Scientific and Technical Committee Report, 2003 Attachment 4

> Information submitted to the Scientific and Technical Committee

> > by the United States Party

for the 8th Annual Conference of the Parties to the Convention on the Conservation and Management of Pollock Resources in the Central Bering Sea

Portland, 15-18 September 2003

Alaska Fisheries Science Center National Marine Fisheries Service 7600 Sand Point Way NE Seattle, Wa 98115-0070

Contact email:

<u>Loh-Lee.Low@noaa.gov</u> (206) 526-4190

Contents

	Page
Section I (for S&T Agenda 5.1 – Update Catch and Effort Statistics)	
Table 1 United States pollock catches, 1993-2002	I-3
Table 2 – Historical catch of pollock from the Bering Sea, 1977-2002	I-4
Figure – Management Areas - Bering Sea-Aleutians Three Tables – North Pacific Fishery Management Council Recommendations for Year 2003 for	I. 5
(a) Bering Sea-Aleutians groundfish	I-6
(b) Gulf of Alaska groundfish, and	I-8
(c) Allocations of pollock TAC for the Bering Sea-Aleutians region	I-9
Section II (for Agenda Item 5.3 – Review of Research Results) Report – Results of the March 2003 echo integration-trawl survey of walleye pollock conducted on the southeastern Aleutian Basin near Bogoslof Island, Cruise MF2003-04 (by Denise McKelvey	
and Neal Williamson) Update of results from 2002 acoustic-trawl surveys	II-1 II-29
Section III (for Agenda Item 5.4 – Review the status of Aleutian Basin pollock stocks) Report – Eastern Bering Sea walleye pollock stock assessment	Ш-1
Section IV (for Agenda Item 5.7– Methodologies to determine AHL)	T 7 1
Preliminary computation of 2003 ABC for Bogoslof ABC	IV-1 IV-3
Section V (for Agenda Item 7 – Other matters and recommendations)	
Web Site information of Convention reports	V-1

Section I

Section I (for S&T Agenda 5.1 – Update Catch and Effort Statistics)	
Table 1 United States pollock catches, 1993-2002	I-3
Table 2 – Historical catch of pollock from the Bering Sea, 1977-2002	I-4
Figure – Management Areas - Bering Sea-Aleutians	I. 5
Three Tables – North Pacific Fishery Management Council Recommendations	
for Year 2003 for	
(a) Bering Sea-Aleutians groundfish	I-6
(b) Gulf of Alaska groundfish, and	I-8
(c) Allocations of pollock TAC for the Bering Sea-Aleutians region	I-9

Year	E. Bering Sea	Aleutians	Bogoslof	Gulf of Alaska
1993	1,198,790	54,074	885	108,066
1994	1,197,224	53,224	556	110,890
1995	1,169,614	60,184	264	73,248
1996	1,102,579	26,597	389	37,106
1997	1,036,789	24,721	163	89,893
1998	1,058,288	22,053	8	123,805
1999	889,561	965	1	93,422
2000	1,019,067	1,174	29	23,643
2001	1,247,305	788	61	70,485
2002	1,331,416	1,134	22	50,712
(Through Aug 2, 2003)	887,828	1,514	24	26,787

Table 1. United States Pollock Catches in metric tons, 1993-2003

Note: (Data from http://www.fakr.noaa.gov/sustainablefisheries/catchstats.htm)

Year	Western	Donut	Navarin	Bogoslof	Aleutian	Eastern	Total
	Bering Sea	Hole	Region		Region	Bering Sea	Bering Sea
1977	265000				7625	978370	1,250,995
1978	417000				6282	979431	1,402,713
1979	546,000				9,504	935,714	1,491,218
1980	825,000				58,156	958,280	1,841,436
1981	1,133,000				55,516	973,502	2,162,018
1982	976,000				57,978	955,964	1,989,942
1983	1,006,000				59,026	981,450	2,046,476
1984	755,000	181,200	503,000		81,834	1,092,055	2,613,089
1985	662,000	363,400	488,000		58,730	1,139,676	2,711,806
1986	867,000	1,039,800	570,000		46,641	1,141,993	3,665,434
1987	812,000	1,326,300	463,000	377,436	28,720	859,416	3,866,872
1988	1,327,000	1,395,900	852,000	87,813	30,000	1,228,721	4,921,434
1989	1,029,000	1,447,600	684,000	36,073	15,531	1,229,600	4,441,804
1990	814,000	917,400	232,000	151,672	79,025	1,455,193	3,649,290
1991	504,000	293,400	178,000	264,760	78,649	1,217,301	2,536,110
1992	597,000	10,000	315,000	160	48,745	1,164,440	2,135,345
1993	677,000	1,957	389,000	885	54,074	1,198,790	2,321,706
1994	492,900	NA	288,900	556	53,224	1,197,224	2,032,804
1995	506,300	Trace	427,300	264	60,184	1,169,614	2,163,662
1996	787,000	Trace	753,000	389	26,597	1,102,579	2,669,565
1997	765,000	Trace	735,000	163	24,721	1,036,789	2,561,673
1998	744,000	Trace	719,000	8	22,053	1,058,288	2,543,349
1999	685,000	Trace	639,000	1	965	889,561	2,214,527
2000	522,000	Trace	507,000	29	1,174	1,019,067	2,049,270
2001	551,000	Trace	526,000	61	788	1,247,305	2,325,154
2002	378,000	Trace	370,000	22	1,134	1,331,416	2,080,572
2003*	265,000			24	1,514	887,828	1,154,366

Table 2. Historical catch of pollock from the Bering Sea, in metric tons, 1977-2003

* U.S. data for 2003 is through August 2, 2003; Russian data through Aug 31, 2003 Sources of Data

U.S. Data, 1979-1992 from Pollock stock assessment document at 7th Annual Conference 1993-2003 data from web site: www.fakr.noaa.gov

Navarin Data, 1994-2001 (from Russian pollock stock assessment document

presented by the Russian Party at the 6th annual conference in Poland)

Navarin Data, 1984-1993 (from The Aleutian Basin Pollock Stock in 2001

written by TINRO and presented at 6th annual conference)

Western Bering Sea data from Balykin (1996)

I-5

NORTH PACIFIC FISHERY MANAGEMENT COUNCIL RECOMMENDATIONS

2002 Specifications and Recommendations for Final 2003 Specifications (mt)

Bering Sea and Aleutian Islands

Species	Area	2002 Biomass	2002 OFL	2002 ABC	2002 TAC	2002 Catch	2003 * Biomass	2003 OFL	2003 ABC	2003 TAC
Pollock	EBS Al Bogoslof	9,800,000 106,000 232,000	3,530,000 31,700 46,400	2,110,000 23,800 4,310	1,485,000 1,000 100	1,484,927 1,041 38	11,100,000 175,000 227,000	3,530,000 52,600 45,300	2,330,000 39,400 4,070	1,491,760 1,000 50
Pacific cod	BSAI	1,540,000	294,000	223,000	200,000	184,937	1,680,000	324,000	223,000	207,500
Yellowfin sole	BSAI	1,597,000	136,000	115,000	86,000	74,861	1,550,000	136,000	114,000	83,750
Greenland turbot	BSAI BS AI	208,000	36,500	8,100 5,427 2,673	8,000 5,360 2,640	2,753 2,287 466	112,000	17,800	5,880	4,000 2,680 1,320
Arrowtooth flounder	BSAI	671,000	137,000	113,000	16,000	11,443	597,000	139,000	112,000	12,000
Rock sole	BSAI	1,850,000	268,000	225,000	54,000	41,621	877,000	132,000	110,000	44,000
Flathead sole	BSAI	695,000	101,000	82,600	25,000	15,419	550,000	81,000	66,000	20,000
Alaska plaice	BSAI	1,110,000	172,000	143,000	12,000	12,291	1,080,000	165,000	137,000	10,000
Other flatfish	BSAI	78,300	21,800	18,100	3,000	2,628	107,000	21,400	16,000	3,000
Sablefish	EBS Al	28,000 39,000	2,900 3,850	1,930 2,550	1,930 2,550	893 994	31,000 39,000	4,290 4,590	2,900 3,100	2,900 3,100
Pacific Ocean Perch	BSAI Bering Sea Eastern Central Western	377,000	17,500	14,800 2,620 3,460 3,060 5,660	14,800 2,620 3,460 3,060 5,660	11,221 642 2,758 2,971 4,850	375,000	18,000	15,100 2,410 3,500 3,340 5,850	14,100 1,410 3,500 3,340 5,850
Northern rockfish	BSAI BS AI	150,000	9,020	6,760	19 6,741	109 3,951	156,000	161 9,332	121 6,980	121 5,879
Shortraker/rougheye	BSAI BS AI	48,000	1,369	1,028	116 912	99 474	32,000	1,290	967	137 830
Other rockfish (incl. sharpchin)	EBS Al	6,880 12,900	482 901	361 676	361 676	399 547	18,000 15,000	1,280 846	960 634	960 634
Atka mackerel	Al Eastern Central Western	439,700	82,300	49,000 5,500 23,800 19,700	49,000 5,500 23,800 19,700	43,993 5,002 20,947 18,044	358,300	99,700	63,000 10,650 29,360 22,990	60,000 10,650 29,360 19,990
Squid	BSAI	n/a	2,620	1,970	1,970	784	n/a	2,620	1,970	1,970
Other Species	BSAI	667,000	78,900	39,100	30,825	26,467	695,000	81,100	43,300	32,309
BS/AI TOTAL		19,655,780	4,974,242	3,184,085	2,000,000	1,922,532	19,774,300	4,867,309	3,298,792	2,000,000

EBS = eastern Bering Sea BSAI = Bering Sea & Aleutians BS = Bering Sea

AI = Aleutian Islands

OFL = overfishing level

ABC = acceptable biological catch

TAC = total allowable catch

*through 11/02/02 including CDQ harvest

Gulf of Alaska

2002 Specifications and Council's Final 2003 Specifications (mt)

		2002	2002	2002	2002	2002	2003	2003	2003	2003
SPECIES	Area	Biomass	OFL	ABC	TAC	Catch*	Biomass	OFL	ABC	
Pollock'	W (61)			17,730	17,730	17,381			16,788	16,788
	C (62)			23,045	23,045	20,380			19,685	19,685
	C (63)			9,850	9,850	10,809			10,339	10,339
	WYAK	726,600	75,480	1,165	1,165	1,818	670,410	69,410	1,078	1,078
	EYAK/SE	28,710	8,610	6,460	6,460	2	28,710	8,610	6,460	6,460
	TOTAL	755,310	84,090	58,250	58,250	50,390	699,120	78,020	54,350	54,350
Pacific Cod	w			22,465	16,849	15,327			20,600	15,450
	С			31,680	24,790	25,094	1		29,000	22,690
	E			3,455	2,591	103	[3,200	2,400
	TOTAL	428,000	72,100	57,600	44,230	40,524	452,000	70,100	52,800	40,540
Deep water flatfish ²	w			180	180	19			180	180
	С			2,220	2,220	530			2,220	2,220
	WYAK			1,330	1,330	2			1,330	1,330
	EYAK/SE	0		1,150	1,150	7			1,150	1,150
	TOTAL	68,263	6,430	4,880	4,880	558	68,260	6,430	4,880	4,880
Rex sole	w			1,280	1,280	398	•		1,280	1,280
	C			5,540	5,540	2,611			5,540	5,540
	WYAK			1,600	1,600	0			1,600	1,600
	EYAK/SE	0		1,050	1,050	0			1,050	1,050
	TOTAL	71,326	12,320	9,470	9,470	3,009	71,330	12,320	9,470	9,470
Shallow water flatfish ³	w			23.550	4.500	241			23,480	4.500
	C			23.080	13.000	6.599			21,740	13.000
	WYAK			1,180	1,180	2			1.160	1.160
	EYAK/SE	0		1,740	1,740	Ō			2,960	2.960
	TOTAL	349,992	61,810	49,550	20,420	6,842	349,990	61,810	49,340	21,620
Flathead sole	w			9,000	2.000	419			16.420	2.000
	c			11,410	5,000	1,689			20,820	5.000
	WYAK			1,590	1,590	0			2,900	2,900
	EYAK/SE	0		690	690	0			1.250	1.250
	TOTAL	170,915	29,530	22,690	9,280	2,108	132,260	51,560	41,390	11,150
Arrowtooth flounder	w			16,960	8.000	6.100			17.990	8.000
	c			106,580	25,000	14.674			113.050	25.000
	WYAK			17,150	2,500	56			18,190	2.500
	EYAK/SE	0		5,570	2,500	111			5,910	2,500
	TOTAL	1,760,000	171,060	146,260	38,000	20,941	1,302,000	181,390	155,140	38,000
Sablefish	w			2,240	2.240	1,780			2.570	2.570
	c			5,430	5,430	6,120			6,440	6.440
	WYAK			1.940	1,940	1.548			2,320	2.320
	SEO			3,210	3,210	2,798			3,560	3,560
	TOTAL	188,000	19,350	12,820	12,820	12,246	182,000	20,020	14,890	14,890
Other Slope rockfish	w			90	90	222			90	90
	C			550	550	481			550	550
	WYAK			260	150	37			270	150
	EYAK/SE	o		4.140	200	31			4.140	200
	TOTAL	107.960	6.610	5.040	990	771	107 960	6 6 1 0	5 050	990

		2002	2002	2002	2002	2002	2003	2003	2003	2003
SPECIES	Area	Biomass	OFL	ABC	TAC	Catch	Biomass	OFL	ABC	TAC
Northern rockfish	W			810	810	337			890	890
	C			4,170	4,170	2,998			4,640	4,640
	E			0⁴	0 ⁴	NA			0⁴	0⁴
	TOTAL	94,350	5,910	4,980	4,980	3,335	108,830	6,560	5,530	5,530
Pacific ocean perch	w		3,110	2,610	2,610	2,723		3,220	2,700	2,700
	C		9,760	8,220	8,220	8,263		10,120	8,510	8,510
	WYAK			780	780	748			810	810
	SEO		2,800	1,580	1,580	1		2,900	1,640	1,640
	TOTAL	293,240	15,670	13,190	13,190	11,735	298,820	16,240	13,660	13,660
Shortraker/rougheye	w			220	220	260			220	220
	C			840	840	628			840	840
	E			560	560	403			560	560
	TOTAL	70,890	2,340	1,620	1,620	1,291	66,830	2,340	1,620	1,620
Pelagic shelf rockfish	w			510	510	183			510	510
-	c			3,480	3,480	2,680			3,480	3,480
	WYAK			640	640	448			640	640
	EYAK/SE	0		860	860	7			860	860
	TOTAL	62,489	8,220	5,490	5,490	3,318	62,500	8,220	5,490	5,490
Demersal Shelf Rockfish		15,615	480	350	350	182	17,510	540	390	390
Atka Mackerel	GW	unknown	6,200	600	600	84	unknown	6,200	600	600
Thornyhead rockfish	w			360	360	368			360	360
	IC			840	840	504			840	840
	E			790	790	253			800	800
	TOTAL	77,840	2,330	1,990	1,990	1,125	85,760	3,050	2,000	2,000
Other Species	GW		NA	NA	11,330	3,748	NA	NA	NA	11,260
GOA TOTAL		4,514,190	504,450	394,780	237,890	162,207	4,005,170	531,410	416,600	236,440

* Catch through 11/02/02

1/ The pollock ABC has been reduced by 1,700 mt to accommodate the expected Prince William Sound State harvest.

2/ Deep water flatfish includes dover sole, Greenland turbot and deepsea sole.
3/ "Shallow water flatfish" includes rock sole, yellowfin sole, butter sole, starry flounder, English sole,

Alaska plaice, and sand sole.

4/ The EGOA ABC for northern rockfish has been included in the WYAK ABC for other slope rockfish. NOTE:

W = Western Gulf C = Central Gulf E = Eastern Gulf WYAK = West Yakutat EYAK/SEO = East Yakutat/Southeast GW means Gulfwide.

TABLE 3.–2003 ALLOCATIONS OF THE POLLOCK TAC AND DIRECTED FISHING ALLOWANCE (DFA) TO THE INSHORE, CATCHER/PROCESSOR, MOTHERSHIP, AND CDQ COMPONENTS¹ [Amounts are in mt]

Area and Sector	2003	A Seasor	1 ¹	B Season ¹
	Allocations	A season DFA	SCA harvest	B season DFA
		(40% of Annual DFA)	limit ²	(60% of Annual DFA)
Bering Sea subarea	1,491,760			
CDQ	149,176	59,670	41,769	89,506
ICA ³	46,990			
AFA Inshore	647,797	259,119	181,383	388,678
AFA Catcher/Processors ⁴	518,237	207,295	145,106	310,942
Catch by C/Ps⁴	474,187	189,675		284,512
Catch by CVs⁴	44,050	17,620		26,430
Restricted C/P cap ⁵	2,591	1,036		1,555
AFA Motherships	129,559	51,824	36,277	77,736
Excessive harvesting share ⁶	226,729			
Aleutian Islands				
	1,000			
Bogoslof District				
ICA ⁷	50			

¹After subtraction for the CDQ reserve (10 percent) and the ICA (3.5 percent), the pollock TAC is allocated as a DFA: inshore component - 50 percent, catcher/processor component - 40 percent, and mothership component - 10 percent. Under § 679.20(a)(5)(i)(A), the CDQ reserve for pollock is 10 percent. The A season, January 20 - June 10, is allocated 40 percent of the DFA and the B season, June 10 - November 1, is allocated 60 percent of the DFA.

² No more than 28 percent of each sector's annual DFA may be taken from the SCA before April 1. The remaining 12 percent of the annual DFA allocated to the A season may be taken outside of SCA before April 1 or inside the SCA after April 1. If 28 percent of the annual DFA is not taken inside the SCA before April 1, the remainder is available to be taken inside the SCA after April 1.

³ The pollock ICA for the BS subarea is 3.5 percent of the TAC after subtraction of the CDQ reserve.

⁴ Under § 679.20(a)(5)(i)(A)(<u>4</u>)(i) and (<u>ii</u>), NMFS will allocate 91.5 percent of the catcher/processor sector allocation to AFA catcher/processors engaged in directed fishing for pollock and 8.5 percent of the catcher/processor sector allocation to AFA catcher vessels delivering to catcher/processors unless changed by the cooperative contracts.

⁵ Under § 679.20(a)(5)(i)(A)(<u>4</u>)(<u>iii</u>), unlisted AFA catcher/processors are limited to harvesting not more than 0.5 percent of the catcher/processor sector allocation of pollock.

⁶ Under § 679.20(a)(5)(i)(A)(<u>6</u>), NMFS establishes an excessive harvesting share limit equal to 17.5 percent of the sum of the directed fishing allowances established under paragraphs (a)(5)(i) and (a)(5)(ii) of this section.

⁷ The Aleutian Islands subarea and the Bogoslof District are closed to directed fishing for pollock. The amounts specified are for incidental catch amounts only, and are not apportioned by season or sector.

Section II

Section II (for Agenda Item 5.3 – Review of Research Results)
Report – Results of the March 2003 echo integration-trawl survey of walleye pollock conducted on the southeastern Aleutian Basin near Bogoslof Island, Cruise MF2003-04 (by Denise McKelvey and Neal Williamson)
Update of results from 2002 acoustic-trawl surveys

П-1 П-29

Alaska Fisheries Science Center

National Marine Fisheries Service

U.S DEPARTMENT OF COMMERCE

AFSC PROCESSED REPORT 2003-09

Results of the March 2003 Echo Integration-trawl Survey of Walleye Pollock (*Theragra chalcogramma*) Conducted in the Southeastern Aleutian Basin Near Bogoslof Island, Cruise MF2003-04

August 2003

This report does not constitute a publication and is for information only. All data herein are to be considered provisional.

Results of the March 2003 Echo Integration-Trawl Survey of Walleye Pollock (*Theragra chalcogramma*) Conducted in the Southeastern Aleutian Basin Near Bogoslof Island, Cruise MF2003-04

by Denise McKelvey and Neal Williamson

August 2003

INTRODUCTION

Scientists from the Midwater Assessment and Conservation Engineering Program of the Alaska Fisheries Science Center (AFSC) have conducted echo integration-trawl (EIT) surveys in the southeastern Aleutian Basin near Bogoslof Island to estimate midwater pollock (*Theragra chalcogramma*) distribution and abundance annually since 1988, with the exception of 1990. The biomass estimate for pollock within the Central Bering Sea (CBS) Convention Specific Area¹ obtained during these surveys provide an index of abundance for the Aleutian Basin pollock stock (Honkalehto and Williamson, 1995). The results presented here are from the echo integration-trawl (EIT) survey carried out 8-14 March 2003 aboard the NOAA ship *Miller Freeman*, Cruise MF2003-04.

¹ The "specific area" is defined in the Annex to the Convention on the Conservation and Management of Pollock Resources in the Central Bering Sea as "the area south of a straight line between a point at 55° 46' N lat. and 170° W long. and a point at 54° 30' N lat., 167° W long. and between the meridian 167° W long. and the meridian 170° W long. and the north of the Aleutian Islands and straight lines between the islands connecting the following coordinates in the order listed: 52° 49.2 N 169° 40.4 W, 52° 49.8 N 169° 06.3 W, 53° 23.8 N 167° 50.1 W, 53° 18.7 N 167° 51.4 W."

METHODS

Itinerary

7 Mar	Embark scientists in Dutch Harbor, AK.
8 Mar	Calibration of acoustic system in Captains Bay, AK.
9-13 Mar	EIT survey of the southeastern Aleutian Basin, near Bogoslof Island
13-14 Mar	Survey operations suspended due to bad weather.
14-15 Mar	Transit to Shelikof Strait, AK.

Acoustic Equipment

Acoustic data were collected with Simrad EK500² and Simrad EK60 quantitative echo-sounding systems (Simrad, 2001; Bodholt et al. 1989, Bodholt and Solli 1992) on the NOAA ship *Miller Freeman*, a 66-m stern trawler equipped for fisheries and oceanographic research. Three split-beam transducers (38 kHz, 120 kHz, and 200 kHz) were mounted on the bottom of the vessel's retractable centerboard extending 9 m below the water surface. System electronics were housed inside the vessel in a permanent laboratory space dedicated to acoustics. Simrad EK 500 data (38 and 120 kHz) and Simrad EK60 data (200 kHz) were logged with SonarData EchoLog 500. The 38 kHz data were analyzed using SonarData Echoview (V 2.25.109) PC-based post-processing software. Echo integration and target-strength (TS) data were collected simultaneously at all frequencies. Results presented here are based on the 38 kHz data.

Trawl Gear

Midwater and near-bottom echosign was sampled using an Aleutian Wing 30/26 Trawl (AWT). This trawl was constructed with full-mesh nylon wings, and polyethylene mesh in the codend and aft section of the body. The headrope and footrope each measured 81.7 m (268 ft). Mesh sizes tapered from 325.1 cm (128 in) in the forward section of the net to 8.9 cm (3.5 in) in the codend. The net was fitted with a

² Reference to trade names or commercial firms does not constitute U.S. Government endorsement.

32-mm (1.25-in) codend liner. The AWT was fished with 82.3 m (270 ft) of 1.9-cm (0.75-in) diameter (8 \times 19 wire) non-rotational dandylines, 226.8-kg (500-lb) or 340.2-kg (750-lb) tom weights on each side, and 5 m² Fishbuster trawl doors [1,247 kg (2,750 lb) each]. Vertical net opening and depth were monitored with a WESMAR third wire netsounder system attached to the trawl headrope; the net opening ranged from 24 to 37 m, and averaged 30 m, while fishing.

Oceanographic Equipment

Physical oceanographic data collected during the cruise included temperature/depth profiles obtained with a Sea-Bird Electronics temperature-depth probe (SBE-39) attached to the trawl headrope and conductivity-temperature-depth (CTD) observations collected with a Sea-Bird CTD system at calibration sites. Sea surface temperature, salinity, and other environmental data were collected using the *Miller Freeman's* Scientific Computing System (SCS). Ocean current profile data were obtained using the vessel's centerboard-mounted acoustic Doppler current profiler system operating continuously in water-profiling mode.

Survey Design

The Bogoslof Island area echo integration-trawl survey began 9 March 2003 north of Unalaska Island at about 167°W longitude, and proceeded west towards the Islands of Four Mountains near 170°W, concluding on 13 March. The 22 north-south parallel transects were spaced 5 nautical miles (nmi) apart and covered a 2,993 nmi² area (Fig. 1), within the CBS Specific Area. Average transecting speed was about 11 knots. Echo integration data were collected 24 hours a day between 14 m from the surface (5 m below the centerboard-mounted transducer) and 0.5 m off the bottom, unless the bottom exceeded 1,000 m, the lower limit of data collection. Acoustic system settings used during the collection were based on results from acoustic system calibrations and on experience from prior surveys (Table 1A). Trawl hauls were conducted to identify echosign, and to provide biological samples for the primary goals of the survey and for additional research projects (e.g., fecundity studies, parasite studies). Average trawling speed was approximately 3 knots. Pollock were sampled to determine sex, fork length (FL), body weight, age, maturity, and ovary weight of selected females. Fork lengths were measured to the nearest centimeter (i.e., a fish measuring between 49.5 cm and 50.5 cm was recorded as

50 cm). An electronic motion-compensating scale was used to weigh individual pollock specimens. For age determinations, pollock otoliths were collected and stored in 50% ethanol-water solution. Maturity was determined by visual inspection and categorized as immature, developing, pre-spawning, spawning, or post-spawning. All data were recorded electronically using the Fisheries Scientific Computing System (FSCS) and stored in a relational database. Samples of pollock tissue, ovaries, and gametes were collected for ongoing research by AFSC scientists. Whole fish were retained for training fisheries observers.

Standard sphere acoustic system calibrations were made prior to the Bogoslof Island area survey to measure acoustic system performance for the EK500 at 38 and 120 kHz, and for the EK60 at 200 kHz. During calibrations, the *Miller Freeman* was anchored at bow and stern. Weather, sea state conditions, and acoustic system settings were recorded. Three calibration spheres were suspended below the centerboard-mounted transducers. Two were copper calibration spheres of 23 mm (120-kHz sphere, TS = -40.3 dB) and 60 mm (38-kHz sphere, TS = -33.6 dB) diameter, and the third was a tungsten carbide sphere of 38.1 mm (200-kHz sphere, TS = -39.5 dB) diameter. After each sphere was centered on the acoustic axis, split-beam target-strength and echo integration data were collected to determine acoustic system gain parameters. The average on-axis target strength and on-axis integration values were measured and recorded. Transducer beam characteristics were measured using a Simrad software program (EKLOBES). Each sphere was pulled through its corresponding transducer beam, target-strength data were collected on a grid of angle coordinates, and beam pattern was estimated (Foote et al. 1987).

Data Analysis

The abundance of pollock was estimated by combining echo integration and trawl data. Echosign identified as pollock was stored in a database. Pollock length data from 5 hauls were aggregated into three analytical strata based on echosign type, geographic proximity of hauls, and similarity in size composition data. Average pollock volume backscattering strength along each 0.5 nmi of transect was multiplied by transect width to estimate area backscattering strength for transect segments. Area backscattering segments were summed to compute total pollock area backscattering for each analytical

stratum. Stratum totals were then summed and scaled using a previously derived relationship between target strength and fish length (TS = 20 Log FL - 66; Traynor 1996) and the length composition data, resulting in an estimate of numbers of pollock by size. A length-weight relationship observed from trawl data was applied to estimate pollock biomass for each length category. Age data for winter 2003 were not available when this analysis was completed.

In the Bogoslof Island area, pre-spawning pollock aggregations are often densely packed and vertically and/or horizontally stratified by sex. Therefore it is not always possible to obtain an unbiased sample of lengths from these aggregations to estimate population size composition. At ages older than about 5 years, female pollock are longer than male pollock. Thus, biased estimates of sex composition from trawl hauls can result in biased estimates of population size and age composition. As in previous Bogoslof surveys, we assumed that the sex ratio that we sampled was 50:50 and estimated abundance under this assumption.

Relative estimation errors for the acoustic data were derived using a one-dimensional (1D) geostatistical method as described by Petitgas (1993), Williamson and Traynor (1996), and Rivoirard et al. (2000). Relative estimation error is defined as the ratio of the square root of the estimation variance to the estimate of acoustic abundance. Geostatistical methods are used for computation of error because they account for the observed spatial structure. These errors quantify only transect sampling variability. Other sources of error (e.g., target strength, trawl sampling) are not included.

RESULTS

Calibration

Acoustic system calibrations were conducted before, between, and after the winter EIT surveys in the Bering Sea and Gulf of Alaska (Table 1B). The EK500 38-kHz and 120 kHz collection systems showed no significant differences in gain parameters or transducer beam pattern characteristics before and after the Bogoslof Island area survey.

Oceanographic Conditions

Temperature profiles from the basin region at three sites (Table 2) indicated well-mixed water columns with little variation in temperature between the surface and deeper waters. Temperatures in the upper 500 m of the water column ranged from 3.6° to 5.1°C and averaged 4.4°C.

Biological Sampling

Biological data and specimens were collected from 5 trawl hauls (Tables 2 and 3; Fig. 1). Poor weather conditions precluded additional trawl sampling. Walleye pollock dominated the trawl catches by weight (97.9%; Table 4). Lanternfish (Myctophidae) and Pacific ocean perch (*Sebastes alutus*) each contributed about 1% of the total catch by weight.

Length measurements were collected from about 1,800 pollock specimens (Table 3, Fig 2) for scaling the acoustic data and computing size-specific population estimates. Pollock sampled in trawl hauls ranged from 33 to 69 cm FL. Length compositions varied over the region surveyed and were grouped into three strata (Fig. 3). Pollock lengths from hauls 1 and 2 were unimodal with the mode at 48-49 cm FL; they were combined to represent the Umnak Pass region, stratum 1. Pollock lengths from haul 3 were more evenly dispersed between 44 and 67 cm FL and were considered to represent the Umnak Island region, stratum 2. Length compositions from hauls 4 and 5 were bimodal with modes at about 48-50 and 59-60 cm. These hauls were combined to represent the Samalga Pass region, stratum 3. Trawl catch sex ratios ranged from 12% to 92% male.

Maturity stage data, length-weight data, and otoliths were collected from 346 pollock specimens. The unweighted maturity composition showed that 81% percent of the female and 25% of the male pollock were in pre-spawning condition (Fig. 4a). Seven percent of the females and about 63% of the males were actively spawning. The average gonado-somatic index (GSI: ovary weight/body weight) for pre-spawning mature female pollock was 0.17 (Fig. 4b), which was similar to the average GSI observed during recent years . This suggests that the survey's timing was similar to previous years in relation to peak spawning. The regression equation of total body weight to length for sexes combined was W = $0.003 \times FL^{3.2238}$, where FL is fork length (cm) and W is weight (g) (Fig. 4c).

Pollock Distribution and Abundance

The spatial distribution of pollock in the survey area was similar to that observed in recent years. Pollock were primarily concentrated just north of Samalga Pass about 300-400 m below the surface, with lesser concentrations along the shelf break at the northeast end of Umnak Island (Fig. 1).

The abundance estimate for pollock in the Bogoslof area between 14 m below the surface and 1,000 m was estimated at 0.134 billion fish weighing 0.198 million metric tons (Table 5, Fig. 5). The size composition was bimodal; 38% of the pollock by numbers (25% of the biomass) were 54 cm or smaller in length, and of those, the average fork length was 48.9 cm. The remaining 62% of the estimated pollock numbers (75% of the biomass) were larger than 54 cm, and of those, the average fork length was 59.9 cm. Based on the 1D analysis, the relative estimation error of the Bogoslof pollock biomass estimate is 21.5%. The abundance estimates and relative estimation error for pollock inside the CBS Specific Area are the same as for the total area (Table 5).

DISCUSSION

In 2003, as in recent years, pollock were highly concentrated in Samalga Pass (84% of biomass in 2003, 74% in 2002, 76% in 2001), and were otherwise sparsely distributed within the Bogoslof area. Poor weather conditions towards the end of the survey limited trawl sampling to only two hauls in the Samalga Pass region. Length composition data are used to scale acoustic data to total abundance and then, combined with age data, to partition total abundance into year class. If the size composition in the Samalga Pass area was biased due to inadequate sampling, the effect on total abundance would be relatively small because the target strength-to-length relationship changes little over the observed size range of approximately 45-65 cm. However, resultant biases in estimates of size-at-age compositions might be of concern. The bimodal length composition of 48-50 and 59-60 cm observed this year, was consistent with the bimodal length composition observed in this region during the 2002 survey (i.e., 45-47 cm, 56-60 cm) (Fig. 6).

There has been little change in population biomass since 2000 (Table 5, Fig. 7) and little recruitment to the spawning population since the 1992 year class first appeared as 6-year olds in 1998 (Fig. 8). Even though age data from the 2002 and 2003 surveys are not yet available, a comparison of the abundance of small fish (e.g., smaller than 50 cm FL) estimated from this year's survey results with the abundance of small fish estimated from previous survey results suggests that the incoming 1996 year class is not strong (Table 6).

ACKNOWLEDGMENTS

The authors would like to thank the officers and crew of the NOAA ship *Miller Freeman* for their contribution to the successful completion of this work.

CITATIONS

- Bodholt, H., H. Nes, and H. Solli. 1989. A new echo sounder system. Proc. Instit. of Acoust. 11(3):123-130.
- Bodholt, H., and H. Solli. 1992. Split beam techniques used in Simrad EK500 to measure target strength, p.16-31. *In* World Fisheries Congress, May 1992, Athens, Greece.
- Honkalehto, T. and N. Williamson. 1995. Echo integration-trawl survey of walleye pollock (*Theragra chalcogramma*) in the southeast Aleutian Basin during February and March, 1994. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-52, 39 p.
- Foote, K. G., H. P. Knudsen, G. Vestnes, D. N. MacLennan, and E. J. Simmonds. 1987.
 Calibration of acoustic instruments for fish density estimation: a practical guide. ICES
 Cooperative Research Reports, Int. Counc. Explor. Sea Coop. Res. Rep. No.144, 69 p.

- MacLennan, D.N., P. G. Fernandez, and J. Dalen. 2002. A consistent approach to definitions and symbols in fisheries acoustics. ICES J. Mar. Sci. 59:365-369.
- Petitgas, P. 1993. Geostatistics for fish stock assessments: a review and an acoustic application. ICES J. Mar. Sci. 50: 285-298.
- Rivoirard, J., J. Simmonds, K.G. Foote, P. Fernandez, and N. Bez. 2000. Geostatistics for estimating fish abundance. Blackwell Science Ltd., Osney Mead, Oxford OX2 0EL, England. 206 p.
- Simrad. 2001. Simrad EK60 Scientific echo sounder instruction manual base version. Simrad AS, Strandpromenenaden 50, Box 111, N-3191 Horten, Norway.
- Traynor, J. J. 1996. Target strength measurements of walleye pollock (*Theragra chalcogramma*) and Pacific whiting (*Merluccius productus*). ICES J. Mar. Sci. 53: 253-258.
- Williamson, N., and J. Traynor. 1996. Application of a one-dimensional geostatistical procedure to fisheries acoustic surveys of Alaskan pollock. ICES J. Mar. Sci. 53: 423-428.

SCIENTIFIC PERSONNEL

Name	Gender/Nationality	Position	Organization
Neal Williamson	M/USA	Chief Scientist	MACE
Denise McKelvey	F/USA	Fishery Biologist	MACE
Paul Walline	M/USA	Fishery Biologist	MACE
Scott Furnish	M/USA	Computer Spec.	MACE
William Floering	M/USA	Fishery Biologist	MACE
Tyler Yasenak	M/USA	Fishery Biologist	MACE
Kresimir Williams	M/USA	Fishery Biologist	MACE
Robert Self	M/USA	Fishery Biologist	MACE
Annette Brown	F/USA	Fishery Biologist	FOCI
Jason Conner	M/USA	Fishery Biologist	GF-STAT

MACE - Midwater Assessment and Conservation Engineering Program, RACE, AFSC, Seattle, WA FOCI - Fisheries Oceanography Coordinated Investigations, RACE, AFSC, Seattle, WA GF-STAT - Groundfish, Survey Technology Applications Team, RACE, AFSC, Seattle, WA

stic system description and settings during the winter 2003 echo integration-trawl survey of walleye pollock in the	I area (A) and results from standard sphere acoustic system calibrations conducted before, during, and after the	
Table 1. Acoustic system d	Bogoslof Island area (A) and	survey (B).

	(A)		(B)					
	8-14 Mar Syster	m Setting	6-Feb, Al	litak Bay, AK	8-Mar, Cap	otains Bay, AK	30-Mar, Sea	Otter Bay, AK
Echosounder:	Simrad]	EK 500	Simrad	I EK 500	Simrad	EK 500	Simrad	EK 500
Transducer:	ES38B	ES120-7C	ES38B	ES120-7C	ES38B	ES120-7C	ES38B	ES120-7C
Frequency (kHz):	38	120	38	120	38	120	38	120
Transducer depth (m):	9.15	9.15						
Absorption coefficient (dB/km):	10	29						
Pulse length (ms):	1.0 (medium)	0.3 (medium)						
Band width (kHz):	3.8 (Wide)	1.2 (narrow)						
Transmitted power (W):	2000	1000						
Angle sensitivity:	21.9	21.9						
2-Way beam angle (dB):	-20.7	-20.7				x		
TS transducer gain (dB):	25.9	26.5	25.9	26.8	25.8	26.7	25.8	26.7
Sv transducer gain (dB):	25.6	26.7	25.8	27.0	25.5	26.8	25.5	26.7
3 dB beamwidth (deg)								
Along:	6.90	6.80	ł	ł	6.98	6.85	6.96	6.85
Athwart:	6.80	6.80	I	ł	6.87	6.68	6.85	6.81
Angle offset (deg)								
Along:	-0.08	-0.06	I	ł	-0.10	-0.24	-0.11	-0.24
Athwart:	0.03	0.07	ł	ł	-0.02	0.11	-0.01	0.07
Range (m):	1000	250	ł	ł	1	ł	ł	ł
Post-processing Sv threshold (dB):	-70	1	ł	I	ł	ł	ł	ł
Sphere range from transducer (m):	I	ł	25.5	20.0	36.3	27.5	33.3	23.1
Water temp (°C):								
at transducer.	1	ł	3.0	3.0	4.6	4.6	5.4	5.4
at sphere:	1	ł	3.0	3.0	4.9	4.9	5.4	5.4

Note: Gain and Beam pattern terms are defined in the "Operator Manual for Simrad EK500 Scientific Echo Sounder (1993)" available from Simrad Subsea A/S, Strandpromenaden 50, P.O. Box 111, N-3191 Horten, Norway.

ollock in the	
of walleye po	
rawl survey	
integration-t	
sr 2003 echo	
om the winte	
summary fr	
d catch data	
vl station an	nd area.
able 2. Trav	ogoslof Islar

	Other	(kg)	51.6	67.8	4.8	1.5	0.3
Catch	ock	Number	295	1,364	628	1,194	1,033
	Pollc	(kg)	244.4	1,249.7	862.8	2,214.5	1,376.2
	Profiler	No.	301	302	303	ı	,
	<u>р. (C)</u>	Surface	3.8	4.4	4.7	3.2	3.7
	Tem	Gear ²	3.9	3.6	4.8	ı	1
	(<u>m)</u>	Bottom	ı	640	639	416	602
	Dept	Footrope	304	521	240	301	380
	osition	Longitude (W)	167 27.90	167 45.78	168 09.12	169 08.16	169 09.36
	Start]	Latitude (N)	53 42.48	53 33.48	53 37.08	53 02.28	53 03.42
	Duration	(minutes)	36	20	11	ŝ	4
	Time	(GMT)	18:24	4:30	19:32	5:08	7:56
		Date	9-Mar	10-Mar	10-Mar	13-Mar	13-Mar
	Gear	Type	AWT	AWT	AWT	AWT	AWT
	Haul	No.		7	£	4	5

¹Gear type: AWT = Aleutian Wing Trawl ²Gear temperature was measured at the trawl headrope depth. Table 3. Numbers of biological samples and measurements collected during the winter 2003 echo

integration-trawl survey of walleye pollock in the Bogoslof Island area.

	Whole Fish	Collections ^{4,6}	x	. 1	ı	ı	•	1 site
	Gamete	Collection ^{4,5}	1.	x	ı	ı	•	1 site
	Muscle Tissue	Collection ³	25	11	20	10	4	20
	Vitellogenin	Study ²	5	10	11	9	5	37
	Ovary	Collection ¹	11	7		6	5	28
	Ovary	Weight	28	8	54	39	34	163
ish Weights,	Otoliths,	Maturity	70	67	70	67	72	346
μ.		Lengths	295	338	314	393	464	1,804
	Haul	No.	1	7	ω	4	5	Totals

¹ Pollock ovaries sampled for a fecundity study (B. Megrey)

² Pollock ovaries and serum sampled for a reproductive hormone study (B. Megrey)

³ Pollock muscle collections taken for parasite studies (F. Morado)

 4 "X" indicates a collection was made, but numbers were not specified.

⁵ Pollock gametes propagated for early life history investigations (A. Brown)

⁶ Whole fish retained for identification training (S. Corey)

Table 4. Catch by species from 5 midwater trawl hauls during the winter 2003 echo integration-trawl survey of walleye pollock in the Bogoslof Island area.

Species Name	Scientific Name	Weight <u>(kg)</u>	Percent by weight	<u>Numbers</u>
walleye pollock	Theragra chalcogramma	5,947.6	97.9	4,514
lanternfish unidentified	Myctophidae	55.7	0.9	5,098*
Pacific ocean perch	Sebastes alutus	45.1	0.7	62
squid unidentified	Teuthoidea (order)	7.6	0.1	35
smooth lumpsucker	Aptocyclus ventricosus	6.4	0.1	2
chinook salmon	Oncorhynchus tshawytscha	4.0	0.1	2
Pacific lamprey	Lampetra tridentata	3.5	0.1	9
capelin	Mallotus villosus	2.3	< 0.1	-
arrowtooth flounder	Atheresthes stomias	1.0	< 0.1	1
hatchetfish unidentified	Sternoptychidae	0.3	< 0.1	6
shrimp unidentified	Decapoda (order)	0.1	< 0.1	65*
jellyfish unidentified	Scyphozoa (class)	< 0.1	< 0.1	1
northern smoothtongue	Leuroglossus schmidti	< 0.1	< 0.1	5
Totals		6,073.6		9,800

** lantern fish and shrimp numbers for one haul were estimated by using the average weight of each from other hauls in the area.

Table 5. Estimates of walleye pollock biomass (in metric tons (t)) by survey area and management area from February-March echo integration-trawl surveys in the Bogoslof Island area between 1988 and 2003.

Bogoslof Survey Area

Central Bering Sea Specific Area

	Biomass	Area	Relative estimation	Biomass	Relative estimation
Year	(million t)	nmi ²	error (%)	(million t)	error (%)
1988	2.396	~		2.396	
1 989	2.126			2.084	
1990		No survey			«
1991	1.289	8,411	11.7	1.283	
1992	0.940	8,794	20.4	0.888	
1993	0.635	7,743	9.2	0.631	
1994	0.490	6,412	11.6	0.490	
1995	1.104	7,781	10.7	1.020	
1996	0.682	7,898	19.6	0.582	
1997	0.392	8,321	14.0	0.342	
1998	0.492	8,796	19.0	0.432	19.0
1999	0.475	Conduc	ted by Japan Fisheries Agency	0.393	
2000	0.301	7,863	14.3	0.270	12.7
2001	0.232	5,573	10.2	0.208	11.8
2002	0.227	2,903	12.2	0.227	12.2
2003	0.198	2,993	21.5	0.198	21.5

Length	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
10	0	0		0	0	0	0	<1	0	0	0	0	0	0	0	0
11	0	0		0	0	0	0	<1	0	0	0	0	0	0	0	0
12	0	0		0	0	0	0	1	0	0	0	0	0	0	0	0
13	0	0		0	0	0	0	<1	0	0	0	0	0	0	0	0
14	0	0		0	0	0	0	<1	0	0	0	0	0	0	0	0
15	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
16	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
17	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
18	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
19	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
20	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
21	0	0		0	0	0	0	0	0	0	. 0	0	0	0	0	0
22	0	0		<1	0	0	0	0	0	0	0	0	0	0	0	0
23	0	0		2	0	0	0	0	0	0	0	0	0	0	<1	0
24	0	0		1	0	0	0	0	0	0	0	0	0	0	0	0
25	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
26	0	0		<1	0	0	0	0	0	0	0	0	0	0	0	0
27	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
28	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
29	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
30	0	0		0	0	0	0	0	0	0	0	0	0	0	<1	0
31	0	0		0	<1	0	0	0	0	0	0	0	0	0	0	0
32	0	0		0	<1	0	0	0	0	0	0	0	0	0	-1	0
20	0	0		0	~1	0	0	-1	-1	0	-1	0	0	0	<1	<1
25	0	0		0	0	0	0	~1	~1		~1	0	0	0	<1	~1
35	0	0		0	<1	0	0	<1	<1	<1	<1	0	0	0	-1	0
37	9	3		<1	0	0	0	<1	<1	<1	<1	0	0	0	1	-1
38	6	0		2	<1	1	0	1	1	<1	1	0	0.	<1	1	<1
39	16	4		5	0	2	<1	4	1	1	3	<1	<1	<1	2	<1
40	24	3		7	1	4	3	12	4	1	7	1	<1	1	3	<1
41	27	4		19	3	5	6	20	8	2	9	6	1	1	4	<1
42	48	23		23	7	7	9	40	14	3	11	8	1	1	2	<1
43	118	33		31	14	6	14	40	17	4	11	13	3	1	5	1
44	179	54		36	18	7	21	41	21	5	10	13	3	2	5	2
45	329	159		46	28	8	21	50	23	7	9	17	4	4	7	3
46	488	177		55	32	13	21	53	31	10	11	19	5	4	5	5
47	547	389		79	42	22	18	40	36	14	9	14	6	5	9	5
48	476	434		130	68	28	17	55	36	15	12	11	6	5	7	7
49	389	431		168	102	46	16	47	37	18	15	10	5	6	6	6
50	248	366		205	129	69	39	52	40	21	20	16	6	7	5	7
51	162	279		189	144	76	46	58	45	24	23	11	8	6	5	4
52	80	168		160	118	73	52	78	52	26	28	20	10	7	4	4

Table 6. Numbers-at-length estimates (millions) from February-March echo integration-trawl surveys of walleye pollock in the Bogoslof Island area. No survey was conducted in 1990. The 1999 survey was conducted by the Japan Fisheries Agency.

Table 6. Continued.

Length	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
53	48	85		122	106	73	49	81	52	26	35	17	13	7	6	4
54	19	50		63	67	66	43	88	53	31	41	21	16	8	7	3
55	12	13		40	41	50	37	81	48	28	38	33	21	12	9	5
56	4	5		17	27	29	26	69	40	24	35	38	20	13	12	7
57	3	8		8	13	14	17	58	37	22	30	33	24	17	13	7
58	1	1		4	6	9	10	47	28	17	27	36	23	15	14	10
59	0	0		1	5	3	6	31	19	13	18	23	16	13	12	9
60	0	0		. 1	1	1	3	17	12	12	13	15	13	11	12	13
61	2	0		1	<1	1	2	7	6	6	8	18	10	9	8	9
62	0	0		<1	<1	<1	1	4	2	3	5	13	7	6	6	7
63	0	0		0	0	0	<1	2	1	1	3	4	4	4	. 4	5
64	0	0		0	1	<1	0	1	<1	1	1	· 3	2	3	3	5
65	0	0		<1	0	0	0	<1	<1	<1	1	1	1	1	1	3
66	0	0		0	0	0	0	<1	0	<1	1	<1	<1	1	1	1
67	0	0		0	0	0	0	0	0	0	0	1	<1	<1	<1	1
68	0	0		0	0	0	0	1	0	0	<1	0	<1	<1	<1	<1
69	0	0		0	0	0	0	0	0	0	0	0	0	<1	0	<1
70	0	0		0	0	0	0	0	0	0	0	0	0	<1	<1	. 0
Totals	3,236	2,687		1,419	975	613	478	1,081	666	337	435	416	229	171	181	134

Table 7. Biomass-at-length estimates (metric tons) from February-March echo integration-trawl surveys of walleye pollock in the Bogoslof Island area. No survey was conducted in 1990. The 1999 survey was conducted by the Japan Fisheries Agency.

Length	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
42	24,360	10,704	1	10,812	3,316	3,571	4,990	20,730	7,012	1,387	5,652	7,223	674	464	1,307	251
43	64,253	16,516	I	15,540	6,760	3,089	8,021	22,332	9,190	2,158	6,407	12,079	1,511	770	2,885	437
44	104,733	29,588	ł	20,103	9,877	4,006	12,963	24,863	12,735	3,018	6,048	11,877	1,622	1,562	3,642	1,166
45	206,586	93,899	ł	28,059	16,329	4,818	13,823	32,817	14,927	4,824	5,592	16,278	2,848	2,966	5,117	2,128
46	328,735	113,092	ł	36,235	20,645	8,835	15,081	37,303	21,637	7,399	7,774	17,678	3,289	3,218	4,174	4,079
47	394,741	268,496	ł	56,880	29,146	16,669	13,565	30,184	26,425	10,786	6,653	13,933	5,002	4,095	7,420	3,823
48	367,368	323,170	1	101,488	51,983	22,214	13,658	44,572	28,658	12,233	9,528	11,280	5,191	4,548	6,062	5,873
49	320,630	345,632	I	141,399	84,329	39,811	14,414	40,477	31,599	15,951	12,766	10,698	4,659	5,654	5,646	5,747
50	217,890	314,778	1	187,006	115,614	63,571	36,256	47,785	35,907	19,593	18,837	18,373	5,466	6,794	4,904	6,956
51	152,084	258,067	1	186,358	140,004	75,524	46,297	57,291	43,272	23,896	23,203	12,204	8,364	6,361	5,004	4,232
52	79,654	166,322	1	170,855	124,034	77,721	55,851	81,793	53,696	28,549	29,109	23,427	10,816	7,605	3,992	4,883
53	50,739	89,721	I	139,671	120,309	83,189	55,151	90,342	57,294	29,783	39,234	20,486	14,509	8,203	6,504	4,764
54	21,211	56,681	I	77,905	82,110	79,461	52,329	104,021	61,504	38,168	48,567	25,270	19,059	10,064	8,249	4,115
55	14,191	16,270	I	52,506	53,286	64,342	47,770	102,318	59,033	35,853	47,461	39,463	27,179	16,246	12,509	6,435
56	5,580	6,059	ł	23,541	38,564	39,556	35,451	91,962	52,765	33,144	47,627	46,764	27,212	17,977	16,277	10,745
57	3,886	10,681	I	12,470	19,710	20,781	24,453	81,885	52,000	31,736	42,594	40,641	34,562	24,987	19,422	10,852
58	1,395	1,220	ł	6,603	9,188	14,391	15,826	70,522	40,581	26,309	41,160	44,788	34,255	23,153	21,834	15,700
59	0	0	I	1,284	7,872	4,376	9,546	48,878	28,918	21,031	28,241	28,362	26,252	20,390	19,158	14,905
60	0	0	I	2,743	2,631	1,989	4,716	28,240	19,749	20,509	21,604	18,174	22,075	19,263	20,581	23,011
61	2,561	0	ł	2,195	562	1,756	3,644	11,855	10,762	11,428	14,301	22,618	18,519	16,883	14,659	17,326
62	0	0	I	780	600	372	1,826	7,951	3,578	6,439	9,748	15,120	12,972	11,334	12,296	14,954
63	0	0	I	0	0	0	200	3,978	2,835	2,999	6,344	5,181	7,033	7,722	8,207	11,240
64	0	0	I	0	1,363	415	0	1,074	863	1,489	1,777	3,198	4,277	5,489	5,719	10,540
65	0	0	1	938	0	0	0	495	578	1,096	1,156	1,833	1,660	2,730	2,463	7,281
99	0	0	ł	0	0	0	0	163	0	329	1,251	403	534	1,132	1,515	3,582
67	0	0	ł	0	0	0	0	0	0	0	0	863	520	715	583	1,954
68	0	0	ł	0	0	0	0	2,570	0	0	276	0	403	426	LLL	746
69	0	0	I	0	0	0	0	0	0	0	0	0	0	55	0	391
70	0	0	;	0	0	0	0	0	0	0	0	0	0	100	61	0
Totals	2,395,735	2,125,851	1	1,289,008	940,197	635,403	490,078	1,104,118	682,279	392,403	492,398	475,311	301,402	231,795	226,548	198,403

Table 7. Continued

Table 8. Numbers-at-age estimates (millions) from February-March echo integration-trawl surveys of walleye pollock in the Bogoslof Island area. No survey was conducted in 1990. The 1999 survey was conducted by the Japan Fisheries Agency. Age data are not yet available for 2002 and 2003.

Age	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
0	0	0		0	0	0	0	0	0	. 0	0	0	0	0
1	0	0		0	0	0	0	1	0	0	0	0	0	0
2	0	0		4	0	0	0	• 0	0	0	0	0	0	0
3	0	0		0	1	1	0	2	0	0	0	0	0	0
4	0	6		2	2	33	21	6	<1	<1	<1	2	1	1
5	28	15		12	27	17	86	75	6	4	11	5	6	14
6	327	58		46	54	44	26	278	96	16	61	29	4	12
7	247	363		213	97	46	38	105	187	55	34	77	14	10
8	164	147		93	74	48	36	68	85	88	70	34	30	10
9	350	194		160	71	42	36	80	40	38	77	50	16	14
10	1,201	91		44	55	28	17	53	37	28	32	75	28	12
11	288	1,105		92	57	51	27	54	24	16	25	29	45	18
12	287	222		60	33	25	23	19	24	16	21	27	21	31
13	202	223		373	34	27	13	59	12	13	19	25	16	13
14	89	82		119	142	42	9	32	36	7	18	16	11	7
15	27	90		41	164	92	45	12	18	13	9	12	11	9
16	17	30		38	59	47	36	31	4	5	15	10	9	8
17	7	60		29	8	25	28	103	16	4	5	8	3	5
18	3	0		32	15	11	16	60	35	12	8	6	6	. 1
19	0	0		56	22	11	4	18	26	12	10	3	3	3
20	0	0		4	42	11	4	5	12	7	15	4	2	1
21	0	0		2	13	10	8	- 5	3	2	4	3	1	0
22	0	0		0	3	1	2	6	2	1	1	2	1	0
23	0	0		0	1	1	2	6	1	<1	0	<1	0	<1
24	0	0		0	0	0	1	2	0	1	0	0	<1	<1
25	0	0		0	0	0	0	0	0	0	0	0	0	0
Totals	3,236	2,687		1,419	975	613	478	1,081	666	336	435	416	229	171

Table 9. Biomass-at-age estimates (metric tons) from February-March echo integration-trawl surveys of walleye pollock in the Bogoslof Island area. No survey was conducted in 1990. The 1999 survey was conducted by the Japan Fisheries Agency. Age data are not yet available for 2002 and 2003.

0 0	0 0		000	0 0	324 437	,060 11,581	,884 11,166	,065 9,698	361 11,576	797 18,033	,852 16,273	,335 26,491	,891 49,843	,979 20,032	,620 11,025	1,150 14,340	1,740 13,925	1,637 7,351	1,460 2,106	1,798 5,264	3,547 2,043	,566 0	,810 0	0 493	526 493	0 0	,402 232,170
1999	0	0	0	0	1,809	5,688 4	28,096 2	77,751 12	37,210 30	59,688 17	90,284 39	35,240 63	32,724 31	29,864 24	18,915 17	14,207 16	12,723 14	9,635 5	7,020 8	3,357 4	4,343 2	3,574 1	2,668 1	514	0	0	475,311 301
1998	0	0	0	0	78	6,771	37,697	29,637	73,714	94,394	40,417	35,706	29,180	26,690	26,304	13,230	21,631	8,218	10,212	13,047	19,016	5,376	1,078	0	0	0	492,396
1997	0	0	0	0	87	2,083	10,598	49,598	94,580	44,076	37,822	22,942	22,497	18,074	10,713	19,768	6,659	5,470	16,894	17,174	9,228	1,885	947	419	888	0	392,402
1996	0	0	0	0	322	3,668	69,106	165,354	75,658	45,732	45,360	31,116	33,262	16,950	48,990	24,443	5,538	20,782	43,092	31,760	14,486	4,023	1,974	661	0	0	682,277
1995	0	10	0	681	3,411	48,690	208,409	82,680	72,294	96,260	64,202	70,646	26,482	77,225	42,417	16,595	37,907	131,396	74,010	22,292	5,902	5,433	7,728	6,696	2,758	0	1,104,124
1994	0	0	0	0	13,028	59,938	21,530	39,768	39,107	39,539	20,520	31,589	27,506	17,038	10,896	52,899	42,771	32,128	11,911	4,768	5,081	8,866	2,011	2,323	860	0	490,077
1993	0	0	0	284	18,809	11,939	39,100	43,049	46,874	43,976	30,688	59,294	27,008	29,947	46,997	107,062	54,401	27,577	10,736	13,607	11,963	10,167	1,329	598	0	0	635,405
1992	0	0	0	162	782	21,455	38,081	67,027	59,445	67,358	56,969	61,394	36,293	37,218	150,237	168,966	63,304	9,342	15,467	23,380	43,605	15,240	3,186	1,287	0	0	940,198
1991	0	0	170	0	715	6,067	24,911	143,024	74,575	149,035	43,519	94,020	59,273	377,521	116,171	38,750	37,870	30,696	32,392	55,116	3,840	1,341	0	0	0	0	1,289,006
1990	I	I	ł	1	ł		ł	ł	ł	ł	1	:	ł	ł	ł	ł	;	ł	1	;	1	ł	ł	;	:	ł	ł
1989	0	0	0	0	2,184	7,275	41,140	241,301	111,156	149,143	68,495	894,895	187,280	193,548	71,920	81,447	24,342	51,725	0	0	0	0	0	0	0	0	2,125,851
1988	0	0	0	0	0	14,997	192,324	155,569	114,725	251,417	910,016	226,380	232,810	167,054	81,596	22,969	16,336	6,681	2,863	0	0	0	0	0	0	0	2,395,737
Age	0	-	2		4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	Totals

Figure 3. Pollock proportion-at-length (sexes combined: bold line, males: medium line, females: dashed line) derived for strata 1-3 during the winter 2003 echo integration-trawl survey of the Bogoslof Island area.

Fork length (cm)

Figure 5. Population-at-length (top) and biomass-at-length (bottom) estimates from the winter 2003 echo integration-trawl survey of walleye pollock in the Bogoslof Island area.

Figure 6. Numbers-at-length estimates (millions) from echo integration-trawl surveys of spawning pollock near Bogoslof Island in winter 1988-2003. The United States conducted all but the 1999 survey, which was conducted by Japan. There was no survey in 1990. Note y-axis scales differ.

Figure 7. Biomass estimates and average fork lengths obtained during winter echo integration-trawl surveys for walleye pollock in the Bogoslof Island area, 1988-2003. The U.S. conducted all but the 1999 survey, which was conducted by Japan. There was no survey in 1990. Total pollock biomass for each survey year is indicated on top of each bar and average fork length (cm) is indicated inside each bar.

Figure 8. Numbers-at-age estimates (millions) obtained during echo integration-trawl surveys of walleye pollock near Bogoslof Island in winter 1988-2001. Major year classes on the EBS shelf are indicated. The United States conducted all but the 1999 survey, which was conducted by Japan. No survey was conducted in 1990. Ages are not yet available for 2002 and 2003. Note y-axis scales differ.

2002 acoustic-trawl survey of Update of results from winter Bogoslof region

Preliminary numbers-at-age for 2002 Miller Freeman survey of Bogoslof. Age data from A. Nishimura (JFA). U.S. ageing results not yet available

age

2002 Bogoslof

#-30

Update of results from summer 2002 acoustic-trawl survey of EBS shelf (US EEZ)

Summer 2002 EBS Shelf

II-32

surface to 3 m off bottom.

Section III

Section III (for Agenda Item 5.4 – Review the status of Aleutian Basin pollock stocks)Report – Eastern Bering Sea walleye pollock stock assessmentIII-1

Eastern Bering Sea Walleye Pollock Stock Assessment

James N. Ianelli, Steve Barbeaux, Taina Honkalehto, Gary Walters, and Neal Williamson

> Alaska Fisheries Science Center National Marine Fisheries Service

Summary

The primary focus of this chapter is on the eastern Bering Sea region. The Aleutian Islands region and Bogoslof Island area are treated separately in Sections 1.15 and 1.16.

Changes in the input data

The 2002 NMFS bottom-trawl survey estimates of population numbers-at-age were available for analysis in this assessment. The biomass estimate for 2002 is 4.82 million tons, an increase of 16% from the 2001 estimate of 4.14 million tons. For the echo-integration trawl (EIT) surveys the 2002 biomass estimate for the region is 3.6 million tons, an 18% increase over the 2000 estimate (the last year an EIT survey was conducted). Samples of pollock otoliths from the bottom trawl survey were examined for age determination and an estimate of the numbers-at-age from this survey were computed and used in the analysis. For the EIT survey, the otolith samples have not yet been processed. Therefore, we applied the age-length key constructed from the bottom-trawl survey collections to the EIT length composition estimates. We used these preliminary estimates of the 2002 numbers-at-age from the EIT survey within the assessment analysis.

The NMFS observer samples of pollock age and size composition were evaluated for the 2001 fishery and these data were included in the analyses. The estimates of average weight-at-age from the fishery were also revised. The total catch estimate was updated for 2001. For 2002, we assumed that the catch is equal to the 2002 TAC (1,485,000 t).

Changes in the assessment model

No major changes to the assessment model were made this year. As in past years, an array of model alternatives were performed and evaluated for contrast.

Changes in the assessment results

Compared to last year's estimates, the 2001 biomass level is about 6% higher due to increases in the estimates of the age 9 and older pollock. Also, the estimates of the 1999 and 2000 year classes increased and appear to be average or above-average in magnitude.

The 2003 maximum ABC alternatives based on the $F_{40\%}$ and F_{msy} are 2,322 and 2,327 thousand tons, respectively for the reference model (F_{msy} harvests based on the harmonic mean value). As with last year, a lower value for the F_{msy} value reflects the level of uncertainty about stock size. The 2003 overfishing level (OFL) alternatives for the reference model are 2,869 and 3,532 thousand tons corresponding to $F_{35\%}$ and F_{msy} (arithmetic mean). Stock levels appear to be relatively high for EBS pollock, but a large degree of uncertainty in the estimates remains.

In the summer of 2002, NMFS conducted a bottom-trawl survey throughout the Aleutian Islands region. The estimate of on-bottom pollock in the Aleutians from this survey is **175,283 t**, up considerably from the 2000 estimate of 105,554 t. This gives **ABC** and **OFL values of 39,438 t** and **52,585 t**, respectively.

For the Bogoslof region, we followed the SSC recommendations and compute maximum permissible ABC and OFL based on Tier 5. This results in **33,982** t and **45,309** t for ABC and OFL, respectively. Following SSC recommendations reduced the ABC relative to the target stock size (2 million tons). This gives a 2003 ABC of **4,074** t for the Bogoslof Island region.

<u>m</u>-1

Section IV

Section IV (for Agenda Item 5.7– Methodologies to determine AHL)

Report – Formulation and determination of ABC/AHL Procedure	IV-1
Preliminary Computation of 2003 ABC for Bogoslof pollock	IV-3

,

Formulation and Determination of ABC/AHL Procedure Summary by

Loh-Lee Low

Alaska Fisheries Science Center, NMFS

At the May 19-21, 2003 Central Bering Sea Pollock Workshop held in Pusan, the participants agreed that an Acceptable Biological catch (ABC) could be calculated according to scientific procedures as an intermediate step to determine Allowable Harvest levels (AHLs). The Convention is very specific on how AHL is determined. It was suggested that the ABC procedures used by the North Pacific Fishery Management Council (NPFMC), or modifications thereof, could be a good a good start to determine ABC for central Bering Sea pollock.

The NPAFC has a process to determine the ABC of groundfish fishery resources in the U.S. EEZ off Alaska that is dependent on the best estimate of the stock biomass and its appropriate exploitation rate. The choice of the procedure is dependent upon information according to 6 different tiers of data quality on the stock.

For the estimation of biomass, Jim Ianelli has evaluated a simplified age-structured model based on recent Bogoslof population trends. The Council's Scientific and Statistical Committee (SSC) determined that the age-structured model to be inappropriate to estimate the biomass of Pollock for the Bogoslof area since it covered only part of the stock and concurred with the Fishery Plan Team of the Bering Sea-Aleutians groundfish resources on placing Bogoslof pollock in Tier 5 of the ABC determination process.

Since 1999 The Plan Team has presented 2 alternative methods for computing ABC values for the Bogoslof region to the North Pacific Fishery Management Council. They include:

- 1. A Plan Team-preferred method that is a straight-forward application of the Tier 5 ABC calculation method where $F_{ABC} = 0.75 \text{ *M}$; and
- 2. A Council SSC-preferred method that assumes from historical survey biomass trends that 2 million mt represents the best estimate of a target $B_{40\%}$ level.

Both calculations of ABCs for the Bogoslof area will be shown below. Both procedures depend upon the biomass estimated in the Bogoslof Island area by research survey vessels using the Echointegration survey technique of the U.S. R/V *Miller Freeman* and the Japanese R/V *Kaiyo maru*.

The biomass estimates made by echo-integration-trawl (EIT) surveys since 1988 are shown in the Fig 1.1 and the table below as follows:

	Biomass (million mt)													
1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
2.4	2.1	-	1.3	0.9	0.6	0.49	1.1	0.68	0.39	0.49	0.48	0.30	0.23	0.23

Plan Team-Preferred Procedure 1 -- Tier 5 computations use the most recent survey biomass estimate applied to an adjusted natural mortality for the Bogoslof pollock stock. This gives a 2002 ABC estimate of **33,982 t** (2001 survey biomass $\times M \times 0.75$) at a biomass of 226,548 t (with M = 0.2). The OFL is **45,309 t**.

SSC-Preferred Procedure 2 -- Given the survey estimate of exploitable biomass of 0.232 million t and M = 0.2 and based on the SSC discussions for further reductions in ABC based on considerations of a target stock size of 2 million tons, the F_{ABC} recommendation is computed as:

$$F_{abc} \leq F_{40\%} \times \left(\frac{B_{2002}}{B_{40\%}} - 0.05\right) / (1 - 0.05) = 0.27 \times \left(\frac{226,000}{2,000,000} - 0.05\right) / (1 - 0.05) = 0.018$$

Using a fishing mortality rate of 0.018 translates to an exploitation rate of 0.018 which when multiplied by 226,548 t, gives a **2002 ABC of 4,074 t** for the Bogoslof region.

Both procedures of calculation were presented each year to the North Pacific Fishery Management Council and the Council has always selected the SSC-preferred procedure.

Preliminary Computation of 2003 ABC for Bogoslof Pollock

Jim Ianelli

Alaska Fisheries Science Center, NMFS

Since 1999 The Plan Team has presented 2 alternative methods for computing ABC values for the Bogoslof region to the North Pacific Fishery Management Council. They include:

- 3. A Plan Team-preferred method that is a straight-forward application of the Tier 5 ABC calculation method where $F_{ABC} = 0.75 \text{ *M}$; and
- 4. A Council SSC-preferred method that assumes from historical survey biomass trends that 2 million mt represents the best estimate of a target $B_{40\%}$ level.

Both calculations of ABCs for the Bogoslof area will be shown below. Both procedures depend upon the biomass estimated in the Bogoslof Island area by research survey vessels using the Echointegration survey technique of the U.S. R/V *Miller Freeman* and the Japanese R/V *Kaiyo maru*.

The biomass estimates made by echo-integration-trawl (EIT) surveys since 1988 are shown in the Fig 1.1 and the table below as follows:

Biomass (million mt)														
1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
2.4	2.1	-	1.3	0.9	0.6	0.49	1.1	0.68	0.39	0.49	0.48	0.30	0.23	0.23

2003 CBS Specific area Pollock biomass = 198,000 mt

Plan Team-Preferred Procedure 1 -- Tier 5 computations use the most recent survey biomass estimate applied to an adjusted natural mortality for the Bogoslof pollock stock. This gives a 2003 ABC estimate of **29,760 t** (2003 survey biomass $\times M \times 0.75$) at a biomass of 198,400 t (with M = 0.2). The OFL is **39,680 t**.

SSC-Preferred Procedure 2 -- Given the survey estimate of exploitable biomass for the CBS specific area of 0.198 million t and M = 0.2 and based on the SSC discussions for further reductions in ABC based on considerations of a target stock size of 2 million tons, the F_{ABC} recommendation is computed as:

$$F_{abc} \le F_{40\%} \bullet \left(\frac{B_{2003}}{B_{40\%}} - 0.05\right) / (1 - 0.05) = 0.27 \bullet \left(\frac{198,403}{2,000,000} - 0.05\right) / (1 - 0.05) = 0.014$$

Using a fishing mortality rate of 0.014 translates to an exploitation rate of 0.014 which when multiplied by 198,000 t, gives a **2003 ABC of 2,774 t** for the Bogoslof region.

Both procedures of calculation were presented each year to the North Pacific Fishery Management Council and the Council has always selected the SSC-preferred procedure.

Section V

Section V (for Agenda Item 7 – Other matters and recommendations) Web Site information of Convention reports

Web Site Information

for

Parties to the Convention on the Conservation and Management of Pollock Resources in the Central Bering Sea

Temporary Website:

http://www.afsc.noaa.gov/refm/cbs/convention_conferences.htm

The following records are currently in the Website:

Description of the Convention Records of the Annual Conferences Records of Workshops Documents and Data Records Key Contact person from each Party

Suggestions:

- 1. This website is in a temporary location in NOAA-REFM Division computer.
- 2. We need to move this website to neutral computer, such as a commercial Website Host
- 3. Who will pay for hosting? Cost estimate is about \$20 per month.
- 4. Who will be custodian for maintenance of website?