.4	3.5	3.1	3.0	2.6	1.5	0.9	0.8	0.6	0.5	0.6	0.3	0.1	0.3
1990	55.0	59.1	39.5	28.1	11.3	6.5	4.8	2.7	2.3	2.2	1.9	1.2	0.7	0.6	0.4	0.3	0.4	0.2	0.3
1991	29.9	41.7	44.7	29.7	21.0	8.4	4.8	3.6	2.0	1.7	1.7	1.4	0.9	0.5	0.4	0.3	0.3	0.3	0.4
1992	35.3	22.7	31.3	33.1	21.9	15.4	6.1	3.5	2.6	1.4	1.3	1.2	1.0	0.6	0.4	0.3	0.2	0.2	0.5
1993	37.4	26.7	17.0	23.2	24.3	16.0	11.2	4.5	2.6	1.9	1.0	0.9	0.9	0.8	0.5	0.3	0.2	0.2	0.5
1994	29.7	28.4	20.1	12.6	17.1	17.8	11.6	8.2	3.3	1.9	1.4	0.8	0.7	0.6	0.6	0.3	0.2	0.2	0.5
1995	21.9	22.5	21.4	15.0	9.4	12.7	13.2	8.6	6.0	2.4	1.4	1.0	0.6	0.5	0.5	0.4	0.2	0.1	0.5
1996	34.9	16.6	17.0	16.0	11.2	7.0	9.4	9.8	6.4	4.5	1.8	1.0	0.8	0.4	0.4	0.4	0.3	0.2	0.5
1997	48.2	26.5	12.5	12.7	11.9	8.3	5.2	7.0	7.3	4.8	3.3	1.3	0.8	0.6	0.3	0.3	0.3	0.2	0.5
1998	38.9	36.5	20.0	9.4	9.5	8.9	6.2	3.8	5.2	5.4	3.5	2.5	1.0	0.6	0.4	0.2	0.2	0.2	0.5
1999	43.9	29.5	27.6	15.0	7.0	7.1	6.6	4.6	2.9	3.9	4.0	2.6	1.8	0.7	0.4	0.3	0.2	0.1	0.5
2000	52.9	33.3	22.3	20.9	11.3	5.3	5.3	5.0	3.5	2.2	2.9	3.0	2.0	1.4	0.5	0.3	0.2	0.1	0.5
2001	77.2	40.1	25.0	16.5	15.2	8.2	3.8	3.9	3.6	2.5	1.6	2.1	2.2	1.4	1.0	0.4	0.2	0.2	0.5
2002	60.1	58.5	30.2	18.6	12.2	11.2	6.0	2.8	2.8	2.6	1.8	1.1	1.5	1.6	1.0	0.7	0.3	0.2	0.5
2003	26.5	45.5	43.8	22.2	13.5	8.8	8.1	4.3	2.0	2.0	1.9	1.3	0.8	1.1	1.1	0.7	0.5	0.2	0.5
2004	29.0	20.1	34.4	32.8	16.6	10.1	6.6	6.0	3.2	1.5	1.5	1.4	1.0	0.6	0.8	0.9	0.6	0.4	0.5
2005	38.7	22.0	15.2	26.0	24.8	12.5	7.6	5.0	4.5	2.4	1.1	1.1	1.1	0.7	0.5	0.6	0.6	0.4	0.7
2006	49.2	29.4	16.6	11.4	19.4	18.5	9.3	5.7	3.7	3.4	1.8	0.8	0.8	0.8	0.5	0.3	0.5	0.5	0.8
2007	51.9	37.2	22.0	12.2	8.3	14.0	13.3	6.7	4.1	2.6	2.4	1.3	0.6	0.6	0.6	0.4	0.2	0.3	0.9
2008	36.2	39.3	28.0	16.3	9.0	6.1	10.3	9.7	4.9	3.0	1.9	1.8	0.9	0.4	0.4	0.4	0.3	0.2	0.9
2009	23.3	27.4	29.4	20.6	11.9	6.5	4.4	7.4	7.0	3.5	2.1	1.4	1.3	0.7	0.3	0.3	0.3	0.2	0.8
2010	27.7	17.6	20.5	21.6	15.0	8.6	4.7	3.2	5.3	5.0	2.5	1.5	1.0	0.9	0.5	0.2	0.2	0.2	0.7
2011	24.3	21.0	13.2	15.3	16.0	11.1	6.3	3.5	2.3	3.9	3.7	1.9	1.1	0.7	0.7	0.4	0.2	0.2	0.7
2012	36.5	18.4	15.9	9.9	11.4	11.9	8.2	4.7	2.6	1.7	2.9	2.8	1.4	0.8	0.5	0.5	0.3	0.1	0.6

Females	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20+
1977	26.1	21.7	20.7	28.8	14.6	8.9	7.1	5.9	3.9	2.6	1.8	1.4	1.1	0.8	0.6	0.5	0.3	0.3	0.7
1978	22.0	21.3	17.6	16.4	22.3	11.1	6.7	5.3	4.4	2.9	1.9	1.4	1.0	0.8	0.6	0.5	0.3	0.3	0.7
1979	26.5	18.0	17.3	13.9	12.7	17.0	8.4	5.0	4.0	3.3	2.2	1.4	1.0	0.8	0.6	0.4	0.3	0.3	0.7
1980	32.7	21.7	14.6	13.9	11.1	10.0	13.3	6.5	3.9	3.1	2.5	1.7	1.1	0.8	0.6	0.5	0.3	0.3	0.8
1981	28.3	26.8	17.7	11.8	11.1	8.8	7.9	10.5	5.1	3.1	2.4	2.0	1.3	0.9	0.6	0.5	0.4	0.3	0.8
1982	21.8	23.2	21.8	14.3	9.4	8.8	6.9	6.2	8.2	4.0	2.4	1.9	1.6	1.0	0.7	0.5	0.4	0.3	0.8
1983	18.9	17.9	19.0	17.8	11.6	7.6	7.1	5.6	5.0	6.7	3.3	1.9	1.5	1.3	0.8	0.5	0.4	0.3	0.9
1984	25.6	15.5	14.6	15.4	14.4	9.3	6.2	5.7	4.5	4.0	5.3	2.6	1.6	1.2	1.0	0.7	0.4	0.3	1.0
1985	26.3	21.0	12.7	11.9	12.6	11.7	7.6	5.0	4.7	3.7	3.3	4.3	2.1	1.3	1.0	0.8	0.5	0.4	1.0
1986	34.4	21.5	17.2	10.3	9.7	10.2	9.5	6.2	4.1	3.8	3.0	2.7	3.5	1.7	1.0	0.8	0.7	0.4	1.1
1987	64.6	28.2	17.6	14.0	8.5	7.9	8.4	7.8	5.1	3.3	3.1	2.4	2.2	2.9	1.4	0.8	0.7	0.5	1.3
1988	68.8	52.9	23.0	14.4	11.4	6.9	6.5	6.8	6.3	4.1	2.7	2.5	2.0	1.8	2.3	1.1	0.7	0.5	1.5
1989	77.9	56.3	43.3	18.8	11.7	9.3	5.6	5.3	5.5	5.2	3.3	2.2	2.0	1.6	1.4	1.9	0.9	0.6	1.7
1990	55.0	63.8	46.0	35.3	15.3	9.5	7.6	4.5	4.3	4.5	4.2	2.7	1.8	1.7	1.3	1.2	1.5	0.8	1.8
1991	29.9	45.0	52.0	37.4	28.6	12.4	7.7	6.1	3.6	3.4	3.6	3.3	2.2	1.4	1.3	1.0	0.9	1.2	2.0
1992	35.3	24.4	36.5	41.8	29.9	22.7	9.8	6.1	4.8	2.9	2.7	2.8	2.6	1.7	1.1	1.0	0.8	0.7	2.6
1993	37.4	28.8	19.8	29.4	33.3	23.6	17.9	7.7	4.8	3.7	2.2	2.1	2.2	2.1	1.3	0.9	0.8	0.6	2.6
1994	29.7	30.6	23.4	15.9	23.4	26.4	18.6	14.1	6.0	3.7	2.9	1.8	1.7	1.7	1.6	1.0	0.7	0.6	2.5
1995	21.9	24.3	24.9	18.9	12.8	18.8	21.2	14.9	11.3	4.8	3.0	2.4	1.4	1.3	1.4	1.3	0.8	0.5	2.5
1996	34.9	17.9	19.8	20.2	15.3	10.3	15.1	17.0	12.0	9.0	3.9	2.4	1.9	1.1	1.1	1.1	1.0	0.7	2.5
1997	48.2	28.5	14.6	16.0	16.3	12.3	8.3	12.1	13.6	9.6	7.2	3.1	1.9	1.5	0.9	0.8	0.9	0.8	2.5
1998	38.9	39.4	23.2	11.8	12.9	13.1	9.8	6.6	9.7	10.8	7.6	5.8	2.5	1.5	1.2	0.7	0.7	0.7	2.6
1999	43.9	31.8	32.1	18.9	9.5	10.4	10.5	7.9	5.3	7.8	8.7	6.1	4.6	2.0	1.2	1.0	0.6	0.5	2.7
2000	52.9	35.9	26.0	26.2	15.4	7.8	8.5	8.5	6.4	4.3	6.3	7.1	5.0	3.8	1.6	1.0	0.8	0.5	2.6
2001	77.2	43.2	29.1	20.8	20.8	12.1	6.1	6.6	6.7	5.0	3.4	4.9	5.5	3.9	2.9	1.3	0.8	0.6	2.4
2002	60.1	63.1	35.1	23.5	16.7	16.6	9.6	4.8	5.3	5.3	4.0	2.7	3.9	4.4	3.1	2.3	1.0	0.6	2.4
2003	26.5	49.0	51.0	28.1	18.5	13.1	12.9	7.5	3.7	4.1	4.1	3.1	2.1	3.0	3.4	2.4	1.8	0.8	2.3
2004	29.0	21.6	40.0	41.4	22.7	14.9	10.5	10.4	6.0	3.0	3.3	3.3	2.5	1.7	2.4	2.7	1.9	1.4	2.5
2005	38.7	23.7	17.7	32.7	33.8	18.5	12.2	8.6	8.5	4.9	2.5	2.7	2.7	2.0	1.3	2.0	2.2	1.5	3.2
2006	49.2	31.7	19.3	14.4	26.4	27.2	14.9	9.8	6.9	6.8	3.9	2.0	2.1	2.1	1.6	1.1	1.6	1.8	3.8
2007	51.9	40.1	25.6	15.4	11.3	20.6	21.2	11.5	7.6	5.3	5.2	3.0	1.5	1.6	1.7	1.2	0.8	1.2	4.3
2008	36.2	42.3	32.6	20.6	12.3	9.0	16.3	16.7	9.1	6.0	4.2	4.1	2.4	1.2	1.3	1.3	1.0	0.7	4.3
2009	23.3	29.6	34.3	26.1	16.3	9.7	7.1	12.8	13.1	7.1	4.6	3.3	3.2	1.9	0.9	1.0	1.0	0.8	3.9
2010	27.7	19.0	23.9	27.4	20.6	12.8	7.6	5.5	9.9	10.1	5.5	3.6	2.5	2.5	1.4	0.7	0.8	0.8	3.6
2011	24.3	22.7	15.4	19.3	22.0	16.5	10.2	6.0	4.3	7.9	8.0	4.3	2.8	2.0	2.0	1.1	0.6	0.6	3.4
2012	36.5	19.9	18.5	12.5	15.6	17.7	13.2	8.2	4.8	3.5	6.3	6.4	3.5	2.3	1.6	1.6	0.9	0.5	3.3

Table 4.1.9 - Estimated numbers-at-age for southern rock sole, in millions, for Model 3

Males	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20+
1977	96.5	60.1	38.5	27.3	8.8	5.8	4.2	3.2	2.3	1.6	1.2	0.9	0.6	0.5	0.4	0.3	0.2	0.1	0.3
1978	106.0	73.5	45.1	28.1	19.5	6.2	4.1	2.9	2.2	1.6	1.1	0.8	0.6	0.4	0.3	0.2	0.2	0.1	0.3
1979	168.5	80.8	55.1	32.9	20.0	13.7	4.3	2.8	2.0	1.6	1.1	0.8	0.6	0.4	0.3	0.2	0.2	0.1	0.3
1980	309.2	128.6	61.1	41.0	24.1	14.6	10.0	3.1	2.1	1.5	1.1	0.8	0.6	0.4	0.3	0.2	0.2	0.1	0.3
1981	173.2	236.1	97.5	45.7	30.3	17.7	10.7	7.3	2.3	1.5	1.1	0.8	0.6	0.4	0.3	0.2	0.2	0.1	0.3
1982	232.5	132.2	179.0	72.9	33.8	22.3	13.0	7.8	5.3	1.7	1.1	0.8	0.6	0.4	0.3	0.2	0.2	0.1	0.3
1983	128.1	177.9	101.0	136.2	55.4	25.6	16.9	9.8	5.9	4.0	1.3	0.8	0.6	0.5	0.3	0.2	0.2	0.1	0.3
1984	132.8	98.0	135.5	76.4	102.6	41.6	19.2	12.7	7.4	4.4	3.0	0.9	0.6	0.4	0.3	0.2	0.2	0.1	0.3
1985	142.4	101.6	74.8	103.2	58.0	77.8	31.5	14.5	9.6	5.6	3.4	2.3	0.7	0.5	0.3	0.3	0.2	0.1	0.3
1986	128.3	109.0	77.7	57.2	78.8	44.3	59.3	24.0	11.1	7.3	4.3	2.6	1.7	0.5	0.4	0.3	0.2	0.1	0.4
1987	119.6	98.2	83.4	59.4	43.7	60.1	33.8	45.3	18.3	8.5	5.6	3.2	2.0	1.3	0.4	0.3	0.2	0.1	0.4
1988	71.7	91.5	75.0	63.4	45.1	33.1	45.5	25.6	34.2	13.8	6.4	4.2	2.5	1.5	1.0	0.3	0.2	0.1	0.4
1989	127.6	54.9	70.0	57.3	48.4	34.3	25.2	34.7	19.5	26.1	10.5	4.9	3.2	1.9	1.1	0.8	0.2	0.2	0.4
1990	54.8	97.6	41.9	53.2	43.4	36.6	26.0	19.0	26.2	14.7	19.7	8.0	3.7	2.4	1.4	0.8	0.6	0.2	0.4
1991	57.4	41.9	74.4	31.8	40.3	32.8	27.6	19.6	14.3	19.7	11.1	14.8	6.0	2.8	1.8	1.1	0.6	0.4	0.5
1992	45.2	43.9	32.0	56.7	24.2	30.6	24.8	20.9	14.7	10.8	14.8	8.3	11.1	4.5	2.1	1.4	0.8	0.5	0.7
1993	70.6	34.5	33.4	24.3	43.0	18.3	23.0	18.6	15.6	11.0	8.0	10.9	6.1	8.2	3.3	1.5	1.0	0.6	0.8
1994	56.8	53.8	26.3	25.3	18.4	32.3	13.7	17.1	13.8	11.5	8.1	5.8	8.0	4.5	5.9	2.4	1.1	0.7	1.0
1995	85.5	43.4	41.2	20.1	19.3	14.0	24.6	10.4	13.0	10.4	8.7	6.1	4.4	6.0	3.4	4.5	1.8	0.8	1.3
1996	68.1	65.4	33.2	31.4	15.3	14.7	10.6	18.6	7.8	9.8	7.8	6.5	4.6	3.3	4.5	2.5	3.3	1.3	1.6
1997	72.4	51.9	49.7	25.2	23.7	11.5	11.0	7.9	13.7	5.8	7.2	5.7	4.8	3.3	2.4	3.3	1.8	2.4	2.1
1998	76.1	55.3	39.6	37.8	19.0	17.8	8.6	8.2	5.9	10.2	4.3	5.3	4.2	3.5	2.4	1.8	2.4	1.3	3.3
1999	121.3	58.2	42.2	30.2	28.8	14.5	13.6	6.5	6.2	4.4	7.7	3.2	4.0	3.2	2.6	1.8	1.3	1.8	3.5
2000	168.9	92.7	44.5	32.3	23.0	21.9	11.0	10.3	4.9	4.7	3.4	5.8	2.4	3.0	2.4	2.0	1.4	1.0	4.0
2001	92.2	129.1	70.8	33.9	24.5	17.4	16.6	8.3	7.7	3.7	3.5	2.5	4.3	1.8	2.2	1.8	1.5	1.0	3.7
2002	70.5	70.4	98.4	53.8	25.7	18.5	13.1	12.4	6.2	5.8	2.8	2.6	1.8	3.2	1.3	1.6	1.3	1.1	3.4
2003	97.1	53.9	53.8	74.9	40.9	19.4	14.0	9.9	9.3	4.6	4.3	2.1	1.9	1.4	2.4	1.0	1.2	1.0	3.4
2004	113.4	74.2	41.1	40.9	56.8	30.9	14.7	10.5	7.4	7.0	3.5	3.2	1.5	1.4	1.0	1.8	0.7	0.9	3.2
2005	159.3	86.7	56.6	31.3	31.1	43.1	23.4	11.0	7.9	5.6	5.2	2.6	2.4	1.1	1.1	0.8	1.3	0.5	3.0
2006	96.7	121.7	66.1	43.0	23.7	23.5	32.4	17.5	8.2	5.9	4.1	3.9	1.9	1.8	0.8	0.8	0.6	1.0	2.6
2007	105.5	73.9	92.9	50.4	32.7	18.0	17.8	24.5	13.2	6.2	4.4	3.1	2.9	1.4	1.3	0.6	0.6	0.4	2.7
2008	33.8	80.4	56.2	70.3	37.9	24.5	13.4	13.1	18.0	9.7	4.5	3.2	2.2	2.1	1.0	0.9	0.4	0.4	2.2
2009	36.5	25.8	61.2	42.6	53.0	28.4	18.3	9.9	9.7	13.2	7.1	3.3	2.3	1.6	1.5	0.7	0.7	0.3	1.9
2010	56.3	27.9	19.6	46.5	32.2	40.0	21.4	13.7	7.4	7.2	9.8	5.2	2.4	1.7	1.2	1.1	0.5	0.5	1.6
2011	49.6	43.0	21.3	15.0	35.4	24.5	30.4	16.2	10.4	5.6	5.4	7.4	3.9	1.8	1.3	0.9	0.8	0.4	1.6
2012	93.5	37.9	32.8	16.2	11.4	26.9	18.5	22.9	12.2	7.8	4.2	4.1	5.5	2.9	1.4	1.0	0.7	0.6	1.5

Females	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20+
1977	96.5	64.5	44.8	35.0	12.4	9.1	7.2	5.9	4.6	3.4	2.7	2.1	1.7	1.3	1.1	0.8	0.6	0.5	1.3
1978	106.0	78.8	52.4	35.9	27.6	9.6	6.9	5.4	4.4	3.4	2.6	2.0	1.6	1.3	1.0	0.8	0.6	0.5	1.3
1979	168.5	86.6	64.0	42.0	28.3	21.3	7.3	5.2	4.1	3.3	2.5	1.9	1.5	1.2	0.9	0.7	0.6	0.5	1.3
1980	309.2	137.8	70.6	51.8	33.7	22.5	16.8	5.7	4.1	3.1	2.6	2.0	1.5	1.1	0.9	0.7	0.6	0.4	1.4
1981	173.2	252.8	112.4	57.2	41.7	26.8	17.8	13.2	4.5	3.2	2.5	2.0	1.5	1.1	0.9	0.7	0.6	0.4	1.4
1982	232.5	141.6	206.2	91.2	46.0	33.2	21.2	14.0	10.4	3.5	2.5	1.9	1.6	1.2	0.9	0.7	0.6	0.4	1.4
1983	128.1	190.3	115.8	168.5	74.3	37.4	27.0	17.2	11.3	8.4	2.9	2.0	1.6	1.3	1.0	0.7	0.6	0.4	1.5
1984	132.8	104.9	155.6	94.4	136.7	60.0	30.2	21.7	13.8	9.1	6.7	2.3	1.6	1.2	1.0	0.8	0.6	0.5	1.6
1985	142.4	108.7	85.8	127.1	77.0	111.2	48.8	24.5	17.6	11.2	7.4	5.4	1.8	1.3	1.0	0.8	0.6	0.5	1.6
1986	128.3	116.6	89.0	70.2	103.9	62.9	90.8	39.8	20.0	14.3	9.1	6.0	4.4	1.5	1.1	0.8	0.7	0.5	1.7
1987	119.6	105.1	95.4	72.8	57.4	84.9	51.4	74.1	32.5	16.3	11.7	7.5	4.9	3.6	1.2	0.9	0.7	0.5	1.8
1988	71.7	97.9	85.9	77.9	59.3	46.6	68.9	41.6	60.0	26.3	13.2	9.5	6.0	4.0	2.9	1.0	0.7	0.5	1.9
1989	127.6	58.7	80.1	70.3	63.7	48.4	38.0	56.1	33.9	48.9	21.4	10.7	7.7	4.9	3.2	2.4	0.8	0.6	2.0
1990	54.8	104.4	48.0	65.4	57.3	51.8	39.3	30.8	45.4	27.4	39.5	17.3	8.7	6.2	4.0	2.6	1.9	0.7	2.1
1991	57.4	44.8	85.3	39.1	53.2	46.5	41.9	31.7	24.8	36.6	22.1	31.8	13.9	7.0	5.0	3.2	2.1	1.5	2.2
1992	45.2	46.9	36.6	69.6	31.9	43.2	37.6	33.9	25.6	20.0	29.4	17.7	25.5	11.1	5.6	4.0	2.5	1.7	3.0
1993	70.6	36.9	38.3	29.8	56.5	25.8	34.8	30.2	27.1	20.4	15.9	23.3	14.0	20.1	8.8	4.4	3.1	2.0	3.6
1994	56.8	57.6	30.1	31.1	24.1	45.5	20.6	27.7	23.9	21.3	16.0	12.4	18.2	10.9	15.6	6.8	3.4	2.4	4.3
1995	85.5	46.5	47.1	24.6	25.4	19.7	37.0	16.8	22.5	19.4	17.3	13.0	10.1	14.7	8.8	12.6	5.5	2.7	5.5
1996	68.1	69.9	38.0	38.4	20.0	20.6	15.9	29.9	13.5	18.1	15.6	13.9	10.4	8.0	11.7	7.0	10.1	4.4	6.5
1997	72.4	55.6	57.0	30.8	31.1	16.1	16.5	12.7	23.7	10.7	14.2	12.2	10.8	8.1	6.2	9.1	5.4	7.8	8.4
1998	76.1	59.2	45.3	46.4	25.0	25.1	13.0	13.2	10.1	18.8	8.4	11.2	9.6	8.5	6.3	4.9	7.1	4.2	12.6
1999	121.3	62.2	48.4	37.0	37.8	20.4	20.4	10.5	10.7	8.2	15.2	6.8	9.1	7.7	6.8	5.1	3.9	5.7	13.6
2000	168.9	99.2	50.9	39.5	30.2	30.8	16.6	16.6	8.5	8.7	6.6	12.3	5.5	7.3	6.2	5.5	4.1	3.2	15.5
2001	92.2	138.1	81.0	41.5	32.1	24.5	24.9	13.4	13.3	6.8	6.9	5.3	9.8	4.4	5.8	5.0	4.4	3.3	14.8
2002	70.5	75.4	112.7	65.9	33.7	26.0	19.7	20.0	10.7	10.6	5.4	5.5	4.2	7.7	3.5	4.6	3.9	3.4	14.2
2003	97.1	57.6	61.6	91.9	53.7	27.3	21.0	15.9	16.1	8.6	8.5	4.3	4.4	3.3	6.2	2.7	3.6	3.1	14.0
2004	113.4	79.4	47.0	50.1	74.6	43.4	22.0	16.9	12.8	12.9	6.8	6.8	3.4	3.5	2.6	4.9	2.2	2.9	13.4
2005	159.3	92.7	64.8	38.4	40.8	60.5	35.1	17.8	13.6	10.2	10.3	5.5	5.4	2.7	2.8	2.1	3.9	1.7	12.9
2006	96.7	130.2	75.7	52.8	31.1	33.0	48.8	28.2	14.2	10.8	8.1	8.1	4.3	4.3	2.2	2.2	1.6	3.0	11.5
2007	105.5	79.1	106.4	61.7	43.0	25.3	26.7	39.5	22.8	11.4	8.7	6.5	6.5	3.5	3.4	1.7	1.7	1.3	11.6
2008	33.8	86.1	64.4	86.3	49.9	34.5	20.2	21.2	31.1	17.8	8.9	6.8	5.1	5.0	2.7	2.6	1.3	1.3	9.8
2009	36.5	27.6	70.1	52.2	69.7	40.1	27.6	16.0	16.7	24.4	14.0	7.0	5.3	3.9	3.9	2.1	2.0	1.0	8.5
2010	56.3	29.9	22.5	57.1	42.4	56.4	32.3	22.1	12.8	13.3	19.4	11.0	5.5	4.1	3.1	3.1	1.6	1.6	7.5
2011	49.6	46.0	24.4	18.4	46.5	34.5	45.8	26.2	17.9	10.4	10.8	15.6	8.9	4.4	3.3	2.5	2.5	1.3	7.3
2012	93.5	40.5	37.6	19.9	15.0	37.8	27.9	37.0	21.1	14.4	8.3	8.6	12.5	7.1	3.5	2.7	2.0	2.0	6.8

Table 4.1.10 - Estimated fishery selectivity-at-age by species and sex for Model 3

	Early fishery period				Middle fishery period				Later fishery period			
	N	N	S	S	N	N	S	S	N	N	S	S
Age	M	F	M	F	M	F	M	F	M	F	M	F
A	0.028	0.021	0.051	0.024	0.065	0.053	0.090	0.055	0.061	0.064	0.054	0.041
3	0.225	0.105	0.209	0.076	0.212	0.147	0.201	0.111	0.262	0.203	0.094	0.074
4	0.599	0.317	0.48	0.19	0.436	0.301	0.360	0.201	0.558	0.420	0.151	0.124
5	0.821	0.557	0.707	0.37	0.630	0.469	0.517	0.316	0.759	0.618	0.221	0.189
6	0.91	0.731	0.837	0.56	0.76	0.614	0.646	0.439	0.866	0.755	0.300	0.268
7	0.95	0.83	0.90	0.	0.84	0.722	0.742	0.556	0.921	0.841	0.382	0.353
8	0.975	0.896	0.943	0.81	0.89	0.800	0.810	0.654	0.951	0.893	0.462	0.438
9	0.98	0.932	0.9	0.88	0.92	0.854	0.859	0.733	0.967	0.926	0.538	0.519
10	0.99	0.9	0.9	0.9	0.9	0.892	0.893	0.7	0.978	0.948	0.607	0.593
11	0.993	0.967	0.983	0.9	0.9	0.919	0.918	0.840	0.984	0.962	0.668	0.657
12	0.99	0.97	0.98	0.9	0.97	0.939	0.936	0.875	0.989	0.972	0.721	0.712
13	0.9	0.9	0.9	0.	0.9	0.9	0.950	0.9	0.	0.979	0.767	0.759
14	0.9	0.98	0.9	0.9	0.9	0.964	0.960	0.922	0.994	0.984	0.806	0.799
15	0.99	0.99	0.9	0.98	0.98	0.973	0.968	0.937	0.995	0.988	0.840	0.832
16	0.9	0.9	0.	0.9	0.	0.	0.	0.	0.996	0.991	0.868	0.859
17	0.	0.9	0.9	0.9	0.	0.984	0.980	0.959	0.997	0.993	91	0.882
18	0.99	0.99	0.99	0.9	0.9	0.987	0.983	0.967	0.998	0.994	0.911	0.902
19	0.9	0.9	0.9	0.	0.	0.	0.987	0.9	0.9	0.9	0.9	0.918
20	0.9	0.9	0.9	0.9	0.9	0.	0.9	0.9	0.999	0.997	0.942	0.932
21	1.00	0.99	0.99	0.9	0.99	0.994	0.992	0.982	0.999	0.997	0.953	0.945
22	1.00	0.9	0.9	0.9	0.	0.9	0.993	0.98	0.99	0.998	0.963	0.955
23	1.00	0.99	0.9	0.9	0.9	0.997	0.995	0.989	1.000	0.999	0.971	0.964
24	1.00	0.9	0.9	0.9	0.99	0.998	0.996	0.99	1.000	0.999	0.978	0.972
25	1.0	0.9	1.	0.	0.9	0.998	0.997	0.	1.00	0.999	0.983	0.978
26	1.000	1.000	1.00	0.9	1.0	0.999	0.998	0.995	1.000	0.999	0.988	0.984
27	1.000	1.00	1.000	0.99	1.000	0.999	0.999	0.997	1.000	1.000	0.992	0.989
28	1.000	1.0	1.0	1.0	1.00	1.000	0.999	0.998	1.000	1.000	0.995	0.993
29	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.999	1.000	1.000	0.998	0.997
30	1.000	1.00	1.00	1.00	1.00	1.00	1.000	1.000	1.000	1.000	1.000	1.000

Table 4.1.11 - Female maturity-at-age (fixed) and estimated survey selectivity-at-age by species and sex for Model 3

	Maturity		Early survey period				Middle survey period				Later survey period			
	N	S	N	N	S	S	N	N	S	S	N	N	S	S
Age	F	F	M	F	M	F	M	F	M	F	M	F	M	F
2	0.000	0.000	0.051	0.02	0.07	0.028	0.03	0.02	0.04	0.021	0.02	0.02	0.02	0.014
3	0.000	0.000	0.164	0.09	0.15	0.071	0.10	0.06	0.10	0.043	0.21	0.15	0.07	0.043
4	0.000	0.000	0.357	0.25	0.28	0.156	0.26	0.15	0.20	0.084	0.56	0.42	0.19	0.113
5	0.020	0.010	0.547	0.44	0.43	0.281	0.44	0.27	0.33	0.144	0.79	0.67	0.35	0.235
6	0.240	0.040	0.691	0.60	0.56	0.427	0.60	0.40	0.46	0.225	0.90	0.82	0.51	0.394
7	0.720	0.150	0.789	0.73	0.66	0.566	0.72	0.53	0.58	0.318	0.94	0.89	0.64	0.553
8	0.930	0.370	0.853	0.81	0.74	0.681	0.80	0.63	0.67	0.416	0.96	0.93	0.73	0.683
9	0.980	0.630	0.896	0.86	0.80	0.768	0.86	0.71	0.74	0.510	0.98	0.96	0.80	0.779
10	0.990	0.820	0.925	0.90	0.85	0.831	0.89	0.78	0.80	0.594	0.98	0.97	0.85	0.846
11	1.000	0.910	0.945	0.93	0.88	0.875	0.92	0.83	0.84	0.666	0.99	0.98	0.89	0.891
12	1.000	0.960	0.960	0.94	0.91	0.907	0.94	0.87	0.87	0.726	0.99	0.98	0.91	0.922
13	1.000	0.980	0.970	0.96	0.92	0.930	0.95	0.90	0.90	0.776	0.99	0.99	0.93	0.943
14	1.000	0.990	0.977	0.97	0.94	0.946	0.96	0.92	0.92	0.816	0.99	0.99	0.94	0.958
15	1.000	0.990	0.983	0.97	0.95	0.958	0.97	0.94	0.93	0.849	0.99	0.99	0.95	0.968
16	1.000	0.990	0.987	0.98	0.96	0.967	0.98	0.95	0.95	0.876	0.99	0.99	0.96	0.975
17	1.000	1.000	0.990	0.98	0.97	0.974	0.98	0.96	0.95	0.898	0.99	0.99	0.97	0.981
18	1.000	1.000	0.992	0.99	0.97	0.979	0.98	0.97	0.96	0.916	0.99	0.99	0.97	0.985
19	1.000	1.000	0.994	0.99	0.98	0.983	0.99	0.97	0.97	0.930	0.99	0.99	0.98	0.988
20	1.000	1.000	0.995	0.99	0.98	0.986	0.99	0.98	0.97	0.943	0.99	0.99	0.98	0.990
21	1.000	1.000	0.997	0.99	0.98	0.989	0.99	0.98	0.98	0.954	1.00	0.99	0.98	0.993
22	1.000	1.000	0.998	0.99	0.99	0.992	0.99	0.99	0.98	0.963	1.00	0.99	0.99	0.994
23	1.000	1.000	0.998	0.99	0.99	0.993	0.99	0.99	0.99	0.970	1.00	0.99	0.99	0.996
24	1.000	1.000	0.999	0.99	0.99	0.995	0.99	0.99	0.99	0.977	1.00	1.00	0.99	0.997
25	1.000	1.000	0.999	0.99	0.99	0.996	0.99	0.99	0.99	0.982	1.00	1.00	0.99	0.997
26	1.000	1.000	0.999	0.99	0.99	0.997	0.99	0.99	0.99	0.987	1.00	1.00	0.99	0.998
27	1.000	1.000	1.000	0.99	0.99	0.998	0.99	0.99	0.99	0.991	1.00	1.00	0.99	0.999
28	1.000	1.000	1.000	1.00	0.99	0.999	1.00	0.99	0.99	0.994	1.00	1.00	0.99	0.999
29	1.000	1.000	1.000	1.00	0.99	0.999	1.00	1.00	0.99	0.997	1.00	1.00	1.00	1.000
30	1.000	1.000	1.000	1.00	1.00	1.000	1.00	1.00	1.00	1.000	1.00	1.00	1.00	1.000

Table 4.1.12 - Estimated model parameter values and standard deviations for Model 3

Parameter name	value	std dev
\log RO	17.412	0.060632
\log RO	18.353	0.052295
\log dev initRO[1]	-0.22032	0.26999
\log dev initRO[2]	-0.72124	0.17946
\log devM[1]	0.31928	0.030524
\log devM[3]	0.28962	0.024878
mean log Fmort	-3.7524	0.084102
mean log Fmort	-3.6174	0.073616
\log Fmort 1 dev	1.0061	0.38105
\log Fmort 1 dev	0.87478	0.3736
\log Fmort 1 dev	0.77874	0.40152
\log Fmort 1 dev	0.64105	0.4169
\log Fmort 1 dev	0.65349	0.43923
\log Fmort 1 dev	-0.61577	0.42808
\log Fmort 1 dev	-0.17146	0.4557
\log Fmort 1 dev	-0.99955	0.49347
\log Fmort 1 dev	-1.3673	0.51153
\log Fmort 1 dev	-2.3417	0.51433
\log Fmort 1 dev	-1.2278	0.50341
\log Fmort 1 dev	-1.0227	0.57657
\log Fmort 1 dev	-0.73793	0.55625
\log Fmort 1 dev	0.0008367	0.62058
\log Fmort 1 dev	0.58163	0.28058
\log Fmort 1 dev	0.65172	0.21302
\log Fmort 1 dev	0.61976	0.25425
\log Fmort 1 dev	0.062304	0.2007
\log Fmort 1 dev	-0.017266	0.26487
\log Fmort 1 dev	0.084691	0.2971
\log Fmort 1 dev	0.10042	0.24963
\log Fmort 1 dev	-0.19582	0.22971
\log Fmort 1 dev	-0.94098	0.3396
\log Fmort 1 dev	0.77176	0.22117
\log Fmort 1 dev	0.35944	0.3078
\log Fmort 1 dev	0.92029	0.20025
\log Fmort 1 dev	-0.12149	0.3648
\log Fmort 1 dev	-1.4181	0.40507
\log Fmort 1 dev	-0.033715	0.36664
\log Fmort 1 dev	0.93269	0.16025
\log Fmort 1 dev	0.51627	0.32319
\log Fmort 1 dev	0.80659	0.32531
\log Fmort 1 dev	0.94986	0.23786
\log Fmort 1 dev	0.31472	0.22404
\log Fmort 1 dev	-0.14009	0.36411
\log Fmort 1 dev	-0.27554	0.22665
\log Fmort 2 dev	0.81318	0.39828
\log Fmort 2 dev	0.73986	0.36724
\log Fmort 2 dev	0.7788	0.32331

log Fmort 2 dev	0.59775	0.30531
log Fmort 2 dev	0.56397	0.28263
log Fmort 2 dev	-0.82899	0.25066
log Fmort 2 dev	-0.13365	0.19163
log Fmort 2 dev	-0.8538	0.16164
log Fmort 2 dev	-2.0076	0.2597
log Fmort 2 dev	-2.0239	0.12753
log Fmort 2 dev	-0.7143	0.1143
log Fmort 2 dev	-1.6688	0.22706
log Fmort 2 dev	-0.70993	0.13719
log Fmort 2 dev	-0.26008	0.27597
log Fmort 2 dev	0.09255	0.28557
log Fmort 2 dev	0.54999	0.16198
log Fmort 2 dev	0.84753	0.15418
log Fmort 2 dev	-0.5326	0.25625
log Fmort 2 dev	0.080546	0.18915
log Fmort 2 dev	0.85776	0.12949
log Fmort 2 dev	0.66514	0.13749
log Fmort 2 dev	-0.34444	0.22179
log Fmort 2 dev	-0.37755	0.184
log Fmort 2 dev	0.27784	0.303
log Fmort 2 dev	0.53322	0.24559
log Fmort 2 dev	0.22746	0.3518
log Fmort 2 dev	0.42254	0.232
log Fmort 2 dev	0.24935	0.12557
log Fmort 2 dev	0.55405	0.25491
log Fmort 2 dev	0.0011611	0.39
log Fmort 2 dev	1.0124	0.2344
log Fmort 2 dev	0.94629	0.3151
log Fmort 2 dev	0.56405	0.355
log Fmort 2 dev	-0.20725	0.36453
log Fmort 2 dev	0.16882	0.2828
log Fmort 2 dev	-0.88136	0.3691
log rec 1 dev	-0.31943	0.48586
log rec 1 dev	-0.10837	0.4881
log rec 1 dev	-0.25218	0.4533
log rec 1 dev	-0.51348	0.4448
log rec 1 dev	-0.65647	0.4132
log rec 1 dev	-0.35354	0.39325
log rec 1 dev	-0.32617	0.40245
log rec 1 dev	-0.058354	0.3436
log rec 1 dev	0.57237	0.22431
log rec 1 dev	0.63426	0.19875
log rec 1 dev	0.75899	0.1480
log rec 1 dev	0.41174	0.15406
log rec 1 dev	-0.1976	0.17358
log rec 1 dev	-0.032584	0.12754
log rec 1 dev	0.026239	0.10757
log rec 1 dev	-0.20606	0.1118
log rec 1 dev	-0.51139	0.12568

\log rec 1 dev	-0.044064	0.093561
log rec 1 dev	0.27871	0.076732
log rec 1 dev	0.063912	0.081889
log rec 1 dev	0.1849	0.07796
log rec 1 dev	0.37292	0.075045
log rec 1 dev	0.75016	0.068365
log rec 1 dev	0.50025	0.077133
log rec 1 dev	-0.32033	0.10802
\log rec 1 dev	-0.2295	0.10523
log rec 1 dev	0.060279	0.097561
log rec 1 dev	0.29998	0.095966
log rec 1 dev	0.35201	0.10318
log rec 1 dev	-0.006575	0.13211
log rec 1 dev	-0.44988	0.18505
log rec 1 dev	-0.27392	0.23324
\log rec 1 dev	-0.40683	0.38252
log rec 2 dev	0.58958	0.26753
log rec 2 dev	1.1964	0.20331
log rec 2 dev	0.61673	0.253
log rec 2 dev	0.91162	0.17196
log rec 2 dev	0.31564	0.19523
log rec 2 dev	0.3514	0.19386
log rec 2 dev	0.42133	0.16916
log rec 2 dev	0.31706	0.17364
log rec 2 dev	0.24666	0.16997
log rec 2 dev	-0.26502	0.21864
log rec 2 dev	0.31137	0.12253
log rec 2 dev	-0.53329	0.18917
log rec 2 dev	-0.48776	0.14583
log rec 2 dev	-0.72693	0.15284
log rec 2 dev	-0.28096	0.10817
log rec 2 dev	-0.49786	0.11745
log rec 2 dev	-0.088618	0.087424
log rec 2 dev	-0.31694	0.093345
log rec 2 dev	-0.25498	0.088294
\log rec 2 dev	-0.20558	0.086629
\log rec 2 dev	0.26046	0.071641
\log rec 2 dev	0.59191	0.065454
log rec 2 dev	-0.013118	0.088338
log rec 2 dev	-0.28187	0.10418
log rec 2 dev	0.038455	0.092894
log rec 2 dev	0.1938	0.093436
log rec 2 dev	0.53346	0.088516
log rec 2 dev	0.033741	0.11552
log rec 2 dev	0.12082	0.1247
log rec 2 dev	-1.0174	0.22466
log rec 2 dev	-0.93899	0.26625
log rec 2 dev	-0.50714	0.31726
log rec 2 dev	-0.63397	0.42005
log init 1 dev	-0.28617	0.50406

log init 1 dev	-0.11349	0.52498
\log init 1 dev	-0.09671	0.53315
\log init 1 dev	0.067602	0.57767
log init 1 dev	0.62894	0.63699
\log init 1 dev	0.20535	0.6148
log init 1 dev	-0.017276	0.56474
log init 1 dev	0.04145	0.57749
log init 1 dev	0.14136	0.59696
\log init 1 dev	0.027453	0.58082
log init 1 dev	-0.098685	0.55672
log init 1 dev	-0.13016	0.54963
\log init 1 dev	-0.11532	0.55307
log init 1 dev	-0.092137	0.55913
\log init 1 dev	-0.066256	0.56599
\log init 1 dev	-0.040129	0.57301
\log init 1 dev	-0.020069	0.57858
log init 1 dev	-0.015233	0.58024
\log init 1 dev	-0.011608	0.58146
log init 1 dev	-0.008902	0.58235
\log init 2 dev	0.8475	0.304
log init 2 dev	0.75309	0.30059
log init 2 dev	0.5523	0.28963
log init 2 dev	0.39519	0.28195
log init 2 dev	0.36771	0.28203
log init 2 dev	-0.42795	0.48247
log init 2 dev	-0.48673	0.47525
log init 2 dev	-0.45152	0.47874
log init 2 dev	-0.35946	0.49216
\log init 2 dev	-0.33321	0.499
log init 2 dev	-0.32855	0.50319
log init 2 dev	-0.28235	0.51187
log init 2 dev	-0.21595	0.52513
\log init 2 dev	-0.14851	0.54032
log init 2 dev	-0.076985	0.55741
log init 2 dev	-0.017099	0.57277
\log init 2 dev	0.033664	0.58669
\log init 2 dev	0.051331	0.59297
log init 2 dev	0.061589	0.59689
\log init 2 dev	0.065939	0.59886
log fsh sel[1]	3.1537	0.021614
log fsh sel[2]	-0.78912	0.15715
log fsh sel[3]	3.3343	0.025312
log fsh sel[4]	-1.2504	0.12818
log fsh sel[9]	3.2606	0.12233
log fsh sel[10]	-1.3654	0.51878
log fsh sel[11]	3.425	0.12928
log fsh sel[12]	-1.6936	0.40544
log fsh sel[17]	3.1706	0.019231
log fsh sel[18]	-1.1139	0.10806
log fsh sel[19]	3.2918	0.030801

log fsh sel[20]	-1.5232	0.12709
log fsh sel[21]	3.7122	0.083841
log fsh sel[22]	-1.8602	0.093305
log fsh sel[23]	3.6236	0.037826
log fsh sel[24]	-1.9184	0.083317
log srv sel[1]	3.3246	0.18287
log srv sel[2]	-1.4091	0.61333
log srv sel[3]	3.4177	0.044843
log srv sel[4]	-1.4664	0.1560
log srv sel[9]	3.3895	0.068577
log srv sel[10]	-1.3666	0.20175
log srv sel[11]	3.6056	0.04357
log srv sel[12]	-1.7036	0.11302
log srv sel[17]	3.1675	0.017141
log srv sel[18]	-0.83954	0.068255
log srv sel[19]	3.2647	0.021669
log srv sel[20]	-1.1951	0.069516
log srv sel[21]	3.3408	0.025537
log srv sel[22]	-1.1159	0.073833
log srv sel[23]	3.4276	0.019962
log srv sel[24]	-1.2994	0.053714

Table 4.1.13 - Results for the projection scenarios for northern rock sole for Model 3
Scenarios 1 and 2, Maximum tier 3 ABC harvest permissible

Year	ABC	OFL	Catch	SSB	F	Total Bio
2012	10,061	11,740	1,000	43,851	0.014	90,832
2013	9,792	11,426	9,792	42,796	0.152	89,310
2014	8,561	9,991	8,561	36,500	0.152	80,038
2015	7,696	8,984	7,696	31,078	0.152	73,726
2016	7,128	8,322	7,128	26,880	0.152	69,556
2017	6,768	7,902	6,768	24,273	0.152	66,876
2018	6,538	7,635	6,538	22,738	0.152	65,163
2019	6,362	7,426	6,362	21,832	0.151	64,083
2020	6,210	7,246	6,210	21,273	0.149	63,470
2021	6,117	7,135	6,117	20,915	0.148	63,160
2022	6,071	7,082	6,071	20,731	0.147	63,026
2023	6,052	7,060	6,052	20,640	0.147	62,940
2024	6,049	7,056	6,049	20,619	0.147	62,901
2025	6,041	7,046	6,041	20,625	0.147	62,878
Scenario	F					

Scenario 3, $F_{A B C}$ at average F over the past 5 years

Year	ABC	OFL	Catch	SSB	F	Total Bio
2012	-	11,740	1,000	43,851	0.014	90,832
2013	9,792	11,426	2,481	43,578	0.037	89,310
2014	9,419	10,992	2,386	41,332	0.037	87,212
2015	9,196	10,733	2,328	38,989	0.037	86,209
2016	9,105	10,628	2,304	37,054	0.037	85,961
2017	9,103	10,626	2,303	36,204	0.037	86,210
2018	9,147	10,678	2,314	36,076	0.037	86,716
2019	9,213	10,755	2,331	36,294	0.037	87,337
2020	9,287	10,841	2,349	36,608	0.037	88,006
2021	9,361	10,927	2,368	36,902	0.037	88,626
2022	9,429	11,007	2,385	37,209	0.037	89,165
2023	9,487	11,074	2,400	37,490	0.037	89,578
2024	9,531	11,126	2,411	37,758	0.037	89,916
2025	9,564	11,164	2,420	37,997	0.037	90,186
Scenario						

Scenario 4, 1/2 Maximum ABC harvest permissible

Year	ABC	OFL	Catch	SSB	F	Total Bio
2012	-	11,740	1,000	43,851	0.014	90,832
2013	9,792	11,426	5,129	43,302	0.077	89,310
2014	9,107	10,629	4,770	39,567	0.077	84,611
2015	8,635	10,078	4,520	36,004	0.077	81,546
2016	8,345	9,741	4,367	33,097	0.077	79,662
2017	8,182	9,552	4,281	31,436	0.077	78,605

2018	8,096	9,452	4,235	30,619	0.077	78,057
2019	8,056	9,405	4,214	30,256	0.077	77,824
2020	8,042	9,390	4,207	30,087	0.077	77,799
2021	8,045	9,393	4,208	29,984	0.077	77,853
2022	8,056	9,405	4,214	29,962	0.077	77,932
2023	8,066	9,417	4,219	29,974	0.077	77,971
2024	8,072	9,424	4,222	30,018	0.077	78,006
2025	8,074	9,427	4,223	30,073	0.077	78,033

Scenario 5, No fishing ($F_{A B C}=0$)

Year	ABC	OFL	Catch	SSB	F	Total Bio
2012	-	11,740	1,000	43,851	0.014	90,832
2013	9,792	11,426	0	43,830	0.000	89,310
2014	9,711	11,332	0	43,000	0.000	89,650
2015	9,740	11,367	0	41,910	0.000	90,724
2016	9,866	11,515	0	41,059	0.000	92,247
2017	10,051	11,731	0	41,180	0.000	94,014
2018	10,258	11,973	0	41,931	0.000	95,829
2019	10,465	12,214	0	42,936	0.000	97,580
2020	10,660	12,442	0	43,944	0.000	99,222
2021	10,839	12,651	0	44,842	0.000	100,678
2022	10,998	12,836	0	45,674	0.000	101,934
2023	11,133	12,994	0	46,410	0.000	102,961
2024	11,243	13,122	0	47,071	0.000	103,818
2025	11,332	13,226	0	47,649	0.000	104,527

Scenario 6, Whether N rock sole are overfished - $\mathrm{SB}_{35 \%}=17,400$

Year	ABC	OFL	Catch	SSB	F	Total Bio
2012	-	11,740	1,000	43,851	0.014	90,832
2013	9,792	11,426	11,426	42,612	0.180	89,310
2014	8,369	9,768	9,768	35,437	0.180	78,436
2015	7,382	8,617	8,617	29,450	0.180	71,102
2016	6,737	7,866	7,866	24,916	0.180	66,296
2017	6,329	7,391	7,391	22,100	0.180	63,223
2018	5,996	6,993	6,993	20,438	0.177	61,267
2019	5,652	6,588	6,588	19,507	0.170	60,138
2020	5,474	6,382	6,382	19,028	0.166	59,716
2021	5,403	6,299	6,299	18,782	0.164	59,644
2022	5,394	6,289	6,289	18,709	0.164	59,716
2023	5,405	6,300	6,300	18,710	0.164	59,781
2024	5,422	6,321	6,321	18,757	0.164	59,841
2025	5,435	6,336	6,336	18,809	0.164	59,879

[^1]| Year | ABC | OFL | Catch | SSB | F | Total Bio |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2012 | - | 11,740 | 1,000 | 43,851 | 0.014 | 90,832 |
| 2013 | 9,792 | 11,426 | 9,792 | 42,796 | 0.152 | 89,310 |
| 2014 | 8,561 | 9,991 | 8,561 | 36,500 | 0.152 | 80,038 |
| 2015 | 7,696 | 8,984 | 8,984 | 30,944 | 0.180 | 73,726 |
| 2016 | 6,978 | 8,147 | 8,147 | 26,099 | 0.180 | 68,272 |
| 2017 | 6,509 | 7,601 | 7,601 | 23,026 | 0.180 | 64,680 |
| 2018 | 6,183 | 7,216 | 7,216 | 21,140 | 0.179 | 62,322 |
| 2019 | 5,816 | 6,781 | 6,781 | 19,991 | 0.173 | 60,819 |
| 2020 | 5,577 | 6,502 | 6,502 | 19,331 | 0.168 | 60,094 |
| 2021 | 5,461 | 6,367 | 6,367 | 18,958 | 0.165 | 59,827 |
| 2022 | 5,422 | 6,321 | 6,321 | 18,801 | 0.164 | 59,787 |
| 2023 | 5,415 | 6,313 | 6,313 | 18,752 | 0.164 | 59,793 |
| 2024 | 5,424 | 6,324 | 6,324 | 18,771 | 0.164 | 59,829 |
| 2025 | 5,433 | 6,334 | 6,334 | 18,809 | 0.164 | 59,860 |

Table 4.1.14 - Results of the projection scenarios for southern rock sole for Model 3
Scenarios 1 and 2, Maximum tier 3 ABC harvest permissible

Year	ABC	OFL	Catch	SSB	F	Total Bio
2012	18,770	22,100	1,000	85,871	0.010	209,978
2013	18,635	21,936	18,635	82,886	0.193	208,853
2014	16,410	19,316	16,410	72,579	0.193	192,733
2015	14,613	17,204	14,613	62,146	0.193	182,787
2016	13,284	15,645	13,284	52,832	0.193	177,223
2017	12,403	14,599	12,403	45,824	0.193	175,208
2018	10,992	12,832	10,992	41,692	0.177	175,300
2019	10,518	12,297	10,518	40,277	0.171	177,645
2020	10,633	12,449	10,633	40,548	0.171	180,898
2021	10,944	12,825	10,944	41,490	0.174	183,784
2022	11,286	13,238	11,286	42,577	0.176	186,145
2023	11,593	13,606	11,593	43,554	0.179	187,788
2024	11,843	13,905	11,843	44,392	0.180	189,144
2025	12,044	14,145	12,044	45,082	0.182	190,072
Scen	3,					

Scenario 3, $F_{A B C}$ at average F over the past 5 years

Year	ABC	OFL	Catch	SSB	F	Total Bio
2012	-	22,100	1,000	85,871	0.010	209,978
2013	18,635	21,936	3,674	87,319	0.036	208,853
2014	18,111	21,316	3,573	85,265	0.036	207,550
2015	17,637	20,758	3,480	81,177	0.036	208,678
2016	17,298	20,361	3,411	76,312	0.036	211,246
2017	17,138	20,177	3,377	72,282	0.036	215,196
2018	17,158	20,205	3,378	69,954	0.036	219,762
2019	17,330	20,412	3,409	69,664	0.036	224,683
2020	17,615	20,751	3,463	70,955	0.036	229,717
2021	17,968	21,169	3,531	72,976	0.036	234,248
2022	18,353	21,622	3,605	75,232	0.036	238,317
2023	18,738	22,076	3,681	77,402	0.036	241,747
2024	19,103	22,506	3,753	79,446	0.036	244,912
2025	19,435	22,896	3,819	81,332	0.036	247,607

Scenario 4, 1/2 Maximum ABC harvest permissible

Year	ABC	OFL	Catch	SSB	F	Total Bio
2012	-	22,100	1,000	85,871	0.010	209,978
2013	18,635	21,936	9,481	85,623	0.095	208,853
2014	17,448	20,537	8,880	80,239	0.095	201,796
2015	16,420	19,328	8,355	73,380	0.095	198,316
2016	15,631	18,403	7,950	66,377	0.095	197,244
2017	15,115	17,800	7,681	60,745	0.095	198,322

2018	14,853	17,497	7,542	57,197	0.095	200,590
2019	14,798	17,437	7,508	55,885	0.095	203,622
2020	14,892	17,552	7,552	56,234	0.095	207,050
2021	15,077	17,769	7,644	57,368	0.095	210,173
2022	15,302	18,034	7,760	58,778	0.095	212,979
2023	15,540	18,314	7,884	60,162	0.095	215,262
2024	15,772	18,588	8,002	61,470	0.095	217,383
2025	15,984	18,837	8,108	62,669	0.095	219,130

Scenario 5, No fishing ($F_{A B C}=0$)

Year	ABC	OFL	Catch	SSB	F	Total Bio
2012	-	22,100	1,000	85,871	0.010	209,978
2013	18,635	21,936	0	88,377	0.000	208,853
2014	18,531	21,810	0	88,511	0.000	211,192
2015	18,436	21,697	0	86,391	0.000	215,443
2016	18,428	21,689	0	83,185	0.000	220,661
2017	18,554	21,840	0	80,532	0.000	226,861
2018	18,819	22,156	0	79,363	0.000	233,356
2019	19,205	22,614	0	80,110	0.000	239,959
2020	19,679	23,175	0	82,381	0.000	246,486
2021	20,204	23,794	0	85,333	0.000	252,367
2022	20,747	24,434	0	88,479	0.000	257,672
2023	21,281	25,062	0	91,480	0.000	262,241
2024	21,786	25,657	0	94,308	0.000	266,458
2025	22,250	26,202	0	96,930	0.000	270,120
Scne	$6, ~$					

Scenario 6, Whether S rock sole are overfished - $\mathrm{SB}_{35 \%}=39,000$

Year	ABC	OFL	Catch	SSB	F	Total Bio
2012	-	22,100	1,000	85,871	0.010	209,978
2013	18,635	21,936	21,936	81,879	0.230	208,853
2014	16,037	18,878	18,878	69,897	0.230	189,467
2015	13,994	16,477	16,477	58,401	0.230	177,425
2016	12,516	14,742	14,742	48,530	0.230	170,581
2017	10,748	12,541	12,541	41,571	0.211	167,808
2018	9,411	11,007	11,007	37,869	0.191	168,543
2019	9,120	10,678	10,678	36,817	0.185	171,600
2020	9,380	10,988	10,988	37,320	0.188	175,347
2021	9,803	11,488	11,488	38,377	0.193	178,472
2022	10,212	11,973	11,973	39,477	0.197	180,840
2023	10,555	12,377	12,377	40,396	0.201	182,329
2024	10,809	12,679	12,679	41,126	0.204	183,434
2025	10,993	12,893	12,893	41,681	0.206	184,074
Scen	7,					

[^2]| Year | ABC | OFL | Catch | SSB | F | Total Bio |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 2012 | - | 22,100 | 1,000 | 85,871 | 0.010 | 209,978 |
| 2013 | 18,635 | 21,936 | 18,635 | 82,886 | 0.193 | 208,853 |
| 2014 | 16,410 | 19,316 | 16,410 | 72,579 | 0.193 | 192,733 |
| 2015 | 14,613 | 17,204 | 17,204 | 61,367 | 0.230 | 182,787 |
| 2016 | 12,996 | 15,306 | 15,306 | 50,822 | 0.230 | 174,632 |
| 2017 | 11,531 | 13,443 | 13,443 | 43,204 | 0.220 | 170,831 |
| 2018 | 9,881 | 11,550 | 11,550 | 38,928 | 0.197 | 170,289 |
| 2019 | 9,413 | 11,017 | 11,017 | 37,501 | 0.189 | 172,551 |
| 2020 | 9,554 | 11,190 | 11,190 | 37,741 | 0.190 | 175,796 |
| 2021 | 9,895 | 11,596 | 11,596 | 38,611 | 0.194 | 178,620 |
| 2022 | 10,253 | 12,020 | 12,020 | 39,586 | 0.198 | 180,826 |
| 2023 | 10,566 | 12,389 | 12,389 | 40,427 | 0.201 | 182,242 |
| 2024 | 10,804 | 12,673 | 12,673 | 41,115 | 0.204 | 183,327 |
| 2025 | 10,982 | 12,881 | 12,881 | 41,652 | 0.206 | 183,975 |

Figure 4.1.1 - Total catch for GOA shallow-water flatfish by area (as of 2012-10-23)

Figure 4.1.2 - Observed fishery catch of GOA U/N/S rock sole by area (based on extrapolated fishery observer data; as of 2012-10-23)

Figure 4.1.3 - Percent of the total shallow-water flatfish catch that is observed (based on extrapolated fishery observer data; as of 2012-10-23)

Figure 4.1.4 - Percent of the observed shallow-water flatfish catch that is U/N/S rock sole (based on extrapolated fishery observer data; as of 2012-10-23)

Figure 4.1.5 - GOA NMFS bottom trawl survey estimates for U rock sole by area

Figure 4.1.6 - GOA NMFS bottom trawl survey estimates for N rock sole by area

Figure 4.1.7 - GOA NMFS bottom trawl survey estimates for S rock sole by area

Figure 4.1.8 - Comparison of model configuration estimates for total biomass

Total biomass comparison-S

Figure 4.1.9 - Comparison of model configuration estimates for spawning biomass

Figure 4.1.10 - Comparison of model configuration estimates for age-2 recruits

Age-2 recruits comparison - N

Age-2 recruits comparison-S

Figure 4.1.11 - Estimated total (age 3+) biomass of northern and southern rock sole for Model 3

Figure 4.1.12 - Estimated female spawning biomass of northern and southern rock sole for Model 3
Female spawning biomass

Figure 4.1.13 - Estimated age-2 female recruits for northern and southern rock sole for Model 3; the number of age- 2 male recruits is assumed to be the same as the number of age- 2 female recruits in each year (1:1 ratio)

Age-2 female/male recruits

Figure 4.1.14 - Estimates of total (age 3+) and female spawning biomass and age-2 recruits for northern (N) and southern (S) rock sole (error bars indicate the 95% uncertainty intervals) for Model 3

Figure 4.1.15 - Total shallow-water flatfish catch, calculated total U/N/S rock sole catch, and estimated northern (N) and southern (N) rock sole catch for Model 3

Figure 4.1.16 - Annual fully-selected fishing mortality for northern and southern rock sole females for Model 3

Figure 4.1.17 - Annual fully-selected fishing mortality for northern and southern rock sole males for Model 3

Figure 4.1.18 - Estimates of biomass from the NMFS GOA bottom trawl survey (black filled circles - U rock sole, blue filled circles - N rock sole, green filled circles - S rock sole, red filled circles - model estimates for Model 3)

Figure 4.1.19 - Estimates of fraction female (by number) from the NMFS GOA bottom trawl survey (black filled circles - U rock sole, blue filled circles - N rock sole, green filled circles - S rock sole, red filled circles - model estimates for Model 3)

Estimated survey fraction female (numbers)

Figure 4.1.20 - Fishery (before 1990, 1990-1999, and 2000 on) selectivity-at-length and -at-age by species and sex for Model 3

Fishery selectivity-at-length

Fishery selectivity-at-length

Fishery selectivity-at-age

Fishery selectivity-at-age

Fishery selectivity-at-age

Figure 4.1.21 - Survey (1984-1987, 1990-1993, and 1996 on) selectivity-at-length and -at-age by species and sex for Model 3

Figure 4.1.22 - Length distributions for the NMFS GOA bottom trawl survey by species and sex (black data, red - model estimates for Model 3); "not fit" indicates data were not used in model fitting

Figure 4.1.23 - Age distributions for the NMFS GOA bottom trawl survey by species and sex (black data, red - model estimates for Model 3); "not fit" indicates data were not used in model fitting

Figure 4.1.24 - Average length-at-age for the NMFS GOA bottom trawl survey by species and sex (black - data, red - model estimates for Model 3)

Figure 4.1.25 - Length distributions of rock sole catch in the shallow-water flatfish fishery by species and sex (black - data, red - model estimates for Model 3)

| 1984 U males |
| :--- | :--- |
| $\mathrm{N}=849$ |
| $\mathrm{effN}=64.9$ |

2005 U males
$\mathrm{N}=67$
$\mathrm{effN}=63.9$

1992 U females
$N=7525$ $N=7525$
effN $=120.9$

| 2012 U fepples |
| :--- | :--- |
| $\mathrm{N}=16$ |
| eff $\mathrm{N}=1.6$ |

2007 N males
$\mathrm{N}=29$
effN = 12.1

$2010 \quad N$
$N=3461$
effN = 13.7

2009 S males
$\mathrm{N}=88$
$\mathrm{eff} \mathrm{N}=21$

2000 S females $\begin{aligned} & N=1038 \\ & \text { effN }=142.4 \end{aligned}$	2001 S females $\begin{aligned} & N=1383 \\ & \text { effN }=102.8 \end{aligned}$	2002 S females $\begin{aligned} & N=1208 \\ & \text { effN }=274.4 \end{aligned}$

Figure 4.1.26 - Length-at-age for northern and southern rock sole males and females, based on growth parameters from Stark and Somerton, 2002

Length-at-age

Figure 4.1.27-MCMC posterior densities for Model 3 for N rock sole for $F_{A B C}, \mathrm{ABC}, F_{\text {OFL }}$, and OFL; red vertical lines indicate values for Model 3

Figure 4.1.28 - MCMC posterior densities for Model 3 for S rock sole for $F_{A B C}, \mathrm{ABC}, F_{\text {OFL }}$, and OFL; red vertical lines indicate values for Model 3

4.1 Appendix 1: Comments from the 2012 CIE review of the 2011 GOA northern and southern rock sole stock assessment

The 2011 GOA northern and southern rock sole stock assessment was part of a CIE review of several stock assessments for GOA and EBS flatfish stocks. The review took place at AFSC on 11-13 June 2012. Responses to the comments below will be addressed in 2013.

Comments from Yan Jiao

A set of models were explored, which is valuable, but the model exploration was very preliminary and further effort is needed on model development, comparison and selection. Some key recommendations for GOA northern and southern rock sole assessment are summarized below:

- Hierarchical models can be considered in future model development since southern and northern rock soles were considered as one species previously and there are lots of similarities between these two species in biological and fishing processes (Gelman et al. 2004; Jiao et al. 2011).
- Year specific length-at-age is suggested to be used when ageing data are available instead of using a fixed length-at-age curve because the observed length-at-age curves among years are largely different from the currently used sex-specific growth curves (Stark and Somerton 2002).
- The selection of selectivity curves/functions needs to be evaluated through simulation studies and based on a clear model comparison/ selection framework.
- Maximizing posterior likelihood (MPLE) was used to estimate parameters and to compare the seven alternative models. It is useful to provide a comparison of the results when MPLE and MCMC are used in solving the same model with the same parameterization and prior assumptions.
- Simulation studies can be used to explore the robustness of the methods (both survey based and model based approaches should be considered) on survey relative abundance index standardization under situations when gear, trawl duration and trawling spatial coverage changed (Yu 2010).
- Spatial variation of the fishery / survey over time should be explored to validate the effectiveness of the survey design and estimator of abundance.
- A simulation study on how small sample size of age-composition influences the stock assessment uncertainty is suggested. The exploration should provide a scientific basis for the suggestion of future biological sampling.

Comments of Kevin Stokes

It would make good modelling sense to consider simpler formulations of the model(s) before moving to the more complicated one used. Consideration should be given sequentially to:
a) a combined species model;
b) two species models; then
c) a linked species model.

A combined species model might be useful if there is unreliable sampling of catches and if the species are sufficiently alike to obviate separation.

Maturity schedules (as at Table 4.14) and growth (at least for females older than 10 years) appear distinct (as seen in Figs. 4A.21-22; note it would be helpful to see data presented first, not after the results). Whether the differences are sufficient to warrant separation is moot.

It would be worthwhile exploring a single model and comparing with separate models first, and then possibly a linked model; for management support purposes a combined model, though biologically wrong, may be simple, reliable and sufficient. Separate models could be run using catches separated by the observer estimates but perhaps with increased observation error on catch by year. It is hard to see why separated models would be less reliable for informing management than the linked model, and it would be easier to consider the assessments separately in detail. The potential advantage of moving to a linked model is that it might be possible to quantify the confidence in the catch separation and to account for it directly in uncertainty measures on quantities of management interest. However, the model does not estimate species fraction and there is therefore no direct comparison available with the observer data to gauge the fit. There is no way of knowing if the linked model is useful or not.

Also, given that the model generally under-represents uncertainty, is there any real advantage to be gained by linkage rather than exploring other drivers of uncertainty?

Model selection considered only variations on selectivity blocking and natural mortality offset estimation.
The description at SAFE pp. 452-453 is difficult to follow without reference to details contained in multiple tables. The explanation for including the offset in natural mortality is to allow fitting of an observed high female fraction in surveys (SAFE Fig. 4A.15). Use of Model 1, including the male offset and estimating M at 0.26 compared to female M of 0.2 , does result in lower LL than Model 2 (with no offset), with all gain in the survey fraction female likelihood component. However, it is clear from the figure that even with the male offset in M, the model cannot capture the observed survey fraction. It seems likely therefore that whether or not there is a difference in M by sex, the skewed sex ratio is more likely a function of survey timing and location or sex-specific selectivity in the survey. Modelling with a large offset in male M may not be appropriate if it "corrects" for the survey sex ratio but that ratio is itself a misrepresentation of the population sex ratio. Is it possible to compare sex ratios for recent surveys with fishery data, both in the shallow-water flatfish fishery but also in by-catch fisheries?

Selectivity blocking is very briefly explained late in the document (p.542). Rather than predefining blocks, it would be instructive to fit to a single block and examine the likelihoods and other diagnostics by year to look for break points in fits. If those breakpoints were consistent with rational explanations there would be greater support for maintaining them. Currently the size-based selectivities by block are unconvincing. For northern rock sole, the fishery and all survey period selectivities are similar. For southern rock sole, however, it is unclear why there is such a big difference between fishery and survey selectivities (though spatial and temporal coverage with respect to fish distribution may be a factor). What is clear is that the variability between blocks is high and unlikely to be credible. Examining the likelihoods in table 4A. 5 for Models 1, 3 and 6, not fitting size-based selectivity to the early period makes little or no difference to fits to survey length compositions. The main reason for the small increase in overall likelihood is the increase in the fit to fraction female in the survey. When the middle selectivity block is also not fit, the effect on the fit to female fraction is lost, the major effect is on the fit to southern rock sole survey age composition data and also to unspecified length and length-at-age fits. Overall, there appears to be little information on the early period southern rock sole selectivity while the information on the middle period selectivity is real but will require careful examination and referencing to survey changes before it is credible.

As for rex and Dover sole, rock sole are lightly exploited. The catches relative to raw survey derived biomass estimates suggest a very low fishing mortality rate. The assessment, consistent with the catch and biomass estimates, suggests a fishing mortality rate about one quarter or less of natural mortality (SAFE Figs. 4A12-13). Fishery sampling is poor and there should be little expectation of information on fishing mortality by age or recruitment in the data, especially given the confounding factor of species splitting
(again poorly sampled). The survey age composition data (presented in Doc 5) do not apparently show clear cohort structure, though there is perhaps some indication of a signal for northern rock sole for a 1999/2000 cohort which may be reflected in the relatively strongly estimated 1999 YC in Fig. 4A.9. For southern rock sole, Fig. 4A. 9 shows a number of strongly estimated YC; those prior to 1990 are possibly indicated in the survey age composition data but the strongly estimated 1998 and 2003 YCs are not at all apparent in the raw data. Generally, the survey information does not appear to be highly informative and the unexplained high fraction of females and poor selectivity fits (especially for southern rock sole) cause some concern.

Comments of Sven Kupschus

Although there are a number of things that could be improved in the assessment, it is currently unclear which factors are most important and how the model would respond to the improvements. The main reason for this is the complexity of the model necessary to describe the species split appropriately and the inability to distinguish ages in the early part of the time-series owing to a lack of age information and poor separation of ages by length. What follows below is therefore a recommendation for an approach, rather than specific things to change in the assessment.

I feel the model is too complex to evaluate the effects of individual changes given the information content in the data. It seems that any change made is countered by re-estimation of other parameters, and some parameters do not appear to be estimated at all (they deviate little from the initial estimates), suggesting that the model is over-parameterized.

What is important is to determine the process that has the greatest effect and that produces sensible and consistent results. An approach would be to start with a simple model, in this case perhaps combining the two species into a single species complex. Presumably at this stage it should be possible to use the undiscriminated age information from the survey to provide a better idea of the historical age structure, to use a single survey selectivity curve and to fix catchability at a reasonable level (e.g. 1). The model output at this stage would hopefully then indicate higher biomasses in the early period.

It should then be possible to run alternatives to this basic model, one model splitting the species, another freeing up catchability estimates of the survey, another adding additional selectivity periods, etc. The choice of different options should be based on detailed examination of the residuals. The location of systematic residuals vs. random ones will provide clues as to unrealistic process description within the model. It would then be necessary to choose the most appropriate model as the new base one and to try some further models each differing slightly from the base model. Increasing complexity slowly and understanding the effects of each change both in terms of the residuals and the population dynamics estimates will be important when it comes to determining the level of complexity sufficient to explain enough of the variation while avoiding over-parameterization. Small gains in precision (i.e. AIC or equivalent) are not necessarily justified. In cases where a lower AIC is attainable by the addition of additional parameters, this may be based on smaller, but systematic, residuals, either because the process or the error structure is inadequately described. Common sense needs to be employed when evaluating the appropriate model complexity, not strict statistical criteria, and some of the recommendations for the Rex and Dover sole assessments apply here too.

Comments on improvements to management are even more difficult to make, because they depend heavily on the outcome of model development. Using simple but effective indicators of fish stock dynamics as indicated in response point 1 of the rock sole TOR above are currently sufficient for managing the stock in the short term, but may represent difficulties in terms of the legal requirements for advice.

4.1 Appendix 2: Summary of harvest guidelines for Model 0

Northern rock sole

Quantity	As estimated or specified last year for:		As estimated or recommended this year for:	
	2012	2013	2013	2014
M (natural mortality rate)	0.2,0.263*	0.2, 0.263*	0.2,0.271*	0.2, 0.271*
Tier	3a	3a	3a	3a
Projected total (age 3+) biomass (t)	86,900	75,700	86,800	76,200
Female spawning biomass (t)	43,700	37,600	44,800	37,800
Projected				
$\mathrm{B}_{100 \%}$	47,500	47,300	51,400	51,300
$\mathrm{B}_{40 \%}$	19,000	18,900	20,600	20,600
$B_{35 \%}$	16,600	16,500	18,000	18,000
$F_{\text {OFL }}$	0.186	0.186	0.181	0.181
$\operatorname{maxF}_{\text {ABC }}$	0.157	0.157	0.153	0.153
$F_{\text {ABC }}$	0.157	0.157	0.153	0.153
OFL (t)	12,600	10,800	12,300	10,700
$\operatorname{maxABC}(\mathrm{t})$	10,800	9,300	10,500	9,100
ABC (t)	10,800	9,300	10,500	9,100
Status	As determined last year for:		As determined this year for:	
	2010	2011	2011	2012
Overfishing	no	n/a		
Overfished		no		
Approaching overfished	n / a	no		

* for males; estimated

Southern rock sole

Quantity	As estimated or specified last year for:		As estimated or recommended this year for:	
	2012	2013	2013	2014
M (natural mortality rate)	0.2, 0.260^{*}	0.2, 0.260^{*}	0.2, 0.260^{*}	0.2, 0.260*
Tier	3a	3a	3 a	3a
Projected total (age 3+) biomass (t)	220,400	198,200	180,000	160,800
Female spawning biomass (t)	93,600	84,000	80,800	70,100
Projected				
$B_{100 \%}$	123,000	122,500	104,700	104,400
$\mathrm{B}_{40 \%}$	49,200	49,000	42,000	41,900
$B_{35 \%}$	43,000	42,800	36,800	36,600
$F_{\text {OFL }}$	0.228	0.228	0.232	0.232
$\operatorname{maxF}_{\text {ABC }}$	0.191	0.191	0.195	0.195

$F_{A B C}$	0.191	0.191	0.195	0.195
OFL (t)	26,700	23,600	22,800	19,800
$\operatorname{maxABC}(\mathrm{t})$	22,700	20,000	19,300	16,800
ABC (t)	22,700	20,000	19,300	16,800
	As determined last year for:	As determined this year for:		
Status	2010	2011	2011	2012
Overfishing	no	n/a		
Overfished	n/a	no		
Approaching overfished	n/a	no		

[^3](This page intentionally left blank)

[^0]: ${ }^{1}$ Data extracted from databases on 23 October 2012.

[^1]: Scenario 7, Whether N rock sole is approaching overfished condition

[^2]: Scenario 7, Whether S rock sole is approaching overfished condition

[^3]: for males; estimated

