STOCK ASSESSMENT AND FISHERY EVALUATION REPORT

FOR THE GROUNDFISH RESOURCES OF THE BERING SEA/ALEUTIAN ISLANDS REGIONS

Compiled by:
The Plan Team for the Groundfish Fisheries of the Bering Sea and Aleutian Islands

with Contributions by
K. Aydin, S.J. Barbeaux, D. Clausen, M.E. Conners, C. Conrath, M. Dalton, J. DiCosimo,
K. Echave, D. Hanselman, J. Hoff, T. Honkalehto, P.J. Hulson, J. Ianelli, S. Kotwicki, R. Lauth,
S. Lowe, C. Lunsford, D. McKelvey, D. Nichol, O.A. Ormseth, W. Palsson, C.J. Rodgveller, C.N. Rooper, P.

Spencer, I. Spies, W. Stockhausen, T. TenBrink, G. Thompson, C. Tribuzio,
T. Wilderbuer, and N. Williamson

November 2012
North Pacific Fishery Management Council
605 West 4th Ave., Suite 306
Anchorage, AK 99501

Stock Assessment and Fishery Evaluation Report for the Groundfish Resources of the Bering Sea/Aleutian Islands Region

Table of Contents

Introduction 3
Background Information 3
Overview of "Stock Assessment" Section 9
Stock Assessment Section

1. Eastern Bering Sea Walleye pollock 51
1A. Aleutian Islands Walleye pollock 157
1B. Bogoslof Walleye pollock 235
2. Pacific cod 245
3. Sablefish 545
4. Yellowfin sole 655
5. Greenland turbot 741
6. Arrowtooth flounder 895
7. Kamchatka flounder 967
8. Northern rock sole. 1019
9. Flathead sole 1099
10. Alaska Plaice 1225
11. Other flatfish 1277
12. Pacific ocean perch. 1291
13. Northern rockfish 1349
14. Blackspotted and Rougheye rockfish 1423
15. Shortraker rockfish 1497
16. Other rockfish 1531
17. Atka mackerel 1561
18. Skates. 1647
19. Sculpins 1735
20. Sharks 1771
21. Squids 1849
22. Octopus 1887
Appendix 1: Grenadier 1939
Ecosystem Considerations bound separately
Economic Status of Groundfish Fisheries off Alaska bound separately

Summary

by
The Plan Team for the Groundfish Fisheries
of the Bering Sea and Aleutian Islands

Introduction

The National Standard Guidelines for Fishery Management Plans published by the National Marine Fisheries Service (NMFS) require that a stock assessment and fishery evaluation (SAFE) report be prepared and reviewed annually for each fishery management plan (FMP). The SAFE report summarizes the best available scientific information concerning the past, present, and possible future condition of the stocks, marine ecosystems, and fisheries that are managed under Federal regulation. It provides information to the Councils for determining annual harvest levels from each stock, documenting significant trends or changes in the resource, marine ecosystems, and fishery over time, and assessing the relative success of existing state and Federal fishery management programs. For the FMP for the Groundfish Fishery of the Bering Sea and Aleutian Islands (BSAI) Area, the SAFE report is published in three sections: a "Stock Assessment" section, which comprises the bulk of this document, and "Economic Status of Groundfish Fisheries off Alaska" and "Ecosystem Considerations" sections, which are bound separately.
The BSAI Groundfish FMP requires that a draft of the SAFE Report be produced each year in time for the December meeting of the North Pacific Fishery Management Council. Each stock or stock complex is represented in the SAFE Report by a chapter containing the latest stock assessment. New or revised stock assessment models are generally previewed at the September Plan Team meeting, and considered again by the Plan Team at its November meeting for recommending final specifications for the following two fishing years. This process is repeated annually. Full stock assessments are required for walleye pollock, Pacific cod, Atka mackerel, sablefish, and some flatfish stocks every year. All Rockfishes, some flatfishes, sharks, skates, octopus, squid, and sculpins require full stock assessment only during years in which the Aleutian Island bottom trawl survey is conducted. This survey typically occurs in even-numbered years.
This Stock Assessment section of the SAFE report for the BSAI groundfish fisheries is compiled by the BSAI Groundfish Plan Team from chapters contributed by scientists at NMFS Alaska Fisheries Science Center (AFSC). These chapters include a recommendation by the author(s) for overfishing level (OFL) and acceptable biological catch (ABC) for each stock and stock complex managed under the FMP for the next two fishing years. This introductory section includes the recommendations of the Plan Team (Table 1), along with a summary of each chapter, including the Ecosystems Considerations chapter and the Economic SAFE Report.
The OFL and ABC recommendations by the Plan Team are reviewed by the Scientific and Statistical Committee (SSC), which may confirm the Plan Team recommendations. The Plan Team and SSC recommendations, together with social and economic factors, are considered by the Council in determining total allowable catches (TACs) and other measures used to manage the fisheries. Neither the author(s), Plan Team, nor SSC recommends TACs.

Members of the BSAI Plan Team who compiled this SAFE report were: Mike Sigler (co- chair), Grant Thompson (co- chair), Jane DiCosimo (BSAI Groundfish FMP coordinator), Kerim Aydin, David Barnard, Lowell Fritz, Mary Furuness, Dana Hanselman, Alan Haynie, Brenda Norcross, Chris Siddon, and Leslie Slater.

Background Information

The BSAI management area lies within the 200-mile U.S. Exclusive Economic Zone (EEZ) of the US (Figure 1). International North Pacific Fisheries Commission (INPFC) statistical areas 1 and 2 comprise the EBS. The Aleutian Islands (AI) region is INPFC Area 5.

Amendment 95 to the BSAI Groundfish FMP, which was implemented in 2010 for the start of the 2011 fishing year, defined three categories of species or species groups that are likely to be taken in the groundfish fishery. Species may be split or combined within the "target species" category according to procedures set forth in the FMP. The three categories of finfishes and invertebrates that have been designated for management purposes under two management classifications are listed below.

Figure 1. Bering Sea/Aleutian Islands statistical and reporting areas.

In the Fishery:

Target species-are those species that support either a single species or mixed species target fishery, are commercially important, and for which a sufficient data base exists that allows each to be managed on its own biological merits. Accordingly, a specific TAC is established annually for each target species or species assemblage. Catch of each species must be recorded and reported. Stocks/assemblages in the target category are listed below.

Ecosystem Component:

Prohibited Species-are those species and species groups the catch of which must be avoided while fishing for groundfish, and which must be immediately returned to sea with a minimum of injury except when their retention is authorized by other applicable law. Groundfish species and species groups under the FMP for which the quotas have been achieved shall be treated in the same manner as prohibited species.

Forage fish species-are those species listed below, which are a critical food source for many marine mammal, seabird and fish species. The forage fish species category is established to allow for the management of these species in a manner that prevents the development of a commercial directed fishery for forage fish. Management measures for this species category will be specified in regulations and may include such measures as prohibitions on directed fishing, limitations on allowable bycatch retention amounts, or limitations on the sale, barter, trade or any other commercial exchange, as well as the processing of forage fish in a commercial processing facility.

In the Fishery	Ecosystem Component	
Target Species 1	Prohibited Species2	Forage Fish Species3
Walleye pollock	Pacific halibut	Osmeridae family (eulachon, capelin, and other smelts)
Pacific cod	Pacific herring	Myctophidae family (lanternfishes)
Sablefish	Pacific salmon	Bathylagidae family (deep-sea smelts)
Yellowfin sole	Steelhead trout	Ammodytidae family (Pacific sand lance)
Greenland turbot	King crab	Trichodontidae family (Pacific sand fish)
Arrowtooth flounder	Tanner crab	Pholidae family (gunnels)
Kamchatka flounder		Stichaeidae family
Northern rock sole		(pricklebacks, warbonnets, eelblennys, cockscombs, shannys)
Flathead sole		Gonostomatidae family
Other flatfish assemblage		(bristlemouths, lightfishes, and anglemouths)
Alaska plaice		Order Euphausiacea (krill)
Pacific ocean perch		
Northern rockfish		
Shortraker rockfish		
Blackspotted/Rougheye rockfish assemblage		
Other rockfish assemblage		
Atka mackerel		
Skate assemblage		
Sculpin assemblage		
Shark assemblage		
Squid assemblage		
Octopus assemblage		

TAC for each listing. Species and species groups may or may not be targets of directed fisheries.
${ }^{2}$ Must be immediately returned to the sea, except when retention is required or authorized.
${ }^{3}$ Management measures for forage fish are established in regulations implementing the FMP.

Historical Catch Statistics

Catch statistics since 1954 are shown for the Eastern Bering Sea (EBS) subarea in Table 2. The initial target species in the BSAI commercial fisheries was yellowfin sole. During this period, total catches of groundfish peaked at $674,000 \mathrm{t}$ in 1961. Following a decline in abundance of yellowfin sole, other species (principally walleye pollock) were targeted, and total catches peaked at 2.2 million t in 1972 . Pollock is now the principal fishery, with catches peaking at approximately 1.4-1.5 million t due to years of high recruitment. After the Magnuson-Stevens Fishery Conservation and Management Act (MSFCMA) was adopted in 1976, catch restrictions and other management measures were placed on the fishery and total groundfish catches have since varied from one to two million t. In 2005, Congress implemented a statutory cap on TACs for BSAI groundfish of 2 million t, which had previously been a policy adopted by the Council. Catches generally total well below the 2 million t optimal yield (OY) cap. Catches in the EBS in 2011 totaled 1,721,656 t; catches through November 3, 2012 totaled 1,713,224 t. Pollock catches in 2011 totaled 1,199,243 t; catches through November 3, 2012 totaled 1,202,639 t.

Catches in the Aleutian Islands (AI) subarea always have been much smaller than in the EBS. Target species have also differed (Table 3). Pacific ocean perch (POP) was the initial target species. As POP abundance declined, the fishery diversified to different species. During the early years of exploitation, total AI groundfish catches peaked at $112,000 \mathrm{t}$ in 1965. Atka mackerel was the largest fishery in the AI at $50,600 \mathrm{t}$ in 2011 (down from $72,653 \mathrm{t}$ in 2010) and $46,860 \mathrm{t}$ through November 3, 2012. Pacific ocean perch is the second largest fishery at $18,402 \mathrm{t}$ in 2011 and 18,557 t through November 3, 2012. Pacific ocean perch displaced Pacific cod as the second largest fishery beginning in 2011, when lower Pacific cod ($10,862 \mathrm{t}$ in 2011 and $12,991 \mathrm{t}$ to date in 2012) and Atka mackerel harvest resulted from Steller sea lion protection measures. Total AI catches were 148,520 t in 2010, 96,622 t in 2011, and 98,716 t through November 3, 2012. Recent total AI catches peaked at 190,750 t in 1996.

Total catches since 1954 for the BSAI, combined, are in Table 4. Total 2011 BSAI catches were 1,818,278 t in 2011 (91 percent of total TACs which equaled the OY), compared with $1,355,200 \mathrm{t}$ in 2010 (80 percent of 1,677,154 t total TACs and 68 percent of the OY); BSAI catches through November 3, 2012 totaled 1,811,908 t (91 percent of total TACs which equaled the OY). The relationship of the various biological reference points (biomass, OFL, ABC, TAC, and catch) is depicted in Figure 2.

Figure 2. Biomass, Overfishing Level, Acceptable Biological Catch, and Total Allowable Catch for 19812013* and Catch, 1981-2012 (*2013, as recommended by the Plan Team and assuming total TACs = OY)

Recent Total Allowable Catches

Amendment 1 to the BSAI Groundfish FMP provided the framework to manage the groundfish resources as a complex. Maximum sustainable yield (MSY) for the BSAI groundfish complex was estimated at 1.8 to 2.4 million t. The OY range was set at 85 percent of the MSY range, or 1.4 to 2.0 million t . The sum of the TACs equals OY for the groundfish complex, which is constrained by the 2.0 million t cap on OY. Due to recent declines in biomasses of walleye pollock and Pacific cod, for example, and prohibited species catch (PSC) limits, the cap has not been met. The BSAI groundfish TACs totaled 1,840,000 t in 2008 and dropped further to $1,680,000 \mathrm{t}$ in 2009 and 2010, approximately 16 percent below the OY due to decreased biomasses of pollock and cod. The TACs in 2011 and 2012 were set equal to OY, as biomasses of pollock and Pacific cod increased.

Establishment of the Western Alaska Community Development Quota (CDQ) Program annual groundfish reserves is concurrent with the annual BSAI groundfish harvest specifications. Once annual BSAI groundfish TACs are established, the CDQ Program is allocated set portions of the TACs for certain species and species assemblages. This includes 10 percent of the BS and AI pollock TACs, 20 percent of the fixed gear sablefish TAC, and 7.5 percent of the sablefish trawl gear allocation. It also receives 10.7 percent of the TACs (up from 7.5 percent prior to 2008) for Pacific cod, yellowfin sole, rock sole, flathead sole, Atka mackerel, AI Pacific ocean perch, arrowtooth flounder, and BS Greenland turbot. The program also receives allocations of PSC limits.

The TAC specifications for the primary allocated species, and PSC limit specifications, are recommended by the Council at its December meetings. For the non-specified reserve, 15 percent of the TAC for each target species, except for pollock, the hook-and-line and pot gear allocation of sablefish, and the Amendment 80 species (Pacific cod, Atka mackerel, flathead sole, rock sole, yellowfin sole, and Aleutian Islands Pacific ocean perch), are placed in a non-specified reserve. Apportionments to this reserve range from 4.3 to 15 percent of applicable TAC limits. The reserve is used for (1) correction of operational problems in the fishing fleets, (2) to promote full and efficient use of groundfish resources, (3) adjustments of species TACs according to changing conditions of stocks during fishing year, (4) apportionments, and Community Development Quota allocations. The initial TAC (ITAC) for each species is the remainder of the TAC after the subtraction of the reserves.

Biological Reference Points

A number of biological reference points are used in this SAFE report. Among these are the fishing mortality rate (F) and stock biomass level (B) associated with MSY ($F_{\text {MSY }}$ and $B_{\text {MSY }}$, respectively), and the fishing mortality rates reduce the level of spawning biomass per recruit to some percentage of the pristine level ($F_{\text {P\% }}$). The fishing mortality rate used to compute ABC is designated $F_{A B C}$, and the fishing mortality rate used to compute the OFL is designated $\mathrm{F}_{\mathrm{OFL}}$.

Definition of Acceptable Biological Catch and the Overfishing Level

Amendment 56 to the BSAI Groundfish FMP, which was implemented in 1999, defines ABC and OFL for the BSAI groundfish fisheries. The definitions are shown below, where the fishing mortality rate is denoted F, stock biomass (or spawning stock biomass, as appropriate) is denoted B, and the F and B levels corresponding to MSY are denoted $F_{\text {MSY }}$ and $B_{\text {MSY }}$ respectively.
Acceptable Biological Catch is a preliminary description of the acceptable harvest (or range of harvests) for a given stock or complex. Its derivation focuses on the status and dynamics of the stock, environmental conditions, other ecological factors, and prevailing technological characteristics of the fishery. The fishing mortality rate used to calculate ABC is capped as described under "overfishing" below.
Overfishing is defined as any amount of fishing in excess of a prescribed maximum allowable rate. This maximum allowable rate is prescribed through a set of six tiers which are listed below in descending order of preference, corresponding to descending order of information availability. The SSC will have final authority for determining whether a given item of information is reliable for the purpose of this definition, and may use either objective or subjective criteria in making such determinations. For Tier (1), a pdf refers to a probability density function. For Tiers (1-2), if a reliable pdf of $B_{M S Y}$ is available, the preferred point estimate of $B_{\text {MSY }}$ is the geometric mean of its pdf. For Tiers (1-5), if a reliable pdf of B is available, the preferred point estimate is the geometric mean of its pdf. For Tiers (1-3), the coefficient ' α ' is set at a default value of 0.05 , with the understanding that the SSC may establish a different value for a specific stock or stock complex as merited by the best available scientific information. For Tiers (2-4), a designation of the form " $F_{X \% \text { " }}$ refers to the F associated with an equilibrium level of spawning per recruit (SPR) equal to X percent of the equilibrium level of spawning per recruit in the absence of any fishing. If reliable information sufficient to characterize the entire maturity schedule of a species is not available, the SSC may choose to view SPR calculations based on a knifeedge maturity assumption as reliable. For Tier (3), the term $B_{40 \%}$ refers to the long-term average biomass that would be expected under average recruitment and $F=F_{40 \%}$.
Overfished or approaching an overfished condition is determined for all age-structured stock assessments by comparison of the stock level in relation to its MSY level according to harvest scenarios 6 and 7 described in the next section (for Tier 3 stocks, the MSY level is defined as $B_{35 \%}$). For stocks in Tiers 4-6, no determination can be made of overfished status or approaching an overfished condition as information is insufficient to estimate the MSY stock level

```
Tier 1) Information available: Reliable point estimates of \(B\) and \(B_{\text {MSY }}\) and reliable pdf of \(F_{M S Y}\).
    1a) Stock status: \(B / B_{M S Y}>1\)
        \(F_{\text {OFL }}=\mu_{A}\), the arithmetic mean of the pdf
        \(F_{A B C} \leq \mu_{H}\), the harmonic mean of the pdf
        1b) Stock status: \(\alpha<B / B_{M S Y} \leq 1\)
        \(F_{O F L}=\mu_{A} \times\left(B / B_{M S Y}-\alpha\right) /(1-\alpha)\)
        \(F_{A B C} \leq \mu_{H} \times\left(B / B_{M S Y}-\alpha\right) /(1-\alpha)\)
        1c) Stock status: \(B / B_{M S Y} \leq \alpha\)
        \(F_{O F L}=0\)
        \(F_{A B C}=0\)
2) Information available: Reliable point estimates of \(B, B_{M S Y}, F_{M S Y}, F_{35 \%}\), and \(F_{40 \% \%}\).
    2a) Stock status: \(B / B_{M S Y}>1\)
        \(F_{O F L}=F_{M S Y}\)
        \(F_{A B C} \leq F_{M S Y} \times\left(F_{40 \%} / F_{35 \%}\right)\)
        2b) Stock status: \(\alpha<B / B_{M S Y} \leq 1\)
        \(F_{O F L}=F_{M S Y} \times\left(B / B_{M S Y}-\alpha\right) /(1-\alpha)\)
        \(F_{A B C} \leq F_{M S Y} \times\left(F_{40 \%} / F_{3 S \%}\right) \times\left(B / B_{M S Y}-\alpha\right) /(1-\alpha)\)
    2c) Stock status: \(B / B_{M S Y} \leq \alpha\)
        \(F_{O F L}=0\)
        \(F_{A B C}=0\)
3) Information available: Reliable point estimates of \(B, B_{4096}, F_{3596}\), and \(F_{40 \%}\).
    3a) Stock status: \(B / B_{40 \%}>1\)
        \(F_{\text {OFL }}=F_{35 \%}\)
        \(F_{A B C} \leq F_{40 \% 6}\)
    3b) Stock status: \(\alpha<B / B_{4006} \leq 1\)
        \(F_{O F L}=F_{3506} \times\left(B / B_{4096}-\alpha\right) /(1-\alpha)\)
        \(F_{A B C} \leq F_{4096} \times\left(B / B_{40 \%}-\alpha\right) /(1-\alpha)\)
    3c) Stock status: \(B / B_{40 \%} \leq \alpha\)
        \(F_{\text {OFL }}=0\)
        \(F_{A B C}=0\)
    4) Information available: Reliable point estimates of \(B, F_{3596}\), and \(F_{409 \%}\).
        \(F_{O F L}=F_{35 \%}\)
        \(F_{A B C} \leq F_{400 \%}\)
    5) Information available: Reliable point estimates of \(B\) and natural mortality rate \(M\).
        \(F_{\text {OFL }}=M\)
        \(F_{A B C} \leq 0.75 \times M\)
6) Information available: Reliable catch history from 1978 through 1995.
        \(O F L=\) the average catch from 1978 through 1995, unless an alternative value is established by the
        SSC on the basis of the best available scientific information
    \(A B C \leq 0.75 \times O F L\)
```


Standard Harvest and Recruitment Scenarios and Projection Methodology

A standard set of projections is required for each stock managed under Tiers 1, 2, or 3 of Amendment 56. This set of projections encompasses seven harvest scenarios designed to satisfy the requirements of Amendment 56, the National Environmental Policy Act, and the MSFCMA.

For each scenario, the projections begin with an estimated vector of 2012 numbers at age. In each subsequent year, the fishing mortality rate is prescribed on the basis of the spawning biomass in that year and the respective harvest scenario. In each year, recruitment is drawn from an inverse Gaussian distribution whose parameters consist of maximum likelihood estimates determined from recruitments estimated in the assessment. Spawning biomass is computed in each year based on the time of peak spawning and the maturity and weight schedules described in the assessment. Total catch is assumed to equal the catch associated with the respective harvest scenario in all years. This projection scheme is run 1000 times to obtain distributions of possible future stock sizes, fishing mortality rates, and catches.

Five of the seven standard scenarios will be used in an Environmental Assessment prepared in conjunction with the final SAFE. These five scenarios, which are designed to provide a range of harvest alternatives that are likely to bracket the final TACs for 2012 and 2013, are as follow ("max $F_{A B C "}$ refers to the maximum permissible value of $F_{A B C}$ under Amendment 56):

Scenario 1: In all future years, F is set equal to max $F_{A B C .}$. (Rationale: Historically, TAC has been constrained by ABC, so this scenario provides a likely upper limit on future TACs.)
Scenario 2: In all future years, F is set equal to a constant fraction of $\max F_{A B C}$, where this fraction is equal to the ratio of the $F_{A B C}$ value for 2012 recommended in the assessment to the max $F_{A B C}$ for 2012. (Rationale: When $F_{A B C}$ is set at a value below $\max F_{A B C}$, it is often set at the value recommended in the stock assessment.)
Scenario 3: In all future years, F is set equal to the 2006-2010 average F. (Rationale: For some stocks, TAC can be well below ABC, and recent average F may provide a better indicator of $F_{T A C}$ than $F_{A B C}$.)

Scenario 4: In all future years, the upper bound on $F_{A B C}$ is set at $F_{60 \%}$. (Rationale: This scenario provides a likely lower bound on $F_{A B C}$ that still allows future harvest rates to be adjusted downward when stocks fall below reference levels.)

Scenario 5: In all future years, F is set equal to zero. (Rationale: In extreme cases, TAC may be set at a level close to zero.)

Two other scenarios are needed to satisfy the MSFCMA's requirement to determine whether a stock is currently in an overfished condition or is approaching an overfished condition. These two scenarios are as follow (for Tier 3 stocks, the MSY level is defined as $B_{35 \%}$):

Scenario 6: In all future years, F is set equal to Foft. (Rationale: This scenario determines whether a stock is overfished. If the stock is 1) above its MSY level in 2011 or 2) above $1 / 2$ of its MSY level in 2011 and expected to be above its MSY level in 2021 under this scenario, then the stock is not overfished.)
Scenario 7: In 2012 and 2013, F is set equal to max $F_{A B C}$, and in all subsequent years, F is set equal to Fofs. (Rationale: This scenario determines whether a stock is approaching an overfished condition. If the stock is expected to be above its MSY level in 2024 under this scenario, then the stock is not approaching an overfished condition.)

Overview of "Stock Assessment" Section

The current status of individual groundfish stocks managed under the FMP is summarized in this section. Plan Team recommendations for 2013 and 2014 ABCs and OFLs are summarized in Tables 1, 5, and 6.

The sum of the recommended ABCs for 2013 and 2014 are 2.64 million t and 2.70 million t, respectively. These compare with the sums of the 2012 ABCs (2.51 million t) and 2011 ABCs (2.53 million t), indicating relative stability, following declines in 2009 and 2010.
Overall, the status of the stocks continues to appear favorable (Figure 3). In fact, nearly all stocks are above $\mathrm{B}_{\text {MSY }}$ or the $\mathrm{B}_{\text {MSY }}$ proxy of $\mathrm{B}_{35 \%}$. The abundances of EBS pollock; Pacific cod; sablefish; all rockfishes managed under Tier 3; and all flatfishes managed under Tiers 1 or 3 are projected to be above the $\mathrm{B}_{\text {MSY }}$ or the $B_{\text {MSY }}$ proxy of $B_{35 \%}$ in 2013. The abundance of two stocks is projected to be below $B_{35 \%}$ for 2013: AI pollock by about 2 percent, and Greenland turbot by about 44 percent. The abundance of two stocks is projected to be below $\mathrm{B}_{40 \%}$ for 2013: Sablefish by about 9 percent, and Atka mackerel by about 7 percent.

The sum of the biomasses for 2013 listed in Table 5 (18.4 million t) is 5 percent less than total biomasses reported for 2012 (19.3 million t), following a six percent decline in total biomasses as reported in 2012 and 2011 (20.6 million t). Pollock and Pacific cod biomasses were fairly flat at increased levels, after a period of decline. Pollock biomass was 8.34 million t for 2012, compared with 8.14 million t for 2013. Pacific cod biomass was 1.62 million t for 2012, compared with 1.51 million t for 2013. Flatfish are generally increasing. Due to recent high recruitments however biomass of Greenland turbot is increasing from 69,000 t in 2012 to $81,000 \mathrm{t}$ in 2013, but is still much lower (16 percent) than its historic high of $494,000 \mathrm{t}$ in 1972 . Biomass of Atka mackerel for 2013 is estimated at 289,000 t, down 29 percent from 2012.

Bering Sea and Aleutian Islands

Figure 3. Summary status of age-structured BSAI species as measured by 2012 catch level relative to OFL (vertical axis) and projected 2013 spawning biomass relative to $B_{\text {wss }}$.

Summary and Use of Terms

Stock status is summarized and OFL and ABC recommendations are presented on a stock-by-stock basis in the remainder of this section, with the following conventions observed:
"Fishing mortality rate" refers to the full-selection F (i.e., the rate that applies to fish of fully selected sizes or ages), except in the cases of stocks managed under Tier 1 (EBS pollock, yellowfin sole, and northern rock sole). For these stocks, the fishing mortality rate consists of the ratio between catch (in biomass) and biomass at the start of the year. EBS pollock uses "fishable biomass" whereas yellowfin sole and northern rock sole use age 6+ biomass for this calculation.
"Projected age+ biomass" refers to the total biomass of all cohorts of ages greater than or equal to some minimum age, as projected for January 1 of the coming year. The minimum age varies from species to species. When possible, the minimum age corresponds to the age of recruitment listed in the respective stock assessment. Otherwise, the minimum age corresponds to the minimum age included in the assessment model, or to some other early age traditionally used for a particular species. When a biomass estimate from the trawl survey is used as a proxy for projected age+ biomass, the minimum age is equated with the age of recruitment, even though the survey may not select that age fully and undoubtedly selects fish of younger ages to some extent.

Projected ABC, OFL, and biomass levels are typically reported to three significant digits, except when quoting a Council-approved value with more than three significant digits or when a stock-specific ABC is apportioned among areas on a percentage basis, in which case four significant digits may be used if necessary to avoid rounding error. The main exceptions to this rule are the Team’s recommended 2013 and 2014 ABCs, which are reported to four significant digits. Fishing mortality rates are typically reported to two significant digits.
The reported ABCs and OFLs for past years correspond to the values approved by the Council. Projected ABCs and OFLs listed for the next two years are the Plan Team's recommendations.

Reported catches are as of November 3, 2012.

Two-Year OFL and ABC Projections

Proposed and final harvest specifications are adopted annually for a two year period. This requires the Team to provide OFLs and ABCs for the next two years in this cycle (Table 1). The 2013 harvest specifications (from Council recommendations in December 2011) are in place to start the fishery on January 1, 2013, but these will be replaced by final harvest specifications that will be recommended by the Council in December 2012. The final 2013 and 2014 harvest specifications will become effective when final rulemaking occurs in February or March 2013. This process allows the Council to use the most current survey and fishery data in stock assessment models for setting quotas for the next two years, while having no gap in harvest specifications.
The 2014 ABC and OFL values recommended in next year's SAFE report are likely to differ from this year's projections for 2014 because of new (e.g., survey) information that is incorporated into the assessments. In the case of stocks managed under Tier 3, ABC and OFL projections for the second year in the cycle are typically based on the output for Scenarios 1 or 2 from the standard projection model using assumed (best estimates) of actual catch levels. For stocks managed under Tiers 4-6, projections for the second year in the cycle are set equal to the Plan Team's recommended values for the first year in the cycle.

Ecosystem Considerations

The Ecosystem Assessment provided streamlined Report Cards for both the Bering Sea and Aleutian Islands, 44 indices were updated, and 7 new indices were added. The Plan Teams developed the following synthesis from those report cards.
Eastern Bering Sea The Bering Sea had the most extensive cold pool on record in 2012. Earlier predictions of an El Niño have weakened, so initial predictions of warming for 2013 may be more neutral than expected. Total EBS productivity appears favorable, with increases in zooplankton, pelagic foragers (pollock and capelin), and apex predators (driven by Pacific cod biomass increases since 2012). Benthic guilds, as a total group, remain stable. The exception is the continued long-term decline in northern fur seal populations in the Pribilof Islands. Although zooplankton has increased, seabird response has been variable. A noted "Hot Topic" was the failure of commercial king salmon fisheries in the Yukon. The Ecosystem Assessment did not identify broad ecosystem concerns as having potential impacts for reducing EBS groundfish quotas.
Aleutian Islands Both limited data and limited synthesis of factors governing the dynamics of the Aleutian Islands has led to clear signals for that area. Groundfish survey biomasses were low in all AI subregions in 2012. However, this was one of the coldest years on record in the Aleutian Islands, and it is not clear whether these decreased survey results were due to lower abundance or decreased catchability due to cold-water induced behavioral changes. Rockfish abundance, especially for POP, has increased. Abundances of planktivorous birds are about average (but had been declining). Steller sea lion pup counts remain low.
Seabird bycatch was also reported. No short-tailed albatross were caught in 2012. Overall, 2011 seabird bycatch in the longline fishery were 30 percent above the 2007-2010 average, with bycatch increases in fulmars (from 2,000 to 6,000 birds), gulls (1,000 to 2,000) , and black-footed albatross; but fewer shearwaters were caught.

Economic Summary of the BSAI Commercial Groundfish Fisheries in 2010-11

The domestic groundfish fishery off Alaska is the largest fishery by volume in the U.S. With a total catch of 2.07 t , a retained catch of 1.99 million t , and an ex-vessel value of $\$ 992$ million in 2011, it accounted for 55.4% of the weight and 18.1% of the ex-vessel value of total U.S. domestic landings as reported in Fisheries of the United States, 2010. The ex-vessel value of all Alaska domestic fish and shellfish catch, including the imputed value of fish caught almost exclusively by catcher/processors, increased from $\$ 1.74$ billion in 2010 to $\$ 1.87$ billion in 2011. The value of 2011 groundfish catch after primary processing was $\$ 2.52$ billion (F.O. B., Alaska). The 2011 total catch increased by 26% and the total value of primary processed catch increased by 34% relative to 2010. The groundfish fisheries accounted for the largest share (44\%) of the ex-vessel value of all commercial fisheries off Alaska, while the Pacific salmon (Oncorhynchus spp.) fishery was second with $\$ 565$ million or 30% of the total Alaska ex-vessel value. The value of the shellfish fishery amounted to $\$ 266$ million or 14% of the total for Alaska and exceeded the value of Pacific halibut (Hippoglossus stenolepis) with $\$ 205$ million or 11% of the total for Alaska (Figure 4).

Figure 4. Real ex-vessel value of the domestic fish and shellfish catch off Alaska (GOA and BSAI) by species group, 1984-2011 (base year = 2011).
The Economic SAFE report contains detailed information about economic aspects of the fishery, including figures and tables, market profiles for the most commercially valuable species, a summary of the relevant research being undertaken by the Economic and Social Sciences Research Program (ESSRP) at the Alaska Fisheries Science Center (AFSC) and a list of recent publications by ESSRP analysts. The figures and tables in the report provide estimates of total groundfish catch, groundfish discards and discard rates, prohibited species catch (PSC) and PSC rates, the ex-vessel value of the groundfish catch, the ex-vessel value of the catch in other Alaska fisheries, the gross product value (F.O.B. Alaska) of the resulting groundfish seafood products, the number and sizes of vessels that participated in the groundfish fisheries off Alaska, vessel activity, and employment on at-sea processors. Generally, the data cover 2006 through 2011, but limited catch and exvessel value data are reported for earlier years in order to illustrate the rapid development of the domestic groundfish fishery in the 1980s and to provide a more complete historical perspective on catch.

In addition, the Economic SAFE Report contains links to data on some of the external factors that impact the economic status of the fisheries. Such factors include foreign exchange rates, the prices and price indices of products that compete with products from these fisheries, domestic per capita consumption of seafood products, and fishery imports.

The Economic SAFE Report also updates the set of market profiles for pollock, Pacific cod, sablefish, and flatfish published in the last four reports. These analyses discuss the relatively recent states of the markets for these species in terms of pricing, volume, supply and demand. Trade patterns and market share are also discussed.

This is the second year in which the Economic SAFE Report has added a new section that analyzes economic performance of the groundfish fisheries using indices. These indices are created for different sectors of the North Pacific, and relate changes in value, price, and quantity across species, product and gear types to aggregate changes in the market. The tables from this and past Economic SAFE reports are available online at http://www.afsc.noaa.gov/REFM/Socioeconomics/documents.php.

A Decomposition of the Change in First-Wholesale Revenues from 2010-11 in the BSAI Area

The following brief analysis summarizes the overall changes that have occurred in the quantity produced, value, and revenue generated from BSAI groundfish. The 2012 Economic SAFE Report provides the ex-vessel value of Alaska groundfish in the BSAI, which grew from approximately $\$ 492$ million in 2010 to approximately $\$ 758$ million in 2011, an increase of 54% (Figure 5), first-wholesale revenues from the processing and production of Alaska groundfish in the BSAI area grew from approximately $\$ 1.6$ billion in 2010 to $\$ 2.1$ billion in 2011, an increase of 34.5% (Figure 6). During that same time-period, the total quantity of groundfish products from the BSAI increased by 9.3% from $625,000 t$ to $791,000 t$, an increase of 166,000 t. Overall, first-wholesale revenues from Alaska groundfish fisheries increased by 34.0% in 2011, relative to 2010 levels.

Figure 5. Real ex-vessel value of the groundfish catch in the domestic commercial fisheries in the BSAI area by species, 2003-2011 (base year = 2011).

Figure 6. Real gross product value of the groundfish catch in the BSAI area by species, 2003-2011 (base year = 2011).

By species, a positive quantity effect of $\$ 391$ million for pollock dominated results of the BSAI first-wholesale revenue decomposition for 2010-11 (Figure 7). Positive price and quantity effects for cod, and flatfish, contributed another $\$ 118$ million, and $\$ 63$ million, respectively, to the change in first-wholesale revenues for the BSAI area from 2010-11.

The fillet product group exhibited the largest positive quantity effect, \$201 million, which was offset slightly by a negative price effect. A quantity effect of $\$ 138$ million for the surimi product group was partially offset by a price effect of $-\$ 77.5$ million. A relatively modest quantity effect of $\$ 80$ million for the whole head \& gut product group was reinforced by a large price effect of $\$ 124$ million, giving this group the largest net effect in the BSAI first-wholesale revenue decomposition for 2010-11.

In summary, first-wholesale revenues from the BSAI groundfish fisheries increased by $\$ 543$ million from 2010-11. This increase was dominated by a large quantity effect for pollock. In comparison, first-wholesale revenues increased by $\$ 97$ million from 2010-11 in the GOA, where price effects for cod and sablefish were the largest contributors.

Figure 7. Decomposition of the change in first-wholesale revenues from 2010-11 in the BSAI area. The first decomposition is by the species groups used in the Economic SAFE report, and the second decomposition is by product group. The price effect refers to the change in revenues due to the change in the first-wholesale price index (current dollars per metric ton) for each group. The quantity effect refers to the change in revenues due to the change in production (in metric tons) for each group. The net effect is the sum of price and quantity effects.

Stock Status Summaries

1. Walleye Pollock

Status and catch specifications (t) of walleye pollock in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The age grouping is 3+ for eastern Bering Sea, 2+ for the Aleutian Islands and the survey biomass for Bogoslof, as reported in the respective assessments. The OFL and ABC for 2013 and 2014 are those recommended by the Plan Team. Catch data are current through November 3, 2012.

Area	Year	Biomass	OFL	ABC	TAC	Catch
Eastern Bering Sea	2011	$9,620,000$	$2,450,000$	$1,270,000$	$1,252,000$	$1,199,243$
	2012	$8,340,000$	$2,470,000$	$1,220,000$	$1,186,000$	$1,202,560$
	2013	$8,140,000$	$2,550,000$	$1,375,000$	n / a	n / a
	2014	$8,080,000$	$2,730,000$	$1,430,000$	n / a	n / a
Aleutian Islands	2011	298,000	44,500	36,700	19,000	1,208
	2012	251,000	39,600	32,500	19,000	972
	2013	266,000	45,600	37,300	n / a	n / a
	2014	293,000	48,600	39,800	n / a	n / a
Bogoslof	2011	110,000	22,000	156	150	140
	2012	110,000	22,000	16,500	500	79
	2013	67,100	13,400	10,100	n / a	n / a
	2014	67,100	13,400	10,100	n / a	n / a

Eastern Bering Sea

Changes from previous assessment

New data in this year's assessment include the following:

- 2012 summer bottom trawl survey abundance at age
- 2012 summer acoustic-trawl survey abundance at age, estimated using age samples primarily from the bottom trawl survey
- Finalized catch at age and average weight at age from the 2011 fishery
- Preliminary 2012 fishery catch at age, estimated using bottom trawl survey age-length keys
- Updated total catch, including preliminary value for 2012

There were no changes in the assessment model.

Spawning biomass and stock status trends

Spawning biomass in 2008 was at the lowest level since 1980, but has increased by 44 percent since then, with a further increase projected for next year. The 2008 low was the result of extremely poor recruitments from the 2002-2005 year classes. Recent and projected increases are fueled by strong recruitments from the 2006 and 2008 year classes along with reductions in catch from 2008-2010 to well below the historical average.
Spawning biomass is projected to be 22 percent and 19 percent above Bmsy in 2013 and 2014, respectively.

Tier determination/Plan Team discussion and resulting ABCs and OFLs

The SSC has determined that EBS pollock qualifies for management under Tier 1 because there are reliable estimates of $\mathrm{B}_{\text {msx }}$ and the probability density function for $\mathrm{F}_{\text {msy. }}$. The Plan Team concurs with the assessment authors' conclusion that the Tier 1 reference points continue to be reliably estimated.

The updated estimate of $B_{\text {ssy }}$ from the present assessment is 2.11 million t, up 4 percent from last year's estimate of 2.03 million t. Projected spawning biomass for 2013 is 2.58 million t, placing EBS walleye pollock in sub-tier "a" of Tier 1. As in recent assessments, the maximum permissible ABC harvest rate was based on the ratio between MSY and the equilibrium biomass corresponding to MSY. The harmonic mean of this ratio from the present assessment is 0.491 , down 8 percent from last year's value of 0.533 . The harvest ratio of 0.491 is multiplied by the geometric mean of the projected fishable biomass for 2013 (4.69 million t) to obtain the maximum permissible ABC for 2013, which is 2.31 million t, up 5 percent and down 9 percent from the maximum permissible ABCs for 2012 and 2013 projected in last year's assessment.

However, as with other recent EBS pollock assessments, the authors recommend setting ABCs well below the maximum permissible levels. They list 10 reasons for doing so in the SAFE chapter.

To aid in identifying a set of recommended ABC values, the authors provided a "decision table" showing, in probabilistic terms, the outcomes of seven short-term harvest policies with respect to 12 decision metrics, including various measures related to spawning biomass, population age structure, fishing effort and mortality, and Chinook salmon bycatch.

After considering the results shown in the decision table, the authors recommend setting 2013 ABC at 1.200 million t and 2014 ABC at 1.547 million t . This recommendation results primarily from a harvest policy of achieving a 50% (approximate) probability that spawning biomass will return to the long-term average in five years. The authors' recommended 2013 ABC is almost identical to the 2012 ABC. The 2012 ABC was based on a policy of keeping fishing mortality constant at the most recent 5-year average.

The Team agreed that the authors had provided compelling reasons to set the 2013-2014 ABCs below the maximum permissible levels. In particular: 1) the decision table shows that catches even at a 2 million t level (well below the maximum permissible ABC) would result in a significant probability of exceeding FMSY; 2) the estimated strength of the 2006 year class is reduced in the current assessment (although it is still estimated to be well above average), thereby increasing the extent to which the stock and fishery are dependent on a single year class (2008); 3) the CV of the very strong 2008 year class is large relative to earlier year classes; and 4) past experience indicates that model estimates of recent year classes tend to decrease over time.
However, the Team was not prepared to adopt the authors' recommended policy of basing ABC on the probability of spawning biomass equaling the long-term average in five years. While such a policy would result in reasonable ABCs for 2013-2014, the Team was concerned that the policy might not be robust in the long term. Instead, the Team recommends retaining the current policy of keeping fishing mortality constant at the most recent 5 -year average (0.38). This policy results in ABCs of 1.375 million t for 2013 and 1.430 million t for 2014.
The OFL harvest ratio under Tier 1a is 0.543 , the arithmetic mean of the ratio between MSY and the equilibrium fishable biomass corresponding to MSY. The product of this ratio and the geometric mean of the projected fishable biomass for 2013 gives the OFL for 2013, which is 2.55 million t. The current projection for OFL in 2014 given a 2013 catch equal to the Team's recommended ABC is 2.73 million t .

Status determination

The walleye pollock stock in the EBS is not being subjected to overfishing, is not overfished, and is not approaching an overfished condition.

Aleutian Islands

Changes from previous assessment

The new data in the model consist of updated catch information from 1978 through 2012 and inclusion of the 2012 Aleutian Islands bottom trawl survey. There were no changes in the assessment methodology. This year's model estimate of natural mortality was 0.18 , down from 0.19 last year.

Spawning biomass and stock status trends

This year's assessment estimates that spawning biomass reached a minimum level of about $\mathrm{B}_{23 \%}$ in 1999 and then has generally increased to about $\mathrm{B}_{34 \%}$ at present. The increase in spawning biomass since 1999 has resulted more from a dramatic decrease in harvest than from good recruitment, as there have been no aboveaverage year classes spawned since 1989. Spawning biomass for 2013 is projected to be 85,200 t.

Tier determination/Plan Team discussion and resulting ABCs and OFLs

The SSC has determined that this stock qualifies for management under Tier 3. The Plan Team concurs and supports continued use of last year's model for evaluating stock status and recommending ABC. The model estimates $\mathrm{B}_{40 \%}$ at a value of $99,800 \mathrm{t}$, placing the AI pollock stock in sub-tier "b" of Tier 3. The model estimates the values of $\mathrm{F}_{35 \%}$ as 0.42 and $\mathrm{F}_{40 \%}$ as 0.33 . Under Tier 3 b , with the adjusted value of $\mathrm{F}_{40 \%}=0.27$, the maximum permissible ABC is $37,300 \mathrm{t}$ for 2013. The Plan Team recommends setting 2013 ABC at this level. Following the Tier 3 b formula with the adjusted value of $\mathrm{F}_{35 \%}=0.34$, OFL for 2013 is $45,600 \mathrm{t}$. Given a 2013 catch of $19,000 \mathrm{t}$, the maximum permissible ABC would be 33,800 for 2014 and the projected OFL would be $41,400 \mathrm{t}$. If the 2013 catch is only $1,610 \mathrm{t}$ (i.e., equal to the five year average), the 2014 maximum permissible ABC would be $39,800 t$ and the 2014 OFL would be $48,600 \mathrm{t}$. The Plan Team recommends setting 2014 ABC and OFL at the latter levels.

Status determination

The walleye pollock stock in the Aleutian Islands is not being subjected to overfishing, is not overfished, and is not approaching an overfished condition.

Bogoslof

Changes from previous assessment

The 2012 Bogoslof pollock acoustic-trawl survey resulted in the lowest estimate of biomass ($67,100 \mathrm{t}$) in the region since the survey began in 1988.

Spawning biomass and stock status trends

Survey biomass estimates since 2000 have all been lower than estimates prior to 2000, ranging from a low of $67,100 \mathrm{t}$ in 2012 to a high of $301,000 \mathrm{t}$ in 2000.

Tier determination/Plan Team discussion and resulting ABCs and OFLs
The SSC has determined that this stock qualifies for management under Tier 5 . The maximum permissible ABC value for 2013 would be $10,100 \mathrm{t}$ (assuming $\mathrm{M}=0.2$ and $\mathrm{F}_{\mathrm{ABC}}=0.75 \times \mathrm{M}=0.15$): $\mathrm{ABC}=\mathrm{B}_{2012} \times \mathrm{M} \mathrm{x}$ $0.75=67,100 \times 0.2 \times 0.75=10,100 \mathrm{t}$. The projected ABC for 2014 is the same.
Following the Tier 5 formula with $M=0.20$, OFL for 2013 is $13,400 \mathrm{t}$. The OFL for 2014 is the same.

Status determination

The walleye pollock stock in the Bogoslof district is not being subjected to overfishing. It is not possible to determine whether this stock is overfished or whether it is approaching an overfished condition because it is managed under Tier 5.

2. Pacific cod

Status and catch specifications (t) of Pacific cod in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2013 and 2014 are those recommended by the Plan Team. Catch data are current through November 3, 2012.

Area	Year	Age 3+ biomass	OFL	ABC	TAC*	Catch
BS/AI	2011	$1,560,000$	272,000	235,000	227,950	219,866
	2012	$1,620,000$	369,000	314,000	275,000	223,939
	2013	$1,510,000$	359,000	307,000	n/a	n/a
	2014	$1,670,000$	379,000	323,000	n/a	n/a

*The Council sets the Federal TAC to account for the State of Alaska Aleutian Islands Guideline Harvest Level fishery that is set equal to 3 percent of the BSAI ABC. Catch only includes that which accrues to the Federal TAC.

Changes in assessment data

All survey and commercial data series on CPUE, catch at age, and catch at length were updated. The 2012 Bering Sea trawl survey biomass estimate was almost the same as in 2011, while the estimate of abundance in number was up by 18%. The survey biomass estimate has increased by more than 100% since 2005.

Change in assessment methods

As in the last several years, a number of alternative candidate models were considered at Team/SSC meetings in May/June and September/October, but in November the winning candidate was the incumbent, namely last year's base model (Model 1), so there were no changes in assessment methods. The author has developed an exploratory model (Model 4) that has some attractive features (better modeling of weight at length, lengthspecific survey selectivity), but the author believes it needs more work. It will be brought forward again next year.

At present the assessment is done for the eastern Bering Sea (EBS) and the EBS abundance estimate is expanded to the entire Bering Sea/Aleutian Islands region (BSAI) according to a survey-based estimate of the proportion of the total located in the Aleutians (presently 7\%). A single OFL, ABC, and TAC are then set for the entire region. The Team and the SSC have recommended developing a separate age-structured assessment for the AI. The assessment author presented preliminary versions this fall of an AI model, which tended to produce estimates of ABC substantially lower than recent catches. The SSC has given notice that it will adopt a separate AI model for setting OFL and ABC in the Aleutians when model development is complete, possibly as soon as next year for 2014 specifications.

Tier determination/ Plan Team discussion and resulting ABC and OFL recommendations

$\mathrm{B}_{40 \%}$ for this stock is estimated to be $358,000 \mathrm{t}$ and projected spawning biomass in 2013 according to Model 1 is $422,000 \mathrm{t}$, so this stock is assigned to Tier 3a. There remains some concern about the fixed value of trawl survey catchability used in the assessment, and the retrospective behavior reported this year was not good, but neither the author nor the Team saw any compelling reason to recommend OFL or ABC values lower than prescribed by the standard control rule.

Status determination

Pacific cod is not being subjected to overfishing, is not overfished, and is not approaching an overfished condition.

Spawning biomass and stock status trends

Recent catches have been well below OFL. The 2006, 2008, and 2010 year classes appear to be strong, and stock abundance is expected to increase in the near term.

Ecosystem considerations

No special features were identified that would require adjustments to the recommended ABCs and reference points.

Area apportionment

The stock assessment is done for the EBS and the abundance estimates are then expanded to the Aleutians by the ratio of survey abundance estimates. Present Aleutian biomass is estimated to be 7\% of EBS abundance. A single ABC and OFL are set for the entire region. It is expected that separate ABC and OFL values will be set for the Aleutians in the near future.

3. Sablefish

Status and catch specifications (t) of sablefish in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2013 and 2014 are those recommended by the Plan Team. Catch data are current through November 3, 2012.

Area	Year	Age 4+ Biomass	OFL	ABC	TAC	Catch
Bering Sea	2011	37,000	3,360	2,850	2,850	695
	2012	30,000	2,640	2,230	2,230	717
	2013	19,000	1,870	1,580	n/a	n / a
	2014	19,000	1,760	1,480	n / a	n / a
Aleutian Islands	2011	25,000	2,250	1,900	1,900	1,019
	2012	26,000	2,430	2,050	2,050	1,180
	2013	26,000	2,530	2,140	n / a	n / a
	2014	28,000	2,370	2,010	n / a	n / a

Changes from previous assessment

The assessment model incorporates the following new data into the model:

- relative abundance and length data from the 2012 longline survey
- relative abundance and length data from the 2011 longline and trawl fisheries
- age data from the 2011 longline survey and 2011 fixed gear fishery
- updated 2011 catch and estimated 2012 catch.

There were no model changes.

Assessment results

The 2011 fishery abundance index was flat from 2010 to 2011 (the 2012 data are not available yet). The longline survey abundance index decreased 21% from 2011 to 2012 following an 18% increase from 2008 to 2011. Spawning biomass is projected to decrease from 2013to 2017, and then stabilize

Tier determination/Plan Team discussion and resulting ABCs and OFLs

Sablefish are managed under Tier 3 of NPFMC harvest rules. Reference points are calculated using recruitments from 1979-2011. The updated point estimates of $B 40 \%$, $F 40 \%$, and $F_{35 \%}$ from this assessment are 106,506 t (combined across the EBS, AI, and GOA), 0.095, and 0.113, respectively. Projected female spawning biomass (combined areas) for 2013 is $97,193 \mathrm{t}$ (91% of B40\%), placing sablefish in sub-tier "b" of Tier 3. The maximum permissible value of $F_{A B C}$ under Tier 3 b is 0.086 , which translates into a 2013 ABC (combined areas) of $16,230 \mathrm{t}$. The OFL fishing mortality rate is 0.102 which translates into a 2013 OFL (combined areas) of 19,180 t .

Area allocations

Using established procedures for determining area apportionments, the OFL and ABC for Bering Sea sablefish are $1,870 \mathrm{t}$ and $1,580 \mathrm{t}$ in 2013, and $1,760 \mathrm{t}$ and $1,480 \mathrm{t}$ in 2014. The OFL and ABC for Aleutian Island sablefish are 2,350 t and 2,140 t in 2013, and 2,370 t and $2,010 \mathrm{t}$ in 2014.

Status determination

Sablefish is not being subjected to overfishing, is not overfished, and is not approaching an overfished condition.

4. Yellowfin sole

Status and catch specifications (t) of yellowfin sole in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2013 and 2014 are those recommended by the Plan Team. Catch data are current through November 3, 2012.

Area	Year	Age 6+ Biomass	OFL	ABC	TAC	Catch
BSAI	2011	$1,960,000$	262,000	239,000	196,000	151,167
	2012	$1,950,000$	222,000	203,000	202,000	137,716
	2013	$1,960,000$	220,000	206,000	NA	NA
	2014	$1,960,000$	219,000	206,000	NA	NA

Changes from previous assessment

Changes to the input data for this year's assessment include:

- 2011 fishery age composition.
- 2011 survey age composition.
- 2012 trawl survey biomass point estimate and standard error.
- Estimate of the discarded and retained portions of the 2011 catch.
- Estimate of total catch made through the end of 2012.

Changes to the assessment methodology

No changes to the assessment methodology.

Spawning biomass and stock status trends

The projected female spawning biomass estimate for 2013 is $582,000 \mathrm{t}$. Projected spawning biomass for 2013 and beyond suggests a leveling off of the generally monotonic decline in spawning biomass that has prevailed since 1994. An upward trend in the population may be expected due to high recruitment from the 2003 year class.

Tier determination/Plan Team discussion and resulting ABCs and OFLs

The SSC has determined that reliable estimates of $B_{\text {MSY }}$ and the probability density function for $F_{M S Y}$ exist for this stock. Accordingly, yellowfin sole qualify for management under Tier 1. The estimate of $B_{M S Y}$ from the present assessment is $353,000 \mathrm{t}$. Corresponding to the approach used in recent years, the 1978-2006 stockrecruitment data were used this year to determine the Tier 1 harvest recommendation. This provided a maximum permissible ABC harvest ratio (the harmonic mean of the $F_{M S Y}$ harvest ratio) of 0.11 . The current value of the OFL harvest ratio (the arithmetic mean of the $F_{M S Y}$ ratio) is 0.12 . The product of the maximum permissible ABC harvest ratio and the geometric mean of the 2013 biomass estimate produces the author- and Plan Team-recommended 2013 ABC of 206,000 t, and the corresponding product using the OFL harvest ratio produces the 2013 OFL of 220,000 t. For 2014, the corresponding quantities are 206,000 t and 219,000 t, respectively.

Status determination

Yellowfin sole is not being subjected to overfishing, is not overfished, and is not approaching an overfished condition.

Ecosystem Considerations summary

As in previous years, this assessment contains an ecosystem feature that represents catchability of the EBS shelf trawl survey as an exponential function of average annual bottom temperature.

5. Greenland turbot

Status and catch specifications (t) of Greenland turbot in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2013 and 2014 are those recommended by the Plan Team. Catch data are current through November 3, 2012.

Area	Year	Age 1+ Biomass	OFL	ABC	TAC	Catch
EBS	2011			4,590	3,500	3,111
AI	2011			1,550	1,550	531
BSAI	2011	74,000	7,220	6,140	5,050	3,642
EBS	2012			7,230	6,230	2,744
AI	2012			2,430	2,430	1,657
BSAI	2012	76,900	11,700	9,660	8,660	4,401
EBS	2013			1,610	n / a	n / a
AI	2013			450	n / a	n / a
BSAI	2013	81,000	2,540	2,060	n / a	n / a
EBS	2014			2,070	n / a	n / a
AI	2014			580	n / a	n / a
BSAI	2014	94,800	3,270	2,650	n / a	n / a

Changes from previous assessment

Changes to the input data for this year's assessment include:

- The pre-2002 slope survey biomass estimates were removed from the data file.
- Abundance estimates from the 2012 slope, shelf, and longline surveys were included.
- Length composition data from the 2012 slope and shelf surveys and the 2009-2012 longline surveys were included.
- Fishery catch and length composition data were updated through 2012.
- Haul-by-haul fishery length composition data were weighted proportionally to catch.

Several changes were made to the assessment model, all of which were either previewed in the preliminary assessment or recommended by the Team/SSC in September/October:

- The weight-at-length relationship was re-estimated.
- A new method was used to weight annual fishery length compositions.
- Several changes were made in the method for estimating recruitment in the early part of the time series.
- A new method for parameterizing sex-specific selectivity curves was used.
- The prior distributions for survey catchability were changed to be as diffuse as possible.

Spawning biomass and stock status trends

The projected 2013 female spawning biomass is $23,500 \mathrm{t}$. This is a marked (51percent) decrease from the 2012 spawning biomass of $47,700 \mathrm{t}$ due to major revisions in the stock assessment model Spawning biomass is projected to increase slightly in 2014 to $26,500 \mathrm{t}$. A strong 2008 year class and an especially strong 2009 year class were observed in both the survey and fisheries size composition data. These two year classes are expected to be larger than any other recruitment event since the 1970s and will begin to have an increasing influence on spawning stock biomass starting in 2014.

The changes in the weight at age and selectivity schedules had the net effect of reducing the current biomass estimate while increasing the biomass reference points and decreasing the fishing mortality reference points for this stock. In addition to changes to the assessment model and data, input errors in the 2009-2011 projection models were discovered this year, that resulted in large underestimates of all biomass reference points. The 2012 status of the stock is B21\%, much lower than last year's projected status for 2012 of B88\%.

Tier determination/Plan Team discussion and resulting ABCs and OFLs

The SSC determined that reliable estimates of $B 40 \%, F 40 \%$, and $F 35 \%$ exist for this stock. Greenland turbot therefore qualifies for management under Tier 3
Updated point estimates of $B 40 \%, F 40 \%$, and $F 35 \%$ from the present assessment are $47,700 \mathrm{t}, 0.25$, and 0.31 , respectively. Projected spawning biomass for 2013 is $23,500 \mathrm{t}$. Due to the aforementioned changes, the stock is now in Tier 3 b and therefore the ABC and OFL recommendations are further reduced by the descending limb of the control rules. The maximum permissible value of $F_{A B C}$ under this Tier translates into a maximum permissible ABC of 2,060 t for 2013 and 2,660 t for 2014, and the OFLs for 2013 and 2014 under the Tier 3b formula are $2,540 t$ and $3,270 t$, respectively. These are the authors' and Team's ABC and OFL recommendations.

Status determination

Greenland turbot is not being subjected to overfishing, is not overfished, and is not approaching an overfished condition.

6. Arrowtooth flounder

Status and catch specifications (t) of arrowtooth flounder in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year, except that the 2013 and 2014 values were held constant at the 2012 value. The OFL and ABC for 2013 and 2014 are those recommended by the Plan Team and are taken from the 2011 assessment. Catch data are current through November 3, 2012.

Area	Year	Age 1+ Bio	OFL	ABC	TAC	Catch
BSAI	2011	$1,120,000$	186,000	153,000	25,900	20,612
	2012	$1,130,000$	181,000	150,000	25,000	22,227
	2013	$1,130,000$	186,000	152,000	n/a	n/a
	2014	$1,130,000$	186,000	152,000	n/a	n/a

Changes from previous assessment

New input data include:

- Biomass estimates and size compositions from the 2012 EBS shelf and slope surveys and the 2012 AI survey.
- Fishery size composition for 2010 and 2011.
- Updated 2011 catch and preliminary 2012.

The authors' assessment model changed from last year due to the use of a new maturity schedule. However, the Team opted not to accept the new model due to technical issues regarding the way that the new maturity parameters were estimated. Estimates from both last year's and this year's assessments are included in the following paragraphs.

Spawning biomass and stock status trends

The 2011 stock assessment model resulted in a 2013 age $1+$ biomass projection of $1,130,000 \mathrm{t}$, compared to $1,020,000 \mathrm{t}$ from this year's assessment. The corresponding values for 2013 spawning biomass are 812,000 t (last year's assessment) and 638,000 t (this year's assessment). Although the scales differ between the two assessments, they both show a long-term increasing trend in spawning biomass that is expected to peak in 2013. The 1997-2006 year classes are all above average in both last year's and this year's assessments.

Tier determination/Plan Team discussion and resulting ABCs and OFLs

Because the SSC has determined that reliable estimates of $B_{40 \%}, F_{40 \%}$, and $F_{35 \%}$ exist for this stock, arrowtooth flounder was assessed for management under Tier 3. The point estimates of $B_{40 \%}, F_{40 \%}$, and $F_{35 \%}$ from last year's assessment were $281,000 \mathrm{t}, 0.22$, and 0.27 , respectively; from this year's assessment, they are $246,000 \mathrm{t}$, 0.17 , and 0.21 , respectively. The projected 2013 spawning biomass is far above $B_{40 \%}$ in both last year's and this year's assessments, so ABC and OFL recommendations for 2013 were calculated under sub-tier "a" of Tier 3. The authors and Team recommend setting $F_{A B C}$ at the $F_{40 \%}$ level, which is the maximum permissible level under Tier 3a. Projected harvesting at the $F_{40 \%}$ level in this year's assessment gives 2013 and 2014 ABCs of $111,000 \mathrm{t}$ and $112,000 \mathrm{t}$, respectively. However, because the Team did not accept the model in this year's assessment, the Team recommends rolling over the current 2013 ABC of 152,000 t (set last year) for 2013 and 2014. Similarly, the 2013 and 2014 OFLs from this year's assessment are $132,000 \mathrm{t}$ and 134,000 t , respectively, but the Team recommends rolling over the current 2013 OFL of 186,000 t (set last year) for 2013 and 2014.

Status determination

Arrowtooth flounder is a largely unexploited stock in the BSAI. Arrowtooth flounder was managed separately from Kamchatka flounder for the first time in 2011. Under either last year's or this year's assessment, arrowtooth flounder is not being subjected to overfishing, is not overfished, and is not approaching an overfished condition.

Ecosystem Considerations summary

In contrast to the Gulf of Alaska, arrowtooth flounder is not at the top of the food chain on the EBS shelf. Arrowtooth flounder in the EBS is an occasional prey in the diets of groundfish, being eaten by Pacific cod, walleye pollock, Alaska skates, and sleeper sharks. However, given the large biomass of these species in the EBS overall, these occasionally recorded events translate into considerable total mortality for the arrowtooth flounder population in the EBS ecosystem.

7. Kamchatka flounder

Status and catch specifications (t) of Kamchatka flounder in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2013 and 2014 are those recommended by the Plan Team. Catch data are current through November 3, 2012.

Area	Year	Age $1+$ Bio	OFL	ABC	TAC	Catch
BSAI	2011	129,000	23,600	17,700	17,700	9,934
	2012	125,000	24,800	18,600	17,700	9,558
	2013	125,000	16,300	12,200	n/a	n/a
	2014	125,000	16,300	12,200	n/a	n/a

Prior to 2011, this species was a component of the arrowtooth flounder/Kamchatka flounder complex. Due to the development of a targeted fishery on Kamchatka flounder in 2009 and 2010, it was assessed separately beginning in 2010 and split from the former arrowtooth/Kamchatka complex in the 2011 harvest specifications.

Changes from previous assessment

New data include the 2012 AI, EBS shelf, and EBS slope survey biomass estimates. The natural mortality rate of Kamchatka flounder was evaluated from 4 separate methods for this assessment and was re-estimated at a lower value (0.13) than in 2011 (0.20).

Spawning biomass and stock status trends

Because no age-structured model has been developed for Kamchatka flounder, estimates of spawning biomass per se are not available. Kamchatka flounder has a widespread distribution along the deeper waters of the BSAI region and is believed to be increasing in abundance, as evidenced by 7-year running averages of survey biomass estimates from the EBS shelf, EBS slope, and AI over the period 2001-2012. The 2013 combined estimate of total biomass from the three surveys is 125,000 t. Exploitation rates estimated for 2008-2010 steadily increased from 5% in 2008, 10% in 2009 , to 16% in 2010, but have since declined to 9% in 2012. The estimate of biomass from the three surveys conducted in 2012 is 13% less than in 2011. The lower 2012 biomass combined with the revised natural mortality value, gives a recommended ABC and OFL that is 31% less than the 2011 value.

Tier determination/Plan Team discussion and resulting ABCs and OFLs

The SSC has determined that the Kamchatka flounder stock qualifies for management under Tier 5. The Tier 5 formula for calculating maximum permissible ABC is: $\operatorname{maxABC}=0.75 \times M \times$ biomass. The natural mortality rate was estimated at a value of 0.13 . Biomass was estimated at a value of $109,000 \mathrm{t}$ by the same method used last year, which consisted of averaging the 7 most recent years of survey biomass estimates from the three survey areas (EBS shelf, EBS slope, and AI) after interpolating for missing values. The recommended 2013 and 2014 OFL is $16,300 \mathrm{t}$, and the recommended 2013-2014 ABC is $12,200 \mathrm{t}$.

Status Determination

Kamchatka flounder was managed on its own (i.e., as something other than a constituent stock of the former arrowtooth/Kamchatka complex) for the first time in 2011. The 2011 OFL was $23,600 t$ and the 2011 catch was 9,934. Therefore, Kamchatka flounder is not being subjected to overfishing. As a Tier 5 stock, it is not possible to determine whether Kamchatka flounder is overfished or whether it is approaching an overfished condition.

Ecosystem Considerations

Kamchatka flounder have rarely been found in the stomachs of other groundfish species in samples collected by the Alaska Fisheries Science Center. Pollock was the most important prey item for all sizes of Kamchatka flounder, ranging from 56 to 86 percent of the total stomach content weight. An examination of diet overlap with arrowtooth flounder indicated that these two congeneric species consume similar prey.

8. Northern Rock sole

Status and catch specifications (t) of northern rock sole in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2013 and 2014 are those recommended by the Plan Team. Catch data are current through November 3, 2012.

Area	Year	Age 6+ Bio.	OFL	ABC	TAC	Catch
BSAI	2011	$1,870,000$	248,000	224,000	85,000	60,632
	2012	$1,860,000$	231,000	208,000	87,000	75,806
	2013	$1,470,000$	241,000	214,000	n/a	n/a
	2014	$1,390,000$	229,000	204,000	n / a	n/a

Changes from previous assessment

Changes to input data in this analysis include:

- 2011 fishery age composition
- 2011 survey age composition
- 2012 trawl survey biomass estimate
- updated fishery catch and discards for 2011 and 2012

The assessment methodology was unchanged.

Spawning biomass and stock status trends

The stock assessment model estimates a 2013 age $6+$ biomass estimate of $1,470,000 \mathrm{t}$. This is 20% less than the 2013 value projected in last year’s assessment. Spawning biomass has been increasing since 2009. If harvest rates remain close to the recent average, northern rock sole stock is expected to continue increasing for the next few years because of recruitment from the 2000-2005 year classes, all of which were stronger than any year class spawned between 1991 and 1999.

Tier determination/Plan Team discussion and resulting ABCs and OFLs

The SSC has determined that northern rock sole qualifies for management under Tier 1. Spawning biomass for 2013 is projected to be 264% of BMSY, placing northern rock sole in sub-tier "a" of Tier 1. In some past years, one difficulty with applying the Tier 1 formulae to rock sole was that the harmonic and arithmetic means of the FMSY distribution were extremely close, resulting in little buffer between recommendations of ABC and OFL. This closeness resulted from estimates of FMSY that were highly certain. The use of time-varying fishery selectivity, first instituted in the 2010 assessment, increased the buffer between ABC and OFL from a little over 1 percent in the 2009 assessment to >10 percent in this year's assessment.
The Tier 12013 ABC harvest recommendation is 214,400 $t\left(F_{A B C}=0.15\right)$ and the 2013 OFL is $240,600 t\left(F_{\text {OFL }}\right.$ $=0.16$). The 2014 ABC and OFL values are 203,800 t and $240,600 \mathrm{t}$, respectively.
This is a stable fishery that lightly exploits the stock because it is constrained by PSC limits and the BSAI optimum yield limit. Usually the fishery only takes a small portion of the northern rock sole ABC (the average catch/biomass ratio is about 4 percent).

Status determination

Northern rock sole is not being subjected to overfishing, is not overfished, and is not approaching an overfished condition.

9. Flathead sole

Status and catch specifications (t) of flathead sole in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2013 and 2014 are those recommended by the Plan Team. Catch data are current through November 3, 2012.

Area	Year	Age 3+ Bio.	OFL	ABC	TAC	Catch
BSAI	2011	791,000	83,300	69,300	41,500	13,556
	2012	811,000	84,500	70,400	34,100	11,012
	2013	748,000	81,500	67,900	n / a	n / a
	2014	748,000	80,100	66,700	n / a	n / a

Changes from previous assessment

New data in this year's assessment include the following:

- The 2011 fishery catch was updated and preliminary 2012 catch was included.
- Sex-specific size compositions from the 2012 fishery and EBS shelf survey were included, and fishery size compositions from 2011were updated.
- Sex-specific age compositions from the 2010 and 2011 fisheries and the 2011 EBS shelf survey were included.
- The biomass estimate from the 2012 EBS shelf survey was included.
- The mean bottom temperature from the 2012 EBS shelf survey was included.

The preferred model is identical to that selected in last year's assessment.

Spawning biomass and stock status trends

Estimated age 3+ biomass increased from a low of 119,000 t in 1977 to a peak of $958,000 \mathrm{t}$ in 1994, then declined to $780,000 \mathrm{t}$ in 2003, rose briefly to $804,000 \mathrm{t}$ in 2006, and subsequently declined again to $727,000 \mathrm{t}$ in 2012. This was the lowest total biomass since 1987. Estimated female spawning biomass followed a similar trend, although the peak value ($318,000 \mathrm{t}$) occurred in 1997 rather than 1994. Spawning biomass in 2009 ($233,000 \mathrm{t}$) was the lowest since 1991, but has since rebounded somewhat ($243,000 \mathrm{t}$ in 2012). These changes in stock biomass are primarily a function of recruitment, as fishing pressure has been relatively light. The 2004-2008 have all been weak, but the 2009 year class may be strong.

Tier determination/Plan Team discussion and resulting ABCs and OFLs

The SSC has determined that reliable estimates of $B_{40 \%}, F_{40 \%}$, and $F_{35 \%}$ exist for this stock, thereby qualifying flathead sole for management under Tier 3. The current values of these reference points are $B_{40 \%}=128,000 \mathrm{t}$, $F_{40 \%}=0.29$, and $F_{35 \%}=0.35$. Because projected spawning biomass for $2013(245,000 t)$ is above $B_{40 \%}$, flathead sole is in sub-tier "a" of Tier 3. The authors and Plan Team recommend setting ABCs for 2013 and 2014 at the maximum permissible values under Tier 3a, which are $67,900 t$ and 66,700 t, respectively. The 2013 and 2014 OFLs under Tier 3a are 81,500 t and 80,100 t, respectively.

Status determination

Flathead sole is not being subjected to overfishing, is not overfished, and is not approaching an overfished condition.

10. Alaska plaice

Status and catch specifications (t) of Alaska plaice in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2013 and 2014 are those recommended by the Plan Team. Catch data are current through November 3, 2012.

Area	Year	Age 3 + Bio	OFL	ABC	TAC	Catch
BSAI	2011	780,000	79,100	65,100	16,000	23,656
	2012	606,000	64,600	53,400	24,000	16,124
	2013	589,000	67,000	55,200	n/a	n/a
	2014	580,000	60,200	55,800	n/a	n/a

Changes from previous assessment

Changes to the input data included:

- Preliminary 2012 fishery catch and updated 2011 fishery catch
- 2012 shelf survey biomass estimate
- 2012 shelf survey length composition
- 2011 shelf survey age composition
- 2008-2011 fishery length compositions

The assessment methodology was unchanged.

Spawning biomass and stock status trends

Female spawning biomass decreased from 1985 to 1998, and has been relatively stable since then. The shelf survey biomass has been fairly steady since the mid-1980s. The 2001-2002 year classes appear very strong, and the 2004-2005 year classes are estimated to be slightly above average. If recent average fishing mortality rates continue into the future, spawning biomass is projected to be fairly stable for the next few years.

Tier determination/Plan Team discussion and resulting ABCs and OFLs

Reliable estimates of $B 40 \%, F 40 \%$, and $F 35 \%$ exist for this stock, therefore qualifying it for management under Tier 3a. The updated point estimates are $B 40 \%=152,000 \mathrm{t}, F 40 \%=0.16$, and $F 35 \%=0.19$. Given that the projected 2012 spawning biomass of 261,000 t exceeds B40\%, the ABC and OFL recommendations for 2013 were calculated under sub-tier "a" of Tier 3. Projected harvesting at the F40\% level gives a 2013 ABC of $55,200 \mathrm{t}$ and a 2014 ABC of $55,800 \mathrm{t}$. The OFL was determined from the Tier 3a formula, which gives a 2013 value of $67,000 \mathrm{t}$ and a 2014 value of $60,200 \mathrm{t}$.

Status determination

Alaska plaice is not being subjected to overfishing, is not overfished, and is not approaching an overfished condition. There is no targeted fishery for this species as there is no market. The total exploitation rate is quite low, as this species is taken only as incidental catch, which is mostly discarded.

11. Other Flatfish complex

Status and catch specifications (t) of other flatfish in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2013 and 2014 are those recommended by the Plan Team. Catch data are current through November 3, 2012.

Area	Year	Total Bio.	OFL	ABC	TAC	Catch
BSAI	2011	127,000	19,500	14,500	3,000	3,176
	2012	111,000	17,100	12,700	3,200	3,452
	2013	114,000	17,800	13,300	n/a	n/a
	2014	114,000	17,800	13,300	n/a	n/a

Changes from previous assessment

Changes to the input data include:

- preliminary 2012 catch and updated 2011 catch
- 2012 EBS shelf and slope and AI trawl survey biomass estimates

The assessment methodology was unchanged.

Spawning biomass and stock status trends

Because this complex is managed under Tier 5, no models are available from which to predict future trends.
Starry flounder, rex sole, and butter sole comprise the majority of the fishery catch with a negligible amount of other species caught in recent years. Starry flounder continues to dominate the shelf survey biomass in the EBS and rex sole is the most abundant "other" flatfish in the AI. There is no consistent trend in the survey biomass of EBS butter sole over time. The 1982 butter sole estimate for the Eastern Bering Sea was 182 t compared to the 2012 estimate of 619 t , with values as high as $6,340 \mathrm{t}$ in 1986 and as low as 37 t in 1983 (the median of the absolute value of the relative change from year to year is 59 percent). EBS starry flounder biomass increased from $7,780 \mathrm{t}$ in 1982 to $98,600 \mathrm{t}$ in 2007 and remains at a high level ($62,800 \mathrm{t}$) in 2012. This estimate has fluctuated over time, though there has been an upward trend. Conversely, EBS longhead dab decreased from a one-time high of $104,000 \mathrm{t}$ in 1982 to $9,000 \mathrm{t}$ in 2012. This estimate has fluctuated over time, though less dramatically from 1985 through the present. Habitat and depth preference may affect the apparent changes in abundance. For example, longhead dab are found in inshore waters that are not normally sampled by the bottom trawl survey. Sakhalin sole biomass, which has no pattern in fluctuation, had a high of 1,410 t in 1997 and a low of 30 t in 2007. However, the northern BS survey in 2010 indicated that the primary distribution of this species is north of the standard survey area. Thus, distributional changes (e.g., onshore-offshore or northsouth), might affect the survey biomass estimates of "other" flatfish (Table 11.5).

Tier determination/Plan Team discussion and resulting ABCs and OFLs

The SSC has classified "other flatfish" as a Tier 5 stock complex with harvest recommendations calculated from estimates of biomass and natural mortality. Natural mortality rates for rex sole (0.17) and Dover sole (0.085) in the GOA SAFE document are used, along with a value of 0.15 for all other species in the complex. Projected harvesting at the 0.75 M level (average $F_{A B C}=0.11$), gives a 2013-2014 ABC of $13,300 \mathrm{t}$ for the "other flatfish" complex. The corresponding 2013-2014 OFL (average $\mathrm{F}_{\mathrm{OfL}}=0.15$) is $17,800 \mathrm{t}$.

Before the implementation of Amendment 80, fishing for this complex was usually closed for trawl gear prior to attainment of TAC because of the bycatch of Pacific halibut, a prohibited species. With the implementation of Amendment 80, a higher TAC for "other" flatfish was assigned for 2008-2010, although it was subsequently decreased for 2011-2012, and catches have remained at a small fraction of ABC throughout these transitions. The 2012 fishery is still open as of this writing.

Status determination

This assemblage is not being subjected to overfishing. It is not possible to determine whether this assemblage is overfished or whether it is approaching an overfished condition because it is managed under Tier 5 .

12. Pacific ocean perch

Status and catch specifications (t) of Pacific ocean perch in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2013 and 2014 are those recommended by the Plan Team. Catch data are current through November 3, 2012.

Area	Year	Age 3+ Bio	OFL	ABC	TAC	Catch
EBS	2011			5,710	5,710	5,600
Eastern AI	2011			5,660	5,660	5,453
Central AI	2011			4,960	4,960	4,767
Western AI	2011			8,370	8,370	8,182
BSAI	2011	601,000	36,300	24,700	24,700	24,002
EBS	2012			5,710	5,710	3,280
Eastern AI	2012			5,620	5,620	5,519
Central AI	2012			4,990	4,990	4,800
Western AI	2012			8,380	8,380	8,238
BSAI	2012	594,000	35,000	24,700	24,700	21,837
EBS	2013			8,130	n/a	n/a
Eastern AI	2013			9,790	n/a	n/a
Central AI	2013			6,980	n/a	n/a
Western AI	2013			10,200	n/a	n/a
BSAI	2013	663,000	41,900	35,100	n/a	n/a
EBS	2014			7,680	n/a	n/a
Eastern AI	2014			9,240	n/a	n/a
Central AI	2014			6,590	n/a	n/a
Western AI	2014			9,590	n/a	n/a
BSAI	2014	639,000	39,500	33,100	n/a	n/a

Changes from previous assessment

Pacific ocean perch (POP) assessments are conducted on a two-year cycle to coincide with planned Aleutian Islands surveys. The 2012 assessment is a full assessment because the Aleutian Islands survey was conducted this year.
New data in the 2012 assessment included:

- The harvest time series was updated.
- The 2012 AI survey biomass estimate and length composition.
- The 2009 and 2011 fishery age compositions.
- The 2010 fishery length composition.
- The maturity curve was estimated based on recent data from the Aleutian Islands.
- The biased fishery ages from 1977-1980 were removed from the model and replaced with fishery lengths. The original age-reading data required to recompute the biased age matrix with a different plus group was not readily available to the authors.
Several changes were made to the assessment methodology:
- A sensitivity analysis was conducted to evaluate how the age plus group affects the fit to various model components. Based on this analysis, the age plus group was increased from 25 years to 40 years
- The age error matrix was recomputed to better account for aging error within the plus group.

Spawning biomass and stock status trends

The survey biomass estimates in the Aleutian Islands and the Bering Sea Slope both were high in 2012. Estimated age 3+ biomass for 2013 is up substantially from the 2013 estimate projected a year ago. Spawning biomass is projected to be $274,000 \mathrm{t}$ in 2013 and decline slightly to $258,000 \mathrm{t}$ in 2014.

Tier determination/Plan Team discussion and resulting ABCs and OFLs

The SSC has determined that reliable estimates of $B_{40 \%}, F_{40 \%}$, and $F_{35 \%}$ exist for this stock, thereby qualifying Pacific ocean perch for management under Tier 3. The current estimates of $B_{40 \%}, F_{40 \%}$, and $F_{35 \%}$ are $184,000 t$, 0.063 , and 0.076 respectively. Spawning biomass for $2013(274,000 t)$ is projected to exceed $B_{40 \%}$, thereby placing POP in sub-tier "a" of Tier 3. The 2013 and 2014 catches associated with the $F_{40 \%}$ level of 0.063 are $35,100 t$ and $33,100 t$, respectively. In 2010, the Plan Team recommended an adjusted ABC approach until the next Aleutian Islands survey. The 2012 AI survey was nearly as large as the 2010 survey so now the Plan Team endorses using maximum permissible ABC. The 2013 and 2014 OFLs are 41,900 t and 39,500 t .

Area apportionment

The Team agrees with the author's recommendation that ABCs be set regionally based on the proportions in combined survey biomass as follows (values are for 2013): BS = 8,130 t, Eastern Aleutians (Area 541) = 9,790 t , Central Aleutians (Area 542) $=6,980 \mathrm{t}$, and Western Aleutians (Area 543) $=10,200 \mathrm{t}$. The recommended OFL is not regionally apportioned.

Status determination

Pacific ocean perch is not being subjected to overfishing, is not overfished, and is not approaching an overfished condition.

13. Northern rockfish

Status and catch specifications (t) of northern rockfish in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2013 and 2014 are those recommended by the Plan Team. Catch data are current through November 3, 2012.

Area	Year	Age 3+ Bio.	OFL	ABC	TAC	Catch
BSAI	2011	201,000	10,600	8,670	4,000	2,764
	2012	202,000	10,500	8,610	4,700	2,474
	2013	195,000	12,200	9,850	n / a	n / a
	2014	196,000	12,000	9,320	n / a	n / a

Changes from previous assessment

Northern rockfish assessments are conducted on a two-year cycle to coincide with planned Aleutian Islands surveys. The 2012 assessment is a full assessment because the Aleutian Islands survey was conducted this year.
New data included in the 2012 assessment included:

- Catch updated through October 6, 2012.
- The biomass estimate and length composition from the 2012 AI survey.
- The 2008, 2009, and 2011 fishery age compositions and the 2010 fishery length composition.
- The maturity curve was estimated based on recent data from the Aleutian Islands.

Several changes were made to the assessment methodology:

- A sensitivity analysis was conducted to evaluate how the age and length plus groups affect the fit to various model components. Based on this analysis, the age and length plus groups were increased to 40 years and 38 cm (previous values were 23 years and 34 cm).
- The age error matrix was recomputed to better account for aging error within the plus group.

Spawning biomass and stock status trends

Age 3+ biomass has been on an upward trend since 2002. Spawning biomass has been increasing slowly and almost continuously since 1977. Female spawning biomass is projected to be 84,700 t in 2013.

Tier determination/Plan Team discussion and resulting ABCs and OFLs

The SSC has determined that this stock qualifies for management under Tier 3 due to the availability of reliable estimates for $B_{40 \%}$ ($59,200 t$), $F_{40 \%}$ (0.063), and $F_{35 \%}(0.079$). Because the female spawning biomass of $84,700 \mathrm{t}$ is greater than $B_{40 \%}$, sub-tier "a" is applicable, with maximum permissible $F_{A B C}=F_{40 \%}$ and $F_{\text {OFL }}=$ $F_{35 \%}$. Under Tier 3a, the maximum permissible ABC for 2013 is $9,850 t$, which is the authors' and Plan Team’s recommendation for the 2013 ABC. Under Tier 3a, the 2013 OFL is $12,200 t$ for the Bering Sea/Aleutian Islands combined. The Team continues to recommend setting a combined BSAI OFL and ABC. The Plan Team recommendation for 2014 ABC is $9,320 \mathrm{t}$ and the 2014 OFL is $12,000 \mathrm{t}$.

Status determination

Northern rockfish is not being subjected to overfishing, is not overfished, and is not approaching an overfished condition.

14. Blackspotted and rougheye rockfish

Status and catch specifications (t) blackspotted/rougheye rockfishes in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2013 and 2014 are those recommended by the Plan Team. Catch data are current through November 3, 2012.

Area/subarea	Year	Total Bio1.	OFL	ABC	TAC	Catch
BSAI	2011	24,200	549	454	454	170
	2012	24,900	576	475	475	204
	2013	28,000	691	569	n/a	n/a
	2014	29,000	704	604	n/a	n/a
Western and Central AI	2011			220	220	85
	2012			244	244	131
	2013			328	n/a	n/a
	2014			350	n/a	n/a
Eastern AI and EBS	2011			234	234	85
	2012			231	231	74
	2013			241	n/a	n/a
	2014			254	n/a	n/a

${ }^{1}$ Total biomass from AI age-structured projection model and survey biomass estimates from EBS.
Changes from previous assessment
Black spotted and rougheye rockfish assessments are conducted on a two-year cycle to coincide with planned Aleutian Islands surveys, so this was a full-assessment update from 2010 because a survey was conducted in 2012.

The following input data were updated:

- Catch updated through October 6, 2012.
- The biomass estimate from the 2012 AI survey.
- The 2009 and 2011 fishery age composition and 2010 fishery length composition.
- The 2010 survey age composition and 2012 survey length composition.

The age error matrix was recomputed to better account for aging error within the plus group.

Spawning biomass and stock status trend

Total biomass for 2013 was estimated at a value of $28,000 \mathrm{t}$. Female spawning biomass in the AI is increasing.
Tier determination/Plan Team discussion and resulting ABCs and OFLs
For the Aleutian Islands, this stock qualifies for management under Tier 3 due to the availability of reliable estimates for $B_{40 \%}, F_{40 \%}$, and $F_{35 \%}$. Because the projected female spawning biomass of 6,836 t is greater than $B_{40 \%},(5,196 \mathrm{t}), F_{40 \%}=F_{A B C}=0.035$ and $F_{35 \%}=F_{O F L}=0.043$. Under Tier 3a, the maximum permissible ABC is 569 t , which is the authors' and Plan Team's recommendation for the 2013 ABC. Under Tier 3a, the 2013 OFL is 691 t for the Bering Sea/Aleutian Islands combined. The apportionment of 2013 ABC to subareas is 328 t for the Western and Central Aleutian Islands and 241 t for the Eastern Aleutian Islands and Eastern Bering Sea. The Plan Team recommendation for 2014 ABC is 604 t and the 2014 OFL is 704 t .

Status determination

The blackspotted and rougheye rockfish complex is not being subjected to overfishing, is not overfished, and is not approaching an overfished condition.

15. Shortraker rockfish

Status and catch specifications (t) of shortraker rockfish in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2013 and 2014 are those recommended by the Plan Team. Catch data are current through November 3, 2012.

Area	Year	Survey Biomass	OFL	ABC	TAC	Catch
BSAI	2011	17,500	524	393	393	334
	2012	17,500	524	393	393	305
	2013	16,400	493	370	n/a	n/a
	2014	16,400	493	370	n/a	n/a

Changes from previous assessment
Shortraker rockfish assessments are conducted on a two-year cycle to coincide with planned Aleutian Islands surveys. The biomass estimate is updated with 2012 survey data.

Spawning biomass and stock status trends

Estimated shortraker rockfish biomass is $16,400 \mathrm{t}$, which is a reduction of $1,100 \mathrm{t}$ from the 2010 estimate. Overall, total biomass has trended slowly downward from 28,900 t in 1980.

Tier determination/Plan Team discussion and resulting ABCs and OFLs
The SSC has previously determined that reliable estimates only of biomass and natural mortality exist for shortraker rockfish, qualifying the species for management under Tier 5 . The Tier 5 biomass estimate is based on a surplus production model. The Plan Team recommends setting $F_{A B C}$ at the maximum permissible level under Tier 5 , which is 75 percent of M. The accepted value of M for this stock is 0.03 for shortraker rockfish, resulting in a $m a x F_{A B C}$ value of 0.025 . The biomass estimate for 2013 is $16,400 \mathrm{t}$ for shortraker rockfish, leading to 2013 and 2014 BSAI OFLs of 493 t and ABCs of 370 t .

Status determination

Shortraker rockfish is not being subjected to overfishing. It is not possible to determine whether this stock is overfished or whether it is approaching an overfished condition because it is managed under Tier 5.

16. Other Rockfish complex

Status and catch specifications (t) of other rockfish in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2013 and 2014 are those recommended by the Plan Team. Catch data are current through November 3, 2012.

Area	Year	Survey Biomass	OFL	ABC	TAC	Catch
BSAI	2011	48,900	1,700	1,280	1,070	939
	2012	48,900	1,700	1,280	1,070	924
	2013	47,700	1,540	1,160	n/a	n/a
	2014	47,700	1,540	1,160	n/a	n/a
EBS	2011	28,600	n/a	710	500	323
	2012	28,600	n/a	710	500	191
	2013	29,800	n/a	686	n/a	n / a
	2014	29,800	n/a	686	n/a	n/a
AI	2011	20,300	n/a	570	570	616
	2012	20,300	n/a	570	570	733
	2013	17,900	n/a	473	n/a	n/a
	2014	17,900	n/a	473	n/a	n/a

Changes from previous assessment

Other rockfish assessments are conducted on a two-year cycle to coincide with planned Aleutian Islands surveys. The 2012 assessment is a full assessment because the Aleutian Islands survey was conducted this year.
New data included in the 2012 assessment included:

- Updated catch and fishery lengths.
- Biomass estimates from the 2012 AI trawl survey, the 2012 EBS slope survey, as well as CPUE and lengths from the 2012 AI trawl survey.

There were no changes in the assessment methodology.

Spawning biomass and stock status trends

Trends in spawning biomass are unknown. Stock biomass, as measured by trawl surveys of the Aleutian Islands and the EBS slope are similar to the 2010 assessment.

Tier determination/Plan Team discussion and resulting ABCs and OFLs

The Team agrees with the approach recommended by the author of setting $F_{A B C}$ at the maximum allowable under Tier $5\left(F_{A B C}=0.75 M\right)$. Multiplying these rates by the best biomass estimates of shortspine thornyhead and other rockfish species in the "other rockfish" complex yields 2013 and 2014 ABCs of 686 t in the EBS and 473 t in the AI. The assessment uses a three survey weighted average to estimate biomass in similar fashion to the methodology used in the Gulf of Alaska rockfish assessments. The Plan Team recommends that OFL be set for the entire BSAI area, which under Tier 5 is calculated by multiplying the best estimates of total biomass for the area by the separate natural mortality values and adding the results, which yields an OFL of 1,540 t for 2013 and 2014.

Status determination

The "other rockfish" complex is not being subjected to overfishing. It is not possible to determine whether this complex is overfished or whether it is approaching an overfished condition because it is managed under Tier 5 .

17. Atka mackerel

Status and catch specifications (t) of Atka mackerel in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2013 and 2014 are those recommended by the Plan Team. Catch data are current through November 3, 2012.

Area	Year	Age 3+ Biomass	OFL	ABC	TAC	Catch
BSAI	2011	438,000	101,000	85,300	53,100	51,807
BSAI	2012	405,000	96,500	81,400	50,763	47,755
EAI/EBS				38,500	38,500	37,237
CAI				22,900	10,763	10,323
WAI				20,000	1,500	195
BSAI	2013	289,000	57,700	50,000	n/a	n/a
EAI/EBS				16,900	n/a	n/a
CAI				16,000	n/a	n/a
WAI				17,100	n/a	n/a
BSAI	2014		56,500	48,900	n/a	n/a
EAI/EBS				16,500	n/a	n/a
CAI				15,700	n/a	n/a
WAI				16,700	n/a	n/a

Changes from previous assessment

The following new data were included in this year's assessment:

- updated fishery catch data
- 2011 fishery catch- and weight-at-age values
- 2012 Aleutian Islands survey data were included (biomass is used in the model; length and age compositions are presented but were not available in time to include in the model)
- area apportionment of ABC was updated by adding the area biomass distribution from the 2012 survey and dropping the 2002 survey
As in last year's assessment, it was assumed that only 64% of the BSAI-wide ABC for the next two years would be taken under the Steller Sea Lion Interim Final Rule Reasonable and Prudent Alternatives (SSL RPAs). This percentage was applied to the 2013 maximum permissible ABC, and that amount was assumed to be caught in order to estimate the 2014 ABC and OFL.

There were two significant changes in assessment methodology:

- Standard deviation of log recruitment is now estimated as a free parameter; in past assessments, it was fixed at 0.6
- Prior penalty on degree of dome-shape in fishery selectivity is now fixed at 0.3 ; in recent past assessments it was fixed at 0.1

Spawning biomass and stock status trends

The projected female spawning biomass for 2013 using the catch levels in the proposed SSL RPAs is 103,000 t , which is 37 percent of unfished spawning biomass and below $B_{40 \%}(113,000 \mathrm{t})$. The population is projected to remain below $B_{40 \%}$ through 2017, assuming the catch reductions contained in the proposed SSL RPAs occur and remain in place.

Tier determination/Plan Team discussion and resulting ABCs and OFLs

The projected female spawning biomass under the SSL RPA harvest strategy is estimated to be below $B_{40 \%}$, thereby placing BSAI Atka mackerel in Tier 3b. The projected 2013 yield (ABC) at adjusted $F_{40 \%}=0.32$ is $50,000 \mathrm{t}$, down 38% from the 2012 ABC of $81,400 \mathrm{t}$. The projected 2013 overfishing level at adjusted $F_{35 \%}=$ 0.39 is $57,700 \mathrm{t}$, down 40% from last year's estimate for 2012 ($96,500 \mathrm{t}$).

Status determination

Atka mackerel is not being subjected to overfishing, is not overfished, and is not approaching an overfished condition.

Area apportionment

Amendment 28 of the Bering Sea/Aleutian Islands Fishery Management Plan divided the Aleutian Islands subarea into 3 districts at $177^{\circ} \mathrm{E}$ and $177^{\circ} \mathrm{W}$ longitude, providing the mechanism to apportion the Aleutian Atka mackerel TACs. The Council uses a 4 -survey weighted average to apportion the ABC, and the last 4 surveys were conducted in 2004, 2006, 2010, and 2012. The recommended ABC apportionment by subarea for 2013 are 16,900 t for Area 541 and the southern Bering Sea region, 16,000 t for Area 542, and 17,100 t for Area 543.

Ecosystem Considerations

Atka mackerel is the most common prey item of the endangered western Steller sea lion throughout the year in the Aleutian Islands. Analysis of historic fishery CPUE revealed that the fishery may create temporary localized depletions of Atka mackerel, and fishery harvest rates in localized areas may have been high enough to affect prey availability for Steller sea lions. The objectives of having areas closed to Atka mackerel fishing around Steller sea lion haulouts and rookeries, and time-area ABC allocations are to maintain sufficient prey for the recovery of Steller sea lions in the Aleutian Islands while also harvesting Atka mackerel. The stock assessment indicates that the abundance of Atka mackerel is decreasing, and peaked in 2005 due to four back-to-back strong year classes (1998-2001), including an extraordinarily strong 1999 year class which still persists in the population. Nevertheless, Steller sea lion surveys conducted in 2008-12 indicate that counts of adults, juveniles, and pups continue to decline in the Aleutian Islands west of Tanaga Pass. This contrasts with Steller sea lion counts in the eastern Aleutian Islands and southern Bering Sea (between Samalga and False Passes) which are increasing. The Steller sea lion RPAs prohibit any retention of Atka mackerel in area 543 (the western Aleutian Islands, where the Steller sea lion population is declining at ~ 7 percent per year); prohibit directed mackerel fishing in most of Steller sea lion critical habitat in area 542 (all except an area between 178$179^{\circ} \mathrm{W}$ (Tanaga Pass) which has catch and effort restrictions); set the area 542 Atka mackerel TAC to no more than 47 percent of the Area 542 ABC; retain the critical habitat closure in area 541; and close the entire eastern Bering Sea to directed fishing for Atka mackerel.

18. Skates

Status and catch specifications (t) of skates in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2013 and 2014 are those recommended by the Plan Team. Catch data are current through November 3, 2012.

Area	Year	Age 0+ Biomass	OFL	ABC	TAC	Catch
BSAI	2011	612,000	37,800	37,500	16,500	23,135
	2012	645,000	39,100	32,600	24,700	22,338
	2013	745,000	45,800	38,800	n/a	n/a
	2014	725,000	44,100	37,300	n/a	n/a

Changes from previous assessment

The following new data were included in this year's assessment:

- Updated 2011 and preliminary 2012 catch
- 2012 EBS shelf, EBS slope, and AI survey data
- Updated fishery and survey length compositions, and new length at age data from the 2009 EBS shelf survey

Alaska skate assessment methodology was substantially revised using Stock Synthesis version 3.23, Schnute growth function, selectivity function for fisheries and survey are dome-shaped, "survivorship" function added to model the stock-recruit relationship, maximum age raised from 25 to 30 years, data length bins were changed, and the preferred model uses only the most recent length at age data and estimates the growth function parameters in the model.

Spawning biomass and stock status trends

In the case of Alaska skates, survey biomass estimates, though variable, are basically trendless since species identification began in 1999. Model estimates of spawning biomass are also basically trendless over the 19922011 period covered by the model, while total biomass has tended to increase fairly steadily at an average rate of about 0.7 percent per year over the same time period. Recruitment does not appear to vary much from year to year, with a CV for the time series of only 18 percent. The most recent above-average year class was spawned in 2004.

Tier determination/Plan Team discussion and resulting ABCs and OFLs

2011 was the first time that the skate complex was managed outside the context of the former "other species" complex. The Alaska skate portions of the 2011 ABC and OFL were specified under Tier 3, while the "other skates" portions were specified under Tier 5 and this specification approach continued with this assessment.
The Team accepted the revised Alaska skate model recommended by the author. Four models were created and the preferred model used only the most recent, 2009, length-at-age data and estimates the growth function parameters in the model. The Team accepted this model because the Richards formulation of the growth curve improved the fit to the length-at-age data. The Team was concerned about dropping the earlier length-at-age data and asked the author to revisit whether this data should be excluded in the 2013 assessment update. Because projected spawning biomass for 2013 (194,000 t) exceeds $B_{40 \%}(107,000 t)$, Alaska skates are in subtier "a" of Tier 3. Other reference points are $\max _{A B C}=F_{40 \%}=0.098$ and $F_{O F L}=F_{35 \%}=0.113$. The Alaska skate portions of the 2013 and 2014 ABCs are 31,700 t and $30,200 t$, and the Alaska skate portions of the 2013 and 2014 OFLs are $36,300 \mathrm{t}$ and $34,600 \mathrm{t}$. The Plan Team agreed with the authors' recommendation to continue to assess the "other skates" component under Tier 5, based on a natural mortality rate of 0.10 and a biomass estimated as the average of the three most recent surveys. The "other skates" portion of the 2013-2014 ABC is 7,100 for both years, and the "other skates" portion of the 2013-2014 OFL is $9,470 \mathrm{t}$ for both years.
For the skate complex as a whole, ABCs for 2013 and 2013 total $38,800 t$ and $37,300 t$, respectively, and OFLs for 2013 and 2014 total 45,800 t and 44,100 t, respectively.

Status determination

Alaska skate, which may be viewed as an indicator stock for the complex, is not overfished and is not approaching an overfished condition. The skate complex was not subjected to overfishing. It is not possible to determine whether the other skates complex is overfished or approaching an overfished condition because it is managed under Tier 5.

19. Sculpins

Status and catch specifications (t) of sculpins in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2013 and 2014 are those recommended by the Plan Team. Catch data are current through November 3, 2012.

Area	Year	Biomass	OFL	ABC	TAC	Catch
BSAI	2011	208,000	58,300	43,700	5,200	5,358
	2012	208,000	58,300	43,700	5,200	5,469
	2013	216,000	56,400	42,300	n/a	n/a
	2014	216,000	56,400	42,300	n/a	n/a

Changes from previous assessment

This was a straightforward update from the 2011 assessment. Catch and retention data were updated with partial data for 2012; additionally, catch data from 2003-2012 was updated as a result of changes to the catch accounting system. Biomass estimates and length compositions from the 2011 and 2012 Bering Sea shelf survey, the 2012 Bering Sea slope survey, and the 2012 Aleutian Islands survey were added.

Spawning biomass and stock status trends

Total BSAI sculpin biomass dropped slightly from 2004 to 2010, but increased in 2012. In addition, the distribution decreased slightly on the EBS shelf but increased on the EBS slope and in the AI.

Tier determination/Plan Team discussion and resulting ABCs and OFLs
The authors have recommended the use of separate M estimates for 7 species, and different M estimates for the EBS and AI. No changes were noted for this year. The Team recommended ABCs based on species-specific ABCs summed to a total for the group. The total (Tier 5) sculpin recommended ABCs and OFLs for 2013 and 2014 are $42,300 t$ and $56,400 t$, respectively.

Status determination

The sculpin complex is not being subjected to overfishing. It is not possible to determine whether the sculpin complex is overfished or whether it is approaching an overfished condition because it is managed under Tier 5 .

20. Sharks

Status and catch specifications (t) of sharks in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2013 and 2014 are those recommended by the Plan Team. Catch data are current through November 3, 2012.

Area	Year	Biomass	OFL	ABC	TAC	Catch
BS/AI	2011	n/a	1,360	1,020	50	172
	2012	n/a	1,360	1,020	200	81
	2013	n/a	1,360	1,020	n/a	n/a
	2014	n/a	1,360	1,020	n/a	n/a

Changes from previous assessment

Bycatch data through 2012 were added, as well as AFSC and IPHC survey results from 2012. The SSC had requested alternative specifications of OFL and ABC that incorporated estimates of unobserved shark bycatch in the halibut fishery (Halibut Fishery Incidental Catch Estimates, or HFICE)). These were included in the document but were not recommended by the authors or the Team.

Spawning biomass and stock status trends

The bulk of the shark catch in the BSAI is sleeper sharks, taken mainly in the pollock and Pacific cod fisheries. Small numbers of salmon sharks are taken in the pollock fishery, but they are pelagic and mostly invulnerable to groundfish fisheries. Few dogfish sharks appear this far north. In the period 1997-2010 the average annual catch of all sharks was 500 t . Catches have been below average in the last few years.

Trawl survey data do not provide reliable estimates of abundance of sharks in the BSAI. Sharks are seldom caught in BSAI trawl surveys except for the Bering Sea slope survey, where sleeper sharks occur in about 10 percent of hauls. They are also taken in the Bering Sea shelf and Aleutian Islands surveys, but rarely. Averaging the swept area estimates of sleeper sharks in all surveys over the last ten years produces a value of about $10,000 \mathrm{t}$, which is likely an underestimate.

Tier determination/Plan Team discussion and resulting ABCs and OFLs

The SSC has placed sharks in Tier 6, where OFL is typically based on historical catches. Consistent with past policy, the Team recommends setting OFL at the maximum catch during the period 1997-2007 (1,363 t, taken in 2002), and ABC at 75 percent of OFL, which continues to be $1,020 \mathrm{t}$. The authors and the Team do not recommend specifying OFL and ABC on the basis of catch estimates that include HFICE because the extent of double counting is unknown and in the future, the actual bycatch in the halibut fishery will be known from the expanded observer program.

Status determination

The shark complex is not being subjected to overfishing. It is not possible to determine whether this species complex is overfished or whether it is approaching an overfished condition because it is managed under Tier 6.

The Plan Team is concerned about the steep decline of sleeper shark catch rates in the IPHC longline survey and all of the bycatch fisheries. However since all of the sleeper sharks taken in the survey and fisheries are juveniles, it is impossible to know what effect those catches have on spawning stock biomass.

21. Squid

Status and catch specifications (t) of squid in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2013 and 2014 are those recommended by the Plan Team. Catch data are current through November 3, 2012.

Area	Year	Biomass	OFL	ABC	TAC	Catch
BSAI	2011	n/a	2,620	1,970	1,970	336
	2012	n/a	2,620	1,970	425	678
	2013	n/a	2,620	1,970	n/a	n/a
	2014	n/a	2,620	1,970	n/a	n/a

Changes from previous assessment

The author included new information in the assessment that described the seasonal pattern of incidental squid catches, including length and geographical distribution of catch. The authors' and Plan Team's
recommendation is to roll over last year's harvest specifications for 2013 and 2014.

Tier determination/Plan Team discussion and resulting ABCs and OFLs

Squids are managed under Tier 6 because the groundfish bottom trawl surveys do not provide reliable biomass estimates. The Team concurred with the author's ABC and OFL recommendations for 2013 and 2014, which are unchanged from last year. The recommended ABCs for 2013 and 2014 are the maximum permissible level, calculated as 0.75 times the average catch from the reference period of 1978-1995, or $1,970 \mathrm{t}$. The recommended OFLs in 2013 and 2014 are calculated as the average catch from 1978-1995, or 2,620 t .

Status determination

The squid complex is not being subjected to overfishing. It is not possible to determine whether this species complex is overfished or whether it is approaching an overfished condition because it is managed under Tier 6.

22. Octopus

Status and catch specifications (t) of octopus in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2013 and 2014 are those recommended by the Plan Team. Catch data are current through November 3, 2012.

Area	Year	Biomass	OFL	ABC	TAC	Catch
BSAI	2011	n/a	528	396	150	587
	2012	n/a	3,450	2,590	900	132
	2013	n/a	3,450	2,590	n/a	n/a
	2014	n/a	3,450	2,590	n/a	n/a

Changes from previous assessment

The methodology for assessing octopus based on consumption of octopus by Pacific cod was accepted. The consumption estimate using Pacific cod predation of octopus as an estimator of biomass lost due to natural mortality first was accepted in 2011; the authors recommend that this calculation be revisited once every five years.
The following new data was included in this year's assessment:

- Updated 2011 and preliminary 2012 catch
- 2012 EBS shelf, EBS slope, and AI survey data

Spawning biomass and stock status trends

Estimated survey biomass was lower in 2012 than in the most recent surveys of the Bering Sea shelf and the Aleutian Islands, but much higher for Bering Sea slope survey than in recent years. Species composition and size frequencies from the surveys were similar to previous years.
Giant Pacific octopus is the most abundant on the Bering Sea shelf and commercial catch of at least seven species found in the BSAI. Octopuses are commonly caught in pot and trawl fisheries, especially in the Pacific cod pot fishery. Trawl surveys sample octopus poorly, and biomass estimates from trawl surveys are not considered reliable.

Tier determination/Plan Team discussion and resulting ABCs and OFLs

2011 was the first time that the octopus complex was managed outside the context of the former "other species" complex.
The ABC and OFL values were determined under Tier 6. Usually, Tier 6 specifications are based on average catch, but for 2012 and 2013 the authors recommended setting harvest specifications using an alternative mortality estimate based on species composition of Bering Sea Pacific cod diet from 1984-2008 survey data and weight-at-age data. This method is also recommended for 2013 and 2014. This consumption estimate results in 2013 and 2014 OFLs of 3,450 t and ABCs of 2,590 t. The Plan Team recommends adoption of these specifications.

Status determination

The most recent year for which complete catch data are available is 2011. Because the 2011 octopus catch exceeded the 2011 octopus OFL, the 2012 assessment determined that the octopus complex was subjected to overfishing in 2011. However, the 2012 OFL increased and the 2012 catch decreased, so the octopus complex is not expected to be subject to overfishing in 2012.

The octopus complex is not being subjected to overfishing. It is not possible to determine whether the octopus complex is overfished or whether it is approaching an overfished condition because it is managed under Tier 6 .

Appendix 1: Grenadiers

A full assessment of the grenadier assemblage is provided in Appendix 1; while not required, it is provided to assist the Council in its pending decision of whether to include the assemblage in the groundfish FMPs. The Plan Teams have recommended that the Council should add grenadiers to both FMPs so that annual catch limits may be established.
Seven species of grenadiers are known to occur in Alaska. The giant grenadier is the most abundant and has the shallowest depth distribution on the continental slope. The assessment focused on the giant grenadier as it is the most common grenadier caught in both the commercial fishery and longline and trawl surveys. Pacific grenadiers and popeye grenadiers are occasionally caught.
The estimated annual catches of grenadiers in Alaska for the years 1997-2012 have ranged between 11,700$21,300 \mathrm{t}$, with an average for this period of $15,400 \mathrm{t}$. Highest catches have consistently been in the GOA. By region, annual catches have ranged between 5,400-14,700 t in the GOA, 1,600-5,000 t in the EBS, and 1,300$4,400 \mathrm{t}$ in the AI. Most of the catch occurs in longline and pot fisheries.

Changes in assessment data

New data for this assessment includes: 1) updated catch estimates for 2011-2012; 2) trawl survey results for the eastern Bering Sea (EBS) slope in 2012; 3) a time series of Aleutian Island (AI) biomass and variance estimates using a new estimation method for 1996-2012; 4) NMFS longline survey results for 2011 and 2012; and 5) observer data on giant grenadier length and sex in the commercial fishery for 2011 and 2012.

Changes in assessment methodology

A new method for determining AI biomass and variance estimates was presented. This new method utilizes available biomass estimates from AFSC trawl surveys in the AI that only extend from 1-500 m . A ratio of "shallow" biomass estimates from the trawl survey ($1-500 \mathrm{~m}$) to "shallow" relative population weights (RPWs) from the AFSC longline survey ($1-500 \mathrm{~m}$) is used to extrapolate total biomass from longline survey RPWs for 1-1000 m.

Tier determination and resulting ABCs and OFLs

If included in the fishery in the FMPs, Tier 5 determinations would result in the following OFLs and ABCs.

Area	OFL	ABC
EBS	46,200	32,400
AI	89,000	35,000
GOA	46,600	35,000

For the EBS and GOA these Tier 5 calculations are based on the average of the three most recent deep-water trawl surveys that sampled down to at least 1,000 and $\mathrm{M}=0.078$. In the EBS, these are now the 2008, 2010, and 2012 surveys. In the GOA, these are the 2005, 2007, and 2009 surveys. In the AI the new method combines the use of 2008, 2010, 2012 trawl survey data and longline survey data even when trawl surveys sampled only to 500 m .

For comparison, the authors also calculated a Tier 5 ABC for the GOA based on the Kalman filter model estimates of biomass. Since the depth sampled differed among the time series of the trawl surveys, the model was applied separately to three depth strata and then summed to give an estimate of biomass. This resulted in an OFL of $30,800 t$ and an ABC of 23,100 t for the GOA.

Table 1. BSAI Groundfish Plan Team Recommendations for Final OFLs and ABCs (t) for 2013 and 2014.

Species	Area	2012				2013		2014	
		OFL	ABC	TAC	Catch	OFL	ABC	OFL	ABC
Pollock	EBS	2,474,000	1,220,000	1,186,000	1,202,560	2,550,000	1,375,000	2,730,000	1,430,000
	AI	39,600	32,500	19,000	972	45,600	37,300	48,600	39,800
	Bogoslof	22,000	16,500	500	79	13,400	10,100	13,400	10,100
Pacific cod	BSAI	369,000	314,000	275,000	223,939	359,000	307,000	379,000	323,000
Sablefish	BS	2,640	2,230	2,230	717	1,870	1,580	1,760	1,480
	AI	2,430	2,050	2,050	1,180	2,530	2,140	2,370	2,010
Yellowfin sole	BSAI	222,000	203,000	202,000	137,716	220,000	206,000	219,000	206,000
Greenland turbot	Total	11,700	9,660	8,660	4,401	2,540	2,060	3,270	2,650
	EBS	n/a	7,230	6,230	2,744	n/a	1,610	n/a	2,070
	AI	n/a	2,430	2,430	1,657	n/a	450	n/a	580
Arrowtooth flounder	BSAI	181,000	150,000	25,000	22,227	186,000	152,000	186,000	152,000
Kamchatka flounder	BSAI	24,800	18,600	17,700	9,558	16,300	12,200	16,300	12,200
Northern rock sole	BSAI	231,000	208,000	87,000	75,806	241,000	214,000	229,000	204,000
Flathead sole	BSAI	84,500	70,400	34,134	11,011	81,500	67,900	80,100	66,700
Alaska plaice	BSAI	64,600	53,400	24,000	16,124	67,000	55,200	60,200	55,800
Other flatfish	BSAI	17,100	12,700	3,200	3,452	17,800	13,300	17,800	13,300
Pacific ocean perch	Total	35,000	24,700	24,700	21,837	41,900	35,100	39,500	33,100
	EBS	n/a	5,710	5,710	3,280	n/a	8,130	n/a	7,680
	EAI	n/a	5,620	5,620	5,519	n/a	9,790	n/a	9,240
	CAI	n/a	4,990	4,990	4,800	n/a	6,980	n/a	6,590
	WAI	n/a	8,380	8,380	8,238	n/a	10,200	n/a	9,590
Northern rockfish	BSAI	10,500	8,610	4,700	2,474	12,200	9,850	12,000	9,320
Blackspotted/Rougheye	Total	576	475	475	205	691	569	704	604
	EBS/EAI	n/a	231	231	74	n/a	241	n/a	254
	CAI/WAI	n/a	244	244	131	n/a	328	n/a	350
Shortraker rockfish	BSAI	524	393	393	273	493	370	493	370
Other rockfish	Total	1,700	1,280	1,070	924	1,540	1,160	1,540	1,160
	EBS	n/a	710	500	191	n/a	686	n/a	686
	AI	n/a	570	570	733	n/a	473	n/a	473
Atka mackerel	Total	96,500	81,400	50,763	47,755	57,700	50,000	56,500	48,900
	EAI/BS	n/a	38,500	38,500	37,237	n/a	16,900	n/a	16,500
	CAI	n/a	22,900	10,763	10,323	n/a	16,000	n/a	15,700
	WAI	n/a	20,000	1,500	195	n/a	17,100	n/a	16,700
Skate	BSAI	39,100	32,600	24,700	22,338	45,800	38,800	44,100	37,300
Sculpin	BSAI	58,300	43,700	5,200	5,469	56,400	42,300	56,400	42,300
Shark	BSAI	1,360	1,020	200	81	1,360	1,020	1,360	1,020
Squid	BSAI	2,620	1,970	425	677	2,620	1,970	2,620	1,970
Octopus	BSAI	3,450	2,590	900	132	3,450	2,590	3,450	2,590
Total	BSAI	3,996,000	2,511,778	2,000,000	1,811,907	4,028,694	2,639,508	4,205,467	2,697,673

Final 2012 OFLs, ABCs, and TACs from 2012-2013 final harvest specifications; total catch updated through November 3, 2012.
Italics indicate where the Team differed from the author's recommendation.

		Pacific	Sable	Yellowfin	Greenland	Arrowtooth	Kamchatka	Rock	Other	Flathead	Alaska	Pacific Ocean	Pacific	Northern	Shortraker ${ }^{\text {a }}$	Rougheye	Other	Atka		Other					Total
Year	Pollock	Cod	Fish	Sole	Turbot	Flounder/a	Flounder/d	Sole/c	Flatish	sole	Plaice	Perch Complexb	Ocean Perch	Rockfish	Rockfish	Rockfish	Rockfish	Mackerel	Squid	Species	Octopus	Sculpin	Shark	Skate	(All Species)
1954				12,562																					12,562
1955				14,690																					14,690
1956				24,697																					24,697
1957				24,145																					24,145
1958	6,924	171	6	44,153																147					51,401
1959	32,793	2,864	289	185,321																380					221,647
1960			1,861	456,103	36,843							6,100													500,907
1961			15,627	553,742	57,348							47,000													673,717
1962			25,989	420,703	58,226							19,900													524,818
1963			13,706	85,810	31,565				35,643			24,500													191,224
1964	174,792	13,408	3,545	111,177	33,729				30,604			25,900								736					393,891
1965	230,551	14,719	4,838	53,810	9,747				11,686			16,800								2,218					344,369
1966	261,678	18,200	9,505	102,353	13,042				24,864			20,200								2,239					452,081
1967	550,362	32,064	11,698	162,228	23,869				32,109			19,600								4,378					836,308
1968	702,181	57,902	4,374	84,189	35,232				29,647			31,500								22,058					967,083
1969	862,789	50,351	16,009	167,134	36,029				34,749			14,500								10,459					1,192,020
1970	1,256,565	70,094	11,737	133,079	19,691	12,598			64,690			9,900								15,295					1,593,649
1971	1,743,763	43,054	15,106	160,399	40,464	18,792			92,452			9,800								13,496					2,137,326
1972	1,874,534	42,905	12,758	47,856	64,510	13,123			76,813			5,700								10,893					2,149,092
1973	1,758,919	53,386	5,957	78,240	55,280	9,217			43,919			3,700								55,826					2,064,444
1974	1,588,390	62,462	4,258	42,235	69,654	21,473			37,357			14,000								60,263					1,900,092
1975	1,356,736	51,551	2,766	64,690	64,819	20,832			20,393			8,600								54,845					1,645,232
1976	1,177,822	50,481	2,923	56,221	60,523	17,806			21,746			14,900								26,143					1,428,565
1977	978,370	33,335	2,718	58,373	27,708	9,454			14,393			2,654					311		4,926	35,902					1,168,144
1978	979,431	42,543	1,192	138,433	37,423	8,358			21,040			2,221					2,614	831	6,886	61,537					1,302,509
1979	913,881	33,761	1,376	99,017	34,998	7,921			19,724			1,723					2,108	1,985	4,286	38,767					1,159,547
1980	958,279	45,861	2,206	87,391	48,856	13,761			20,406			1,097					459	4,955	4,040	34,633					1,221,944
1981	973,505	51,996	2,604	97,301	52,921	13,473			23,428			1,222					356	3,027	4,182	35,651					1,259,666
1982	955,964	55,040	3,184	95,712	45,805	9,103			23,809			224					276	328	3,838	18,200					1,211,483
1983	982,363	83,212	2,695	108,385	43,443	10,216			30,454			221					220	141	3,470	15,465					1,280,285
1984	1,098,783	110,944	2,329	159,526	21,317	7,980			44,286			1,569					176	57	2,824	8,508					1,458,299
1985	1,179,759	132,736	2,348	227,107	14,698	7,288			71,179			784					92	4	1,611	11,503					1,649,109
1986	1,188,449	130,555	3,518	208,597	7,710	6,761			76,328			560					102	12	848	10,471					1,633,911
1987	1,237,597	144,539	4,178	181,429	6,533	4,380			50,372			930					474	12	108	8,569					1,639,121
1988	1,228,000	192,726	3,193	223,156	6,064	5,477			137,418			1,047					341	428	414	12,206					1,810,470
1989	1,230,000	164,800	1,252	153,165	4,061	3,024			63,452			2,017					192	3,126	300	4,993					1,630,382
1990	1,353,000	162,927	2,329	80,584	7,267	2,773			22,568			5,639					384	480	460	5,698					1,644,109
1991	1,268,360	165,444	1,128	94,755	3,704	12,748		46,681	30,401			4,744					396	2,265	544	16,285					1,647,455
1992	1,384,376	163,240	558	146,942	1,875	11,080		51,720	34,757			3,309					675	2,610	819	29,993					1,831,954
1993	1,301,574	133,156	669	105,809	6,330	7,950		63,942	28,812			3,763					190	201	597	21,413					1,674,406
1994	1,362,694	174,151	699	144,544	7,211	13,043		60,276	29,720			1,907					261	190	502	23,430					1,818,628
1995	1,264,578	228,496	929	124,746	5,855	8,282		54,672	20,165	14,699		1,210					629	340	364	20,928					1,745,893
1996	1,189,296	209,201	629	129,509	4,699	13,280		46,775	18,529	17,334		2,635					364	780	1,080	19,717					1,653,828
1997	1,115,268	209,475	547	166,681	6,589	8,580		67,249	22,957	20,656		1,060					161	171	1,438	20,997					1,641,829
1998	1,101,428	160,681	586	101,310	8,303	14,985		33,221	15,355	24,550		1,134					203	901	891	23,156					1,486,704
1999	988,703	146,738	678	69,275	5,401	10,585		40,505	15,515	18,534		654					141	2,267	392	18,916					1,318,304
2000	1,132,736	151,372	742	84,057	5,888	12,071		49,186	16,453	20,342		704					239	239	375	23,098					1,497,502
2001	1,387,452	142,452	863	63,563	4,252	12,836		28,949	9,930	17,757		1,148					296	264	1,761	23,148					1,694,671
2002	1,481,815	166,552	1,143	74,956	3,150	10,821		40,700	2,588	15,464		858					401	572	1,334	26,639					1,826,993
2003	1,492,039	174,687	1,039	81,050	2,565	13,667		36,375	2,922	14,132	10,118	1,391					336	6,362	1,246	26,986					1,864,915
2004	1,480,543	183,283	1,038	75,501	1,825	17,333		47,862	4,755	17,354	7,888		731	116	119	24	318	7,159	1,000	27,496					1,874,344
2005	1,483,286	182,938	1,064	94,382	2,140	13,408		36,814	4,566	16,074	11,194		879	112	108	12	178	3,540	1,170	28,066					1,879,931
2006	1,486,648	168,265	1,036	99,134	1,452	11,911		35,878	3,123	17,934	17,318		1,042	247	48	7	157	3,175	1,403	24,865					1,873,644
2007	1,354,492	140,079	1,173	120,966	1,481	11,080		36,364	5,764	19,086	19,522		870	69	113	10	219	3,021	1,175	24,79					1,740,263
2008	990,576	139,604	1,125	148,894	1,925	19,357		50,935	3,578	24,520	17,377		513	22	58	29	209	398	1,493	27,063					1,427,676
2009	810,743	147,166	891	107,512	2,249	19,676		48,145	2,131	19,535	13,944		623	48	83	12	204	244	269	25,358					1,198,833
2010	810,395	142,859	754	118,624	2,272	15,265		52,645	2,154	20,097	16,165		3,547	299	181	34	263	151	305	20,670					1,206,680
2011	1,199,243	209,272	695	151,166	3,111	17,324	4,445	60,353	3,121	13,549	23,656		5,600	198	103	39	323	1,207	237		576	4,856	168	22,414	1,721,656
2012/e	1,202,639	210,949	717	137,715	2,744	18,802	2,515	75,484	3,410	11,000	16,124		3,280	87	77	22	191	894	550		121	4,660	79	21,164	1,713,224
a/ Arrowtooth flounder included in Greenland turbot catch statistics, 1960-69.b/ Includes POP shortraker, rougheye, northem, and sharpchin.									d/ Kamcha	ka flounder	luded in	Arrowtooth flounder prior to 2011.				f/ Octopus	s, sculpin, s	sharks, skat	es inclu	ded in Ot	ther specie	prior to	\% 2011.		
									e/ Data through November 3, 2012.							Note: Numbers don't include fish taken for research.									
c/Rock sole prior to 1991 and flathead sole prior to 1995 are included in other flatfish catch statistics.																									

Table 5. Summary of stock abundance (biomass), overfishing level (OFL), acceptable biological catch (ABC), the fishing mortality rate corresponding to ABC (FABC), and the fishing mortality rate corresponding to OFL (FOFL) for the eastern Bering Sea (EBS), Aleutian Islands (AI), and Bogoslof district as projected for 2013 and 2014. "Biomass" corresponds to projected January abundance for the age+ range reported in the summary. Stock-specific biomass, OFL, and ABC are in metric tons, reported to three significant digits (four digits are used when a stock-specific ABC is apportioned among areas on a percentage basis). Fishing mortality rates are reported to two significant digits.
Exceptions to significant digits rule are for totals.

Species or Complex	Tier	Area	2013					2014			
			Biomass	OFL	ABC	FOFL	FABC	OFL	ABC	FOFL	FABC
	1a	EBS	8,140,000	2,550,000	1,375,000	0.54	0.38	2,730,000	1,430,000	0.54	0.38
Walleye pollock	3b	Aleutian Islands	266,000	45,600	37,300	0.34	0.27	48,600	39,800	0.34	0.28
	5	Bogoslof	67,100	13,400	10,100	0.2	0.15	13,400	10,100	0.2	0.15
Pacific cod	3a	BSAI	1,510,000	359,000	307,000	0.34	0.29	379,000	323,000	0.34	0.29
Sablefish	3b	BS	19,000	1,870	1,580	0.1	0.086	1,760	1,480	0.1	0.086
	3b	AI	26,000	2,530	2,140	0.1	0.086	2,370	2,010	0.1	0.086
Yellowfin sole	1a	BSAI	1,960,000	220,000	206,000	0.12	0.11	219,000	206,000	0.12	0.11
Greenland turbot	3b	Total	81,000	2,540	2,060	0.14	0.12	3,270	2,650	0.14	0.12
Arrowtooth flounder	3a	BSAI	1,130,000	186,000	152,000	0.29	0.23	186,000	152,000	0.29	0.23
Kamchatka flounder	5	BSAI	125,000	16,300	12,200	0.13	0.098	16,300	12,200	0.13	0.098
Northern rock sole	1a	BSAI	1,470,000	241,000	214,000	0.16	0.15	229,000	204,000	0.16	0.15
Flathead sole	3a	BSAI	748,000	81,500	67,900	0.35	0.29	80,100	66,700	0.35	0.29
Other flatfish	5	BSAI	114,000	17,800	13,300	.17/.085/.15	/.064/.11	17,800	13,300	17/.085/.15	.13/.064/.11
Alaska plaice	3a	BSAI	589,000	67,000	55,200	0.19	0.16	60,200	55,800	0.19	0.16
Pacific ocean perch	3a	BSAI	663,000	41,900	35,100	0.076	0.063	39,500	33,100	0.076	0.063
Northern rockfish	3a	BSAI	195,000	12,200	9,850	0.079	0.063	12,000	9,320	0.079	0.063
Shortraker	5	BSAI	16,400	493	370	0.030	0.023	493	370	0.03	0.023
Blackspotted/ Rougheye	3a	BSAI	29,800	691	569	0.043	0.035	704	604	0.043	0.035
Other rockfish	5	BSAI	47,700	1,540	1,160	.03/.09	.023/.068	1,540	1,160	.03/.09	.023/.068
Atka mackerel	3b	Total	289,000	57,700	50,000	0.39	0.32	56,500	48,900	0.33	0.29
Skate	3a/5	BSAI	745,000	45,800	38,800	0.11/0.10 0	.098/0.075	44,100	37,300	0.11/0.10	0.098/0.075
Sculpin	5	BSAI	216,000	56,400	42,300	0.28	0.21	56,400	42,300	0.28	0.21
Shark	6	BSAI	n/a	1,360	1,020	n/a	n/a	1,360	1,020	n/a	n/a
Squid	6	BSAI	n/a	2,620	1,970	n/a	n/a	2,620	1,970	n/a	n/a
Octopus	6	BSAI	n/a	3,450	2,590	n/a	n/a	3,450	2,590	n/a	n/a
Total		BSAI	18,447,000	4,028,694	2,639,509			4,205,467	2,697,674		

Table 6. Summary of groundfish tier designations under Amendment 56, maximum permissible ABC fishing mortality rate (max FABC), the Plan Team's recommended tier designation, ABC fishing mortality rate (FABC), the maximum permissible value of ABC (max ABC), the Plan Team's recommended ABC , and the percentage reduction (\% Red.) between max ABC and the Plan Team's recommended ABC for 2013-2014. Stock-specific max ABC and ABC are in metric tons, reported to three significant digits (four significant digits are used EBS pollock and when a stock-specific ABC is apportioned among areas on a percentage basis). Fishing mortality rates are reported to two significant digits.

Species or Complex	2013							2014					
			max		max		\%		max		max		\%
	Area	Tier	FABC	FABC	ABC	ABC	Red.	Tier	FABC	FABC	ABC	ABC	Red.
Pollock	EBS	1a	0.49	0.38	2,310,000	1,375,000	40\%	1a	0.49	0.38	2,610,000	1,430,000	45\%

Table 7. Species included in assessments for the 2012 BSAI SAFE Report.

Chapter	Common name
1	Walleye Pollock
2	Pacific cod
3	Sablefish
4	Yellowfin sole
5	Greenland turbot
6	Arrowtooth flounder
7	Kamchatka flounder
8	Northern rock sole
	Southern rock sole
9	Flathead sole
	Bering flounder
10	Alaska plaice
11	Other flatfish
	Arctic flounder
	butter sole
	curlfin sole
	deepsea sole
	Dover sole
	English sole
	longhead dab
	Pacific sanddab
	petrale sole
	rex sole
	roughscale sole
	sand sole
	slender sole
	starry flounder
12	Sakhalin sole
13	Pacific Ocean perch
14	Northern rockfish
14	Blackspotted/Rougheye
	Blackspotted rockfish
15	Rougheye rockfish
16	Shortraker rockfish
	Other rockfish*
	Shortspine thornyhead
	Dusky rockfish
	Red banded rockfish
	Redstripe rockfish
	Harlequin rockfish
	Sharpchin rockfish
17	Yelloweye rockfish
Atka mackerel	

Scientific name	Count
	1
	1
Limanda aspera	1
Reinhardtius hippoglossoides	1
Atherestes stomias	1
Atherestes evermanni	2
Lepidopsetta polyxystra n. sp.	2
Lepidopsetta bilineata	2
Hippoglossoides classodon	1
Hippoglossoides robustus	15
Pleuronectes quadrituberculatus	
Liopsetta glacialis	
Isopsetta isolepis	
Pleuronectes decurrens	
Embassichths bathybius	
Microstomus pacificus	
Parophrys vetulus	
Limanda proboscidea	
Citharichthys sordidus	
Eopsetta jordani	
Glyptocephalus zachirus	
Clidodoerma asperrimum	
Psettichthys melanostictus	
Lyopsetta exilis	
Platichthys stellatus	
Pleuronectes sakhalinensis	1
Sebastes alutus	
Sebastes polyspinus	1
Sebastes aleutianus	2
Sebastes borealis	
Sebastolobus alascanus	
Sebastes variabilis	
Sebastes babcocki	
Sebastes proriger	
Sebastes variegatus	
Sebastes zacentrus	
Sebastes ruberrimus	
Pleurogrammus monopterygius	

Chapter 18	Common name Skates	Scientific name	Count 15
	deepsea skate	Bathyraja abyssicola	
	Aleutian skate	Bathyraja aleutica	
	Bering skate (complex?)	Bathyraja interrupta	
	Commander skate	Bathyraja lindbergi	
	whiteblotched skate	Bathyraja maculata	
	butterfly skate	Bathyraja mariposa	
	whitebrow skate	Bathyraja minispinosa	
	Alaska skate	Bathyraja parmifera	
	"Leopard" parmifera	Bathyraja sp. cf. parmifera	
	mud skate	Bathyraja taranetzi	
	roughtail skate	Bathyraja trachura	
	Okhotsk skate	Bathyraja violacea	
	big skate	Raja binoculata	
	roughshoulder skate	Amblyraja badia	
	longnose skate	Raja rhina	
20	Sharks		8
	brown cat shark	Apristurus brunneus	
	White shark	Carcharodon carcharias	
	basking shark	Cetorhinus maximus	
	sixgill shark	Hexanchus griseus	
	salmon shark	Lamna ditropis	
	blue shark	Prionace glauca	
	Pacific sleeper shark	Somniosus pacificus	
	Spiny dogfish	Squalus acanthias	
21	Squids		14
		Chiroteuthis calyx	
	"glass squids"	Belonella borealis	
		Galiteuthis phyllura	
	minimal armhook squid	Berryteuthis anonychus	
	magistrate armhook squid	Berryteuthis magister	
		Eogonatus tinro	
	boreopacific armhook squid	Gonatopsis borealis	
	Berry armhook squid	Gonatus berryi	
		Gonatus madokai	
		Gonatus middendorffi	
	clawed armhook squid	Gonatus onyx	
	robust clubhook squid	Moroteuthis robusta	
	boreal clubhook squid	Onychoteuthis borealijaponicus	
	North Pacific bobtail squid	Rossia pacifica	
22	Octopuses		8
	flapjack devilfish	Opisthoteuthis cf californiana	
	pelagic octopus	Japetella diaphana	
	smooth octopus	Benthoctopus leioderma	
		Benthoctopus oregonensis	
		Benthoctopus salebrosus	
	giant octopus	Enteroctopus dofleini	
		Granelodone boreopacifica	
	stubby octopus	Sasakiopus salebrosus	

Chapter	Common name	Scientific name	Count
	Sculpins		48
	Scaled sculpin	Archistes biseriatus	
	Bride sculpin	Artediellus miacanthus	
	Pacific hookear sculpin	Artediellus pacificus	
	Broadfin sculpin	Bolinia euryptera	
	Antlered sculpin	Enophrys diceraus	
	Leister sculpin	Enophrys lucasi	
	Purplegray sculpin	Gymnocanthus detrisus	
	Armorhead sculpin	Gymnocanthus galeatus	
	threaded sculpin	Gymnocanthus pistilliger	
	Arctic staghorn sculpin	Gymnocanthus tricuspis	
	Banded Irish lord	Hemilepidotus gilberti	
	Red Irish Lord	Hemilepidotus hemilepidotus	
	Yellow Irish Lord	Hemilepidotus jordani	
	Butterfly sculpin	Hemilepidotus papilio	
	Longfin Irish lord	Hemilepidotus zapus	
	Northern sculpin	Icelinus borealis	
	Blacknose sculpin	Icelus canaliculatus	
	Wide-eye sculpin	Icelus euryops	
	Spatulate sculpin	Icelus spatula	
	thorny sculpin	Icelus spiniger	
	Uncinate sculpin	Icelus uncinalis	
	Longfin sculpin	Jordania zonope	
	Pacific staghorn sculpin	Leptocottus armatus	
	Plain sculpin	Myoxocephalus jaok	
	Great sculpin	Myoxocephalus polyacanthocephalus	
	Fourhorn sculpin	Myoxocephalus quadricornis	
	Warty sculpin	Myoxocephalus verrucocus	
	Slim sculpin	Radulinus asprellus	
	Roughskin sculpin	Rastrinus scutiger	
	Sponge sculpin	thyriscus anoplus	
	Scissortail sculpin	Triglops forficatus	
	Roughspine sculpin	Triglops macellus	
	Crescent-tail sculpin	Triglops metopias	
	Ribbed sculpin	Triglops pingelii	
	Spectacled sculpin	Triglops septicus	
	Scalybreasted sculpin	Triglops xenostethus	
	Flabby sculpin	Zesticelus profundorum	
	Crested sculpin	Blepsias bilobus	
	Bigmouth sculpin	Hemitripterus bolini	
	Sailfin sculpin	Nautichthys oculofasciatus	
	Eyeshade sculpin	Nautichthys pribilovius	
	Spinyhead sculpin	Dasycottus setiger	
	Smoothcheek sculpin	Eurymen gyrinus	
	Darkfin sculpin	Malacoccottus zonurus	
	Blackfin sculpin	Malacocottus kincaidi	
	Tadpole sculpin	Psychrolutes paradoxus	
	Blob sculpin	Psychrolutes phrictus	
	Grunt sculpin	Rhamphocottus richardsoni	
	Total Species		133

(This page intentionally left blank)

