## CHAPTER 10

# Assessment of the Alaska Plaice stock in the Bering Sea and Aleutian Islands 

by

Thomas K. Wilderbuer, Daniel G. Nichol, and Paul D. Spencer

## Executive Summary

The following changes have been made to this assessment relative to the November 2011 SAFE:

## Changes in the assessment input data

1) The 2011 catch data was updated, and the 2012 catch was estimated from Alaska Region total catch through September 15 in consideration of the weekly catch pattern for Alaska plaice.
2) The 2012 shelf survey biomass estimate and standard error, and the 2012 survey length composition were included in the assessment.
3) The 2011 survey ages were read and the 2011 survey age composition was added to the assessment.
4) The 2008-2011 fishery length compositions were added as a data component.

## Changes to the assessment methodology

No modifications were made for this assessment.

## Model results

1) Estimated $3+$ total biomass for 2013 is $588,500 \mathrm{t}$.
2) Projected female spawning biomass for 2013 is $260,500 \mathrm{t}$.
3) Recommended ABC for 2013 is $55,200 \mathrm{t}$ based on an $\mathrm{F}_{40 \%}=0.158$ harvest level.
4) 2013 overfishing level is $67,000 t$ based on a $F_{35 \%}(0.19)$ harvest level.

|  | Last year |  | This year |  |
| :--- | :---: | :---: | :---: | :---: |
| Quantity/Status | 2012 | 2013 | $\mathbf{2 0 1 3}$ | 2014 |
| $M$ (natural mortality) | 0.13 | 0.13 | $\mathbf{0 . 1 3}$ | 0.13 |
| Specified/recommended Tier | $3 a$ | $3 a$ | 3a | 3a |
| Projected biomass (ages 3+) | 606,000 | 599,500 | $\mathbf{5 8 8 , 5 0 0}$ | 580,400 |
| Female spawning biomass (t) |  |  |  |  |
| Projected | 260,800 | 259,800 | $\mathbf{2 6 0 , 5 0 0}$ | 253,600 |
| $B_{100 \%}$ | 376,300 |  | $\mathbf{3 8 0 , 0 0 0}$ |  |
| $B_{40 \%}$ | 150,500 |  | $\mathbf{1 5 2 , 0 0 0}$ |  |
| $B_{35 \%}$ | 131,700 |  | $\mathbf{1 3 3 , 0 0 0}$ |  |
| $F_{\text {OFL }}$ | 0.19 | 0.19 | $\mathbf{0 . 1 9}$ | $\mathbf{0 . 1 9}$ |
| maxF $F_{A B C}$ (maximum allowable = F40\%) | 0.151 | 0.151 | $\mathbf{0 . 1 5 8}$ | $\mathbf{0 . 1 5 8}$ |
| Specified/recommended $F_{A B C}$ | 0.151 | 0.151 | $\mathbf{0 . 1 5 8}$ | $\mathbf{0 . 1 5 8}$ |
| Specified/recommended ABC (t) | 53,400 | 54,000 | $\mathbf{5 5 , 2 0 0}$ | 67,000 |
| Specified/recommended OFL (t) | 64,600 | 65,000 | $\mathbf{5 5 , 8 0 0}$ | 60,200 |
| Is the stock being subjected to overfishing? | No | No | No | No |
| Is the stock currently overfished? | No | No | No | No |
| Is the stock approaching a condition of being overfished? | No | No | No | No |

## SSC Comments from December 2011

No comments from the 2011 December SSC meeting.

## Introduction

Prior to 2002, Alaska plaice (Pleuronectes quadrituberculatus) were managed as part of the "other flatfish" complex. Since then an age-structured model has been used for the stock assessment allowing Alaska plaice to be managed separately from the "other flatfish" complex as a single species.

The distribution of Alaska plaice is mainly on the Eastern Bering Sea continental shelf, with only small amounts found in the Aleutian Islands region. In particular, the summer distribution of Alaska plaice is generally confined to depths $<110 \mathrm{~m}$, with larger fish predominately in deep waters and smaller juveniles ( $<20 \mathrm{~cm}$ ) in shallow coastal waters (Zhang et al., 1998). The Alaska plaice distribution overlaps with rock sole (Lepidopsetta polyxystra) and yellowfin sole (Limanda aspera), but the center of the distribution is north of the center of the other two species. Substantial amounts of Alaska plaice were also found between St. Matthew and St. Lawrence Islands in the 2010 northern expansion of the annual Bering Sea shelf trawl survey.

## Catch History

Catches of Alaska plaice increased from approximately $1,000 \mathrm{t}$ in 1971 to a peak of $62,000 \mathrm{t}$ in 1988 , the first year of joint venture processing (JVP) (Table 10.1). Part of this apparent increase was due to increased species identification and reporting of catches in the 1970s. Because of the overlap of the Alaska plaice distribution with that of yellowfin sole, much of the Alaska plaice catch during the 1960s was likely caught as bycatch in the yellowfin sole fishery (Zhang et al. 1998). With the cessation of joint venture fishing operations in 1991, Alaska plaice are now harvested exclusively by domestic vessels. Catch data from 1980-89 by its component fisheries (JVP, non-U.S., and domestic) are available in Wilderbuer and Walters (1990). The catch of Alaska plaice taken in research surveys from 1977 -2012 is shown in Table 10.2.

Since implementation of the Fishery Conservation and Management Act (FCMA) in 1977, Alaska plaice have been lightly harvested in most years as no major commercial target fishery exists for them. In recent years between 85 and $87 \%$ of the Alaska plaice catch has occurred in the yellowfin sole fishery. In 2011, most of the annual TAC for Alaska plaice was harvested by late winter and early spring as bycatch in the yellowfin sole fishery (well-below ABC catch levels). This pattern changed in 2012 with much lower catch rates in the early part of the year but increased catch rates of over $1,000 \mathrm{t}$ per week in September. The 2012 catch is estimated at $17,000 \mathrm{t}$ for this assessment based on the accumulated catch through September and the continued high weekly catch rates as of the end of September.

Alaska plaice are grouped with the rock sole, flathead sole, and other flatfish fisheries under a common prohibited species catch (PSC) limit, with seasonal and total annual allowances of prohibited species bycatch by these flatfish fisheries applied to the fisheries within the group. Prior to 2008, these fisheries were closed prior to attainment of the TAC due to the bycatch of halibut (Table 10.3), and typically were also closed during the first quarter due to a seasonal bycatch cap. Since the implementation of Amendment 80 in 2008 where catch and bycatch shares were assigned to groups of fishing vessels (cooperatives), these fisheries have not been subjected to time and area closures although there was a rock sole target closure in 2010 (see Chapter 7 in SAFE).

Substantial amounts of Alaska plaice were discarded in various eastern Bering Sea target fisheries in past years due to low market interest. Retained and discarded catches were reported for Alaska plaice for the first time in 2002, and indicated that of the 12,176 $t$ caught only $370 t$ were retained, resulting in a retention rate of $3.0 \%$ (Table 10.4). Similar patterns were observed for 2003-2005 (4\%,5\% and 6\%, respectively). The discard patterns have now changed with improved retention each year. The amount of Alaska plaice retained in 2011 was $70 \%$. Examination of the discard data, by fishery, indicates that 81\% $87 \%$ of the discards in 2002-2011 can be attributed to the yellowfin sole fishery. Discarding also occurred in the rock sole, flathead sole, and Pacific cod fisheries. The locations where Alaska plaice were caught, by month, in 2012 are shown in Figure 10.1.

## Data

## Fishery Catch and Catch-at-Age Data

This assessment uses fishery catches from 1971 through 2012 (Table 10.2). Fishery length compositions from 1978-89, 1995, and 2001 for each sex were also used, as well as sex-specific age compositions from 2000, 2002 and 2003. Length data were also added for 2008-2011 for this assessment due to the modest increase in catch and observer coverage since 2008. The number of ages and lengths sampled from the fishery are shown in Table 10.5.

## Survey Data

Because Alaska plaice are usually taken incidentally in target fisheries for other species, CPUE from commercial fisheries is considered unreliable information for determining trends in abundance for these species. It is therefore necessary to use research vessel survey data to assess the condition of these stocks.

Large-scale bottom trawl surveys of the Eastern Bering Sea continental shelf have been conducted in 1975 and 1979-2012 by NMFS. Survey estimates of total biomass and numbers at age are shown in Tables 10.6 and 10.7, respectively. It should be recognized that the resultant biomass estimates are point estimates from an "area-swept" survey. As a result, they carry the uncertainty inherent in the technique.

It is assumed that the sampling plan covers the distribution of the fish and that all fish in the path of the trawl are captured. That is, there are no losses due to escape or gains due to gear herding effects. Trawl survey estimates of Alaska plaice biomass increased rapidly from 1975 through 1982 and have remained at a high and stable level since (Table 10.6, Figure 10.2).

The trawl gear was changed in 1982 from the 400 mesh eastern trawl to the $83-112$ trawl, as the latter trawl has better bottom contact. This may contribute to the increase in Alaska plaice seen from 1981 to 1982, as increases between these years were noticed in other flatfish as well. However, large changes in Alaska plaice biomass between adjacent years have occurred without changes in trawl gear, such as the increase from 1980 to 1981 and the decrease from 1984 to 1985.

Although calibration between years with different trawl gear has not been accomplished, the survey data since 1982 does incorporate calibration between the two vessels used in the survey. Fishing Power Coefficients (FPC) were estimated following the methods of Kappenman (1992) for 1982-2005. The trend of the biomass estimates is the same as without the calibration between vessels, but the magnitude of the change in 1988 was markedly reduced. In 1988, one vessel had slightly smaller and lighter trawl doors which may have affected the estimates for several species. With the exception of the 1988 estimate, Alaska plaice has shown a relatively stable trend since 1985, although abundance was higher in the 1994, 1997 and 2006 surveys. The 2012 estimate of $581,900 \mathrm{t}$ is the highest observed in the past five years and falls in the range of survey estimates observed in the past 10 years.

Assessments for other BSAI flatfish have suggested a relationship between bottom temperature and survey catchability (Wilderbuer et al. 2002), where bottom temperatures are hypothesized to affect survey catchability by affecting either stock distributions and/or the activity level of flatfish relative to the capture process. Temperature was not expected to affect Alaska plaice catchability since they are a "cold loving" species with an anti-freeze protein that inhibits ice formation in their blood stream (Knight et al. 1991). This relationship was investigated for Alaska plaice by using the annual temperature anomalies from surveys conducted from 1982 to 2012. Examination of the residuals from the model fit to the bottom trawl survey relative to the annual bottom temperature anomalies does not indicate a correspondence exists between the two data series (correlation $=-0.24$ ) (Fig 10.3). This was also the result from a past assessment (Spencer et al. 2004) where a fit with a LOWESS smoother indicated that little correspondence exists between the two time series, and the cross-correlation coefficient ( -0.17 ) was not significant at the 0.05 level. Thus, the relationship between bottom temperature and survey catchability was not pursued further.

In 2010 the Alaska Fisheries Science Center had the opportunity to extend the annual bottom trawl survey to the northern Bering Sea past St. Lawrence Island by the additional sampling of 142 stations. Substantial amounts of Alaska plaice were encountered in the northern area with a total biomass estimate of $311,900 \mathrm{t}$ (Fig. 10.4). This indicates that for 2010, the combined eastern and northern Bering Sea Alaska plaice biomass was estimated at $810,000 \mathrm{t}$ of which $38 \%$ occurred north of the standard survey area. Since the northern Bering Sea has only been surveyed one time with no plan to repeat the survey and also because the area is closed to fishing, biomass estimates from only the standard survey area are used in this assessment (Table 10.6) and the northern Bering Sea is not included in the assessment.

## Survey Length Information

In this assessment, the estimated population numbers at length from the trawl survey were multiplied by the age-length key in order to produce a matrix of estimated population numbers by age and length, from which an unbiased average length for each age can be determined. These population estimates by length
and sex were used to fit the model for years when age composition data were not available. The numbers of age and length samples obtained from the surveys are shown in Table 10.8.

## Weight-at-age, Length-at-age and Maturity-at-age

Alaska plaice exhibit sex-specific dimorphic growth after the age of sexual maturity with females attaining a larger size than males. The von Bertalanffy parameters fit to the population length at age and the length-weight relationship of the form $W=a L^{b}$ were estimated as:

|  | Length at age fit |  |  | Length-weight fit |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{L}_{\text {inf }}(\mathrm{cm})$ | k | $\mathrm{t}_{0}$ | a | b | n |
| males | 49.9 | 0.06 | -4.02 | 0.1249 | 2.98 | 866 |
| females | 50.1 | 0.127 | 0.35 | 0.0055 | 3.23 | 1,381 |
|  |  |  |  |  |  |  |

The combination of the length-weight relationship and the von Bertalanffy growth curve produces an estimated weight-at-age relationship that is similar to that used in previous Alaska plaice assessments. The sex-specific weight-at-age relationship calculated from the average population mean length at age and the length-weight relationship, by sex, are shown in Figure 10.5. The maturity schedule is listed in Table 10.9.

In summary, the data available for Alaska plaice are

1) Total catch weight, 1971-2012;
2) Proportional fishery catch number at age, 2000, 2002-2003
3) Proportional fishery catch number at length, 1978-89, 1995, 2001, 2008-2011
4) Survey biomass and standard error 1975, 1979-2012;
5) Survey age composition, 1982, 1988, 1992-1995, 1998, 2000-2002, 2005-2011
6) Survey length composition, 1983-1987, 1989-1991, 1996-1997, 1999, 2003, 2004, 2012

## Analytical Approach

## Model Structure

Since the sex-specific weight-at-age for Alaska plaice diverges after the age of maturity (about age 10 for $50 \%$ of the stock) with females growing larger than males, the assessment model is configured to accommodate the sex-specific aspects of the population dynamics of Alaska plaice. The model is coded to allow for the input of sex-specific estimates of fishery and survey age composition and weight-at-age and provides sex-specific estimates of population numbers, fishing mortality, selectivity, fishery and survey age composition and allows for the estimation of sex-specific natural mortality and catchability. The catch-at-age population dynamics model was used to obtain estimates of several population variables of the Alaska plaice stock, including recruitment, population size, and catch. This catch at age model was developed with the software program Automatic Differentiation Model Builder (ADMB; Fournier et al. 2012). Population size in numbers at age $a$ in year $t$ was modeled as

$$
N_{t, a}=N_{t-1, a-1} e^{-Z_{t-1, a-1}} \quad 3 \leq a<A, \quad 3 \leq t \leq T
$$

where $Z$ is the sum of the instantaneous fishing mortality rate $\left(F_{t, a}\right)$ and the natural mortality rate $(M), A$ is the maximum modeled age in the population, and $T$ is the terminal year of the analysis. The numbers at age $A$ are a "pooled" group consisting of fish of age $A$ and older, and are estimated as

$$
N_{t, A}=N_{t-1, A-1} e^{-Z_{t-1, A-1}}+N_{t-1, A} e^{-Z_{t-1, A}}
$$

Recruitment was modeled as the number of age 3 fish. The efficacy of estimating productivity directly from the stock-recruitment data (as opposed to using an SPR proxy) was examined in a past assessment (Wilderbuer et al. 2008) by comparing results from fitting either the Ricker or Beverton-Holt forms within the model and choosing different time-periods of stock-recruitment productivity. This analysis is described in more detail in the 2008 assessment.

The numbers at age in the first year are modeled with a lognormal distribution

$$
N_{1, a}=e^{\left(\text {meaninit-M(a-1)+ } \gamma_{a}\right)}
$$

where meaninit is the mean of the recruitments that made up the initial age comp and $\gamma$ is an age-variant deviation.

The mean numbers at age within each year were computed as

$$
\bar{N}_{t, a}=N_{t, a} *\left(1-e^{-Z_{t, a}}\right) / Z_{t, a}
$$

Catch in numbers at age in year $t\left(C_{t, a}\right)$ and total biomass of catch each year $\left(Y_{t}\right)$ were modeled as

$$
\begin{aligned}
& C_{t, a}=F_{t, a} \bar{N}_{t, a} \\
& Y_{t}=\sum_{a=1}^{A} C_{t, a} w_{a}
\end{aligned}
$$

where $w_{a}$ is the mean weight at age for Alaska plaice.
A conversion matrix was derived from the von Bertalanffy growth relationship, and used to convert the modeled numbers at age into modeled numbers at length. There are 51 length bins ranging from 10 to 60 cm , and 23 age groups ranging from 3 to $25+$. For each modeled age, the transition matrix (TR) consists of a probability distribution of numbers at length, with the expected value equal to the predicted length-atage from the von Bertalanffy relationship. The variation around this expected value was derived from a linear regression of coefficient of variation (CV) in length-at-age against age, where the CV were obtained from the sampled specimens over all survey years. The estimated linear relationship predicts a CV of 0.14 at age 3 and a CV of 0.10 at age 25 . The conversion matrix, vector of mean numbers at age, and survey selectivity by age were used to compute the estimated survey length composition, by year, as

$$
\overline{\mathbf{N L}}_{t}=\left(\text { srvsel } * \overline{\mathbf{N A}}_{t}\right) * \mathbf{T R}^{\mathbf{T}}
$$

where srvsel is a vector of survey selectivity by age.
Estimating certain parameters in different stages enhances the estimation of large number of parameters in nonlinear models. For example, the fishing mortality rate for a specific age and time $\left(F_{t, a}\right)$ is modeled as the product of an age-specific selectivity function (fishsel ${ }_{a}$ ) and a year-specific fully-selected fishing mortality rate. The fully selected mortality rate is modeled as the product of a mean $(\mu)$ and a yearspecific deviation $\left(\varepsilon_{t}\right)$, thus $F_{t, a}$ is

$$
F_{t, a}=\text { fishsel }_{a} * e^{\left(\mu+\varepsilon_{t}\right)}
$$

In the early stages of parameter estimation, the selectivity coefficients are not estimated. As the solution is being approached, selectivity was modeled with the logistic function:

$$
\text { fishsel }_{a}=\frac{1}{1+e^{(- \text {slope }(a-f i f t y)}}
$$

where the parameter slope affects the steepness of the curve and the parameter fifty is the age at which $\operatorname{sel}_{a}$ equals 0.5 . The selectivity for the survey is modeled in a similar manner.

## Parameters Estimated Independently

The parameters estimated independently include the natural mortality ( $M$ ) and survey catchability ( $q$ _srv). Fish from both sexes have frequently been aged as high as 25 years from samples collected during the annual trawl surveys. Zhang (1987) determined that the natural mortality rate for Alaska plaice is variable by sex and may range from 0.195 for males to 0.27 for females. In past assessments natural mortality was fixed at 0.25 based on an earlier analysis of natural mortality (Wilderbuer and Walters 1997, Table 8.1).

In the 2010 assessment, the natural mortality rate of Alaska plaice was re-estimated using 3 methods from the literature based on the life history characteristics of maximum life span (Hoenig 1983), average age (Chapman and Robson 1960) and the relationship between growth and maximum length (Gislason et al. 2008). The results are summarized below and suggest a range of natural mortality values from 0.08 to 0.13 for males and 0.08 to 0.29 for females.

| Method | Males | Females |
| :--- | :--- | :--- |
| Hoenig (1983) | 0.11 | 0.11 |
| Chapman and Robson (1960) | 0.08 | 0.08 |
| Gislason et al. 2008 | 0.12 | 0.29 |
| Model profiling | 0.13 | 0.13 |

The stock assessment model was again run for different combinations of male and female M to discern what value provides the best fit to the data components in terms of $-\log (l i k e l i h o o d)$. The best fit to the observable population characteristics occurred close to $\mathrm{M}=0.13$ for both sexes (Figure 10.6). This value of natural mortality is close to those estimated from the other three methods and also is consistent with the natural mortality used in other assessments of Bering Sea shelf flatfish which have similar life histories, growth and maximum ages. Therefore a value of $\mathrm{M}=0.13$ was used to model natural mortality for both males and females in this assessment.

Herding experiments in the eastern Bering Sea have demonstrated that many of the flatfish encountered in the area between the outer end of the footrope and where the bridles contact the sea floor (outside the trawl path) are herded into the path of the bottom trawl in varying degrees (Somerton and Munro 2001). Although Alaska plaice were not among the seven species that were explicitly studied, it is assumed that their behavior is similar to the other studied species which all exhibited herding behavior. The mean herding effect from all seven species combined resulted in a bridle efficiency of 0.234 . This assessment incorporates a herding effect into the stock assessment model by fixing survey catchability (q) at 1.2, close to the mean value from the combined flatfish species in the herding experiment.

## Parameters Estimated Conditionally

Parameter estimation is facilitated by comparing the model output to several observed quantities, such as the age compositions of the fishery and survey catches, the survey biomass, and the fishery catches. The general approach is to assume that deviations between model estimates and observed quantities are attributable to observation error and can be described with statistical distributions. Each data component provides a contribution to a total log-likelihood function, and parameter values that maximize the loglikelihood are selected.

The log-likelihoods of the age compositions were modeled with a multinomial distribution. The log of the multinomial function (excluding constant terms) is

$$
n \sum_{t, a} p_{t, a} \ln \left(\hat{p}_{t, a}\right)
$$

where $n_{t}$ is the number of fish aged, and $p$ and $\hat{p}$ are the observed and estimated age proportion at age.
The log-likelihood of the survey biomass was modeled with a lognormal distribution:

$$
\lambda_{2} \sum_{t}\left(\ln \left(\text { obs_biom }_{t}\right)-\ln \left(\text { pred_biom }_{t}\right)\right)^{2} / 2 * c v(t)^{2}
$$

where obs_biom ${ }_{t}$ and pred_biom ${ }_{t}$ are the observed and predicted survey biomass at time $t, c v(t)$ is the coefficient of variation of observed biomass in year $t$, and $\lambda_{2}$ is a weighting factor.
The predicted survey biomass for a given year is

$$
q_{-} \operatorname{srv} * \sum_{a} \operatorname{selsrv}_{a}\left(\bar{N}_{a} * w t_{a}\right)
$$

where $\operatorname{selsrv}_{a}$ is the survey selectivity at age and $w t_{a}$ is the population weight at age.
The log-likelihood of the catch biomass was modeled with a lognormal distribution:

$$
\lambda_{3} \sum_{t}\left(\ln \left(o b s_{-} c a t_{t}\right)-\ln \left(\text { pred_c }_{-} c a t_{t}\right)\right)^{2}
$$

where obs_cat ${ }_{t}$ and pred_cat $_{t}$ are the observed and predicted catch. Because the catch biomass is generally thought to be observed with higher precision than other variables, $\lambda_{3}$ is given a very high value (hence low variance in the total catch estimate) so as to fit the catch biomass nearly exactly. This can be accomplished by varying the $F$ levels, and the deviations in $F$ are not included in the overall likelihood function. The overall likelihood function (excluding the catch component) is

$$
\lambda_{1}\left(\sum_{t} \varepsilon_{t}+\sum_{a} \gamma_{a}\right)+n \sum_{t, a} p_{t, a} \ln \left(\hat{p}_{t, a}\right)+\lambda_{2} \sum_{t}\left(\ln \left(o b s_{-} \text {biom }_{t}\right)-\ln \left(\text { pred_biom }_{t}\right)\right)^{2} / 2 * c v(t)^{2}
$$

For the model run in this analysis, $\lambda_{1}, \lambda_{2}$, and $\lambda_{3}$ were assigned weights of 1,1 , and 500 , respectively. The value for age composition sample size, $n$, was set to 200 for surveys and 50 for the fishery. The likelihood function was maximized by varying the following parameters:

| Parameter type | Number |
| :--- | :---: |
| 1) fishing mortality mean $(\mu)$ | 1 |
| 2) fishing mortality deviations ( $\varepsilon_{t}$ ) by sex | 78 |
| 3) recruitment mean | 1 |
| 4) recruitment deviations ( $v_{t}$ ) by sex after 1975 | 72 |
| 5) initial year mean | 1 |
| 6) initial year deviations $\gamma_{\mathrm{a}}$ | 22 |
| 7) fishery selectivity patterns both sexes | 4 |
| 8) survey selectivity patterns both sexes | 4 |
| Total parameters | 183 |

Finally, a Monte Carlo Markov Chain (MCMC) algorithm was used to obtain estimates of parameter uncertainty (Gelman et al. 1995). Two million MCMC simulations were conducted, with every 1,000 th sample saved for the sample from the posterior distribution. Ninety-five percent confidence intervals were produced as the values corresponding to the $5^{\text {th }}$ and $95^{\text {th }}$ percentiles of the MCMC evaluation. For this assessment, confidence intervals on female spawning biomass, total biomass and age 3 recruitment are presented.

## Model Results

Substantial differences exist in the estimates of stock productivity and $\mathrm{F}_{\text {msy }}$ between stock recruitment model forms and which data sets are fit with it. When using the post-1977 year classes, the Ricker model estimates an $\mathrm{F}_{\text {msy }}$ of 1.19 , which is substantially higher than the estimated $\mathrm{F}_{40 \%}$ of 0.62 (Table 10.10, Figure 10.7). Using the Ricker model to fit the 1989-2004 data set estimates $\mathrm{F}_{\text {msy }}$ at 0.4 , which is substantially below the $\mathrm{F}_{40 \%}$ value. When the Beverton-Holt curve is used the stock-recruitment model is essentially a horizontal line through the data, as the steepness parameter is at its upper bound of 1.0 regardless which data set is used. Both Beverton-Holt curves produce similar fits to the post-1989 and full data sets and both curves estimate that productivity of Alaska plaice is so low that fishing at any level could not be sustained ( $\mathrm{B}_{\text {msy }}$ estimated at less than $30,000 \mathrm{t}$, Table 10.10). Given the uncertainties regarding which subset of years best characterize the current state of stock productivity, and the high degree to which the productivity estimates depend on this factor, it is not recommended that estimates of $\mathrm{F}_{\text {msy }}$ be used for management advice. Although the fitting of a stock-recruitment curve within the model is a useful feature, the following results are based upon a model that does not fit a stock-recruitment relationship internally.

Modeling the Alaska plaice population with M set at 0.13 for both sexes results in population estimates that are $30-40 \%$ of the values derived from previous assessments which used $\mathrm{M}=0.25$. The values of $\mathrm{F}_{40 \%}$ and $\mathrm{F}_{35 \%}$ estimated at the reduced natural mortality level ( 0.154 and 0.19 , respectively) are much more consistent with the other Bering Sea flatfish assessments than those used in this assessment last year ( 0.62 and 0.77 ) and gave a better fit to the observable population information.

Using the survey catchability value of 1.2, the model results estimate that the total Alaska plaice biomass (ages 3+) increased from 376,000 $t$ in 1975 to a peak of $729,400 \mathrm{t}$ in 1984 (Figure 10.8, Table 10.11). Beginning in 1984, estimated total biomass declined to a low of $537,300 \mathrm{t}$ in 2003 but has since increased to a peak of $600,700 \mathrm{t}$ in 2010 and is projected at $588,500 \mathrm{t}$ in 2013. The estimated survey biomass also shows a rapid increase to a peak biomass of $744,281 \mathrm{t}$ in 1985, and a subsequent decline to a lower stable level since then (Figure 10.8). The recent increase is the result of above average year classes spawned in 2001 and 2002 that are starting to contribute to the mature biomass as they become mature. The female spawning biomass trend is similar to the total biomass trend with a peak level estimated in 1985 and a slow decline thereafter until 2008 after which the spawning stock is estimated to be increasing (Figure 10.10).

As in past assessments, fitting fishery observations was de-emphasized by lowering the input sample sizes from 200 to 50 . This contributed in part to producing estimates of $50 \%$ fishery selectivity at about 10 years for females and 9 for males (Figure 10.11). The fits to the trawl survey age and length compositions are shown in Figures 10.12 and 10.13 and the fit to the fishery age and length compositions are shown in Figures 10.14 and 10.15.

The modest changes in stock biomass are primarily a function of recruitment variability, as fishing pressure has been light. The fully selected fishing mortality estimates show a maximum value of 0.15 in 1988, and have averaged 0.04 from 1975-2011 (Figure 10.16). Estimated age-3 recruitment indicates high levels from the 1971-1976 year classes which built the stock to its peak level in 1982 (Figure 10.8, Figure 10.17, Table 10.11). From 1981-1997, the estimated recruitment declined, averaging $1.1 \times 10^{9}$. Recruitment is estimated to be improving since 1997 with above average strength recruitment in 1998 and exceptionally strong recruitment in 2001 and 2002. These fish should contribute to a higher level of female spawning biomass in the near future.

## Projections and Harvest Alternatives

The reference fishing mortality rate for Alaska plaice is determined by the amount of reliable population information available (Amendment 56 of the Fishery Management Plan for the groundfish fishery of the Bering Sea/Aleutian Islands). Estimates of $B_{40 \%}, F_{40 \%}$, and $S P R_{40 \%}$ were obtained from a spawner-perrecruit analysis. Assuming that the average recruitment from 1977-2006 year classes estimated in this assessment represents a reliable estimate of equilibrium recruitment, then an estimate of $B_{40 \%}$ is calculated as the product of $S P R_{40 \%}$ * equilibrium recruits ( $=152,000 \mathrm{t}$ ). The 2013 spawning biomass is estimated at $260,500 \mathrm{t}$. Since reliable estimates of 2013 spawning biomass (B), $B_{40 \%}, F_{40 \%}$, and $F_{35 \%}$ exist and $B>B_{40 \%}$ ( $260,500 t>152,000 t$ ), Alaska plaice reference fishing mortality is defined in tier 3a of Amendment 56. For this tier, $F_{A B C}$ is constrained to be $\leq F_{40 \%}$, and $F_{O F L}$ is defined as $F_{35 \%}$. The values of these quantities are:

| 2013 SSB estimate $(B)$ | $=$ | $260,500 \mathrm{t}$ |
| ---: | :--- | :--- |
| $B_{40 \%}$ | $=$ | $152,000 \mathrm{t}$ |
| $F_{40 \%}$ | $=$ | 0.158 |
| $F_{A B C}$ | $=$ | 0.158 |
| $F_{35 \%}$ | $=$ | 0.194 |
| $F_{\text {OFL }}$ | $=$ | 0.194 |

The estimated catch level for year 2013 associated with the overfishing level of $F=0.194$ is $67,000 \mathrm{t}$. The 2013 recommended $A B C$ associated with $\boldsymbol{F}_{A B C}$ of $\mathbf{0 . 1 5 8}$ is $55,200 \mathrm{t}$. Projections of Alaska plaice female spawning biomass (described below) at a harvest rate equal to the average fishing mortality rate of the past five years indicate that the stock could increase to a female spawning biomass in 2025 of over 280,000 t (Fig. 10.18).

A standard set of projections is required for each stock managed under Tiers 1, 2, or 3 of Amendment 56. This set of projections encompasses seven harvest scenarios designed to satisfy the requirements of Amendment 56, the National Environmental Policy Act, and the Magnuson-Stevens Fishery Conservation and Management Act (MSFCMA).

For each scenario, the projections begin with the vector of 2012 numbers at age estimated in the assessment. This vector is then projected forward to the beginning of 2013 using the schedules of natural mortality and selectivity described in the assessment and the best available estimate of total (year-end) catch for 2012. In each subsequent year, the fishing mortality rate is prescribed on the basis of the spawning biomass in that year and the respective harvest scenario. In each year, recruitment is drawn from an inverse Gaussian distribution whose parameters consist of maximum likelihood estimates determined from recruitments estimated in the assessment. Spawning biomass is computed in each year based on the time of peak spawning and the maturity and weight schedules described in the assessment. Total catch is assumed to equal the catch associated with the respective harvest scenario in all years. This projection scheme is run 1000 times to obtain distributions of possible future stock sizes, fishing mortality rates, and catches.

Five of the seven standard scenarios will be used in an Environmental Assessment prepared in conjunction with the final SAFE. These five scenarios, which are designed to provide a range of harvest alternatives that are likely to bracket the final TAC for 2013, are as follows ("max $F_{A B C}$ " refers to the maximum permissible value of $F_{A B C}$ under Amendment 56):

Scenario 1: In all future years, $F$ is set equal to $\max F_{A B C}$. (Rationale: Historically, TAC has been constrained by ABC, so this scenario provides a likely upper limit on future TACs.)

Scenario 2: In all future years, $F$ is set equal to a constant fraction of max $F_{A B C}$, where this fraction is equal to the ratio of the $F_{A B C}$ value for 2013 recommended in the assessment to the max $F_{A B C}$ for 2013. (Rationale: When $F_{A B C}$ is set at a value below $\max F_{A B C}$, it is often set at the value recommended in the stock assessment.)

Scenario 3: In all future years, $F$ is set equal to $50 \%$ of $\max F_{A B C}$. (Rationale: This scenario provides a likely lower bound on $F_{A B C}$ that still allows future harvest rates to be adjusted downward when stocks fall below reference levels.)

Scenario 4: In all future years, $F$ is set equal to the 2008-2012 average $F$. (Rationale: For some stocks, TAC can be well below ABC, and recent average $F$ may provide a better indicator of $F_{\text {TAC }}$ than $F_{A B C}$.)

Scenario 5: In all future years, $F$ is set equal to zero. (Rationale: In extreme cases, TAC may be set at a level close to zero.)

The recommended $F_{A B C}$ and the maximum $F_{A B C}$ are equivalent in this assessment, and five-year projections of the mean Alaska plaice harvest and spawning stock biomass for the remaining four scenarios are shown in Table 10.12.

Two other scenarios are needed to satisfy the MSFCMA's requirement to determine whether the Alaska plaice stock is currently in an overfished condition or is approaching an overfished condition. These two scenarios are as follows (for Tier 3 stocks, the MSY level is defined as $B_{35 \%}$ ):

Scenario 6: In all future years, $F$ is set equal to $F_{\text {OFL }}$. (Rationale: This scenario determines whether a stock is overfished. If the stock is expected to be above its MSY level in 2013 under this scenario, then the stock is not overfished.)

Scenario 7: In 2013 and 2014, $F$ is set equal to $\max F_{A B C}$, and in all subsequent years, $F$ is set equal to $F_{\text {OFL }}$. (Rationale: This scenario determines whether a stock is approaching an overfished condition. If the stock is expected to be above its MSY level in 2025 under this scenario, then the stock is not approaching an overfished condition.)

The results of these two scenarios indicate that Alaska plaice are neither overfished nor approaching an overfished condition. With regard to assessing the current stock level, the expected stock size in the year 2013 of scenario 6 is well above its $B_{35 \%}$ value of $133,000 \mathrm{t}$. With regard to whether the stock is likely to be in an overfished condition in the near future, the expected stock size in the year 2025 of scenario 7 is also greater than its $B_{35 \%}$ value. Figure 10.19 shows the relationship between the estimated time-series of female spawning biomass and fishing mortality and the tier 3 control rule for Alaska plaice.

## Scenario Projections and Two-Year Ahead Overfishing Level

In addition to the seven standard harvest scenarios, Amendments 48/48 to the BSAI and GOA Groundfish Fishery Management Plans require projections of the likely OFL two years into the future. While Scenario 6 gives the best estimate of OFL for 2013, it does not provide the best estimate of OFL for 2014, because the mean 2014 catch under Scenario 6 is predicated on the 2013 catch being equal to the 2013 OFL, whereas the actual 2013 catch will likely be less than the 2013 ABC. Therefore, the projection model was re-run with the 2014 catch fixed at the 2013 level.

| Year | Catch | ABC | OFL |
| :--- | ---: | ---: | :---: |
| 2013 | 17,000 | 55,200 | 67,000 |
| 2014 | 17,000 | 55,800 | 60,200 |

## Ecosystem considerations

## Ecosystem Effects on the stock

1) Prey availability/abundance trends

The feeding habits of juvenile Alaska plaice are relatively unknown, although the larvae are relatively large at hatching ( 5.85 mm ) with more advanced development than other flatfish (Pertseva-Ostroumova 1961).

For adult fish, Zhang (1987) found that the diet consisted primarily of polychaetes and amphipods regardless of size. For fish under 30 cm , polychaetes contributed $63 \%$ of the total diet with sipunculids (marine worms) and amphipods contributing $21.7 \%$ and $11.6 \%$, respectively. For fish over 30 cm , polychaetes contributed $75.2 \%$ of the total diet with amphipods and echiurans (marine worms) contributing $6.7 \%$ and $5.7 \%$, respectively. Similar results were in stomach sampling from 1993-1996, with polychaetes and marine worms composing the majority of the Alaska plaice diet (Lang et al. 2003). McConnaughy and Smith (2000) contrasted the food habits of several flatfish between areas of high and low CPUE, using aggregated data from 1982 to 1994. For Alaska plaice, the diets were nearly identical with $76.5 \%$ of the diet composed of polychaetes and unsegmented coelomate worms in the high CPUE areas as compared to $83.1 \%$ in the low CPUE areas.

2) Predator population trends

Alaska plaice contribute a relatively small portion of the diets of Pacific cod, Pacific halibut, and yellowfin sole as compared with other flatfish. Total consumption estimates of Alaska plaice from 1993 to 1996 ranged from 0 t in 1996 to 574 t in 1994 (Lang et al. 2003). Consumption by yellowfin sole is upon fish $<2 \mathrm{~cm}$ whereas consumption by Pacific halibut is upon fish > 19 cm (Lang et al. 2003).
3) Changes in habitat quality

The habitats occupied by Alaska plaice are influenced by temperature, which has shown considerable variation in the eastern Bering Sea in recent years. For example, the timing of spawning and advection to nursery areas are expected to be affected by environmental variation. Musienko (1970) reported that spawning occurs immediately after the ice melt, with peak spawning occurring at water temperatures from -1.53 to 4.11. In 1999, one of the coldest years in the eastern Bering Sea, the distribution was shifted further to the southeast than it was during 1998-2002. However, in 2003, one of the warmest years in the EBS, the distribution was shifted further to the southeast than observed in 1999.

## Fishery effects on the ecosystem

Alaska plaice are not a targeted species and are harvested in a variety of fisheries in the BSAI area. Since 2002, when single-species management for Alaska plaice was initiated, harvest estimates by fishery are available. Most Alaska plaice are harvested within the yellowfin sole fishery, accounting for $81 \%-87 \%$ of the Alaska plaice catch in 2002-2006. Flathead sole, rock sole, and Pacific cod fisheries make up the remainder of the catch. The ecosystem effects of the yellowfin sole fishery can be found with the yellowfin sole assessment in this SAFE document.

Due to the minimal consumption estimates of Alaska plaice (Lang et al. 2003) by other groundfish predators, the yellowfin sole fishery does not have a significant impact upon those species preying upon Alaska plaice. Additionally, the relatively light fishing mortality rates experienced by Alaska plaice are not expected to have significant impacts on the size structure of the population or the maturity and fecundity at age. It is not known what effects the fishery may have on the maturity-at-age of Alaska plaice. The yellowfin sole fishery, however, does contribute substantially to the total discards in the EBS, as indicated by the discarding of Alaska plaice discussed in this assessment, and general discards within this fishery discussed in the yellowfin sole assessment.

## References

Chapman, D. G., and D. S. Robson. 1960. The analysis of a catch curve. Biometrics 16:354-368.
Fournier, D.A., H.J. Skaug, J. Ancheta, J. Ianelli, A. Magnusson, M.N. Maunder, A. Nielsen, and J. Sibert. 2012. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim. Methods Softw. 27:233-249.

Hoenig, J. 1983. Empirical use of longevity data to estimate mortality rates. Fish. Bull. 82:898-903

Knight, C. A., Cheng, C.C., DeVries, A. L. 1991. Adsorption of alpha helical antifreeze peptides on specific ice crystal surface planes. Biophysical Journal, Volume 59, Issue 2, Pages 409-418.

Gislason, H., Pope, J. G., Rice, J. C., and Daan, N. 2008. Coexistence in North Sea fish communities: implications for growth and natural mortality. - ICES Journal of Marine Science, 65: 514-530.

Gelman, A., J.B. Carlin, H.S. Stern, and D.A. Rubin. 1995. Bayesian data analysis. Chapman and Hall, New York. 552 pp.

Hilborn, R. and C.J. Walters. 1992. Quantitative fisheries stock assessment: choices, dynamics, and uncertainty. Chapman and Hall, New York. 570 pp.

Haflinger, K. 1981. A survey of benthic infaunal communities of the southeastern Bering Sea shelf. In D.W Hood and J.A. Calder (eds), The eastern Bering Sea shelf: oceanography and resources. Univ. of Wash. Press, Seattle, pp 1091-1104.

Kappenman, R. F. 1992. Estimation of the fishing power correction factor. Processed Report 92-01, 10 p. Alaska Fish. Sci. Center, Natl. Mar. Fish. Serv., NOAA, 7600 Sand Point Way NE, Seattle, WA 98115.

Lang, G.M., C.W. Derah, and P.A. Livingston. 2003. Groundfish food habits and predation on commercially important prey species in the eastern Bering Sea from 1993 to 1996. U.S. Dep. Commer., AFSC Proc. Rep. 2003-04. 351 pp.

McConnaughy, R.A. and K.R. Smith. 2000. Associations between flatfish abundance and surficial sediments in the eastern Bering Sea. Can J. Fish. Aquat. Sci. 2410-2419.

Musienko, L.N. 1970. Reproduction and development of Bering Sea fishes. Tr. Vses. Nachno-issled. Inst. Morsk. Rybn. Khoz. Okeanogr. 70 (Izv. Tikhookean. Nauchno-issled. Inst. Morsk. Rybn. Khoz. Okeanogr. 72:166-224) Transl. In Sov. Fish. Invest. Northeast Pac., pt. V:161-224. Isr. Program Sci. Transl., 1972. Avail. From

Pertseva-Ostroumova. 1961. The reproduction and development of far eastern flounders. Akad. Nauk SSSR Inst. Okeanologii, 484 p. (Transl. by Fish. Res. Bd. Can., 1967, Transl. Ser. 856, 1003 p.)

Somerton, D. A. and P. Munro. 2001. Bridle efficiency of a survey trawl for flatfish. Fish. Bull. 99:641652.

Walters, G. E., and T. K. Wilderbuer. 1990. Other flatfish. In Stock Assessment and Fishery Evaluation Document for Groundfish Resources in the Bering Sea/Aleutian Islands Region as Projected for 1991, p.129-141. North Pacific Fishery Management Council, P.O. Box 103136, Anchorage Alaska 99510.

Wilderbuer, T. K., and G. E. Walters. 1997. Other flatfish. In Stock Assessment and Fishery Evaluation Document for Groundfish Resources in the Bering Sea/Aleutian Islands Region as Projected for 1998, p.271-296. North Pacific Fishery Management Council, P.O. Box 103136, Anchorage Alaska 99510.

Wilderbuer, T. K., D. G. Nichol, and P. D. Spencer. 2008. Alaska plaice. In Stock Assessment and Fishery Evaluation Document for Groundfish Resources in the Bering Sea/Aleutian Islands Region as Projected for 2009, p.865-904. North Pacific Fishery Management Council, P.O. Box 103136, Anchorage Alaska 99510.

Zhang, C. I. 1987. Biology and population dynamics of Alaska plaice, Pleuronectes quadrituberculatus, in the eastern Bering Sea. Ph. D. dissertation, University of Washington:1-225.

Zhang, C. I., T.K. Wilderbuer, and G.E. Walters. 1998. Biological characteristics and fishery assessment of Alaska plaice, Pleuronectes quadrituberculatus, in the Eastern Bering Sea. Marine Fisheries Review 60(4), 16-27.

Table 10.1. Harvest (t) of Alaska plaice from 1977-2012

| Year | Harvest |
| :---: | :---: |
| 1977 | 2,589 |
| 1978 | 10,420 |
| 1979 | 13,672 |
| 1980 | 6,902 |
| 1981 | 8,653 |
| 1982 | 6,811 |
| 1983 | 10,766 |
| 1984 | 18,982 |
| 1985 | 24,888 |
| 1986 | 46,519 |
| 1987 | 18,567 |
| 1988 | 61,638 |
| 1989 | 14,134 |
| 1990 | 10,926 |
| 1991 | 15,003 |
| 1992 | 18,074 |
| 1993 | 13,846 |
| 1994 | 10,882 |
| 1995 | 19,172 |
| 1996 | 16,096 |
| 1997 | 21,236 |
| 1998 | 14,296 |
| 1999 | 13,997 |
| 2000 | 14,487 |
| 2001 | 8,685 |
| 2002 | 12,176 |
| 2003 | 9,978 |
| 2004 | 7,888 |
| 2005 | 11,194 |
| 2006 | 17,318 |
| 2007 | 19,522 |
| 2008 | 17,376 |
| 2009 | 13,944 |
| 2010 | 16,165 |
| 2011 | 23,656 |
| 2012* | 17,000 |

*NMFS Regional Office Report through mid-September 2012 and extrapolated through 12/31/2012 based on the predicted catch from the annual catch pattern.

Table 10.2. Research catches (t) of Alaska plaice in the BSAI area from 1977 to 2012.

| Year | Research Catch $(\mathrm{t})$ |
| ---: | ---: |
| 1977 | 4.28 |
| 1978 | 4.94 |
| 1979 | 17.15 |
| 1980 | 12.02 |
| 1981 | 14.31 |
| 1982 | 26.77 |
| 1983 | 43.27 |
| 1984 | 32.42 |
| 1985 | 23.24 |
| 1986 | 19.66 |
| 1987 | 19.74 |
| 1988 | 39.42 |
| 1989 | 31.10 |
| 1990 | 32.29 |
| 1991 | 29.79 |
| 1992 | 15.14 |
| 1993 | 19.71 |
| 1994 | 22.48 |
| 1995 | 28.47 |
| 1996 | 18.26 |
| 1997 | 22.59 |
| 1998 | 17.17 |
| 1999 | 18.95 |
| 2000 | 15.98 |
| 2001 | 20.45 |
| 2002 | 15.07 |
| 2003 | 15.39 |
| 2004 | 18.03 |
| 2005 | 22.52 |
| 2007 | 28.50 |
| 2008 | 18.80 |
| 2009 | 17.50 |
|  | 18.40 |
|  | 17.30 |
|  | 19.26 |

Table 10.3. Restrictions on the "other flatfish" fishery from 1995 to 2007 in the Bering Sea - Aleutian Islands management area. Unless otherwise indicated, the closures were applied to the entire BSAI management area. Zone 1 consists of areas $508,509,512$, and 516 , whereas zone 2 consists of areas 513, 517, and 521. Since 2008 no management restrictions have occurred.

| Year | Dates | Bycatch Closure |
| :---: | :---: | :---: |
| 1995 | 2/21-3/30 | First Seasonal halibut cap |
|  | 4/17-7/1 | Second seasonal halibut cap |
|  | 8/1-12/31 | Annual halibut allowance |
| 1996 | 2/26-4/1 | First Seasonal halibut cap |
|  | 4/13-7/1 | Second seasonal halibut cap |
|  | 7/31-12/31 | Annual halibut allowance |
| 1997 | 2/20-4/1 | First Seasonal halibut cap |
|  | 4/12-7/1 | Second seasonal halibut cap |
|  | 7/25-12/31 | Annual halibut allowance |
| 1998 | 3/5-3/30 | First Seasonal halibut cap |
|  | 4/21-7/1 | Second seasonal halibut cap |
|  | 8/16-12/31 | Annual halibut allowance |
| 1999 | 2/26-3/30 | First Seasonal halibut cap |
|  | 4/27-7/04 | Second seasonal halibut cap |
|  | 8/31-12/31 | Annual halibut allowance |
| 2000 | $3 / 4-3 / 31$ | First Seasonal halibut cap |
|  | 4/30-7/03 | Second seasonal halibut cap |
|  | 8/25-12/31 | Annual halibut allowance |
| 2001 | 3/20-3/31 | First Seasonal halibut cap |
|  | 4/27-7/01 | Second seasonal halibut cap |
|  | 8/24-12/31 | Annual halibut allowance |
| 2002 | 2/22-12/31 | Red King crab cap (Zone 1 closed) |
|  | 3/1-3/31 | First Seasonal halibut cap |
|  | 4/20-6/29 | Second seasonal halibut cap |
|  | 7/29-12/31 | Annual halibut allowance |
| 2003 | 2/18-3/31 | First Seasonal halibut cap |
|  | 4/1-6/21 | Second seasonal halibut cap |
|  | 7/31-12/31 | Annual halibut allowance |
| 2004 | 2/24-3/31 | First Seasonal halibut cap |
|  | 4/10-12/31 | Bycatch status |
| 2005 | 3/1-3/31 | First Seasonal halibut cap |
|  | 4/22-6/30 | Second Seasonal halibut cap |
|  | 5/9-12/31 | Bycatch status, TAC attained |
| 2006 | 2/21-3/31 | First Seasonal halibut cap |
|  | 4/5-12/31 | Red King crab cap (Zone 1 closed) |
|  | 4/12-5/31 | Second seasonal halibut cap |
|  | 5/26 | TAC attained, 7,000 t reserve released |
|  | 8/7-12/31 | Annual halibut allowance |
| 2007 | 2/17-3/31 | First seasonal halibut cap |
|  | 4/1-6/21 | Second seasonal halibut cap |
|  | 7/31-12/31 | Annual halibut allowance |

Table 10.4 Discarded and retained BSAI Alaska plaice catch ( t ) for 2002-2004, from NMFS Alaska regional office ‘blend" (2002) and catch accounting system (2003-2011) data.

| year | Discard | Retained | Total | Proportion discarded |
| :---: | :---: | :---: | :---: | :---: |
| 2003 | 11,806 | 370 | 12,176 | 0.97 |
| 2003 | 9,428 | 350 | 9,778 | 0.96 |
| 2004 | 7,193 | 379 | 7,572 | 0.95 |
| 2005 | 10,293 | 786 | 11,079 | 0.93 |
| 2006 | 14,746 | 2,564 | 17,310 | 0.85 |
| 2007 | 15,481 | 3,946 | 19,427 | 0.80 |
| 2008 | 9,330 | 8,046 | 13,376 | 0.54 |
| 2009 | 5,601 | 8,883 | 16,164 | 0.36 |
| 2010 | 5,845 | 10,322 | 0.34 |  |
| 2011 | 7,197 | 16,459 | 0.03 |  |

Table 10.5. Alaska plaice sample sizes from the BSAI fishery. The hauls columns refer to the number of hauls where from which either lengths or read otoliths were obtained.

| Year | Total hauls | Hauls with lengths | \# lengths | hauls w/lengths | hauls w/otoliths | \# otoliths collected | \# aged |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1982 | 334 | 152 | 14274 | 27 | 27 | 298 | 298 |
| 1983 | 353 | 118 | 11624 |  |  |  |  |
| 1984 | 355 | 151 | 14026 | 32 | 457 |  |  |
| 1985 | 358 | 168 | 10914 | 24 | 430 |  |  |
| 1986 | 354 | 236 | 12349 |  |  |  |  |
| 1987 | 360 | 174 | 8535 |  |  |  |  |
| 1988 | 373 | 170 | 7079 | 10 | 10 | 284 | 284 |
| 1989 | 373 | 206 | 7717 |  |  |  |  |
| 1990 | 371 | 215 | 7739 | 10 | 228 |  |  |
| 1991 | 372 | 235 | 8163 |  |  |  |  |
| 1992 | 356 | 219 | 7584 | 10 | 10 | 311 | 311 |
| 1993 | 375 | 241 | 8365 | 4 | 4 | 183 | 183 |
| 1994 | 376 | 249 | 9300 | 6 | 6 | 228 | 228 |
| 1995 | 376 | 252 | 9919 | 11 | 11 | 287 | 285 |
| 1996 | 375 | 254 | 10186 | 5 | 250 |  |  |
| 1997 | 376 | 248 | 10143 | 3 | 82 |  |  |
| 1998 | 375 | 281 | 10101 | 14 | 14 | 420 | 416 |
| 1999 | 373 | 268 | 13024 | 13 | 297 |  |  |
| 2000 | 372 | 250 | 9803 | 16 | 16 | 368 | 359 |
| 2001 | 375 | 261 | 10990 | 16 | 16 | 339 | 335 |
| 2002 | 375 | 251 | 8409 | 24 | 24 | 359 | 355 |
| 2003 | 376 | 252 | 8343 | 15 | 320 |  |  |
| 2004 | 375 | 262 | 8578 | 17 | 325 |  |  |
| 2005 | 373 | 262 | 9284 | 20 | 20 | 341 | 337 |
| 2006 | 376 | 255 | 12097 | 18 | 18 | 368 | 362 |
| 2007 | 376 | 261 | 11729 | 43 | 343 |  |  |
| 2008 |  |  | 7481 |  |  |  |  |
| 2009 |  |  | 10447 |  |  |  |  |
| 2010 |  |  | 10872 |  |  |  |  |
| 2011 |  |  | 14770 |  |  |  |  |

Table 10.6. Estimated biomass and standard deviations (t) of Alaska plaice from the eastern Bering Sea trawl survey, 1975, and 1979-2012.

| Year | Biomass estimate | Standard Deviation |
| :---: | :---: | :---: |
| 1975 | 103,500 | 11,600 |
| 1979 | 277,200 | 31,100 |
| 1980 | 354,000 | 39,800 |
| 1981 | 535,800 | 60,200 |
| 1982 | 715,400 | 64,800 |
| 1983 | 743,000 | 65,100 |
| 1984 | 789,200 | 35,800 |
| 1985 | 580,000 | 61,000 |
| 1986 | 553,900 | 63,000 |
| 1987 | 564,400 | 57,500 |
| 1988 | 699,400 | 140,000 |
| 1989 | 534,000 | 58,800 |
| 1990 | 522,800 | 50,000 |
| 1991 | 529,000 | 50,100 |
| 1992 | 530,400 | 56,400 |
| 1993 | 515,200 | 50,500 |
| 1994 | 623,100 | 53,300 |
| 1995 | 552,292 | 62,600 |
| 1996 | 529,300 | 67,500 |
| 1997 | 643,400 | 73,200 |
| 1998 | 452,600 | 58,700 |
| 1999 | 546,522 | 47,000 |
| 2000 | 443,620 | 67,600 |
| 2001 | 540,458 | 68,600 |
| 2002 | 428,519 | 53,800 |
| 2003 | 467,326 | 97,400 |
| 2004 | 488,217 | 63,800 |
| 2005 | 503,861 | 55,698 |
| 2006 | 636,971 | 81,547 |
| 2007 | 421,765 | 37,831 |
| 2008 | 509,382 | 47,431 |
| 2009 | 529,729 | 50,359 |
| 2010 | 498,104 | 46,867 |
| 2011 | 519,578 | 72,781 |
| 2012 | 581,894 | 83,432 |

Table 10.7. Alaska plaice population numbers at age (millions) estimated from the NMFS Bering Sea groundfish surveys and age readings of sampled fish.

|  | females |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1982 | 0.41 | 0.37 | 22.53 | 41.28 | 269.00 | 172.30 | 90.15 | 57.82 | 181.37 | 152.84 | 337.25 | 231.75 | 117.71 | 0.00 |
| 1988 | 0.00 | 0.21 | 3.85 | 11.70 | 47.27 | 35.98 | 62.44 | 32.87 | 62.31 | 55.98 | 25.55 | 77.65 | 0.00 | 104.15 |
| 1992 | 0.00 | 0.00 | . 21 | 4.88 | 7.67 | 32.47 | 28.58 | 20.72 | 35.20 | 24.66 | 16.18 | 25.80 | 22.36 | 134.69 |
| 1993 | 0.00 | 0.00 | 5.45 | 14.86 | 30.17 | 42.06 | 53.67 | 5.63 | 2.43 | 25.19 | 42.68 | 26.55 | 38.77 | 99.41 |
| 1994 | 0.00 | 0.00 | 7.69 | 14.80 | 45.16 | 38.83 | 21.56 | 45.23 | 16.55 | 11.28 | 55.34 | 11.75 | 50.02 | 128.93 |
| 1995 | 0.00 | 0.00 | 10.00 | 31.40 | 32.78 | 47.14 | 34.28 | 16.81 | 23.35 | 16.56 | 10.15 | 30.11 | 30.32 | 157.67 |
| 1998 | 0.00 | 0.87 | 3.72 | 9.78 | 35.71 | 37.29 | 58.62 | 28.49 | 40.13 | 43.26 | 17.83 | 24.84 | 14.62 | 83.19 |
| 2000 | 0.00 | 0.10 | 3.94 | 3.86 | 22.18 | 27.15 | 53.22 | 26.88 | 33.92 | 18.95 | 21.06 | 15.94 | 13.80 | 137.91 |
| 2001 | 0.00 | 0.00 | 4.11 | 9.46 | 13.63 | 48.23 | 21.59 | 85.08 | 30.82 | 44.56 | 15.27 | 16.01 | 10.50 | 134.68 |
| 2002 | 0.00 | 0.04 | 1.38 | 13.85 | 20.02 | 14.87 | 31.56 | 22.20 | 37.67 | 15.24 | 31.42 | 13.78 | 22.86 | 105.04 |
| 2005 | 0.86 | 2.07 | 13.32 | 23.35 | 34.58 | 31.89 | 31.31 | 28.52 | 24.17 | 28.67 | 33.18 | 19.61 | 22.53 | 100.02 |
| 2006 | 0.26 | 4.43 | 47.24 | 24.28 | 54.33 | 51.80 | 38.45 | 27.34 | 20.18 | 11.78 | 31.92 | 19.40 | 28.33 | 145.96 |
| 2007 | 0.00 | 4.02 | 43.49 | 56.53 | 35.95 | 24.59 | 20.18 | 27.42 | 29.71 | 16.80 | 17.94 | 16.90 | 8.71 | 91.65 |
| 2008 | 0.00 | 0.00 | 12.28 | 46.14 | 60.05 | 42.37 | 23.47 | 33.67 | 32.77 | 24.79 | 10.82 | 13.96 | 25.29 | 113.03 |
| 2009 | 0.00 | 0.55 | 9.92 | 14.33 | 89.06 | 61.30 | 24.44 | 36.06 | 26.58 | 17.58 | 15.89 | 12.03 | 18.55 | 120.89 |
| 2010 | 0.00 | 0.00 | 4.59 | 10.40 | 16.10 | 85.19 | 55.96 | 28.89 | 29.60 | 26.81 | 13.44 | 13.31 | 17.39 | 117.21 |
| 2011 | 0.00 | 0.03 | 0.61 | 21.03 | 34.45 | 31.66 | 73.68 | 60.28 | 24.60 | 16.22 | 26.19 | 8.60 | 9.66 | 116.23 |
|  | males |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16+ |
| 1982 | 0.58 | 0.00 | 22.23 | 73.69 | 58.78 | 95.64 | 113.81 | 126.18 | 144.63 | 170.99 | 93.50 | 155.86 | 99.64 | 103.54 |
| 1988 | 0.00 | 0.14 | 3.66 | 6.49 | 37.64 | 36.15 | 7.49 | 32.31 | 102.50 | 17.23 | 6.35 | 28.89 | 15.16 | 139.34 |
| 1992 | 0.00 | 5.31 | 16.81 | 1.29 | 22.86 | 29.62 | 19.29 | 22.23 | 46.34 | 25.41 | 21.31 | 19.97 | 10.93 | 110.33 |
| 1993 | 0.00 | 0.00 | 2.94 | 36.76 | 14.75 | 25.43 | 43.65 | 15.20 | 17.67 | 34.20 | 42.85 | 6.14 | 12.04 | 124.69 |
| 1994 | 0.18 | 2.00 | 13.65 | 13.11 | 57.64 | 61.53 | 15.17 | 30.20 | 21.32 | 14.81 | 57.29 | 47.05 | 31.05 | 128.20 |
| 1995 | 0.00 | 0.00 | 0.00 | 28.54 | 20.44 | 84.71 | 20.96 | 17.54 | 38.87 | 17.38 | 20.09 | 17.17 | 27.44 | 112.23 |
| 1998 | 0.00 | 0.30 | 5.05 | 22.12 | 37.94 | 34.11 | 51.34 | 31.63 | 26.46 | 27.30 | 11.56 | 18.07 | 15.01 | 54.87 |
| 2000 | 0.00 | 0.00 | 9.04 | 0.98 | 20.94 | 20.93 | 75.64 | 44.57 | 27.81 | 30.16 | 21.56 | 16.45 | 3.35 | 134.13 |
| 2001 | 0.00 | 0.00 | 1.68 | 17.13 | 6.41 | 70.21 | 46.70 | 64.95 | 26.29 | 52.48 | 23.07 | 69.35 | 5.37 | 132.58 |
| 2002 | 0.00 | 1.01 | 2.18 | 13.73 | 15.76 | 21.47 | 30.88 | 45.28 | 37.32 | 20.83 | 32.13 | 13.55 | 32.91 | 62.78 |
| 2005 | 0.64 | 4.19 | 10.18 | 32.27 | 23.25 | 50.37 | 14.58 | 43.10 | 18.70 | 32.76 | 41.25 | 21.95 | 10.57 | 56.32 |
| 2006 | 0.09 | 9.84 | 46.73 | 29.28 | 60.61 | 61.64 | 46.65 | 29.81 | 24.25 | 25.34 | 23.38 | 55.71 | 31.55 | 82.37 |
| 2007 | 1.64 | 3.98 | 39.18 | 63.35 | 46.71 | 18.93 | 21.23 | 41.58 | 36.97 | 6.87 | 12.81 | 20.21 | 20.92 | 72.91 |
| 2008 | 0.00 | 0.00 | 6.71 | 87.18 | 60.27 | 14.47 | 29.59 | 52.29 | 13.51 | 32.08 | 15.63 | 18.74 | 23.65 | 144.92 |
| 2009 | 0.00 | 2.88 | 6.06 | 12.58 | 93.08 | 83.70 | 71.81 | 39.87 | 23.12 | 25.57 | 11.52 | 39.20 | 19.17 | 142.87 |
| 2010 | 0.00 | 0.48 | 6.62 | 17.02 | 31.68 | 61.44 | 65.00 | 40.38 | 48.41 | 35.67 | 30.19 | 24.47 | 10.99 | 154.91 |
| 2011 | 0.00 | 1.08 | 1.40 | 17.47 | 47.71 | 26.43 | 56.99 | 63.27 | 22.49 | 33.17 | 31.88 | 11.36 | 13.32 | 149.74 |

Table 10.8. Alaska plaice sample sizes from the BSAI trawl survey. The hauls columns refer to the number of hauls from which either lengths or aged otoliths were obtained.

| Year | Total Hauls | Hauls w/Len | Num lengths | Hauls w/otoliths | Hauls w/ages | Num otoliths | Num ages |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1982 | 334 | 152 | 14274 | 27 | 27 | 298 | 298 |
| 1983 | 353 | 118 | 11624 |  |  |  |  |
| 1984 | 355 | 151 | 14026 | 32 |  | 457 |  |
| 1985 | 357 | 168 | 10914 | 24 |  | 430 |  |
| 1986 | 354 | 236 | 12349 |  |  |  |  |
| 1987 | 357 | 172 | 8533 |  |  |  |  |
| 1988 | 373 | 170 | 7079 | 10 | 10 | 284 | 284 |
| 1989 | 374 | 207 | 7741 |  |  |  |  |
| 1990 | 371 | 215 | 7739 | 10 |  | 228 |  |
| 1991 | 372 | 235 | 8163 |  |  |  |  |
| 1992 | 356 | 219 | 7584 | 10 | 10 | 311 | 311 |
| 1993 | 375 | 241 | 8365 | 4 | 4 | 183 | 183 |
| 1994 | 375 | 248 | 9299 | 6 | 6 | 228 | 228 |
| 1995 | 376 | 252 | 9919 | 11 | 11 | 287 | 285 |
| 1996 | 375 | 254 | 10186 | 5 |  | 250 |  |
| 1997 | 376 | 248 | 10143 | 3 |  | 82 |  |
| 1998 | 375 | 281 | 10101 | 14 | 14 | 420 | 416 |
| 1999 | 373 | 268 | 13024 | 13 |  | 297 |  |
| 2000 | 372 | 250 | 9803 | 16 | 16 | 368 | 359 |
| 2001 | 375 | 261 | 10990 | 16 | 16 | 339 | 335 |
| 2002 | 375 | 251 | 8409 | 24 | 24 | 359 | 355 |
| 2003 | 376 | 252 | 8343 | 15 |  | 320 |  |
| 2004 | 375 | 262 | 8578 | 17 |  | 325 |  |
| 2005 | 373 | 262 | 9284 | 20 | 20 | 341 | 337 |
| 2006 | 376 | 255 | 12097 | 18 | 18 | 362 | 362 |
| 2007 | 376 | 261 | 11729 | 43 | 42 | 343 | 335 |
| 2008 | 375 | 252 | 12804 | 35 | 35 | 342 | 338 |
| 2009 | 376 | 233 | 13547 | 68 | 68 | 620 | 590 |
| 2010 | 376 | 225 | 11366 | 60 | 51 | 627 | 448 |
| 2011 | 376 | 236 | 11514 | 59 | 59 | 571 | 560 |
| 2012 | 376 | 240 | 10399 | 62 |  | 484 |  |

Table 10.9 Estimated maturity at age for female Alaska plaice.

| age | proportion <br> mature |
| :---: | :---: |
| 3 | 0 |
| 4 | 0 |
| 5 | 0 |
| 6 | 0.08 |
| 7 | 0.2 |
| 8 | 0.43 |
| 9 | 0.58 |
| 10 | 0.79 |
| 11 | 0.88 |
| 12 | 0.95 |
| 13 | 0.97 |
| 14 | 0.98 |
| 15 | 0.99 |
| 16 | 1 |
| 17 | 1 |
| 18 | 1 |
| 19 | 1 |
| 20 | 1 |
| 21 | 1 |
| 22 | 1 |
| 23 | 1 |
| 24 | 1 |
| 25 | 1 |

Table 10.10. Estimates of management parameters associated with fitting the Ricker and Beverton-Holt stock recruitment relationships to two different time spans of data, with standard deviations in parentheses.

| $\underline{\text { SR model }}$ | year classes | $\mathrm{F}_{40}$ | $\mathrm{F}_{\mathrm{msy}}$ | $\mathrm{B}_{\text {msy }}(\mathrm{t})$ | MSY (t) | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 138280 |  |
| Ricker | 77-04 | 0.62 (0.06) | 1.19 (0.94) | 134990 (8580) | (27523) |  |
| Ricker | 89-04 | 0.62 (0.06) | 0.4 (0.3458) | 153510 (14168) | 61274 (33403) |  |
| Beverton-Holt | 77-04 | 0.62 (0.06) | 22.7 (5.5) | 26658 (2117) | 107880 (7067) | Steepness at upper bound of 1.0 |
|  |  |  |  |  |  | Steepness at upper |
| Beverton-Holt | 89-04 | 0.62 (0.06) | 22.9 (6.8) | 24415 (3421) | 99,063 (8813) | bound of 1.0 |

Table 10.11. Estimated total biomass (ages 3+), female spawner biomass, and recruitment (age 3), with comparison to the 2011 SAFE estimates. Average of the 2012 recruitment estimates $=256$ million.

|  | Female spawning biomass (t) |  | Total biomass (t) |  | Age 3 recruitment (millions) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2012 | 2011 | 2012 | 2011 | 2012 | 2011 |
| 1975 | 93,922 | 95,400 | 376,087 | 377,508 | 309 | 320 |
| 1976 | 115,398 | 116,899 | 427,654 | 429,137 | 310 | 318 |
| 1977 | 143,739 | 144,688 | 484,362 | 485,771 | 587 | 580 |
| 1978 | 173,741 | 174,389 | 540,118 | 541,058 | 352 | 336 |
| 1979 | 199,372 | 199,277 | 584,939 | 585,572 | 316 | 321 |
| 1980 | 222,092 | 221,878 | 622,927 | 623,315 | 326 | 330 |
| 1981 | 245,546 | 245,180 | 660,681 | 660,783 | 225 | 223 |
| 1982 | 269,498 | 269,096 | 689,595 | 689,486 | 242 | 242 |
| 1983 | 291,152 | 290,534 | 713,892 | 713,449 | 262 | 257 |
| 1984 | 309,464 | 308,576 | 729,366 | 728,532 | 302 | 299 |
| 1985 | 317,777 | 316,468 | 727,772 | 726,433 | 134 | 131 |
| 1986 | 315,476 | 313,815 | 713,605 | 711,541 | 148 | 140 |
| 1987 | 304,866 | 302,775 | 675,243 | 672,240 | 256 | 250 |
| 1988 | 296,660 | 294,223 | 661,991 | 658,141 | 156 | 155 |
| 1989 | 276,180 | 273,229 | 604,079 | 599,159 | 208 | 201 |
| 1990 | 274,630 | 271,237 | 598,868 | 592,919 | 321 | 314 |
| 1991 | 272,600 | 268,781 | 595,635 | 588,646 | 185 | 179 |
| 1992 | 266,657 | 262,406 | 590,641 | 582,747 | 281 | 279 |
| 1993 | 259,584 | 254,914 | 583,070 | 574,104 | 224 | 212 |
| 1994 | 256,247 | 251,147 | 583,736 | 573,905 | 329 | 328 |
| 1995 | 254,174 | 248,714 | 587,994 | 577,645 | 238 | 242 |
| 1996 | 249,714 | 243,817 | 584,441 | 573,705 | 235 | 233 |
| 1997 | 248,443 | 242,160 | 581,303 | 570,319 | 130 | 126 |
| 1998 | 245,696 | 238,991 | 570,552 | 559,505 | 152 | 152 |
| 1999 | 248,450 | 241,555 | 564,212 | 553,187 | 154 | 151 |
| 2000 | 249,626 | 242,630 | 555,980 | 545,502 | 175 | 188 |
| 2001 | 251,274 | 244,328 | 546,637 | 536,925 | 210 | 214 |
| 2002 | 251,559 | 244,759 | 543,417 | 534,914 | 218 | 228 |
| 2003 | 248,943 | 242,372 | 537,335 | 530,480 | 222 | 235 |
| 2004 | 245,293 | 239,066 | 541,091 | 536,527 | 434 | 456 |
| 2005 | 242,062 | 236,481 | 557,301 | 556,518 | 534 | 586 |
| 2006 | 236,992 | 232,182 | 570,451 | 573,410 | 194 | 199 |
| 2007 | 231,404 | 227,754 | 580,344 | 585,787 | 276 | 241 |
| 2008 | 229,524 | 227,346 | 588,615 | 595,431 | 263 | 242 |
| 2009 | 234,376 | 234,095 | 594,890 | 603,383 | 139 | 173 |
| 2010 | 244,008 | 245,820 | 600,677 | 609,394 | 171 | 146 |
| 2011 | 251,901 | 255,210 | 598,432 | 612,176 |  |  |
| 2012 | 257,418 |  | 588,499 |  |  |  |

Table 10.12 Estimated numbers at age (millions) from the stock assessment model for ages 3-25.

## females

|  | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1975 | 154 | 125 | 135 | 181 | 149 | 86 | 20 | 17 | 10 | 8 | 7 | 6 |
| 1976 | 155 | 136 | 109 | 119 | 158 | 131 | 75 | 17 | 15 | 9 | 7 | 6 |
| 1977 | 294 | 136 | 119 | 96 | 104 | 139 | 114 | 65 | 15 | 13 | 8 | 6 |
| 1978 | 176 | 258 | 119 | 105 | 84 | 91 | 121 | 100 | 57 | 13 | 11 | 7 |
| 1979 | 158 | 154 | 226 | 105 | 92 | 74 | 79 | 105 | 85 | 48 | 11 | 9 |
| 1980 | 163 | 139 | 135 | 198 | 92 | 80 | 64 | 68 | 89 | 72 | 40 | 9 |
| 1981 | 112 | 143 | 122 | 119 | 174 | 80 | 70 | 56 | 59 | 77 | 62 | 35 |
| 1982 | 121 | 99 | 126 | 107 | 104 | 152 | 70 | 61 | 48 | 51 | 66 | 53 |
| 1983 | 131 | 106 | 87 | 110 | 94 | 91 | 133 | 61 | 53 | 42 | 44 | 57 |
| 1984 | 151 | 115 | 93 | 76 | 97 | 82 | 80 | 116 | 53 | 45 | 36 | 38 |
| 1985 | 67 | 133 | 101 | 82 | 67 | 85 | 71 | 69 | 99 | 45 | 38 | 30 |
| 1986 | 74 | 59 | 116 | 89 | 72 | 58 | 73 | 61 | 58 | 83 | 37 | 32 |
| 1987 | 128 | 65 | 52 | 102 | 77 | 62 | 50 | 62 | 50 | 47 | 67 | 30 |
| 1988 | 78 | 112 | 57 | 45 | 89 | 68 | 54 | 43 | 53 | 43 | 40 | 56 |
| 1989 | 104 | 69 | 98 | 50 | 40 | 77 | 58 | 45 | 35 | 41 | 33 | 30 |
| 1990 | 161 | 91 | 60 | 86 | 44 | 35 | 67 | 50 | 38 | 30 | 35 | 28 |
| 1991 | 93 | 141 | 80 | 53 | 76 | 38 | 30 | 58 | 43 | 33 | 25 | 30 |
| 1992 | 140 | 81 | 124 | 70 | 46 | 66 | 33 | 26 | 50 | 37 | 28 | 21 |
| 1993 | 112 | 123 | 71 | 109 | 62 | 40 | 58 | 29 | 22 | 42 | 31 | 24 |
| 1994 | 165 | 99 | 108 | 63 | 95 | 54 | 35 | 50 | 25 | 19 | 36 | 26 |
| 1995 | 119 | 145 | 87 | 95 | 55 | 83 | 47 | 31 | 43 | 21 | 16 | 31 |
| 1996 | 118 | 104 | 127 | 76 | 83 | 48 | 72 | 40 | 26 | 36 | 18 | 14 |
| 1997 | 65 | 103 | 92 | 111 | 66 | 73 | 42 | 62 | 35 | 22 | 31 | 15 |
| 1998 | 76 | 57 | 91 | 80 | 98 | 58 | 63 | 36 | 53 | 29 | 18 | 25 |
| 1999 | 77 | 67 | 50 | 80 | 70 | 85 | 50 | 54 | 31 | 45 | 24 | 15 |
| 2000 | 88 | 68 | 59 | 44 | 70 | 62 | 74 | 44 | 47 | 26 | 38 | 21 |
| 2001 | 105 | 77 | 59 | 51 | 38 | 61 | 54 | 64 | 37 | 40 | 22 | 32 |
| 2002 | 109 | 92 | 68 | 52 | 45 | 34 | 53 | 47 | 55 | 32 | 34 | 19 |
| 2003 | 111 | 96 | 81 | 59 | 46 | 39 | 29 | 46 | 40 | 47 | 27 | 29 |
| 2004 | 217 | 98 | 84 | 71 | 52 | 40 | 34 | 25 | 40 | 34 | 41 | 23 |
| 2005 | 267 | 191 | 86 | 74 | 62 | 46 | 35 | 30 | 22 | 34 | 30 | 35 |
| 2006 | 97 | 235 | 167 | 75 | 65 | 54 | 40 | 30 | 26 | 19 | 29 | 25 |
| 2007 | 138 | 85 | 206 | 147 | 66 | 56 | 47 | 34 | 26 | 22 | 16 | 25 |
| 2008 | 131 | 121 | 75 | 181 | 128 | 57 | 49 | 41 | 29 | 22 | 18 | 13 |
| 2009 | 69 | 115 | 106 | 65 | 158 | 112 | 50 | 42 | 34 | 24 | 18 | 15 |
| 2010 | 86 | 61 | 101 | 93 | 57 | 138 | 98 | 43 | 36 | 29 | 21 | 15 |
| 2011 | 67 | 75 | 53 | 89 | 82 | 50 | 120 | 84 | 37 | 30 | 25 | 17 |
| 2012 | 153 | 59 | 66 | 47 | 78 | 71 | 43 | 103 | 71 | 31 | 25 | 20 |

Table 10.12 (continued) Females

|  | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1975 | 6 | 5 | 4 | 4 | 3 | 3 | 3 | 3 | 2 | 2 | 5 |
| 1976 | 5 | 5 | 4 | 4 | 3 | 3 | 3 | 2 | 2 | 2 | 6 |
| 1977 | 5 | 5 | 4 | 4 | 3 | 3 | 2 | 2 | 2 | 2 | 7 |
| 1978 | 5 | 5 | 4 | 4 | 3 | 3 | 2 | 2 | 2 | 2 | 8 |
| 1979 | 6 | 4 | 4 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 8 |
| 1980 | 8 | 5 | 4 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 8 |
| 1981 | 8 | 7 | 4 | 3 | 3 | 2 | 2 | 2 | 2 | 1 | 8 |
| 1982 | 30 | 7 | 6 | 3 | 3 | 2 | 2 | 2 | 2 | 1 | 8 |
| 1983 | 46 | 26 | 6 | 5 | 3 | 2 | 2 | 2 | 2 | 1 | 8 |
| 1984 | 49 | 39 | 22 | 5 | 4 | 3 | 2 | 2 | 1 | 1 | 8 |
| 1985 | 32 | 41 | 33 | 18 | 4 | 3 | 2 | 2 | 1 | 1 | 8 |
| 1986 | 25 | 26 | 34 | 27 | 15 | 3 | 3 | 2 | 1 | 1 | 8 |
| 1987 | 25 | 20 | 21 | 27 | 22 | 12 | 3 | 2 | 1 | 1 | 7 |
| 1988 | 25 | 21 | 17 | 18 | 23 | 18 | 10 | 2 | 2 | 1 | 7 |
| 1989 | 43 | 19 | 16 | 13 | 13 | 17 | 14 | 8 | 2 | 1 | 6 |
| 1990 | 26 | 36 | 16 | 14 | 11 | 11 | 15 | 12 | 7 | 1 | 6 |
| 1991 | 24 | 22 | 31 | 14 | 12 | 9 | 10 | 12 | 10 | 6 | 7 |
| 1992 | 25 | 20 | 19 | 26 | 12 | 10 | 8 | 8 | 10 | 8 | 10 |
| 1993 | 18 | 21 | 17 | 16 | 22 | 10 | 8 | 6 | 7 | 9 | 16 |
| 1994 | 20 | 15 | 18 | 14 | 13 | 19 | 8 | 7 | 5 | 6 | 21 |
| 1995 | 22 | 17 | 13 | 15 | 12 | 11 | 16 | 7 | 6 | 5 | 23 |
| 1996 | 26 | 19 | 14 | 11 | 13 | 10 | 9 | 13 | 6 | 5 | 23 |
| 1997 | 11 | 22 | 16 | 12 | 9 | 11 | 9 | 8 | 11 | 5 | 23 |
| 1998 | 12 | 9 | 18 | 13 | 10 | 7 | 9 | 7 | 7 | 9 | 23 |
| 1999 | 21 | 10 | 8 | 15 | 11 | 8 | 6 | 7 | 6 | 5 | 27 |
| 2000 | 13 | 18 | 9 | 7 | 13 | 9 | 7 | 5 | 6 | 5 | 28 |
| 2001 | 17 | 11 | 15 | 7 | 6 | 11 | 8 | 6 | 4 | 5 | 28 |
| 2002 | 28 | 15 | 9 | 13 | 6 | 5 | 9 | 7 | 5 | 4 | 28 |
| 2003 | 16 | 23 | 13 | 8 | 11 | 5 | 4 | 8 | 6 | 4 | 27 |
| 2004 | 25 | 14 | 20 | 11 | 7 | 9 | 5 | 4 | 7 | 5 | 27 |
| 2005 | 20 | 21 | 12 | 17 | 9 | 6 | 8 | 4 | 3 | 6 | 27 |
| 2006 | 30 | 17 | 18 | 10 | 15 | 8 | 5 | 7 | 3 | 3 | 28 |
| 2007 | 21 | 25 | 14 | 15 | 8 | 12 | 7 | 4 | 6 | 3 | 26 |
| 2008 | 20 | 17 | 21 | 12 | 12 | 7 | 10 | 5 | 3 | 5 | 23 |
| 2009 | 11 | 17 | 15 | 17 | 10 | 10 | 6 | 8 | 5 | 3 | 23 |
| 2010 | 13 | 9 | 14 | 12 | 14 | 8 | 9 | 5 | 7 | 4 | 22 |
| 2011 | 13 | 11 | 8 | 12 | 10 | 12 | 7 | 7 | 4 | 6 | 22 |
| 2012 | 14 | 10 | 9 | 6 | 10 | 8 | 10 | 6 | 6 | 3 | 23 |

Table 10.12 (continued)
Male numbers at age (millions)

|  | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 154 | 125 | 135 | 181 | 149 | 86 | 20 | 17 | 10 | 8 | 7 | 6 |
| $\mathbf{1 9 7 6}$ | 155 | 136 | 109 | 119 | 158 | 130 | 75 | 17 | 15 | 9 | 7 | 6 |
| $\mathbf{1 9 7 7}$ | 294 | 136 | 119 | 96 | 104 | 139 | 114 | 65 | 15 | 13 | 8 | 6 |
| $\mathbf{1 9 7 8}$ | 176 | 258 | 119 | 104 | 84 | 91 | 121 | 100 | 57 | 13 | 11 | 7 |
| $\mathbf{1 9 7 9}$ | 158 | 154 | 226 | 105 | 91 | 74 | 79 | 105 | 85 | 49 | 11 | 9 |
| $\mathbf{1 9 8 0}$ | 163 | 139 | 135 | 198 | 92 | 80 | 64 | 68 | 90 | 73 | 41 | 9 |
| $\mathbf{1 9 8 1}$ | 112 | 143 | 122 | 119 | 174 | 80 | 70 | 56 | 59 | 78 | 63 | 35 |
| $\mathbf{1 9 8 2}$ | 121 | 99 | 126 | 107 | 104 | 152 | 70 | 61 | 48 | 51 | 67 | 54 |
| $\mathbf{1 9 8 3}$ | 131 | 106 | 87 | 110 | 94 | 91 | 133 | 61 | 53 | 42 | 44 | 58 |
| $\mathbf{1 9 8 4}$ | 151 | 115 | 93 | 76 | 97 | 82 | 80 | 116 | 53 | 46 | 36 | 38 |
| $\mathbf{1 9 8 5}$ | 67 | 133 | 101 | 82 | 67 | 84 | 71 | 69 | 99 | 45 | 39 | 30 |
| $\mathbf{1 9 8 6}$ | 74 | 59 | 116 | 88 | 71 | 58 | 73 | 61 | 59 | 84 | 38 | 32 |
| $\mathbf{1 9 8 7}$ | 128 | 65 | 52 | 102 | 77 | 62 | 50 | 62 | 51 | 48 | 68 | 30 |
| $\mathbf{1 9 8 8}$ | 78 | 112 | 57 | 45 | 89 | 67 | 54 | 43 | 53 | 44 | 41 | 58 |
| $\mathbf{1 9 8 9}$ | 104 | 68 | 98 | 50 | 39 | 77 | 57 | 45 | 35 | 42 | 34 | 32 |
| $\mathbf{1 9 9 0}$ | 161 | 91 | 60 | 86 | 44 | 34 | 67 | 50 | 39 | 30 | 36 | 29 |
| $\mathbf{1 9 9 1}$ | 93 | 141 | 80 | 53 | 75 | 38 | 30 | 58 | 43 | 33 | 26 | 31 |
| $\mathbf{1 9 9 2}$ | 140 | 81 | 124 | 70 | 46 | 66 | 33 | 26 | 50 | 37 | 28 | 22 |
| $\mathbf{1 9 9 3}$ | 112 | 123 | 71 | 108 | 62 | 40 | 57 | 29 | 22 | 43 | 31 | 24 |
| $\mathbf{1 9 9 4}$ | 165 | 99 | 108 | 63 | 95 | 54 | 35 | 50 | 25 | 19 | 36 | 26 |
| $\mathbf{1 9 9 5}$ | 119 | 145 | 86 | 95 | 55 | 83 | 47 | 30 | 43 | 21 | 16 | 31 |
| $\mathbf{1 9 9 6}$ | 118 | 104 | 127 | 76 | 83 | 48 | 72 | 40 | 26 | 36 | 18 | 14 |
| $\mathbf{1 9 9 7}$ | 65 | 103 | 91 | 111 | 66 | 72 | 42 | 62 | 35 | 22 | 31 | 15 |
| $\mathbf{1 9 9 8}$ | 76 | 57 | 91 | 80 | 97 | 58 | 63 | 36 | 53 | 29 | 19 | 26 |
| $\mathbf{1 9 9 9}$ | 77 | 67 | 50 | 79 | 70 | 85 | 50 | 54 | 31 | 45 | 25 | 16 |
| $\mathbf{2 0 0 0}$ | 88 | 68 | 59 | 44 | 70 | 61 | 74 | 44 | 47 | 26 | 39 | 21 |
| $\mathbf{2 0 0 1}$ | 105 | 77 | 59 | 51 | 38 | 61 | 53 | 64 | 37 | 40 | 22 | 33 |
| $\mathbf{2 0 0 2}$ | 109 | 92 | 67 | 52 | 45 | 34 | 53 | 46 | 55 | 32 | 34 | 19 |
| $\mathbf{2 0 0 3}$ | 111 | 96 | 81 | 59 | 46 | 39 | 29 | 46 | 40 | 48 | 28 | 29 |
| $\mathbf{2 0 0 4}$ | 217 | 97 | 84 | 71 | 52 | 40 | 34 | 25 | 40 | 35 | 41 | 24 |
| $\mathbf{2 0 0 5}$ | 267 | 191 | 86 | 74 | 62 | 45 | 35 | 30 | 22 | 35 | 30 | 35 |
| $\mathbf{2 0 0 6}$ | 97 | 234 | 167 | 75 | 65 | 54 | 40 | 30 | 26 | 19 | 30 | 25 |
| $\mathbf{2 0 0 7}$ | 138 | 85 | 206 | 147 | 66 | 56 | 47 | 34 | 26 | 22 | 16 | 25 |
| $\mathbf{2 0 0 8}$ | 131 | 121 | 75 | 180 | 128 | 57 | 49 | 41 | 29 | 22 | 18 | 13 |
| $\mathbf{2 0 0 9}$ | 69 | 115 | 106 | 65 | 158 | 112 | 50 | 42 | 35 | 25 | 18 | 15 |
| $\mathbf{2 0 1 0}$ | 86 | 61 | 101 | 93 | 57 | 138 | 97 | 43 | 36 | 30 | 21 | 16 |
| $\mathbf{2 0 1 1}$ | 67 | 75 | 53 | 89 | 81 | 50 | 120 | 84 | 37 | 31 | 25 | 18 |
| $\mathbf{2 0 1 2}$ | 153 | 59 | 66 | 47 | 77 | 71 | 43 | 103 | 71 | 31 | 26 | 21 |

Table 10.12 (continued) Males (continued)

|  | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1975 | 6 | 5 | 4 | 4 | 3 | 3 | 3 | 3 | 2 | 2 | 5 |
| 1976 | 5 | 5 | 4 | 4 | 3 | 3 | 3 | 2 | 2 | 2 | 6 |
| 1977 | 5 | 5 | 4 | 4 | 3 | 3 | 2 | 2 | 2 | 2 | 7 |
| 1978 | 5 | 5 | 4 | 4 | 3 | 3 | 2 | 2 | 2 | 2 | 8 |
| 1979 | 6 | 4 | 4 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 8 |
| 1980 | 8 | 5 | 4 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 8 |
| 1981 | 8 | 7 | 4 | 3 | 3 | 2 | 2 | 2 | 2 | 1 | 8 |
| 1982 | 30 | 7 | 6 | 3 | 3 | 2 | 2 | 2 | 2 | 1 | 8 |
| 1983 | 46 | 26 | 6 | 5 | 3 | 2 | 2 | 2 | 2 | 1 | 8 |
| 1984 | 49 | 40 | 22 | 5 | 4 | 3 | 2 | 2 | 1 | 1 | 8 |
| 1985 | 32 | 42 | 33 | 19 | 4 | 4 | 2 | 2 | 1 | 1 | 8 |
| 1986 | 25 | 27 | 35 | 28 | 16 | 4 | 3 | 2 | 1 | 1 | 8 |
| 1987 | 26 | 20 | 21 | 27 | 22 | 12 | 3 | 2 | 1 | 1 | 7 |
| 1988 | 26 | 22 | 17 | 18 | 23 | 18 | 10 | 2 | 2 | 1 | 7 |
| 1989 | 44 | 20 | 17 | 13 | 14 | 17 | 14 | 8 | 2 | 1 | 6 |
| 1990 | 27 | 37 | 17 | 14 | 11 | 11 | 15 | 12 | 7 | 2 | 6 |
| 1991 | 25 | 23 | 32 | 14 | 12 | 9 | 10 | 13 | 10 | 6 | 7 |
| 1992 | 26 | 21 | 19 | 27 | 12 | 10 | 8 | 8 | 11 | 9 | 11 |
| 1993 | 18 | 22 | 18 | 16 | 23 | 10 | 8 | 7 | 7 | 9 | 16 |
| 1994 | 20 | 16 | 19 | 15 | 14 | 19 | 9 | 7 | 6 | 6 | 21 |
| 1995 | 23 | 17 | 13 | 16 | 13 | 12 | 16 | 7 | 6 | 5 | 23 |
| 1996 | 26 | 19 | 14 | 11 | 13 | 11 | 10 | 14 | 6 | 5 | 23 |
| 1997 | 12 | 22 | 16 | 12 | 9 | 11 | 9 | 8 | 11 | 5 | 24 |
| 1998 | 13 | 10 | 18 | 13 | 10 | 8 | 9 | 7 | 7 | 9 | 24 |
| 1999 | 22 | 11 | 8 | 15 | 11 | 8 | 7 | 8 | 6 | 6 | 28 |
| 2000 | 13 | 18 | 9 | 7 | 13 | 9 | 7 | 6 | 7 | 5 | 28 |
| 2001 | 18 | 11 | 16 | 8 | 6 | 11 | 8 | 6 | 5 | 6 | 28 |
| 2002 | 28 | 15 | 10 | 13 | 6 | 5 | 9 | 7 | 5 | 4 | 29 |
| 2003 | 16 | 24 | 13 | 8 | 11 | 5 | 4 | 8 | 6 | 4 | 28 |
| 2004 | 25 | 14 | 20 | 11 | 7 | 10 | 5 | 4 | 7 | 5 | 28 |
| 2005 | 20 | 22 | 12 | 18 | 10 | 6 | 8 | 4 | 3 | 6 | 28 |
| 2006 | 30 | 17 | 18 | 10 | 15 | 8 | 5 | 7 | 3 | 3 | 29 |
| 2007 | 21 | 25 | 15 | 15 | 9 | 12 | 7 | 4 | 6 | 3 | 26 |
| 2008 | 21 | 18 | 21 | 12 | 13 | 7 | 10 | 6 | 4 | 5 | 24 |
| 2009 | 11 | 17 | 15 | 17 | 10 | 11 | 6 | 9 | 5 | 3 | 24 |
| 2010 | 13 | 9 | 15 | 12 | 15 | 8 | 9 | 5 | 7 | 4 | 23 |
| 2011 | 13 | 11 | 8 | 12 | 10 | 12 | 7 | 7 | 4 | 6 | 22 |
| 2012 | 15 | 11 | 9 | 6 | 10 | 9 | 10 | 6 | 6 | 3 | 23 |

Table 10.13 Estimate of the number of female spawners (millions), at age, from the stock assessment model.

|  | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 15 | 34 | 42 | 15 | 16 | 11 | 9 | 8 | 7 |
| $\mathbf{1 9 7 6}$ | 11 | 34 | 64 | 49 | 18 | 16 | 10 | 8 | 7 |
| $\mathbf{1 9 7 7}$ | 9 | 25 | 64 | 75 | 59 | 17 | 15 | 9 | 7 |
| $\mathbf{1 9 7 8}$ | 10 | 19 | 47 | 75 | 90 | 57 | 16 | 13 | 8 |
| $\mathbf{1 9 7 9}$ | 10 | 22 | 36 | 55 | 88 | 85 | 52 | 14 | 11 |
| $\mathbf{1 9 8 0}$ | 18 | 21 | 41 | 42 | 64 | 84 | 78 | 45 | 12 |
| $\mathbf{1 9 8 1}$ | 10 | 39 | 40 | 48 | 50 | 62 | 78 | 69 | 39 |
| $\mathbf{1 9 8 2}$ | 10 | 22 | 73 | 47 | 57 | 48 | 58 | 69 | 60 |
| $\mathbf{1 9 8 3}$ | 10 | 21 | 42 | 86 | 56 | 55 | 45 | 51 | 60 |
| $\mathbf{1 9 8 4}$ | 7 | 22 | 40 | 50 | 102 | 54 | 51 | 39 | 44 |
| $\mathbf{1 9 8 5}$ | 7 | 15 | 41 | 47 | 58 | 97 | 50 | 44 | 34 |
| $\mathbf{1 9 8 6}$ | 8 | 16 | 28 | 48 | 55 | 55 | 88 | 43 | 38 |
| $\mathbf{1 9 8 7}$ | 9 | 17 | 30 | 32 | 56 | 51 | 48 | 73 | 35 |
| $\mathbf{1 9 8 8}$ | 4 | 20 | 32 | 36 | 38 | 53 | 47 | 42 | 62 |
| $\mathbf{1 9 8 9}$ | 4 | 9 | 37 | 37 | 40 | 34 | 45 | 37 | 33 |
| $\mathbf{1 9 9 0}$ | 8 | 9 | 17 | 44 | 44 | 38 | 31 | 39 | 32 |
| $\mathbf{1 9 9 1}$ | 5 | 17 | 18 | 19 | 52 | 42 | 36 | 28 | 34 |
| $\mathbf{1 9 9 2}$ | 6 | 10 | 32 | 21 | 23 | 50 | 39 | 31 | 24 |
| $\mathbf{1 9 9 3}$ | 10 | 14 | 20 | 37 | 25 | 22 | 46 | 34 | 26 |
| $\mathbf{1 9 9 4}$ | 6 | 21 | 26 | 23 | 44 | 24 | 20 | 40 | 29 |
| $\mathbf{1 9 9 5}$ | 9 | 12 | 40 | 30 | 27 | 42 | 22 | 18 | 34 |
| $\mathbf{1 9 9 6}$ | 7 | 19 | 23 | 47 | 35 | 26 | 38 | 19 | 15 |
| $\mathbf{1 9 9 7}$ | 10 | 15 | 36 | 27 | 55 | 34 | 24 | 33 | 16 |
| $\mathbf{1 9 9 8}$ | 8 | 22 | 27 | 42 | 31 | 52 | 30 | 20 | 28 |
| $\mathbf{1 9 9 9}$ | 7 | 17 | 42 | 32 | 49 | 30 | 48 | 26 | 17 |
| $\mathbf{2 0 0 0}$ | 4 | 16 | 31 | 50 | 38 | 47 | 28 | 42 | 23 |
| $\mathbf{2 0 0 1}$ | 5 | 9 | 30 | 37 | 58 | 36 | 43 | 24 | 36 |
| $\mathbf{2 0 0 2}$ | 5 | 10 | 16 | 35 | 43 | 56 | 34 | 38 | 21 |
| $\mathbf{2 0 0 3}$ | 6 | 10 | 20 | 19 | 42 | 42 | 52 | 29 | 33 |
| $\mathbf{2 0 0 4}$ | 7 | 13 | 20 | 23 | 23 | 40 | 39 | 46 | 25 |
| $\mathbf{2 0 0 5}$ | 7 | 15 | 24 | 23 | 27 | 22 | 37 | 34 | 40 |
| $\mathbf{2 0 0 6}$ | 7 | 16 | 28 | 28 | 27 | 26 | 20 | 33 | 29 |
| $\mathbf{2 0 0 7}$ | 14 | 16 | 29 | 32 | 33 | 26 | 24 | 17 | 28 |
| $\mathbf{2 0 0 8}$ | 18 | 31 | 30 | 34 | 38 | 32 | 23 | 20 | 15 |
| $\mathbf{2 0 0 9}$ | 6 | 40 | 58 | 35 | 40 | 36 | 29 | 20 | 17 |
| $\mathbf{2 0 1 0}$ | 7 | 13 | 75 | 68 | 41 | 38 | 33 | 25 | 17 |
| $\mathbf{2 0 1 1}$ | 8 | 16 | 25 | 88 | 80 | 39 | 35 | 28 | 21 |
| $\mathbf{2 0 1 2}$ | 4 | 16 | 31 | 25 | 81 | 62 | 29 | 24 | 20 |

Table 10.13 continued.

|  | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1975 | 6 | 6 | 5 | 4 | 4 | 4 | 3 | 3 | 3 | 3 | 6 |
| 1976 | 6 | 6 | 5 | 4 | 4 | 3 | 3 | 3 | 3 | 2 | 8 |
| 1977 | 6 | 5 | 5 | 4 | 4 | 3 | 3 | 3 | 2 | 2 | 9 |
| 1978 | 6 | 5 | 5 | 4 | 4 | 3 | 3 | 3 | 2 | 2 | 9 |
| 1979 | 7 | 5 | 5 | 4 | 4 | 3 | 3 | 2 | 2 | 2 | 10 |
| 1980 | 10 | 6 | 4 | 4 | 3 | 3 | 3 | 2 | 2 | 2 | 10 |
| 1981 | 10 | 8 | 5 | 4 | 3 | 3 | 3 | 2 | 2 | 2 | 10 |
| 1982 | 34 | 9 | 7 | 4 | 3 | 3 | 2 | 2 | 2 | 2 | 10 |
| 1983 | 52 | 30 | 8 | 6 | 4 | 3 | 2 | 2 | 2 | 2 | 10 |
| 1984 | 52 | 45 | 25 | 7 | 5 | 3 | 2 | 2 | 2 | 2 | 10 |
| 1985 | 38 | 45 | 38 | 22 | 6 | 4 | 3 | 2 | 2 | 2 | 10 |
| 1986 | 29 | 32 | 37 | 32 | 18 | 5 | 4 | 2 | 2 | 2 | 10 |
| 1987 | 30 | 23 | 26 | 30 | 26 | 15 | 4 | 3 | 2 | 1 | 9 |
| 1988 | 30 | 26 | 20 | 22 | 25 | 22 | 12 | 3 | 3 | 1 | 9 |
| 1989 | 49 | 23 | 20 | 15 | 17 | 20 | 17 | 10 | 2 | 2 | 8 |
| 1990 | 28 | 42 | 20 | 17 | 13 | 14 | 17 | 14 | 8 | 2 | 9 |
| 1991 | 28 | 25 | 36 | 17 | 15 | 11 | 12 | 14 | 12 | 7 | 9 |
| 1992 | 29 | 24 | 21 | 31 | 15 | 13 | 10 | 11 | 12 | 11 | 14 |
| 1993 | 20 | 25 | 20 | 18 | 26 | 12 | 11 | 8 | 9 | 10 | 20 |
| 1994 | 23 | 17 | 21 | 17 | 15 | 22 | 10 | 9 | 7 | 8 | 26 |
| 1995 | 25 | 20 | 15 | 18 | 15 | 13 | 19 | 9 | 8 | 6 | 29 |
| 1996 | 29 | 21 | 17 | 13 | 15 | 12 | 11 | 16 | 8 | 7 | 29 |
| 1997 | 13 | 25 | 18 | 14 | 11 | 13 | 10 | 9 | 14 | 6 | 30 |
| 1998 | 14 | 11 | 21 | 15 | 12 | 9 | 11 | 9 | 8 | 11 | 31 |
| 1999 | 24 | 12 | 9 | 18 | 13 | 10 | 8 | 9 | 7 | 7 | 36 |
| 2000 | 15 | 21 | 10 | 8 | 15 | 11 | 8 | 6 | 8 | 6 | 36 |
| 2001 | 19 | 13 | 18 | 8 | 7 | 13 | 9 | 7 | 5 | 7 | 36 |
| 2002 | 31 | 17 | 11 | 15 | 7 | 6 | 11 | 8 | 6 | 5 | 36 |
| 2003 | 18 | 27 | 14 | 9 | 13 | 6 | 5 | 9 | 7 | 5 | 35 |
| 2004 | 28 | 16 | 23 | 12 | 8 | 11 | 5 | 4 | 8 | 6 | 35 |
| 2005 | 22 | 25 | 13 | 20 | 11 | 7 | 10 | 5 | 4 | 7 | 35 |
| 2006 | 34 | 19 | 21 | 11 | 17 | 9 | 6 | 8 | 4 | 3 | 36 |
| 2007 | 25 | 29 | 16 | 18 | 10 | 14 | 8 | 5 | 7 | 3 | 33 |
| 2008 | 24 | 21 | 24 | 13 | 15 | 8 | 12 | 6 | 4 | 6 | 30 |
| 2009 | 12 | 20 | 18 | 21 | 11 | 13 | 7 | 10 | 5 | 4 | 30 |
| 2010 | 15 | 11 | 17 | 15 | 17 | 10 | 11 | 6 | 9 | 5 | 28 |
| 2011 | 15 | 13 | 9 | 14 | 13 | 15 | 8 | 9 | 5 | 7 | 28 |
| 2012 | 14 | 10 | 9 | 6 | 10 | 8 | 10 | 6 | 6 | 3 | 23 |

Table 10.14. Projections of spawning biomass ( $1,000 \mathrm{~s} t$ ), catch ( $1,000 \mathrm{~s} t$ ), and fishing mortality rate for each of the several scenarios. The values of $B_{40 \%}$ and $B_{35 \%}$ are $152,000 t$ and $133,000 t$, respectively.

| Scenarios 1 and 2 |  |  |  |
| :--- | :---: | :---: | :---: |
| Maximum ABC harvest permissible |  |  |  |
| Female |  |  |  |
| Year | spwn bio | catch | F |
| 2012 | 257.418 | 17.000 | 0.048 |
| 2013 | 254.465 | 55.214 | 0.158 |
| 2014 | 232.234 | 51.058 | 0.158 |
| 2015 | 210.558 | 46.696 | 0.158 |
| 2016 | 190.700 | 42.476 | 0.158 |
| 2017 | 176.264 | 38.816 | 0.158 |
| 2018 | 165.336 | 36.070 | 0.158 |
| 2019 | 159.497 | 34.293 | 0.157 |
| 2020 | 155.848 | 32.982 | 0.156 |
| 2021 | 154.377 | 32.238 | 0.154 |
| 2022 | 153.652 | 31.893 | 0.153 |
| 2023 | 153.697 | 31.822 | 0.152 |
| 2024 | 154.152 | 31.932 | 0.152 |
| 2025 | 154.956 | 32.133 | 0.153 |

Scenario 4
Harvest at average F over the past 5 years

|  | Female |  |  |
| :---: | ---: | :---: | ---: |
| Year | spwn bio | catch | F |
| 2012 | 257.418 | 17.000 | 0.048 |
| 2013 | 260.495 | 17.400 | 0.047 |
| 2014 | 260.723 | 11.198 | 0.030 |
| 2015 | 260.728 | 11.305 | 0.030 |
| 2016 | 258.562 | 11.275 | 0.030 |
| 2017 | 258.015 | 11.181 | 0.030 |
| 2018 | 257.511 | 11.108 | 0.030 |
| 2019 | 259.638 | 11.110 | 0.030 |
| 2020 | 262.211 | 11.186 | 0.030 |
| 2021 | 265.752 | 11.310 | 0.030 |
| 2022 | 269.079 | 11.457 | 0.030 |
| 2023 | 272.581 | 11.613 | 0.030 |
| 2024 | 276.075 | 11.769 | 0.030 |
| 2025 | 279.659 | 11.919 | 0.030 |

Scenario 3
1/2 Maximum ABC harvest
permissible
Female

| Year | spwn bio | catch | F |
| :---: | ---: | :---: | :---: |
| 2012 | 257.418 | 17.000 | 0.048 |
| 2013 | 258.908 | 27.599 | 0.076 |
| 2014 | 252.487 | 25.635 | 0.072 |
| 2015 | 244.356 | 25.040 | 0.072 |
| 2016 | 234.963 | 24.206 | 0.072 |
| 2017 | 228.204 | 23.330 | 0.072 |
| 2018 | 222.541 | 22.617 | 0.072 |
| 2019 | 220.346 | 22.176 | 0.072 |
| 2020 | 219.239 | 21.980 | 0.072 |
| 2021 | 219.559 | 21.946 | 0.072 |
| 2022 | 220.071 | 22.005 | 0.072 |
| 2023 | 221.065 | 22.115 | 0.072 |
| 2024 | 222.313 | 22.250 | 0.072 |
| 2025 | 223.864 | 22.397 | 0.072 |

Scenario 5
No fishing

| Female |  |  |  |
| :---: | ---: | :---: | :---: |
| Year | spwn bio | catch | F |
| 2012 | 257.418 | 17.000 | 0.047 |
| 2013 | 263.142 | 0 | 0 |
| 2014 | 272.668 | 0 | 0 |
| 2015 | 278.89 | 0 | 0 |
| 2016 | 282.548 | 0 | 0 |
| 2017 | 287.316 | 0 | 0 |
| 2018 | 291.52 | 0 | 0 |
| 2019 | 297.849 | 0 | 0 |
| 2020 | 304.219 | 0 | 0 |
| 2021 | 311.257 | 0 | 0 |
| 2022 | 317.791 | 0 | 0 |
| 2023 | 324.273 | 0 | 0 |
| 2024 | 330.538 | 0 | 0 |
| 2025 | 336.712 | 0 | 0 |

Table 10.14- continued

Scenario 6
Determination of overfishing
B35=133
Female

|  | Female <br> Yewn bio | catch | F |
| :---: | :---: | :---: | :---: |
| 2012 | 257.418 | 17.000 | 0.048 |
| 2013 | 252.490 | 67.057 | 0.194 |
| 2014 | 223.803 | 60.219 | 0.194 |
| 2015 | 197.503 | 53.590 | 0.194 |
| 2016 | 174.619 | 47.563 | 0.194 |
| 2017 | 158.424 | 42.583 | 0.194 |
| 2018 | 146.894 | 37.667 | 0.187 |
| 2019 | 141.642 | 34.495 | 0.180 |
| 2020 | 139.149 | 33.098 | 0.177 |
| 2021 | 138.733 | 32.751 | 0.176 |
| 2022 | 138.788 | 32.757 | 0.175 |
| 2023 | 139.347 | 33.012 | 0.176 |
| 2024 | 140.090 | 33.336 | 0.177 |
| 2025 | 141.010 | 33.743 | 0.178 |

Scenario 7
Determination of whether Alaskak plaice are approaching an overfished condition

B35=133
Female

| Year | spwn bio | catch | F |
| :---: | :---: | :---: | :--- |
| 2012 | 257.418 | 17.000 | 0.048 |
| 2013 | 254.464 | 55.217 | 0.158 |
| 2014 | 232.233 | 51.058 | 0.158 |
| 2015 | 208.882 | 56.691 | 0.194 |
| 2016 | 183.664 | 50.054 | 0.194 |
| 2017 | 165.498 | 44.544 | 0.194 |
| 2018 | 152.191 | 40.177 | 0.192 |
| 2019 | 145.161 | 36.242 | 0.184 |
| 2020 | 141.410 | 34.200 | 0.179 |
| 2021 | 140.152 | 33.424 | 0.178 |
| 2022 | 139.658 | 33.160 | 0.176 |
| 2023 | 139.865 | 33.245 | 0.176 |
| 2024 | 140.387 | 33.467 | 0.177 |
| 2025 | 141.171 | 33.810 | 0.178 |



Figure 10.1--Locations of Alaska plaice catch in 2012, by month. The harvest primarily occurred in the yellowfin sole fishery and rock sole fisheries.


Figure 10.1 (continued).


Figure 10.1--(Continued).


Figure 10.1--(Continued).


Figure 10.1--(Continued).


Figure 10.2--Estimated survey biomass and 95\% confidence intervals from NMFS eastern Bering Sea bottom trawl surveys.


Figure 10.3--Residuals from fitting the trawl survey biomass (bars) compared to the average annual bottom temperature anomalies (degrees Celcius) obtained during the trawl survey.


Figure 10.4.--Eastern and northern Bering Sea survey CPUE (kg/ha) of Alaska plaice from 2010.

## length at age



Figure 10.5-- Estimated length and weight-at-age relationships for Alaska plaice used in the 2009 assessment.

## M profile for Alaska plaice



Figure 10.6 Stock assessment model fit (in terms of -log(likelihood)) to a range of male and female natural mortality values.


Figure 10.7--Estimated Ricker stock recruitment relationship for Alaska plaice using the year classes 1977-2006.


Figure 10.8--Estimated beginning year total biomass of Alaska plaice from the assessment model. $95 \%$ percent confidence intervals are from mcmc integration.


Figure 10.9--Observed (data points) and predicted (solid line) survey biomass of Alaska plaice.


Figure 10.10--Model estimates of Alaska plaice female spawning biomass with estimates of $\mathrm{B}_{35}$ and $\mathrm{B}_{40}$. Ninety-five percent credible intervals are from MCMC integration.
selectivity estimates


Figure 10.11--Model estimates of survey and fishery selectivity.


Figure 10.12--Survey age composition (solid line = observed, dotted line = predicted, females above x axis, males below x axis).


Figure 10.12-(continued).


Figure 10.13--Survey length composition by year (solid line = observed, dotted line = predicted, females above x axis, males below x axis).)


Figure 10.14--Fishery age composition by year (solid line = observed, dotted line = predicted, females above x axis, males below x axis).


Figure 10.15--Fishery length composition by year (solid line = observed, dotted line = predicted, females above x axis, males below x axis).


Figure 10.16--Estimated fully selected fishing mortality.


Figure 10.17--Estimated recruitment (age 3) for Alaska plaice. 95\% credible intervals are from mcmc integration.

## Projection at 5 year average $F$



Figure 10.18 Model projection of Alaska plaice at the harvest rate of the average of the past five years assuming the estimated 2011 numbers-at-age from the stock assessment model.

## BSAI Alaska plaice



Figure 10.19 Phase-plane figure of the estimated time-series of Alaska plaice female spawning biomass and fishing mortality relative to the tier 3 control rule.


Figure 9.20. Posterior distribution of the 2012 estimate of female spawning biomass ( t ) from mcmc integration with $\mathrm{B}_{40 \%}$ indicated.
(This page intentionally left blank)

