# 1. Assessment of the walleye pollock stock in the Eastern Bering Sea 

James N. Ianelli, Taina Honkalehto, Steve Barbeaux, Stan Kotwicki, Kerim Aydin and Neal Williamson<br>Alaska Fisheries Science Center<br>National Marine Fisheries Service

## Executive Summary

This chapter covers the Eastern Bering Sea (EBS) region-the Aleutian Islands region (Chapter 1A) and the Bogoslof Island area (Chapter 1B) are presented separately.

## Summary of major changes

Changes in the input data
The primary changes include:

- The 2012 NMFS summer bottom-trawl survey (BTS) abundance at age estimates are included.
- The 2012 NMFS summer acoustic-trawl (AT) survey estimated abundance-at-age are included (using age samples primarily from the bottom-trawl survey).
- Observer data for catch-at-age and average weight-at-age from the 2011 fishery was finalized and included.
- Preliminary 2012 fishery catch-at-age data was estimated using BTS survey age-length keys
- Total catch as reported by NMFS Alaska Regional office was updated and included through 2012.

Changes in the assessment model
The general modeling approach remained the same.
Changes in the assessment results
The estimated increase in female spawning stock biomass is moderated somewhat from the 2011 assessment though female spawning biomass is projected to have been above $B_{m s y}$ level in 2012 and is expected to continue increasing. Similar to the 2011 assessment, the maximum permissible Tier 1a ABC remains high since positive signs for incoming year classes continue (albeit moderated somewhat). The available data indicate that the spawning biomass for 2012 is projected to be slightly below the level expected from last year's assessment. In response to Plan Team requests, a wider range of indicators relative to the harvest policy was evaluated. Based on these, and other qualitative uncertainties, an ABC equal to last year's is recommended ( $1,200,000 \mathrm{t}$ ) which is well below the maximum permissible (Tier 1a) value 2.3 million t . The Tier 1a overfishing level (OFL) is estimated to be $2,549,000 \mathrm{t}$.

Summary results for EBS pollock.

| Quantity | As estimated or specified last year for: |  | As estimated or recommended this year for: |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 2012 | 2013 | 2013 | 2014 |
| $M$ (natural mortality rate, ages 3+) | 0.3 | 0.3 | 0.3 | 0.3 |
| Tier | 1a | 1a | 1a | 1a |
| Projected total (age 3+) biomass (t) | 8,341,000 t | 8,690,000 t | 8,138,000 t | 8,082,000 t |
| Female spawning biomass (t) |  |  |  |  |
| Projected | 2,379,000 t | 2,534,000 t | 2,580,000 t | 2,522,000 t |
| $B_{0}$ | 5,329,000 t | 5,329,000 t | 5,377,000 t | 5,377,000 t |
| $B_{\text {MSY }}$ | 2,034,000 t | 2,034,000 t | 2,114,000 t | 2,114,000 t |
| $F_{\text {OFL }}$ | 0.6 | 0.6 | 0.543 | 0.543 |
| $\operatorname{maxF}_{\text {ABC }}$ | 0.533 | 0.533 | 0.491 | 0.491 |
| $F_{A B C}$ | 0.296 | 0.296 | 0.26 | 0.32 |
| OFL (t) | 2,474,000 t | 2,842,000 t | 2,549,000 t | 2,726,000 t |
| maxABC (t) | 2,198,000 t | 2,526,000 t | 2,306,000 t | 2,466,000 t |
| ABC (t) | 1,220,000 t | 1,360,000 t | 1,200,000 t | 1,547,000 t |
| Status | As determined last year for: |  | As determined this year for: |  |
|  | 2010 | 2011 | 2011 | 2012 |
| Overfishing | No | n/a | No | n/a |
| Overfished | n/a | No | n/a | No |
| Approaching overfished | n/a | No | n/a | No |

## Response to SSC and Plan Team comments

## General comments:

"We recommend that all assessment authors (Tier 3 and higher) bring retrospective analyses forward in next year's assessments"

Retrospective analyses were carried out again this year (back to 2002) and additional information was compiled to evaluate harvest strategies and issues related to the way the stock recruitment curve is used as part of the control rule.

From the September 2012 Plan Team minutes: The Teams recommend that authors continue to include other removals in an appendix for 2012. Authors may apply those removals in estimating ABC and OFL; however, if this is done, results based on the approach used in the previous assessment much also be presented.

We present a table of other removals but these were ignored in the estimation of 2013 and 2014 ABC and OFL.

## Comments specific to this assessment

The Plan Team recommends that the authors or the AFSC analyze the consequences of adopting a target harvest rate lower than the MSY level which is now estimated to be 0.6 , well above recent actual harvest rates of $0.3-0.4$. The alternative maximum targets could be, for example, $0.2,0.3,0.4,0.5$, and 0.6 , with a B35 or B40 control rule. Possible performance measures could include the mean, variance, and example trajectories of:

1) $A B C$
2) Spawning biomass,
3) Largest proportion of the catch contributed by a single cohort,
4) Largest proportion of the spawning biomass contributed by a single cohort,
5) Probability of falling below B20\%,
6) Amount of salmon bycatch,
7) Total numbers of age 1-5 fish,
8) Probability of falling below the long-term average number of age 1-5 fish (about 40 billion), and
9) Other ecosystem metrics.

The alternatives could be tested in simple simulations that assume the 2011 model parameter estimates are correct and impose an appropriate level of recruitment autocorrelation. The aim would be to show the main differences among cases in a straightforward way.
A decision table was developed to characterize near term trends and show approximate probability levels of conditions becoming "worse". The table uses a grid of different 2013 catch scenarios with outcomes on spawning biomass (which address items 2 and 5), whether the F would exceed $F_{m s y}$ (addressing item 1), salmon bycatch (based on historical rates-Chinook per t of pollock-and variability (addresses item 6), and characteristics of the age diversity and composition of the spawning stock (addressing items 4, 7 and 8 ). Alternative catch scenarios for 2013 were used (with subsequent years set at the F that satisfied that scenario) and projections were conducted only through to 2017.

## Introduction

Walleye pollock (Theragra chalcogramma; hereafter referred to as pollock) are broadly distributed throughout the North Pacific with the largest concentrations found in the Eastern Bering Sea. Also marketed under the name Alaska pollock, this species continues to represent over $40 \%$ of the global whitefish production with the market disposition split fairly evenly between fillets, whole (headed and gutted), and surimi (Fissel et al. 2012). An important component of the commercial production is the sale of roe from pre-spawning pollock. Pollock are considered to be a relatively fast growing and short-lived species. They play an important role in the Bering Sea ecosystem.
In the U.S. portion of the Bering Sea three stocks of pollock are identified for management purposes. These are: Eastern Bering Sea which consists of pollock occurring on the Eastern Bering Sea shelf from Unimak Pass to the U.S.-Russia Convention line; the Aleutian Islands Region encompassing the Aleutian Islands shelf region from $170^{\circ} \mathrm{W}$ to the U.S.-Russia Convention line; and the Central Bering SeaBogoslof Island pollock. These three management stocks undoubtedly have some degree of exchange. The Bogoslof stock forms a distinct spawning aggregation that has some connection with the deep water region of the Aleutian Basin (Hinckley 1987). In the Russian EEZ, pollock are considered to form two stocks, a western Bering Sea stock centered in the Gulf of Olyutorski, and a northern stock located along the Navarin shelf from $171^{\circ} \mathrm{E}$ to the U.S.- Russia Convention line (Kotenev and Glubokov 2007). There is some indication (based on NMFS surveys) that the fish in the northern region may be a mixture of eastern and western Bering Sea pollock with the former predominant. Bailey et al. (1999) present a thorough review of population structure of pollock throughout the north Pacific region. Genetic differentiation using microsatellite methods suggest that populations from across the North Pacific Ocean and Bering Sea were similar. However, weak differences were significant on large geographical scales and conform to an isolation-by-distance pattern (O'Reilly et al. 2004; Canino et al. 2005; Grant et al. 2010). Bacheler et al. (2010) analyzed 19 years of egg and larval distribution data for the eastern Bering Sea. Their results suggested that pollock spawn in two pulses spanning $4-6$ weeks in late February then again in mid-late April. Their data also suggest three unique areas of egg concentrations with the region
north of Unimak Island and the Alaska Peninsula being the most concentrated. Such syntheses of egg and larval distribution data provide a useful baseline for comparing trends in the distribution of pre-spawning pollock.

## Fishery

From 1954 to 1963, EBS pollock catches were low until directed foreign fisheries began in 1964. Catches increased rapidly during the late 1960s and reached a peak in 1970-75 when they ranged from 1.3 to 1.9 million $t$ annually (Fig. 1.1). Following the peak catch in 1972, bilateral agreements with Japan and the USSR resulted in reductions.

Since 1977 (when the U.S. EEZ was declared) the annual average EBS pollock catch has been about 1.2 million $t$ ranging from 0.815 million $t$ in 2009 to nearly 1.5 million $t$ during 2003-2006 (Fig. 1.1). United States vessels began fishing for pollock in 1980 and by 1987 they were able to take $99 \%$ of the quota. Prior to the domestication of the pollock fishery, the catch was monitored by placing observers on foreign vessels. Since 1988, only U.S. vessels have been operating in this fishery. By 1991, the current NMFS observer program for north Pacific groundfish fisheries was in place.

The international zone of the Bering Sea, commonly referred to as the "Donut Hole" is entirely contained in the deep water of the Aleutian Basin and is distinct from the customary areas of pollock fisheries, namely the continental shelves and slopes. Japanese scientists began reporting the presence of large quantities of pollock in the Aleutian Basin in the mid-to-late 1970's. By the mid-late 1980s foreign vessels were intensively fishing in the Donut Hole. In 1984, the Donut Hole catch was 181 thousand t (Table 1.1). The catch grew rapidly and by 1987 the high seas pollock catch exceeded that within the U.S. Bering Sea EEZ. The extra-EEZ catch peaked in 1989 at 1.45 million $t$ and has declined sharply since then. By 1991 the Donut Hole catch was $80 \%$ less than the peak catch, and catch in 1992 and 1993 was very low (Table 1.1). A fishing moratorium was enacted in 1993 and only trace amounts of pollock have been harvested from the Aleutian Basin by resource assessment fisheries.

## Fishery characteristics

Pre-spawning aggregations of pollock are the focus of the first so-called "A-season" which opens on January $20^{\text {th }}$ and extends into early-mid April. During this season the fishery produces highly valued roe which can comprise over $4 \%$ of the catch in weight. The second, or "B-season", presently opens on June $10^{\text {th }}$ and extends through late October. Since the closure of the Bogoslof management district (INPFC area 518) to directed pollock fishing in 1992, the A-season pollock fishery on the EBS shelf has been concentrated primarily north and west of Unimak Island (Ianelli et al. 2007). Depending on ice conditions and fish distribution, there has also been effort along the 100 m contour (and deeper) between Unimak Island and the Pribilof Islands. The spatial pattern of fishing in 2012 winter was less dispersed than in the previous two years (Fig. 1.2). The catch estimates by sex for the A-season compared to estimates for the entire season indicate that over time, the number of males and females has been fairly equal but there was a slight overall increase in 2011 which is consistent with the increased catch (Fig. 1.3).

Summer and fall fishing (B-season) yielded catches that were widely and relatively evenly distributed in 2012 compared to that of 2011 and 2010 (Fig. 1.4). In terms of the pollock size composition from these areas, monthly data over the past three years shows that in summer of 2011 the mix of fish comprised a relatively large component of smaller fish (three-year olds; Fig. 1.5). The mode of these pollock can be seen to grow larger as 4 -year-olds throughout 2012. The fishing conditions in terms of nominal catch rates were much better than those observed for 2011 (Fig. 1.6).

## Fisheries Management

Due to concerns over possible impacts groundfish fisheries may have on rebuilding populations of Steller sea lions, NMFS and the NPFMC have changed management of Pacific cod, Atka mackerel (mackerel) and pollock fisheries in the Bering Sea/Aleutian Islands (BSAI) and Gulf of Alaska (GOA). These changes were designed to reduce the possibility of competitive interactions between fisheries and Steller sea lions. For the pollock fisheries, comparisons of seasonal fishery catch and pollock biomass distributions (from surveys) by area in the EBS led to the conclusion that the pollock fishery may have had disproportionately high seasonal harvest rates within Steller sea lion critical habitat that could lead to reduced sea lion prey densities. Consequently, management measures redistributed the fishery both temporally and spatially according to pollock biomass distributions. The idea was that exploitation rates should be seasonally and spatially explicit to be consistent with area-wide and annual exploitation rates for pollock. Three types of measures were implemented in the pollock fisheries: 1) pollock fishery exclusion zones around sea lion rookery or haulout sites; 2) phased-in reductions in the seasonal proportions of TAC that can be taken from critical habitat; and 3) additional seasonal TAC releases to disperse the fishery in time.
Prior to the management measures, the pollock fishery occurred in each of the three major fishery management regions of the North Pacific Ocean managed by the NPFMC: the Aleutian Islands $\left(1,001,780 \mathrm{~km}^{2}\right.$ inside the EEZ), the Eastern Bering Sea $\left(968,600 \mathrm{~km}^{2}\right)$, and the Gulf of Alaska ( $1,156,100$ $\mathrm{km}^{2}$ ). The marine portion of Steller sea lion critical habitat in Alaska west of $150^{\circ} \mathrm{W}$ encompasses $386,770 \mathrm{~km}^{2}$ of ocean surface, or $12 \%$ of the fishery management regions.
Prior to $199984,100 \mathrm{~km}^{2}$, or $22 \%$ of critical habitat, was closed to the pollock fishery. Most of this closure consisted of the 10 - and $20-\mathrm{nm}$ radius all-trawl fishery exclusion zones around sea lion rookeries ( $48,920 \mathrm{~km}^{2}$ or $13 \%$ of critical habitat). The remainder was largely management area 518 ( $35,180 \mathrm{~km}^{2}$, or $9 \%$ of critical habitat) which was closed pursuant to an international agreement to protect spawning stocks of central Bering Sea pollock.
In 1999, an additional $83,080 \mathrm{~km}^{2}$ (21\%) of critical habitat in the Aleutian Islands was closed to pollock fishing along with $43,170 \mathrm{~km}^{2}(11 \%)$ around sea lion haulouts in the GOA and Eastern Bering Sea. In 1998, over $22,000 \mathrm{t}$ of pollock were caught in the Aleutian Island regions, with over $17,000 \mathrm{t}$ caught in Aleutian Islands critical habitat region. Between 1998 and 2004 a directed fishery for pollock was prohibited. Consequently, $210,350 \mathrm{~km}^{2}(54 \%)$ of critical habitat was closed to the pollock fishery. The portion of critical habitat that remained open to the pollock fishery consisted primarily of the area between 10- and $20-\mathrm{nm}$ from rookeries and haulouts in the GOA and parts of the southeastern Bering Sea foraging area. In 2000, phased-in reductions in the proportions of seasonal TAC that could be caught within the BSAI Steller sea lion Conservation Area (SCA) were implemented. Since 2005, a limited pollock fishery has been prosecuted in the Aleutian Islands but with less than 2,000 t of annual catch.

The Bering Sea/Aleutian Islands pollock fishery was also subject to changes in total catch and catch distribution. Disentangling the specific changes in the temporal and spatial dispersion of the EBS pollock fishery resulting from the sea lion management measures from those resulting from implementation of the American Fisheries Act (AFA) is difficult. The AFA reduced the capacity of the catcher/processor fleet and permitted the formation of cooperatives in each industry sector by the year 2000. Both of these changes would be expected to reduce the rate at which the catcher/processor sector (allocated $36 \%$ of the EBS pollock TAC) caught pollock beginning in 1999, and the fleet as a whole in 2000 when a large component of the onshore fleet also joined cooperatives. Because of some of its provisions, the AFA gave the industry the ability to respond efficiently to changes mandated for sea lion conservation that otherwise could have been more disruptive.

On the EBS shelf, an estimate (based on observer at-sea data) of the proportion of pollock caught in the SCA has averaged about $38 \%$ annually. During the "A-season," the average is about $49 \%$ (since pollock are more concentrated in this area during this period). The proportion of pollock caught within the SCA
varies considerably, presumably due to temperature regimes and population age structure. Since 2005 the annual proportion of catch within the SCA has dropped considerably with about $30 \%$ of the catch taken in this area. However, the proportion taken in the A-season reached 57\% in 2007, the highest level since 1999 (Table 1.2).

An additional goal to minimize potential adverse effects on sea lion populations is to disperse the fishery throughout more of the pollock range on the Eastern Bering Sea shelf. While the distribution of fishing during the A season is limited due to ice and weather conditions, there appears to be some dispersion to the northwest area (Fig. 1.2).

The majority ( $\sim 56 \%$ ) of Chinook salmon caught as bycatch in the pollock fishery originate from western Alaskan rivers. An Environmental Impact Statement (EIS) was completed in 2009 in conjunction with the Council's recommended management approach. This EIS evaluated the relative impacts of different bycatch management approaches as well as estimated the impact of bycatch levels on adult equivalent salmon (AEQ) returning to river systems (NMFS/NPFMC 2009). As a result, salmon bycatch management measures went into effect in 2011 (Amendment 91 to the Groundfish FMP in response to the NPFMC's 2009 action). The program imposes a dual cap system which is divided by sector and season. Annual bycatch is intended to remain below the lower cap to avoid penalty. In order to fish under the dual cap system (as opposed to solely the lower cap) sectors must participate in incentive program agreements (IPAs) that are approved by NMFS and are designed for further bycatch reduction and individual vessel accountability. The fishery has been operating under rules to implement this program since January 2011. During 2008-2012, bycatch levels for Chinook salmon have been well below average following record high levels in 2007. This is likely due to industry-based restrictions on areas where pollock fishing may occur, environmental conditions, amendment 91 measures, and perhaps salmon abundance.

Additional measures to reduce chum salmon bycatch in the pollock fishery are currently under development. Previously bycatch of chum salmon was managed using a broad scale time and area closure (the Chum Salmon Savings Area). Bycatch levels for chum salmon in 2005 were the highest on record (more than 700,000 fish) but levels have been much lower, ranging from $13,000-46,000$ since 2008 until this year with bycatch exceeding 180,000 chum salmon. In addition to possible environmental effects, these elevated levels may be related to good runs returning to western Alaska river systems and to the continued large levels of hatchery releases from Asia. In June 2011 a draft Environmental Assessment was presented to the Council specifically on the impact of the chum salmon bycatch on western Alaska systems. The analysis indicated that the impact rates to Alaska rivers (specifically western Alaska) appeared to be below $2 \%$ in the worse year (with caveats that genetic data failed to discern small regions which could potentially have been more heavily impacted than adjacent larger systems). Based on review of the analysis the Council has refined the alternatives to be examined and a revised draft EA will be presented in December 2012 for initial review. Salmon bycatch statistics are presented along with other bycatch estimates in the Ecosystem Considerations section below.

## Catch data

From 1977-2012 the catch of EBS pollock has averaged 1.17 million $t$. Since 2001, the average has been above 1.28 million $t$. However, the 2009 and 2010 catch dropped to 0.81 million $t$ due to stock declines and concomitant reductions in allowable harvest rates (Table 1.3). In 2012, the TAC was set to be the same as for 2011 with the total catch at about 1.2 million t .

Pollock catch in the Eastern Bering Sea and Aleutian Islands by area from observer estimates of retained and discarded catch for 1991-2012 are shown in Table 1.4. Since 1991, estimates of discarded pollock have ranged from a high of $9.1 \%$ of total pollock catch in 1992 to recent lows of around $0.6 \%$. These low values reflect the implementation of the Council's Improved Retention/Improved Utilization program. Historically, discard levels were likely affected by the age-structure and relative abundance of the
available population, e.g., if the most abundant year class in the population is below marketable size. With the implementation of the AFA in 1999, the vessel operators have more time to pursue optimal sizes of pollock for market since the quota is allocated to vessels (via cooperative arrangements). In addition, several vessels have made gear modifications to avoid retention of smaller pollock. In all cases, the magnitude of discards counts as part of the total catch for management (to ensure the TAC is not exceeded) and within the assessment. Bycatch of other non-target, target, and prohibited species is presented in the section titled "Ecosystem Considerations" below. In that section it is noted that the bycatch of pollock in other target fisheries is more than double the bycatch of other target species (e.g., Pacific cod) in the pollock fishery.

The catch-at-age composition was estimated using the methods described by Kimura (1989) and modified by Dorn (1992). Length-stratified age data are used to construct age-length keys for each stratum and sex. These keys are then applied to randomly sampled catch length frequency data. The stratum-specific age composition estimates are then weighted by the catch within each stratum to arrive at an overall age composition for each year. Data were collected through shore-side sampling and at-sea observers. The three strata for the EBS were: i) January-June (all areas, but mainly east of $170^{\circ} \mathrm{W}$ ); ii) INPFC area 51 (east of $170^{\circ} \mathrm{W}$ ) from July-December; and iii) INPFC area 52 (west of $170^{\circ} \mathrm{W}$ ) from July-December . This method was used to derive the age compositions from 1991-2010 (the period for which all the necessary information is readily available). Prior to 1991, we used the same catch-at-age composition estimates as presented in Wespestad et al. (1996).

The catch-at-age estimation method uses a two-stage bootstrap re-sampling of the data. Observed tows were first selected with replacement, followed by re-sampling actual lengths and age specimens given those set of tows. This method allows an objective way to specify the "effective" sample size for fitting fishery age composition data within the assessment model. In addition, estimates of stratum-specific fishery mean weights-at-age (and variances) are provided which are useful for evaluating general patterns in growth and growth variability. For example, Ianelli et al. (2007) showed that seasonal aspects of pollock condition factor could affect estimates of mean weight-at-age. They showed that within a year, the condition factor for pollock varies by more than $15 \%$ with the "fattest" pollock caught late in the year, from October-December (although most fishing occurs during other times of the year) and the thinnest fish at length tend to occur in late winter. They also showed that spatial patterns in the fishery affect mean weights, particularly when the fishery is shifted more towards the northwest where pollock tend to be smaller at age. In 2011 the winter fishery catch consisted primarily of age 5 pollock (the 2006 year class) and later in that year the presence of age 3 pollock (the 2008 year class) in the catches began. The 2008 year class became prominent as 4 -year olds in 2012 catches (Fig. 1.7; Table 1.5).
Since 1999 the observer program adopted a new sampling strategy for lengths and age-determination studies (Barbeaux et al. 2005a). Under this scheme, more observers collect otoliths from a greater number of hauls (but far fewer specimens per haul). This has improved the geographic coverage but lowered the total number of otoliths collected. Previously, large numbers were collected but most were not aged. The sampling effort for lengths has decreased since 1999 but the number of otoliths processed for age-determinations increased (Tables 1.6 and 1.7). Sampling for pollock lengths and ages by area has been shown to be relatively proportional to catches (e.g., Fig. 1.8 in Ianelli et al. 2004). For total catch biomass, a constant coefficient of variation was assumed to be $3 \%$ for this stock assessment application. This value is a slightly higher than the $\sim 1 \%$ CVs estimated by Miller (2005) for pollock in the EBS.

## Resource surveys

Scientific research catches are reported to fulfill requirements of the Magnuson-Stevens Fisheries Conservation and Management Act. The annual research catches (1963-2011) from NMFS surveys in the Bering Sea and Aleutian Islands Region is given in Table 1.8. Since these values represent extremely small fractions of the total removals ( $\sim 0.02 \%$ ) they are ignored as a contributor to the catches as modeled for assessment purposes.

## Bottom trawl surveys (BTS)

Trawl surveys have been conducted annually by the AFSC to assess the abundance of crab and groundfish in the Eastern Bering Sea since 1979 and since 1982 using consistent areas and gears. For pollock, this survey has been instrumental in providing an abundance index and information on the population age structure. This survey is particularly critical since it complements the acoustic trawl (AT) surveys that sample mid-water abundance levels. Between 1991 and 2012 the BTS biomass estimates ranged from 2.28 to 8.46 million t (Table 1.9; Fig. 1.8). In the mid-1980s and early 1990s several years resulted in above-average biomass estimates. The stock appeared to be at lower levels during 1996-1999 then increased moderately until about 2003 and since then has averaged about 3.6 million $t$. These surveys are multi-purpose and serve as a consistent measure of environmental conditions such as temperature characterizations which reflect the cold conditions during 2006-2012. Large-scale zoogeographic shifts in the EBS shelf due to temperature changes have been documented during a warming trend (e.g., Mueter and Litzow 2008). However, after a period of relatively warm conditions ending in 2005, five years were below average and the zoogeographic response may be less predictable than they initially appeared.
Bottom temperatures increased in 2011 to about average from the low value in 2010 but declined again in 2012 with one of the most extensive cold pools in recent decades (Fig. 1.9).
Beginning in 1987 NMFS expanded the standard survey area farther to the northwest. In earlier assessments, these extra strata (8 and 9) had been excluded from consideration within the model. The pollock biomass levels found in these non-standard regions were highly variable, ranging from $1 \%$ to $22 \%$ of the total biomass, and averaging about 6\% (Table 1.10). Closer examination of the years where significant concentrations of pollock were found (1997 and 1998) revealed some stations with high catches of pollock. The variance estimates for these northwest strata were quite high in those years (CVs of $95 \%$ and $65 \%$ for 1997 and 1998 respectively). Nonetheless, since this region is contiguous with the Russian border, these strata are considered important and are included to improve coverage on the range of the exploited pollock stock. The use of the additional strata was evaluated in 2006 and accepted as appropriate by the Council's SSC.

The 2012 biomass estimate was 3.49 million $t$, an increase of $12 \%$ from the 2011 value and $26 \%$ below the mean value for this survey ( 4.717 million $t$ ). This survey estimate ranks $20^{\text {th }}$ out of the 26 estimates since 1987. In 2012, the distribution of pollock was unusual because concentrations appeared to extend into the cold pool, in particular in the region south of St. Mathew Island (Fig. 1.10).

In general, the interannual variability of survey estimates is due to the effect of year class variability. Survey abundance-at-age estimates reflect the impact of this variability (Fig. 1.11). The BTS survey operations generally catch pollock above 40 cm in length, and in some years include many 1 -year olds (with modal lengths around $10-19 \mathrm{~cm}$ ) and rarely age 2 pollock (lengths around $20-29 \mathrm{~cm}$ ) during the summer. Other sources of variability may be due to unaccounted-for variability in natural mortality and migration. For example, some strong year classes appear in the surveys over several ages (e.g., the 1989 year class) while others appear at older ages (e.g., the 1992 year class). Also, from assessment model estimates the estimated strength of the 1996 year class has apparently waned compared to estimates from earlier years. Ianelli et al. (2007) reported a point estimate for the 1996 year class at around 32 billion one-year olds whereas in 2003, the estimate had been 43 billion. This could be due in part to emigration (and subsequent return) of this year-class outside of our main fishery and survey zones. Alternatively, this may reflect the effect of variable natural mortality rates. Retrospective analyses (e.g., Parma 1993) have also highlighted these patterns as presented in Ianelli et al. (2006, 2011).

The 2012 survey age compositions were developed from age-structures collected and processed at the AFSC labs within a few weeks after the survey was completed. The level of sampling for lengths and ages in the BTS is shown in Table 1.11. The estimated numbers-at-age from the BTS for the standard strata (1-6) and for the northern strata included are presented in Table 1.12.

As in previous assessments, an analysis using survey data alone was conducted to evaluate mortality patterns. Cotter et al. (2004) promoted this type of analysis as having a simple and intuitive appeal which is independent of population scale. In this approach, log-abundance of age 6 and older pollock is regressed against age by cohort. The negative values estimated for the slope are estimates of total annual mortality. Age-6 was selected because younger pollock are still recruiting to the bottom trawl survey gear. A key assumption of this analysis is that all ages are equally available to the gear. Total mortality by cohort seems to be variable (unlike the example in Cotter et al., 2004) with lower mortality overall for cohorts during the early 1990s followed by increases and a subsequent decline for the most recent cohort (Fig. 1.12). It appears that the total mortality has decreased slightly on recent cohorts. Total mortality estimates by cohort represent lifetime averages since harvest rates (and actual natural mortality) vary from year to year. The low values estimated from some year classes (e.g., the 1990-1992 cohorts) could be because these age groups had only become available to the survey at a later age (i.e., that the availability/selectivity to the survey gear changed for these cohorts). Alternatively, it may suggest some net immigration into the survey area or a period of lower natural mortality. In general, these values are consistent with the types of values obtained from within the assessment models for total mortality. The higher recent values are somewhat expected given recent population trends. Please note that slope estimates for recent cohorts are relatively poorly determined since only a few abundance-at-ages are available (e.g., 5 years/data points for 2002 year class).

## Acoustic trawl (AT) surveys

The AT surveys are conducted biennially and are designed to estimate the off-bottom component of the pollock stock (compared to the BTS which are conducted annually and provide an abundance index of the near-bottom pollock). In 2012 the survey returned an estimated 1.843 million t compared to 2.323 million $t$ for the US zone in 2010 and the 1982-2012 average of 2.723 million t (Table 1.9).

NMFS scientists have extended the acoustic trawl survey into the Russian zone six times since 2004 including 2012. The abundance in the Russian zone (to within 0.5 m of bottom) has varied substantially with 402 thousand t estimated in 2004 (Honkalehto et al. 2005) compared to 111, 34, 13, and 135 thousand t from 2007 to 2010, respectively. The 2012 estimate for the Russian Navarin zone was 657 thousand t , the most observed in this zone during the time series beginning in 1994 (when 651 thousand t were estimated). The pollock length composition within this Russian zone consisted of slightly smaller fish than that seen in the US zone west of $170^{\circ} \mathrm{W}$. The number of trawl hauls, lengths, and ages sampled from the AT survey are presented in Table 1.13.

As in past assessments, length frequency based on age-length keys compiled from the 2012 bottom-trawl survey were used to convert the population-at-length estimates to ages. To supplement the process, 100 additional samples were collected by AT survey scientists to ensure adequate representation of ages in the smaller pollock size categories. The US EEZ population-at-length estimates indicate three closely spaced modes and a lower abundance than in 2010 (Fig. 1.13).
Four year old pollock (the 2008 year class) was the most abundant with 2 and 3 year olds slightly lower than the number of 4 year olds. There was a marked lack of one year olds in the survey and in general, a low overall level. (Fig. 1.14; Table 1.14). The 2012 estimate is about equal to the average since 2006 but well below the average since 1982 (Fig. 1.15).

Proportions of pollock biomass estimated east vs. west of $170^{\circ} \mathrm{W}$, and inside vs. outside the SCA show some patterns based on summer AT surveys (Table 1.15). West of $170^{\circ} \mathrm{W}$ the proportions have averaged around $72 \%$ from 1994-2006. Since 2007 the western proportions have been $85 \%$ or higher (the 2012 value is $85 \%$ ). For the SCA, the proportion was highest during 2000, 2002, and 2004 surveys (average $15 \%$ ). For the period 2006-2012 the proportion has remained below $10 \%$. The relative estimation errors for the total biomass were derived from a one-dimensional (1D) geostatistical method (Petitgas 1993, Walline 2007, Williamson and Traynor 1996). This method accounts for observed spatial structure for sampling along transects. Other sources of error (e.g., target strength, trawl sampling) were accounted for
by inflating the annual error estimates to have an overall average CV of $20 \%$ for application within the assessment model.
Comparing the geographical differences between the BTS and the AT survey suggests that in some areas the major concentrations of pollock are either nearer the bottom or in mid-water and in other areas concentrations overlap (Fig. 1.16).

## Biomass index from Acoustic-Vessels-of-Opportunity (AVO)

Acoustic data collected from commercial fishing vessels used for the eastern Bering Sea bottom trawl (BT) survey have been analyzed for several years now (e.g.,Von Szalay et al., 2007, Kotwicki et al., 2009, Honkalehto et al. 2011). Since this survey overlaps in space and time with the normal AT survey, a comparison of acoustic backscatter data between the two surveys was completed to determine feasibility of using the BT survey data to provide a new midwater pollock index (Honkalehto et al. 2011). Analysis of four years of AT survey data (1999, 2000, 2002, and 2004) identified a suitable index area to track midwater pollock abundance. Details for the AVO index methods are provided in Honkalehto et al. (2011). A key to this work included defining an area of the shelf where pollock were consistently found and easily indexed using acoustic backscatter at a single frequency, 38 kHz . Pollock backscatter from this index area was classified through a combination of visual examination by trained analysts and semiautomated processing in which all backscatter in a specified depth range was assumed to be pollock. Integrated 38 kHz backscatter in the index area classified using this approach was well correlated with AT survey biomass in the U.S. EEZ. Since 2006, commercial fishing vessels chartered for the BT survey have collected 38 kHz backscatter in this area, and AVO indices calculated from these data have also compared well with AT survey biomass estimates (2006-2009), providing information on both the biomass and spatial distribution of midwater pollock. The precision of this index of pollock biomass for 2006-2011 was assumed to have an average CV of $33 \%$ (Table 1.16). This compares to the average CV assumed for the AT survey of $20 \%$. The analysis of summer 2012 AVO data is underway and we anticipate that two new AVO data points (2012 and 2013) will be available for the 2013 assessment model.

## Analytic approach

## The assessment model

A statistical age-structured assessment model conceptually outlined in Fournier and Archibald (1982) and similar to Methot's (1990) extensions was applied over the period 1964-2012. A technical description is presented in the "Model Details" section. The analysis was first introduced in the 1996 SAFE report and compared to the cohort analyses that had been used previously. The current model also was documented in the Academy of Sciences National Research Council (Ianelli and Fournier 1998). The model was implemented using automatic differentiation software developed as a set of libraries under the C++ language (AD Model Builder).
The main changes from last year's analyses include:

- The 2012 EBS bottom trawl survey estimate of population numbers-at-age was added.
- The 2012 EBS AT survey estimate of population numbers-at-age are included based on using an age-length key from the 2012 BTS survey data.
- The 2011 final fishery age composition data were added.
- Preliminary 2012 fishery age composition data were added (using the BTS age-length key).
- In response to the Plan Team's request to evaluate other risk factors, a decision table framework was constructed.


## Parameters estimated outside of the assessment model

## Natural mortality and maturity at age

For the reference model fixed natural mortality rates at age were assumed ( $\mathrm{M}=0.9,0.45$, and 0.3 for ages 1, 2, and $3+$ respectively; Wespestad and Terry 1984). These values have been applied to catch-age models and forecasts since 1982 and appear reasonable for pollock. In the 2009 assessment, based on a workshop on natural mortality hosted by the AFSC, alternative age-specific patterns of natural mortality were investigated. This approach combined Lorenzen's (2000) observation that natural mortality is inversely proportional to length for young fish with Lehodey et al.'s (2008) logistic model for older fish scaled to maturation. Applying this relationship with pollock life history characteristics indicated that a similar vector of age-specific natural mortality for the youngest and oldest ages was obtained. Estimates of natural mortality are also higher when predation is explicitly considered (Livingston and Methot 1998; Hollowed et al. 2000). However, the reference model values were selected because Clark (1999) found that specifying a conservative (lower) natural mortality rate is typically more precautionary when natural mortality rates are uncertain.

Pollock maturity-at-age (Smith 1981) values (tabulated with reference model values for natural mortality-at-age) are:

| Age | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| M | 0.900 | 0.450 | 0.300 | 0.300 | 0.300 | 0.300 | 0.300 | 0.300 | 0.300 | 0.300 | 0.300 | 0.300 | 0.300 | 0.300 | 0.300 |
| Prop. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Mature | 0.000 | 0.008 | 0.290 | 0.642 | 0.842 | 0.902 | 0.948 | 0.964 | 0.970 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |

These maturity-at-age values were reevaluated based on the studies of Stahl (2004; subsequently Stahl and Kruse 2008a). The technicians collected 10,197 samples of maturity stage and gonad weight during late winter and early spring of 2002 and 2003 from 16 different vessels. In addition, 173 samples were collected for histological determination of maturity state (Stahl and Kruse, 2008b). In their study, maturity-at-length converted to maturity-at-age via a fishery-derived age-length key from the same seasons and areas suggests similar results to the maturity-at-age schedule used in this assessment but with some inter-annual variability.
Ianelli et al. (2005) investigated the inter-annual variability found by Stahl (2004). This involved using the fixed maturity-at-age levels presented above (for the reference model) to estimate total mature and immature numbers at age and then converting those to values at length using female mean-lengths at age (with an assumed natural variability about these means). Expected proportion mature-at-length for 2002 matched Stahl's data whereas for 2003, the model's expected values for maturity-at-length were shifted towards larger pollock. This result suggests that younger-than-currently-assumed pollock may contribute to the spawning stock.

## Length and Weight at Age

Age determination methods have been validated for pollock (Kimura et al. 1992; Kimura et al. 2006, and Kastelle and Kimura 2006). Age-determination errors were re-examined in Ianelli et al. (2011) and they found that reader experience had similar outcomes and percent agreements in reader-tester subsamples. This suggests that the otoliths themselves were the cause of the variability as opposed to reader experience. The age-determination error methods and deviations at age was found by minimizing the differences between the observed and predicted percent agreements using a special case of Punt et al. (2008).

Regular age-determination methods coupled with extensive length and weight data collections show that growth may differ by sex, area, and year class. Pollock in the northwest area typically are smaller at age than pollock in the southeast area. The differences in average weight-at-age are taken into account by stratifying estimates of catch-at-age by year, area, season and weighting estimates proportional to catch.

Stock assessment models for groundfish in Alaska typically track numbers of individuals in the population. Management recommendations are based on allowable catch levels expressed as tons of fish. While estimates of pollock catch-at-age are based on large data sets, these are typically only available up until the most recent completed calendar year of fishing (i.e., 2011 for the assessment conducted in 2012). Consequently, estimates of weight-at-age in the current year are required to map total catch biomass (typically equal to the quota) to numbers of fish caught.
The mean weight at age in the fishery can vary due to environmental conditions in addition to spatial and temporal patterns of the fishery. For estimation errors due to sampling, bootstrap distributions of the variability (within-year) indicate that this source is relatively small compared to the between-year variability in mean weights-at-age implying that processes causing mean weights in the fishery cause more variability than sampling (Table 1.17). The coefficients of variation between years are on the order of $6 \%$ to $9 \%$ (for the ages that are targeted) whereas the sampling variability is generally around $1 \%$ or 2\%.

Alternative estimators for mean weight at age were developed in Ianelli et al. (2009) and the same approach was selected for 2012 (and future year) mean weights at age (the most recent 10-year mean). The 2011 revised mean weights-at-age are somewhat smaller than assumed for the younger pollock last year but larger for older age classes (which are relatively low in abundance; Fig. 1.17).

## Parameters estimated within the assessment model

For the selected model, 825 parameters were estimated conditioned on data and model assumptions. Initial age composition, subsequent recruitment and stock-recruitment parameters account for 71 parameters. This includes vectors describing mean recruitment and variability for the first year (as ages 2-15 in 1964, projected forward from 1949) and the recruitment mean and deviations (at age 1) from 1964-2012 and projected recruitment variability (using the variance of past recruitments) for five years (2013-2017). The two-parameter stock-recruitment curve is included in addition to a term that allows the average recruitment before 1964 (that comprises the initial age composition in that year) to have a mean value different from subsequent years.
Fishing mortality is parameterized to be semi-separable with year and age (selectivity) components. The age component is allowed to vary over time; changes are allowed in each year. The mean value of the age component is constrained to equal one and the last 5 age groups (ages 11-15) are specified to be equal. The annual components of fishing mortality result in 50 parameters and the age-time forms a $10 x 50$ matrix of 500 parameters bringing the total fishing mortality parameters to 530.

Selectivity-at-age estimates for the bottom trawl survey are specified with age and year specific deviations in the average availability-at-age totaling 93 parameters. For the AT survey, which began in 1979, 112 parameters are used to specify age-time specific availability. Time-varying survey selectivity is estimated to account for the changes in availability of pollock to the survey gear and is constrained by pre-specified variance terms. Four catchability coefficients were estimated: one each for the early fishery catch-per-unit effort (CPUE) data (from Low and Ikeda, 1980), the early bottom trawl survey data (where only 6 strata were surveyed), the main bottom trawl survey data, and the AT survey data.

Based on the work of Von Szalay et al. (2007) prior distributions on the sum of the AT and BTS catchability coefficients were introduced in Ianelli et al. (2007). This simply allows an evaluation of the extent that BTS survey covers the bottom-dwelling pollock (up to $\sim 3 \mathrm{~m}$ above the bottom) and the AT survey covers the remainder of the water column. Conceptually, the catchabilities from both surveys could sum to unity (assuming fish lack behavioral responses to survey gear-e.g., herding or diving). Values of this sum that are less than one imply that there are spatial aspects of the pollock stock that are missed whereas values greater than one imply that there are pollock on the shelf during the summer that could be considered as "visitors" perhaps originating (and returning to) other areas such as the Russian zone.

Additional fishing mortality rates used for recommending harvest levels are estimated conditionally on other outputs from the model. For example, the values corresponding to the $F_{40 \%}, F_{35 \%}$ and $F_{m s y}$ harvest rates are found by satisfying the constraint that given age-specific population parameters (e.g., selectivity, maturity, mortality, weight-at-age), unique values exist that correspond to these fishing mortality rates.
The likelihood components that are used to fit the model can be categorized as:

- Total catch biomass (Log normal, $\sigma=0.05$ )
- Log-normal indices of abundance (numbers of fish; bottom trawl surveys assume annual estimates of sampling error, as represented in Fig. 1.8; for the AT index the annual errors were specified to have a mean of 0.25 whilst for the AVO data, a relative value was assumed which gave a mean of about 0.33 ).
- Fishery and survey proportions-at-age estimates (robust quasi-multinomial with effective sample sizes presented in Table 1.18).
- Age 1 index from the AT survey (CV set equal to $30 \%$ )
- Selectivity constraints: penalties/priors on age-age variability, time changes, and decreasing (with age) patterns
- Stock-recruitment: penalties/priors involved with fitting a stochastic stock-recruitment relationship within the integrated model.


## Results

## Model evaluation

A preliminary sequence of models was developed that evaluated sensitivities to new data which included updating the catch biomass for 2011 and estimated levels for 2012 along with the 2011 fishery mean weights-at-age.

As in past years, a set of models showing the impact of new data was constructed:

| Shorthand | Description |
| :---: | :--- |
| C | 2012 total catch only included (no new fishery age data) |
| CA | Catch and 2011 and preliminary 2012 fishery age data added |
| CAA | As in above but with acoustic-trawl (AT) survey data added |
| CAB | As in above but with bottom-trawl survey data added (no AT data) |
| CABA | With all new data added |

As requested by the SSC and Plan Team, retrospective analyses were again conducted with results showing a slight tendency for over estimation of spawning biomass when it is declining and slightly underestimate during increases-however, all fall well within the bounds of uncertainty (Figs. 1.18 and 1.19).

The sequential addition of new data to the model indicated that the BTS survey decreased the estimate of the 2008 year class slightly but increased the "fishable biomass" whereas the $F_{m s y}$ rate was relatively insensitive to new data (Fig. 1.20). Closer examinations of the age data that affect results show how incremental additions reflect the influence of the other sources of information. For example, the fits for model "CA" (only new data include 2011 and preliminary 2012 fishery catch and age compositions) seems to begin to improve the fit to the other data and to some degree confirms that the observations between different types of observation are consistent within years for relative abundances of different
ages (Fig. 1.21). As the data from the bottom trawl survey and then all data shows how the model balances observations between different years and data sources (Fig. 1.21).

## Time series results

The estimated selectivity pattern changes over time and reflects to some degree the extent that the fishery is focused on particularly prominent year-classes (Fig. 1.22). The model fits the fishery age-composition data quite well under this form of selectivity (Fig. 1.23). The fit to the early Japanese fishery CPUE data (Low and Ikeda 1980) is consistent with the population trends for this period (Fig. 1.24). The fit to the fishery-independent index from the AVO (which will be updated next year) is shown in Figure 1.25.
Bottom-trawl survey selectivity and fits to the numbers of age 2 and older pollock indicate that the model predicts fewer pollock than observed in the 2011 survey but slightly more than observed in the 2012 survey (Fig. 1.26). The pattern of bottom trawl survey age composition data in recent years shows a decline in the abundance of pollock older than age 6 relative to 2011 and a somewhat lower than expected numbers at age 6 (the 2006 year-class; Fig. 1.27).
The AT survey selectivity estimates vary inter-annually but have generally stabilized since the early 1990s as the acoustic-trawl and bottom trawl methods have become more standardized (Fig. 1.28; top panel). These changes could also be due to changes in age-specific pollock distributions (and hence availability) over time. The fit to the numbers of age 2 and older pollock in the AT survey generally falls within the confidence bounds of the survey sampling distributions (here assumed to have an average CV of $20 \%$ ) with a fairly reasonable pattern of residuals (Fig. 1.28, bottom panel). The model prediction for the 2009 numbers is higher than the survey estimate but provides a prediction that is lower than the 2010 survey estimate. The AT age compositions consistently track large year classes through the population and the model fits these patterns reasonably well (Fig. 1.29). The AT age-1 index indicates slightly larger than expected 2009 and 2010 year classes but much lower than expected age-1s in 2012 (Fig. 1.29, bottom panel).
The estimate of $B_{\text {msy }}$ is $2,114,000 \mathrm{t}$ (with a CV of $20 \%$ ) which is less than the projected 2013 spawning biomass of $2,580,000 \mathrm{t}$; Table 1.19). For 2012, the Tier 1 levels of yield are 2,306 thousand t from a fishable biomass estimated at around $4,693,000 \mathrm{t}$ (Table 1.20). Estimated numbers-at-age are presented in Table 1.21 and estimated catch-at-age presented in Table 1.22. Estimated summary biomass (age 3+), female spawning biomass, and age-1 recruitment is given in Table 1.23.

The results indicate that spawning biomass will be above $B_{40 \%}(2,570,000 \mathrm{t})$ in 2013 and about $122 \%$ of the $B_{\text {msy }}$ level. The probability that the current stock size is below $20 \%$ of $B_{0}$ (based on estimation uncertainty alone) is $<0.1 \%$ for 2012 and 2013 (Fig. 1.30).

Another metric on the impact of fishing suggests that the 2012 spawning stock size is about $54 \%$ of the predicted value had no fishing occurred since 1978 (Table 1.19). This compares with the $36 \%$ of $B_{100 \%}$ (based on the SPR expansion from mean recruitment from 1978-2012) and $43 \%$ of $B_{0}$ (based on the estimated stock-recruitment curve). The latter two values are based on expected recruitment either from the mean value since 1978 or from the estimated stock recruitment relationship whereas the value of $54 \%$ is based on the sequence of observed recruits relative to fishing intensities.

## Abundance and exploitation trends

The current begin-year biomass estimates (ages 3 and older) derived from the statistical catch-age model suggest that the abundance of Eastern Bering Sea pollock remained at a fairly high level from 1981-88, with estimates ranging from 8 to 12 million t (Table 1.24). Historically, biomass levels have increased from 1979 to the mid-1980's due to the strong 1978 and relatively strong 1982 and 1984 year classes recruiting to the fishable population. The stock is characterized by peaks in the mid-1980s and mid-1990s
with a substantial decline to about 5.9 million $t$ by 1991 and another low point occurring in 2008 at 4.4 million $\mathrm{t}^{*}$. Relative to last year's assessment which projected an age $3+$ biomass of 8.34 million t for 2012 the estimate is now down to 7.87 million $t$ due to the downward change in estimates of the 2009 and 2006 year classes (Fig. 1.31). The change was offset somewhat by an increase in the estimate of the 2008 year class.

The level of fishing relative to biomass estimates show that the spawning exploitation rate (SER, defined as the percent removal of spawning-aged females in any given year) has been mostly below $20 \%$ since 1980 until 2006-2008 when the rate has averaged more than $20 \%$ while the average fishing mortality for ages 3-8 has been increasing during the period of stock decline (Fig. 1.32). The estimate for 2009 through 2012 is below $20 \%$ due to the reductions in TACs arising from the ABC control rules and increases in the spawning biomass. Age specific fishing mortality rates have been fairly steady but there is a marked increase estimated for the oldest ages in 2012(Fig. 1.33). This increase is presumably due to the lower levels of older age pollock observed in the bottom trawl survey and also to the relatively low abundance levels of those pollock in the population.
Spawning biomass is projected to increase under a wide variety of catch scenarios (Fig. 1.34). Compared with past year's assessments, the estimates of age 3+ pollock biomass are similar during the historical period but slightly lower compared to the 2011 assessment (Fig. 1.35, Table 1.24).
One way to evaluate past management and assessment performance is to plot estimated fishing mortality relative to some reference values. For EBS pollock, we computed the reference fishing mortality as from Tier 1 (unadjusted) and calculated the historical values for $F_{m s y}$ (since selectivity has changed over time). Since 1977 the current estimates of fishing mortality suggest that during the early period, harvest rates were above $F_{\text {msy }}$ until about 1980. Since that time, the levels of fishing mortality have averaged about $35 \%$ of the $F_{\text {msy }}$ level (Fig. 1.36).

## Recruitment

In the 2012 BTS survey, the number of 1-year olds (the 2011 year class) was slightly below average whereas the AT survey indicated very low numbers of age one pollock (Fig. 1.37). Model estimates combining all information indicate that the 2006 year class is only $17 \%$ above the average level (Fig. 1.38 , top panel). This compares with the 2008 year class that appears to be about twice the mean value. The stock-recruitment curve as fit within the integrated model shows a fair amount of variability both in the estimated recruitments and in the uncertainty of the curve and also illustrates that the estimate of the 2011 spawning biomass was near the $B_{\text {msy }}$ level (Fig. 1.38; bottom panel). Note that the 2010 and 2011 year classes (as age 1 recruits in 2011 and 2012) are excluded from estimating the stock-recruitment curve.

## Environmental factors affecting recruitment

Previous studies linked strong Bering Sea pollock recruitment to years with warm sea temperatures and northward transport of pollock eggs and larvae (Wespestad et al. 2000; Mueter et al. 2006). As part of the "Bering-Aleutian Salmon International Survey" (BASIS) project research has also been directed toward the relative density and quality (in terms of condition for survival) of young-of-year pollock. For example, Moss et al. (2009) found age-0 pollock were very abundant and widely distributed to the north and east on the Bering Sea shelf during 2004 and 2005 (warm sea temperature; high water column stratification) indicating high northern transport of pollock eggs and larvae during those years. More recently, Mueter et al. (2011) found that warmer conditions tended to result in lower pollock recruitment in the EBS. This is consistent with the hypothesis that when sea temperatures on the eastern Bering Sea shelf are warm and the water column is highly stratified during summer, age-0 pollock appear to allocate

[^0]more energy to growth than to lipid storage, leading to low energy density prior to winter. This then may result in increased over-winter mortality (Swartzman et al. 2005, Winter et al. 2005). Ianelli et al. (2011) evaluate the consequences of current harvest policies in the face of warmer conditions and potentially lower pollock recruitment.

Results from the BASIS research project suggest that age-0 pollock abundance was low during 2006 and 2007 (cool sea temperatures; lower water column stratification; Moss et al., 2009). However, age-1 pollock (from the 2008 cohort) were evident in the BASIS survey in 2009 which may indicate changes in spatial and vertical distribution due to environmental conditions and/or that the 2008 year class is abundant (which would be consistent with the recent AT surveys). The hypothesis is that the condition (or fitness) and the abundance of age 0 pollock during late summer are predictors for the overwintering survival to age- 1 and thus year class strength. Based on direct observations of the 2010 year class from surveys the estimate is slightly below average ( $87 \%$ of the mean-i.e., 19,133 million compared to the mean age-1 recruitment of 21,899 million).

## Harvest recommendations

## Amendment 56 Reference Points

Amendment 56 to the BSAI Groundfish Fishery Management Plan (FMP) defines "overfishing level" (OFL), the fishing mortality rate used to set OFL ( $F_{\text {OFL }}$ ), the maximum permissible ABC, and the fishing mortality rate used to set the maximum permissible ABC. The fishing mortality rate used to set ABC ( $F_{\text {ABC }}$ ) may be less than this maximum permissible level, but not greater. Estimates of reference points related to maximum sustainable yield (MSY) are currently available. However, their reliability is questionable. We therefore present both reference points for pollock in the BSAI to retain the option for classification in either Tier 1 or Tier 3 of Amendment 56. These Tiers require reference point estimates for biomass level determinations. Consistent with other groundfish stocks, the following values are based on recruitment estimates from post-1976 spawning events:
$B_{\text {msy }}=2,114$ thousand t female spawning biomass
$B_{0}=5,377$ thousand t female spawning biomass
$B_{100 \%}=6,425$ thousand t female spawning biomass
$B_{40 \%}=2,570$ thousand t female spawning biomass
$B_{35 \%}=2,249$ thousand t female spawning biomass

## Specification of OFL and Maximum Permissible ABC

The 2013 spawning biomass is estimated to be 2,580,000 $t$ (at the time of spawning, assuming the stock is fished at recommended ABC level). This is above the $B_{m s y}$ value of 2,114,000 t. Under Amendment 56, this stock has qualified under Tier 1 and the harmonic mean value is considered a risk-averse policy since reliable estimates of $F_{m s y}$ and its pdf are available (Thompson 1996). The exploitation-rate type value that corresponds to the $F_{m s y}$ level was applied to the "fishable" biomass for computing ABC levels. For a future year, the fishable biomass is defined as the sum over ages of predicted begin-year numbers multiplied by age specific fishery selectivity (normalized to the value at age 6 ) and mean body mass (10year average).

Since the 2013 female spawning biomass is estimated to be above the $B_{\text {msy }}$ level ( $2,114 \mathrm{kt}$ ) but below the $B_{40 \%}$ value ( $2,570 \mathrm{kt}$ ) in 2013. Assuming that the 2013 catch equals 1.2 million t , the OF and maximum permissible ABC values by Tier would be:

| Tier | Year | MaxABC | OFL |
| :--- | :---: | :---: | :---: |
| 1a | 2013 | $2,306,000 \mathrm{t}$ | $2,549,000 \mathrm{t}$ |
| 1a | 2014 | $2,551,000 \mathrm{t}$ | $2,820,000 \mathrm{t}$ |
|  |  |  |  |
| 3b | 2013 | $1,452,000 \mathrm{t}$ | $1,753,000 \mathrm{t}$ |
| 3b | 2014 | $1,547,000 \mathrm{t}$ | $1,858,000 \mathrm{t}$ |

If the 2013 catch is assumed to be 1.375 million $t$ then the ABCs and OFLs would be

| Tier | Year | MaxABC | OFL |
| :--- | :---: | :---: | :---: |
| 1a | 2013 | $2,306,000 \mathrm{t}$ | $2,549,000 \mathrm{t}$ |
| 1a | 2014 | $2,466,000 \mathrm{t}$ | $2,726,000 \mathrm{t}$ |
|  |  |  |  |
| 3b | 2013 | $1,452,000 \mathrm{t}$ | $1,753,000 \mathrm{t}$ |
| 3b | 2014 | $1,462,000 \mathrm{t}$ | $1,759,000 \mathrm{t}$ |

## Standard Harvest Scenarios and Projection Methodology

A standard set of projections is required for each stock managed under Tiers 1, 2, or 3, of Amendment 56. This set of projections encompasses seven harvest scenarios designed to satisfy the requirements of Amendment 56, the National Environmental Policy Act, and the Magnuson-Stevens Fishery Conservation and Management Act (MSFCMA). While EBS pollock is generally considered to fall within Tier 1, the standard projection model requires knowledge of future uncertainty in $F_{m s y}$. Projections based on Tier 3 are presented along with some considerations for a Tier 1 approach.

For each scenario, the projections begin with the vector of 2012 numbers at age estimated in the assessment. This vector is then projected forward to the beginning of 2013 using the schedules of natural mortality and selectivity described in the assessment and the best available estimate of total (year-end) catch assumed for 2012. In each subsequent year, the fishing mortality rate is prescribed on the basis of the spawning biomass in that year and the respective harvest scenario. Annual recruitments are simulated from an inverse Gaussian distribution whose parameters consist of maximum likelihood estimates determined from recruitments estimated in the assessment. Spawning biomass is computed in each year based on the time of peak spawning and the maturity and weight schedules described in the assessment. Total catch is assumed to equal the catch associated with the respective harvest scenario in all years. This projection scheme is run 1,000 times to obtain distributions of possible future stock sizes, fishing mortality rates, and catches.

Five of the seven standard scenarios will be used in an Environmental Assessment prepared in conjunction with the final SAFE. These five scenarios, which are designed to provide a range of harvest alternatives that are likely to bracket the final TAC for 2013 and 2014, are as follows (A "max $F_{A B C}$ " refers to the maximum permissible value of $F_{A B C}$ under Amendment 56):
Scenario 1: In all future years, $F$ is set equal to $\max F_{A B C}$. (Rationale: Historically, TAC has been
constrained by ABC, so this scenario provides a likely upper limit on future TACs).
Scenario 2: In 2013 catch is equal to 1.2 million $t$ and future years, $F$ is set equal to the Tier 3 estimate (Authors' recommendation).

Scenario 3: In all future years, $F$ is set equal to the 2008-2012 average $F$. (Rationale: For some stocks, TAC can be well below ABC, and recent average $F$ may provide a better indicator of $F_{T A C}$ than $F_{A B C}$.)
Scenario 4: In all future years, $F$ is set equal to $F_{60 \%}$. (Rationale: This scenario provides a likely lower bound on $F_{A B C}$ that still allows future harvest rates to be adjusted downward when stocks fall below reference levels. This was requested by public comment for the DSEIS developed in 2006)
Scenario 5: In all future years, $F$ is set equal to zero. (Rationale: In extreme cases, TAC may be set at a level close to zero.)
Two other scenarios are needed to satisfy the MSFCMA's requirement to determine whether a stock is currently in an overfished condition or is approaching an overfished condition. These scenarios were designed based on the Mace et al. (1996) review of overfishing definitions and Restrepo et al. 1998 technical guidance. These two scenarios are as follow (for Tier 3 stocks, the MSY level is defined as $B_{35 \%}$ ):

Scenario 6: In all future years, F is set equal to $F_{\text {OFL }}$. (Rationale: This scenario determines whether a stock is overfished. If the stock is expected to be 1) above its MSY level in 2011 or 2) above $1 / 2$ of its MSY level in 2013 and above its MSY level in 2025 under this scenario, then the stock is not overfished.)
Scenario 7: In 2013 and 2014, $F$ is set equal to $\max F_{A B C}$, and in all subsequent years, $F$ is set equal to $F_{\text {OFL }}$. (Rationale: This scenario determines whether a stock is approaching an overfished condition. If the stock is expected to be above its MSY level in 2024 under this scenario, then the stock is not approaching an overfished condition).

## Projections and status determination

For the purposes of these projections, we present results based on selecting the $F_{40 \%}$ harvest rate as the max $F_{A B C}$ value and use $F_{35 \%}$ as a proxy for $F_{m s y}$. Scenarios 1 through 7 were projected 14 years from 2012 (Table 1.25). Under Tier 3 Scenarios 1 and 2, the expected spawning biomass will increase and stabilize around $B_{40 \%}$ (in expectation) in a few years (Fig. 1.39).
Any stock that is below its MSST is defined to be overfished. Any stock that is expected to fall below its MSST in the next two years is defined to be approaching an overfished condition. Harvest scenarios 6 and 7 are used in these determinations as follows:
Is the stock overfished? This depends on the stock's estimated spawning biomass in 2012:
If spawning biomass for 2012 is estimated to be below $1 / 2 B_{35 \%}$ the stock is below its MSST.
If spawning biomass for 2012 is estimated to be above $B_{35 \%}$, the stock is above its MSST.
If spawning biomass for 2012 is estimated to be above $1 / 2 B_{35 \%}$ but below $B_{35 \%}$, the stock's status relative to MSST is determined by referring to harvest scenario 6 (Table 1.25). If the mean spawning biomass for 2021 is below $B_{35 \%}$, the stock is below its MSST. Otherwise, the stock is above its MSST.
Is the stock approaching an overfished condition? This is determined by referring to harvest Scenario 7:
If the mean spawning biomass for 2015 is below $1 / 2 B_{35 \%}$, the stock is approaching an overfished condition.

If the mean spawning biomass for 2015 is above $B_{35 \%}$, the stock is not approaching an overfished condition.

If the mean spawning biomass for 2015 is above $1 / 2 B_{35 \%}$ but below $B_{35 \%}$, the determination depends on the mean spawning biomass for 2025. If the mean spawning biomass for 2025 is below $B_{35 \%}$, the stock is approaching an overfished condition. Otherwise, the stock is not approaching an overfished condition.

For scenarios 6 and 7, we conclude that pollock is not below MSST for the year 2011, nor is it expected to be approaching an overfished condition based on Scenario 7 (the mean spawning biomass in 2013 is above the $B_{35 \%}$ level; Table 1.25). Tier 1 calculations for ABC and OFL values in 2013 and 2014 (assuming catch is 1,200,000 t in 2013 are given in Table 1.26.

## ABC Recommendation

ABC levels are affected by estimates of $F_{m s y}$ (which depends principally on the stock-recruitment relationship and demographic schedules such as selectivity-at-age, maturity, growth), the $B_{m s y}$ level, and current stock size (both spawning and "fishable"). Information collected in 2012 and refinements to the treatment of earlier data suggest that the stock is near $B_{m s y}$ levels with near-term outlook apparently favorable. Under likely catch projections, the spawning stock biomass is expected be about $122 \%$ of $B_{m s y}$ ( $2,114 \mathrm{kt}$ ) by 2013 with future status depending on specified catch levels (Fig. 1.39).
A more formal consideration of alternative risk factors was requested by the Plan Team. In response, a set of risk measures were developed and applied directly within the model (Table 1.27). These catch levels for 2013 correspond to harvest rates that are $11 \%, 16 \%, 21 \%, 26 \%, 32 \%$, and $43 \%$ of the "fishable" biomass. Results show that alternative 2013 catch levels are consistent with the data and stock status (Table 28). Namely that

- the catch is unlikely to exceed the OFL as defined by the $F_{m s y}$ nor is the stock likely be below the $B_{\text {msy }}$ level (rows 1, 2 and 4);
- nearly all catch levels lead to a 2014 stock size that will likely be below average (Row 3);
- the expected proportion of fish between age 1-5 in the population will be higher than the longterm mean (row 8);
- the age groups comprising the spawning stock (by weight) are likely less diverse than that observed in 1994 (row 9);
- an increase in effort is unlikely except at higher catch levels (row 11); and
- at similar catch levels to 2011 and 2012, the probability of exceeding the average Chinook PSC is moderate (but note that the computation assumes independence of Chinook salmon run strengths).
For presentation purposes, a subset of key indicators which includes the impact of reduced catches may help in considering trade-offs (Table 1.29). Such a table may be used as an example approach to risk management (i.e., attempting to integrate over risk factors, Francis and Shotton, 1997). This would involve assigning relative weights to the risks and minimizing those risks. Explorations suggest that setting the catch at 1.2 million $t$ will likely increase biomass and have a near even chance of returning fishing conditions to above average by 2017. In addition to the values presented in the decision table, rationales for setting the ABC below the maximum permissible include:
- Two surveys both remain below their average
- Retrospective patterns indicate that recent strong recruitments tend to be over estimated
- A significant biomass of pollock was observed in the Russian zone from the NMFS AT survey
- While B-season fishing conditions were better than observed for 2011, smaller pollock and the need for shore-based boats to travel far from port was noted
- Estimated fishing mortality for the oldest age groups has increased in 2012. While they don’t represent a large component of the population in terms of biomass, pollock in these age groups
are generally most available to fishing operations that are closer to the southeast part of the Eastern Bering Sea.
- In 2012, the spawning stock diversity is at a low level (Fig. 1.40).
- The 2012 BTS survey estimate ranks $20^{\text {th }}$ out of the 26 estimates since 1987.
- The AT survey found very few age 1 pollock (the third lowest out of 14 surveys conducted since 1991)
- Russian catches in the Navarin region may have more of an impact if the distribution of pollock has shifted considerably based on the relatively large biomass of young pollock observed in their zone in summer of 2012
- Estimates of the 2008 year class are better than in past years but remain uncertain and represent a significant component of the biomass ( $\sim 52 \%$ of spawning biomass in 2013).

Given these factors, an added adjustment in harvest rates seems justified to ensure that fishing mortality increases at a more incremental pace. Estimated conditions result in a maximum permissible Tier 1a ABC that is very high even though the incoming year classes remain uncertain. Facing these uncertain conditions, it would be prudent to proceed with stable or gradual increases in fishing mortality. Consequently a 2013 ABC of $1,200,000 \mathrm{t}$ is recommended. At this level of fishing the spawning biomass is projected to continue increasing and the 2014 ABC would be 1,547,000 t (based on a Tier 3 approach).

## Ecosystem considerations

In general, a number of key issues for ecosystem conservation and management can be highlighted. These include:

- Preventing overfishing;
- Avoiding habitat degradation;
- Minimizing incidental bycatch (via multi-species analyses of technical interactions);
- Controlling the level of discards; and
- Considering multi-species trophic interactions relative to harvest policies.

For the case of pollock in the Eastern Bering Sea, the NPFMC and NMFS continue to manage the fishery on the basis of these issues in addition to the single-species harvest approach. The prevention of overfishing is clearly set out as the main guideline for management. Habitat degradation has been minimized in the pollock fishery by converting the industry to pelagic-gear only. Bycatch in the pollock fleet is closely monitored by the NMFS observer program and managed on that basis. Discard rates of many species have been reduced in this fishery and efforts to minimize bycatch continue.
In comparisons of the Western Bering Sea (WBS) with the Eastern Bering Sea using mass-balance foodweb models based on 1980-85 summer diet data, Aydin et al. (2002) found that the production in these two systems is quite different. On a per-unit-area measure, the western Bering Sea has higher productivity than the EBS. Also, the pathways of this productivity are different with much of the energy flowing through epifaunal species (e.g., sea urchins and brittlestars) in the WBS whereas for the EBS, crab and flatfish species play a similar role. In both regions, the keystone species in 1980-85 were pollock and Pacific cod. This study showed that the food web estimated for the EBS ecosystem appears to be relatively mature due to the large number of interconnections among species. In a more recent study based on 1990-93 diet data (see Appendix 1 of Ecosystem Considerations chapter for methods), pollock remain in a central role in the ecosystem. The diet of pollock is similar between adults and juveniles with the exception that adults become more piscivorous (with consumption of pollock by adult pollock representing their third largest prey item). In terms of magnitude, pollock cannibalism may account for 2.5 million $t$ to nearly 5 million $t$ of pollock consumed (based on uncertainties in diet percentage and total consumption rate; Jurado-Molina et al. 2005).

Regarding specific small-scale ecosystems of the EBS, Ciannelli et al. (2004a, 2004b) presented an application of an ecosystem model scaled to data available around the Pribilof Islands region. They applied bioenergetics and foraging theory to characterize the spatial extent of this ecosystem. They compared energy balance, from a food web model relevant to the foraging range of northern fur seals and found that a range of 100 nautical mile radius encloses the area of highest energy balance representing about $50 \%$ of the observed foraging range for lactating fur seals. This suggests that fur seals depend on areas outside the energetic balance region. This study develops a method for evaluating the shape and extent of a key ecosystem in the EBS (i.e., the Pribilof Islands). Furthermore, the overlap of the pollock fishery and northern fur seal foraging habitat (see Sterling and Ream 2004, Zeppelin and Ream 2006) will require careful monitoring and evaluation.
A brief summary of these two perspectives (ecosystem effects on pollock stock and pollock fishery effects on ecosystem) is given in Table 1.30. Unlike the food-web models discussed above, examining predators and prey in isolation may overly simplify relationships. This table serves to highlight the main connections and the status of our understanding or lack thereof.

## Ecosystem effects on the EBS pollock stock

Euphausiids, principally Thysanoessa inermis and T. raschii, are among the most important prey items for pollock in the Bering Sea (Livingston, 1991; Lang et al., 2000; Brodeur et al., 2002; Cianelli et al., 2004; Lang et al., 2005). In the 2009 SAFE report, an analysis of MACE AT survey backscatter as an index of euphausiid abundance on the Bering Sea shelf was presented. In 2010 the index was updated and spatial distributions and trends were evaluated using methods described in De Robertis et al., (2010) and Ressler et al. (In press). New information on euphausiid abundance is anticipated from the planned 2012 surveys.

## EBS pollock fishery effects on the ecosystem.

Since the pollock fishery is primarily pelagic in nature, the bycatch of non-target species is small relative to the magnitude of the fishery (Table 1.31). Jellyfish represent the largest component of the bycatch of non-target species and have been stable at around 5-6 thousand tons per year with catches exceeding 8 thousand $t$ in 2000, 2009, and 2011. Skate bycatch nearly doubled in 2008 compared to 2007 but declined to just over one thousand t in 2010 (Table 1.31). The data on non-target species shows a high degree of inter-annual variability which reflects the spatial variability of the fishery and high observation error. This variability may mask any significant trends in bycatch.

The catch of other target species in the pollock fishery represent less than $1 \%$ of the total pollock catch. Incidental catch of Pacific cod has increased since 1999 but remains below the 1997 levels (Table 1.32). The incidental catch of flatfish was variable over time and has increased, particularly for yellowfin sole in 2010. Proportionately, the incidental catch has decreased since the overall levels of pollock catch have increased. In fact, the bycatch of pollock in other target fisheries is more than double the bycatch of target species in the pollock fishery (Table 1.33).
The catch of prohibited species was variable. A relatively high number of "other salmon" (mainly comprising chum salmon) was observed in 2011 but this returned to low levels again in 2012 (Table 1.34). Also, the level of crab bycatch drops considerably after 1998 when all BSAI pollock fishing was restricted to using only pelagic trawls but bairdi crab has averaged just under 10 thousand animals since 2008. Chinook salmon bycatch in the pollock fishery have averaged 15.9 thousand fish since 2008. Much of the salmon bycatch variability is likely attributed to salmon run sizes and also to environmental conditions.

## Data gaps and research priorities

EBS pollock is likely the most data-rich species in the region. Nonetheless, research and studies that focus on the following would improve our understanding of stock dynamics useful for fisheries
management: 1) age determination protocols, 2) spatial distribution of pollock by season including vertical dimension and how this impacts the availability of pollock to survey gear, 3) the relationship between climate and recruitment; 4) stock structure potential, and 5) trophic interactions of pollock within the ecosystem.

## Acknowledgements

We thank the staff of the AFSC age-and-growth department for their excellent work in promptly processing the samples used in this assessment. The work of many individuals involved in collecting and processing survey and observer data is greatly appreciated. Grant Thompson provided the methodology used for the standard harvest scenarios and the associated text.

## References

Aydin, K. Y., et al.2002. A comparison of the Eastern Bering and western Bering Sea shelf and slope ecosystems through the use of mass-balance food web models. U.S. Department of Commerce, Seattle, WA. (NOAA Technical Memorandum NMFS-AFSC-130) 78p.
Bacheler, N.M., L. Ciannelli, K.M. Bailey, and J.T. Duffy-Anderson. 2010. Spatial and temporal patterns of walleye pollock (Theragra chalcogramma) spawning in the eastern Bering Sea inferred from egg and larval distributions. Fish. Oceanogr. 19:2. 107-120.
Bailey, K.M., T.J. Quinn, P. Bentzen, and W.S. Grant. 1999. Population structure and dynamics of walleye pollock, Theragra chalcogramma. Advances in Mar. Biol. 37:179-255.
Barbeaux, S. J., S. Gaichas, J. N. Ianelli, and M. W. Dorn. 2005. Evaluation of biological sampling protocols for atsea groundfish observers in Alaska. Alaska Fisheries Research Bulletin 11(2):82-101.
Barbeaux, S.J., M. Dorn, J. Ianelli, and J. Horne. 2005. Visualizing Alaska pollock (Theragra chalcogramma) aggregation dynamics. ICES CM 2005/U:01.
Brodeur, R.D.; Wilson, M.T.; Ciannelli, L.; Doyle, M. and Napp, J.M. (2002). "Interannual and regional variability in distribution and ecology of juvenile pollock and their prey in frontal structures of the Bering Sea." DeepSea Research II. 49: 6051-6067.
Butterworth, D.S., J.N. Ianelli, and R. Hilborn. 2003. A statistical model for stock assessment of southern bluefin tuna with temporal changes in selectivity. Afr. J. mar. Sci. 25: 331-361.
Canino, M.F., P.T. O'Reilly, L. Hauser, and P. Bentzen. 2005. Genetic differentiation in walleye pollock (Theragra chalcogramma) in response to selection at the pantophysin (Pan I) locus. Can. J. Fish. Aquat. Sci. 62:2519-2529.
Ciannelli, L., B.W. Robson, R.C. Francis, K. Aydin, and R.D. Brodeur 2004a. Boundaries of open marine ecosystems: an application to the Pribilof Archipelago, southeast Bering Sea. Ecological Applications, Volume 14, No. 3. pp. 942-953.
Ciannelli, L.; Brodeur, R.D., and Napp, J.M. 2004b. "Foraging impact on zooplankton by age-0 walleye pollock (Theragra chalcogramma) around a front in the southeast Bering Sea." Marine Biology. 144: 515-525.
Clark, W.G. 1999. Effects of an erroneous natural mortality rate on a simple age-structured model. Can. J. Fish. Aquat. Sci. 56:1721-1731.
Cotter, A.J.R., L. Burt, C.G.M Paxton, C. Fernandez, S.T. Buckland, and J.X Pan. 2004. Are stock assessment methods too complicated? Fish and Fisheries, 5:235-254.
De Robertis, A., McKelvey, D.R., and Ressler, P.H. 2010. Development and application of empirical multifrequency methods for backscatter classification in the North Pacific. Can. J. Fish. Aquat. Sci. 67: 14591474.

Dorn, M.W. 1992. Detecting environmental covariates of Pacific whiting Merluccius productus growth using a growth-increment regression model. Fish. Bull. 90:260-275.
Fissel, B. M. Dalton, R. Felthoven, B. Garber-Yonts, A. Haynie, A. Himes-Cornell, S. Kasperski, J. Lee, D. Lew, L. Pfeiffer, J. Sepez, C. Seung. 2012. Stock assessment and fishery evaluation report for the Groundfish fisheries of the Gulf of Alaska and Bering Sea/Aleutian Islands area: Economic status of the groundfish fisheries off Alaska, 2011.

Fournier, D.A. and C.P. Archibald. 1982. A general theory for analyzing catch-at-age data. Can. J. Fish. Aquat. Sci. 39:1195-1207.
Fournier, D.A., J.R. Sibert, J. Majkowski, and J. Hampton. 1990. MULTIFAN a likelihood-based method for estimating growth parameters and age composition from multiple length frequency samples with an application to southern bluefin tuna (Thunnus maccoyii). Can. J. Fish. Aquat. Sci. 47:301-317.
Francis, R.I.C.C. 1992. Use of risk analysis to assess fishery management strategies: a case study using orange roughy (Hoplostethus atlanticus) on the Chatham Rise, New Zealand. Can. J. Fish. Aquat. Sci. 49: 922930.

Francis, R I C C 2011. Data weighting in statistical fisheries stock assessment models. Can. Journ. Fish. Aquat. Sci. 1138: 1124-1138.
Grant, W. S., Spies, I., and Canino, M. F. 2010. Shifting-balance stock structure in North Pacific walleye pollock (Gadus chalcogrammus). - ICES Journal of Marine Science, 67:1686-1696.
Greiwank, A., and G.F. Corliss (eds.) 1991. Automatic differentiation of algorithms: theory, implementation and application. Proceedings of the SIAM Workshop on the Automatic Differentiation of Algorithms, held Jan. 6-8, Breckenridge, CO. Soc. Indust. And Applied Mathematics, Philadelphia.
Hinckley, S. 1987. The reproductive biology of walleye pollock, Theragra chalcogramma, in the Bering Sea, with reference to spawning stock structure. Fish. Bull. 85:481-498.
Hollowed, A. B., J. N. Ianelli, and P. A. Livingston. 2000. Including predation mortality in stock assessments: A case study involving Gulf of Alaska walleye pollock. ICES Journal of Marine Science, 57, pp. 279-293.
Honkalehto, T., Ressler, P.H., Towler, R.H., Wilson, C.D., 2011.Using acoustic data from fishing vessels to estimate walleye pollock (Theragra chalcogramma) abundance in the eastern Bering Sea. 2011. Can. J. Fish. Aquat. Sci. 68: 1231-1242
Honkalehto, T., D. McKelvey, and N. Williamson. 2005. Results of the echo integration-trawl survey of walleye pollock (Theragra chalcogramma) on the U.S. and Russian Bering Sea shelf in June and July 2004. AFSC Processed Rep. 2005-02, 43 p.
Honkalehto, T., A. McCarthy, P. Ressler, K. Williams, and D. Jones. 2012. Results of the Acoustic-Trawl Survey of Walleye Pollock (Theragra chalcogramma) on the U.S. and Russian Bering Sea Shelf in June - August 2010. AFSC Processed Rep. 2012-01, 57 p. Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv., 7600 Sand Point Way NE, Seattle WA 98115.
Hunt Jr., G.L., K.O. Coyle, L. Eisner, E.V. Farley, R. Heintz, F. Mueter, J.M. Napp, J.E. Overland, P.H. Ressler, S. Salo, and P.J. Stabeno. Climate impacts on eastern Bering Sea food webs: A synthesis of new data and an assessment of the Oscillating Control Hypothesis. Submitted to ICES Journal of Marine Science.
Ianelli, J.N. 2005. Assessment and Fisheries Management of Eastern Bering Sea Walleye Pollock: is Sustainability Luck Bulletin of Marine Science, Volume 76, Number 2, April 2005, pp. 321-336(16)
Ianelli, J.N. and D.A. Fournier. 1998. Alternative age-structured analyses of the NRC simulated stock assessment data. In Restrepo, V.R. [ed.]. Analyses of simulated data sets in support of the NRC study on stock assessment methods. NOAA Tech. Memo. NMFS-F/SPO-30. 96 p.
Ianelli, J.N., L. Fritz, T. Honkalehto, N. Williamson and G. Walters 1998. Bering Sea-Aleutian Islands Walleye Pollock Assessment for 1999. In: Stock assessment and fishery evaluation report for the groundfish resources of the Bering Sea/Aleutian Islands regions. North Pac. Fish. Mgmt. Council, Anchorage, AK, section 1:1-79.
Ianelli, J.N., S. Barbeaux, G. Walters, T. Honkalehto, and N. Williamson. 2004. Bering Sea-Aleutian Islands Walleye Pollock Assessment for 2005. In: Stock assessment and fishery evaluation report for the groundfish resources of the Bering Sea/Aleutian Islands regions. North Pac. Fish. Mgmt. Council, Anchorage, AK, section 1:37-126.
Ianelli, J.N., S. Barbeaux, T. Honkalehto, N. Williamson and G. Walters. 2003. Bering Sea-Aleutian Islands Walleye Pollock Assessment for 2003. In: Stock assessment and fishery evaluation report for the groundfish resources of the Bering Sea/Aleutian Islands regions. North Pac. Fish. Mgmt. Council, Anchorage, AK, section 1:1-101.
Ianelli, J.N., S. Barbeaux, T. Honkalehto, S. Kotwicki, K. Aydin and N. Williamson. 2009. Assessment of the walleye pollock stock in the Eastern Bering Sea. In: Stock assessment and fishery evaluation report for the
groundfish resources of the Bering Sea/Aleutian Islands regions. North Pac. Fish. Mgmt. Council, Anchorage, AK, section 1:49-148.
Ianelli, J.N., S. Barbeaux, T. Honkalehto, S. Kotwicki, K. Aydin and N. Williamson. 2008. Assessment of the walleye pollock stock in the Eastern Bering Sea. In: Stock assessment and fishery evaluation report for the groundfish resources of the Bering Sea/Aleutian Islands regions. North Pac. Fish. Mgmt. Council, Anchorage, AK, section 1:47-137.
Ianelli, J.N., S. Barbeaux, T. Honkalehto, S. Kotwicki, K. Aydin and N. Williamson. 2007. Eastern Bering Sea walleye pollock. In: Stock assessment and fishery evaluation report for the groundfish resources of the Bering Sea/Aleutian Islands regions. North Pac. Fish. Mgmt. Council, Anchorage, AK, section 1:41-138.
Ianelli, J.N., S. Barbeaux, T. Honkalehto, S. Kotwicki, K. Aydin, and N. Williamson. 2006. Assessment of Alaska Pollock Stock in the Eastern Bering Sea. In: Stock assessment and fishery evaluation report for the groundfish resources of the Bering Sea/Aleutian Islands regions. North Pac. Fish. Mgmt. Council, Anchorage, AK, section 1:35-138.
Ianelli, J.N., T. Buckley, T. Honkalehto, G Walters, and N. Williamson 2001. Bering Sea-Aleutian Islands Walleye Pollock Assessment for 2002. In: Stock assessment and fishery evaluation report for the groundfish resources of the Bering Sea/ Aleutian Islands regions. North Pac. Fish. Mgmt. Council Anchorage, AK, Section 1:1-79
Ianelli, J.N., Barbeaux, S., Honkalehto, T., Kotwicki, S., Aydin, K., and Williamson, N. Assessment of the walleye pollock stock in the eastern Bering Sea. 2009. Stock Assessment. NPFMC Bering Sea and Aleutian Islands Stock Assessment and Fishery Evaluation (SAFE) Report for 2010. Alaska Fisheries Science Center. URL: http://www.afsc.noaa.gov/refm/docs/2009/EBSpollock.pdf
Ianelli, J.N., S. Barbeaux, T. Honkalehto, S. Kotwicki, K. Aydin and N. Williamson. 2010. Assessment of the walleye pollock stock in the Eastern Bering Sea. In Stock assessment and fishery evaluation report for the groundfish resources of the Bering Sea/Aleutian Islands regions. North Pac. Fish. Mgmt. Council, Anchorage, AK, section 1:53-156.
Ianelli, J.N., S. Barbeaux, T. Honkalehto, S. Kotwicki, K. Aydin and N. Williamson. 2011. Assessment of the walleye pollock stock in the Eastern Bering Sea. In Stock assessment and fishery evaluation report for the groundfish resources of the Bering Sea/Aleutian Islands regions. North Pac. Fish. Mgmt. Council, Anchorage, AK, section 1:58-157.
Ianelli, J.N., A.B. Hollowed, A.C. Haynie, F.J. Mueter, and N.A. Bond. 2011. Evaluating management strategies for eastern Bering Sea walleye pollock (Theragra chalcogramma) in a changing environment. ICES Journal of Marine Science, doi:10.1093/icesjms/fsr010.
Jurado-Molina J., P. A. Livingston and J. N. Ianelli. 2005. Incorporating predation interactions to a statistical catch-at-age model for a predator-prey system in the eastern Bering Sea. Canadian Journal of Fisheries and Aquatic Sciences. 62(8): 1865-1873.
Jensen, A. 1996. Beverton and Holt life history invariants result from optimal trade-off of reproduction and survival. Canadian Journal of Fisheries and Aquatic Sciences 53, 820-822.
Kastelle, C. R., and Kimura, D. K. 2006. Age validation of walleye pollock (Theragra chalcogramma) from the Gulf of Alaska using the disequilibrium of $\mathrm{Pb}-210$ and Ra-226. e ICES Journal of Marine Science, 63: 1520e1529.
Kimura, D.K. 1989. Variability in estimating catch-in-numbers-at-age and its impact on cohort analysis. In R.J. Beamish and G.A. McFarlane (eds.), Effects on ocean variability on recruitment and an evaluation of parameters used in stock assessment models. Can. Spec. Publ. Fish. Aq. Sci. 108:57-66.
Kimura, D.K., J.J. Lyons, S.E. MacLellan, and B.J. Goetz. 1992. Effects of year-class strength on age determination. Aust. J. Mar. Freshwater Res. 43:1221-8.
Kimura, D.K., C.R. Kastelle , B.J. Goetz, C.M. Gburski, and A.V. Buslov. 2006. Corroborating ages of walleye pollock (Theragra chalcogramma), Australian J. of Marine and Freshwater Research 57:323-332.
Kotenev, B.N. and A.I. Glubokov. 2007. Walleye pollock Theregra chalcogramma from the Navarin Region and adjacent waters of the Bering Sea: ecology, biology, and stock structure. Moscow VNIRO publishing. 180p.

Kotwicki, S., T.W. Buckley, T. Honkalehto, and G. Walters. 2004. Comparison of walleye pollock data collected on the Eastern Bering Sea shelf by bottom trawl and echo integration trawl surveys. (poster presentation available at: ftp://ftp.afsc.noaa.gov/posters/pKotwicki01_pollock.pdf).
Kotwicki, S., T.W. Buckley, T. Honkalehto, and G. Walters. 2005. Variation in the distribution of walleye pollock (Theragra chalcogramma) with temperature and implications for seasonal migration. Fish. Bull 103:574587.

Kotwicki, S., A. DeRobertis, P vonSzalay, and R. Towler. 2009. The effect of light intensity on the availability of walleye pollock (Theragra chalcogramma) to bottom trawl and acoustic surveys. Can. J. Fisheries and Aquatic Science. 66(6): 983-994.
Lang, G.M., Livingston, P.A., Dodd, K.A., 2005. Groundfish food habits and predation on commercially important prey species in the eastern Bering Sea from 1997 through 2001. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-158, 230p. http://www.afsc.noaa.gov/Publications/AFSC-TM/NOAA-TM-AFSC-158.pdf
Lang, G.M., R.D. Brodeur, J.M. Napp, and R. Schabetsberger. (2000). Variation in groundfish predation on juvenile walleye pollock relative to hydrographic structure near the Pribilof Islands, Alaska. ICES Journal of Marine Science. 57:265-271.
Lauth, R.R., J.N. Ianelli, and W.W. Wakefield. 2004. Estimating the size selectivity and catching efficiency of a survey bottom trawl for thornyheads, Sebastolobus spp. using a towed video camera sled. Fisheries Research. 70:39-48.
Lehodey, P., I. Senina, and R. Murtugudde. 2008. A spatial ecosystem and populations dynamics model (SEAPODYM) - Modeling of tuna and tuna-like populations. Progress in Oceanography 78: 304-318)
Livingston, P. A., and Methot, R. D. (1998). "Incorporation of predation into a population assessment model of Eastern Bering Sea walleye pollock. In Fishery Stock Assessment Models." NOAA Technical Report 126, NMFS F/NWC-54, Alaska Sea Grant Program, 304 Eielson Building, University of Alaska Fairbanks, Fairbanks, AK 99775. pp. 663-678.
Livingston, P.A. (1991). Walleye pollock. Pages 9-30 in: P.A. Livingston (ed.). "Groundfish food habits and predation on commercially important prey species in the eastern Bering Sea, 1984-1986." U.S. Dep. Commer., NOAA Tech. Memo. NMFS-F/NWC-207, 240 p.
Lorenzen, K. 1996. The relationship between body weight and natural mortality in juvenile and adult fish: a comparison of natural ecosystems and aquaculture. J. Fish. Biol. 49:627-647.
Lorenzen, K. 2000. Allometry of natural mortality as a basis for assessing optimal release size in fishstocking programmes. Canadian Journal of Fisheries and Aquatic Sciences 57, 2374-2381.
Low, L.L., and Ikeda. 1980. Average density index of walleye pollock in the Bering Sea. NOAA Tech. Memo. SFRF743.
Mace, P., L. Botsford, J. Collie, W. Gabriel, P. Goodyear J. Powers, V. Restrepo, A. Rosenberg, M. Sissenwine, G. Thompson, J. Witzig. 1996. Scientific review of definitions of overfishing in U.S. Fishery Management Plans. NOAA Tech. Memo. NMFS-F/SPO-21. 20 p.
Martinson, E. C., H. H. Stokes, and D. L. Scarnecchia. 2011 (In Review). Use of juvenile salmon growth and temperature change indices to predict groundfish post age-0 year class strengths in the Gulf of Alaska and eastern Bering Sea. Fisheries Oceanography (in review).
McAllister, M.K. and Ianelli, J.N. 1997. Bayesian stock assessment using catch-age data and the samplingimportance resampling algorithm. Can. J. Fish. Aquat. Sci. 54:284-300.
Merritt, M.F. and T.J. Quinn II. 2000. Using perceptions of data accuracy and empirical weighting of information: assessment of a recreational fish population. Canadian Journal of Fisheries and Aquatic Sciences. 57: 1459-1469.
Methot, R.D. 1990. Synthesis model: an adaptable framework for analysis of diverse stock assessment data. In Proceedings of the symposium on applications of stock assessment techniques to Gadids. L. Low [ed.]. Int. North Pac. Fish. Comm. Bull. 50: 259-277.
Miller, T.J. 2005. Estimation of catch parameters from a fishery observer program with multiple objectives. PhD Dissertation. Univ. of Washington. 419p.
Mohn, R. 1999. The retrospective problem in sequential population analysis: An investigation using cod fishery and simulated data. Ices J. Mar Sci. 56, 473-488.

Moss, J.H., E.V. Farley, Jr., A.M. Feldmann, and J.N. Ianelli. (in review). Spatial distribution, energetic status, and food habits of eastern Bering Sea age-0 walleye pollock. Transactions of the American Fisheries Society.
Mueter, F. J., and M. Litzow. 2008. Sea ice retreat alters the biogeography of the Bering Sea continental shelf. Ecological Applications 18:309-320.
Mueter, F. J., C. Ladd, M. C. Palmer, and B. L. Norcross. 2006. Bottom-up and top-down controls of walleye pollock (Theragra chalcogramma) on the Eastern Bering Sea shelf. Progress in Oceanography 68:152-183.
Mueter, F. J., N.A. Bond, J.N. Ianelli, and A.B. Hollowed. 2011. Expected declines in recruitment of walleye pollock (Theragra chalcogramma) in the eastern Bering Sea under future climate change. ICES Journal of Marine Science.
O’Reilly, P.T., M.F. Canino, K.M. Bailey and P. Bentzen. 2004. Inverse relationship between $\mathrm{F}_{\mathrm{ST}}$ and microsatellite polymorphism in the marine fish, walleye pollock (Theragra chalcogramma): implications for resolving weak population structure. Molecular Ecology (2004) 13, 1799-1814
Parma, A.M. 1993. Retrospective catch-at-age analysis of Pacfic halibut: implications on assessment of harvesting policies. In Proceedings of the International Symposium on Management Strategies of Exploited Fish Populations. Alaska Sea Grant Rep. No. 93-02. Univ. Alaska Fairbanks.
Petitgas, P. 1993. Geostatistics for fish stock assessments: a review and an acoustic application. ICES J. Mar. Sci. 50: 285-298.
Press, W.H., S.A. Teukolsky, W.T. Vetterling, B.P. Flannery. 1992. Numerical Recipes in C. Second Ed. Cambridge University Press. 994 p.
Punt, A.E., Smith, D.C., KrusicGolub, K. and Robertson, S. 2008. Quantifying age-reading error for use in fisheries stock assessments, with application to species in Australia's Southern and Eastern Scalefish and Shark Fishery. Can. J. Fish. Aquat. Sci. 65:1991-2005.
Ressler, P.H., De Robertis, A., Warren, J.D., Smith, J.N., and Kotwicki, S. (In Press). Using an acoustic index of euphausiid abundance to understand trophic interactions in the Bering Sea ecosystem. 00.00, Deep-Sea Res. II
Restrepo, V.R., G.G. Thompson, P.M Mace, W.L Gabriel, L.L. Low, A.D. MacCall, R.D. Methot, J.E. Powers, B.L. Taylor, P.R. Wade, and J.F. Witzig. 1998. Technical guidance on the use of precautionary approaches to implementing National Standard 1 of the Magnuson-Stevens Fishery Conservation and Management Act. NOAA Tech. Memo. NMFS-F/SPO-31. 54 p.
Schnute, J.T. 1994. A general framework for developing sequential fisheries models. Can. J. Fish. Aquat. Sci. 51:1676-1688.
Schnute, J.T. and Richards, L.J. 1995. The influence of error on population estimates from catch-age models. Can. J. Fish. Aquat. Sci. 52:2063-2077.
Francis, R.I.C.C., and Shotton, R. 1997. Risk in fisheries management: a review. Can. J. Fish. Aquat. Sci.54: 16991715.

Smith, G.B. 1981. The biology of walleye pollock. In Hood, D.W. and J.A. Calder, The Eastern Bering Sea Shelf: Oceanography and Resources. Vol. I. U.S. Dep. Comm., NOAA/OMP 527-551.
Stahl, J. 2004. Maturation of walleye pollock, Theragra chalcogramma, in the Eastern Bering Sea in relation to temporal and spatial factors. Masters thesis. School of Fisheries and Ocean Sciences, Univ. Alaska Fairbanks, Juneau. 000p.
Stahl, J., and G. Kruse. 2008a. Spatial and temporal variability in size at maturity of walleye pollock in the eastern Bering Sea. Transactions of the American Fisheries Society 137:1543-1557.
Stahl, J., and G. Kruse. 2008b. Classification of Ovarian Stages of Walleye Pollock (Theragra chalcogramma). In Resiliency of Gadid Stocks to Fishing and Climate Change. Alaska Sea Grant College Program • AK-SG-08-01.
Sterling, J. T. and R. R. Ream 2004. At-sea behavior of juvenile male northern fur seals (Callorhinus ursinus). Canadian Journal of Zoology 82: 1621-1637.
Swartzman, G.L., A.G. Winter, K.O. Coyle, R.D. Brodeur, T. Buckley, L. Ciannelli, G.L. Hunt, Jr., J. Ianelli, and S.A. Macklin (2005). Relationship of age-0 pollock abundance and distribution around the Pribilof Islands with other shelf regions of the Eastern Bering Sea. Fisheries Research, Vol. 74, pp. 273-287.

Takahashi, Y, and Yamaguchi, H. 1972. Stock of the Alaska pollock in the eastern Bering Sea. Bull. Jpn. Soc. Sci. Fish. 38:418-419.
Thompson, G.G. 1996. Risk-averse optimal harvesting in a biomass dynamic model. Unpubl. Manuscr., 54 p. Alaska Fisheries Science Center, 7600 Sand Pt. Way NE, Seattle WA, 98115. Distributed as Appendix B to the Environmental Analysis Regulatory Impact Review of Ammendments 44/44 to the Fishery Management Plans for the Groundfish Fisheries of the Bering Sea and Aleutian Islands Area and the Gulf of Alaska.
von Szalay PG, Somerton DA, Kotwicki S. 2007. Correlating trawl and acoustic data in the Eastern Bering Sea: A first step toward improving biomass estimates of walleye pollock (Theragra chalcogramma) and Pacific cod (Gadus macrocephalus)? Fisheries Research 86(1) 77-83.
Walline, P. D. 2007. Geostatistical simulations of eastern Bering Sea walleye pollock spatial distributions, to estimate sampling precision. ICES J. Mar. Sci. 64:559-569.
Walters, C. J., and J. F. Kitchell. 2001. Cultivation/depensation effects on juvenile survival and recruitment. Can. J. Fish. Aquat. Sci. 58:39-50.
Wespestad, V. G. and J. M. Terry. 1984. Biological and economic yields for Eastern Bering Sea walleye pollock under differing fishing regimes. N. Amer. J. Fish. Manage., 4:204-215.
Wespestad, V. G., J. Ianelli, L. Fritz, T. Honkalehto, G. Walters. 1996. Bering Sea-Aleutian Islands Walleye Pollock Assessment for 1997. In: Stock assessment and fishery evaluation report for the groundfish resources of the Bering Sea/Aleutian Islands regions. North Pac. Fish. Mgmt. Council, Anchorage, AK, section 1:1-73.
Wespestad, V. G., L. W. Fritz, W. J. Ingraham, and B. A. Megrey. 2000. On relationships between cannibalism, climate variability, physical transport, and recruitment success of Bering Sea walleye pollock (Theragra chalcogramma). ICES Journal of Marine Science 57:272-278.
Williamson, N., and J. Traynor. 1996. Application of a one-dimensional geostatistical procedure to fisheries acoustic surveys of Alaskan pollock. ICES J. Mar. Sci. 53:423-428.
Winter, A.G., G.L. Swartzman, and L. Ciannelli (2005). Early- to late-summer population growth and prey consumption by age-0 pollock (Theragra chalcogramma), in two years of contrasting pollock abundance near the Pribilof Islands, Bering Sea. /Fisheries Oceanography/, Vol. 14, No. 4, pp. 307-320.
Zeppelin, T. K. and R.R. Ream. 2006. Foraging habitats based on the diet of female northern fur seals (Callorhinus ursinus) on the Pribilof Islands, Alaska. Journal of Zoology 270(4): 565-576.

## Tables

Table 1.1 Catch from the Eastern Bering Sea by area, the Aleutian Islands, the Donut Hole, and the Bogoslof Island area, 1979-2012 (2012 values preliminary). The southeast area refers to the EBS region east of 170 W ; the Northwest is west of 170 W .

| Year | Eastern Bering Sea |  |  | Aleutians | Donut Hole | Bogoslof I. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Southeast | Northwest | Total |  |  |  |
| 1979 | 368,848 | 566,866 | 935,714 | 9,446 |  |  |
| 1980 | 437,253 | 521,027 | 958,280 | 58,157 |  |  |
| 1981 | 714,584 | 258,918 | 973,502 | 55,517 |  |  |
| 1982 | 713,912 | 242,052 | 955,964 | 57,753 |  |  |
| 1983 | 687,504 | 293,946 | 981,450 | 59,021 |  |  |
| 1984 | 442,733 | 649,322 | 1,092,055 | 77,595 | 181,200 |  |
| 1985 | 604,465 | 535,211 | 1,139,676 | 58,147 | 363,400 |  |
| 1986 | 594,997 | 546,996 | 1,141,993 | 45,439 | 1,039,800 |  |
| 1987 | 529,461 | 329,955 | 859,416 | 28,471 | 1,326,300 | 377,436 |
| 1988 | 931,812 | 296,909 | 1,228,721 | 41,203 | 1,395,900 | 87,813 |
| 1989 | 904,201 | 325,399 | 1,229,600 | 10,569 | 1,447,600 | 36,073 |
| 1990 | 640,511 | 814,682 | 1,455,193 | 79,025 | 917,400 | 151,672 |
| 1991 | 653,569 | 542,077 | 1,195,646 | 98,604 | 293,400 | 316,038 |
| 1992 | 830,560 | 559,771 | 1,390,331 | 52,352 | 10,000 | 241 |
| 1993 | 1,094,428 | 232,173 | 1,326,601 | 57,132 | 1,957 | 886 |
| 1994 | 1,152,573 | 176,777 | 1,329,350 | 58,659 |  | 556 |
| 1995 | 1,172,304 | 91,941 | 1,264,245 | 64,925 |  | 334 |
| 1996 | 1,086,840 | 105,938 | 1,192,778 | 29,062 |  | 499 |
| 1997 | 819,888 | 304,543 | 1,124,430 | 25,940 |  | 163 |
| 1998 | 965,767 | 135,399 | 1,101,165 | 23,822 |  | 136 |
| 1999 | 783,119 | 206,697 | 989,816 | 1,010 |  | 29 |
| 2000 | 839,175 | 293,532 | 1,132,707 | 1,244 |  | 29 |
| 2001 | 961,975 | 425,219 | 1,387,194 | 824 |  | 258 |
| 2002 | 1,159,730 | 320,465 | 1,480,195 | 1,156 |  | 1,042 |
| 2003 | 933,316 | 557,584 | 1,490,900 | 1,653 |  | 24 |
| 2004 | 1,089,999 | 390,544 | 1,480,543 | 1,150 |  | 0 |
| 2005 | 802,418 | 680,868 | 1,483,286 | 1,621 |  |  |
| 2006 | 826,980 | 659,455 | 1,486,435 | 1,744 |  |  |
| 2007 | 728,094 | 626,003 | 1,354,097 | 2,519 |  |  |
| 2008 | 482,542 | 508,023 | 990,566 | 1,060 |  | 9 |
| 2009 | 356,258 | 451,688 | 807,947 |  |  | 73 |
| 2010 | 253,935 | 555,013 | 808,948 |  |  | 176 |
| 2011 | 445,239 | 726,483 | 1,171,722 |  |  | 173 |
| 2012 | 597,064 | 597,064 | 1,194,128 |  |  | 79 |
| Average | 753,119 | 427,310 | 1,180,429 |  |  |  |
|  | 64\% | 36\% |  |  |  |  |

1979-1989 data are from Pacfin.
1990-2011 data are from NMFS Alaska Regional Office, and includes discards.
2012 EBS catch is preliminary

Table 1.2. Total catch recorded by observers (rounded to nearest $1,000 \mathrm{t}$ ) by year and season with percentages indicating the proportion of the catch that came from within the Steller sea lion conservation area (SCA), 1998-2012. Note that the 2012 data are preliminary and the totals reflect only the catch recorded by observers.

|  | A season | B-season | Total |
| :---: | :---: | :---: | :---: |
| 1998 | 385,000 t (82\%) | 403,000 t (38\%) | 788,000 t (60\%) |
| 1999 | 339,000 t (54\%) | 468,000 t (23\%) | 807,000 t (36\%) |
| 2000 | 375,000 t (36\%) | 572,000 t ( 4\%) | 947,000 t (16\%) |
| 2001 | 490,000 t (27\%) | 674,000 t (46\%) | 1,164,000 t (38\%) |
| 2002 | 566,000 t (54\%) | 690,000 t (49\%) | 1,256,000 t (51\%) |
| 2003 | 616,000 t (45\%) | 680,000 t (42\%) | 1,296,000 t (43\%) |
| 2004 | 531,000 t (45\%) | 711,000 t (34\%) | 1,242,000 t (38\%) |
| 2005 | 529,000 t (45\%) | 673,000 t (17\%) | 1,203,000 t (29\%) |
| 2006 | 533,000 t (51\%) | 764,000 t (14\%) | 1,298,000 t (29\%) |
| 2007 | 480,000 t (57\%) | 663,000 t (11\%) | 1,143,000 t (30\%) |
| 2008 | 342,000 t (46\%) | 490,000 t (12\%) | 832,000 t (26\%) |
| 2009 | 283,000 t (26\%) | 389,000 t (13\%) | 671,000 t (24\%) |
| 2010 | 281,000 t (17\%) | 412,000 t (9\%) | 693,000 t (12\%) |
| 2011 | 490,000 t (54\%) | 531,000 t (28\%) | 1,020,000 t (40\%) |
| 2012 | 457,000 t (52\%) | 674,000 t (16\%) | 1,131,000 t (31\%) |

Table 1.3. Time series of 1964-1976 catch (left) and ABC, TAC, and catch for EBS pollock, 19772012 in t. Source: compiled from NMFS Regional office web site and various NPFMC reports, catch for 2012 is based on an estimated projection.

| Year | Catch | Year | ABC | TAC | Catch |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1964 | 174,792 | 1977 | 950,000 | 950,000 | 978,370 |
| 1965 | 230,551 | 1978 | 950,000 | 950,000 | 979,431 |
| 1966 | 261,678 | 1979 | 1,100,000 | 950,000 | 935,714 |
| 1967 | 550,362 | 1980 | 1,300,000 | 1,000,000 | 958,280 |
| 1968 | 702,181 | 1981 | 1,300,000 | 1,000,000 | 973,502 |
| 1969 | 862,789 | 1982 | 1,300,000 | 1,000,000 | 955,964 |
| 1970 | 1,256,565 | 1983 | 1,300,000 | 1,000,000 | 981,450 |
| 1971 | 1,743,763 | 1984 | 1,300,000 | 1,200,000 | 1,092,055 |
| 1972 | 1,874,534 | 1985 | 1,300,000 | 1,200,000 | 1,139,676 |
| 1973 | 1,758,919 | 1986 | 1,300,000 | 1,200,000 | 1,141,993 |
| 1974 | 1,588,390 | 1987 | 1,300,000 | 1,200,000 | 859,416 |
| 1975 | 1,356,736 | 1988 | 1,500,000 | 1,300,000 | 1,228,721 |
| 1976 | 1,177,822 | 1989 | 1,340,000 | 1,340,000 | 1,229,600 |
|  |  | 1990 | 1,450,000 | 1,280,000 | 1,455,193 |
|  |  | 1991 | 1,676,000 | 1,300,000 | 1,195,646 |
|  |  | 1992 | 1,490,000 | 1,300,000 | 1,390,331 |
|  |  | 1993 | 1,340,000 | 1,300,000 | 1,326,601 |
|  |  | 1994 | 1,330,000 | 1,330,000 | 1,329,350 |
|  |  | 1995 | 1,250,000 | 1,250,000 | 1,264,245 |
|  |  | 1996 | 1,190,000 | 1,190,000 | 1,192,778 |
|  |  | 1997 | 1,130,000 | 1,130,000 | 1,124,430 |
|  |  | 1998 | 1,110,000 | 1,110,000 | 1,101,165 |
|  |  | 1999 | 992,000 | 992,000 | 989,816 |
|  |  | 2000 | 1,139,000 | 1,139,000 | 1,132,707 |
|  |  | 2001 | 1,842,000 | 1,400,000 | 1,387,194 |
|  |  | 2002 | 2,110,000 | 1,485,000 | 1,480,195 |
|  |  | 2003 | 2,330,000 | 1,491,760 | 1,490,899 |
|  |  | 2004 | 2,560,000 | 1,492,000 | 1,480,543 |
|  |  | 2005 | 1,960,000 | 1,478,500 | 1,483,286 |
|  |  | 2006 | 1,930,000 | 1,485,000 | 1,486,435 |
|  |  | 2007 | 1,394,000 | 1,394,000 | 1,354,097 |
|  |  | 2008 | 1,000,000 | 1,000,000 | 990,566 |
|  |  | 2009 | 815,000 | 815,000 | 807,947 |
|  |  | 2010 | 813,000 | 813,000 | 810,215 |
|  |  | 2011 | 1,270,000 | 1,252,000 | 1,199,073 |
|  |  | 2012 | 1,220,000 | 1,200,000 | 1,200,000 |
| 1977-2012 average |  |  | 1,377,250 | 1,192,146 | 1,170,191 |

Table 1.4. Estimates of discarded pollock ( t ), percent of total (in parentheses) and total catch for the Aleutians, Bogoslof, Northwest and Southeastern Bering Sea, 1991-2012. SE represents the EBS east of $170^{\circ} \mathrm{W}$, NW is the EBS west of $170^{\circ} \mathrm{W}$, source: NMFS Blend and catchaccounting system database. 2012 data are preliminary.

|  | Discarded pollock |  |  |  |  | Total (retained plus discard) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Aleutian Is. | Bogoslof | NW | SE | Total | Aleutian Is. | Bogoslof | NW | SE | Total |
| 1991 | 5,231 (5\%) | 20,327 (6\%) | 48,205 (9\%) | 66,789 (10\%) | 140,552 (9\%) | 98,604 | 316,038 | 542,056 | 653,552 | 1,610,250 |
| 1992 | 2,982 (6\%) | 240 (100\%) | 57,609 (10\%) | 71,195 (9\%) | 132,026 (9\%) | 52,352 | 241 | 559,771 | 830,560 | 1,442,924 |
| 1993 | 1,733 (3\%) | 308 (35\%) | 26,100 (11\%) | 83,989 (8\%) | 112,130 (8\%) | 57,132 | 886 | 232,173 | 1,094,431 | 1,384,622 |
| 1994 | 1,373 (2\%) | 11 (2\%) | 16,083 (9\%) | 88,098 (8\%) | 105,565 (8\%) | 58,659 | 556 | 176,777 | 1,152,573 | 1,388,565 |
| 1995 | 1,380 (2\%) | 267 (80\%) | 9,715 (11\%) | 87,491 (7\%) | 98,853 (7\%) | 64,925 | 334 | 91,941 | 1,172,304 | 1,329,504 |
| 1996 | 994 (3\%) | 7 (1\%) | 4,838 (5\%) | 71,367 (7\%) | 77,206 (6\%) | 29,062 | 499 | 105,938 | 1,086,840 | 1,222,339 |
| 1997 | 617 (2\%) | 13 (8\%) | 22,557 (7\%) | 71,031 (9\%) | 94,218 (8\%) | 25,940 | 163 | 304,543 | 819,888 | 1,150,534 |
| 1998 | 164 (1\%) | 3 (2\%) | 1,581 (1\%) | 15,135 (2\%) | 16,883 (2\%) | 23,822 | 136 | 135,399 | 965,767 | 1,125,124 |
| 1999 | 480 (48\%) | 11 (39\%) | 1,912 (0.9\%) | 26,912 (3.4\%) | 28,824 (2.9\%) | 1,010 | 29 | 206,698 | 782,982 | 990,719 |
| 2000 | 790 (63\%) | 20 (67\%) | 1,942 (0.7\%) | 19,678 (2.3\%) | 21,620 (1.9\%) | 1,244 | 29 | 293,532 | 839,177 | 1,133,984 |
| 2001 | 380 (46\%) | 28 (11\%) | 2,450 (0.6\%) | 14,874 (1.5\%) | 17,324 (1.2\%) | 825 | 258 | 425,220 | 961,891 | 1,388,194 |
| 2002 | 779 (66\%) | 12 (1\%) | 1,441 (0.4\%) | 19,430 (1.7\%) | 20,870 (1.4\%) | 1,177 | 1,042 | 320,442 | 1,160,334 | 1,482,995 |
| 2003 | 468 (28\%) | - | 2,959 (0.5\%) | 13,856 (1.5\%) | 16,815 (1.1\%) | 1,649 | 24 | 557,588 | 933,291 | 1,492,553 |
| 2004 | 287 (25\%) | - | 2,781 (0.7\%) | 20,380 (1.9\%) | 23,161 (1.6\%) | 1,158 | 0 | 390,544 | 1,089,999 | 1,481,701 |
| 2005 | 324 (20\%) | - | 2,586 (0.4\%) | 14,833 (1.8\%) | 17,419 (1.2\%) | 1,621 | 0 | 680,868 | 802,148 | 1,484,636 |
| 2006 | 311 (18\%) | - | 3,677 (0.6\%) | 11,877 (1.4\%) | 15,554 (1.0\%) | 1,745 | 0 | 660,444 | 827,207 | 1,489,396 |
| 2007 | 425 (17\%) | - | 3,769 (0.6\%) | 12,325 (1.7\%) | 16,094 (1.2\%) | 2,519 | 0 | 626,253 | 728,239 | 1,357,011 |
| 2008 | 81 (6\%) | - | 1,643 (0.3\%) | 5,960 (1.2\%) | 7,603 (0.8\%) | 1,278 | 9 | 507,880 | 482,690 | 991,857 |
| 2009 | 395 (22\%) | 6 (8\%) | 1,936 (0.4\%) | 4,014 (1.1\%) | 5,951 (0.7\%) | 1,779 | 73 | 452,416 | 358,252 | 812,520 |
| 2010 | 142 (11\%) | 53 (30\%) | 1,201 (0.2\%) | 2,510 (1.0\%) | 3,712 (0.5\%) | 1,285 | 176 | 555,180 | 255,010 | 811,651 |
| 2011 | 75 (6\%) | 23 (13\%) | 1,337 (0.3\%) | 3,442 (0.5\%) | 4,779 (0.4\%) | 1,208 | 173 | 451,478 | 747,592 | 1,200,451 |
| 2012 | 95 (10\%) | 5 (6\%) | 1,128 (0.2\%) | 3,859 (0.6\%) | 4,988 (0.4\%) | 971 | 79 | 585,901 | 611,030 | 1,197,981 |

Table 1.5. Eastern Bering Sea pollock catch at age estimates based on observer data, 1979-2012. Units are in millions of fish (2012 data are preliminary).

| Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14+ | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1979 | 101.4 | 543 | 719.8 | 420.1 | 392.5 | 215.5 | 56.3 | 25.7 | 35.9 | 27.5 | 17.6 | 7.9 | 3 | 1.1 | 2,567 |
| 1980 | 9.8 | 462.2 | 822.9 | 443.3 | 252.1 | 210.9 | 83.7 | 37.6 | 21.7 | 23.9 | 25.4 | 15.9 | 7.7 | 3.7 | 2,421 |
| 1981 | 0.6 | 72.2 | 1,012.70 | 637.9 | 227 | 102.9 | 51.7 | 29.6 | 16.1 | 9.3 | 7.5 | 4.6 | 1.5 | 1 | 2,175 |
| 1982 | 4.7 | 25.3 | 161.4 | 1,172.20 | 422.3 | 103.7 | 36 | 36 | 21.5 | 9.1 | 5.4 | 3.2 | 1.9 | 1 | 2,004 |
| 1983 | 5.1 | 118.6 | 157.8 | 312.9 | 816.8 | 218.2 | 41.4 | 24.7 | 19.8 | 11.1 | 7.6 | 4.9 | 3.5 | 2.1 | 1,745 |
| 1984 | 2.1 | 45.8 | 88.6 | 430.4 | 491.4 | 653.6 | 133.7 | 35.5 | 25.1 | 15.6 | 7.1 | 2.5 | 2.9 | 3.7 | 1,938 |
| 1985 | 2.6 | 55.2 | 381.2 | 121.7 | 365.7 | 321.5 | 443.2 | 112.5 | 36.6 | 25.8 | 24.8 | 10.7 | 9.4 | 9.1 | 1,920 |
| 1986 | 3.1 | 86 | 92.3 | 748.6 | 214.1 | 378.1 | 221.9 | 214.3 | 59.7 | 15.2 | 3.3 | 2.6 | 0.3 | 1.2 | 2,041 |
| 1987 | 0 | 19.8 | 111.5 | 77.6 | 413.4 | 138.8 | 122.4 | 90.6 | 247.2 | 54.1 | 38.7 | 21.4 | 28.9 | 14.1 | 1,379 |
| 1988 | 0 | 10.7 | 454 | 421.6 | 252.1 | 544.3 | 224.8 | 104.9 | 39.2 | 96.8 | 18.2 | 10.2 | 3.8 | 11.7 | 2,192 |
| 1989 | 0 | 4.8 | 55.1 | 149 | 451.1 | 166.7 | 572.2 | 96.3 | 103.8 | 32.4 | 129 | 10.9 | 4 | 8.5 | 1,784 |
| 1990 | 1.3 | 33 | 57 | 219.5 | 200.7 | 477.7 | 129.2 | 368.4 | 65.7 | 101.9 | 9 | 60.1 | 8.5 | 13.9 | 1,746 |
| 1991 | 0.7 | 111.8 | 39.9 | 86.5 | 139.2 | 152.8 | 386.2 | 51.9 | 218.4 | 21.8 | 115.0 | 13.8 | 72.6 | 17.1 | 1,428 |
| 1992 | 0.0 | 93.5 | 674.9 | 132.8 | 79.5 | 114.2 | 134.3 | 252.2 | 100.1 | 155.1 | 54.3 | 43.1 | 12.5 | 41.8 | 1,888 |
| 1993 | 0.2 | 8.1 | 262.7 | 1146.2 | 102.1 | 65.8 | 63.7 | 53.3 | 91.2 | 20.5 | 32.3 | 11.7 | 12.5 | 6.7 | 1,877 |
| 1994 | 1.6 | 36.0 | 56.8 | 359.6 | 1066.7 | 175.8 | 54.5 | 20.2 | 13.4 | 20.7 | 8.6 | 9.4 | 7.0 | 3.7 | 1,834 |
| 1995 | 0.0 | 0.5 | 81.3 | 151.7 | 397.5 | 761.2 | 130.6 | 32.2 | 11.1 | 8.5 | 18.2 | 5.5 | 6.3 | 1.5 | 1,606 |
| 1996 | 0.0 | 23.2 | 56.2 | 81.8 | 166.4 | 368.5 | 475.1 | 185.6 | 31.4 | 13.4 | 8.8 | 8.6 | 4.8 | 5.3 | 1,429 |
| 1997 | 2.4 | 83.6 | 37.8 | 111.7 | 478.6 | 288.3 | 251.3 | 196.7 | 61.6 | 13.6 | 6.4 | 5.0 | 3.5 | 4.8 | 1,545 |
| 1998 | 0.6 | 51.1 | 89.8 | 72.0 | 156.9 | 686.9 | 199.0 | 128.3 | 108.7 | 29.5 | 6.3 | 5.8 | 2.9 | 3.2 | 1,541 |
| 1999 | 0.4 | 11.6 | 295.0 | 227.7 | 105.3 | 155.7 | 473.7 | 132.7 | 57.5 | 32.9 | 3.5 | 2.2 | 0.7 | 0.4 | 1,499 |
| 2000 | 0.0 | 17.4 | 80.2 | 423.2 | 343.0 | 105.4 | 169.1 | 359.5 | 86.0 | 29.6 | 24.4 | 5.7 | 1.6 | 0.8 | 1,646 |
| 2001 | 0.0 | 3.7 | 56.8 | 162.0 | 574.8 | 405.8 | 136.1 | 129.2 | 158.3 | 57.5 | 35.1 | 16.0 | 5.9 | 2.9 | 1,744 |
| 2002 | 0.9 | 56.7 | 111.1 | 214.8 | 284.1 | 602.2 | 267.2 | 99.3 | 87.4 | 95.6 | 34.9 | 14.5 | 12.6 | 2.8 | 1,884 |
| 2003 | 0.0 | 17.3 | 402.2 | 320.8 | 366.8 | 305.2 | 332.1 | 157.3 | 53.0 | 40.2 | 36.5 | 23.7 | 7.0 | 3.0 | 2,065 |
| 2004 | 0.0 | 1.1 | 90.0 | 829.6 | 479.7 | 238.2 | 168.7 | 156.9 | 64.0 | 16.9 | 18.9 | 26.1 | 10.6 | 6.6 | 2,107 |
| 2005 | 0.0 | 3.1 | 53.7 | 391.2 | 861.8 | 489.1 | 156.4 | 67.5 | 67.1 | 33.7 | 11.2 | 10.2 | 3.4 | 2.0 | 2,151 |
| 2006 | 0.0 | 12.2 | 84.2 | 290.1 | 622.8 | 592.2 | 279.9 | 108.9 | 49.6 | 38.4 | 16.4 | 9.6 | 9.5 | 5.1 | 2,119 |
| 2007 | 1.8 | 19.5 | 57.2 | 124.2 | 374.0 | 514.7 | 306.3 | 139.0 | 50.2 | 28.0 | 23.3 | 9.4 | 6.5 | 3.4 | 1,658 |
| 2008 | 0.0 | 25.9 | 57.1 | 78.9 | 147.3 | 307.7 | 242.0 | 150.3 | 83.9 | 22.4 | 17.8 | 13.7 | 8.6 | 2.7 | 1,158 |
| 2009 | 0.0 | 1.3 | 176.8 | 183.5 | 94.6 | 102.2 | 112.4 | 96.0 | 69.2 | 38.0 | 24.8 | 8.1 | 8.0 | 2.9 | 918 |
| 2010 | 0.7 | 28.7 | 31.2 | 561.4 | 221.2 | 54.8 | 43.2 | 54.6 | 49.8 | 33.4 | 14.4 | 9.2 | 5.1 | 5.8 | 1,114 |
| 2011 | 0.4 | 11.5 | 193.2 | 115.1 | 807.5 | 284.8 | 64.5 | 37.2 | 39.0 | 40.6 | 25.3 | 13.4 | 1.9 | 4.0 | 1,639 |
| 2012 | 0.0 | 8.1 | 56.5 | 524.4 | 206.3 | 425.6 | 163.8 | 52.5 | 28.6 | 38.7 | 32.0 | 24.3 | 18.5 | 4.9 | 1,584 |
| Average | 4.1 | 61.8 | 210.6 | 345.4 | 369.9 | 315.6 | 197.8 | 112.9 | 66.8 | 36.8 | 25.4 | 13.1 | 8.7 | 6.0 | 1,775 |
| Median | 0.4 | 24.3 | 89.9 | 258.9 | 354.4 | 286.5 | 160.1 | 97.8 | 55.3 | 28.8 | 18.2 | 9.9 | 6.1 | 3.7 | 1,765 |

Table 1.6. Numbers of pollock fishery samples measured for lengths and for length-weight by sex and strata, 1977-2012, as sampled by the NMFS observer program.

| Length <br> Frequency | A Season <br> Males | Females | B Season SE <br> Males |  |  | Females |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |

Table 1.6. (continued) Numbers of pollock fishery samples measured for lengths and for lengthweight by sex and strata, 1977-2011, as sampled by the NMFS observer program.

| Length - weight samples |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A Season |  | B Season SE |  | B Season NW |  |  |
|  | Males | Females | Males | Females | Males | Females | Total |
| 1977 | 1,222 | 1,338 | 137 | 166 | 1,461 | 1,664 | 5,988 |
| 1978 | 1,991 | 2,686 | 409 | 516 | 2,200 | 2,623 | 10,425 |
| 1979 | 2,709 | 3,151 | 152 | 209 | 1,469 | 1,566 | 9,256 |
| 1980 | 1,849 | 2,156 | 99 | 144 | 612 | 681 | 5,541 |
| 1981 | 1,821 | 2,045 | 51 | 52 | 1,623 | 1,810 | 7,402 |
| 1982 | 2,030 | 2,208 | 181 | 176 | 2,852 | 3,043 | 10,490 |
| 1983 | 1,199 | 1,200 | 144 | 122 | 3,268 | 3,447 | 9,380 |
| 1984 | 980 | 1,046 | 117 | 136 | 1,273 | 1,378 | 4,930 |
| 1985 | 520 | 499 | 46 | 55 | 426 | 488 | 2,034 |
| 1986 | 689 | 794 | 518 | 501 | 286 | 286 | 3,074 |
| 1987 | 1,351 | 1,466 | 25 | 33 | 72 | 63 | 3,010 |
| 1991 | 2,712 | 2,781 | 2,339 | 2,496 | 1,065 | 1,169 | 12,562 |
| 1992 | 1,517 | 1,582 | 1,911 | 1,970 | 588 | 566 | 8,134 |
| 1993 | 1,201 | 1,270 | 1,448 | 1,406 | 435 | 450 | 6,210 |
| 1994 | 1,552 | 1,630 | 1,569 | 1,577 | 162 | 171 | 6,661 |
| 1995 | 1,215 | 1,259 | 1,320 | 1,343 | 223 | 232 | 5,592 |
| 1996 | 2,094 | 2,135 | 1,409 | 1,384 | 1 | 1 | 7,024 |
| 1997 | 628 | 627 | 616 | 665 | 511 | 523 | 3,570 |
| 1998 | 1,852 | 1,946 | 959 | 923 | 327 | 350 | 6,357 |
| 1999 | 5,318 | 4,798 | 7,797 | 7,054 | 3,532 | 3,768 | 32,267 |
| 2000 | 12,421 | 11,318 | 12,374 | 7,809 | 7,977 | 7,738 | 59,637 |
| 2001 | 14,882 | 14,369 | 10,778 | 10,378 | 8,777 | 9,079 | 68,263 |
| 2002 | 14,004 | 13,541 | 12,883 | 12,942 | 7,202 | 7,648 | 68,220 |
| 2003 | 14,780 | 15,495 | 9,401 | 10,092 | 9,994 | 10,261 | 70,023 |
| 2004 | 7,690 | 7,890 | 6,819 | 6,847 | 4,603 | 4,321 | 38,170 |
| 2005 | 7,390 | 7,033 | 5,109 | 4,115 | 6,927 | 6,424 | 36,998 |
| 2006 | 7,324 | 6,989 | 5,085 | 4,068 | 6,842 | 6,356 | 36,664 |
| 2007 | 6,681 | 6,635 | 4,278 | 3,203 | 7,745 | 7,094 | 35,636 |
| 2008 | 4,256 | 4,787 | 2,056 | 2,563 | 5,950 | 6,316 | 25,928 |
| 2009 | 3,890 | 4,461 | 1,839 | 2,370 | 4,179 | 5,318 | 22,057 |
| 2010 | 4,536 | 5,272 | 4,125 | 4,618 | 2,261 | 2,749 | 23,561 |
| 2011 | 6,772 | 6,388 | 5,809 | 4,634 | 6,906 | 6,455 | 36,964 |

Table 1.7. Numbers of pollock fishery samples used for age determination estimates by sex and strata, 1977-2011, as sampled by the NMFS observer program.

| Aged |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: | :---: |
|  | A Season |  | B Season SE |  |  |  |  |  | B Season NW |  |
|  | Males | Females | Males | Females | Males | Females | Total |  |  |  |
| 1977 | 1,229 | 1,344 | 137 | 166 | 1,415 | 1,613 | 5,904 |  |  |  |
| 1978 | 1,992 | 2,686 | 407 | 514 | 2,188 | 2,611 | 10,398 |  |  |  |
| 1979 | 2,647 | 3,088 | 152 | 209 | 1,464 | 1,561 | 9,121 |  |  |  |
| 1980 | 1,854 | 2,158 | 93 | 138 | 606 | 675 | 5,524 |  |  |  |
| 1981 | 1,819 | 2,042 | 51 | 52 | 1,620 | 1,807 | 7,391 |  |  |  |
| 1982 | 2,030 | 2,210 | 181 | 176 | 2,865 | 3,062 | 10,524 |  |  |  |
| 1983 | 1,200 | 1,200 | 144 | 122 | 3,249 | 3,420 | 9,335 |  |  |  |
| 1984 | 980 | 1,046 | 117 | 136 | 1,272 | 1,379 | 4,930 |  |  |  |
| 1985 | 520 | 499 | 46 | 55 | 426 | 488 | 2,034 |  |  |  |
| 1986 | 689 | 794 | 518 | 501 | 286 | 286 | 3,074 |  |  |  |
| 1987 | 1,351 | 1,466 | 25 | 33 | 72 | 63 | 3,010 |  |  |  |
| 1991 | 420 | 423 | 272 | 265 | 320 | 341 | 2,041 |  |  |  |
| 1992 | 392 | 392 | 371 | 386 | 178 | 177 | 1,896 |  |  |  |
| 1993 | 444 | 473 | 503 | 493 | 124 | 122 | 2,159 |  |  |  |
| 1994 | 201 | 202 | 570 | 573 | 131 | 141 | 1,818 |  |  |  |
| 1995 | 298 | 316 | 436 | 417 | 123 | 131 | 1,721 |  |  |  |
| 1996 | 468 | 449 | 442 | 433 | 1 | 1 | 1,794 |  |  |  |
| 1997 | 433 | 436 | 284 | 311 | 326 | 326 | 2,116 |  |  |  |
| 1998 | 592 | 659 | 307 | 307 | 216 | 232 | 2,313 |  |  |  |
| 1999 | 540 | 500 | 730 | 727 | 306 | 298 | 3,100 |  |  |  |
| 2000 | 666 | 626 | 843 | 584 | 253 | 293 | 3,265 |  |  |  |
| 2001 | 598 | 560 | 724 | 688 | 178 | 205 | 2,951 |  |  |  |
| 2002 | 651 | 670 | 834 | 886 | 201 | 247 | 3,489 |  |  |  |
| 2003 | 583 | 644 | 652 | 680 | 260 | 274 | 3,092 |  |  |  |
| 2004 | 560 | 547 | 599 | 697 | 244 | 221 | 2,867 |  |  |  |
| 2005 | 611 | 597 | 613 | 489 | 419 | 421 | 3,149 |  |  |  |
| 2006 | 608 | 599 | 590 | 457 | 397 | 398 | 3,048 |  |  |  |
| 2007 | 639 | 627 | 586 | 482 | 583 | 570 | 3,485 |  |  |  |
| 2008 | 492 | 491 | 313 | 356 | 541 | 647 | 2,838 |  |  |  |
| 2009 | 483 | 404 | 298 | 238 | 431 | 440 | 2,294 |  |  |  |
| 2010 | 624 | 545 | 465 | 414 | 504 | 419 | 2,971 |  |  |  |
| 2011 | 581 | 808 | 404 | 396 | 579 | 659 | 3,427 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

Table 1.8. NMFS total pollock research catch by year in t , 1964-2011.

| Year | Aleutian Is. | Bering Sea | Year | Aleutian Is. | Bering Sea |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1964 | 0 | 0 | 1988 | 0 | 467 |
| 1965 | 0 | 18 | 1989 | 0 | 393 |
| 1966 | 0 | 17 | 1990 | 0 | 369 |
| 1967 | 0 | 21 | 1991 | 51 | 465 |
| 1968 | 0 | 7 | 1992 | 0 | 156 |
| 1969 | 0 | 14 | 1993 | 0 | 221 |
| 1970 | 0 | 9 | 1994 | 48 | 267 |
| 1971 | 0 | 16 | 1995 | 0 | 249 |
| 1972 | 0 | 69 | 1996 | 0 | 206 |
| 1973 | 0 | 197 | 1997 | 36 | 262 |
| 1974 | 0 | 122 | 1998 | 0 | 121 |
| 1975 | 0 | 35 | 1999 | 0 | 299 |
| 1976 | 0 | 94 | 2000 | 40 | 313 |
| 1977 | 0 | 458 | 2001 | 0 | 241 |
| 1978 | 0 | 139 | 2002 | 79 | 440 |
| 1979 | 0 | 466 | 2003 | 0 | 285 |
| 1980 | 193 | 682 | 2004 | 51 | 363 |
| 1981 | 0 | 508 | 2005 | 0 | 87 |
| 1982 | 40 | 208 | 2006 | 21 | 251 |
| 1983 | 454 | 163 | 2007 | 0 | 333 |
| 1984 | 0 | 2008 | 0 | 168 |  |
| 1985 | 0 | 2009 | 0 | 156 | 226 |
| 1986 | 292 | 2011 | 0 | 124 |  |
| 1987 | 0 |  |  |  | 0 |

Table 1.9. Biomass (age 1+) of Eastern Bering Sea pollock as estimated by surveys 1979-2012 (millions of tons). Note that the bottom-trawl survey data only represent biomass from the standard survey strata (1-6) areas in 1982-1984, and 1986. For all other years the estimates include strata 8-9. Also, the 1979-1981 bottom trawl survey data were omitted from the model since the survey gear differed.

| Year | Bottom trawl Survey ( t$)$ | $\begin{array}{r} \text { AT } \\ \text { Survey ( } \mathrm{t} \text { ) } \end{array}$ | $\begin{gathered} \hline \hline \text { AT \% } \\ \text { age 3+ } \end{gathered}$ | Total* <br> (t) | Near bottom biomass |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1979 |  | 7.458 | 22\% | 10.660 | 30\% |
| 1980 |  |  |  |  |  |
| 1981 |  |  |  |  |  |
| 1982 | 2.856 | 4.901 | 94\% | 7.756 | 37\% |
| 1983 | 6.258 |  |  |  |  |
| 1984 | 4.894 |  |  |  |  |
| 1985 | 6.056 | 4.799 | 97\% | 10.856 | 56\% |
| 1986 | 4.897 |  |  |  |  |
| 1987 | 5.525 |  |  |  |  |
| 1988 | 7.289 | 4.675 | 98\% | 11.969 | 61\% |
| 1989 | 6.519 |  |  |  |  |
| 1990 | 7.322 |  |  |  |  |
| 1991 | 5.168 | 1.454 | 55\% | 6.618 | 78\% |
| 1992 | 4.583 |  |  |  |  |
| 1993 | 5.636 |  |  |  |  |
| 1994 | 5.027 | 2.886 | 87\% | 7.917 | 63\% |
| 1995 | 5.482 |  |  |  |  |
| 1996 | 3.371 | 2.311 | 97\% | 5.681 | 59\% |
| 1997 | 3.874 | 2.591 | 70\% | 6.464 | 60\% |
| 1998 | 2.852 |  |  |  |  |
| 1999 | 3.801 | 3.285 | 95\% | 7.094 | 54\% |
| 2000 | 5.265 | 3.049 | 95\% | 8.315 | 63\% |
| 2001 | 4.200 |  |  |  |  |
| 2002 | 5.038 | 3.622 | 85\% | 8.658 | 58\% |
| 2003 | 8.458 |  |  |  |  |
| 2004 | 3.886 | 3.307 | 99\% | 7.196 | 54\% |
| 2005 | 5.294 |  |  |  |  |
| 2006 | 3.045 | 1.560 | 98\% | 4.605 | 66\% |
| 2007 | 4.338 | 1.769 | 89\% | 6.108 | 71\% |
| 2008 | 3.031 | 0.997 | 76\% | 4.028 | 76\% |
| 2009 | 2.280 | 0.924 | 80\% | 3.204 | 71\% |
| 2010 | 3.748 | 2.323 | 64\% | 6.071 | 62\% |
| 2011 | 3.112 |  |  |  |  |
| 2012 | 3.487 | 1.843 | 90\% | 5.330 | 65\% |
| Average | 4.729 | 2.986 | 85\% | 6.927 | 62\% |

* Although the two survey estimates are added in this table, the stock assessment model treats them as separate, independent indices (survey " $q$ ' $s$ " are estimated).

Table 1.10. Survey biomass estimates (age $1+$, t) of Eastern Bering Sea pollock based on area-swept expansion methods from NMFS bottom trawl surveys 1982-2012.

| Year | Survey biomass estimates in strata 1-6 | urvey biomass estimates in strata 8 and 9 | All area Total | NW <br> \%Total |
| :---: | :---: | :---: | :---: | :---: |
| 1982 | 2,855,539 |  |  |  |
| 1983 | 6,257,632 |  |  |  |
| 1984 | 4,893,536 |  |  |  |
| 1985 | 4,630,111 | 1,325,102 | 5,955,213 | 22\% |
| 1986 | 4,896,780 |  |  |  |
| 1987 | 5,111,645 | 386,788 | 5,498,433 | 7\% |
| 1988 | 7,106,739 | 181,839 | 7,288,578 | 2\% |
| 1989 | 5,905,641 | 643,938 | 6,549,579 | 10\% |
| 1990 | 7,126,083 | 190,218 | 7,316,301 | 3\% |
| 1991 | 5,064,313 | 62,446 | 5,126,759 | 1\% |
| 1992 | 4,367,870 | 214,557 | 4,582,427 | 5\% |
| 1993 | 5,521,208 | 105,707 | 5,626,916 | 2\% |
| 1994 | 4,977,019 | 49,686 | 5,026,706 | 1\% |
| 1995 | 5,408,653 | 68,541 | 5,477,195 | 1\% |
| 1996 | 3,258,348 | 155,861 | 3,414,209 | 5\% |
| 1997 | 3,036,898 | 762,954 | 3,799,852 | 20\% |
| 1998 | 2,212,689 | 567,569 | 2,780,258 | 20\% |
| 1999 | 3,598,286 | 199,786 | 3,798,072 | 5\% |
| 2000 | 5,152,586 | 128,846 | 5,281,432 | 2\% |
| 2001 | 4,145,746 | 51,108 | 4,196,854 | 1\% |
| 2002 | 4,832,506 | 200,337 | 5,032,843 | 4\% |
| 2003 | 8,106,139 | 285,902 | 8,392,041 | 3\% |
| 2004 | 3,744,501 | 118,473 | 3,862,974 | 3\% |
| 2005 | 5,168,295 | 152,300 | 5,320,595 | 3\% |
| 2006 | 2,845,009 | 199,885 | 3,044,894 | 7\% |
| 2007 | 4,156,687 | 179,986 | 4,336,672 | 4\% |
| 2008 | 2,834,094 | 189,174 | 3,023,268 | 6\% |
| 2009 | 2,231,225 | 51,184 | 2,282,409 | 2\% |
| 2010 | 3,550,981 | 186,898 | 3,737,878 | 5\% |
| 2011 | 2,945,640 | 166,672 | 3,112,312 | 5\% |
| 2012 | 3,281,223 | 206,005 | 3,487,229 | 6\% |
| Avg. | 4,472,033 | 260,436 | 4,716,737 | 6\% |

Table 1.11. Sampling effort for pollock in the EBS from the NMFS bottom trawl survey 1982-2012. Years where only strata 1-6 were surveyed are shown in italics.

| Year | Number of <br> Hauls | Lengths | Aged | Year | Number of <br> Hauls | Lengths | Aged |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1982 | 329 | 40,001 | 1,611 | 1997 | 376 | 35,536 | 1,193 |
| 1983 | 354 | 78,033 | 1,931 | 1998 | 375 | 37,673 | 1,261 |
| 1984 | 355 | 40,530 | 1,806 | 1999 | 373 | 32,532 | 1,385 |
| 1985 | 434 | 48,642 | 1,913 | 2000 | 372 | 41,762 | 1,545 |
| 1986 | 354 | 41,101 | 1,344 | 2001 | 375 | 47,335 | 1,641 |
| 1987 | 356 | 40,144 | 1,607 | 2002 | 375 | 43,361 | 1,695 |
| 1988 | 373 | 40,408 | 1,173 | 2003 | 376 | 46,480 | 1,638 |
| 1989 | 373 | 38,926 | 1,227 | 2004 | 375 | 44,102 | 1,660 |
| 1990 | 371 | 34,814 | 1,257 | 2005 | 373 | 35,976 | 1,676 |
| 1991 | 371 | 43,406 | 1,083 | 2006 | 376 | 39,211 | 1,573 |
| 1992 | 356 | 34,024 | 1,263 | 2007 | 376 | 29,679 | 1,484 |
| 1993 | 375 | 43,278 | 1,385 | 2008 | 375 | 24,635 | 1,251 |
| 1994 | 375 | 38,901 | 1,141 | 2009 | 375 | 24,819 | 1,342 |
| 1995 | 376 | 25,673 | 1,156 | 2010 | 376 | 23,142 | 1,385 |
| 1996 | 375 | 40,789 | 1,387 | 2011 | 376 | 36,227 | 1,734 |
|  |  |  |  | 2012 | 376 | 35,782 | 1,785 |

Table 1.12. Bottom-trawl survey estimated numbers (millions) at age used for the stock assessment model, 1982-2012 based on strata 1-9. Shaded cells represent years where only strata 1-6 were surveyed. Standard errors and CVs are based on design-based sampling errors.

| Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | Total | StdErr | CV |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1982 | 948 | 2,271 | 2,432 | 3,111 | 1,059 | 144 | 100 | 48 | 30 | 19 | 12 | 7 | 3 | 1 | 1 | 10,186 | 1,262 | 12\% |
| 1983 | 3,912 | 580 | 1,278 | 2,266 | 5,051 | 1,552 | 286 | 157 | 71 | 61 | 46 | 16 | 7 | 5 | 2 | 15,291 | 1,191 | 8\% |
| 1984 | 367 | 281 | 399 | 1,153 | 1,459 | 3,427 | 652 | 145 | 68 | 24 | 16 | 6 | 4 | 5 | 2 | 8,007 | 792 | 10\% |
| 1985 | 4,785 | 677 | 2,563 | 833 | 2,876 | 1,835 | 1,272 | 252 | 65 | 53 | 18 | 6 | 7 | 1 | 0 | 15,243 | 1,947 | 13\% |
| 1986 | 2,188 | 497 | 362 | 1,338 | 816 | 1,382 | 1,219 | 1,122 | 357 | 56 | 26 | 11 | 1 | 3 | 1 | 9,378 | 828 | 9\% |
| 1987 | 345 | 560 | 723 | 538 | 3,246 | 913 | 918 | 370 | 1,197 | 189 | 57 | 23 | 4 | 2 | 2 | 9,088 | 1,122 | 12\% |
| 1988 | 1,068 | 514 | 1,198 | 2,286 | 1,012 | 3,319 | 1,002 | 786 | 462 | 1,117 | 107 | 64 | 13 | 17 | 9 | 12,975 | 1,462 | 11\% |
| 1989 | 761 | 225 | 428 | 1,411 | 3,198 | 645 | 2,485 | 379 | 471 | 182 | 581 | 101 | 89 | 45 | 63 | 11,066 | 1,135 | 10\% |
| 1990 | 1,721 | 241 | 86 | 552 | 1,110 | 3,754 | 759 | 1,906 | 198 | 373 | 58 | 544 | 47 | 36 | 48 | 11,432 | 1,373 | 12\% |
| 1991 | 2,419 | 660 | 233 | 76 | 461 | 429 | 1,420 | 534 | 1,157 | 303 | 418 | 87 | 265 | 38 | 35 | 8,536 | 824 | 10\% |
| 1992 | 1,337 | 325 | 1,703 | 285 | 319 | 536 | 478 | 689 | 310 | 595 | 212 | 268 | 117 | 92 | 73 | 7,339 | 808 | 11\% |
| 1993 | 2,340 | 333 | 707 | 2,971 | 647 | 521 | 275 | 384 | 526 | 325 | 285 | 208 | 164 | 91 | 110 | 9,888 | 913 | 9\% |
| 1994 | 1,246 | 523 | 385 | 1,115 | 3,025 | 530 | 141 | 124 | 143 | 268 | 166 | 233 | 89 | 86 | 145 | 8,220 | 956 | 12\% |
| 1995 | 1,439 | 141 | 270 | 1,224 | 1,604 | 2,566 | 1,086 | 288 | 179 | 116 | 219 | 90 | 167 | 68 | 101 | 9,560 | 1,783 | 19\% |
| 1996 | 1,433 | 347 | 155 | 308 | 806 | 1,125 | 1,027 | 349 | 87 | 94 | 65 | 123 | 40 | 74 | 100 | 6,132 | 508 | 8\% |
| 1997 | 2,238 | 339 | 146 | 180 | 2,166 | 1,008 | 626 | 782 | 137 | 70 | 53 | 59 | 96 | 32 | 111 | 8,042 | 1,080 | 13\% |
| 1998 | 625 | 549 | 281 | 185 | 354 | 2,024 | 528 | 342 | 268 | 67 | 31 | 11 | 24 | 28 | 65 | 5,384 | 592 | 11\% |
| 1999 | 817 | 704 | 646 | 701 | 401 | 726 | 1,846 | 514 | 260 | 243 | 91 | 39 | 16 | 24 | 82 | 7,110 | 834 | 12\% |
| 2000 | 921 | 293 | 353 | 1,189 | 1,223 | 648 | 571 | 1,874 | 737 | 394 | 172 | 116 | 36 | 17 | 76 | 8,618 | 1,017 | 12\% |
| 2001 | 1,465 | 841 | 441 | 407 | 1,034 | 1,093 | 475 | 239 | 718 | 518 | 201 | 163 | 66 | 23 | 65 | 7,750 | 695 | 9\% |
| 2002 | 644 | 300 | 618 | 894 | 927 | 1,204 | 627 | 306 | 421 | 792 | 395 | 179 | 107 | 33 | 37 | 7,484 | 762 | 10\% |
| 2003 | 376 | 124 | 723 | 1,178 | 1,377 | 1,244 | 1,651 | 915 | 411 | 536 | 1,081 | 469 | 179 | 89 | 69 | 10,421 | 1,862 | 18\% |
| 2004 | 320 | 225 | 140 | 1,036 | 1,005 | 762 | 448 | 486 | 242 | 151 | 152 | 275 | 118 | 29 | 23 | 5,413 | 499 | 9\% |
| 2005 | 345 | 124 | 185 | 799 | 2,319 | 1,578 | 838 | 387 | 297 | 230 | 60 | 127 | 207 | 81 | 84 | 7,662 | 743 | 10\% |
| 2006 | 715 | 62 | 96 | 317 | 791 | 1,006 | 647 | 312 | 179 | 155 | 75 | 47 | 67 | 91 | 90 | 4,649 | 427 | 9\% |
| 2007 | 2,022 | 48 | 116 | 337 | 1,056 | 1,244 | 905 | 656 | 278 | 125 | 116 | 101 | 47 | 58 | 113 | 7,223 | 668 | 9\% |
| 2008 | 442 | 99 | 82 | 148 | 421 | 852 | 673 | 471 | 300 | 118 | 100 | 76 | 35 | 19 | 120 | 3,955 | 431 | 11\% |
| 2009 | 674 | 165 | 342 | 373 | 219 | 318 | 433 | 342 | 250 | 123 | 82 | 27 | 28 | 14 | 59 | 3,448 | 414 | 12\% |
| 2010 | 408 | 115 | 204 | 2,055 | 930 | 295 | 261 | 279 | 295 | 203 | 175 | 64 | 39 | 23 | 51 | 5,396 | 707 | 13\% |
| 2011 | 982 | 100 | 208 | 285 | 1,433 | 706 | 210 | 121 | 189 | 189 | 157 | 120 | 51 | 24 | 64 | 4,841 | 452 | 9\% |
| 2012 | 963 | 188 | 344 | 2,472 | 572 | 915 | 313 | 125 | 94 | 130 | 106 | 94 | 79 | 28 | 51 | 6,474 | 611 | 9\% |
| Avg | 1,299 | 402 | 576 | 1,033 | 1,384 | 1,236 | 780 | 506 | 335 | 252 | 172 | 121 | 71 | 38 | 60 | 8,265 | 926 | 11\% |

Table 1.13. Number of (age 1+) hauls and sample sizes for EBS pollock collected by the AT surveys.

| Year | Stratum | No. Hauls | $\begin{array}{r} \text { No. } \\ \text { lengths } \end{array}$ | No. otoliths collected | No. aged |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1979 | Total | 25 | 7,722 | NA | 2,610 |
| 1982 | Total | 48 | 8,687 | 3,164 | 2,741 |
|  | Midwater, east of St Paul | 13 | 1,725 | 840 | 783 |
|  | Midwater, west of St Paul | 31 | 6,689 | 2,324 | 1,958 |
|  | Bottom | 4 | 273 | 0 | 0 |
| 1985 | Total (Legs1 \&2) | 73 | 19,872 | 2,739 | 2,739 |
| 1988 | Total | 25 | 6,619 | 1,471 | 1,471 |
| 1991 | Total | 62 | 16,343 | 2,062 | 1,663 |
| 1994 | Total (US zone) | 76 | 25,564 | 4,966 | 1,770 |
|  | East of 170 W | 25 | 4,553 | 1,560 | 612 |
|  | West of 170 W | 51 | 21,011 | 3,694 | 932 |
|  | Navarin (Russia) | 19 | 8,930 | 1,270 | 455 |
| 1996 | Total | 57 | 16,824 | 1,949 | 1,926 |
|  | East of 170 W | 15 | 3,551 | 669 | 815 |
|  | West of 170 W | 42 | 13,273 | 1,280 | 1,111 |
| 1997 | Total | 86 | 29,536 | 3,635 | 2,285 |
|  | East of 170 W | 25 | 6,493 | 966 | 936 |
|  | West of 170 W | 61 | 23,043 | 2,669 | 1,349 |
| 1999 | Total | 118 | 42,362 | 4,946 | 2,446 |
|  | East of 170 W | 41 | 13,841 | 1,945 | 946 |
|  | West of 170 W | 77 | 28,521 | 3,001 | 1,500 |
| 2000 | Total | 124 | 43,729 | 3,459 | 2,253 |
|  | East of 170 W | 29 | 7,721 | 850 | 850 |
|  | West of 170 W | 95 | 36,008 | 2,609 | 1,403 |
| 2002 | Total | 126 | 40,234 | 3,307 | 2,200 |
|  | East of 170 W | 47 | 14,601 | 1,424 | 1,000 |
|  | West of 170 W | 79 | 25,633 | 1,883 | 1,200 |
| 2004 | Total (US zone) | 90 | 27,158 | 3,169 | 2,351 |
|  | East of 170 W | 33 | 8,896 | 1,167 | 798 |
|  | West of 170 W | 57 | 18,262 | 2,002 | 1,192 |
|  | Navarin (Russia) | 15 | 5,893 | 461 | 461 |
| 2006 | Total | 83 | 24,265 | 2,693 | 2,692 |
|  | East of 170 W | 27 | 4,939 | 822 | 822 |
|  | West of 170 W | 56 | 19,326 | 1,871 | 1,870 |
| 2007 | Total (US zone) | 69 | 20,355 | 2,832 | 2,560 |
|  | East of 170 W | 23 | 5,492 | 871 | 823 |
|  | West of 170 W | 46 | 14,863 | 1,961 | 1,737 |
|  | Navarin (Russia) | 4 | 1,407 | 319 | 315 |
| 2008 | Total (US zone) | 62 | 17,748 | 2,039 | 1,719 |
|  | East of 170 W | 9 | 2,394 | 341 | 338 |
|  | West of 170 W | 53 | 15,354 | 1,698 | 1,381 |
|  | Navarin (Russia) | 6 | 1,754 | 177 | 176 |
| 2009 | Total (US zone) | 46 | 10,833 | 1,518 | 1,511 |
|  | East of 170 W | 13 | 1,576 | 308 | 306 |
|  | West of 170 W | 33 | 9,257 | 1,210 | 1,205 |
|  | Navarin (Russia) | 3 | 282 | 54 | 54 |
| 2010 | Total (US zone) | 59 | 22,695 | 2,521 | 2,250 |
|  | East of 170 W | 11 | 2,432 | 653 | 652 |
|  | West of 170 W | 48 | 20,263 | 1,868 | 1,598 |
|  | Navarin (Russia) | 9 | 3,502 | 381 | 379 |
| 2012 | Total (US zone) | 77 | 28,351 | 2,695 | Na |
|  | East of 170 W | 17 | 4,422 | 650 | Na |
|  | West of 170 W | 60 | 23,929 | 2,045 | Na |
|  | Navarin (Russia) | 14 | 5,620 | 418 | Na |

Table 1.14. AT survey estimates of EBS pollock abundance-at-age (millions), 1979-2012. NOTE: 2012 age specific values are preliminary. Age $2+$ totals and age-1s are modeled as separate indices. CV's are based on relative error estimates and assumed to average 20\% (since 1982).

| Age |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10+ | Age 2+ | CV | Total |
| 1979 | 69,110 | 41,132 | 3,884 | 413 | 534 | 128 | 30 | 4 | 28 | 161 | 46,314 | 250\% | 115,424 |
| 1982 | 108 | 3,401 | 4,108 | 7,637 | 1,790 | 283 | 141 | 178 | 90 | 177 | 17,805 | 20\% | 17,913 |
| 1985 | 2,076 | 929 | 8,149 | 898 | 2,186 | 1,510 | 1,127 | 130 | 21 | 15 | 14,965 | 20\% | 17,041 |
| 1988 | 11 | 1,112 | 3,586 | 3,864 | 739 | 1,882 | 403 | 151 | 130 | 414 | 12,280 | 20\% | 12,291 |
| 1991 | 639 | 5,942 | 967 | 215 | 224 | 133 | 120 | 39 | 37 | 53 | 7,730 | 20\% | 8,369 |
| 1994 | 453 | 3,906 | 1,127 | 1,670 | 1,908 | 293 | 69 | 67 | 30 | 59 | 9,130 | 19\% | 9,582 |
| 1996 | 972 | 446 | 520 | 2,686 | 821 | 509 | 434 | 85 | 17 | 34 | 5,553 | 16\% | 6,525 |
| 1997 | 12,384 | 2,743 | 385 | 491 | 1,918 | 384 | 205 | 143 | 33 | 18 | 6,319 | 15\% | 18,703 |
| 1999 | 112 | 1,588 | 3,597 | 1,684 | 583 | 274 | 1,169 | 400 | 105 | 90 | 9,489 | 23\% | 9,601 |
| 2000 | 258 | 1,272 | 1,185 | 2,480 | 900 | 244 | 234 | 725 | 190 | 141 | 7,372 | 13\% | 7,630 |
| 2002 | 561 | 4,188 | 3,841 | 1,295 | 685 | 593 | 288 | 100 | 132 | 439 | 11,560 | 13\% | 12,122 |
| 2004 | 16 | 275 | 1,189 | 2,929 | 1,444 | 417 | 202 | 193 | 68 | 101 | 6,819 | 15\% | 6,834 |
| 2006 | 456 | 209 | 282 | 610 | 695 | 552 | 320 | 110 | 53 | 110 | 2,940 | 16\% | 3,396 |
| 2007 | 5,589 | 1,026 | 320 | 430 | 669 | 589 | 306 | 166 | 60 | 52 | 3,618 | 18\% | 9,207 |
| 2008 | 36 | 2,905 | 1,032 | 144 | 107 | 170 | 132 | 71 | 58 | 48 | 4,668 | 31\% | 4,704 |
| 2009 | 5,128 | 797 | 1,674 | 199 | 31 | 34 | 51 | 38 | 21 | 25 | 2,870 | 36\% | 7,997 |
| 2010 | 2,526 | 6,395 | 973 | 2,183 | 384 | 46 | 6 | 7 | 7 | 21 | 10,023 | 25\% | 12,549 |
| 2012 | 76 | 1,875 | 1,745 | 2,343 | 254 | 246 | 63 | 19 | 9 | 37 | 6,592 | 25\% | 6,667 |
| $\begin{gathered} \text { Avg. } \\ \text { 1982-2012 } \end{gathered}$ | 1,847 | 2,295 | 2,040 | 1,868 | 902 | 480 | 310 | 154 | 62 | 108 | 8,220 | 20\% | 10,067 |
| Median | 456 | 1,588 | 1,185 | 1,670 | 695 | 293 | 205 | 110 | 53 | 53 | 7,372 | 20\% | 9,207 |

Table 1.15. Mid-water pollock abundance (near surface down to 3 m from the bottom) by area as estimated from summer acoustic-trawl surveys on the U.S. EEZ portion of the Bering Sea shelf, 1994-2012 (as described in Honkalehto et al. 2010).

| Date |  | Area <br> $(\mathrm{nmi})^{2}$ | Biomass in millions of $t$ (percent of total) |  |  |  |  |  | TotalBiomass(millions t) | Estimation Error (millions t) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | SCA |  | E170-SCA |  | W170 |  |  |  |
| 1994 | 9 Jul-19 Aug | 78,251 | 0.312 | (11\%) | 0.399 | (14\%) | 2.176 | (75\%) | 2.886 | 0.136 |
| 1996 | 20 Jul-30 Aug | 93,810 | 0.215 | (9\%) | 0.269 | (12\%) | 1.826 | (79\%) | 2.311 | 0.090 |
| 1997 | 17 Jul-4 Sept | 102,770 | 0.246 | (10\%) | 0.527 | (20\%) | 1.818 | (70\%) | 2.591 | 0.096 |
| 1999 | 7 Jun-5 Aug | 103,670 | 0.299 | (9\%) | 0.579 | (18\%) | 2.408 | (73\%) | 3.285 | 0.181 |
| 2000 | 7 Jun-2 Aug | 106,140 | 0.393 | (13\%) | 0.498 | (16\%) | 2.158 | (71\%) | 3.049 | 0.098 |
| 2002 | 4 Jun -30 Jul | 99,526 | 0.647 | (18\%) | 0.797 | (22\%) | 2.178 | (60\%) | 3.622 | 0.112 |
| 2004 | 4 Jun -29 Jul | 99,659 | 0.498 | (15\%) | 0.516 | (16\%) | 2.293 | (69\%) | 3.307 | 0.122 |
| 2006 | 3 Jun -25 Jul | 89,550 | 0.131 | (8\%) | 0.254 | (16\%) | 1.175 | (75\%) | 1.560 | 0.061 |
| 2007 | 2 Jun -30 Jul | 92,944 | 0.084 | (5\%) | 0.168 | (10\%) | 1.517 | (86\%) | 1.769 | 0.080 |
| 2008 | 2 Jun -31 Jul | 95,374 | 0.085 | (9\%) | 0.029 | (3\%) | 0.883 | (89\%) | 0.997 | 0.076 |
| 2009 | 9 Jun -7 Aug | 91,414 | 0.070 | (8\%) | 0.018 | (2\%) | 0.835 | (90\%) | 0.924 | 0.081 |
| 2010 | 5 Jun -7 Aug | 92,849 | 0.067 | (3\%) | 0.113 | (5\%) | 2.143 | (92\%) | 2.323 | 0.139 |
| 2012 | 7 Jun -10 Aug | 96,852 | 0.142 | (8\%) | 0.138 | (7\%) | 1.563 | (85\%) | 1.843 | 0.077 |

Key: $\quad$ SCA = Sea lion Conservation Area
E170 - SCA = East of 170 W minus SCA
$\mathrm{W} 170=$ West of 170 W

Table 1.16. An abundance index derived from acoustic data collected opportunistically aboard bottomtrawl survey vessels (AVO index). Note $C V_{A T}^{t}$ and $C V_{A V O}^{t}$ are the coefficients of variation from using 1-D geostatistical estimates of sampling variability (Petitgas, 1993). See Ianelli et al. (2011) for the derivation of these estimates.

|  | AVO <br> Index | CV $_{\text {AVO' }}$ |
| ---: | ---: | ---: |
| 2006 | 0.555 | 0.211 |
| 2007 | 0.638 | 0.244 |
| 2008 | 0.316 | 0.414 |
| 2009 | 0.285 | 0.477 |
| 2010 | 0.679 | 0.325 |
| 2011 | 0.543 | 0.234 |

Table 1.17. Mean weight-at-age (kg) estimates from the fishery (1991-2012) showing the between-year variability (middle row) and sampling error (bottom panel) based on bootstrap resampling of observer data.

|  | Mean weight-at-age (kg) |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| $\begin{aligned} & \hline 1964- \\ & 1990 \end{aligned}$ | 0.303 | 0.447 | 0.589 | 0.722 | 0.840 | 0.942 | 1.029 | 1.102 | 1.163 | 1.212 | 1.253 | 1.286 | 1.312 |
| 1991 | 0.287 | 0.479 | 0.608 | 0.727 | 0.848 | 0.887 | 1.006 | 1.127 | 1.125 | 1.237 | 1.242 | 1.279 | 1.244 |
| 1992 | 0.398 | 0.468 | 0.645 | 0.712 | 0.814 | 0.983 | 1.028 | 1.224 | 1.234 | 1.270 | 1.175 | 1.353 | 1.441 |
| 1993 | 0.495 | 0.613 | 0.656 | 0.772 | 0.930 | 1.043 | 1.196 | 1.230 | 1.407 | 1.548 | 1.650 | 1.688 | 1.635 |
| 1994 | 0.394 | 0.649 | 0.730 | 0.746 | 0.706 | 1.010 | 1.392 | 1.320 | 1.339 | 1.417 | 1.374 | 1.310 | 1.386 |
| 1995 | 0.375 | 0.502 | 0.730 | 0.843 | 0.856 | 0.973 | 1.224 | 1.338 | 1.413 | 1.497 | 1.395 | 1.212 | 1.363 |
| 1996 | 0.322 | 0.428 | 0.680 | 0.790 | 0.946 | 0.949 | 1.021 | 1.090 | 1.403 | 1.497 | 1.539 | 1.750 | 1.536 |
| 1997 | 0.323 | 0.466 | 0.554 | 0.742 | 0.888 | 1.071 | 1.088 | 1.240 | 1.410 | 1.473 | 1.724 | 1.458 | 1.423 |
| 1998 | 0.372 | 0.588 | 0.627 | 0.623 | 0.779 | 1.034 | 1.177 | 1.243 | 1.294 | 1.417 | 1.559 | 1.556 | 1.720 |
| 1999 | 0.400 | 0.502 | 0.638 | 0.701 | 0.727 | 0.901 | 1.039 | 1.272 | 1.207 | 1.415 | 1.164 | 1.141 | 1.319 |
| 2000 | 0.351 | 0.524 | 0.630 | 0.732 | 0.782 | 0.805 | 0.972 | 1.018 | 1.268 | 1.317 | 1.320 | 1.665 | 1.738 |
| 2001 | 0.324 | 0.497 | 0.669 | 0.787 | 0.963 | 0.995 | 1.062 | 1.137 | 1.327 | 1.451 | 1.585 | 1.466 | 1.665 |
| 2002 | 0.380 | 0.508 | 0.669 | 0.795 | 0.908 | 1.024 | 1.117 | 1.096 | 1.300 | 1.430 | 1.611 | 1.319 | 1.636 |
| 2003 | 0.484 | 0.550 | 0.650 | 0.768 | 0.862 | 0.954 | 1.085 | 1.224 | 1.213 | 1.227 | 1.445 | 1.340 | 1.721 |
| 2004 | 0.404 | 0.580 | 0.640 | 0.770 | 0.890 | 0.928 | 1.026 | 1.207 | 1.159 | 1.179 | 1.351 | 1.292 | 1.232 |
| 2005 | 0.353 | 0.507 | 0.639 | 0.739 | 0.880 | 0.948 | 1.063 | 1.094 | 1.267 | 1.312 | 1.313 | 1.164 | 1.419 |
| 2006 | 0.305 | 0.448 | 0.604 | 0.754 | 0.855 | 0.958 | 1.055 | 1.126 | 1.219 | 1.283 | 1.306 | 1.399 | 1.453 |
| 2007 | 0.338 | 0.509 | 0.642 | 0.782 | 0.960 | 1.104 | 1.196 | 1.276 | 1.328 | 1.516 | 1.416 | 1.768 | 1.532 |
| 2008 | 0.329 | 0.521 | 0.652 | 0.772 | 0.899 | 1.042 | 1.114 | 1.204 | 1.309 | 1.404 | 1.513 | 1.599 | 1.506 |
| 2009 | 0.345 | 0.548 | 0.687 | 0.892 | 1.020 | 1.153 | 1.407 | 1.486 | 1.636 | 1.637 | 1.817 | 2.176 | 2.292 |
| 2010 | 0.364 | 0.516 | 0.652 | 0.797 | 0.934 | 1.036 | 1.147 | 1.245 | 1.337 | 1.428 | 1.530 | 1.557 | 1.665 |
| 2011 | 0.290 | 0.508 | 0.666 | 0.807 | 0.973 | 1.222 | 1.337 | 1.507 | 1.578 | 1.614 | 2.114 | 1.731 | 2.260 |
| 2012 | 0.290 | 0.448 | 0.651 | 0.799 | 0.935 | 1.059 | 1.174 | 1.282 | 1.362 | 1.445 | 1.583 | 1.584 | 1.725 |
| Stdev | 0.055 | 0.055 | 0.039 | 0.053 | 0.080 | 0.092 | 0.123 | 0.122 | 0.127 | 0.132 | 0.223 | 0.255 | 0.281 |
| CV | 15\% | 11\% | 6\% | 7\% | 9\% | 9\% | 11\% | 10\% | 10\% | 9\% | 15\% | 17\% | 18\% |
| Mean | 0.360 | 0.516 | 0.649 | 0.763 | 0.876 | 0.998 | 1.126 | 1.218 | 1.315 | 1.398 | 1.475 | 1.472 | 1.564 |
|  |  |  |  |  |  | ampling | or (from | bootstra |  |  |  |  |  |
| 1991 | 8\% | 4\% | 3\% | 2\% | 2\% | 4\% | 2\% | 6\% | 3\% | 6\% | 4\% | 6\% | 4\% |
| 1992 | 2\% | 4\% | 5\% | 3\% | 3\% | 2\% | 3\% | 3\% | 4\% | 4\% | 11\% | 6\% | 6\% |
| 1993 | 2\% | 1\% | 3\% | 4\% | 4\% | 4\% | 3\% | 4\% | 4\% | 6\% | 7\% | 10\% | 8\% |
| 1994 | 8\% | 2\% | 1\% | 3\% | 8\% | 12\% | 5\% | 5\% | 4\% | 5\% | 6\% | 11\% | 6\% |
| 1995 | 5\% | 3\% | 2\% | 1\% | 3\% | 4\% | 6\% | 6\% | 5\% | 10\% | 6\% | 48\% | 6\% |
| 1996 | 7\% | 10\% | 3\% | 2\% | 1\% | 2\% | 4\% | 6\% | 13\% | 7\% | 6\% | 7\% | 9\% |
| 1997 | 9\% | 2\% | 1\% | 2\% | 2\% | 2\% | 3\% | 6\% | 10\% | 9\% | 14\% | 6\% | 7\% |
| 1998 | 5\% | 5\% | 3\% | 1\% | 3\% | 3\% | 2\% | 4\% | 8\% | 9\% | 13\% | 16\% | 14\% |
| 1999 | 1\% | 1\% | 2\% | 2\% | 1\% | 2\% | 3\% | 4\% | 12\% | 19\% | 42\% | 102\% | 22\% |
| 2000 | 4\% | 1\% | 1\% | 2\% | 2\% | 1\% | 3\% | 6\% | 5\% | 10\% | 47\% | 63\% | 48\% |
| 2001 | 5\% | 3\% | 1\% | 2\% | 3\% | 3\% | 2\% | 4\% | 5\% | 6\% | 8\% | 10\% | 33\% |
| 2002 | 4\% | 2\% | 2\% | 1\% | 1\% | 2\% | 3\% | 3\% | 5\% | 5\% | 7\% | 25\% | 22\% |
| 2003 | 1\% | 2\% | 1\% | 2\% | 1\% | 2\% | 3\% | 5\% | 5\% | 6\% | 10\% | 28\% | 13\% |
| 2004 | 4\% | 1\% | 1\% | 2\% | 2\% | 2\% | 3\% | 7\% | 6\% | 5\% | 10\% | 14\% | 9\% |
| 2005 | 4\% | 1\% | 1\% | 1\% | 2\% | 3\% | 3\% | 4\% | 7\% | 6\% | 20\% | 35\% | 20\% |
| 2006 | 4\% | 1\% | 1\% | 1\% | 1\% | 3\% | 4\% | 4\% | 7\% | 11\% | 9\% | 14\% | 7\% |
| 2007 | 3\% | 2\% | 1\% | 1\% | 1\% | 2\% | 3\% | 4\% | 5\% | 9\% | 9\% | 7\% | 6\% |
| 2008 | 3\% | 2\% | 2\% | 1\% | 1\% | 2\% | 2\% | 5\% | 5\% | 5\% | 5\% | 14\% | 6\% |
| 2009 | 3\% | 2\% | 4\% | 2\% | 2\% | 3\% | 3\% | 4\% | 6\% | 7\% | 5\% | 14\% | 7\% |
| 2010 | 6\% | 1\% | 1\% | 4\% | 3\% | 3\% | 3\% | 3\% | 4\% | 5\% | 8\% | 6\% | 5\% |
| 2011 | 2\% | 3\% | 1\% | 1\% | 3\% | 4\% | 3\% | 4\% | 4\% | 5\% | 15\% | 10\% | 9\% |

Table 1.18. Pollock sample sizes assumed for the age-composition data likelihoods from the fishery, bottom-trawl survey, and AT surveys, 1964-2012. Note that 2012 fishery age-composition data are preliminary.

| Year | Fishery | Year | BTS | AT |
| ---: | ---: | ---: | ---: | ---: |
| $1964-1977$ | 10 | 1979 | - | 6 |
| $1978-1990$ | 50 |  |  |  |
| 1991 | 174 |  |  |  |
| 1992 | 200 | $1982-2012$ | 100 | 51 |
| 1993 | 273 |  |  | (average) |
| 1994 | 108 |  |  |  |
| 1995 | 138 |  |  |  |
| 1996 | 149 |  |  |  |
| 1997 | 256 |  |  |  |
| 1998 | 270 |  |  |  |
| 1999 | 456 |  |  |  |
| 2000 | 452 |  |  |  |
| 2001 | 292 |  |  |  |
| 2002 | 435 |  |  |  |
| 2003 | 389 |  |  |  |
| 2004 | 332 |  |  |  |
| 2005 | 399 |  |  |  |
| 2006 | 328 |  |  |  |
| 2007 | 408 |  |  |  |
| 2008 | 341 |  |  |  |
| 2009 | 360 |  |  |  |
| 2010 | 350 |  |  |  |
| 2011 | 350 |  |  |  |
| 2012 | 350 |  |  |  |

Table 1.19. Summary model results showing the stock condition for EBS pollock. Values in parentheses are coefficients of variation (CV's) of values immediately above.

|  | $\begin{array}{r} 2012 \\ \text { Assessment } \end{array}$ |
| :---: | :---: |
| Biomass |  |
| Year 2013 spawning biomass* | 2,580,000 t |
| (CV) | (14\%) |
| 2012 spawning biomass | 2,306,000 t |
| $B_{\text {msy }}$ | 2,114,000 t |
| (CV) | (20\%) |
| $S P R \mid B_{\text {msy }}$ | 27.4\% |
| $B_{40 \%}$ | 2,570,000 t |
| $B_{35 \%}$ | 2,249,000 t |
| $B_{0}$ (stock-recruitment curve) | 5,377,000 t |
| 2012 Percent of $B_{\text {ms }}$ spawning biomass | 109\% |
| 2013 Percent of $B_{m s 5}$ spawning biomass | 122\% |
| Ratio of $B_{2012}$ over $B_{2012}$ under no fishing since 1978 | 0.536 |

## Recruitment (millions of pollock at age 1)

| Recruitment (miliions of pollock at age 1) |  |
| ---: | ---: |
| Steepness parameter $(h)$ | 0.671 |
| Average recruitment (all yrs) | 22,017 |
| Average recruitment (since 1978) | 23,252 |
| 2000 year class | 35,891 |
| 2006 year class | 25,683 |
| 2008 year class | 43,607 |
| Natural Mortality (age 3 and older) | 0.3 |

[^1]Table 1.20. Summary results of Tier 12013 yield projections for EBS pollock.

| Description | Value |  |
| :--- | ---: | ---: |
| Tier 1 maximum permissible ABC |  |  |
|  | 2013 "fishable" biomass (GM) | $4,693,000 \mathrm{t}$ |
|  | MSYR (HM) | 0.491 |
|  | Adjustment factor | 1.0 |
|  | Adjusted ABC rate | 0.491 |
|  | MSYR (AM) | 0,543 |
| OFL | 2013 MSYR yield (Tier 1 ABC) | $2,306,000 \mathrm{t}$ |
|  | 2013 MSYR OFL | $2,549,000 \mathrm{t}$ |
| Recommended $F_{\text {ABC }}$ | 0.26 |  |
|  | Recommended ABC | $1,200,000 \mathrm{t}$ |
| Fishable biomass at $M S Y$ | $3,864,000 \mathrm{t}$ |  |

Notes: MSYR = exploitation rate relative to begin-year age fishable biomass corresponding to $F_{m s y}$. $F_{m s y}$ yields calculated within the model (i.e., including uncertainty in both the estimate of $F_{m s y}$ and in projected stock size). $\mathrm{HM}=$ Harmonic mean, $\mathrm{GM}=$ Geometric mean, $\mathrm{AM}=$ Arithmetic mean

Table 1.21 Estimates of numbers at age for the EBS pollock stock as estimated in 2012 (millions).

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10+ | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1964 | 5,228 | 3,589 | 2,264 | 470 | 211 | 334 | 135 | 49 | 22 | 134 | 12,437 |
| 1965 | 20,407 | 2,123 | 2,259 | 1,609 | 284 | 127 | 200 | 82 | 30 | 98 | 27,218 |
| 1966 | 14,313 | 8,289 | 1,338 | 1,592 | 978 | 175 | 79 | 126 | 52 | 82 | 27,023 |
| 1967 | 28,708 | 5,814 | 5,210 | 938 | 991 | 613 | 111 | 50 | 81 | 87 | 42,605 |
| 1968 | 26,680 | 11,654 | 3,601 | 3,291 | 545 | 576 | 359 | 65 | 30 | 99 | 46,899 |
| 1969 | 29,281 | 10,829 | 7,190 | 2,349 | 1,853 | 311 | 334 | 210 | 38 | 77 | 52,473 |
| 1970 | 20,124 | 11,885 | 6,678 | 4,463 | 1,383 | 1,102 | 187 | 201 | 127 | 69 | 46,219 |
| 1971 | 9,676 | 8,163 | 7,091 | 3,881 | 2,609 | 812 | 652 | 107 | 115 | 106 | 33,212 |
| 1972 | 10,686 | 3,923 | 4,834 | 3,970 | 2,091 | 1,359 | 428 | 344 | 56 | 100 | 27,792 |
| 1973 | 28,947 | 4,331 | 2,194 | 2,431 | 1,972 | 1,045 | 684 | 215 | 174 | 66 | 42,059 |
| 1974 | 21,457 | 11,726 | 2,336 | 1,035 | 1,059 | 862 | 459 | 301 | 95 | 101 | 39,433 |
| 1975 | 18,171 | 8,692 | 5,920 | 972 | 433 | 447 | 367 | 196 | 128 | 82 | 35,406 |
| 1976 | 13,946 | 7,368 | 4,968 | 2,556 | 436 | 199 | 208 | 171 | 91 | 95 | 30,039 |
| 1977 | 13,901 | 5,658 | 4,283 | 2,504 | 1,179 | 206 | 95 | 101 | 83 | 90 | 28,100 |
| 1978 | 26,918 | 5,642 | 3,237 | 2,382 | 1,299 | 601 | 106 | 49 | 52 | 90 | 40,376 |
| 1979 | 65,651 | 10,926 | 3,261 | 1,756 | 1,230 | 667 | 312 | 54 | 25 | 72 | 83,955 |
| 1980 | 26,290 | 26,652 | 6,583 | 1,853 | 945 | 610 | 332 | 157 | 27 | 49 | 63,498 |
| 1981 | 29,778 | 10,679 | 16,609 | 4,174 | 994 | 477 | 301 | 166 | 79 | 38 | 63,295 |
| 1982 | 15,587 | 12,101 | 6,740 | 11,395 | 2,521 | 539 | 259 | 165 | 91 | 63 | 49,462 |
| 1983 | 52,550 | 6,336 | 7,679 | 4,837 | 7,481 | 1,530 | 323 | 156 | 98 | 89 | 81,079 |
| 1984 | 13,032 | 21,361 | 4,021 | 5,540 | 3,279 | 4,819 | 938 | 198 | 95 | 107 | 53,389 |
| 1985 | 35,369 | 5,297 | 13,568 | 2,902 | 3,782 | 2,058 | 3,041 | 579 | 122 | 115 | 66,832 |
| 1986 | 14,506 | 14,378 | 3,360 | 9,747 | 2,022 | 2,481 | 1,253 | 1,871 | 351 | 133 | 50,101 |
| 1987 | 8,493 | 5,897 | 9,117 | 2,421 | 6,680 | 1,344 | 1,538 | 775 | 1,179 | 286 | 37,731 |
| 1988 | 5,491 | 3,453 | 3,745 | 6,627 | 1,716 | 4,594 | 888 | 1,017 | 484 | 909 | 28,923 |
| 1989 | 10,357 | 2,232 | 2,189 | 2,565 | 4,554 | 1,104 | 2,955 | 540 | 627 | 859 | 27,981 |
| 1990 | 50,175 | 4,210 | 1,416 | 1,558 | 1,740 | 2,989 | 695 | 1,761 | 325 | 906 | 65,775 |
| 1991 | 25,582 | 20,397 | 2,662 | 1,003 | 973 | 1,023 | 1,724 | 392 | 982 | 708 | 55,445 |
| 1992 | 22,047 | 10,400 | 12,903 | 1,918 | 658 | 585 | 591 | 912 | 219 | 903 | 51,136 |
| 1993 | 47,813 | 8,963 | 6,567 | 8,946 | 1,282 | 409 | 320 | 297 | 429 | 515 | 75,541 |
| 1994 | 14,782 | 19,438 | 5,700 | 4,652 | 5,662 | 836 | 246 | 181 | 167 | 538 | 52,203 |
| 1995 | 10,798 | 6,010 | 12,367 | 4,163 | 3,154 | 3,305 | 496 | 146 | 108 | 427 | 40,973 |
| 1996 | 23,219 | 4,390 | 3,824 | 9,079 | 2,965 | 2,003 | 1,801 | 280 | 84 | 317 | 47,961 |
| 1997 | 31,494 | 9,440 | 2,785 | 2,790 | 6,625 | 2,035 | 1,144 | 896 | 143 | 217 | 57,569 |
| 1998 | 15,700 | 12,804 | 5,964 | 2,029 | 1,982 | 4,505 | 1,263 | 629 | 484 | 190 | 45,549 |
| 1999 | 17,239 | 6,383 | 8,124 | 4,335 | 1,439 | 1,339 | 2,760 | 770 | 357 | 365 | 43,112 |
| 2000 | 26,601 | 7,009 | 4,059 | 5,776 | 3,020 | 977 | 864 | 1,650 | 463 | 441 | 50,860 |
| 2001 | 35,891 | 10,815 | 4,458 | 2,937 | 3,918 | 1,946 | 631 | 504 | 926 | 537 | 62,563 |
| 2002 | 23,356 | 14,592 | 6,885 | 3,249 | 2,031 | 2,392 | 1,090 | 357 | 286 | 846 | 55,083 |
| 2003 | 14,087 | 9,495 | 9,269 | 4,997 | 2,221 | 1,257 | 1,249 | 574 | 190 | 634 | 43,972 |
| 2004 | 6,308 | 5,727 | 6,039 | 6,528 | 3,414 | 1,327 | 670 | 637 | 299 | 466 | 31,415 |
| 2005 | 4,471 | 2,565 | 3,645 | 4,387 | 4,115 | 2,103 | 771 | 360 | 345 | 434 | 23,197 |
| 2006 | 10,740 | 1,818 | 1,632 | 2,649 | 2,917 | 2,290 | 1,142 | 433 | 207 | 462 | 24,289 |
| 2007 | 25,683 | 4,366 | 1,155 | 1,147 | 1,726 | 1,648 | 1,172 | 598 | 231 | 374 | 38,100 |
| 2008 | 8,496 | 10,441 | 2,773 | 812 | 745 | 975 | 808 | 599 | 319 | 332 | 26,300 |
| 2009 | 43,607 | 3,454 | 6,638 | 1,999 | 532 | 423 | 468 | 398 | 307 | 345 | 58,171 |
| 2010 | 19,133 | 17,729 | 2,199 | 4,765 | 1,320 | 312 | 225 | 250 | 214 | 348 | 46,493 |
| 2011 | 18,621 | 7,779 | 11,284 | 1,600 | 3,043 | 787 | 182 | 127 | 139 | 315 | 43,876 |
| 2012 | 17,451 | 7,570 | 4,950 | 8,193 | 1,080 | 1,551 | 359 | 86 | 61 | 226 | 41,527 |
| Median | 18,877 | 7,674 | 4,646 | 2,719 | 1,733 | 1,000 | 482 | 265 | 133 | 217 | 44,761 |
| Average | 22,017 | 8,873 | 5,461 | 3,628 | 2,226 | 1,347 | 759 | 424 | 238 | 305 | 45,357 |

Table 1.22. Assessment model-estimated catch-at-age of EBS pollock (millions; 1964-2012).

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10+ | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1964 | 4.0 | 38.2 | 79.3 | 74.5 | 35.1 | 55.2 | 21.4 | 7.5 | 3.2 | 18.5 | 336.8 |
| 1965 | 12.8 | 20.0 | 95.2 | 251.0 | 42.2 | 17.7 | 26.4 | 10.2 | 3.6 | 11.2 | 490.2 |
| 1966 | 8.6 | 95.1 | 61.7 | 219.9 | 130.2 | 21.8 | 9.3 | 14.1 | 5.6 | 8.6 | 574.9 |
| 1967 | 29.1 | 134.3 | 665.7 | 176.6 | 186.2 | 111.9 | 20.0 | 9.0 | 14.2 | 15.1 | 1,362.0 |
| 1968 | 29.6 | 304.7 | 373.3 | 687.3 | 108.0 | 108.1 | 65.3 | 11.5 | 5.1 | 17.0 | 1,710.0 |
| 1969 | 32.0 | 287.1 | 1,011.4 | 418.8 | 317.0 | 51.0 | 54.3 | 34.0 | 6.2 | 13.1 | 2,224.8 |
| 1970 | 30.0 | 616.7 | 1,250.3 | 818.1 | 248.7 | 193.0 | 37.7 | 40.5 | 25.5 | 20.7 | 3,281.0 |
| 1971 | 18.3 | 470.4 | 1,506.8 | 921.8 | 675.4 | 204.5 | 162.9 | 26.8 | 29.1 | 45.1 | 4,061.3 |
| 1972 | 22.5 | 389.7 | 1,354.1 | 1,141.5 | 593.3 | 380.2 | 119.7 | 96.1 | 16.5 | 42.1 | 4,155.8 |
| 1973 | 68.9 | 540.1 | 696.6 | 876.2 | 707.7 | 372.7 | 242.1 | 76.1 | 61.5 | 28.9 | 3,670.9 |
| 1974 | 52.3 | 1,984.1 | 898.0 | 394.1 | 399.3 | 321.3 | 170.7 | 113.2 | 35.9 | 39.8 | 4,408.7 |
| 1975 | 32.1 | 727.5 | 2,162.4 | 334.6 | 143.9 | 145.6 | 118.3 | 62.9 | 41.1 | 29.6 | 3,798.0 |
| 1976 | 19.8 | 526.4 | 1,385.3 | 843.2 | 138.1 | 61.3 | 63.0 | 51.5 | 27.4 | 29.8 | 3,145.7 |
| 1977 | 16.0 | 469.3 | 928.8 | 654.7 | 320.4 | 55.1 | 25.2 | 26.4 | 21.7 | 23.3 | 2,541.0 |
| 1978 | 29.3 | 426.5 | 754.6 | 629.0 | 347.4 | 156.8 | 28.5 | 13.4 | 14.1 | 24.3 | 2,424.1 |
| 1979 | 63.9 | 484.9 | 661.1 | 418.7 | 354.4 | 190.5 | 87.1 | 15.6 | 7.2 | 20.7 | 2,304.1 |
| 1980 | 15.8 | 486.6 | 822.9 | 444.3 | 263.0 | 177.9 | 94.8 | 44.3 | 7.6 | 13.6 | 2,370.6 |
| 1981 | 9.5 | 87.0 | 1,062.5 | 669.2 | 232.4 | 110.1 | 68.7 | 37.7 | 17.9 | 9.4 | 2,304.4 |
| 1982 | 2.7 | 46.3 | 182.6 | 1,123.7 | 396.5 | 89.0 | 42.4 | 27.8 | 15.6 | 13.5 | 1,940.0 |
| 1983 | 7.0 | 24.1 | 174.0 | 355.8 | 846.6 | 229.2 | 48.1 | 23.9 | 16.4 | 20.5 | 1,745.6 |
| 1984 | 1.5 | 65.9 | 89.7 | 376.8 | 434.8 | 619.4 | 135.2 | 29.9 | 15.8 | 25.8 | 1,794.9 |
| 1985 | 3.6 | 22.3 | 355.6 | 149.6 | 375.0 | 318.1 | 446.8 | 91.5 | 20.8 | 28.9 | 1,812.2 |
| 1986 | 1.2 | 64.4 | 79.2 | 631.2 | 179.4 | 351.3 | 179.3 | 243.0 | 55.3 | 29.0 | 1,813.3 |
| 1987 | 0.4 | 18.7 | 148.0 | 90.7 | 415.2 | 126.5 | 143.3 | 105.4 | 159.7 | 47.0 | 1,254.9 |
| 1988 | 0.4 | 15.6 | 245.2 | 415.5 | 196.1 | 523.9 | 137.8 | 148.3 | 71.7 | 131.0 | 1,885.5 |
| 1989 | 0.6 | 9.8 | 74.5 | 187.4 | 450.0 | 143.2 | 502.6 | 87.8 | 96.5 | 131.6 | 1,684.0 |
| 1990 | 3.8 | 28.9 | 53.7 | 212.5 | 312.1 | 575.5 | 144.8 | 378.4 | 66.8 | 172.4 | 1,948.9 |
| 1991 | 1.7 | 130.4 | 62.4 | 99.0 | 159.2 | 195.3 | 428.6 | 83.9 | 243.3 | 167.9 | 1,571.7 |
| 1992 | 1.7 | 81.2 | 715.1 | 163.0 | 92.5 | 132.7 | 166.2 | 291.3 | 73.2 | 299.3 | 2,016.2 |
| 1993 | 2.1 | 18.6 | 248.4 | 1,130.0 | 132.4 | 66.1 | 66.5 | 61.5 | 89.1 | 101.0 | 1,915.6 |
| 1994 | 0.5 | 34.3 | 70.2 | 342.1 | 1,043.4 | 145.3 | 42.6 | 30.3 | 27.2 | 84.5 | 1,820.3 |
| 1995 | 0.3 | 10.2 | 96.3 | 138.8 | 390.6 | 761.5 | 102.1 | 28.1 | 19.5 | 74.0 | 1,621.5 |
| 1996 | 0.7 | 17.6 | 49.8 | 117.6 | 189.0 | 399.1 | 515.9 | 75.5 | 20.9 | 73.1 | 1,459.2 |
| 1997 | 1.1 | 69.6 | 40.6 | 99.6 | 470.6 | 286.5 | 256.0 | 211.3 | 37.4 | 53.6 | 1,526.2 |
| 1998 | 0.4 | 51.0 | 97.0 | 74.3 | 150.2 | 676.4 | 194.4 | 128.3 | 113.3 | 44.2 | 1,529.6 |
| 1999 | 0.4 | 13.8 | 283.0 | 223.6 | 104.0 | 149.6 | 463.0 | 125.3 | 56.1 | 54.0 | 1,472.9 |
| 2000 | 0.6 | 13.8 | 81.7 | 422.2 | 341.0 | 108.5 | 160.2 | 347.9 | 83.6 | 72.3 | 1,631.9 |
| 2001 | 0.8 | 13.7 | 62.7 | 168.7 | 597.5 | 413.0 | 130.3 | 102.7 | 177.9 | 100.9 | 1,768.4 |
| 2002 | 0.7 | 44.5 | 120.1 | 217.7 | 289.8 | 616.1 | 274.3 | 87.6 | 65.8 | 174.6 | 1,891.1 |
| 2003 | 0.4 | 20.0 | 394.8 | 337.0 | 372.9 | 307.5 | 338.6 | 149.0 | 43.7 | 124.9 | 2,088.9 |
| 2004 | 0.2 | 7.8 | 100.5 | 844.7 | 499.2 | 248.5 | 160.6 | 149.4 | 64.0 | 91.6 | 2,166.4 |
| 2005 | 0.1 | 4.2 | 60.4 | 389.7 | 890.6 | 489.3 | 162.5 | 70.0 | 63.4 | 71.8 | 2,201.9 |
| 2006 | 0.3 | 5.2 | 72.8 | 276.9 | 602.2 | 617.3 | 291.1 | 105.2 | 46.5 | 96.3 | 2,113.7 |
| 2007 | 0.8 | 14.4 | 51.3 | 122.7 | 356.2 | 487.1 | 316.6 | 146.0 | 53.4 | 82.8 | 1,631.3 |
| 2008 | 0.2 | 24.9 | 63.9 | 81.1 | 150.8 | 300.1 | 236.1 | 161.1 | 82.3 | 79.2 | 1,179.8 |
| 2009 | 0.9 | 4.7 | 178.2 | 189.0 | 96.3 | 104.3 | 113.5 | 95.0 | 72.3 | 87.0 | 941.2 |
| 2010 | 0.4 | 25.7 | 33.8 | 570.5 | 223.2 | 57.2 | 46.2 | 53.9 | 45.8 | 72.9 | 1,129.4 |
| 2011 | 0.5 | 12.0 | 194.0 | 122.8 | 827.5 | 264.6 | 58.4 | 39.0 | 40.8 | 89.3 | 1,648.8 |
| 2012 | 0.5 | 11.4 | 65.5 | 567.7 | 229.7 | 472.1 | 169.9 | 40.3 | 28.2 | 110.7 | 1,696.0 |
| Median | 1.6 | 36.3 | 161.0 | 339.5 | 314.5 | 194.1 | 132.8 | 66.5 | 36.6 | 46.1 | 1,816.8 |
| Average | 10.8 | 184.0 | 414.6 | 412.6 | 348.1 | 265.5 | 161.0 | 90.0 | 49.2 | 64.7 | 2,007.7 |

Table 1.23. Estimated EBS pollock age 3+ biomass, female spawning biomass, and age 1 recruitment for 1964-2012. Biomass units are thousands of t , age-1 recruitment is in millions of pollock.

|  | Age 3+ <br> biomass | Spawning <br> biomass | Age 1 Rec. | Year |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Year | Age 3+ <br> biomass | Spawning <br> biomass | Age 1 Rec. |  |

Table 1.24. Estimates of begin-year age 3 and older biomass (thousands of tons) and coefficients of variation (CV) for the current assessment compared to estimates from the 2005-2011 assessments for EBS pollock. NOTE: see Ianelli et al. (2001) for a discussion on the interpretation of age-3+ biomass estimates.

|  | Current |  | 2011 |  | 2010 |  | 2009 |  | 2008 |  | 2007 |  | 2006 |  | 2005 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Assess. | CV |
| 1964 | 1,608 | 21\% | 1,602 | 21\% | 1,589 | 21\% | 1,564 | 22\% | 1,600 | 22\% | 1,717 | 23\% | 1,810 | 23\% | 1,779 | 23\% |
| 1965 | 2,059 | 20\% | 2,050 | 20\% | 2,008 | 19\% | 2,008 | 20\% | 2,050 | 20\% | 2,141 | 21\% | 2,231 | 21\% | 2,222 | 21\% |
| 1966 | 2,157 | 20\% | 2,159 | 20\% | 1,944 | 21\% | 1,947 | 22\% | 2,007 | 21\% | 2,037 | 22\% | 2,252 | 21\% | 2,288 | 21\% |
| 1967 | 3,353 | 16\% | 3,365 | 16\% | 3,140 | 17\% | 3,149 | 17\% | 3,245 | 17\% | 3,206 | 18\% | 3,518 | 17\% | 3,483 | 17\% |
| 1968 | 3,809 | 17\% | 3,838 | 17\% | 3,486 | 18\% | 3,510 | 19\% | 3,592 | 18\% | 3,558 | 19\% | 3,881 | 17\% | 3,881 | 17\% |
| 1969 | 5,154 | 16\% | 5,187 | 16\% | 4,879 | 17\% | 5,007 | 17\% | 5,020 | 17\% | 5,118 | 17\% | 5,058 | 16\% | 5,323 | 16\% |
| 1970 | 6,188 | 15\% | 6,221 | 15\% | 5,974 | 16\% | 6,159 | 15\% | 6,005 | 16\% | 6,368 | 15\% | 5,929 | 16\% | 6,447 | 15\% |
| 1971 | 6,894 | 14\% | 6,918 | 14\% | 6,785 | 13\% | 6,949 | 13\% | 6,727 | 14\% | 7,164 | 13\% | 6,617 | 13\% | 7,145 | 13\% |
| 1972 | 6,308 | 14\% | 6,329 | 14\% | 6,277 | 13\% | 6,444 | 13\% | 6,289 | 14\% | 6,666 | 13\% | 6,265 | 13\% | 6,692 | 13\% |
| 1973 | 4,700 | 16\% | 4,728 | 16\% | 4,547 | 16\% | 4,696 | 16\% | 4,556 | 17\% | 4,942 | 16\% | 4,751 | 16\% | 5,055 | 15\% |
| 1974 | 3,298 | 20\% | 3,329 | 20\% | 3,085 | 20\% | 3,196 | 20\% | 3,064 | 22\% | 3,475 | 20\% | 3,460 | 19\% | 3,635 | 19\% |
| 1975 | 3,523 | 14\% | 3,533 | 14\% | 3,366 | 13\% | 3,384 | 13\% | 3,276 | 14\% | 3,604 | 14\% | 3,585 | 13\% | 3,666 | 14\% |
| 1976 | 3,587 | 11\% | 3,580 | 11\% | 3,460 | 10\% | 3,431 | 11\% | 3,339 | 11\% | 3,584 | 11\% | 3,577 | 11\% | 3,614 | 11\% |
| 1977 | 3,624 | 10\% | 3,598 | 9\% | 3,500 | 9\% | 3,457 | 9\% | 3,340 | 10\% | 3,602 | 10\% | 3,582 | 10\% | 3,548 | 10\% |
| 1978 | 3,537 | 9\% | 3,497 | 9\% | 3,390 | 9\% | 3,340 | 9\% | 3,202 | 9\% | 3,476 | 9\% | 3,438 | 10\% | 3,361 | 10\% |
| 1979 | 3,403 | 9\% | 3,343 | 9\% | 3,267 | 9\% | 3,212 | 9\% | 3,090 | 9\% | 3,363 | 9\% | 3,323 | 9\% | 3,273 | 10\% |
| 1980 | 4,333 | 7\% | 4,230 | 7\% | 4,203 | 7\% | 4,124 | 8\% | 4,044 | 7\% | 4,384 | 8\% | 4,320 | 8\% | 4,373 | 8\% |
| 1981 | 8,364 | 6\% | 8,160 | 6\% | 8,190 | 6\% | 8,031 | 6\% | 7,704 | 6\% | 8,307 | 6\% | 8,364 | 7\% | 8,289 | 7\% |
| 1982 | 9,549 | 6\% | 9,313 | 6\% | 9,349 | 6\% | 9,165 | 6\% | 8,783 | 6\% | 9,439 | 6\% | 9,476 | 6\% | 9,446 | 7\% |
| 1983 | 10,621 | 5\% | 10,340 | 5\% | 10,376 | 5\% | 10,168 | 5\% | 9,804 | 5\% | 10,493 | 6\% | 10,443 | 6\% | 10,536 | 7\% |
| 1984 | 10,300 | 5\% | 10,031 | 5\% | 10,060 | 5\% | 9,857 | 5\% | 9,518 | 5\% | 10,200 | 6\% | 10,088 | 6\% | 10,244 | 7\% |
| 1985 | 12,478 | 4\% | 12,186 | 4\% | 12,246 | 4\% | 12,027 | 4\% | 11,802 | 4\% | 12,531 | 5\% | 12,285 | 5\% | 12,435 | 6\% |
| 1986 | 11,685 | 4\% | 11,426 | 4\% | 11,471 | 4\% | 11,269 | 4\% | 11,075 | 4\% | 11,773 | 5\% | 11,486 | 5\% | 11,609 | 6\% |
| 1987 | 12,308 | 4\% | 12,063 | 4\% | 12,111 | 4\% | 11,915 | 4\% | 11,732 | 4\% | 12,401 | 4\% | 12,077 | 5\% | 12,106 | 5\% |
| 1988 | 11,642 | 4\% | 11,424 | 4\% | 11,402 | 4\% | 11,227 | 4\% | 11,004 | 4\% | 11,617 | 4\% | 11,330 | 5\% | 11,153 | 5\% |
| 1989 | 9,913 | 4\% | 9,724 | 4\% | 9,671 | 4\% | 9,521 | 4\% | 9,320 | 4\% | 9,875 | 4\% | 9,584 | 5\% | 9,384 | 5\% |
| 1990 | 7,936 | 4\% | 7,764 | 4\% | 7,681 | 4\% | 7,558 | 4\% | 7,345 | 4\% | 7,847 | 5\% | 7,603 | 5\% | 7,392 | 6\% |
| 1991 | 6,209 | 5\% | 6,049 | 5\% | 5,911 | 5\% | 5,811 | 5\% | 5,590 | 5\% | 6,097 | 5\% | 5,929 | 6\% | 5,454 | 6\% |
| 1992 | 9,602 | 3\% | 9,411 | 3\% | 9,316 | 3\% | 9,211 | 4\% | 8,966 | 4\% | 9,557 | 4\% | 9,270 | 5\% | 8,905 | 5\% |
| 1993 | 11,754 | 3\% | 11,543 | 3\% | 11,493 | 3\% | 11,388 | 3\% | 11,175 | 3\% | 11,832 | 4\% | 11,795 | 4\% | 11,669 | 5\% |
| 1994 | 11,341 | 3\% | 11,146 | 3\% | 11,077 | 3\% | 10,990 | 4\% | 10,782 | 4\% | 11,485 | 4\% | 11,407 | 5\% | 11,000 | 5\% |
| 1995 | 13,109 | 3\% | 12,883 | 3\% | 12,779 | 3\% | 12,699 | 3\% | 12,704 | 3\% | 13,615 | 4\% | 13,658 | 4\% | 13,605 | 6\% |
| 1996 | 11,229 | 3\% | 11,019 | 3\% | 10,903 | 4\% | 10,843 | 4\% | 10,829 | 4\% | 11,537 | 4\% | 11,480 | 5\% | 11,826 | 6\% |
| 1997 | 9,828 | 4\% | 9,627 | 4\% | 9,485 | 4\% | 9,440 | 4\% | 9,403 | 4\% | 10,104 | 5\% | 10,056 | 5\% | 9,966 | 6\% |
| 1998 | 9,929 | 3\% | 9,722 | 4\% | 9,584 | 4\% | 9,538 | 4\% | 9,467 | 4\% | 10,178 | 5\% | 9,973 | 5\% | 9,915 | 7\% |
| 1999 | 10,819 | 3\% | 10,607 | 3\% | 10,509 | 3\% | 10,421 | 3\% | 10,379 | 4\% | 11,081 | 4\% | 10,872 | 5\% | 10,998 | 6\% |
| 2000 | 10,044 | 3\% | 9,841 | 3\% | 9,747 | 3\% | 9,632 | 3\% | 9,503 | 4\% | 10,201 | 4\% | 10,052 | 5\% | 9,947 | 7\% |
| 2001 | 9,830 | 3\% | 9,616 | 3\% | 9,506 | 3\% | 9,341 | 4\% | 9,175 | 4\% | 9,898 | 5\% | 9,800 | 6\% | 9,566 | 8\% |
| 2002 | 10,230 | 3\% | 9,988 | 3\% | 9,842 | 3\% | 9,595 | 4\% | 9,554 | 4\% | 10,224 | 5\% | 10,197 | 7\% | 9,824 | 9\% |
| 2003 | 12,269 | 3\% | 11,974 | 3\% | 11,805 | 3\% | 11,453 | 3\% | 11,182 | 4\% | 12,865 | 6\% | 13,320 | 10\% | 13,073 | 13\% |
| 2004 | 11,491 | 3\% | 11,178 | 3\% | 10,974 | 3\% | 10,606 | 4\% | 10,274 | 4\% | 11,784 | 7\% | 12,055 | 12\% | 10,972 | 15\% |
| 2005 | 9,608 | 3\% | 9,299 | 3\% | 9,079 | 4\% | 8,736 | 4\% | 8,423 | 5\% | 9,598 | 8\% | 9,759 | 14\% | 9,277 | 18\% |
| 2006 | 7,349 | 4\% | 7,060 | 4\% | 6,839 | 4\% | 6,543 | 5\% | 6,340 | 6\% | 7,178 | 10\% | 7,950 | 17\% | 8,232 | 21\% |
| 2007 | 5,954 | 4\% | 5,633 | 5\% | 5,386 | 5\% | 5,090 | 6\% | 5,015 | 8\% | 5,363 | 14\% | 6,361 | 21\% |  |  |
| 2008 | 4,724 | 5\% | 4,393 | 6\% | 4,146 | 7\% | 3,809 | 8\% | 4,222 | 12\% | 4,357 | 20\% |  |  |  |  |
| 2009 | 6,069 | 6\% | 6,172 | 8\% | 6,225 | 10\% | 4,762 | 11\% | 6,240 | 20\% |  |  |  |  |  |  |
| 2010 | 5,769 | 7\% | 6,095 | 10\% | 6,582 | 12\% | 4,616 | 13\% |  |  |  |  |  |  |  |  |
| 2011 | 7,781 | 9\% | 7,823 | 11\% | 9,620 | 15\% |  |  |  |  |  |  |  |  |  |  |
| 2012 | 7,867 | 10\% | 8,341 | 12\% |  |  |  |  |  |  |  |  |  |  |  |  |
| 2013 | 8,138 | 12\% |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 1.25 Tier 3 projections of catch, fishing mortality, and spawning biomass (thousands of tons) for EBS pollock for the 7 scenarios. Note that the values for $B_{100 \%}, B_{40 \%}$, and $B_{35 \%}$ are 6,425, 2,570 and 2,249 thousand t , respectively.

| Catch | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 | Scenario 6 | Scenario 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2012 | 1,200 | 1,200 | 1,200 | 1,200 | 1,200 | 1,200 | 1,200 |
| 2013 | 1,452 | 1,200 | 1,375 | 673 | 0 | 1,753 | 1,452 |
| 2014 | 1,426 | 1,547 | 1,430 | 802 | 0 | 1,554 | 1,426 |
| 2015 | 1,290 | 1,338 | 1,340 | 836 | 0 | 1,353 | 1,558 |
| 2016 | 1,245 | 1,263 | 1,291 | 854 | 0 | 1,318 | 1,388 |
| 2017 | 1,307 | 1,313 | 1,327 | 896 | 0 | 1,401 | 1,424 |
| 2018 | 1,383 | 1,385 | 1,386 | 948 | 0 | 1,477 | 1,485 |
| 2019 | 1,424 | 1,425 | 1,421 | 986 | 0 | 1,514 | 1,516 |
| 2020 | 1,432 | 1,432 | 1,431 | 1,007 | 0 | 1,513 | 1,513 |
| 2021 | 1,433 | 1,432 | 1,434 | 1,020 | 0 | 1,508 | 1,508 |
| 2022 | 1,445 | 1,445 | 1,443 | 1,031 | 0 | 1,525 | 1,525 |
| 2023 | 1,468 | 1,468 | 1,462 | 1,046 | 0 | 1,551 | 1,551 |
| 2024 | 1,490 | 1,490 | 1,482 | 1,061 | 0 | 1,574 | 1,574 |
| 2025 | 1,491 | 1,491 | 1,485 | 1,068 | 0 | 1,570 | 1,570 |
| Fishing M. | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 | Scenario 6 | Scenario 7 |
| 2012 | 0.412 | 0.412 | 0.412 | 0.412 | 0.412 | 0.412 | 0.412 |
| 2013 | 0.409 | 0.329 | 0.384 | 0.175 | 0.000 | 0.510 | 0.409 |
| 2014 | 0.389 | 0.405 | 0.384 | 0.175 | 0.000 | 0.462 | 0.389 |
| 2015 | 0.372 | 0.379 | 0.384 | 0.175 | 0.000 | 0.436 | 0.466 |
| 2016 | 0.366 | 0.368 | 0.384 | 0.175 | 0.000 | 0.433 | 0.443 |
| 2017 | 0.367 | 0.367 | 0.384 | 0.175 | 0.000 | 0.439 | 0.442 |
| 2018 | 0.370 | 0.370 | 0.384 | 0.175 | 0.000 | 0.443 | 0.444 |
| 2019 | 0.372 | 0.372 | 0.384 | 0.175 | 0.000 | 0.446 | 0.447 |
| 2020 | 0.372 | 0.372 | 0.384 | 0.175 | 0.000 | 0.446 | 0.446 |
| 2021 | 0.372 | 0.372 | 0.384 | 0.175 | 0.000 | 0.446 | 0.446 |
| 2022 | 0.374 | 0.374 | 0.384 | 0.175 | 0.000 | 0.449 | 0.449 |
| 2023 | 0.376 | 0.376 | 0.384 | 0.175 | 0.000 | 0.452 | 0.452 |
| 2024 | 0.377 | 0.377 | 0.384 | 0.175 | 0.000 | 0.454 | 0.454 |
| 2025 | 0.378 | 0.378 | 0.384 | 0.175 | 0.000 | 0.455 | 0.455 |
| Spawning | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 | Scenario 6 | Scenario 7 |
| 2012 | 2,306 | 2,306 | 2,306 | 2,306 | 2,306 | 2,306 | 2,306 |
| 2013 | 2,546 | 2,580 | 2,557 | 2,648 | 2,728 | 2,503 | 2,546 |
| 2014 | 2,430 | 2,522 | 2,463 | 2,855 | 3,250 | 2,280 | 2,430 |
| 2015 | 2,345 | 2,385 | 2,366 | 2,988 | 3,712 | 2,161 | 2,305 |
| 2016 | 2,382 | 2,398 | 2,378 | 3,140 | 4,150 | 2,191 | 2,245 |
| 2017 | 2,490 | 2,497 | 2,470 | 3,324 | 4,578 | 2,288 | 2,308 |
| 2018 | 2,571 | 2,574 | 2,547 | 3,480 | 4,960 | 2,351 | 2,358 |
| 2019 | 2,603 | 2,605 | 2,583 | 3,579 | 5,254 | 2,368 | 2,370 |
| 2020 | 2,609 | 2,610 | 2,593 | 3,639 | 5,483 | 2,364 | 2,365 |
| 2021 | 2,617 | 2,618 | 2,605 | 3,688 | 5,684 | 2,368 | 2,368 |
| 2022 | 2,646 | 2,647 | 2,636 | 3,742 | 5,849 | 2,394 | 2,394 |
| 2023 | 2,678 | 2,679 | 2,672 | 3,799 | 6,008 | 2,423 | 2,423 |
| 2024 | 2,692 | 2,693 | 2,691 | 3,835 | 6,122 | 2,432 | 2,432 |
| 2025 | 2,682 | 2,682 | 2,685 | 3,845 | 6,200 | 2,418 | 2,418 |

Table 1.26 Maximum permissible Tier 1a EBS pollock ABC and OFL projections for 2013 and for 2014.

| Year | Catch | ABC | OFL |
| ---: | ---: | ---: | ---: |
| 2013 | $1,200,000 \mathrm{t}$ | $2,306,000 \mathrm{t}$ | $2,549,000 \mathrm{t}$ |
| 2014 | $1,400,000 \mathrm{t}$ | $2,466,000 \mathrm{t}$ | $2,726,000 \mathrm{t}$ |

Table 1.27. Details and explanation of the decision table factors selected in response to the Plan Team requests.

| Term | Description | Rationale |
| :---: | :---: | :---: |
| $P\left[F_{2013}>F_{\text {msy }}\right]$ | Probability that the fishing mortality in 2013 exceeds $F_{m s y}$ | OFL definition is based on $F_{\text {msy }}$ |
| $P\left[B_{2014}<\bar{B}\right]$ | Probability that the spawning biomass in 2014 is less than the 1978-2011 mean | To provide some perspective of what the stock condition might be relative to historical estimates after fishing in 2013. |
| $P\left[B_{2014}<B_{\text {msy }}\right]$ | Probability that the spawning biomass in 2014 is less than $B_{m s y}$ | $B_{m s y}$ is a reference point target and biomass in 2014 provides an indication of the impact of 2013 fishing |
| $P\left[B_{2015}<B_{\text {msy }}\right]$ | Probability that the spawning biomass in 2015 is less than $B_{m s y}$ | $B_{m s y}$ is a reference point target and biomass in 2015 provides an indication of the impact of fishing in 2013 and 2014 |
| $P\left[B_{2015}<B_{20 \%}\right]$ | Probability that the spawning biomass in 2015 is less than $B_{20 \%}$ | $B_{20 \%}$ has been selected as a Steller Sea Lion lower limit for allowing directed fishing |
| $P\left[B_{2017}<B_{2013}\right]$ | Probability that the spawning biomass in 2017 is less than that estimated for 2013 | To provide a medium term expectation of stock status relative to 2013 levels |
| $P\left[B_{2017}<\bar{B}\right]$ | Probability that the spawning biomass in 2017 is less than the 1978-2011 mean | To provide some perspective of what the stock condition might be relative to historical estimates |
| $P\left[p_{1-5,2017}>\bar{p}_{1-5}\right]$ | Probability that the proportion of age 1-5 pollock in the population exceeds the long-term mean proportion | To provide some relative indication of the age composition of the population relative to the long term mean. |
| $P\left[D_{2014}<D_{1994}\right]$ | Probability that the diversity of ages represented in the spawning biomass (by weight) in 2014 is less than the value estimated for 1994 | To provide a relative index on the abundance of different age classes in the 2014 population relative to 1994 (a year identified as having low age composition diversity) |
| $P\left[D_{2017}<D_{1994}\right]$ | Probability that the diversity of ages represented in the spawning biomass (by weight) in 2017 is less than the value estimated for 1994 | To provide a medium-term relative index on the abundance of different age classes in the population relative to 1994 (a year identified as having low age composition diversity) |
| $P\left[E_{2013}>E_{2012}\right]$ | Probability that the theoretical fishing effort in 2013 will be greater than that estimated in 2012. | To provide the relative effort that is expected (and hence some idea of costs). |
| $P\left[S_{2013}>\bar{S}\right]$ | Probability that the Chinook salmon PSC bycatch will exceed the 1991-2012 mean value (38,517 salmon) | Provide some index of risk based on historical rates (Chinook PSC / t of pollock) and variability of the rates over time. Computed given historical mean rates (Chinook / t of salmon) and variability from 1991-2012. |

Table 1.28. Outcomes of decision (expressed as probabilities of "something bad happening") given different levels of 2013 catches (and constant F's based on the 2013 catches for subsequent years).

|  | 2013 catch (kt) |  |  |  |  |  |  |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | $\mathbf{0 . 0 1}$ | $\mathbf{5 0 0}$ | $\mathbf{7 5 0}$ | $\mathbf{1 0 0 0}$ | $\mathbf{1 2 0 0}$ | $\mathbf{1 5 0 0}$ | $\mathbf{2 0 0 0}$ |
| $P\left[F_{2013}>F_{m s y}\right]$ | $0 \%$ | $0 \%$ | $0 \%$ | $0 \%$ | $0 \%$ | $3 \%$ | $26 \%$ |
| $P\left[B_{2014}<B_{m s y}\right]$ | $6 \%$ | $10 \%$ | $14 \%$ | $18 \%$ | $23 \%$ | $30 \%$ | $47 \%$ |
| $P\left[B_{2014}<\bar{B}\right]$ | $13 \%$ | $39 \%$ | $55 \%$ | $70 \%$ | $80 \%$ | $91 \%$ | $98 \%$ |
| $P\left[B_{2015}<B_{m s y}\right]$ | $2 \%$ | $7 \%$ | $11 \%$ | $17 \%$ | $24 \%$ | $36 \%$ | $60 \%$ |
| $P\left[B_{2015}<B_{20 \%}\right]$ | $0 \%$ | $0 \%$ | $0 \%$ | $0 \%$ | $0 \%$ | $1 \%$ | $3 \%$ |
| $P\left[B_{2017}<B_{2013}\right]$ | $1 \%$ | $8 \%$ | $15 \%$ | $24 \%$ | $33 \%$ | $45 \%$ | $63 \%$ |
| $P\left[B_{2017}<\bar{B}\right]$ | $2 \%$ | $12 \%$ | $23 \%$ | $36 \%$ | $46 \%$ | $61 \%$ | $80 \%$ |
| $P\left[p_{1-5,2017}>\bar{p}_{1-5}\right]$ | $4 \%$ | $31 \%$ | $49 \%$ | $63 \%$ | $71 \%$ | $80 \%$ | $88 \%$ |
| $P\left[D_{2014}<D_{1994}\right]$ | $84 \%$ | $85 \%$ | $85 \%$ | $86 \%$ | $87 \%$ | $88 \%$ | $90 \%$ |
| $P\left[D_{2017}<D_{1994}\right]$ | $0 \%$ | $1 \%$ | $4 \%$ | $9 \%$ | $15 \%$ | $27 \%$ | $51 \%$ |
| $P\left[E_{2013}>E_{2012}\right]$ | $0 \%$ | $0 \%$ | $0 \%$ | $0 \%$ | $7 \%$ | $48 \%$ | $91 \%$ |
| $P\left[S_{2013}>\bar{S}\right]$ | $0 \%$ | $1 \%$ | $14 \%$ | $35 \%$ | $48 \%$ | $62 \%$ | $74 \%$ |

Table 1.29. A subset of decision indicators (expressed as probabilities of "something bad happening") given different levels of 2013 catches (and constant F's based on the 2013 catches for subsequent years). Landings values were simply scaled to be proportionate between the OY cap and a complete pollock fishery closure.

|  | 2013 catch (kt) |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | ---: |
|  | 0.01 | 500 | 750 | 1000 | 1200 | 1500 | 2000 |
| Landings: | $100 \%$ | $96 \%$ | $86 \%$ | $65 \%$ | $43 \%$ | $16 \%$ | $1 \%$ |
| Biomass: |  |  |  |  |  |  |  |
| $P\left[B_{2015}<B_{m s y}\right]$ | $2 \%$ | $7 \%$ | $11 \%$ | $17 \%$ | $24 \%$ | $36 \%$ | $60 \%$ |
| Fishing conditions: |  |  |  |  |  |  |  |
| $P\left[B_{2014}<\bar{B}\right]$ | $13 \%$ | $39 \%$ | $55 \%$ | $70 \%$ | $80 \%$ | $91 \%$ | $98 \%$ |
| $P\left[B_{2017}<\bar{B}\right]$ | $2 \%$ | $12 \%$ | $23 \%$ | $36 \%$ | $46 \%$ | $61 \%$ | $80 \%$ |
| Age structure: |  |  |  |  |  |  |  |
| $P\left[p_{1-5,2017}>\bar{p}_{1-5}\right]$ | $4 \%$ | $31 \%$ | $49 \%$ | $63 \%$ | $71 \%$ | $80 \%$ | $88 \%$ |
| Age diversity: | $0 \%$ | $1 \%$ | $4 \%$ | $9 \%$ | $15 \%$ | $27 \%$ | $51 \%$ |
| $P\left[D_{2017}<D_{1994}\right]$ | $0 \%$ | $0 \%$ | $0 \%$ | $0 \%$ | $7 \%$ | $48 \%$ | $91 \%$ |
| Fishing effort: | $0 \%$ | $1 \%$ | $14 \%$ | $35 \%$ | $48 \%$ | $62 \%$ | $74 \%$ |
| $P\left[E_{2013}>E_{2012}\right]$ |  |  |  |  |  |  |  |
| Salmon: |  |  |  |  |  |  |  |
| $P\left[S_{2013}>\bar{S}\right]$ |  |  |  |  |  |  |  |

Table 1.30. Analysis of ecosystem considerations for BSAI pollock and the pollock fishery.


Table 1.31 Bycatch estimates (t) of non-target species caught in the BSAI directed pollock fishery, 1997-2002 based on observer data, 2003-2012 based on observer data as processed through the catch accounting system (NMFS Regional Office, Juneau, Alaska). Note that in 2011 species groups left blank are because they have moved into "target" FMP categories.

| Group |  |  | 1997 | 1998 |  | 1999 | 2000 |  | 2001 | 2002 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Jellyfish |  |  | 6,632 | 6,129 |  | 6,176 | 9,361 |  | 3,095 | 1,530 |
| Squid |  |  | 1,487 | 1,210 |  | 474 | 379 |  | 1,776 | 1,708 |
| Skates |  |  | 348 | 406 |  | 376 | 598 |  | 628 | 870 |
| Misc Fish |  |  | 207 | 134 |  | 156 | 236 |  | 156 | 134 |
| Sculpins |  |  | 109 | 188 |  | 67 | 185 |  | 199 | 199 |
| Sleeper shark |  |  | 105 | 74 |  | 77 | 104 |  | 206 | 149 |
| Smelts |  |  | 19.5 | 30.2 |  | 38.7 | 48.7 |  | 72.5 | 15.3 |
| Grenadiers |  |  | 19.7 | 34.9 |  | 79.4 | 33.2 |  | 11.6 | 6.5 |
| Salmon shark |  |  | 6.6 | 15.2 |  | 24.7 | 19.5 |  | 22.5 | 27.5 |
| Starfish |  |  | 6.5 | 57.7 |  | 6.8 | 6.2 |  | 12.8 | 17.4 |
| Shark |  |  | 15.6 | 45.4 |  | 10.3 | 0.1 |  | 2.3 | 2.3 |
| Benthic inverts. |  |  | 2.5 | 26.3 |  | 7.4 | 1.7 |  | 0.6 | 2.1 |
| Sponges |  |  | 0.8 | 21 |  | 2.4 | 0.2 |  | 2.1 | 0.3 |
| Octopus |  |  | 1 | 4.7 |  | 0.4 | 0.8 |  | 4.8 | 8.1 |
| Crabs |  |  | 1 | 8.2 |  | 0.8 | 0.5 |  | 1.8 | 1.5 |
| Anemone |  |  | 2.6 | 1.8 |  | 0.3 | 5.8 |  | 0.1 | 0.6 |
| Tunicate |  |  | 0.1 | 1.5 |  | 1.5 | 0.4 |  | 3.7 | 3.8 |
| Unident. inverts |  |  | 0.2 | 2.9 |  | 0.1 | 4.4 |  | 0.1 | 0.2 |
| Echinoderms |  |  | 0.8 | 2.6 |  | 0.1 | 0 |  | 0.2 | 0.1 |
| Seapen/whip |  |  | 0.1 | 0.2 |  | 0.5 | 0.9 |  | 1.5 | 2.1 |
| Other |  |  | 0.8 | 2.9 |  | 1.1 | 0.8 |  | 1.2 | 3.7 |
| Category | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 |
| Scypho jellies | 5,644 | 6,590 | 5,196 | 2,714 | 2,376 | 4,183 | 8,100 | 2,659 | 8,898 | 3,801 |
| Misc fish | 101.3 | 89.8 | 157.9 | 148.5 | 201.7 | 120.2 | 134.9 | 172.0 | 326.0 | 157.0 |
| Eulachon | 2.5 | 19.3 | 9.2 | 93.9 | 101.9 | 2.4 | 5.4 | 0.7 | 73.3 | 0.8 |
| Sea star | 89.4 | 7.2 | 9.5 | 11.4 | 5.2 | 18.8 | 9.8 | 13.2 | 27.3 | 9.4 |
| Eelpouts | 7.0 | 0.7 | 1.3 | 21.1 | 118.9 | 8.9 | 4.4 | 2.1 | 1.3 | 1.2 |
| Giant |  |  |  |  |  |  |  |  |  |  |
| Grenadier | 0.3 | 4.1 | 5.0 | 6.9 | 16.8 | 23.8 | 4.3 | 4.1 | 1.7 | 2.0 |
| Grenadier | 20.4 | 10.1 | 9.0 | 8.8 | 10.9 | 4.1 | 0.7 | 0.6 | 6.3 | 0.0 |
| Osmerids | 7.5 | 2.0 | 3.4 | 5.6 | 37.9 | 2.0 | 0.1 | 0.1 | 10.3 | 0.1 |
| Sea pens | 0.6 | 1.0 | 1.7 | 2.0 | 4.0 | 1.1 | 2.6 | 3.1 | 2.9 | 3.9 |
| Lanternfish | 0.3 | 0.1 | 0.6 | 9.6 | 5.9 | 1.5 | 0.4 | 0.0 | 0.0 | 0.1 |
| Snails | 1.3 | 1.0 | 6.9 | 0.2 | 0.5 | 1.9 | 1.5 | 1.4 | 4 | 1.4 |
| Sponge unid. | 0.1 | 0.0 | 0.0 | 0.0 | 1.4 | 0.2 | 0.5 | 4.9 | 3.9 | 1.8 |
| Sea anemone | 0.4 | 0.4 | 0.3 | 0.6 | 0.3 | 0.9 | 1.3 | 2.4 | 42.0 | 2.1 |
| Brittle star |  |  |  |  |  |  |  |  |  |  |
| unidentified | 0.3 | 0.0 | 0.0 | 2.7 | 0.2 | 3.6 | 0.1 | 0.3 | 30.2 | 0.1 |
| urochordata | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | 0.8 | 0.7 | 3.1 | 10.9 | 0.1 |
| Unid. Inverts | 0.0 | 0.1 | 0.1 | 0.2 | 0.7 | 0.3 | 0.3 | 1.0 | 0.7 | 2.2 |
| Pandalids | 0.0 | 0.0 | 0.5 | 0.8 | 1.1 | 0.9 | 0.3 | 0.5 | 0.2 | 0.1 |
| Capelin | 0.0 | 0.3 | 0.3 | 2.5 | 0.9 | 0.0 | 0.2 | 0.0 | 0.1 | 0.1 |
| All other | 0.9 | 0.3 | 0.8 | 0.3 | 3.3 | 1.5 | 1.1 | 1.5 | - 1.6 | 0.6 |

Table 1.32 Bycatch estimates ( t ) of other target species caught in the BSAI directed pollock fishery, 1997-2011 based on then NMFS Alaska Regional Office reports from observers (2011 data are preliminary). Note that the increase in 2011 is partially due to earlier non-target species being moved into the FMP as "target" species (e.g., skates, squid, octopus etc).

|  | $\begin{aligned} & \text { ت} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & \stackrel{0}{0} \\ & \text { on } \\ & \text { ü } \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & \text { 馬 } \\ & 0 \\ & 0 \\ & \text { U } \\ & \text { U } \\ & 0 \\ & 0 \end{aligned}$ |  |  |  |  |  | $\begin{aligned} & \text { ㅎ } \\ & \stackrel{\rightharpoonup}{0} \\ & =1 \end{aligned}$ | $\begin{aligned} & \text { TH゙ } \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1997 | 8,262 | 2,350 | 1,522 | 606 | 985 | 428 | 83 | 2 | 123 | 1 |  | 879 | 15,241 |
| 1998 | 6,559 | 2,118 | 779 | 1,762 | 1,762 | 682 | 91 | 2 | 178 | 14 |  | 805 | 14,751 |
| 1999 | 3,220 | 1,885 | 1,058 | 350 | 273 | 121 | 161 | 7 | 30 | 3 |  | 249 | 7,357 |
| 2000 | 3,432 | 2,510 | 2,688 | 1,466 | 979 | 22 | 2 | 12 | 52 | 147 |  | 306 | 11,615 |
| 2001 | 3,878 | 2,199 | 1,673 | 594 | 529 | 574 | 41 | 21 | 68 | 14 |  | 505 | 10,098 |
| 2002 | 5,925 | 1,843 | 1,885 | 768 | 606 | 544 | 221 | 34 | 70 | 50 |  | 267 | 12,214 |
| 2003 | 5,968 | 1,740 | 1,419 | 210 | 618 | 935 | 762 | 48 | 40 | 7 |  | 67 | 11,814 |
| 2004 | 6,437 | 2,009 | 2,554 | 755 | 557 | 394 | 1,053 | 17 | 18 | 8 |  | 120 | 14,100 |
| 2005 | 7,413 | 2,319 | 1,125 | 725 | 651 | 653 | 678 | 11 | 31 | 45 |  | 125 | 13,145 |
| 2006 | 7,291 | 2,837 | 1,361 | 1,304 | 1,089 | 737 | 789 | 9 | 65 | 11 |  | 152 | 14,612 |
| 2007 | 5,630 | 4,203 | 510 | 1,282 | 2,795 | 625 | 315 | 12 | 107 | 3 |  | 188 | 14,494 |
| 2008 | 6,969 | 4,288 | 2,125 | 2,708 | 1,712 | 336 | 20 | 5 | 85 | 49 |  | 39 | 15,205 |
| 2009 | 7,878 | 4,602 | 7,602 | 3,818 | 2,203 | 114 | 25 | 3 | 44 | 176 |  | 25 | 22,861 |
| 2010 | 6,987 | 4,309 | 2,330 | 646 | 1,502 | 231 | 57 | 2 | 26 | 126 | 1,234 | 1,579 | 19,111 |
| 2011 | 9,998 | 4,846 | 8,463 | 1,443 | 1,599 | 659 | 891 | 1 | 29 | 74 | 881 | 2,492 | 29,973 |
| 2012 | 9,998 | 3,904 | 6,809 | 1,468 | 615 | 700 | 263 | 1 | 52 | 125 | 515 | 641 | 25,091 |
| Average | 6,615 | 2,998 | 2,744 | 1,244 | 1,155 | 485 | 341 | 12 | 64 | 53 | 877 | 527 | 15,730 |


| Group | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Skates | 462 | 841 | 732 | 1,308 | 1,287 | 2,758 | 3,856 | 1,886 | 2,348 | 1,985 |
| Squid | 952 | 977 | 1,150 | 1,399 | 1,169 | 1,452 | 209 | 277 | 178 | 479 |
| Sharks | 191 | 187 | 169 | 512 | 246 | 146 | 100 | 26 | 132 | 55 |
| Sculpins | 92 | 150 | 131 | 169 | 190 | 283 | 292 | 258 | 315 | 283 |
| Octopus | 9 | 3 | 1 | 2 | 4 | 4 | 5 | 4 | 9 | 3 |

Table 1.33 Bycatch estimates ( t ) of pollock caught in the other non-pollock EBS directed fisheries, 2003-2011 based on then NMFS Alaska Regional Office reports from observers (2012 data are preliminary).

| Target fishery | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | Avg. |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Pacific cod fishery | 16,022 | 18,610 | 14,105 | 15,147 | 20,296 | 9,516 | 7,879 | 6,416 | 8,966 | 7,734 | 12,469 |
| Yellowfin sole fishery | 11,570 | 10,479 | 10,312 | 5,967 | 4,042 | 9,867 | 6,998 | 5,207 | 8,694 | 8,690 | 8,183 |
| Rock sole fishery | 4,925 | 8,964 | 7,240 | 7,040 | 3,220 | 4,995 | 6,150 | 5,913 | 7,091 | 6,769 | 6,231 |
| Flathead sole fishery | 2,989 | 5,112 | 3,664 | 2,641 | 3,448 | 4,098 | 3,166 | 3,072 | 1,491 | 886 | 3,057 |
| Other flatfish | 304 | 605 | 262 | 53 | 320 | 7 | 20 | 6 | 2 | 15 | 159 |
| Other fisheries | 653 | 826 | 1,353 | 1,244 | 880 | 725 | 340 | 407 | 1,130 | 903 | 846 |
| Total lrom | 36,462 | 44,595 | 36,936 | 32,091 | 32,205 | 29,208 | 24,553 | 21,021 | 27,375 | 24,997 | 30,944 |
| other fisheries |  |  |  |  |  |  |  |  |  |  |  |

Table 1.34 Bycatch estimates of prohibited species caught in the BSAI directed pollock fishery, 19972012 based on then AKFIN (NMFS Regional Office) reports from observers. Herring and halibut units are in $t$, all others represent numbers of individuals caught. Preliminary 2012 data are through October 31 ${ }^{\text {st }}, 2012$.

| Year | Bairdi Crab | Blue <br> King <br> Crab | Chinook Salmon | Golden King Crab | Halibut catch | Halibut <br> Mort | Herring | Non-ChinookSalmon | $\begin{array}{lr}\text { Other } \\ \text { Oing } \\ \text { Opilio Crab } & \text { Crab }\end{array}$ |  | Red <br> King Crab |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 1991 | 1,398,107 |  | 39,054 |  | 2,156 |  | 3,159 | 28,709 | 4,380,023 | 33,346 | 17,777 |
| 1992 | 1,500,765 |  | 33,672 |  | 2,220 |  | 647 | 40,187 | 4,569,662 | 20,385 | 43,874 |
| 1993 | 1,649,103 |  | 36,619 |  | 1,326 |  | 527 | 241,980 | 738,259 | 1,926 | 58,140 |
| 1994 | 371,214 |  | 31,890 |  | 963 | 689 | 1,627 | 92,011 | 811,734 | 514 | 42,361 |
| 1995 | 153,993 |  | 13,403 |  | 492 | 397 | 905 | 17,755 | 206,651 | 941 | 4,644 |
| 1996 | 89,416 |  | 55,472 |  | 382 | 321 | 1,242 | 77,174 | 63,398 | 215 | 5,934 |
| 1997 | 17,046 |  | 44,320 |  | 257 | 200 | 1,135 | 65,415 | 216,152 | 393 | 137 |
| 1998 | 57,037 |  | 51,244 |  | 353 | 278 | 801 | 60,677 | 123,401 | 5,093 | 14,287 |
| 1999 | 2,397 |  | 10,381 |  | 154 | 125 | 800 | 44,610 | 15,830 | 7 | 91 |
| 2000 | 1,485 |  | 4,242 |  | 110 | 91 | 483 | 56,867 | 6,481 | 121 |  |
| 2001 | 5,061 |  | 30,937 |  | 243 | 200 | 225 | 53,904 | 5,653 | 5,139 | 106 |
| 2002 | 2,113 |  | 32,402 |  | 199 | 168 | 109 | 77,178 | 2,698 | 194 | 17 |
| 2003 | 733 | 9 | 43,021 | 0 | 113 | 96 | 909 | 180,782 | 609 |  | 52 |
| 2004 | 1,189 | 4 | 51,700 | 2 | 109 | 93 | 1,104 | 440,477 | 743 |  | 27 |
| 2005 | 659 | 0 | 67,319 | 1 | 147 | 113 | 610 | 704,569 | 2,300 |  | 0 |
| 2006 | 1,666 | 0 | 82,596 | 3 | 156 | 122 | 436 | 309,642 | 2,947 |  | 203 |
| 2007 | 1,519 | 0 | 122,262 | 3 | 358 | 290 | 354 | 93,167 | 3,214 |  | 8 |
| 2008 | 8,888 | 8 | 21,358 | 33 | 425 | 333 | 128 | 15,420 | 9,573 |  | 576 |
| 2009 | 6,113 | 20 | 12,568 | 0 | 598 | 459 | 65 | 46,777 | 7,425 |  | 1,137 |
| 2010 | 13,531 | 29 | 9,796 | 0 | 355 | 272 | 351 | 13,806 | 9,439 |  | 1,009 |
| 2011 | 10,319 | 20 | 25,499 | 0 | 509 | 382 | 377 | 193,555 | 6,332 |  | 577 |
| 2012 | 3,650 | 0 | 10,157 | 0 | 456 | 369 | 2,357 | 21,945 | 16,508 |  | 292 |

Figures


Figure 1.1. Alaska pollock catch estimates from the Eastern Bering Sea, Aleutian Islands, and Bogoslof Island regions, 1964-2012. The 2012 value is based on expected totals for the year.


Figure 1.2. Pollock catch distribution 2010-2012, January - May on the EBS shelf. Line delineates catcher-vessel operational area (CVOA). The column height represents relative removal on the same scale in all years.


Figure 1.3. Estimate of EBS pollock catch numbers by sex for the "A season" (January-May) and for the entire annual fishery, 1991-2012.


Figure 1.4. Pollock catch distribution during June - December, 2010-2012. The line delineates the catcher-vessel operational area (CVOA) and the height of the bars represents relative removal on the same scale between years. Note that since 2011 the observer coverage increased to $100 \%$ for all pollock vessels (for salmon bycatch monitoring) consequently the relative magnitude of the catch increase in the CVOA is affected (catcher-vessels previously had about $50 \%$ of their catch occur with observers on board).


Figure 1.5. Monthly NMFS observer data on the length frequency of EBS pollock, 2010-2012.


Figure 1.6. Weekly mean nominal pollock catch (kg) per hour towed for the EBS pollock fishery comparing 2011 with 2012. Note that by mid-September most of the larger boats had finished and that this is reflected in the drop in catch rates then.


Figure 1.7. EBS pollock fishery estimated catch-at-age data (in number) for 1991-2012 (2012 data are preliminary). Age 10 represents pollock age 10 and older. The 2006 year-class is highlighted with red shading.


Figure 1.8. Bottom-trawl survey biomass estimates with approximate $95 \%$ confidence bounds (based on sampling error) for EBS pollock, 1982-2012. These estimates include the northern strata except for 1982-84, and 1986.


Figure 1.9. Area-weighted bottom (lower lines) and surface (upper lines) temperatures for the Bering Sea and mean values from the NMFS summer bottom-trawl surveys (1982-2012).


Figure 1.10. EBS pollock CPUE (shades = relative kg /hectare) and bottom temperature isotherms of $0^{\circ}, 2^{\circ}$, and $4^{\circ}$ Celsius from summer bottom-trawl surveys, 2005-2012.


Figure 1.11. Pollock abundance levels by age and year as estimated directly from the NMFS bottomtrawl surveys (1989-2012). The 2006 and 2008 year-classes are shaded differently.


Figure 1.12. Evaluation of EBS pollock cohort abundances as observed for age 6 and older in the NMFS summer bottom trawl surveys. The bottom panel shows the raw log-abundances at age while the top panel shows the estimates of total mortality by cohort.


Figure 1.13. Acoustic-trawl survey relative abundances at length for EBS pollock, 2004-2012. Vertical scale is equal for all years and is relative to numbers of fish.


## Age

Figure 1.14. Time series of estimated numbers at age (millions) for EBS pollock from the AT surveys, 1991-2012. The differently shaded columns represent the 2008 cohort.


Figure 1.15. Time series of EBS pollock biomass estimates from the AT surveys, 1982-2012.


Figure 1.16. Acoustic-trawl and bottom trawl survey results for 2010 and 2012. Vertical lines represent biomass of pollock as observed in the different surveys ( $\mathrm{mt}=$ millions of t ).


Figure 1.17. Mean fishery body weight (kg) for EBS pollock assumed for the 2011 assessment and as revised using observer data for the current assessment.


Figure 1.18. Retrospective patterns of EBS pollock spawning in retrospective year for 2002-2012 showing the point estimates relative to the terminal year (top panel) and with approximate confidence bounds ( $\pm 2$ standard devations; bottom panel.


Figure 1.19. Retrospective ratios for point estimates of EBS pollock spawning biomass as a function of the number of the years in the model. The ratio represents the estimate from retrospective year divided by the terminal, 2012 estimate for each of the 2002-2012 model runs.


Figure 1.20. The impact of introducing new data to the assessment model on fishable biomass values, $F_{\text {msy }}$ rates, and ABC (bottom panel) for 2013 (key: fishery Catch, fishery Age, Bottomtrawl survey data, and $\mathbf{A}$ for $\mathbf{A c o u s t i c}$ trawl survey data.


Figure 1. 21. Three model configuration results of predicted EBS pollock numbers-at-age for catch and surveys as new data were added. Columns represent the data, lines represent model predictions. Shaded columns indicate data introduced in the current assessment. The top box are results without fitting any of the new age data (catch updated only), the middle box is with the addition of the fishery and bottom trawl survey age data and the bottom box is with all new data included.


Figure 1. 22. Selectivity at age estimates for the EBS pollock fishery, 1978-2012 including the estimates (front-most panel) used for the future yield considerations.

EBS pollock fishery age composition data


Figure 1.23. Model fit (dots) to the EBS pollock fishery proportion-at-age data (columns; 1964-2012). The 2011 and 2012 (preliminary) data are new to this year's assessment. Colors coincide with cohorts progressing through time.


Figure 1.24. Japanese fishery CPUE (Low and Ikeda, 1980) model fits for EBS pollock, 1963-1976.


Figure 1.25. Model results of predicted EBS pollock biomass following the AVO index (with and without inclusion of the index. Error bars represent assumed $95 \%$ confidence bounds.



Figure 1.26. Estimates of bottom-trawl survey numbers (millions age 2 and older, lower panel) and selectivity-at-age (with maximum value equal to 1.0 ) over time (upper panel) for EBS pollock, 1982-2012.

EBS pollock survey age composition data


Figure 1.27. Model fit (dots) to the bottom trawl survey proportion-at-age composition data (columns) for EBS pollock. Colors correspond to cohorts over time. Data new to this assessment are from 2012.


Figure 1.28. Estimates of AT survey numbers (lower panel) and selectivity-at-age (with mean value equal to 1.0) over time (upper panel) for EBS pollock age 2 and older, 1979-2012. Note that the 1979 observed value $(=46,314)$ is off the scale of the figure.

AT survey age composition fits



Figure 1.29. Fit to the AT survey EBS pollock age composition data (proportion of numbers) and age 1 index (bottom panel; log-scale). Lines represent model predictions while the vertical columns and dots represent data. The 2012 age composition data were based on using the bottom trawl age-length keys.


Figure 1.30. Cumulative probability estimates of 2012 and 2013 stock sizes relative to $B_{0}$ for EBS pollock assuming a catch of $1,200 \mathrm{kt}$. Note that these only reflect the estimation uncertainty of stock status (as opposed to the probability of finding the stock below $20 \%$ of $B_{0}$ from a future assessment model).


Figure 1.31. Projected begin-year EBS pollock model biomass-at-age as estimated for 2012 in the 2011 assessment and as estimated in the current model for ages 3-10+.


Figure 1.32. Estimated spawning exploitation rate (defined as the annual percent removals of spawning females due to the fishery) and average fishing mortality (ages 3-8) for EBS pollock, 1977-2012. Error bars represent two standard deviations from the estimates.

## Age

|  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1964 | 0.01 | 0.04 | 0.20 | 0.21 | 0.21 | 0.20 | 0.19 | 0.18 | 0.17 |
| 1965 | 0.01 | 0.05 | 0.20 | 0.19 | 0.18 | 0.16 | 0.16 | 0.15 | 0.14 |
| 1966 | 0.01 | 0.05 | 0.17 | 0.17 | 0.16 | 0.15 | 0.14 | 0.13 | 0.13 |
| 1967 | 0.03 | 0.16 | 0.24 | 0.24 | 0.24 | 0.23 | 0.23 | 0.23 | 0.22 |
| 1968 | 0.03 | 0.13 | 0.27 | 0.26 | 0.24 | 0.23 | 0.23 | 0.22 | 0.22 |
| 1969 | 0.03 | 0.18 | 0.23 | 0.22 | 0.21 | 0.21 | 0.21 | 0.20 | 0.22 |
| 1970 | 0.07 | 0.24 | 0.24 | 0.23 | 0.23 | 0.26 | 0.26 | 0.26 | 0.42 |
| 1971 | 0.07 | 0.28 | 0.32 | 0.35 | 0.34 | 0.34 | 0.34 | 0.34 | 0.67 |
| 1972 | 0.13 | 0.39 | 0.40 | 0.39 | 0.39 | 0.39 | 0.39 | 0.41 | 0.65 |
| 1973 | 0.17 | 0.45 | 0.53 | 0.53 | 0.52 | 0.52 | 0.52 | 0.52 | 0.68 |
| 1974 | 0.23 | 0.58 | 0.57 | 0.56 | 0.55 | 0.55 | 0.56 | 0.56 | 0.59 |
| 1975 | 0.11 | 0.54 | 0.50 | 0.48 | 0.47 | 0.46 | 0.46 | 0.46 | 0.53 |
| 1976 | 0.09 | 0.39 | 0.47 | 0.45 | 0.44 | 0.43 | 0.42 | 0.42 | 0.44 |
| 1977 | 0.11 | 0.29 | 0.36 | 0.37 | 0.37 | 0.36 | 0.36 | 0.36 | 0.35 |
| 1978 | 0.10 | 0.31 | 0.36 | 0.37 | 0.36 | 0.37 | 0.37 | 0.37 | 0.37 |
| 1979 | 0.06 | 0.27 | 0.32 | 0.40 | 0.40 | 0.39 | 0.40 | 0.40 | 0.40 |
| 1980 | 0.02 | 0.16 | 0.32 | 0.38 | 0.41 | 0.40 | 0.39 | 0.39 | 0.39 |
| 1981 | 0.01 | 0.08 | 0.20 | 0.31 | 0.31 | 0.30 | 0.30 | 0.30 | 0.33 |
| 1982 | 0.00 | 0.03 | 0.12 | 0.20 | 0.21 | 0.21 | 0.22 | 0.22 | 0.28 |
| 1983 | 0.00 | 0.03 | 0.09 | 0.14 | 0.19 | 0.19 | 0.19 | 0.21 | 0.31 |
| 1984 | 0.00 | 0.03 | 0.08 | 0.17 | 0.16 | 0.18 | 0.19 | 0.21 | 0.32 |
| 1985 | 0.01 | 0.03 | 0.06 | 0.12 | 0.20 | 0.19 | 0.20 | 0.22 | 0.34 |
| 1986 | 0.01 | 0.03 | 0.08 | 0.11 | 0.18 | 0.18 | 0.16 | 0.20 | 0.29 |
| 1987 | 0.00 | 0.02 | 0.04 | 0.07 | 0.12 | 0.11 | 0.17 | 0.17 | 0.21 |
| 1988 | 0.01 | 0.08 | 0.08 | 0.14 | 0.14 | 0.20 | 0.18 | 0.19 | 0.18 |
| 1989 | 0.01 | 0.04 | 0.09 | 0.12 | 0.16 | 0.22 | 0.21 | 0.20 | 0.19 |
| 1990 | 0.01 | 0.04 | 0.17 | 0.23 | 0.25 | 0.27 | 0.28 | 0.27 | 0.25 |
| 1991 | 0.01 | 0.03 | 0.12 | 0.21 | 0.25 | 0.34 | 0.28 | 0.33 | 0.32 |
| 1992 | 0.01 | 0.07 | 0.10 | 0.18 | 0.30 | 0.39 | 0.45 | 0.48 | 0.48 |
| 1993 | 0.00 | 0.04 | 0.16 | 0.13 | 0.21 | 0.27 | 0.27 | 0.27 | 0.26 |
| 1994 | 0.00 | 0.01 | 0.09 | 0.24 | 0.22 | 0.22 | 0.21 | 0.21 | 0.20 |
| 1995 | 0.00 | 0.01 | 0.04 | 0.15 | 0.31 | 0.27 | 0.25 | 0.23 | 0.22 |
| 1996 | 0.00 | 0.02 | 0.02 | 0.08 | 0.26 | 0.40 | 0.37 | 0.34 | 0.31 |
| 1997 | 0.01 | 0.02 | 0.04 | 0.09 | 0.18 | 0.30 | 0.32 | 0.36 | 0.33 |
| 1998 | 0.00 | 0.02 | 0.04 | 0.09 | 0.19 | 0.20 | 0.27 | 0.31 | 0.31 |
| 1999 | 0.00 | 0.04 | 0.06 | 0.09 | 0.14 | 0.21 | 0.21 | 0.20 | 0.19 |
| 2000 | 0.00 | 0.02 | 0.09 | 0.14 | 0.14 | 0.24 | 0.28 | 0.23 | 0.21 |
| 2001 | 0.00 | 0.02 | 0.07 | 0.19 | 0.28 | 0.27 | 0.27 | 0.25 | 0.24 |
| 2002 | 0.00 | 0.02 | 0.08 | 0.18 | 0.35 | 0.34 | 0.33 | 0.31 | 0.27 |
| 2003 | 0.00 | 0.05 | 0.08 | 0.21 | 0.33 | 0.37 | 0.35 | 0.31 | 0.26 |
| 2004 | 0.00 | 0.02 | 0.16 | 0.18 | 0.24 | 0.32 | 0.31 | 0.28 | 0.26 |
| 2005 | 0.00 | 0.02 | 0.11 | 0.29 | 0.31 | 0.28 | 0.25 | 0.24 | 0.21 |
| 2006 | 0.00 | 0.05 | 0.13 | 0.27 | 0.37 | 0.35 | 0.33 | 0.30 | 0.27 |
| 2007 | 0.00 | 0.05 | 0.13 | 0.27 | 0.41 | 0.37 | 0.33 | 0.31 | 0.29 |
| 2008 | 0.00 | 0.03 | 0.12 | 0.27 | 0.43 | 0.41 | 0.37 | 0.35 | 0.32 |
| 2009 | 0.00 | 0.03 | 0.12 | 0.23 | 0.33 | 0.33 | 0.32 | 0.32 | 0.34 |
| 2010 | 0.00 | 0.02 | 0.15 | 0.22 | 0.24 | 0.27 | 0.28 | 0.28 | 0.28 |
| 2011 | 0.00 | 0.02 | 0.09 | 0.37 | 0.49 | 0.46 | 0.43 | 0.41 | 0.39 |
| 2012 | 0.00 | 0.02 | 0.08 | 0.28 | 0.43 | 0.77 | 0.76 | 0.74 | 0.81 |

Figure 1.33. Estimated instantaneous age-specific fishing mortality rates for EBS pollock, 1964-2012. (note that these are the continuous form of fishing mortality rate as specified in Eq. 1).


Figure 1.34. Estimated EBS pollock female spawning biomass and approximate $95 \%$ confidence intervals (filled area and dashed lines) under near term projections assuming 2013 catch specifications and constant F's (from that 2013 catch) for subsequent years. Horizontal straight line represents $B_{m s y}$ estimate.


Figure 1.35. Comparison of the current assessment results with past assessments of begin-year EBS age-3+ pollock biomass, 1978-2013.


Figure 1.36. Estimated spawning biomass relative to annually estimated $F_{\text {MSY }}$ values and fishing mortality rates for EBS pollock, 1977-2012. Note that the control rules for OFL and $A B C$ are designed for setting specifications in future years.


Figure 1.37. Time series of estimated age-1 abundance (relative numbers) for EBS pollock from the AT surveys (diamonds) and from the BTS surveys (bullets). Both survey indices have been rescaled to have a mean value of 1.0. Horizontal axis is by year class (hence 2011 index is age 1 pollock observed in 2012 surveys).


Figure 1.38. Year-class strengths by year (as age-1 recruits, upper panel) and relative to female spawning biomass (thousands of tons, lower panel) for EBS pollock. Labels on points correspond to year classes labels (measured as one-year olds). Solid line in upper panel represents the mean age-1 recruitment for all years since 1964 (1963-2011 year classes). Vertical lines in lower panel indicate $B_{m s y}$ and $B_{40 \%}$ level, curve represents fitted stockrecruitment relationship with dashed lines representing approximate lower and upper $95 \%$ confidence limits about the estimated curve. The larger red dot is the 2011 (terminal) estimate.


Figure 1.39. Projected EBS Tier $\mathbf{3}$ pollock yield (top) and female spawning biomass (bottom) relative to the long-term expected values under $F_{35 \%}$ and $F_{40 \%}$ (horizontal lines). $B_{40 \%}$ is computed from average recruitment from 1978-2011. Future harvest rates follow the guidelines specified under Tier 3 Scenarios 1 and $2, F_{A B C}=F_{40 \%}$. Note that this projection method is provided only for reference purposes, the SSC has determined that a Tier 1 approach is recommended for this stock.


Figure 1.40. Weight-specific age-class diversity of the spawning biomass for EBS pollock, 19902012. This calculation is $D=\exp \left(-\sum p_{i} \ln p_{i}\right)$ where $p_{i}=w_{i} \phi_{i} N_{i}\left(\sum_{i=1}^{n} w_{i} \phi_{i} N_{i}\right)^{-1}$ for each year

## Model details

Below is extracted from the assessment document with equation numbers added (and some updated equations due to software changes in Microsoft word over the years).

We used an explicit age-structured model with the standard catch equation as the operational population dynamics model (e.g., Fournier and Archibald 1982, Hilborn and Walters 1992, Schnute and Richards 1995, McAllister and Ianelli 1997). Catch in numbers at age in year $t\left(C_{t, a}\right)$ and total catch biomass $\left(Y_{t}\right)$ were

$$
\begin{array}{lr}
C_{t, a}=\frac{F_{t, a}}{Z_{t, a}}\left(1-e^{-Z_{a, t}}\right) N_{t, a}, & 1 \leq t \leq T \quad 1 \leq a \leq A \\
N_{t+1, a+1}=N_{t, a} e^{-Z_{t, a}} & 1 \leq t \leq T \quad 1 \leq a<A \\
N_{t+1, A}=N_{t, A-1} e^{-Z_{t, A-1}}+N_{t, A} e^{-Z_{t, A}} & 1 \leq t \leq T \\
Z_{t, a}=F_{t, a}+M_{t, a} &  \tag{Eq.1}\\
C_{t .}=\sum_{a=1}^{A} C_{t, a} & \\
p_{t, a}=C_{t, a} / C_{t .} \\
Y_{t}=\sum_{a=1}^{A} w_{a} C_{t, a}, \text { and } &
\end{array}
$$

where
$T$ is the number of years,
A is the number of age classes in the population,
$N_{t, a}$ is the number of fish age $a$ in year $t$,
$C_{t, a}$ is the catch of age class $a$ in year $t$,
$p_{t, a}$ is the proportion of the total catch in year $t$, that is in age class $a$,
$C_{t}$. is the total catch in year $t$,
$w_{a}$ is the mean body weight ( kg ) of fish in age class $a$,
$Y_{t}$. is the total yield biomass in year $t$,
$F_{t, a}$ is the instantaneous fishing mortality for age class $a$, in year $t$,
$M_{t a}$ is the instantaneous natural mortality in year $t$ for age class $a$, and
$Z_{t a}$ is the instantaneous total mortality for age class $a$, in year $t$.
We reduced the freedom of the parameters listed above by restricting the variation in the fishing mortality rates $\left(F_{t, a}\right)$ following Butterworth et al. (2003) by assuming that

$$
\begin{array}{ll}
F_{t, a}=s_{t, a} \mu^{f} e^{\varepsilon_{t}} & \varepsilon_{t} \sim N\left(0, \sigma_{E}^{2}\right) . \\
S_{t+1, a}=s_{t, a} e^{\gamma_{t}} & \gamma_{t} \sim N\left(0, \sigma_{s}^{2}\right) . \tag{Eq.3}
\end{array}
$$

where $s_{t, a}$ is the selectivity for age class $a$ in year $t$, and $\mu$ is the median fishing mortality rate over time.
If the selectivities $\left(s_{t, a}\right)$ are constant over time then fishing mortality rate decomposes into an age component and a year component. This assumption creates what is known as a separable model. If
selectivity in fact changes over time, then the separable model can mask important changes in fish abundance. In our analyses, we constrain the variance term $\sigma_{s}^{2}$ to allow selectivity to change slowly over time-thus improving our ability to estimate $\gamma_{t, a}$. Also, to provide regularity in the age component, we placed a curvature penalty on the selectivity coefficients using the squared second-differences. We selected a simple random walk as our time-series effect on these quantities. Prior assumptions about the relative variance quantities were made. For example, we assume that the variance of transient effects (e.g., $\sigma_{E}^{2}$ ) is large to fit the catch biomass precisely. Perhaps the largest difference between the model presented here and those used for other groundfish stocks is in how we model "selectivity" of both the fishery and survey gear types. The approach taken here assumes that large differences between a selectivity coefficient in a given year for a given age should not vary too much from adjacent years and ages (unless the data suggest otherwise, e.g., Lauth et al. 2004). The magnitude of these changes is determined by the prior variances as presented above. For the application here selectivity is allowed to change in each year (previously selectivity was modeled in 2-year blocks were used). The basis for this model specification was to better account for the high levels of sampling and to avoid over-simplifying real changes in age-specific fishing mortality. The "mean" selectivity going forward for projections and ABC deliberations is the simple mean of the estimates from 2004-2009.

Bottom-trawl survey selectivity was set to be asymptotic yet retain the properties desired for the characteristics of this gear. Namely, that the function should allow flexibility in selecting age 1 pollock over time. The functional form of this selectivity is:

$$
\begin{array}{ll}
s_{t, a}=\left[1+e^{-\alpha_{t}\left(a-\beta_{t}\right)}\right]^{-1}, a>1 \\
s_{t, a}=\mu_{s} e^{\delta_{t}}, & a=1  \tag{Eq.4}\\
\alpha_{t}=\bar{\alpha} e^{\delta_{t}} & \\
\beta_{t}=\bar{\beta} e^{\delta_{t}^{\beta_{t}}} &
\end{array}
$$

where the parameters of the selectivity function follow a random walk process as in Dorn et al. (2000):

$$
\begin{align*}
& \delta_{t}^{\mu}-\delta_{t+1}^{\mu} \sim N\left(0, \sigma_{\delta^{\mu}}^{2}\right) \\
& \delta_{t}^{\alpha}-\delta_{t+1}^{\alpha} \sim N\left(0, \sigma_{\delta^{\alpha}}^{\alpha}\right) .  \tag{Eq.5}\\
& \delta_{t}^{\beta}-\delta_{t+1}^{\beta} \sim N\left(0, \sigma_{\delta^{\beta}}^{\beta}\right)
\end{align*}
$$

$\qquad$

The parameters to be estimated in this part of the model are thus the $\bar{\alpha}, \bar{\beta}, \delta_{t}^{\mu}, \delta_{t}^{\alpha}$, and $\delta_{t}^{\beta}$ for $t=1982$, 1983,...2010. The variance terms for these process-error parameters were specified to be 0.04 .

In 2008 the AT survey selectivity approach was modified. As an option, the age one pollock observed in this trawl can be treated as an index and are not considered part of the age composition (which then ranges from age 2-15). This was done to improve some interaction with the flexible selectivity smoother that is used for this gear and was compared. Additionally, the annual specification of input sigmas was allowed for the AT data. This allowed better flexibility for this survey that occurs at irregular intervals and reduces the number of parameters estimated (previously, the random walk penalty occurred for every year regardless of whether a survey occurred).

A diagnostic approach to evaluate input variance specifications (via sample size under multinomial assumptions) was added in this assessment. This method uses residuals from mean ages together with the concept that the sample variance of mean age (from a given annual data set) varies inversely with input sample size. It can be shown that for a given set of input proportions at age (up to the maximum age $A$ )
$p_{a, i}$ and sample size $N_{i}$ for year $i$, an adjustment factor $f$ for input sample size can be computed when compared with the assessment model predicted proportions at age ( $\hat{p}_{i j}$ ) and model predicted mean age ( $\widehat{\bar{a}}$ ):

$$
\begin{align*}
& f=\operatorname{var}\left(r_{i}^{a} \sqrt{\frac{N_{i}}{s_{i}}}\right)^{-1} \\
& r_{i}^{a}=\bar{a}_{i}-\hat{\bar{a}}_{i} \\
& s_{i}=\left[\sum_{j}^{A} \bar{a}_{i}^{2} p_{i j}-\hat{\bar{a}}_{i}^{2}\right]^{0.5} \tag{Eq.6}
\end{align*}
$$

where $r_{i}^{a}$ is the residual of mean age and

$$
\begin{equation*}
\hat{\bar{a}}_{i}=\sum_{j}^{A} j \hat{p}_{i j}, \quad \bar{a}_{i}=\sum_{j}^{A} j p_{i j} \tag{Eq.7}
\end{equation*}
$$

For this assessment, we use the above relationship as a diagnostic for evaluating input sample sizes by comparing model predicted mean ages with "observed" mean ages and the implied 95\% confidence bands. This method provided support for modifying the frequency of allowing selectivity changes (e.g., Fig. 1.41).

## Recruitment

In these analyses, recruitment $\left(R_{t}\right)$ represents numbers of age- 1 individuals modeled as a stochastic function of spawning stock biomass. A further modification made in Ianelli et al. (1998) was to have an environmental component to account for the differential survival attributed to larval drift (e.g., Wespestad et al. 2000). ( $\kappa_{t}$ ):

$$
\begin{equation*}
R_{t}=f\left(B_{t-1}\right) e^{\kappa_{t}+\tau_{t}}, \quad \tau_{t} \sim N\left(0, \sigma_{R}^{2}\right) \tag{Eq.8}
\end{equation*}
$$

with mature spawning biomass during year $t$ was defined as:

$$
\begin{equation*}
B_{t}=\sum_{a=1}^{15} w_{a} \phi_{a} N_{a t} \tag{Eq.9}
\end{equation*}
$$

and $\phi_{a}$, the proportion of mature females at age is as shown in the sub-section titled "Natural mortality and maturity at age" under "Parameters estimated independently" above.

A reparameterized form for the stock-recruitment relationship following Francis (1992) was used. For the optional Beverton-Holt form (the Ricker form presented in Eq. 12 was adopted for this assessment) we have:

$$
\begin{equation*}
R_{t}=f\left(B_{t-1}\right)=\frac{B_{t-1} e^{\varepsilon_{t}}}{\alpha+\beta B_{t-1}} \tag{Eq.10}
\end{equation*}
$$

where
$R_{t} \quad$ is recruitment at age 1 in year $t$,
$B_{t}$ is the biomass of mature spawning females in year $t$,
$\varepsilon_{t} \quad$ is the "recruitment anomaly" for year $t$,
$\alpha, \beta \quad$ are stock-recruitment function parameters.
Values for the stock-recruitment function parameters $\alpha$ and $\beta$ are calculated from the values of $R_{0}$ (the number of 0 -year-olds in the absence of exploitation and recruitment variability) and the "steepness" of the stock-recruit relationship ( $h$ ). The "steepness" is the fraction of $R_{0}$ to be expected (in the absence of recruitment variability) when the mature biomass is reduced to $20 \%$ of its pristine level (Francis 1992), so that:

$$
\begin{align*}
& \alpha=\tilde{B}_{0} \frac{1-h}{4 h} \\
& \beta=\frac{5 h-1}{4 h R_{0}} . \tag{Eq.11}
\end{align*}
$$

where
$\tilde{B}_{0} \quad$ is the total egg production (or proxy, e.g., female spawning biomass) in the absence of exploitation (and recruitment variability) expressed as a fraction of $R_{0}$.

Some interpretation and further explanation follows. For steepness equal 0.2 , then recruits are a linear function of spawning biomass (implying no surplus production). For steepness equal to 1.0, then recruitment is constant for all levels of spawning stock size. A value of $h=0.9$ implies that at $20 \%$ of the unfished spawning stock size will result in an expected value of $90 \%$ unfished recruitment level. Steepness of 0.7 is a commonly assumed default value for the Beverton-Holt form (e.g., Kimura 1988). The prior distribution for steepness used a beta distribution as in Ianelli et al. (2001) is shown in Fig. 1.42. The prior on steepness was specified to be a symmetric form of the Beta distribution with alpha=beta=13.06 implying a prior mean of 0.6 and CV of $12.8 \%$ (implying that there is about $10 \%$ chance that the steepness is greater than 0.7 ). This conservative prior is consistent with previous years’ application and serves to constrain the stock-recruitment curve from favoring steep slopes (uninformative priors result in $F_{m s y}$ values near an $F_{S P R}$ of about $F_{18 \%}$, a value considerably higher than the default proxy of $F_{35 \%}$ ). The residual pattern for the post-1977 recruits used in fitting the curve with a more diffuse prior resulted in all estimated recruits being below the curve for stock sizes less than $B_{\text {msy }}$ (except for the 1978 year class). We believe this to be driven primarily by the apparent negative-slope for recruits relative to stock sizes above $B_{m s y}$ and as such, provides a potentially unrealistic estimate of productivity at low stock sizes. This prior was elicited from the rationale that residuals should be reasonably balanced throughout the range of spawning stock sizes. Whereas this is somewhat circular (i.e., using "data" for prior elicitation), the point here is that residual patterns (typically ignored in these types of models) are being qualitatively considered.

The value of $\sigma_{R}$ was fixed at 0.9. This choice was selected to be larger than the output stock-recruitment variability ( $\sim 0.67$ ) since proper estimation of this quantity would require integration over the randomeffects (inter-annual recruitment variability). In addition, retaining the uncertainty at a somewhat higher level increases the uncertainty on the stock-recruitment curve estimation that in turn propagates through to the pdf of $F_{m s y}$ and hence provides a greater buffer between yield at $F_{m s y}$ (the OFL) and maximum permissible ABC. Investigations on the choice of $\sigma_{R}$ and the interaction with priors and stockrecruitment assumptions/estimation approaches are planned with a view towards how judge "reliability" of $F_{m s y}$ and the PDF of that quantity (needed for Tier 1 management).
To have the critical value for the stock-recruitment function (steepness, $h$ ) on the same scale for the Ricker model, we begin with the parameterization of Kimura (1990):

$$
\begin{equation*}
R_{t}=f\left(B_{t-1}\right)=B_{t-1} e^{a\left(1-B_{t-1} / \varphi_{0} R_{0}\right)} / \varphi_{0} . \tag{Eq.12}
\end{equation*}
$$

It can be shown that the Ricker parameter $a$ maps to steepness as:

$$
\begin{equation*}
h=\frac{e^{a}}{e^{a}+4} . \tag{Eq.13}
\end{equation*}
$$

so that the prior used on $h$ can be implemented in both the Ricker and Beverton-Holt stock-recruitment forms. Here the term $\varphi_{0}$ represents the equilibrium unfished spawning biomass per-recruit.

## Diagnostics

In 2006 a "replay" feature was added where the time series of recruitment estimates from a particular model is used to compute the subsequent abundance expectation had no fishing occurred. These recruitments are adjusted from the original estimates by the ratio of the expected recruitment given spawning biomass (with and without fishing) and the estimated stock-recruitment curve. I.e., the recruitment under no fishing is modified as:

$$
\begin{equation*}
R_{t}^{\prime}=\hat{R}_{t} \frac{f\left(S_{t}^{\prime}\right)}{f\left(\hat{S}_{t}\right)} \tag{Eq.14}
\end{equation*}
$$

where $\hat{R}_{t}$ is the original recruitment estimate in year $t$ with $f\left(S_{t}^{\prime}\right)$ and $f\left(\widehat{S}_{t}\right)$ representing the stockrecruitment function given spawning biomass under no fishing and under the fishing scenario, respectively.
The assessment model code allows retrospective analyses (e.g., Parma 1993, and Ianelli and Fournier 1998). This was designed to assist in specifying how spawning biomass patterns (and uncertainty) have changed due to new data. The retrospective approach simply uses the current model to evaluate how it may change over time with the addition of new data based on the evolution of data collected over the past 14 years.

## Parameter estimation

The objective function was simply the sum of the negative log-likelihood function and logs of the prior distributions. To fit large numbers of parameters in nonlinear models it is useful to be able to estimate certain parameters in different stages. The ability to estimate stages is also important in using robust likelihood functions since it is often undesirable to use robust objective functions when models are far from a solution. Consequently, in the early stages of estimation we use the following log-likelihood function for the survey and fishery catch at age data (in numbers):

$$
\begin{align*}
& f=n \cdot \sum_{a, t} p_{a t} \ln \left(\hat{p}_{a t}\right), \\
& p_{a t}=\frac{O_{a t}}{\sum_{a} O_{a t},} \quad \\
& \hat{C}=C \cdot \hat{p}_{a t}=\frac{\hat{C}_{a s e i n g}}{\sum_{a} \hat{C}_{a t}} \\
& E_{a g e i n g}=\left(\begin{array}{cccc}
b_{1,1} & b_{1,2} & b_{1,3} & \cdots \\
b_{2,1,15} & b_{2,2} & & \\
b_{3,1} & & \ddots & \\
\vdots & & & \ddots \\
b_{15,2} & & & b_{15,15}
\end{array}\right), \tag{Eq.15}
\end{align*}
$$

where $A$, and $T$, represent the number of age classes and years, respectively, $n$ is the sample size, and
$O_{a t}, \hat{C}_{a t}$ represent the observed and predicted numbers at age in the catch. The elements $b_{i, j}$ represent ageing mis-classification proportions are based on independent agreement rates between otolith age readers. For the models presented this year, the option for including aging errors was re-evaluated.
Sample size values were revised and are shown in the main document. Strictly speaking, the amount of data collected for this fishery indicates higher values might be warranted. However, the standard multinomial sampling process is not robust to violations of assumptions (Fournier et al. 1990). Consequently, as the model fit approached a solution, we invoke a robust likelihood function which fit proportions at age as:

$$
\begin{equation*}
\prod_{a=1}^{\mathrm{A}} \prod_{t=1}^{T} \frac{\left(\exp \left\{-\frac{\left(p_{t, a}-\hat{p}_{t, a}\right)^{2}}{2\left(\eta_{t, a}+0.1 / T\right) \tau^{2}}\right\}+0.01\right)}{\sqrt{2 \pi\left(\eta_{t, a}+0.1 / T\right) \tau}} \tag{Eq.16}
\end{equation*}
$$

Taking the logarithm we obtain the log-likelihood function for the age composition data:

$$
\begin{align*}
& -1 / 2 \sum_{a=1}^{A} \sum_{t=1}^{T} \log _{e}\left(2 \pi\left(\eta_{t, a}+0.1 / T\right)\right)-\sum_{a=1}^{A} T \log _{e}(\tau) \\
& +\sum_{a=1}^{A} \sum_{t=1}^{T} \log _{e}\left[\exp \left\{-\frac{\left(p_{t, a}-\hat{p}_{t, a}\right)^{2}}{2\left(\eta_{t, a}+0.1 / T\right) \tau^{2}}\right\}+0.01\right] \tag{Eq.17}
\end{align*}
$$

where $\eta_{t, a}=p_{t, a}\left(1-p_{t, a}\right)$

$$
\text { and } \quad \tau^{2}=1 / n
$$

gives the variance for $p_{t, a}$

$$
\left(\eta_{t, a}+0.1 / T\right) \tau^{2}
$$

Completing the estimation in this fashion reduces the model sensitivity to data that would otherwise be considered "outliers."

Within the model, predicted survey abundance accounted for within-year mortality since surveys occur during the middle of the year. As in previous years, we assumed that removals by the survey were insignificant (i.e., the mortality of pollock caused by the survey was considered insignificant). Consequently, a set of analogous catchability and selectivity terms were estimated for fitting the survey observations as:

$$
\begin{equation*}
\hat{N}_{t, a}^{s}=e^{-0.5 Z_{t, a}} N_{t, a} q_{t}^{s} s_{t, a}^{s} \tag{Eq.18}
\end{equation*}
$$

where the superscript $s$ indexes the type of survey (AT or BTS).

$$
\begin{equation*}
\hat{N}_{t, a}^{s}=e^{-0.5 Z_{t, a}} w_{t, a} N_{t, a} q_{t}^{s} s_{t, a}^{s} \tag{Eq.19b}
\end{equation*}
$$

For the AVO index, the values for selectivity were assumed to be the same as for the AT survey and the mean weights at age over time was also assumed to be equal to the values estimated for the AT survey.
For these analyses we chose to keep survey catchabilities constant over time (though they are estimated separately for the AVO index and for the AT and bottom trawl surveys). The contribution to the negative log-likelihood function (ignoring constants) from the surveys is given by either the lognormal distribution:

$$
\begin{equation*}
\sum_{t}\left(\frac{\ln \left(A_{t}^{s} / \hat{N}_{t}^{s}\right)^{2}}{2 \sigma_{s, t}^{2}}\right) \tag{Eq.20}
\end{equation*}
$$

where $A_{t}^{s}$ is the total (numerical) abundance estimate with variance $\sigma_{s, t}^{2}$ from survey $s$ in year $t$ or optionally, the normal distribution is used:
$\sum_{t}\left(\frac{\left(A_{t}^{s}-\hat{N}_{t}^{s}\right)^{2}}{2 \sigma_{s, t}^{2}}\right)$.
The AT survey and AVO index is modeled using a lognormal distribution whereas for the BTS survey, a normal distribution was applied in fitting.

The contribution to the negative log-likelihood function for the observed total catches ( $O_{t}$ ) by the fishery is given by

$$
\begin{equation*}
\sum_{t}\left(\frac{\ln \left(O_{t} / \hat{C}_{t}\right)^{2}}{2 \sigma_{c, t}^{2}}\right) \tag{Eq.21}
\end{equation*}
$$

where $\sigma_{c, t}$ is pre-specified (set to 0.05 ) affecting the accuracy of the overall observed catch in biomass. Similarly, the contribution of prior distributions (in negative log-density) to the log-likelihood function include $\lambda_{\varepsilon} \sum_{t} \varepsilon_{t}^{2}+\lambda_{\gamma} \sum_{t, a} \gamma_{t, a}^{2}+\lambda_{\delta} \sum_{t} \delta_{t}^{2}$ where the size of the $\lambda$ 's represent prior assumptions about the variances of these random variables. Most of these parameters are associated with year-to-year and age specific deviations in selectivity coefficients. For a presentation of this type of Bayesian approach to modeling errors-in-variables, the reader is referred to Schnute (1994). To facilitate estimating such a large number of parameters, automatic differentiation software extended from Greiwank and Corliss (1991) and developed into C++ class libraries was used. This software provided the derivative calculations needed for finding the posterior mode via a quasi-Newton function minimization routine (e.g., Press et al. 1992). The model implementation language (ADModel Builder) gave simple and rapid access to these routines and provided the ability estimate the variance-covariance matrix for all dependent and independent parameters of interest.

The approach we use to solve for $F_{m s y}$ and related quantities (e.g., $B_{m s y}$, MSY) within a general integrated model context was shown in Ianelli et al. (2001). In 2007 this was modified to include uncertainty in weight-at-age as an explicit part of the uncertainty for $F_{\text {msy }}$ calculations. This involved estimating a vector of parameters ( $w_{i}^{\text {future }}$ ) on "future" mean weights for each age $i, i=(1,2, \ldots, 15)$, given actual observed mean and variances in weight-at-age over the period 1991-2010. The model simply computes the values of $\bar{w}_{i}, \sigma_{w_{i}}^{2}$ based on available data and (if this option is selected) estimates the parameters subject to the natural constraint:

$$
w_{i}^{\text {future }} \sim N\left(\bar{w}_{i}, \sigma_{w_{i}}^{2}\right)
$$

$\qquad$ (Eq. 22).

Note that this converges to the mean values over the time series of data (no other likelihood component within the model is affected by "future" mean weights-at-age) while retaining the natural uncertainty that
can propagate through estimates of $F_{m s y}$ uncertainty. This latter point is essentially a requirement of the Tier 1 categorization.

Tier 1 projections
Tier 1 projections were calculated two ways. First, for 2013 and 2014 ABC and OFL levels, the harmonic mean $F_{m s y}$ value was computed and the analogous harvest rate ( $\hat{u}_{H M}$ ) applied to the estimated geometric mean "fishable" biomass at $B_{m s y}$ :

$$
\begin{array}{ll}
A B C=B_{G M}^{\prime} \hat{u}_{H M} \zeta & \\
B_{G M}^{\prime}=e^{\ln \left(\hat{B}^{\prime}\right)-0.5 \sigma_{B}^{2}} \\
\hat{u}_{H M}=e^{\ln u_{m y}-0.5 \sigma_{\text {umy }}^{2}} &  \tag{Eq.23}\\
\zeta=\frac{B_{t} / B_{m s y}-0.05}{1-0.05} & B_{t}<B_{\text {msy }} \\
\zeta=1 & B_{t} \geq B_{m s y}
\end{array}
$$

where $\hat{B}^{\prime}$ is the point estimate of the "fishable biomass" defined as (for a given year)

$$
\begin{equation*}
\sum_{j=1}^{15} N_{j} s_{j} w_{j} \tag{Eq.24}
\end{equation*}
$$

with $N_{j}, s_{j}$ and $w_{j}$ the estimated population numbers (begin year), selectivity and weights-at-age $j$, respectively. $B_{m s y}$ and $B_{t}$ are the point estimates spawning biomass levels at equilibrium $F_{m s y}$ and in year $t$ (at time of spawning). For these projections, catch must be specified (or solved for if in the current year when $B_{t}<B_{m s y}$ ). For longer term projections a form of operating model (as has been presented for the evaluation of $B_{20 \%}$ ) with feedback (via future catch specifications) using the control rule and assessment model would be required. Refinements to this approach are underway and are planned for the future assessments.


Figure 1.41. Cumulative prior probability distribution of steepness based on the beta distribution with $\alpha$ and $\beta$ set to values which assume a mean and CV of 0.6 and 0.12 , respectively. This prior distribution implies that there is about $8 \%$ chance that the value for steepness is greater than 0.7. See text for discussion.
(This page intentionally left blank)


[^0]:    * Please refer to Ianelli et al. (2001) for a discussion on the interpretation of age-3+ biomass estimates.

[^1]:    *Assuming 2013 catch will be 1,200,00 t

