APPENDIX A

STOCK ASSESSMENT AND FISHERY EVALUATION REPORT FOR THE GROUNDFISH RESOURCES OF THE BERING SEA/ALEUTIAN ISLANDS REGIONS

Compiled by
The Plan Team
for the Groundfish Fisheries of the Bering Sea and Aleutian Islands

With Contributions by
K. Aydin, S. Barbeaux, D. Clausen, M.E. Conners, C. Conrath, M. Dalton, J. DiCosimo, K. Echave, S. Gaichas, K. Goldman, D. Hanselman, T. Honkalehto, P. Hulson, J. Ianelli, S. Kotwicki, R. Lauth, S. Lowe, C. Lunsford, B. Matta, D. Nichol, O.A. Ormseth, C.J. Rodgveller, C.N. Rooper, P. Spencer, I. Spies, W. Stockhausen, T. TenBrink, G. Thompson, C. Tribuzio, T. Wilderbuer, M. Wilkins, and N. Williamson

November 2011

North Pacific Fishery Management Council
605 West 4th Ave., Suite 306
Anchorage, AK 99501

Stock Assessment and Fishery Evaluation Report for the Groundfish Resources of the Bering Sea/Aleutian Islands Region

Table of Contents

Introduction 3
Background Information 3
Overview of "Stock Assessment" Section 9
Stock Assessment Section

1. Eastern Bering Sea Walleye pollock 51
1A. Aleutian Islands Walleye pollock 169
1B. Bogoslof Walleye pollock 259
2. Pacific cod 269
3. Sablefish 477
4. Yellowfin sole 583
5. Greenland turbot 669
6. Arrowtooth flounder 727
7. Kamchatka flounder 795
8. Northern rock sole. 813
9. Flathead sole 889
10. Alaska Plaice 993
11. Other flatfish 1047
12. Pacific ocean perch. 1059
13. Northern rockfish 1063
14. Blackspotted and Rougheye rockfishes 1067
15. Shortraker rockfish. 1073
16. Other rockfish 1075
17. Atka mackerel 1079
18. Skates. 1157
19. Sculpins 1243
20. Sharks 1247
21. Squids 1253
22. Octopus 1259
Appendix 1: Grenadier 1297
Ecosystem Considerations bound separately
Economic Status of Groundfish Fisheries off Alaska bound separately

Summary

by

Plan Team for the Groundfish Fisheries of the Bering Sea and Aleutian Islands

Introduction

The National Standard Guidelines for Fishery Management Plans published by the National Marine Fisheries Service (NMFS) require that a stock assessment and fishery evaluation (SAFE) report be prepared and reviewed annually for each fishery management plan (FMP). The SAFE report summarizes the best available scientific information concerning the past, present, and possible future condition of the stocks, marine ecosystems, and fisheries that are managed under Federal regulation. It provides information to the Councils for determining annual harvest levels from each stock, documenting significant trends or changes in the resource, marine ecosystems, and fishery over time, and assessing the relative success of existing state and Federal fishery management programs. For the FMP for the Groundfish Fishery of the Bering Sea and Aleutian Islands (BSAI) Area, the SAFE report is published in three sections: a "Stock Assessment" section, which comprises the bulk of this document, and "Economic Status of Groundfish Fisheries off Alaska" and "Ecosystem Considerations" sections, which are bound separately.

The BSAI Groundfish FMP requires that a draft of the SAFE Report be produced each year in time for the December meeting of the North Pacific Fishery Management Council. Each stock or stock complex is represented in the SAFE Report by a chapter containing the latest stock assessment. New or revised stock assessment models are generally previewed at the September Plan Team meeting, and considered again by the Plan Team at its November meeting for recommending final specifications for the following two fishing years. This process is repeated annually. Full stock assessments are required for walleye pollock, Pacific cod, Atka mackerel, sablefish, and flatfish stocks every year. Rockfishes, sharks, skates, octopus, and sculpins require full stock assessment only during years in which the Aleutian Island bottom trawl survey is conducted. This survey typically occurs in even-numbered years.
This Stock Assessment section of the SAFE report for the BSAI groundfish fisheries is compiled by the BSAI Groundfish Plan Team from chapters contributed by scientists at NMFS Alaska Fisheries Science Center (AFSC). These chapters include a recommendation by the author(s) for overfishing level (OFL) and acceptable biological catch (ABC) for each stock and stock complex managed under the FMP for the next two fishing years. This introductory section includes the recommendations of the Plan Team (Table $1)$, along with a summary of each chapter.
The OFL and ABC recommendations by the Plan Team are reviewed by the Scientific and Statistical Committee (SSC), which may confirm the Plan Team recommendations. The Plan Team and SSC recommendations, together with social and economic factors, are considered by the Council in determining total allowable catches (TACs) and other measures used to manage the fisheries. Neither the author(s), Plan Team, nor SSC recommends TACs.
Members of the BSAI Plan Team who compiled this SAFE report were: Mike Sigler (co- chair), Grant Thompson (co- chair), Jane DiCosimo (BSAI Groundfish FMP coordinator), Kerim Aydin, David Barnard, David Carlile, Henry Cheng, Lowell Fritz, Mary Furuness, Dana Hanselman, Alan Haynie, Brenda Norcross, and Leslie Slater.

Background Information

The BSAI management area lies within the 200-mile U.S. Exclusive Economic Zone (EEZ) of the US (Figure 1). International North Pacific Fisheries Commission (INPFC) statistical areas 1 and 2 comprise the EBS. The Aleutian Islands (AI) region is INPFC Area 5.

Figure 1. Bering Sea/Aleutian Islands statistical and reporting areas.
Amendment 95 to the BSAI Groundfish FMP, which was implemented in 2010 for the start of the 2011 fishing year, defined three categories of species or species groups that are likely to be taken in the groundfish fishery. Species may be split or combined within the "target species" category according to procedures set forth in the FMP. The three categories of finfishes and invertebrates that have been designated for management purposes under two management classifications are listed below.

1. In the Fishery:
a. Target species - are those species that support either a single species or mixed species target fishery, are commercially important, and for which a sufficient data base exists that allows each to be managed on its own biological merits. Accordingly, a specific TAC is established annually for each target species or species assemblage. Catch of each species must be recorded and reported. This category includes walleye pollock, Pacific cod, sablefish, yellowfin sole, Greenland turbot, arrowtooth flounder, rock sole, flathead sole, Alaska plaice, "other flatfish," Pacific ocean perch, northern rockfish, shortraker rockfish, rougheye rockfish, "other rockfish," Atka mackerel, sharks, skates, sculpins, octopus, and squid.

2. Ecosystem Component:

a. Prohibited Species - are those species and species groups the catch of which must be avoided while fishing for groundfish, and which must be immediately returned to sea with a minimum of injury except when their retention is authorized by other applicable law. Groundfish species and species groups under the FMP for which the quotas have been achieved shall be treated in the same manner as prohibited species.
b. Forage fish species - are those species listed below, which are a critical food source for many marine mammal, seabird and fish species. The forage fish species category is established to allow for the management of these species in a manner that prevents the development of a commercial directed fishery for forage fish. Management measures for this species category will be specified in regulations and may include such measures as prohibitions on directed fishing, limitations on allowable bycatch retention amounts, or limitations on the sale, barter, trade or any other commercial exchange, as well as the processing of forage fish in a commercial processing facility.

Species included in the BSAI Groundfish Fishery Management Plan by category

In the Fishery	
Target Species 2	Walleye pollock Pacific cod Sablefish Yellowfin sole Greenland turbot Arrowtooth flounder Northern Rock sole Flathead sole Alaska plaice Other flatfish assemblage Pacific ocean perch Northern rockfish Shortraker rockfish Blackspotted/Rougheye rockfish assemblage Other rockfish assemblage Atka mackerel Squid assemblage Shark assemblage Skate assemblage Sculpin assemblage Octopus assemblage
Ecosystem Component	
Prohibited Species ${ }^{1}$	Pacific halibut Pacific herring Pacific salmon Steelhead trout King crab Tanner crab
Forage Fish Species ${ }^{3}$	Osmeridae family (eulachon, capelin, and other smelts) Myctophidae family (lanternfishes) Bathylagidae family (deep-sea smelts) Ammodytidae family (Pacific sand lance) Trichodontidae family (Pacific sand fish) Pholidae family (gunnels) Stichaeidae family (pricklebacks, warbonnets, eelblennys, cockscombs, and shannys) Gonostomatidae family (bristlemouths, lightfishes, and anglemouths) Order Euphausiacea (krill)

${ }^{1}$ Must be immediately returned to the sea, except when retention is required or authorized.
${ }^{2}$ TAC for each listing. Species and species groups may or may not be targets of directed fisheries.
${ }^{3}$ Management measures for forage fish are established in regulations implementing the FMP.

Historical Catch Statistics

Catch statistics since 1954 are shown for the Eastern Bering Sea (EBS) subarea in Table 2. The initial target species in the BSAI commercial fisheries was yellowfin sole. During this period, total catches of groundfish peaked at $674,000 \mathrm{t}$ in 1961. Following a decline in abundance of yellowfin sole, other species (principally walleye pollock) were targeted, and total catches peaked at 2.2 million t in 1972. Pollock is
now the principal fishery, with catches peaking at approximately 1.4-1.5 million t due to years of high recruitment. After the Magnuson-Stevens Fishery Conservation and Management Act (MSFCMA) was adopted in 1976, catch restrictions and other management measures were placed on the fishery and total groundfish catches have since varied from one to two million t. In 2005, Congress implemented a statutory cap on TACs for BSAI groundfish of 2 million t, which had previously been a policy implemented by the Council. Catches generally total well below the 2 million t optimal yield (OY) cap. Catches in the EBS for 2010 totaled 1,206,680 t; catches through November 5, 2011 totaled 1,683,732 t.
Catches in the Aleutian Islands (AI) subarea have always been much smaller than in the EBS. Target species have also differed (Table 3). Pacific Ocean perch (POP) was the initial target species. As POP abundance declined, the fishery diversified to different species. During the early years of exploitation, total AI groundfish catches peaked at 112,000 t in 1965. Atka mackerel was the largest fishery in the AI at $68,496 \mathrm{t}$ in 2010; and 50,556 t through November 5, 2011. Pacific cod is the second largest fishery at 29,000 tin 2010 and 10,706 t through November 5, 2011. Total AI catches were 148,520 t in 2010 and $95,227 \mathrm{t}$ through November 5, 2011. Recent total AI catches peaked at 190,750 t in 1996.

Total catches since 1954 for the BSAI, combined, are in Table 4. Total 2010 BSAI catches were $1,355,200 \mathrm{t}$ (80 percent of total TACs and 67 percent of the OY); BSAI catches through November 5, 2011 totaled 1,778,959 t (89 percent of total TACs and OY). The relationship of the various biological reference points (biomass, OFL, ABC, TAC, and catch) is depicted in Figure 2.

Figure 2. Biomass, Overfishing Level, Acceptable Biological Catch and Total Allowable Catch for 19812012* and Catch, 1981-2011 (*2012, as recommended by the Plan Team and assuming TAC = OY)

Recent Total Allowable Catches

Amendment 1 to the BSAI Groundfish FMP provided the framework to manage the groundfish resources as a complex. Maximum sustainable yield (MSY) for the BSAI groundfish complex was estimated at 1.8 to 2.4 million t . The OY range was set at 85 percent of the MSY range, or 1.4 to 2.0 million t . The sum of the TACs equals OY for the groundfish complex, which is constrained by the 2.0 million t cap. Due to recent declines in biomasses of walleye pollock and Pacific cod, for example, and prohibited species catch limits, the cap has not been met. The BSAI groundfish TACs totaled 1,840,000 t in 2008 and dropped further to $1,680,000 \mathrm{t}$ in 2009 and 2010, approximately 16 percent below the OY. The TAC in 2011 was set at $2,000,000 \mathrm{t}$, equal to OY .

Establishment of the Western Alaska Community Development Quota (CDQ) Program annual groundfish reserves is concurrent with the annual BSAI groundfish harvest specifications. Once annual BSAI groundfish TACs are established, the CDQ Program is allocated set portions of the TACs for certain species and species assemblages. This includes 10 percent of the BS and AI pollock TACs, 20 percent of the fixed gear sablefish TAC, and 7.5 percent of the sablefish trawl gear allocation. It also receives 10.7 percent of the TACs (up from 7.5 percent prior to 2008) for Pacific cod, yellowfin sole, rock sole, flathead sole, Atka mackerel, AI Pacific ocean perch, arrowtooth flounder, and BS Greenland turbot. The program also receives allocations of prohibited species catch (PSC) limits.
The TAC specifications for the primary allocated species, and PSC limit specifications, are recommended by the Council at its December meeting. For the non-specified reserve, 15 percent of the TAC for each target species, except for pollock, the hook-and-line and pot gear allocation of sablefish, and the Amendment 80 species (Pacific cod, Atka mackerel, flathead sole, rock sole, yellowfin sole, and Aleutian Islands Pacific ocean perch), are placed in a non-specified reserve. Apportionments to this reserve range from 4.3 to 15 percent of applicable TAC limits. The reserve is used for (1) correction of operational problems in the fishing fleets, (2) to promote full and efficient use of groundfish resources, (3) adjustments of species TACs according to changing conditions of stocks during fishing year, (4) apportionments, and Community Development Quota allocations. The initial TAC (ITAC) for each species is the remainder of the TAC after the subtraction of the reserves.

Biological Reference Points

A number of biological reference points are used in this SAFE report. Among these are the fishing mortality rate (F) and stock biomass level (B) associated with MSY ($F_{M S Y}$ and $B_{M S Y}$, respectively), and the fishing mortality rates reduce the level of spawning biomass per recruit to some percentage of the pristine level ($F_{P \%}$). The fishing mortality rate used to compute $A B C$ is designated $F_{A B C}$, and the fishing mortality rate used to compute the OFL is designated $\mathrm{F}_{\text {OFL }}$.

Definition of Acceptable Biological Catch and the Overfishing Level

Amendment 56 to the BSAI Groundfish FMP, which was implemented in 1999, defines ABC and OFL for the BSAI groundfish fisheries. The definitions are shown below, where the fishing mortality rate is denoted F, stock biomass (or spawning stock biomass, as appropriate) is denoted B, and the F and B levels corresponding to MSY are denoted $F_{\text {MSY }}$ and $B_{M S Y}$ respectively.

Acceptable Biological Catch is a preliminary description of the acceptable harvest (or range of harvests) for a given stock or complex. Its derivation focuses on the status and dynamics of the stock, environmental conditions, other ecological factors, and prevailing technological characteristics of the fishery. The fishing mortality rate used to calculate ABC is capped as described under "overfishing" below.

Overfishing is defined as any amount of fishing in excess of a prescribed maximum allowable rate. This maximum allowable rate is prescribed through a set of six tiers which are listed below in descending order of preference, corresponding to descending order of information availability. The SSC will have final authority for determining whether a given item of information is reliable for the purpose of this definition, and may use either objective or subjective criteria in making such determinations. For Tier (1), a pdf refers to a probability density function. For Tiers (1-2), if a reliable pdf of $B_{\text {MSY }}$ is available, the preferred point estimate of $B_{\text {MSY }}$ is the geometric mean of its pdf. For Tiers (1-5), if a reliable pdf of B is available, the preferred point estimate is the geometric mean of its pdf. For Tiers (1-3), the coefficient ' α ' is set at a default value of 0.05 , with the understanding that the SSC may establish a different value for a specific stock or stock complex as merited by the best available scientific information. For Tiers (2-4), a designation of the form " $F_{X \%}$ " refers to the F associated with an equilibrium level of spawning per recruit (SPR) equal to X percent of the equilibrium level of spawning per recruit in the absence of any fishing. If reliable information sufficient to characterize the entire maturity schedule of a species is not available, the

SSC may choose to view SPR calculations based on a knife-edge maturity assumption as reliable. For Tier (3), the term $B_{40 \%}$ refers to the long-term average biomass that would be expected under average recruitment and $F=F_{40 \%}$.

Overfished or approaching an overfished condition is determined for all age-structured stock assessments by comparison of the stock level in relation to its MSY level according to harvest scenarios 6 and 7 described in the next section (for Tier 3 stocks, the MSY level is defined as $B_{35 \%}$). For stocks in Tiers 4-6, no determination can be made of overfished status or approaching an overfished condition as information is insufficient to estimate the MSY stock level

```
Tier 1) Information available: Reliable point estimates of \(B\) and \(B_{M S Y}\) and reliable pdf of \(F_{M S Y}\).
    1a) Stock status: \(B / B_{M S Y}>1\)
        \(F_{O F L}=\mu_{A}\), the arithmetic mean of the pdf
        \(F_{A B C} \leq \mu_{H}\), the harmonic mean of the pdf
    1b) Stock status: \(\alpha<B / B_{M S Y} \leq 1\)
    \(F_{O F L}=\mu_{A} \times\left(B / B_{M S Y}-\alpha\right) /(1-\alpha)\)
    \(F_{A B C} \leq \mu_{H} \times\left(B / B_{M S Y}-\alpha\right) /(1-\alpha)\)
    1c) Stock status: \(B / B_{M S Y} \leq \alpha\)
    \(F_{\text {OFL }}=0\)
    \(F_{A B C}=0\)
2) Information available: Reliable point estimates of \(B, B_{M S Y}, F_{M S Y}, F_{35 \%}\), and \(F_{40 \% \%}\).
    2a) Stock status: \(B / B_{M S Y}>1\)
    \(F_{O F L}=F_{M S Y}\)
    \(F_{A B C} \leq F_{M S Y} \times\left(F_{40 \%} / F_{35 \%}\right)\)
    2b) Stock status: \(\alpha<B / B_{M S Y} \leq 1\)
    \(F_{O F L}=F_{M S Y} \times\left(B / B_{M S Y}-\alpha\right) /(1-\alpha)\)
    \(F_{A B C} \leq F_{M S Y} \times\left(F_{40 \%} / F_{35 \%}\right) \times\left(B / B_{M S Y}-\alpha\right) /(1-\alpha)\)
2c) Stock status: \(B / B_{M S Y} \leq \alpha\)
    \(F_{\text {OFL }}=0\)
    \(F_{A B C}=0\)
3) Information available: Reliable point estimates of \(B, B_{40 \% 6}, F_{3596}\), and \(F_{40 \% 6}\).
    3a) Stock status: \(B / B_{4096}>1\)
    \(F_{O F L}=F_{35 \%}\)
    \(F_{A B C} \leq F_{40 \%}\)
    3b) Stock status: \(\alpha<B / B_{40 \%} \leq 1\)
    \(F_{O F L}=F_{359 \%} \times\left(B / B_{40 \% 6}-\alpha\right) /(1-\alpha)\)
    \(F_{A B C} \leq F_{40 \% 6} \times\left(B / B_{40 \%}-\alpha\right) /(1-\alpha)\)
    3c) Stock status: \(B / B_{40 \% 6} \leq \alpha\)
    \(F_{\text {OFL }}=0\)
    \(F_{A B C}=0\)
    4) Information available: Reliable point estimates of \(B, F_{35 \% \%}\), and \(F_{40 \% 6}\).
    \(F_{O F L}=F_{35 \%}\)
    \(F_{A B C} \leq F_{409 \%}\)
5) Information available: Reliable point estimates of \(B\) and natural mortality rate \(M\).
\(F_{O F L}=M\)
\(F_{A B C} \leq 0.75 \times M\)
6) Information available: Reliable catch history from 1978 through 1995.
OFL \(=\) the average catch from 1978 through 1995, unless an alternative value is established by the SSC on the basis of the best available scientific information
\(A B C \leq 0.75 \times O F L\)
```


Standard Harvest and Recruitment Scenarios and Projection Methodology

A standard set of projections is required for each stock managed under Tiers 1, 2, or 3 of Amendment 56. This set of projections encompasses seven harvest scenarios designed to satisfy the requirements of Amendment 56, the National Environmental Policy Act, and the MSFCMA.

For each scenario, the projections begin with an estimated vector of 2012 numbers at age. In each subsequent year, the fishing mortality rate is prescribed on the basis of the spawning biomass in that year and the respective harvest scenario. In each year, recruitment is drawn from an inverse Gaussian distribution whose parameters consist of maximum likelihood estimates determined from recruitments estimated in the assessment. Spawning biomass is computed in each year based on the time of peak spawning and the maturity and weight schedules described in the assessment. Total catch is assumed to equal the catch associated with the respective harvest scenario in all years. This projection scheme is run 1000 times to obtain distributions of possible future stock sizes, fishing mortality rates, and catches.

Five of the seven standard scenarios will be used in an Environmental Assessment prepared in conjunction with the final SAFE. These five scenarios, which are designed to provide a range of harvest alternatives that are likely to bracket the final TACs for 2012 and 2013, are as follow ("max FABC" refers to the maximum permissible value of $F_{A B C}$ under Amendment 56):

Scenario 1: In all future years, F is set equal to max $F_{A B C}$. (Rationale: Historically, TAC has been constrained by ABC, so this scenario provides a likely upper limit on future TACs.)

Scenario 2: In all future years, F is set equal to a constant fraction of max $F_{A B C}$, where this fraction is equal to the ratio of the $F_{A B C}$ value for 2012 recommended in the assessment to the max $F_{A B C}$ for 2012. (Rationale: When $F_{A B C}$ is set at a value below $\max F_{A B C}$, it is often set at the value recommended in the stock assessment.)

Scenario 3: In all future years, F is set equal to the 2006-2010 average F. (Rationale: For some stocks, TAC can be well below ABC, and recent average F may provide a better indicator of $F_{\text {TAC }}$ than $F_{A B C .)}$

Scenario 4: In all future years, the upper bound on $F_{A B C}$ is set at $F_{60 \%}$. (Rationale: This scenario provides a likely lower bound on $F_{A B C}$ that still allows future harvest rates to be adjusted downward when stocks fall below reference levels.)

Scenario 5: In all future years, F is set equal to zero. (Rationale: In extreme cases, TAC may be set at a level close to zero.)

Two other scenarios are needed to satisfy the MSFCMA's requirement to determine whether a stock is currently in an overfished condition or is approaching an overfished condition. These two scenarios are as follow (for Tier 3 stocks, the MSY level is defined as $B_{35 \%}$):

> Scenario 6: In all future years, F is set equal to FoFL. (Rationale: This scenario determines whether a stock is overfished. If the stock is 1) above its MSY level in 2011 or 2) above $1 / 2$ of its MSY level in 2011 and expected to be above its MSY level in 2021 under this scenario, then the stock is not overfished.) Scenario 7: In 2012 and 2013, F is set equal to max $F_{\text {ABC, and in all subsequent years, } F \text { is set }}^{\text {equal to FoFL. (Rationale: This scenario determines whether a stock is approaching an overfished }}$ condition. If the stock is expected to be above its MSY level in 2024 under this scenario, then the stock is not approaching an overfished condition.)

Overview of "Stock Assessment" Section

The current status of individual groundfish stocks managed under the FMP is summarized in this section. Plan Team recommendations for 2012 and 2013 ABCs and OFLs are summarized in Tables 1, 5, and 6.

The sum of the recommended ABCs for 2012 and 2013 are 2.51 million t and 2.64 million t, respectively. These are $20,000 \mathrm{t}$ less than and $110,000 \mathrm{t}$ more than the sum of the 2011 ABCs (2.53 million t), indicating relative stability in 2012, after a rebound in stock status in 2011 that followed declines in 2009 and 2010.

Overall, the status of the stocks continues to appear favorable (Figure 3). In fact, nearly all stocks are above $B_{\text {MSY }}$ or the $B_{\text {MSY }}$ proxy of $B_{35 \%}$. Many stocks are rebounding due to increased recent recruitments. The abundances of EBS pollock, Pacific cod, sablefish, all rockfishes managed under Tier 3, all flatfishes managed under Tiers 1 or 3, and Atka mackerel are projected to be above $\mathrm{B}_{\text {MSY }}$ or the $\mathrm{B}_{\text {MSY }}$ proxy of $\mathrm{B}_{35 \%}$ in 2012. The abundance of AI pollock is projected to be about 14 percent below $\mathrm{B}_{35 \%}$.

The sum of the biomasses for 2012 listed in Table 5 (19.4 million t) is down approximately six percent compared to 2011 (20.6 million t). Pollock and Pacific cod biomasses are increasing after a period of decline. Flatfishes generally are trending upwards. The 2011 bottom trawl survey biomass estimate for pollock was 3.11 million t, down 17 percent from the 2010 estimate, and still below average for the 19872011 time series. There was no new estimate from the acoustic-trawl survey in 2011, which was 2.32 million t in 2010; the 2010 estimate was up 151 percent from the 2009 estimate, but still below average for the 1979-2010 time series.

Bering Sea and Aleutian Islands

Figure 3. Summary status of age-structured BSAI species as measured by 2011 catch level relative to OFL (vertical axis) and projected 2012 spawning biomass relative to $B_{\text {wss }}$.

The sum of the biomasses for 2012 listed in Table 5 (19.4 million t) is down approximately six percent compared to 2011 (20.6 million t). Pollock and Pacific cod biomasses are increasing after a period of decline. Flatfishes generally are trending upwards. The 2011 bottom trawl survey biomass estimate for pollock was 3.11 million t , down 17 percent from the 2010 estimate, and still below average for the 19872011 time series. There was no new estimate from the acoustic-trawl survey in 2011, which was 2.32 million t in 2010; the 2010 estimate was up 151 percent from the 2009 estimate, but still below average for the 1979-2010 time series.

Following the highest observation in 1994, the Pacific cod bottom trawl survey biomass estimate declined steadily through 1998 and remained around 600,000 t from 2002 through 2005. However, the survey biomass estimates were at all-time lows from 2006 through 2008. The 2009 biomass estimate was slightly
higher than the 2008 estimate, and the 2010 biomass estimate was more than double the 2009 estimate. The 2011 biomass estimate was 4 percent higher, at $896,000 \mathrm{t}$. The 2006 and 2008 year classes appear to be strong, and stock abundance is expected to increase substantially in the near term; however, these follow a string of five consecutive sub-par year classes spawned from 2001-2005. The 2010 AI biomass estimate of $68,000 \mathrm{t}$ was the lowest in the survey time series. No update is available since the AI trawl survey was not scheduled for 2011. The best estimate continues to be 91 percent in the EBS and 9 percent in the AI, replacing the previous proportions of 84 percent and 16 percent, respectively.

Summary and Use of Terms

Stock status is summarized and OFL and ABC recommendations are presented on a stock-by-stock basis in the remainder of this section, with the following conventions observed:
"Fishing mortality rate" refers to the full-selection F (i.e., the rate that applies to fish of fully selected sizes or ages), except in the cases of stocks managed under Tier 1 (EBS pollock, yellowfin sole, and northern rock sole). For these stocks, the fishing mortality rate consists of the ratio between catch (in biomass) and biomass at the start of the year. EBS pollock uses "fishable biomass" whereas yellowfin sole and northern rock sole use age 6+ biomass for this calculation.
"Projected age+ biomass" refers to the total biomass of all cohorts of ages greater than or equal to some minimum age, as projected for January 1 of the coming year. The minimum age varies from species to species. When possible, the minimum age corresponds to the age of recruitment listed in the respective stock assessment. Otherwise, the minimum age corresponds to the minimum age included in the assessment model, or to some other early age traditionally used for a particular species. When a biomass estimate from the trawl survey is used as a proxy for projected age+ biomass, the minimum age is equated with the age of recruitment, even though the survey may not select that age fully and undoubtedly selects fish of younger ages to some extent.
Projected ABC, OFL, and biomass levels are typically reported to three significant digits, except when quoting a Council-approved value with more than three significant digits or when a stock-specific ABC is apportioned among areas on a percentage basis, in which case four significant digits may be used if necessary to avoid rounding error. Fishing mortality rates are typically reported to two significant digits.
The reported ABCs and OFLs for past years correspond to the values approved by the Council. Projected ABCs and OFLs listed for the next two years are the Plan Team's recommendations.
Reported catches are as of November 5, 2011.

Two-Year OFL and ABC Projections

Proposed and final specifications are adopted annually, for a two year period. This requires the Team to provide OFLs and ABCs for the next two years in this cycle (Table 1). The proposed 2012 and 2013 specifications will become effective when final rulemaking occurs in February or March 2012. The 2012 specifications (from Council recommendations in December 2010) will already be in place to start the fishery on January 1, 2012, but these will be replaced by final specifications recommended by the Council in December 2010. This process allows the Council to use the most current survey and fishery data in stock assessment models for setting the next two years’ quotas, while having no gap in specifications. The 2013 ABC and OFL values recommended in next year's SAFE report are likely to differ from this year's projections for 2013 because of new (e.g., survey) information that is incorporated into the assessments. In the case of stocks managed under Tier 3, 2012 and 2013 proposed ABC and OFL projections are typically based on the output for Scenarios 1 or 2 from the standard projection model using assumed (best estimates) of actual catch levels. For stocks managed under Tiers 4-6, 2013 projections are set equal to the Plan Team's recommended values for 2012.

Ecosystem Considerations

This year, the Ecosystem Considerations report included two synthesis sections: an update to last year's Bering Sea "Report Card" and ecosystem assessment, as well as a new Aleutian Islands "Report Card" and ecosystem assessment. The format and process for developing the Aleutian Islands synthesis was based on that of the Bering Sea synthesis developed in 2010. However, the end result differed due to the relatively few physical and ecological data sets available for the Aleutian Islands compared to the Bering Sea. In addition, the Aleutian Island ecosystem assessment team suggested that the significant ecological and physical variability along the island chain warranted dividing the assessment into three ecoregions: west, central, and east. A Gulf of Alaska assessment is planned for 2012 following the format and process of the Bering Sea and Aleutian Islands assessments. To the chapter as a whole, 44 indices were updated and 7 new ones were added. Additional important highlights follow.

Eastern Bering Sea

1. Despite neutral winter and spring temperatures and sea ice, the eastern Bering Sea remained in a cold pattern due to an unusually cold and stormy summer 2011. The cold pool was not as extensive as the previous few years, and the mean bottom temperature was nearly a degree warmer than in 2010. However, the mean surface temperature remained much colder than the long-term mean and was $0.1^{\circ} \mathrm{C}$ lower than in 2010. Continued cold conditions may lead to early sea ice formation in fall 2011. A weak to moderate La Niña is predicted for the upcoming winter, which would be the second in a row.
2. Jellyfish abundance has increased dramatically in the past 2-3 years. Catch per unit effort (CPUE) during summer trawl surveys remained relatively stable from 200 through 2008. A notable increase in jellyfish CPUE occurred in 2009. CPUE in 2011 was nearly double that of the previous two years and nearly the same as the peak value in 2000 that occurred following a decade of steadily increasing catch rates. The fall BASIS surveys noted a substantial CPUE increase in 2010. The species composition in both surveys has been dominated by Chrysaora melanaster. Other species have declined since 2004, suggesting that the trend has shifted to a catch dominated by a single species. Increases in jellyfish biomass may redirect energy pathways in the food web through their predation on zooplankton and small fish. In contrast, CPUE of jellyfish in the Gulf of Alaska during 2011 surveys was low.
3. Thick-billed murres on St George experienced reproductive failure, suggesting that their piscivorous prey were not available during summer 2011.
4. Both Calanus copepod and euphausiid time series showed peak values in 2009, followed by small declines in 2010. Zooplankton were still considered abundant, indicating good conditions for planktivorous species through 2010.
5. There is an overall decreasing trend in Pacific cod biomass in the Aleutian Islands, whereas arrowtooth flounder, Kamchatka flounder, and skates are all increasing.
6. Index of human disturbance decreased in 2011 (using bottom trawl effort as an indicator).

Aleutian Islands

1. The winter North Pacific Index (NPI) may be negatively correlated with planktivorous seabirds’ productivity. Values of the NPI this year were low and corresponded with increased auklet reproductive success in recent years.
2. Arrowtooth and Kamchatka flounders increased in the western Aleutian Islands; apex predators decreased in survey biomass in the central Aleutian Islands.
3. Fishery changes noted- no directed Atka mackerel or Pacific cod fisheries occurred in the western Aleutian Islands in 2011 due to implementation of management changes related to Steller sea lion reasonable and prudent alternatives (RPAs). The sea lion RPAs also included critical habitat closures for both fisheries and a TAC reduction for the Atka mackerel fishery in the central Aleutian Islands.
4. An oil spill and shipping traffic risk assessment was performed and is available.
5. Critical data gaps include an analysis of fishery exploitation rates by region (west, central, and east - to be worked on for next year). The role of myctophids and squids is extremely important in the AI and poorly understood (very limited data available).

Uncertainty

Statistical uncertainty is addressed in the individual assessments, and to some degree, by the Tier system used to establish ABCs. In the past, statistical uncertainty or natural variability in the stock has led the Plan Team to recommend ABC values lower than the maximum permissible level for walleye pollock, Pacific cod, and Greenland turbot. For example, the Plan Team's recommended 2012 and 2013 ABCs for EBS pollock are reduced by 45 percent and 46 percent, respectively, from their potential maxima (Table 6).

Effects of Cancelled Surveys

Except under Tier 1, current harvest rules do not automatically adjust for assessment uncertainty. Assessment uncertainty is increasing in Alaska groundfish assessments because some surveys have been cancelled due to decreased funding. Lacking an uncertainty adjustment, ABC recommendations may risk long-term fishery sustainability. To address this uncertainty, the Plan Team recommends: 1) increase funding so that surveys are not cancelled; and 2) modify harvest rules so that more tiers (especially 3 and 5) account for assessment uncertainty. The Plan Team specifically is concerned about species that rely on the Aleutian Islands trawl survey for biomass estimates, including Atka mackerel, walleye pollock, Pacific cod, and Pacific ocean perch and the Bering Sea slope survey for biomass estimates of Greenland turbot.

Economic Summary of the BSAI Commercial Groundfish Fisheries in 2009-2010

The domestic groundfish fishery off Alaska is the largest fishery by volume in the U.S. The Economic SAFE Report contains detailed information about economic aspects of the fishery, including figures and tables, market profiles for the most commercially valuable species, a summary of the relevant research being undertaken by the Economic and Social Sciences Research Program (ESSRP) at the Alaska Fisheries Science Center (AFSC) and a list of recent publications by ESSRP analysts.
More specifically, the figures and tables in the report provide estimates of total groundfish catch, groundfish discards and discard rates, prohibited species catch (PSC) and PSC rates, the ex-vessel value of the groundfish catch, the ex-vessel value of the catch in other Alaska fisheries, the gross product value (F.O.B. Alaska) of the resulting groundfish seafood products, the number and sizes of vessels that participated in the groundfish fisheries off Alaska, vessel activity, and employment on at-sea processors. Generally, the data presented in this report cover the years 2006 through 2010, but limited catch and exvessel value data are reported for earlier years in order to illustrate the rapid development of the domestic groundfish fishery in the 1980s and to provide a more complete historical perspective on catch.

In addition, the Economic SAFE contains links to data on some of the external factors that, in part, determine the economic status of the fisheries. Such factors include foreign exchange rates, the prices and price indices of products that compete with products from these fisheries, domestic per capita consumption of seafood products, and fishery imports.

The Economic SAFE Report also updates the set of market profiles for pollock, Pacific cod, sablefish, and flatfish published here in the last four years' reports. These analyses discuss the relatively recent states of the markets for these species in terms of pricing, volume, supply and demand. Trade patterns and market share are also discussed.
A new section has been added to the Economic SAFE Report this year that analyzes economic performance using indices. Indices for different sectors of the North Pacific relate changes in value, price, and quantity across species, product and gear types to aggregate changes in the market.

The tables from this and past Economic SAFE reports are available online at http://www.afsc.noaa.gov /REFM/Socioeconomics/documents.php.

A Decomposition of the Change in First-Wholesale Revenues from 2009-2010

The following brief analysis summarizes the overall changes that have occurred in the quantity produced, value, and revenue generated from Alaska groundfish. According to data reported in the 2011 Economic SAFE report, first-wholesale revenues from the processing and production of Alaska groundfish in the BSAI area were approximately $\$ 1.6$ billion in 2009 and 2010. During that same time-period, the total quantity of groundfish products from the BSAI increased by 9.3 percent from $581,000 \mathrm{t}$ to $625,000 \mathrm{t}$, an increase of $36,400 \mathrm{t}$. Overall, first wholesale revenues from Alaska groundfish fisheries increased by 2.4 percent in 2010 relative to 2009 levels.

By species, a negative price effect for pollock of - $\$ 82.6$ million in 2009-10 was calculated in the firstwholesale revenue decomposition for the BSAI. This negative effect for pollock was almost completely offset by a combination of positive price and quantity effects for flatfish, Pacific cod, rockfish, and sablefish. The negative price effect for pollock translated into negative price effects for roe and fillets product groups for all species. These price effects for pollock were offset by a combination of positive price and quantity effects for surimi, whole head \& gut and other product groups.

In summary, the BSAI had a relatively small change of - $\$ 14.3$ million in first-wholesale revenues for 2009-10. In comparison, the corresponding change for the BSAI in 2008-09 was equal to - $\$ 519.8$ million, which was caused by large negative price effects for cod and pollock, and a negative quantity effect for pollock. The decrease in BSAI first-wholesale revenues for 2009-2010 was due entirely to a negative price effect for pollock despite an overall quantity increase in processed groundfish products.
The first decomposition is by the species groups used in the Economic SAFE report, and the second decomposition is by product group. The price effect refers to the change in revenues due to the change in the first-wholesale price index (2010 dollars per metric ton) for each group. The quantity effect refers to the change in revenues due to the change in production (in metric tons) for each group. The net effect is the sum of price and quantity effects.

Figure 4. Decomposition of the change in first-wholesale revenues from 2009-10 in the BSAI area.

Stock Status Summaries

1. Walleye Pollock

Status and catch specifications (t) of walleye pollock in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2012 and 2013 are those recommended by the Plan Team. Catch data are current through November 5, 2011.

Area	Year	Age 3+ Biomass	OFL	ABC	TAC	Catch
Eastern Bering Sea	2010	$4,620,000$	918,000	813,000	813,000	810,395
	2011	$9,620,000$	$2,450,000$	$1,270,000$	$1,252,000$	$1,197,571$
	2012	$8,340,000$	$2,470,000$	$1,220,000$	n / a	n / a
	2013	$8,570,000$	$2,840,000$	$1,360,000$	n / a	n / a
	242,000	44,500	36,700	19,000	1,285	
Aleutian Islands	2010	261,000	44,500	36,700	19,000	1,162
	2011	n / a	39,600	32,500	n / a	n / a
	2012	n / a	42,900	35,200	n / a	n / a
	2013	110,000	22,000	156	50	176
Bogoslof	2010	110,000	22,000	156	150	140
	2011	110,000	22,000	16,500	n / a	n / a
	110,000	22,000	16,500	n / a	n / a	

Eastern Bering Sea

Changes from previous assessment

New data in this year's assessment include the following:

- 2011 NMFS summer bottom trawl survey abundance-at-age estimates
- 2010 age composition estimates were updated using acoustic-trawl survey age data (in last year’s assessment, an age-length key from the 2010 bottom trawl survey was used)
- Observer data for age and average weight-at-age from the 2010 fishery
- Total catch as reported by NMFS Alaska Regional office were updated through 2011
- The acoustic index from the bottom trawl survey vessels was updated from 2006-2011

The only change in the assessment model was the use of the acoustic index from the bottom trawl survey vessels, which was reviewed last year by the Plan Team and SSC but not used in last year's assessment.

Spawning biomass and stock status trends

Estimates of age 3+ biomass from this year's assessment are higher than those from last year's assessment for every year from 1988-2008, but lower for every year since then. For example, the estimates/projections of 2011 and 2012 age 3+ biomass in this year's assessment are 19 percent and 26 percent lower than the respective projections in last year's assessment.

Spawning biomass in 2008 was at the lowest level since 1980, but has increased by 43 percent since then, with further increases projected for the next few years. The 2008 low was the result of extremely poor recruitments from the 2002-2005 year classes. Recent and projected increases are fueled by strong recruitments from the 2006 and 2008 year classes. Spawning biomass is projected to be 17 percent and 26 percent above $B_{M S Y}$ in 2012 and 2013, respectively.

Tier determination/Plan Team discussion and resulting ABCs and OFLs

The SSC has determined that EBS pollock qualifies for management under Tier 1 because there are reliable estimates of $B_{\text {MSY }}$ and the probability density function for $F_{\text {MSY }}$. The Plan Team concurs with the assessment authors' conclusion that the Tier 1 reference points continue to be reliably estimated.

The updated estimate of $B_{M S Y}$ from the present assessment is 2.03 million t. Projected spawning biomass for 2012 is 2.39 million t, placing EBS walleye pollock in sub-tier "a" of Tier 1. As in recent assessments, the maximum permissible ABC harvest rate was based on the ratio between MSY and the equilibrium biomass corresponding to MSY. The harmonic mean of this ratio from the present assessment is 0.533 , down 5 percent from last year's value of 0.564 . The harvest ratio of 0.533 is multiplied by the geometric mean of the projected fishable biomass for 2012 (4.13 million t) to obtain the maximum permissible ABC for 2012, which is 2.20 million t, up 2 percent and down 3 percent from the maximum permissible ABCs for 2011 and 2012 projected in last year's assessment.
The authors recommend setting the ABCs for 2012 and 2013 below their respective maximum permissible levels; specifically, at values corresponding to the average harvest rate over the most recent five complete years (0.30), with the strength of the 2008 year class set equal to the long-term average. Projected harvesting under under this scenario results in ABCs for 2012 and 2013 equal to 1.09 million t and 1.14 million t, respectively. Last year, the Plan Team agreed with the authors that ABC should be set well below the maximum permissible level, the primary reason being the large hole in the age structure created by poor recruitments from the 2002-2005 year classes, which was expected to result in half of the 2011 catch coming from a single (2006) year class. As of this year, the 2008 year class has been observed by multiple surveys over three years and its above-average strength has been substantially confirmed, one result of which is that the 2012 catch is projected to be much less dependent upon a single year class, so the Plan Team's concerns from last year are somewhat lessened. Nevertheless, the Plan Team agreed that the authors, who listed 14 reasons in support of their recommendation to set ABC well below the maximum permissible level, have made a compelling case. At the same time, the Plan Team disagreed with the authors' recommendation to set the strength of the 2008 year class equal to the long-term average, concluding instead that the strength estimated by the model should be used in making projections. When the strength of the 2008 year class is set equal to the model estimate, harvesting at the recent average fishing mortality rate is projected to result in 2012 and 2013 catches of 1.22 million t and 1.36 million t , respectively, which are the Plan Team's recommended ABCs.

The OFL harvest ratio under Tier 1a is 0.60 , the arithmetic mean of the ratio between MSY and the equilibrium fishable biomass corresponding to MSY. The product of this ratio and the geometric mean of the projected fishable biomass for 2012 gives the OFL for 2012, which is 2.47 million t. The current projection for OFL in 2013 given a 2012 catch equal to the Plan Team's recommended ABC is 2.84 million t .

Status determination

The walleye pollock stock in the EBS is not being subjected to overfishing, is not overfished, and is not approaching an overfished condition.

Aleutian Islands

Changes from previous assessment

The new data in the model consists of updated catch information from 1978 through 2011, and inclusion of the 1980, 1983, and 1986 Aleutian Islands bottom trawl surveys. In addition, a generalized additive model was applied to estimate weight-at-age data for years where those data were missing. This year's model estimate of natural mortality was 0.19 , down from 0.20 in previous years.

Spawning biomass and stock status trends

This year's assessment estimates that spawning biomass reached a minimum level of about $\mathrm{B}_{28 \%}$ in 1999, increased steadily through 2006 to a level around $\mathrm{B}_{37 \%}$, and then decreased to about $\mathrm{B}_{30 \%}$ at present. The increase in spawning biomass since 1999 has resulted more from a dramatic decrease in harvest than from good recruitment, as there have been no above-average year classes spawned since 1989. Spawning biomass for 2012 is projected to be $70,900 \mathrm{t}$.

Tier determination/Plan Team discussion and resulting ABCs and OFLs
The SSC has determined that this stock qualifies for management under Tier 3. The Plan Team concurs and supports continued use of the reference model for evaluating stock status and recommending ABC. The reference model estimates $\mathrm{B}_{40 \%}$ at a value of $93,600 \mathrm{t}$, placing the AI pollock stock in sub-tier "b" of Tier 3. Under Tier 3 b , with $\mathrm{F}_{40 \%}=0.37$, the maximum permissible ABC is $32,500 \mathrm{t}$ for 2012 . The Plan Team recommends setting 2012 ABC at this level. Following the Tier 3b formula with $\mathrm{F}_{35 \%}=0.47$, OFL for 2012 is $39,600 \mathrm{t}$. Given a 2012 catch of $19,000 \mathrm{t}$, the maximum permissible ABC would be 29,300 for 2013 and the projected OFL would be 35,900 t. If the 2012 catch is only 1,540 t (i.e., equal to the five year average), the 2013 maximum permissible ABC would be 35,200 t and the 2013 OFL would be 42,900 t. The Plan Team recommends setting 2013 ABC and OFL at the latter levels.

Status determination

The walleye pollock stock in the Aleutian Islands is not being subjected to overfishing, is not overfished, and is not approaching an overfished condition.

Bogoslof

Changes from previous assessment

The 2009 Bogoslof pollock acoustic-trawl survey resulted in the lowest estimate of biomass (110,000 t) in the region since the survey began in 1988. There was no survey in 2010 or 2011. The authors explored alternative methods for setting ABC (see below).

Spawning biomass and stock status trends

Survey biomass estimates since 2000 have all been lower than estimates prior to 2000, ranging from a low of 110,000 t in 2009 to a high of 301,000 t in 2000.
Tier determination/Plan Team discussion and resulting ABCs and OFLs
The SSC has determined that this stock qualifies for management under Tier 5. Traditionally, the ABC for this stock has been set using a formula similar to the Tier 3 formula, but substituting a reference biomass level of 2 million t for $B_{40 \%}$.

This year the authors’ presented three new strategies for setting ABC and OFL. The Plan Team concurs with the authors' recommendation to revert to a more standard Tier 5 approach, using the most recent survey to provide the estimate of current biomass. The maximum permissible ABC value for 2012 would be $16,500 \mathrm{t}$ (assuming $\mathrm{M}=0.2$ and $\mathrm{F}_{\mathrm{ABC}}=0.75 \times \mathrm{M}=0.15$): $\mathrm{ABC}=\mathrm{B}_{2009} \times \mathrm{M} \times 0.75=110,000 \times 0.2 \times$ $0.75=16,500 \mathrm{t}$. The projected ABC for 2013 is the same.

Following the Tier 5 formula with $M=0.20$, OFL for 2012 is $22,000 \mathrm{t}$. The OFL for 2013 is the same.

Status determination

The walleye pollock stock in the Bogoslof district is not being subjected to overfishing. It is not possible to determine whether this stock is overfished or whether it is approaching an overfished condition because it is managed under Tier 5.

2. Pacific cod

Status and catch specifications (t) of Pacific cod in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2012 and 2013 are those recommended by the Plan Team. Catch data are current through November 5, 2011.

Area	Year	Age 3+ biomass	OFL	ABC	TAC*	Catch
BSAI	2010	$1,140,000$	205,000	174,000	168,780	159,012
	2011	$1,560,000$	272,000	235,000	227,950	202,697
	2012	$1,620,000$	369,000	314,000	n / a	n / a
	2013	$1,620,000$	374,000	319,000	n / a	n / a

*The Council sets the Federal TAC to account for the State of Alaska Aleutian Islands Guideline Harvest Level fishery that is set equal to 3 percent of the BSAI ABC. Catch only includes that which accrues to the Federal TAC.

Changes in assessment data

All survey and commercial data series on CPUE, catch at age, and catch at length were updated. The 2011 Eastern Bering Sea trawl survey biomass estimate was 4% above the 2010 value, which was about twice the 2007-2009 level.

Change in assessment methods

The cod assessments in the GOA and BSAI have been the object of a great deal of scrutiny and development over the last several years. The accuracy of age readings for this stock has been a continuing concern, mainly because the mean size at age from age readings did not match the first three clear modes of cod length frequencies in the Bering Sea trawl survey. Other issues have been the trawl survey catchability coefficient, the modeling of commercial selectivity (variable or not, asymptotic or not, fishery by fishery), and the modeling of growth (constant, cohort-specific, year-specific). In 2011 there was a CIE review and two rounds of model proposals, trials, and reviews by the Plan Teams and SSC (May/June and September/October) that produced the five candidate models (1, 2b, 3, 3b, and 4) for the 2012 OFL/ABC specifications. Model 1 was the 2010 preferred model, whose main features were:
(i) Natural mortality $M=0.34$ fixed externally.
(ii) Commercial length compositions fitted, not commercial CPUE. Length-specific commercial selectivities, estimated in blocks of years, some forced to be asymptotic.
(iii) Trawl survey age composition and CPUE fitted. Age-specific trawl survey selectivity with annually varying left limb. Trawl survey catchability fixed at 0.77 , which in the 2009 assessment had resulted in the average product of catchability and selectivity of $60-80 \mathrm{~cm}$ fish being 0.47 , the value estimated from a small set of data from archival tag recoveries.
(iv) A single schedule for mean length at age estimated internally for all years. Standard deviation of length at age a linear function of mean length at age, estimated externally.
(v) Assumed age reading bias of +0.4 y at all ages.
(vi) Length composition data not used where age composition data were available.

The other models were as follows:

- Model 2b was the same as Model 1 except that the pre-1982 trawl survey data were left out and the author made a number of small but helpful housekeeping changes to the model configuration.
- Model 3 was the same as Model 2 b except that aging error parameters were estimated internally.
- Model 3b was the same as Model 3 except that the standard deviation of length at age was estimated internally, the mean length-at-age data were left out of the likelihood, and all length frequency data were used.
- Model 4 was the same as Model 3b except that all age composition data were left out of the fit (to avoid the whole issue of aging error).

Author and Team evaluation of alternative models

All of the models produced similar fits to the survey abundance data and similar estimates of historical recruitment and present abundance. All models predicted mean length at age of younger fish in good agreement with the modes in the trawl survey length frequencies. Model 3b fitted the survey age data best in most years.

The author adopted a set of criteria for choosing a preferred model, including among others (i) that the age data should be used if possible, (ii) that aging error should be estimated internally if possible, and (iii) that the standard deviation of length at age should be estimated internally. By these criteria Model 3b was the clear choice. The Plan Team endorsed the author's criteria and the choice of Model 3b

Tier determination/ Plan Team discussion and resulting ABC and OFL recommendations
$\mathrm{B}_{40 \%}$ for this stock is estimated to be 355,000 t and projected spawning biomass in 2012 according to Model 3 b is $410,000 \mathrm{t}$, so this stock is assigned to Tier 3a. While there remains some concern about the fixed value of trawl survey catchability used in the assessment, neither the author nor the Team saw any compelling reason to recommend OFL or ABC values lower than prescribed by the standard control rule.

Status determination

Pacific cod is not being subjected to overfishing, is not overfished, and is not approaching an overfished condition

Spawning biomass and stock status trends

Recent catches have been well below OFL. The 2006 and 2008 year classes appear to be strong, and stock abundance is expected to increase in the near term.

Ecosystem considerations

No special features were identified that would require adjustments to the recommended ABCs and reference points.

Area apportionment

The stock assessment is done for the EBS and the abundance estimates are then expanded to the Aleutians by the ratio of survey abundance estimates, presently 9 percent. The resulting ABC of Pacific cod is not apportioned between the EBS and AI. In 2010 (the last year in which a bottom trawl survey was conducted in both the EBS and AI), the ratio of catch to survey biomass in the Aleutian Islands was about twice that in the Bering Sea. The Team is in favor of implementing an area apportionment that would equalize the exploitation rates. The SSC has recommended that the stock be managed under a combined BSAI OFL and separate BS and AI ABCs sometime in the near future.

3. Sablefish

Status and catch specifications (t) of sablefish in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2012 and 2013 are those recommended by the Plan Team. Catch data are current through November 5, 2011.

Area	Year	Age 4+ Biomass	OFL	ABC	TAC	Catch
Bering Sea	2010	38,000	3,310	2,790	2,720	754
	2011	37,000	3,360	2,850	2,850	668
	2012	30,000	2,640	2,230	n / a	n / a
	2013	28,000	2,610	2,200	n / a	n / a
Aleutian Islands	2010	27,000	2,450	2,070	2,070	1,076
	2011	25,000	2,250	1,900	1,900	950
	2012	26,000	2,430	2,050	n / a	n / a
	2013	24,000	2,400	2,020	n / a	n / a

Changes from previous assessment

The assessment model incorporates the following new data into the model:

- relative abundance and length data from the 2011 longline and trawl surveys
- relative abundance from the 2010 longline fishery
- length data from the 2010 longline and trawl fisheries
- age data from the 2010 longline survey and longline fishery
- updated 2010 catch and estimated 2011 catch.

There were no model changes.
The 2011 survey abundance index increased 3 percent from 2010 and follows a 10 percent increase between 2009 and 2010. The fishery abundance index was down 9 percent from 2009 to 2010 (2011 data not yet available).

Spawning biomass and stock status trends

Spawning biomass is projected to decrease from 2011 to 2016, and then increase. The spawning biomass has increased from a low of 30 percent of unfished biomass in 2002 to 37 percent, projected for 2012. The 1997 year class has been an important contributor to the population but has been reduced and should comprise 10 percent of the 2012 spawning biomass. The 2000 year class appears to be larger than the 1997 year class, and is now mature; it is expected to comprise 23 percent of the spawning biomass in 2012. The 2002 year class shows signs of strength and is expected to comprise 10 percent of spawning biomass in 2012, when 92 percent of the individuals will be mature. The 2008 year class may also be above average.

Tier determination/Plan Team discussion and resulting ABCs and OFLs

Sablefish are managed under Tier 3. Reference points are calculated using age-2 recruitments from 19792009. The updated point estimates of $\mathrm{B}_{40 \%}, \mathrm{~F}_{40 \%}$, and $\mathrm{F}_{35 \%}$ from this assessment are 109,000 t (combined across the EBS, AI, and GOA), 0.10 , and 0.11 , respectively. Projected female spawning biomass (combined areas) for 2012 is $101,000 \mathrm{t}$ (93 percent of $\mathrm{B}_{40 \%}$), placing sablefish in sub-tier "b" of Tier 3. The maximum permissible value of $\mathrm{F}_{A B C}$ under Tier 3 b is 0.09 , which translates into a 2012 ABC (combined areas) of $17,200 \mathrm{t}$. The OFL fishing mortality rate is 0.11 which translates into a 2012 OFL (combined areas) of 20,400 t .

Area allocations

Using established procedures for determining area apportionments, the OFL and ABC for Bering Sea sablefish are 2,640 t and 2,230 t in 2012, and 2,610 t and 2,200 t in 2013. The OFL and ABC for Aleutian Island sablefish are 2,430 t and 2,050 t in 2012, and 2,400 t and 2,020 t in 2013.

Status determination

Sablefish is not being subjected to overfishing, is not overfished, and is not approaching an overfished condition.

4. Yellowfin sole

Status and catch specifications (t) of yellowfin sole in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2012 and 2013 are those recommended by the Plan Team. Catch data are current through November 5, 2011.

Area	Year	Age 6+ Biomass	OFL	ABC	TAC	Catch
BSAI	2010	$1,960,000$	234,000	219,000	219,000	118,624
	2011	$1,960,000$	262,000	239,000	196,000	141,400
	2012	$1,950,000$	222,000	203,000	NA	NA
	2013	$1,990,000$	226,000	207,000	NA	NA

Changes from previous assessment

Changes to the input data for this year's assessment include:

- 2010 fishery and survey age compositions
- 2011 trawl survey biomass point estimate and standard error
- estimates of the discarded and retained portions of the 2010 catch
- estimate of total catch through the end of 2011.

Time-varying growth by age, year and gender was implemented in the model. This year's EBS bottom trawl survey resulted in a biomass estimate of 2.40 million t, compared to last year's survey biomass of 2.37 million t (an increase of 1 percent).

Spawning biomass and stock status trends

The projected female spawning biomass estimate for 2012 is 593,000 t. Projected spawning biomass for 2012 and beyond suggests a reversal of the generally monotonic decline in spawning biomass that has prevailed since 1994. An upward trend in the population may be expected due to high recruitment from the 2003 year class.

Tier determination/Plan Team discussion and resulting ABCs and OFLs

The SSC has determined that reliable estimates of $B_{\text {MSY }}$ and the probability density function for $F_{\text {MSY }}$ exist for this stock. Accordingly, yellowfin sole qualify for management under Tier 1 . The estimate of $B_{\text {MSY }}$ from the present assessment is $341,000 \mathrm{t}$. Corresponding to the approach used in recent years, the 19782005 stock-recruitment data were used this year to determine the Tier 1 harvest recommendation. This provided a maximum permissible ABC harvest ratio (the harmonic mean of the $F_{\text {MSY }}$ harvest ratio) of 0.10 . The current value of the OFL harvest ratio (the arithmetic mean of the $F_{M S Y}$ ratio) is 0.11 . The product of the maximum permissible ABC harvest ratio and the geometric mean of the 2012 biomass estimate produces the author- and Plan Team-recommended 2012 ABC of 203,000 t, and the corresponding product using the OFL harvest ratio produces the 2012 OFL of $222,000 \mathrm{t}$. For 2013, the corresponding quantities are $207,000 \mathrm{t}$ and $226,000 \mathrm{t}$, respectively.

Status determination

Yellowfin sole is not being subjected to overfishing, is not overfished, and is not approaching an overfished condition.

Ecosystem Considerations summary

As in previous years, this assessment contains an ecosystem feature that represents catchability of the EBS shelf trawl survey as an exponential function of average annual bottom temperature.

5. Greenland turbot

Status and catch specifications (t) of Greenland turbot in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2012 and 2013 are those recommended by the Plan Team. Catch data are current through November 5, 2011.

Area	Year	Age 1+ Bio.	OFL	Subarea	ABC	TAC	Catch
BSAI	2010	61,100	7,460		6,120	6,120	4,138
				EBS	4,220	4,220	2,272
				AI	1,900	1,900	1,866
BSAI	2011	74,000	7,220		6,140	5,050	3,493
				EBS	4,590	3,500	2,979
				AI	1,550	1,550	514
BSAI	2012	76,900	11,700		9,660	n / a	n / a
				EBS	7,230	n / a	n / a
				AI	2,430	n / a	n / a
BSAI	2013	73,900	9,700		8,030	n / a	n / a
				EBS	6,010	n / a	n / a
				AI	2,020	n / a	n / a

Changes from previous assessment

This year's Greenland turbot assessment model included:

- updated 2010 and 2011 catch data
- 2011 EBS shelf survey biomass
- 2011 EBS shelf survey length composition estimates
- additional years of NMFS bottom-trawl shelf survey age data
- updated fishery catch-at-length data for longline and trawl gear from 2004-2011.

Refinements were made for estimating selectivities (additional parameters estimated), an alternative model was investigated in which male natural mortality was estimated (with female mortality fixed), and some adjustments were made to the length bin structure.

Spawning biomass and stock status trends

The projected 2012 female spawning biomass is $47,700 \mathrm{t}$. This is a slight (7 percent) decrease from the 2011 spawning biomass of $51,300 \mathrm{t}$. Spawning biomass is projected to decline further in 2013 to $41,400 \mathrm{t}$. While spawning biomass generally continues to decline, age 0 recruitment appears to have improved substantially in 2008, 2009, and particularly 2010. These year classes are all estimated to be stronger than any other year class spawned since 1989. Very high estimated biomass and numbers from the trawl survey are largely attributable to an increase in small ($<30 \mathrm{~cm}$) fish.
Tier determination/Plan Team discussion and resulting ABCs and OFLs
The SSC has determined that reliable estimates of $B_{40 \%}, F_{40 \%}$, and $F_{35 \%}$ exist for this stock. Greenland turbot therefore qualifies for management under Tier 3.

Updated point estimates of $B_{40 \%}, F_{40 \%}$, and $F_{35 \%}$ from the present assessment are $21,600 \mathrm{t}, 0.37$, and 0.45 , respectively. Projected spawning biomass for 2012 is 47,700 t. Relative to $B_{40 \%}$, this places Greenland
turbot in sub-tier "a" of Tier 3. The maximum permissible value of $F_{A B C}$ under this Tier translates into a maximum permissible ABC of 9,660 t for 2012 and $8,030 t$ for 2013, and the OFLs for 2012 and 2013 under the Tier 3a formula are $11,700 \mathrm{t}$ and $9,700 \mathrm{t}$, respectively. These are the authors' and Team's ABC and OFL recommendations.

Status determination

Greenland turbot is not being subjected to overfishing, is not overfished, and is not approaching an overfished condition.

6. Arrowtooth flounder

Status and catch specifications (t) of arrowtooth flounder in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2012 and 2013 are those recommended by the Plan Team. Catch data are current through November 5, 2011.

Area	Year	Age 1+ Bio	OFL	ABC	TAC	Catch
BSAI	2010	$1,120,000$	190,800	156,300	75,000	39,416
	2011	$1,120,000$	186,000	153,000	25,900	19,600
	2012	$1,130,000$	181,000	150,000	n / a	n / a
	2013	$1,130,000$	186,000	152,000	n / a	n / a

Changes from previous assessment
New input data include:

- fishery catch through 12 September 2011
- estimate of retained and discarded portion of the 2010 catch
- 2011 shelf survey size composition and biomass point estimates and standard errors.

The model is unchanged from last year.

Spawning biomass and stock status trends

The 2011 stock assessment model resulted in a 2012 age $1+$ biomass projection of $1,130,000 \mathrm{t}$. This is identical to the value projected in last year's assessment for 2012. There is a long-term trend of increasing arrowtooth flounder biomass in the EBS. If the harvest rate remains close to the recent average, this trend is expected to continue for the next couple of years due to the strong recruitment observed in the past decade.

Tier determination/Plan Team discussion and resulting ABCs and OFLs

Because the SSC has determined that reliable estimates of $B_{40 \%}, F_{40 \%}$, and $F_{35 \%}$ exist for this stock, arrowtooth flounder was assessed for management under Tier 3. The updated point estimates of $B_{40 \%}$, $F_{40 \%}$, and $F_{35 \%}$ from the present assessment are $281,000 \mathrm{t}, 0.22$, and 0.27 , respectively. Given that the projected 2012 spawning biomass of $818,000 \mathrm{t}$ exceeds $B_{40 \%}$, the Team’s ABC and OFL recommendations for 2012 were calculated under sub-tier "a" of Tier 3. The Team recommends setting $F_{A B C}$ at the $F_{40 \%}(0.22)$ level, which is the maximum permissible level under Tier 3a. Projected harvesting at the $F_{40 \%}$ level gives a 2012 ABC of $150,000 \mathrm{t}$ and a 2013 ABC of $152,000 \mathrm{t}$. The OFL fishing mortality rate under Tier 3a is $F_{35 \%}$ (0.27), which translates to a 2012 OFL of $181,000 \mathrm{t}$ and a 2013 OFL of 186,000 t.

Status determination

Arrowtooth flounder is a largely unexploited stock in the BSAI. Arrowtooth flounder was managed separately from Kamchatka flounder for the first time in 2011. Arrowtooth flounder is not being subjected to overfishing, is not overfished, and is not approaching an overfished condition.

Ecosystem Considerations summary

In contrast to the Gulf of Alaska, arrowtooth flounder is not at the top of the food chain on the eastern Bering Sea shelf. Arrowtooth flounder in the Bering Sea is an occasional prey in the diets of groundfish in the Bering Sea, being eaten by Pacific cod, walleye pollock, Alaska skates, and sleeper sharks. However, given the large biomass of these species in the Bering Sea overall, these occasionally recorded events translate into considerable total mortality for the arrowtooth flounder population in the Bering Sea ecosystem.

7. Kamchatka flounder

Status and catch specifications (t) of Kamchatka flounder in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2012 and 2013 is those recommended by the Plan Team. Catch data are current through November 5, 2011.

Area	Year	Age 1+ Bio	OFL	ABC	TAC	Catch
BSAI	2011	129,000	23,600	17,700	17,700	9,242
	2012	125,000	24,800	18,600	n / a	n / a
	2013	125,000	24,800	18,600	n / a	n / a

Prior to 2011, this species was a constituent of the arrowtooth flounder/Kamchatka flounder complex. Due to the development of a targeted fishery on Kamchatka flounder in 2009 and 2010, it was assessed separately beginning in 2010 and split from the former arrowtooth/Kamchatka complex in the 2011 harvest specifications.

Changes from previous assessment

New data include the 2011 EBS bottom trawl survey biomass estimate. The assessment methodology was unchanged.

Spawning biomass and stock status trends

Because no age-structured model has been developed for Kamchatka flounder, spawning biomass estimates are not available. Kamchatka flounder has a widespread distribution along the deeper waters of the BSAI region and is believed to be increasing in abundance, as evidenced by survey biomass estimates from the EBS shelf, EBS slope, and AI over the period 2004-2011. The 2012 combined estimate of total biomass from the three surveys is $125,000 \mathrm{t}$. Recent exploitation rates (catch divided by survey biomass) increased from 5 percent in 2008 to 10 percent in 2009 and 16 percent in 2010 before declining to 7 percent in 2011.

Tier determination/Plan Team discussion and resulting ABCs and OFLs

The SSC has determined that the Kamchatka flounder stock qualifies for management under Tier 5. The Tier 5 formula for calculating maximum permissible ABC is: maxABC $=0.75 \times M \times$ biomass. The natural mortality rate was estimated at a value of 0.2 . Biomass was estimated at a value of $125,000 \mathrm{t}$ by the same method used last year, which consisted of averaging the 7 most recent years of survey biomass estimates from the three survey areas (EBS shelf, EBS slope, and AI) after interpolating for missing values. The recommended 2012 and 2013 OFL is $24,800 \mathrm{t}$, and the recommended 2012-2013 ABC is 18,600 t.

Status Determination

Kamchatka flounder was managed on its own (i.e., as something other than a constituent stock of the former arrowtooth/Kamchatka complex) for the first time in 2011. Therefore, there is no 2010 OFL
against which the 2010 catch can be compared and the overfishing status of Kamchatka flounder is undefined. As a Tier 5 stock, it is not possible to determine whether Kamchatka flounder is overfished or whether it is approaching an overfished condition.

Ecosystem Considerations

Kamchatka flounder have rarely been found in the stomachs of other groundfish species in samples collected by the Alaska Fisheries Science Center. Pollock was the most important prey item for all sizes of Kamchatka flounder, ranging from 56 to 86 percent of the total stomach content weight. An examination of diet overlap with arrowtooth flounder indicated that these two congeneric species consume similar prey.

8. Northern Rock sole

Status and catch specifications (t) of northern rock sole in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2012 and 2013 are those recommended by the Plan Team. Catch data are current through November 5, 2011.

Area	Year	Age 2+ Bio	OFL	ABC	TAC	Catch
BSAI	2010	$1,570,000$	243,000	240,000	90,000	53,222
	2011	$1,870,000$	248,000	224,000	85,000	60,292
	2012	$1,860,000$	231,000	208,000	n / a	n / a
	2013	$1,840,000$	217,000	196,000	n / a	n / a

Changes from previous assessment

Changes to input data in this analysis include:

- 2010 fishery age composition
- 2010 survey age composition
- 2011 trawl survey biomass point estimate and standard error
- updated fishery catch and discards for 2010 and 2011

The assessment methodology was unchanged.
Spawning biomass and stock status trends
The stock assessment model estimates a 2012 age- $2+$ biomass estimate of $1,860,000 \mathrm{t}$. This was equal to the 2011 value projected in last year's assessment. The northern rock sole stock is expected to increase because of recruitment from the 2000-2005 year classes, all of which were stronger than any year class spawned between 1991 and 1999.

Tier determination/Plan Team discussion and resulting ABCs and OFLs

The SSC has determined that northern rock sole qualifies for management under Tier 1. Spawning biomass for 2012 is projected to be at 238 percent of $B_{\text {MSY }}$, placing northern rock sole in sub-tier "a" of Tier 1. In some past years, one difficulty with applying the Tier 1 formulae to rock sole was that the harmonic and arithmetic means of the $F_{M S Y}$ distribution were extremely close, resulting in little buffer between recommendations of ABC and OFL. This closeness resulted from estimates of $F_{\text {MSY }}$ that were highly certain. The use of time-varying fishery selectivity, first instituted in the 2010 assessment, increased the buffer between ABC and OFL from a little over 1 percent in 2009 to 10 percent in 2010 and 2011.

The Tier 12012 ABC harvest recommendation is 208,000 $t\left(F_{A B C}=0.13\right)$ and the 2012 OFL is $231,000 \mathrm{t}$ ($F_{\text {OFL }}=0.15$). The 2013 ABC and OFL values are 196,000 t and 217,000 t, respectively.

Status determination

This is a stable fishery that lightly exploits the stock because it is constrained by prohibited species catch limits and the BSAI optimum yield limit. Usually the fishery only takes a small portion of the northern
rock sole ABC (the catch/biomass ratio is about 0.03). Northern rock sole is not being subjected to overfishing, is not overfished, and is not approaching an overfished condition.

9. Flathead sole

Status and catch specifications (t) of flathead sole in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2012 and 2013 are those recommended by the Plan Team. Catch data are current through November 5, 2011.

Area	Year	Age 3+ Bio.	OFL	ABC	TAC	Catch
BSAI	2010	785,000	83,100	69,200	60,000	20,126
	2011	791,000	83,300	69,300	41,500	13,080
	2012	811,000	84,500	70,400	n / a	n / a
	2013	815,000	83,100	69,200	n / a	n / a

Changes from previous assessment
New data in this year's assessment include the following:

- updated 2010 fishery catch and preliminary 2011 fishery catch
- updated 2010 fishery size compositions and preliminary 2011 fishery size compositions
- estimated survey biomass and standard error from the 2011 EBS trawl survey
- size compositions from the 2011 EBS trawl survey
- age compositions from the 2010 EBS trawl survey
- mean bottom temperature from the 2011 EBS trawl survey

The preferred model is identical to that selected in last year's assessment.
Spawning biomass and stock status trends
Spawning biomass declined continuously from a high of $328,000 \mathrm{t}$ in 1997 to a minimum of 243,000 t in 2009, increasing slightly $247,000 \mathrm{t}$ in 2011. The projected 2012 and 2013 values are 250,000 t and $244,000 \mathrm{t}$, respectively. The 2001-2003 year classes are estimated to be above the 1994-2008 average, but recruitments from 1994-2008 on average have been much lower than recruitments from 1974-1989.
Tier determination/Plan Team discussion and resulting ABCs and OFLs
The SSC has determined that reliable estimates of $B_{40 \%}, F_{40 \%}$, and $F_{35 \%}$ exist for this stock, thereby qualifying flathead sole for management under Tier 3 . The current values of these reference points are $B_{40 \%}=133,000 \mathrm{t}, F_{40 \%}=0.28$, and $F_{35 \%}=0.34$. Because projected spawning biomass for $2012(250,000 \mathrm{t})$ is above $B_{40 \%}$, flathead sole is in sub-tier "a" of Tier 3. The authors and Plan Team recommend setting ABCs for 2012 and 2013 at the maximum permissible values under Tier 3a, which are 70,400 t and $69,200 t$, respectively. The 2012 and 2013 OFLs under Tier 3a are 84,500 t and 83,100 t, respectively.

Status determination

Flathead sole is not being subjected to overfishing, is not overfished, and is not approaching an overfished condition.

10. Alaska plaice

Status and catch specifications (t) of Alaska plaice in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2012 and 2013 are those recommended by the Plan Team. Catch data are current through November 5, 2011.

Area	Year	Age 3 + Bio	OFL	ABC	TAC	Catch
BSAI	2010	$2,260,000$	278,000	224,000	50,000	16,165
	2011	780,000	79,100	65,100	16,000	22,471
	2012	606,000	64,600	53,400	n / a	n / a
	2013	599,000	65,000	54,000	n / a	n / a

Changes from previous assessment

Input data included:

- preliminary 2011 fishery catch and updated 2010 fishery catch
- 2011 trawl survey biomass estimate and standard error
- 2011 length composition of survey catch
- 2010 survey age composition

No changes were made in the stock assessment model recommended by the assessment authors. However, the authors presented an alternative model in which the survey catchability coefficient (Q) was increased from 1.0 (the value used in last year's assessment and the authors' preferred model in this year's assessment) back to 1.2 (the value used in previous assessments). The Plan Team and senior author agreed that the model with $\mathrm{Q}=1.2$ more accurately reflected the catchability of the EBS bottom trawl survey relative to the biomass of Alaska plaice present in the standard survey area. The purpose of lowering Q to 1.0 was to compensate for the biomass of Alaska plaice found in the 2010 survey of the northern Bering Sea (NBS). However, the Plan Team concluded that it was premature to adjust the model to account for a one-time survey of the NBS, and instead accepted the alternative model with $\mathrm{Q}=1.2$.

Spawning biomass and stock status trends

Female spawning biomass decreased from 1985 to 1998, and has been relatively stable since then. The shelf survey biomass has been fairly steady since the mid-1980s. Age-3 recruitment has been increasing since the late 1990s, with exceptionally strong age-3 recruitment from the 2001 and 2002 year classes. If recent average fishing mortality rates continue into the future, this good recruitment should result in increased biomass.

Tier determination/Plan Team discussion and resulting ABCs and OFLs

Reliable estimates of $B_{40 \%}, F_{40 \%}$, and $F_{35 \%}$ exist for this stock, therefore qualifying it for management under Tier 3a. The updated point estimates are $B_{40 \%}=151,000 t, F_{40 \%}=0.15$, and $F_{35 \%}=0.18$. As a consequence of the reduced M used in the model, these are values are now in the range expected for flatfishes. Given that the projected 2012 spawning biomass of $260,000 \mathrm{t}$ exceeds $B_{40 \%}$, the ABC and OFL recommendations for 2012 were calculated under sub-tier "a" of Tier 3. Projected harvesting at the $F_{40 \%}$ level gives a 2012 ABC of $53,400 \mathrm{t}$ and a 2013 ABC of $54,000 \mathrm{t}$. The OFL was determined from the Tier 3a formula, which gives a 2012 value of $64,600 \mathrm{t}$ and a 2013 value of $65,000 \mathrm{t}$.

Status determination

Alaska plaice is not being subjected to overfishing, is not overfished, and is not approaching an overfished condition. There is no targeted fishery for this species as there is no market. The total exploitation rate is quite low, as this species is taken only as incidental catch and is mostly discarded.

11. Other Flatfish complex

Status and catch specifications (t) of other flatfish in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2012 and 2013 are those recommended by the Plan Team. Catch data are current through November 5, 2011.

Area	Year	Total Bio.	OFL	ABC	TAC	Catch
BSAI	2010	121,000	23,000	17,300	17,300	2,194
	2011	127,000	19,500	14,500	3,000	3,116
	2012	111,000	17,100	12,700	n / a	n / a
	2013	111,000	17,100	12,700	n / a	n / a

Changes from previous assessment

The assessment incorporates:

- preliminary 2011 catch and updated 2010 catch
- 2011 EBS trawl survey biomass

The assessment methodology was unchanged.
Spawning biomass and stock status trends
Because this complex is managed under Tier 5, no models are available from which to predict future trends. Starry flounder, rex sole and butter sole comprise the majority of the fishery catch with a negligible amount of other species caught in recent years. Starry flounder continues to dominate the shelf survey biomass in the EBS and rex sole is the most abundant "other" flatfish in the Aleutian Islands. There is no consistent trend in the survey biomass of EBS butter sole over time. The 1982 estimate was 182 t compared to the 2011 estimate of 437 t , with values as high as $6,340 \mathrm{t}$ in 1986 and as low as 37 t in 1983 (the median of the absolute value of the relative change from year to year is 59 percent). EBS starry flounder biomass increased from 7,780 tin 1982 to 98,600 in 2007 and remains at a high level (64,000 t) in 2011. This estimate has fluctuated over time, though there has been an upward trend. Conversely, EBS longhead dab decreased from a one-time high of $104,000 t$ in 1982 to $10,300 \mathrm{t}$ in 2011. This estimate has fluctuated over time, though less dramatically from 1985 through the present. Habitat and depth preference may affect the apparent changes in abundance. For example, longhead dab are found in inshore waters that are not normally sampled by the bottom trawl survey. Thus distributional changes, onshore-offshore or north-south, might affect the survey biomass estimates (Table 11.5).
Tier determination/Plan Team discussion and resulting ABCs and OFLs
The SSC has classified "other flatfish" as a Tier 5 species complex with harvest recommendations calculated from estimates of biomass and natural mortality. Natural mortality rates for rex (0.17) and Dover sole (0.085) in the GOA SAFE document are used, along with a value of 0.15 for all other species in the complex. Projected harvesting at the 0.75 M level (average $F_{A B C}=0.11$), gives a 2012-2013 ABC of $12,700 \mathrm{t}$ for the "other flatfish" complex. The corresponding 2012-2013 OFL (average $F_{\text {OFL }}=0.15$) is 17,100 t.

Status determination

This assemblage is not being subjected to overfishing. It is not possible to determine whether this assemblage is overfished or whether it is approaching an overfished condition because it is managed under Tier 5.
Before the implementation of Amendment 80, this group of fisheries was usually closed for trawl gear prior to attainment of TAC because of the bycatch of Pacific halibut, a prohibited species. With the implementation of Amendment 80, a higher TAC for other flatfishes was assigned for 2008, although there was not a higher catch taken 2009-2011. The 2011 fishery is still open as of this writing.

12. Pacific ocean perch

Status and catch specifications (t) of Pacific ocean perch in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2012 and 2013 are those recommended by the Plan Team. Catch data are current through November 5, 2011.

Area	Year	Age 3+ Bio	OFL	Subarea	ABC	TAC	Catch
BSAI	2010	403,000	22,400		18,860	18,860	17,852
				EBS	3,830	3,830	3,547
				Eastern AI	4,220	4,220	4,038
				Central AI	4,270	4,270	4,033
				Western AI	6,540	6,540	6,234
BSAI	2011	601,000	36,300		24,700	24,700	17,981
				EBS	5,710	5,710	2,053
				Eastern AI	5,660	5,660	5,094
				Central AI	4,960	4,960	4,768
				Western AI	8,370	8,370	8,181
BSAI	2012	594,000	35,000		24,700	n / a	n / a
				EBS	5,710	n / a	n / a
				Eastern AI	5,620	n / a	n / a
				Central AI	4,990	n / a	n / a
				Western AI	8,380	n / a	n / a
BSAI	2013	583,000	33,700		28,300	n / a	n / a
				EBS	6,540	n / a	
				Eastern AI	6,440	n / a	n / a
				Central AI	5,710	n / a	n / a
				Western AI	9,610	n / a	n / a

Changes from previous assessment

Pacific ocean perch (POP) assessments are conducted on a two-year cycle to coincide with planned Aleutian Islands surveys. A straightforward update of the assessment was presented in an executive summary because the Aleutian Islands survey was not conducted this year. Catch data were updated and the projection model was run using results from the starting point of the 2010 assessment model. The apportionment was updated and changed slightly.

Spawning biomass and stock status trends

Age 3+ biomass for 2012 is down slightly from the 2011 level projected a year ago. Spawning biomass is projected to be 221,000 t in 2012 and decline slightly to $214,000 \mathrm{t}$ in 2013.

Tier determination/Plan Team discussion and resulting ABCs and OFLs

The SSC has determined that reliable estimates of $B_{40 \%}, F_{40 \%}$, and $F_{35 \%}$ exist for this stock, thereby qualifying Pacific ocean perch for management under Tier 3. The current estimates of $B_{40 \%}, F_{40 \%}$, and $F_{35 \%}$ are $158,000 \mathrm{t}, 0.061$, and 0.074 respectively. Spawning biomass for $2012(221,000 \mathrm{t})$ is projected to exceed $B_{40 \%}(158,000 \mathrm{t})$, thereby placing POP in sub-tier "a" of Tier 3. The 2012 and 2013 catches associated with the $F_{40 \%}$ level of 0.061 are $29,400 t$ and $28,300 t$, respectively. In 2010, the Plan Team recommended an adjusted ABC approach until the next Aleutian Islands survey, which would keep the recommendation steady at $24,700 \mathrm{t}$ for 2012, followed by an increase to $28,300 \mathrm{t}$ in 2013. The Plan Team continues to endorse this approach. The 2012 and 2013 OFLs are 35,000 t and 33,700 t.

Area apportionment

The Team agrees with the author's recommendation that ABCs be set regionally based on the proportions in combined survey biomass as follows (values are for 2012): BS $=5,710 \mathrm{t}$, Eastern Aleutians (Area 541) $=5,620 \mathrm{t}$, Central Aleutians (Area 542) $=4,990 \mathrm{t}$, and Western Aleutians (Area 543) $=8,380 \mathrm{t}$. The recommended OFL is not regionally apportioned.

Status determination

Pacific ocean perch is not being subjected to overfishing, is not overfished, and is not approaching an overfished condition.

13. Northern rockfish

Status and catch specifications (t) of northern rockfish in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2012 and 2013 are those recommended by the Plan Team. Catch data are current through November 5, 2011.

Area	Year	Age 3+ Bio.	OFL	ABC	TAC	Catch
BSAI	2010	202,000	8,640	7,240	7,240	4,332
	2011	201,000	10,600	8,670	4,000	2,644
	2012	202,000	10,500	8,610	n / a	n / a
	2013	203,000	10,400	8,490	n / a	n / a

Changes from previous assessment

Northern rockfish assessments are conducted on a two-year cycle to coincide with planned Aleutian Islands surveys. A straightforward update of the assessment was presented in an executive summary because the Aleutian Islands survey was not conducted this year. Catch data were updated and the projection model was run using results from the starting point of the 2010 assessment model.

Spawning biomass and stock status trends

Age 3+ biomass has been on an upward trend since 2002. Spawning biomass has been increasing slowly and almost continuously 1977. Female spawning biomass is projected to be 72,200 t in 2012.

Tier determination/Plan Team discussion and resulting ABCs and OFLs

The SSC has determined that this stock qualifies for management under Tier 3 due to the availability of reliable estimates for $B_{40 \%}$ (50,600 t), $F_{40 \%}$ (0.058), and $F_{35 \%}$ (0.071). Because the female spawning biomass of $72,200 \mathrm{t}$ is greater than $B_{40 \%}$, sub-tier "a" is applicable, with maximum permissible $F_{A B C}=F_{40 \%}$ and $F_{\text {OFL }}=F_{35 \%}$. Under Tier 3a, the maximum permissible ABC for 2012 is $8,610 \mathrm{t}$, which is the authors' and Plan Team's recommendation for the 2012 ABC. Under Tier 3a, the 2012 OFL is 10,500 t for the Bering Sea/Aleutian Islands combined. The Team continues to recommend setting a combined BSAI OFL and ABC. Because the catch has routinely been lower than the ABC, the 2011 catch was estimated at a value of $3,450 t$ to make projections to 2012. The recommended 2013 ABC and OFL are 8,490 t and $10,400 \mathrm{t}$, respectively.

Status determination

Northern rockfish is not being subjected to overfishing, is not overfished, and is not approaching an overfished condition.

14. Blackspotted and rougheye rockfish

Status and catch specifications (t) blackspotted/rougheye rockfishes in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2012 and 2013 are those recommended by the Plan Team. Catch data are current through November 5, 2011.

Area/subarea	Year	Total Bio 1.	OFL	ABC	TAC	Catch
BSAI	2010	21,200	669	547	547	256
	2011	24,200	549	454	454	153
	2012	24,900	576	475	n / a	n / a
	2013	25,700	605	499	n / a	n / a
Western and Central AI	2011			234	234	n
	2012			244	n / a	n / a
	2013			258	n / a	n / a
Eastern AI and EBS	2011			220	220	n
	2012			231	n / a	n / a
	2013			241	n / a	n / a

${ }^{1}$ Total biomass from AI age-structured projection model, and survey biomass estimates from EBS.

Derivation of area apportionment for the AI subareas	Area		
	WAI	CAI	EAI
Weighted average biomass $(2004$, 2006, 2010)	1,172	4,220	4,275
Proportion of AI biomass	12.1%	43.7%	44.2%

Changes from previous assessment

Black spotted and rougheye rockfish assessments are conducted on a two-year cycle to coincide with planned Aleutian Islands surveys. A straightforward update of the assessment was presented in an executive summary because the Aleutian Islands survey was not conducted this year. Catch data were updated and the projection model was run using results from the starting point of the 2010 assessment model.

Spawning biomass and stock status trend

Total biomass for 2012 was estimated at a value of $24,900 \mathrm{t}$, up slightly from the value for 2011 projected in last year's assessment. Female spawning biomass in the AI is projected to increase by about 5 percent per year through 2013.

Tier determination/Plan Team discussion and resulting ABCs and OFLs

This stock qualifies for management under Tier 3 due to the availability of reliable estimates for $B_{40 \%}$, $F_{40 \%}$, and $F_{35 \%}$. Because the female spawning biomass of $6,070 t$ is greater than $B_{40 \%},(4,739 \mathrm{t}), F_{40 \%}=$ $F_{A B C}=0.034$ and $F_{35 \%}=F_{O F L}=0.041$. Under Tier 3a, the maximum permissible ABC is 475 t , which is the authors' and Plan Team's recommendation for the 2012 ABC. Under Tier 3a, the 2012 OFL is 576 t for the Bering Sea/Aleutian Islands combined. The apportionment of 2012 ABC to subareas is 244 t for
the Western and Central Aleutian Islands and 231 t for the Eastern Aleutian Islands and Eastern Bering Sea. Since the catch has routinely been lower than the ABC, the catch for 2011 was estimated by using an expansion for the last three months of the year based on the last three years' catch history in order to make projections to 2012.

Status determination

The blackspotted and rougheye rockfish complex is not being subjected to overfishing, is not overfished, and is not approaching an overfished condition.

15. Shortraker rockfish

Status and catch specifications (t) of shortraker rockfish in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2012 and 2013 are those recommended by the Plan Team. Catch data are current through November 5, 2011.

Area	Year	Survey Bio.	OFL	ABC	TAC	Catch
BSAI	2010	17,200	516	387	387	324
	2011	17,500	524	393	393	275
	2012	17,500	524	393	n / a	n / a
	2013	17,500	524	393	n / a	n / a

Changes from previous assessment

Shortraker rockfish assessments are conducted on a two-year cycle to coincide with planned Aleutian Islands surveys. A straightforward update of the assessment was presented in an executive summary because the Aleutian Islands survey was not conducted this year. Catch data were updated.

Spawning biomass and stock status trends

Estimated shortraker rockfish biomass is $17,500 \mathrm{t}$, which is identical to the 2010 assessment biomass estimate. Overall, total biomass has trended slowly downward from 28,900 tin 1980.

Tier determination/Plan Team discussion and resulting ABCs and OFLs

The SSC has previously determined that reliable estimates only of biomass and natural mortality exist for shortraker rockfish, qualifying the species for management under Tier 5 . The Tier 5 biomass estimate is based on a surplus production model. Because neither the time series of survey biomass estimates nor the proxy values for $F_{A B C}$ and $F_{O F L}$ have changed since 2010, the OFL values for 2012 and 2013 in this update are the same as last year's values for 2011 and 2012. The Plan Team recommends setting $F_{A B C}$ at the maximum permissible level under Tier 5, which is 75 percent of M. The accepted value of M for this stock is 0.03 for shortraker rockfish, resulting in a $m a x F_{A B C}$ value of 0.023 . The biomass estimate for 2012 is $17,500 \mathrm{t}$ for shortraker rockfish, leading to 2012 and 2013 BSAI OFLs of 524 t and ABCs of 393 t.

Status determination

Shortraker rockfish is not being subjected to overfishing. It is not possible to determine whether this stock is overfished or whether it is approaching an overfished condition because it is managed under Tier 5 .

16. Other Rockfish complex

Status and catch specifications (t) of other rockfish in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2012 and 2013 are those recommended by the Plan Team. Catch data are current through November 5, 2011.

Area	Year	Survey Biomass	OFL	ABC	TAC	Catch
BSAI	2010	39,200	1,380	1,040	1,040	760
	2011	48,900	1,700	1,280	1,000	884
	2012	48,900	1,700	1,280	n / a	n / a
	2013	48,900	1,700	1,280	n / a	n / a
EBS	2010	21,100	n / a	485	485	263
	2011	28,600	n / a	710	500	274
	2012	28,600	n / a	710	n / a	n / a
	2013	28,600	n / a	710	n / a	n / a
AI	2010	18,100	n / a	555	555	497
	2011	20,300	n / a	570	500	610
	20,300	n / a	570	n / a	n / a	
	20,300	n / a	570	n / a	n / a	

Changes from previous assessment

Other rockfish assessments are conducted on a two-year cycle to coincide with planned Aleutian Islands surveys. A straightforward update of the assessment was presented in an executive summary because the Aleutian Islands survey was not conducted this year. Catch data were updated.

Spawning biomass and stock status trends

Trends in spawning biomass are unknown. Stock biomass, as measured by trawl surveys of the Aleutian Islands and the EBS slope are the same as the 2010 assessment.

Tier determination/Plan Team discussion and resulting ABCs and OFLs

The Team agrees with the approach recommended by the author of setting $F_{A B C}$ at the maximum allowable under Tier 5 ($F_{A B C}=0.75 \mathrm{M}$). Multiplying these rates by the best biomass estimates of shortspine thornyhead and other rockfish species in the "other rockfish" complex yields 2012 and 2013 ABCs of 710 t in the EBS and 570 t in the AI. The assessment uses a three survey weighted average to estimate biomass in similar fashion to the methodology used in the Gulf of Alaska rockfish assessments. The Plan Team recommends that OFL be set for the entire BSAI area, which under Tier 5 is calculated by multiplying the best estimates of total biomass for the area by the separate natural mortality values and adding the results, which yields an OFL of 1,700 t for 2012 and 2013.

Status determination

The "other rockfish" complex is not being subjected to overfishing. It is not possible to determine whether this complex is overfished or whether it is approaching an overfished condition because it is managed under Tier 5.

17. Atka mackerel

Status and catch specifications (t) of Atka mackerel in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2012 and 2013 are those recommended by the Plan Team. Catch data are current through November 5, 2011.

Area	Year	Age 3+ Biomass	OFL	ABC	TAC	Catch
BSAI	2010	389,000	88,200	74,000	74,000	68,647
BSAI	2011	438,000	101,000	85,300	53,100	51,753
BSAI	2012	405,000	96,500	81,400	n / a	n / a
EAI/EBS				38,500	n / a	n / a
CAI				22,900	n / a	n / a
WAI				20,000	n / a	n / a
BSAI	2013	376,000	78,300	67,100	n / a	n / a
EAI/EBS				31,700	n / a	n / a
CAI				18,900	n / a	n / a
WAI				16,500	n / a	n / a

Changes from previous assessment
The following new data were included in this year's assessment.

- updated fishery catch data
- 2010 fishery age composition data
- 2010 fishery catch- and weight-at-age values

There were no significant changes in assessment methodology. As in last year's assessment, it was assumed that only 64% of the BSAI-wide ABC for the next two years would be taken under the Steller Sea Lion Reasonable and Prudent Alternatives (SSL RPAs). This percentage was applied to the 2012 maximum permissible ABC, and that amount was assumed to be caught in order to estimate the 2013 ABC and OFL.

Spawning biomass and stock status trends

The projected female spawning biomass for 2012 using the catch levels in the proposed SSL RPAs is $129,000 t$, which is 50 percent of unfished spawning biomass and above $B_{40 \%}(102,000 t)$. The 2012 estimate of spawning biomass is down 12 percent from last year's estimate for $2011(146,000 \mathrm{t})$. The projected age $3+$ biomass at the beginning of 2012 is $405,000 \mathrm{t}$, down slightly (7 percent) from last year's estimate for 2011.
Tier determination/Plan Team discussion and resulting ABCs and OFLs
The projected female spawning biomass under the SSL RPA harvest strategy is estimated to be above $B_{40 \%}$, thereby placing BSAI Atka mackerel in Tier 3a. The projected 2012 yield (ABC) at $F_{40 \%}=0.38$ is $81,400 \mathrm{t}$, up slightly (4 percent) from last year's estimate for 2012. The projected 2012 overfishing level at $F_{35 \%}=0.47$ is $96,500 \mathrm{t}$, also up slightly (5 percent) from last year's estimate for 2012.
Atka mackerel female spawning biomass in $2013(104,000 t)$ is also projected to remain above $B_{40 \%}$. The projected 2013 yield (ABC) under Tier 3a ($F_{40 \%}=0.38$) and the proposed SSL RPAs is $67,100 \mathrm{t}$; the projected 2013 overfishing level at $F_{35 \%}=0.47$ and the proposed SSL RPAs is $78,300 \mathrm{t}$. The population is projected to go below $B_{40 \%}$ beginning in 2014 and remain below $B_{40 \%}$ through 2017, assuming the catch reductions contained in the proposed SSL RPAs occur and remain in place.

Status determination

Atka mackerel is not being subjected to overfishing, is not overfished, and is not approaching an overfished condition.

Area apportionment

Amendment 28 of the Bering Sea/Aleutian Islands Fishery Management Plan divided the Aleutian Islands subarea into 3 districts at $177^{\circ} \mathrm{E}$ and $177^{\circ} \mathrm{W}$ longitude, providing the mechanism to apportion the Aleutian Atka mackerel TACs. The Council uses a 4 -survey weighted average to apportion the ABC, and the authors recommend using the same method used in 2011 to apportion the 2012 and 2012 ABCs. The recommended ABC apportionment by subarea for both 2011 and 2012 is 47.3 percent for Area 541 and the southern Bering Sea region, 28.1 percent for Area 542, and 24.6 percent for Area 543.

Ecosystem Considerations

Atka mackerel is the most common prey item of the endangered western Steller sea lion throughout the year in the Aleutian Islands. Analyses of historic fishery CPUE revealed that the fishery may create temporary localized depletions of Atka mackerel, and fishery harvest rates in localized areas may have been high enough to affect prey availability for Steller sea lions. The objectives of having areas closed to Atka mackerel fishing around Steller sea lion haulouts and rookeries, and time-area ABC allocations are to maintain sufficient prey for the recovery of Steller sea lions in the Aleutian Islands while also harvesting Atka mackerel. The stock assessment indicates that the abundance of Atka mackerel is high, but decreasing, and recently peaked due to four back-to-back strong year classes and an extraordinarily strong 1999 year class which still persists in the population. Nevertheless, Steller sea lion surveys conducted in 2008-11 indicate that counts of adults, juveniles and pups continue to decline in the Aleutian Islands west of Tanaga Pass. This contrasts with Steller sea lion counts in the eastern Aleutian Islands (between Samalga and False Passes) which are increasing. The Steller sea lion RPAs prohibit any retention of Atka mackerel in area 543 (the western Aleutian Islands, where the Steller sea lion population is declining at ~ 7 percent per year); prohibit directed mackerel fishing in most of Steller sea lion critical habitat in area 542 (all except an area between $178-179^{\circ} \mathrm{W}$ (Tanaga Pass) which will have catch and effort restrictions); set the area 542 Atka mackerel TAC to no more than 47 percent of the 542 ABC; retain the critical habitat closure in area 541; and close the entire eastern Bering Sea to directed fishing for Atka mackerel.

18. Skates

Status and catch specifications (t) of skates in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2012 and 2013 are those recommended by the Plan Team. Catch data are current through November 5, 2011.

Area	Year	Age 0+ Biomass	OFL	ABC	TAC	Catch
BSAI	2010	608,000	n / a	n / a	n / a	n / a
	2011	612,000	37,800	31,500	16,500	21,034
	2012	645,000	39,100	32,600	n / a	n / a
	2013	629,000	38,300	32,000	n / a	n / a

Changes from previous assessment

The following new data were included in this year's assessment:

- Updated 2010 and preliminary 2011 catch
- 2011 EBS shelf survey data
- updated fishery and survey length compositions

No changes were made to the assessment methodology.

Spawning biomass and stock status trends

In the case of Alaska skates, survey biomass estimates, though variable, are basically trendless since species identification began in 1999. Model estimates of spawning biomass are also basically trendless over the 1992-2011 period covered by the model, while total biomass has tended to increase fairly steadily at an average rate of about 0.7 percent per year over the same time period. Recruitment does not
appear to vary much from year to year, with a CV for the time series of only 18 percent. The most recent above-average year class was spawned in 2004.

Tier determination/Plan Team discussion and resulting ABCs and OFLs

This year marked the first time that the skate complex was managed outside the context of the former "other species" complex. The Alaska skate portions of the 2011 ABC and OFL were specified under Tier 3 , while the "other skates" portions were specified under Tier 5.

The Team again accepted the Alaska skate model. Because projected spawning biomass for 2012 (55,100 t) exceeds $B_{40 \%}$ ($36,800 \mathrm{t}$), Alaska skates are in sub-tier "a" of Tier 3. Other reference points are $\max F_{A B C}$ $=F_{40 \%}=0.075$ and $F_{\text {OFL }}=F_{35 \%}=0.087$. The Alaska skate portions of the 2012 and 2013 ABCs are $25,600 t$ and $24,900 t$, and the Alaska skate portions of the 2012 and 2013 OFLs are 29,700 t and 28,900 t. The Plan Team agreed with the authors' recommendation to continue to assess the "other skates" component under Tier 5, based on a natural mortality rate of 0.10 and a biomass estimated as the average of the three most recent surveys. The "other skates" portion of the 2012-2013 ABC is 7,100 for both years, and the "other skates" portion of the 2012-2013 OFL is $9,400 \mathrm{t}$ for both years.
For the skate complex as a whole, ABCs for 2012 and 2013 total $32,600 \mathrm{t}$ and $32,000 \mathrm{t}$ respectively, and OFLs for 2012 and 2013 total $39,100 \mathrm{t}$ and 38,300 t respectively.

Status determination

The most recent year for which complete catch data are available is 2010 . Because the skate complex was still managed in the context of the former "other species" complex in 2010, no OFL was specified for the skate complex per se, so an overfishing determination for the skate complex cannot be made. However, the "other species" complex was not subjected to overfishing in 2010.
Alaska skate, which may be viewed as an indicator stock for the complex, is not overfished and is not approaching an overfished condition. It is not possible to determine whether the other skates complex is overfished or approaching an overfished condition because it is managed under Tier 5.

19. Sculpins

Status and catch specifications (t) of sculpins in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2012 and 2013 are those recommended by the Plan Team. Catch data are current through November 5, 2011.

Area	Year	Biomass	OFL	ABC	TAC	Catch
BSAI	2010	226,000	n / a	n / a	n / a	n / a
	2011	208,000	58,300	43,700	5,200	5,094
	2012	208,000	58,300	43,700	n / a	n / a
	2013	208,000	58,300	43,700	n / a	n / a

Changes from previous assessment

This is an off-year for the BSAI sculpins assessment and therefore only an executive summary was prepared. The only change in this year's assessment was the addition of 2010 catch. Although an EBS shelf survey occurred in 2011, the data were not included in the executive summary. The authors' and Plan Team's recommendation is to rollover last year's harvest specifications for 2012 and 2013.

Spawning biomass and stock status trends

Most of the survey biomass of sculpins occurs on the EBS shelf. The time series of EBS shelf survey biomass estimates is essentially trendless. The catch/biomass ratio for the complex is small, on the order of 2-4 percent.

Tier determination/Plan Team discussion and resulting ABCs and OFLs
This year marked the first time that the sculpin complex was managed outside the context of the former "other species" complex.

The authors have recommended the use of separate M estimates for 7 species, and different M estimates for the EBS and AI. The individual M estimates were evaluated last year and no changes were noted for this year. The Plan Team recommended ABCs based on species-specific ABCs summed to a total for the group. The total (Tier 5) sculpin recommended ABCs and OFLs for 2012 and 2013 are 43,700 t and 58,300 t, respectively.

Status determination

The most recent year for which complete catch data are available is 2010. Because the sculpin complex was still managed in the context of the former "other species" complex in 2010, no OFL was specified for the sculpin complex per se, so an overfishing determination for the sculpin complex cannot be made. However, the "other species" complex was not subjected to overfishing in 2010.

It is not possible to determine whether the sculpin complex is overfished or whether it is approaching an overfished condition because it is managed under Tier 5.

20. Sharks

Status and catch specifications (t) of sharks in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2012 and 2013 are those recommended by the Plan Team. Catch data are current through November 5, 2011.

Area	Year	Biomass	OFL	ABC	TAC	Catch
BSAI	2010	n / a				
	2011	n / a	1,360	1,020	n / a	162
	2012	n / a	1,360	1,020	n / a	n / a
	2013	n / a	1,360	1,020	n / a	n / a

Changes from previous assessment

This is an off-year for the BSAI shark assessment and therefore only an executive summary was prepared. The only change in this year's assessment was the addition of 2010 catch. Although an EBS shelf survey occurred in 2011, the data were not included in the executive summary. The authors’ and Plan Team’s recommendation is to rollover last year’s harvest specifications for 2012 and 2013.

Spawning biomass and stock status trends

The bulk of the shark catch ($>70 \mathrm{t}$) in the BSAI is sleeper sharks, taken mainly in the pollock and Pacific cod fisheries. Small numbers of salmon sharks are taken in the pollock fishery, but they are pelagic and not very vulnerable to any of the groundfish fisheries. Few dogfish sharks appear this far north. In the period 1997-2010 the average annual catch of all sharks was 500 t . Catches have been below average in the last few years.

Trawl survey data do not provide reliable estimates of abundance of sharks. Sharks are seldom caught in BSAI trawl surveys except for the Bering Sea slope survey, where sleeper sharks occur in about 10 percent of hauls. They are also taken in the Bering Sea shelf and Aleutians surveys, but rarely. Averaging the swept area estimates of sleeper sharks in all surveys over the last ten years produces a value of about $10,000 \mathrm{t}$, which is likely an underestimate.
Tier determination/Plan Team discussion and resulting ABCs and OFLs
This year marked the first time that the skate complex was managed outside the context of the former "other species" complex.

The SSC has placed sharks in Tier 6, where OFL is typically based on historical catches. The Team recommends setting OFL at the maximum catch during the period 1997-2007 (1,360 t, taken in 2002), and ABC at 75 percent of OFL, which is $1,020 \mathrm{t}$.

Status determination

The most recent year for which complete catch data are available is 2010 . Because the shark complex was still managed in the context of the former "other species" complex in 2010, no OFL was specified for the shark complex per se, so an overfishing determination for the shark complex cannot be made. However, the "other species" complex was not subjected to overfishing in 2010.
It is not possible to determine whether the shark complex is overfished or whether it is approaching an overfished condition because it is managed under Tier 6 .

21. Squid

Status and catch specifications (t) of squid in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2012 and 2013 are those recommended by the Plan Team. Catch data are current through November 5, 2011.

Area	Year	Biomass	OFL	ABC	TAC	Catch
BSAI	2010	n/a	2,620	1,970	1,970	410
	2011	n/a	2,620	1,970	425	325
	2012	n/a	2,620	1,970	n / a	n / a
	2013	n / a	2,620	1,970	n / a	n / a

Changes from previous assessment

This is an off-year for the squid assessment and therefore only an executive summary was prepared. The author included new information in the assessment that described the seasonal pattern of incidental squid catches. The authors' and Plan Team's recommendation is to rollover last year's harvest specifications for 2012 and 2013.

Tier determination/Plan Team discussion and resulting ABCs and OFLs

Squids are managed under Tier 6 because the groundfish bottom trawl surveys do not provide reliable biomass estimates. The Team concurred with the author's ABC and OFL recommendations for 2012 and 2013, which are unchanged from last year. The recommended ABCs for 2012 and 2013 are the maximum permissible level, calculated as 0.75 times the average catch from the reference period of 1978-1995, or $1,970 \mathrm{t}$. The recommended OFLs in 2012 and 2013 are calculated as the average catch from 1978-1995, or $2,620 \mathrm{t}$.

Status determination

The squid complex is not being subjected to overfishing. It is not possible to determine whether this species complex is overfished or whether it is approaching an overfished condition because it is managed under Tier 6.

22. Octopus

Status and catch specifications (t) of octopus in recent years. Biomass for each year corresponds to the projection given in the SAFE report issued in the preceding year. The OFL and ABC for 2012 and 2013 are those recommended by the Plan Team. Catch data are current through November 5, 2011.

Area	Year	Biomass	OFL	ABC	TAC	Catch
BSAI	2010	n / a				
	2011	n / a	528	396	150	563
	2012	n / a	3,450	2,590	n / a	n / a
	2013	n / a	3,450	2,590	n / a	n / a

Changes from previous assessment

In this assessment, the authors proposed a new approach for setting harvest specifications for 2012 and 2013, using Pacific cod predation of octopus as an estimator of biomass lost due to natural mortality.

Spawning biomass and stock status trends

Giant Pacific octopus is the most abundant on the Bering Sea shelf and commercial catch of at least seven species found in the BSAI. Octopuses are commonly caught in pot and trawl fisheries, especially in the Pacific cod pot fishery. Trawl surveys tend to sample octopus poorly, and biomass estimates from trawl surveys are not considered reliable. The 2011 catch was the highest ever recorded and has exceeded the OFL.

Tier determination/Plan Team discussion and resulting ABCs and OFLs

This year marked the first time that the octopus complex was managed outside the context of the former "other species" complex.

The ABC and OFL values were determined under Tier 6. Usually, Tier 6 specifications are based on average catch, but for 2012 and 2013 the authors recommended setting harvest specifications using an alternative mortality estimate based on species composition of Bering Sea Pacific cod diet from 19842008 survey data and weight-at-age data. This consumption estimate results in an OFL of 3,450 t and ABC of $2,590 \mathrm{t}$. The Plan Team recommends adoption of these specifications, which are conservative and similar to estimates that would result from application of the Tier 5 formulae to estimates of average survey biomass.

Status determination

The most recent year for which complete catch data are available is 2010. Because the octopus complex was still managed in the context of the former "other species" complex in 2010, no OFL was specified for the octopus complex per se, so an overfishing determination for the octopus complex in 2010 cannot be made. However, the "other species" complex was not subjected to overfishing in 2010. Because the 2011 octopus catch has already exceeded the 2011 octopus OFL, next year's assessment will determine that the octopus complex was subjected to overfishing in 2011.

It is not possible to determine whether the octopus complex is overfished or whether it is approaching an overfished condition because it is managed under Tier 6.

Appendix 1: Grenadiers

An updated executive summary of the grenadier assemblage stock assessment is provided in Appendix 1; while not required, it is provided to assist the Council in its pending decision of whether to include the assemblage in the groundfish FMPs. The Plan Team has recommended that the Council consider adding grenadiers to both FMPs.

Seven species of grenadiers are known to occur in Alaska. The giant grenadier is the most abundant and has the shallowest depth distribution on the continental slope. The assessment focused on the giant grenadier as it is the most common grenadier caught in both the commercial fishery and longline and trawl surveys. Pacific grenadiers and popeye grenadiers are occasionally caught. Grenadier species are not included in the BSAI and GOA Groundfish FMPs; however, the Teams recommend that the grenadier assemblage be moved into a managed category so that annual catch limits can be established.

Because grenadiers are outside the FMPs and reporting for this assemblage is not required, no catch statistics exist. Catches have been estimated, however, based on observer data or the NMFS Alaska Region Catch Accounting System. The estimated annual catches of grenadiers in Alaska for the years 1997-2010 have ranged between $\sim 11,000-21,000 \mathrm{t}$, with an average for this period of $\sim 16,000 \mathrm{t}$. Highest catches have consistently been in the GOA, followed generally by the EBS and then the AI. By region,
annual catches have ranged between $\sim 6,000-15,000 \mathrm{t}$ in the GOA, $\sim 2,000-5,000 \mathrm{t}$ in the EBS, and $\sim 1,000$ $4,000 \mathrm{t}$ in the AI. Most of the catch occurs in longline and pot fisheries.
If included in the fishery in the FMPs, Tier 5 determinations would result in the following OFLs and ABCs. The BSAI grenadier TAC would count against the 2 million t OY.

Area	OFL	ABC
EBS	46,200	34,600
AI	89,000	66,800
GOA	46,600	35,000

Species	Area	2011			$\begin{gathered} \text { 11/5/2011 } \\ \text { Catch } \end{gathered}$	2012		2013	
		OFL	ABC	TAC		OFL	ABC	OFL	ABC
Pollock	EBS	2,450,000	1,270,000	1,252,000	1,197,578	2,474,000	1,220,000	2,840,000	1,360,000
	AI	44,500	36,700	19,000	1,162	39,600	32,500	42,900	35,200
	Bogoslof	22,000	156	150	140	22,000	16,500	22,000	16,500
Pacific cod	BSAI	272,000	235,000	227,950	202,785	369,000	314,000	374,000	319,000
Sablefish	BS	3,360	2,850	2,850	668	2,640	2,230	2,610	2,200
	AI	2,250	1,900	1,900	950	2,430	2,050	2,400	2,020
	Total	5,610	4,750	4,750	1,618	5,070	4,280	5,010	4,220
Atka mackerel	EAI/BS	n/a	40,300	40,300	40,833	n/a	38,500	n/a	31,700
	CAI	n/a	24,000	11,280	10,714	n/a	22,900	n/a	18,900
	WAI	n/a	21,000	1,500	205	n/a	20,000	n/a	16,500
	Total	101,000	85,300	53,080	51,752	96,500	81,400	78,300	67,100
Yellowfin sole	BSAI	262,000	239,000	196,000	141,399	222,000	203,000	226,000	207,000
Rock sole	BSAI	248,000	224,000	85,000	60,292	231,000	208,000	217,000	196,000
Greenland turbot	EBS	n / a	4,590	3,500	2,979	n / a	7,230	n / a	6,010
	AI	n/a	1,550	1,550	514	n/a	2,430	n/a	2,020
	Total	7,220	6,140	5,050	3,493	11,700	9,660	9,700	8,030
Arrowtooth flounder	BSAI	186,000	153,000	25,900	19,600	181,000	150,000	186,000	152,000
Kamchatka flounder	BSAI	23,600	17,700	17,700	9,242	24,800	18,600	24,800	18,600
Flathead sole	BSAI	83,300	69,300	41,548	13,080	84,500	70,400	83,100	69,200
Other flatfish	BSAI	19,500	14,500	3,000	3,116	17,100	12,700	17,100	12,700
Alaska plaice	BSAI	79,100	65,100	16,000	22,471	64,600	53,400	65,000	54,000
Pacific Ocean perch	EBS	n / a	5,710	5,710	2,053	n / a	5,710	n/a	6,540
	EAI	n/a	5,660	5,660	5,094	n/a	5,620	n/a	6,440
	CAI	n/a	4,960	4,960	4,768	n/a	4,990	n/a	5,710
	WAI	n/a	8,370	8,370	8,181	n/a	8,380	n/a	9,610
	Total	36,300	24,700	24,700	20,096	35,000	24,700	33,700	28,300
Northern rockfish	BSAI	10,600	8,670	4,000	2,644	10,500	8,610	10,400	8,490
Shortraker rockfish	BSAI	524	393	393	275	524	393	524	393
Blackspotted/Rougheye	EBS/EAI	n/a	234	234	75	n / a	231	n/a	241
Rockfishes	CAI/WAI	n/a	220	220	78	n/a	244	n/a	258
	Total	549	454	454	153	576	475	605	499
Other rockfish	EBS	n/a	710	500	274	n/a	710	n/a	710
	AI	n/a	570	500	610	n/a	570	n/a	570
	Total	1,700	1,280	1,000	884	1,700	1,280	1,700	1,280
Squids	BSAI	2,620	1,970	425	325	2,620	1,970	2,620	1,970
Skates	BSAI	37,800	31,500	16,500	21,034	39,100	32,600	38,300	32,000
Sharks	BSAI	1,360	1,020	50	162	1,360	1,020	1,360	1,020
Octopuses	BSAI	528	396	150	563	3,450	2,590	3,450	2,590
Sculpins	BSAI	58,300	43,700	5,200	5,095	58,300	43,700	58,300	43,700
Total	BSAI	3,954,111	2,534,729	2,000,000	1,778,959	3,996,000	2,511,778	4,341,869	2,639,792

Final 2011 OFLs, ABCs, and TACs from 2011-2012 final harvest specifications
The "other species" category was removed in 2011 and replaced with separate categories for skates, sharks, octopuses, and sculpins

		Pacific	Sable	Yellowfin	Greenland	Arrowtooth	Kamchatka	Rock	Other	Flathead	Alaska	Pacific Ocean	Pacific	Northern	Shortraker	Rougheye	Other	Atka		Other					Total
Year	Pollock	Cod	Fish	Sole	Turbot	Flounder/a	Flounder/d	Sole/c	Flatish	sole	Plaice	Perch Complexb	Ocean Perch	Rockfish	Rockfish	Rockfish	Rockfish	Mackerel	Squid	Species	Octopus	Sculpin	Shark	Skate	All Species)
1954				12,562																					12,562
1955				14,690																					14,690
1956				24,697																					24,697
1957				24,145																					24,145
1958	6,924	171	6	44,153																147					51,401
1959	32,793	2,864	289	185,321																380					221,647
1960			1,861	456,103	36,843							6,100													500,907
1961			15,627	553,742	57,348							47,000													673,717
1962			25,989	420,703	58,226							19,900													524,818
1963			13,706	85,810	31,565				35,643			24,500													191,224
1964	174,792	13,408	3,545	111,177	33,729				30,604			25,900								736					393,891
1965	230,551	14,719	4,838	53,810	9,747				11,686			16,800								2,218					344,369
1966	261,678	18,200	9,505	102,353	13,042				24,864			20,200								2,239					452,081
1967	550,362	32,064	11,698	162,228	23,869				32,109			19,600								4,378					836,308
1968	702,181	57,902	4,374	84,189	35,232				29,647			31,500								22,058					967,083
1969	862,789	50,351	16,009	167,134	36,029				34,749			14,500								10,459					1,192,020
1970	1,256,565	70,094	11,737	133,079	19,691	12,598			64,690			9,900								15,295					1,593,649
1971	1,743,763	43,054	15,106	160,399	40,464	18,792			92,452			9,800								13,496					2,137,326
1972	1,874,534	42,905	12,758	47,856	64,510	13,123			76,813			5,700								10,893					2,149,092
1973	1,758,919	53,386	5,957	78,240	55,280	9,217			43,919			3,700								55,826					2,064,444
1974	1,588,390	62,462	4,258	42,235	69,654	21,473			37,357			14,000								60,263					1,900,092
1975	1,356,736	51,551	2,766	64,690	64,819	20,832			20,393			8,600								54,845					1,645,232
1976	1,177,822	50,481	2,923	56,221	60,523	17,806			21,746			14,900								26,143					1,428,565
1977	978,370	33,335	2,718	58,373	27,708	9,454			14,393			2,654					311		4,926	35,902					1,168,144
1978	979,431	42,543	1,192	138,433	37,423	8,358			21,040			2,221					2,614	831	6,886	61,537					1,302,509
1979	913,881	33,761	1,376	99,017	34,998	7,921			19,724			1,723					2,108	1,985	4,286	38,767					1,159,547
1980	958,279	45,861	2,206	87,391	48,856	13,761			20,406			1,097					459	4,955	4,040	34,633					1,221,944
1981	973,505	51,996	2,604	97,301	52,921	13,473			23,428			1,222					356	3,027	4,182	35,651					1,259,666
1982	955,964	55,040	3,184	95,712	45,805	9,103			23,809			224					276	328	3,838	18,200					1,211,483
1983	982,363	83,212	2,695	108,385	43,443	10,216			30,454			221					220	141	3,470	15,465					1,280,285
1984	1,098,783	110,944	2,329	159,526	21,317	7,980			44,286			1,569					176	57	2,824	8,508					1,458,299
1985	1,179,759	132,736	2,348	227,107	14,698	7,288			71,179			784					92	4	1,611	11,503					1,649,109
1986	1,188,449	130,555	3,518	208,597	7,710	6,761			76,328			560					102	12	848	10,471					1,633,911
1987	1,237,597	144,539	4,178	181,429	6,533	4,380			50,372			930					474	12	108	8,569					1,639,121
1988	1,228,000	192,726	3,193	223,156	6,064	5,477			137,418			1,047					341	428	414	12,206					1,810,470
1989	1,23,000	164,800	1,252	153,165	4,061	3,024			63,452			2,017					192	3,126	300	4,993					1,630,382
1990	1,353,000	162,927	2,329	80,584	7,267	2,773			22,568			5,639					384	480	460	5,698					1,644,109
1991	1,268,360	165,444	1,128	94,755	3,704	12,748		46,681	30,401			4,744					396	2,265	544	16,285					1,647,455
1992	1,384,376	163,240	558	146,942	1,875	11,080		51,720	34,757			3,309					675	2,610	819	29,993					1,831,954
1993	1,301,574	133,156	669	105,809	6,330	7,950		63,942	28,812			3,763					190	201	597	21,413					1,674,406
1994	1,362,694	174,151	699	144,544	7,211	13,043		60,276	29,720			1,907					261	190	502	23,430					1,818,628
1995	1,264,578	228,496	929	124,746	5,855	8,282		54,672	20,165	14,699		1,210					629	340	364	20,928					1,745,893
1996	1,189,296	209,201	629	129,509	4,699	13,280		46,775	18,529	17,334		2,635					364	780	1,080	19,717					1,653,828
1997	1,115,268	209,475	547	166,681	6,589	8,580		67,249	22,957	20,656		1,060					161	171	1,438	20,997					1,641,829
1998	1,101,428	160,681	586	101,310	8,303	14,985		33,221	15,355	24,550		1,134					203	901	891	23,156					1,486,704
1999	988,703	146,738	678	69,275	5,401	10,585		40,505	15,515	18,534		654					141	2,267	392	18,916					1,318,304
2000	1,132,736	151,372	742	84,057	5,888	12,071		49,186	16,453	20,342		704					239	239	375	23,098					1,497,502
2001	1,387,452	142,452	863	63,563	4,252	12,836		28,949	9,930	17,757		1,148					296	264	1,761	23,148					1,694,671
2002	1,481,815	166,552	1,143	74,956	3,150	10,821		40,700	2,588	15,464		858					401	572	1,334	26,639					1,826,993
2003	1,492,039	174,687	1,039	81,050	2,565	13,667		36,375	2,922	14,132	10,118	1,391					336	6,362	1,246	26,986					1,864,915
2004	1,480,543	183,283	1,038	75,501	1,825	17,333		47,862	4,755	17,354	7,888		731	116	119	24	318	7,159	1,000	27,496					1,874,344
2005	1,483,286	182,938	1,064	94,382	2,140	13,408		36,814	4,566	16,074	11,194		879	112	108	12	178	3,540	1,170	28,066					1,879,931
2006	1,486,648	168,265	1,036	99,134	1,452	11,911		35,878	3,123	17,934	17,318		1,042	247	48	7	157	3,175	1,403	24,865					1,873,644
2007	1,354,492	140,079	1,173	120,966	1,481	11,080		36,364	5,764	19,086	19,522		870	69	113	10	219	3,021	1,175	24,779					1,740,263
2008	990,576	139,604	1,125	148,894	1,925	19,357		50,935	3,578	24,520	17,377		513	22	58	29	209	398	1,493	27,063					1,427,676
2009	810,743	147,166	891	107,512	2,249	19,676		48,145	2,131	19,535	13,944		623	48	83	12	204	244	269	25,358					1,198,833
2010	810,395	142,859	754	118,624	2,272	15,265		52,645	2,154	20,097	16,165		3,547	299	181	34	263	151	305	20,670					1,206,680
2011/e	1,197,718	192,079	668	141,398	2,979	16,387	4,332	60,013	3,064	13,073	22,471		2,053	83	48	24	274	1,197	227		552	4,592	158	20,342	1,683,732
a/ Arrowtooth flounder included in Greenland turbot catch statistics, 1960-69.									d/ Kamcha	atka flound	d/ Kamchatka flounder included in Arrowtooth flounder prior to 2011.					f/ Octopus	, sculpin, s	sharks, ska	es includ	ded in Oth	her species	prior to	2011.		
									e/ Data through November 5, 2011.							Note: Numbers don't include fish taken for research.									
c/Rock sole prior to 1991 and flathead sole prior to 1995 are included in other flatfish catch statistics.																									

		Pacific	Sable	Yellowfin	Greenland	Arrowtooth	Kamchatka	Rock	Other	Flathead	Alaska	Pacific Ocean	Pacific	Northern	Shortraker	Rougheye	Other	Atka		Other					Total
Year	Pollock	Cod	Fish	Sole	Turbot	Flounder/a	Flounder/d	Sole/c	Flatish	sole	Plaice	Perch Complexb	Ocean Perch	Rockfish	Rockfish	Rockfish	Rockfish	Mackerel	Squid	Species	Octopus	Sculpin	Shark	Skate	(All Species)
1954	0	0	0	12,562	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0					12,562
1955	0	0	0	14,690	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0					14,690
1956	0	0	0	24,697	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0					24,697
1957	0	0	0	24,145	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0					24,145
1958	6,924	171	6	44,153	0	0	0	0	0		0	0	0	0	0	0	0	0	0	147					51,401
1959	32,793	2,864	289	185,321	0	0	0	0	0		0	0	0	0	0	0	0	0	0	380					221,647
1960	0	0	1,861	456,103	36,843	0	0	0	0		0	6,100	0	0	0	0	0	0	0	0					500,907
1961	0	0	15,627	553,742	57,348	0	0	0	0		0	47,000	0	0	0	0	0	0	0	0					673,717
1962	0	0	25,989	420,703	58,226	0	0	0	0		0	20,100	0	0	0	0	0	0	0	0					525,018
1963	0	0	14,370	85,810	31,572	0	0	0	35,643		0	45,300	0	0	0	0	0	0	0	0					212,695
1964	174,792	13,649	5,086	111,177	34,233	0	0	0	30,604		0	116,200	0	0	0	0	0	0	0	802					486,543
1965	230,551	15,170	6,087	53,810	10,047	0	0	0	11,686		0	125,900	0	0	0	0	0	0	0	2,986					456,237
1966	261,678	18,354	10,846	102,353	13,105	0	0	0	24,864		0	106,100	0	0	0	0	0	0	0	2,370					539,670
1967	550,362	32,357	13,350	162,228	24,263	0	0	0	32,109		0	75,500	0	0	0	0	0	0	0	12,920					903,089
1968	702,181	58,191	6,047	84,189	35,445	0	0	0	29,647		0	76,400	0	0	0	0	0	0	0	31,006					1,023,106
1969	862,789	50,571	17,682	167,134	36,257	0	0	0	34,749		0	53,300	0	0	0	0	0	0	0	13,547					1,236,029
1970	1,256,565	70,377	12,985	133,079	19,976	12,872	0	0	64,690		0	76,800	0	0	0	0	0	949	0	25,966					1,674,259
1971	1,743,763	45,132	18,042	160,399	42,214	19,373	0	0	92,452		0	31,600	0	0	0	0	0	0	0	16,469					2,169,444
1972	1,874,534	43,340	16,289	47,856	77,384	14,446	0	0	76,813		0	38,900	0	0	0	0	0	5,907	0	33,340					2,228,809
1973	1,758,919	54,363	8,859	78,240	63,946	12,922	0	0	43,919		0	15,500	0	0	0	0	0	1,712	0	60,070					2,098,450
1974	1,588,390	63,841	6,735	42,235	78,442	24,668	0	0	37,357		0	36,400	0	0	0	0	0	1,377	0	69,987					1,949,432
1975	1,356,736	54,389	4,513	64,690	67,789	21,616	0	0	20,393		0	25,200	0	0	0	0	0	13,326	0	63,133					1,691,785
1976	1,177,822	54,671	4,582	56,221	62,590	19,176	0	0	21,746		0	28,900	0	0	0	0	0	13,126	0	33,196					1,472,030
1977	985,995	36,597	4,615	58,373	30,161	11,489	0	0	14,393		0	10,734	0	0	0	0	3,354	20,975	6,734	52,072					1,235,492
1978	985,713	45,838	2,013	138,433	42,189	10,140	0	0	21,040		0	7,507	0	0	0	0	3,535	24,249	8,971	73,973					1,363,601
1979	923,385	39,354	2,158	99,017	41,409	14,357	0	0	19,724		0	7,210	0	0	0	0	6,625	23,264	6,538	51,701					1,234,742
1980	1,016,435	51,649	2,480	87,391	52,553	18,364	0	0	20,406		0	5,797	0	0	0	0	879	20,488	6,372	47,661					1,330,475
1981	1,029,021	62,458	3,137	97,301	57,321	17,113	0	0	23,428		0	4,844	0	0	0	0	684	19,688	5,945	42,925					1,363,865
1982	1,013,942	56,566	4,139	95,712	52,122	11,518	0	0	23,809		0	1,238	0	0	0	0	2,390	19,874	5,039	23,367					1,309,716
1983	1,041,389	93,167	3,368	108,385	47,558	13,969	0	0	30,454		0	501	0	0	0	0	1,265	11,726	3,980	19,140					1,374,902
1984	1,180,617	133,160	3,328	159,526	23,120	9,452		0	44,286		0	2,200		r	\%	0	232	36,055	3,167	10,178					1,605,321
1985	1,238,489	'145,426 ${ }^{\prime \prime}$	3,796	227,107"	(14,731	7,375		0 "	71,179		0	1,092	0	0	0	0	191	37,860	1,620	13,553					1,762,419
1986	1,235,090	"140,887"	6,546"	208,597"	- 9,864	- 6,903		\% 0	76,328		0	846	0	\% 0^{2}	0	0	271"	31,990		11,980					1,730,170
1987	1,266,317	'157,746	8,012	181,429 ${ }^{\prime \prime}$	- 9,599 ${ }^{\prime \prime}$	4,539		- 0	50,372		$0{ }^{\prime \prime}$	1,934	0	$\stackrel{0}{ }$	0 "	0	621"	30,061'	$131{ }^{\prime \prime}$	9,724					1,720,485
1988	1,271,000	'197,891"	6,608"	223,156	7 7,108 ${ }^{\prime}$	- 5,883		\% 0	137,418		$0{ }^{\prime \prime}$	3,026 ${ }^{\prime}$	0	0	- 0	0	619	22,084		12,643					1,887,853
1989	1,386,000	168,918*	4,500'	153,165	- 8,822	3,222		$\stackrel{*}{*}$	63,452			4,723 ${ }^{\prime \prime}$	0	\% 0^{2}	* 0		$67{ }^{\prime \prime}$	17,994	$306{ }^{\prime \prime}$	5,101					1,816,876
1990	1,426,000	"171,008 ${ }^{\prime \prime}$	(4,445"	80,584	- 9,620"	- 4,232		* 0^{*}	22,568		0 "	20,289 ${ }^{\prime \prime}$	0	\% 0	- 0		1,248 ${ }^{\text {\% }}$	22,205*	471*	6,325					1,768,995
1991	1,346,464	'172,158'	3,199'	96,135	* 6,878 ${ }^{\prime \prime}$	- 13,686		"46,681"	30,489		0	7,289 ${ }^{\prime \prime}$	0	0	\% 0		945	24,523	574"	16,376					1,765,397
1992	1,438,412	206,129'	2,104	146,946	- 2,770	- 11,980		51,956"	34,825		0	13,586 ${ }^{\prime}$	0	0	0		4,364 ${ }^{\prime}$	49,441	$880^{\prime \prime}$	33,074					1,996,467
1993	1,358,758	"167,390"	2,747'	105,809"	* 8,468"	- 9,298		'64,260"	28,871		0	17,138 ${ }^{\prime \prime}$	0	\% 0^{2}	* 0		685	66,006"	$682{ }^{\prime \prime}$	23,953					1,854,065
1994	1,421,402	196,572"	2,470'	144,544"	- 10,379	14,377		60,584"	29,775		0	18,866 ${ }^{\prime \prime}$	0	\% 0	\cdots	0	562 "	69,591	$588{ }^{\prime \prime}$	24,532					1,994,242
1995	1,329,503	"245,030"	2,048"	124,752 ${ }^{\prime \prime}$	- 8,193	9,283		"55,028"	20,196 ${ }^{\prime}$	14,715	* 0	15,944	0	0	* 0		849	81,554 ${ }^{\prime}$	459	22,201					1,929,755
1996	1,218,229	240,590"	(1,349'	130,163	- 6,376	14,610		"47,146"	18,580'	17,344	* 0	23,078 ${ }^{\prime \prime}$	0	0	- 0	0	$642^{\prime \prime}$	103,867 ${ }^{\prime \prime}$	1,167 ${ }^{\prime}$	21,437					1,844,578
1997	1,142,140	234,641	1,326 ${ }^{\prime}$	166,915"	7 7,666	9,651		*67,520"	22,964*	20,688	" 0 "	16,747 ${ }^{\prime \prime}$	0	0^{\prime}	$\stackrel{0}{ }$	0	$468{ }^{\prime \prime}$	65,839	1,761	22,552					1,780,878
1998	1,125,249	"195,645"	(1,181'	101,315	* 9,124	-15,679		"33,667"	15,390	24,569	" 0 "	14,863 ${ }^{\prime \prime}$	0	0	0 "	0	588"	57,096"	916*	25,604					1,620,886
1999	989,684	"174,855"	1,349'	69,288	* 5,861	- 11,359		'41,085"	15,535'	18,568	* 0	19,155	0	0	0 "	0	798"	56,23'	401*	20,586					1,424,757
2000	1,133,980	'191,056"	1,812	84,070	* 6,974	- 13,228		"49,666"	16,485*	20,422	* 0	15,597	0	0	0 "	0	$840^{\prime \prime}$	47,229'	383	26,108					1,607,850
2001	1,388,276	'176,659 ${ }^{\prime \prime}$	1,937 ${ }^{\prime}$	63,578 ${ }^{\text { }}$	5,312	- 14,056		29,475"	9,973	17,811	" 0	16,735 ${ }^{\prime \prime}$	0	0	0 "	0	906	61,560	1,766	27,177					1,815,221
2002	1,482,992	"197,353 ${ }^{\prime}$	2,261	74,985 ${ }^{\text {² }}$	- 3,635	11,853		41,865"	2,627 ${ }^{\prime}$	15,575		15,854 ${ }^{\text {f }}$	0	0	0	0	$952^{\prime \prime}$	45,294	1,344	28,619					1,925,209
2003	1,493,692	207,146"	2,048 ${ }^{\prime}$	81,050 ${ }^{\text {² }}$	3,530	14,580		"37,339"	2,954 ${ }^{\prime \prime}$	14,181	10,118 ${ }^{\prime \prime}$	20,156	0	0	- $0^{\prime \prime}$	0	$737^{\prime \prime}$	59,350	1,282	28,312					1,976,475
2004	1,481,701	'212,152"	1,993'	75,510	- 2,259	18,151		48,680'	4,788 ${ }^{\prime}$	17,392	7,888		11,896	4,684	\% 242	209	$655{ }^{\prime \prime}$	60,564	1,014	29,362					1,979,138
2005	1,484,907	205,632'	2,545'	94,384 ${ }^{\prime \prime}$	- 2,608 ${ }^{\prime}$	- 14,242		(37,363"	4,592	16,108	11,194		10,426	3,964	" $170^{\prime \prime}$	$90^{\prime \prime}$	464 "	62,014	1,187 ${ }^{\prime}$	29,483					1,981,372
2006	1,488,393	192,475"	2,168*	99,138 ${ }^{\prime \prime}$	* 1,986 ${ }^{\prime}$	- 13,386		36,456"	3,160	17,973	17,318		12,868	-3,829	- 213	203	582	61,894 ${ }^{\prime \prime}$	1,418	26,808					1,980,268
2007	1,357,011	*174,124*	2,322	120,968 ${ }^{\prime \prime}$	- 2,003 ${ }^{\prime \prime}$	- 11,914		37,126"	5,790	19,119	19,522		18,451	- 4,015	- 323	167	652	58,763	1,188	26,828					1,860,286
2008	991,854	"170,660"	2,018*	148,894	- $2,751{ }^{\prime \prime}$	21,884		51,277"	3,624	24,538	17,377		17,436	3,287	166 "	214	$597 *$	58,088 ${ }^{\circ}$	1,542	29,378					1,545,586
2009	812,522	"175,746"	1,987	107,513"	- 4,512 ${ }^{\prime \prime}$	- 30,419		"48,716"	2,176	19,558	* 13,944		15,347	3,112	- 205	209	609 "	72,807"		27,854					1,337,596
2010	811,680	"171,859"	1,830	118,624"	- 4,138 ${ }^{\prime \prime}$	- 39,416		"53,222"	2,194	20,126	16,165		17,851	- 4,332	* 324	256	$760^{\prime \prime}$	68,647'	410°	23,366					1,355,200
2011/e	1,198,880	202,785'	1,618	141,399	3,493	19,600		60,292	3,116 ${ }^{\prime}$	13,080	22,471		20,096	2,644	$275{ }^{\prime \prime}$	153	884	51,753'	325^{\prime}	0	563	5,094	162	21,034	1,778,959
a/ Arrowtooth flounder included in Greenland turbot catch statistics, 1960-69. $\mathrm{b/} \mathrm{Includes} \mathrm{POP} \mathrm{shortraker}, \mathrm{rougheye}, \mathrm{northem} ,\mathrm{and} \mathrm{sharpchin}$.								d/ Kamchatka flounder included in Arrowtooth flounder prior to 2011.								f/ Octopus, sculpin, sharks, skates included in Other species prior to 2011.									
									/ Data thro	ough Nove	ember 5, 2	2011.				Note: Numbers don't include fish taken for research.									
c/ Rock sole prior to 1991 and flathead sole prior to 1995 are included in other flatfish catch statistics.																									

Table 5. Summary of stock abundance (biomass), overfishing level (OFL), acceptable biological catch (ABC), the fishing mortality rate corresponding to ABC $\left(\mathrm{F}_{\mathrm{ABC}}\right)$, and the fishing mortality rate corresponding to OFL ($\mathrm{F}_{\mathrm{OFL}}$) for the eastern Bering Sea (EBS), Aleutian Islands (AI), and Bogoslof district as projected for 2012 and 2013. "Biomass" corresponds to projected January abundance for the age+ range reported in the summary. Stock-specific biomass, OFL, and ABC are in metric tons, reported to three significant digits (four digits are used when a stock-specific ABC is apportioned among areas on a percentage basis). Fishing mortality rates are reported to two significant digits.

Species or Complex	Tier	Area	2012					2013			
			Biomass	OFL	ABC	$\mathrm{F}_{\text {OFL }}$	$\mathrm{F}_{\mathrm{ABC}}$	OFL	ABC	$\mathrm{F}_{\text {OFL }}$	$\mathrm{F}_{\mathrm{ABC}}$
Pollock	1a	EBS	8,340,000	2,474,000	1,220,000	0.64	0.30	2,840,000	1,360,000	0.64	0.30
	3b	Aleutian Islands	251,000	39,600	32,500	0.31	0.26	42,900	35,200	0.31	0.26
	5	Bogoslof District	110,000	22,000	16,500	0.2	0.17	22,000	16,500	0.2	0.17
Pacific cod	3a	BSAI	1,690,000	369,000	314,000	0.29	0.25	374,000	319,000	0.29	0.25
Sablefish	3 b	BS	30,000	2,640	2,230	0.11	0.09	2,610	2,200	0.11	0.09
	3b	AI	26,000	2,430	2,050	0.11	0.09	2,400	2,020	0.11	0.09
Atka mackerel	3a	Total	405,000	96,500	81,400	0.47	0.38	78,300	67,100	0.47	0.38
Yellowfin sole	1a	BSAI	1,950,000	222,000	203,000	0.11	0.1	226,000	207,000	0.11	0.1
Northern rock sole	1a	BSAI	1,860,000	231,000	208,000	0.15	0.13	217,000	196,000	0.15	0.13
Greenland turbot	3a	Total	76,900	11,700	9,660	0.3	0.25	9,700	8,030	0.3	0.25
Arrowtooth flounder	3a	BSAI	1,130,000	181,000	150,000	0.29	0.23	186,000	152,000	0.29	0.23
Kamchatka flounder	5	BSAI	125,000	24,800	18,600	0.2	0.17	24,800	18,600	0.2	0.17
Flathead sole	3a	BSAI	811,000	84,500	70,400	0.34	0.28	83,100	69,200	0.34	0.28
Other flatfish	5	BSAI	111,000	17,100	12,700	.17/.085/.15	.13/.06/.11	17,100	12,700	.17/.085/.15	.13/.06/.11
Alaska plaice	3 a	BSAI	606,000	64,600	53,400	0.18	0.15	65,000	54,000	0.18	0.15
Pacific Ocean perch	3 a	BSAI	594,000	35,000	24,700	0.074	0.061	33,700	28,300	0.074	0.061
Northern rockfish	3a	BSAI	202,000	10,500	8,610	0.071	0.058	10,400	8,490	0.071	0.058
Shortraker	5	BSAI	17,500	524	393	0.030	0.025	524	393	0.03	0.025
Blackspotted/Rougheye	3 a	BSAI	23,400	576	475	0.041	0.035	605	499	0.041	0.035
Other rockfish	5	BSAI	48,900	1,700	1,280	.03/.09	.023/.068	1,700	1,280	.03/.09	.023/.068
Squid	6	BSAI	n/a	2,620	1,970	n/a	n/a	2,620	1,970	n/a	n/a
Skate	3a/5	BSAI	645,000	39,100	32,600	.087/.1	.075/.075	38,300	32,000	.087/.1	.075/.075
Shark	6	BSAI	n/a	1,360	1,020	n/a	n/a	1,360	1,020	n/a	n/a
Octopus	6	BSAI	n/a	3,450	2,590	n/a	n/a	3,450	2,590	n/a	n/a
Sculpin	5	BSAI	208,000	58,300	43,700	0.28	0.21	58,300	43,700	0.28	0.21
Total		BSAI	19,260,700	3,996,000	2,511,778			4,341,869	2,639,792		

Table 6. Summary of groundfish tier designations under Amendment 56, maximum permissible ABC fishing mortality rate (max $\mathrm{F}_{\mathrm{ABC}}$), the Plan Team's recommended tier designation, ABC fishing mortality rate ($\mathrm{F}_{\mathrm{ABC}}$), the maximum permissible value of ABC (max ABC), the Plan Team's recommended ABC , and the percentage reduction (\% Red.) between max ABC and the Plan Team's recommended ABC for 20122013. Stock-specific max ABC and ABC are in metric tons, reported to three significant digits (four significant digits are used when a stockspecific ABC is apportioned among areas on a percentage basis). Fishing mortality rates are reported to two significant digits.

		2012						2013					
Species or Complex	Area	Tier	max $\mathrm{F}_{\mathrm{ABC}}$	$\mathrm{F}_{\mathrm{ABC}}$	$\begin{array}{r} \max \\ \mathrm{ABC} \\ \hline \end{array}$	ABC	\% Red.	Tier	$\begin{gathered} \max \\ \mathbf{F}_{\mathrm{ABC}} \\ \hline \end{gathered}$	$\mathrm{F}_{\mathrm{ABC}}$	$\begin{gathered} \max \\ \mathrm{ABC} \\ \hline \end{gathered}$	ABC	\% Red.
Pollock	EBS	1a	0.53	0.30	2,200,000	1,220,000	45\%	1a	0.53	0.30	2,530,000	1,360,000	46\%

Table 7. Species included in assessments for the 2011 BSAI SAFE Report.

Chapter	Common name
1	Walleye Pollock
2	Pacific cod
3	Sablefish
4	Yellowfin sole
5	Greenland turbot
6	Arrowtooth flounder
6 b	Kamchatka flounder
7	Northern rock sole
	Southern rock sole
8	Flathead sole
	Bering flounder
9	Alaska plaice
10	Other flatfish
	Arctic flounder
	butter sole
	curlfin sole
	deepsea sole
	Dover sole
	English sole
	longhead dab
	Pacific sanddab
	petrale sole
	rex sole
	roughscale sole
	sand sole
	slender sole
	starry flounder
	Sakhalin sole
11	Pacific Ocean perch
12	Northern rockfish
13	Blackspotted/Rougheye
	Blackspotted rockfish
	Rougheye rockfish
14	Shortraker rockfish
15	Other rockfish*
	Shortspine thornyhead
	Dusky rockfish
	Red banded rockfish
	Redstripe rockfish
	Harlequin rockfish
	Sharpchin rockfish
16	Yelloweye rockfish
Atka mackerel	

Scientific name

Limanda aspera
Reinhardtius hippoglossoides 1
Atherestes stomias 2
Atherestes evermanni
Lepidopsetta polyxystra n. sp. 2
Lepidopsetta bilineata
Hippoglossoides classodon 2
Hippoglossoides robustus
Pleuronectes quadrituberculatus 1
Liopsetta glacialis
Isopsetta isolepis
Pleuronectes decurrens
Embassichths bathybius
Microstomus pacificus
Parophrys vetulus
Limanda proboscidea
Citharichthys sordidus
Eopsetta jordani
Glyptocephalus zachirus
Clidodoerma asperrimum
Psettichthys melanostictus
Lyopsetta exilis
Platichthys stellatus
Pleuronectes sakhalinensis
Sebastes alutus 1
Sebastes polyspinus 1

Sebastes aleutianus
Sebastes borealis 1
Sebastolobus alascanus 7
Sebastes variabilis
Sebastes babcocki
Sebastes proriger
Sebastes variegatus
Sebastes zacentrus
Sebastes ruberrimus
Pleurogrammus monopterygius 1

Count

1
1
1
1

Chapter 17	Common name Squids	Scientific name	Count 14
		Chiroteuthis calyx	
	"glass squids"	Belonella borealis	
		Galiteuthis phyllura	
	minimal armhook squid	Berryteuthis anonychus	
	magistrate armhook squid	Berryteuthis magister	
		Eogonatus tinro	
	boreopacific armhook squid	Gonatopsis borealis	
	Berry armhook squid	Gonatus berryi	
		Gonatus madokai	
		Gonatus middendorffi	
	clawed armhook squid	Gonatus onyx	
	robust clubhook squid	Moroteuthis robusta	
	boreal clubhook squid	Onychoteuthis borealijaponicus	
	North Pacific bobtail squid	Rossia pacifica	
18a	Skates		15
	deepsea skate	Bathyraja abyssicola	
	Aleutian skate	Bathyraja aleutica	
	Bering skate (complex?)	Bathyraja interrupta	
	Commander skate	Bathyraja lindbergi	
	whiteblotched skate	Bathyraja maculata	
	butterfly skate	Bathyraja mariposa	
	whitebrow skate	Bathyraja minispinosa	
	Alaska skate	Bathyraja parmifera	
	"Leopard" parmifera	Bathyraja sp. cf. parmifera	
	mud skate	Bathyraja taranetzi	
	roughtail skate	Bathyraja trachura	
	Okhotsk skate	Bathyraja violacea	
	big skate	Raja binoculata	
	roughshoulder skate	Amblyraja badia	
	longnose skate	Raja rhina	
18b	Sharks		8
	brown cat shark	Apristurus brunneus	
	White shark	Carcharodon carcharias	
	basking shark	Cetorhinus maximus	
	sixgill shark	Hexanchus griseus	
	salmon shark	Lamna ditropis	
	blue shark	Prionace glauca	
	Pacific sleeper shark	Somniosus pacificus	
	Spiny dogfish	Squalus acanthias	
18c	Octopuses		8
	flapjack devilfish	Opisthoteuthis cf californiana	
	pelagic octopus	Japetella diaphana	
	smooth octopus	Benthoctopus leioderma	
		Benthoctopus oregonensis	
		Benthoctopus salebrosus	
	giant octopus	Enteroctopus dofleini	
		Granelodone boreopacifica	
	stubby octopus	Sasakiopus salebrosus	

Chapter 18d	Common name Sculpins
	Scaled sculpin
	Bride sculpin
	Pacific hookear sculpin
	Broadfin sculpin
	Antlered sculpin
	Leister sculpin
	Purplegray sculpin
	Armorhead sculpin
	threaded sculpin
	Arctic staghorn sculpin
	Banded Irish lord
	Red Irish Lord
	Yellow Irish Lord
	Butterfly sculpin
	Longfin Irish lord
	Northern sculpin
	Blacknose sculpin
	Wide-eye sculpin
	Spatulate sculpin
	thorny sculpin
	Uncinate sculpin
	Longfin sculpin
	Pacific staghorn sculpin
	Plain sculpin
	Great sculpin
	Fourhorn sculpin
	Warty sculpin
	Slim sculpin
	Roughskin sculpin
	Sponge sculpin
	Scissortail sculpin
	Roughspine sculpin
	Crescent-tail sculpin
	Ribbed sculpin
	Spectacled sculpin
	Scalybreasted sculpin
	Flabby sculpin
	Crested sculpin
	Bigmouth sculpin
	Sailfin sculpin
	Eyeshade sculpin
	Spinyhead sculpin
	Smoothcheek sculpin
	Darkfin sculpin
	Blackfin sculpin
	Tadpole sculpin
	Blob sculpin
	Grunt sculpin

Total Species

Scientific name
Archistes biseriatus
Artediellus miacanthus
Artediellus pacificus
Bolinia euryptera
Enophrys diceraus
Enophrys lucasi
Gymnocanthus detrisus
Gymnocanthus galeatus
Gymnocanthus pistilliger
Gymnocanthus tricuspis
Hemilepidotus gilberti
Hemilepidotus hemilepidotus
Hemilepidotus jordani
Hemilepidotus papilio
Hemilepidotus zapus
Icelinus borealis
Icelus canaliculatus
Icelus euryops
Icelus spatula
Icelus spiniger
Icelus uncinalis
Jordania zonope
Leptocottus armatus
Myoxocephalus jaok
Myoxocephalus polyacanthocephalus
Myoxocephalus quadricornis
Myoxocephalus verrucocus
Radulinus asprellus
Rastrinus scutiger
thyriscus anoplus
Triglops forficatus
Triglops macellus
Triglops metopias
Triglops pingelii
Triglops septicus
Triglops xenostethus
Zesticelus profundorum
Blepsias bilobus
Hemitripterus bolini
Nautichthys oculofasciatus
Nautichthys pribilovius
Dasycottus setiger
Eurymen gyrinus
Malacoccottus zonurus
Malacocottus kincaidi
Psychrolutes paradoxus
Psychrolutes phrictus
Rhamphocottus richardsoni
(This page intentionally left blank)

