Alaska

Fisheries Science
Center

National Marine
Fisheries Service
U.S DEPARTMENT OF COMMERCE

# AFSC PROCESSED REPORT 2018-03 

# Results of the Acoustic-Trawl Survey of Walleye Pollock (Gadus chalcogrammus) on the U.S. Bering Sea Shelf in June - August 2016 (DY1608) 

May 2018

This document should be cited as follows:

Honkalehto, T., A. McCarthy, and N. Lauffenburger. 2018. Results of the acoustic-trawl survey of walleye pollock (Gadus chalcogrammus) on the U.S. Bering Sea shelf in June - August 2016 (DY1608). AFSC Processed Rep. 2018-03, 78 p. Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv., 7600 Sand Point Way NE, Seattle WA 98115.

Available at http://www.afsc.noaa.gov/Publications/ProcRpt/PR2018-03.pdf

Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA.

# Results of the Acoustic-Trawl Survey of Walleye Pollock (Gadus chalcogrammus) on the U.S. Bering Sea Shelf in June - August 2016 (DY1608) 

by

T. Honkalehto, A. McCarthy and N. Lauffenburger<br>Resource Assessment and Conservation Engineering Division<br>Alaska Fisheries Science Center<br>National Marine Fisheries Service<br>National Oceanic and Atmospheric Administration<br>7600 Sand Point Way NE<br>Seattle, WA 98115

May 2018


#### Abstract

Eastern Bering Sea shelf walleye pollock (Gadus chalcogrammus) midwater abundance and distribution were assessed from Bristol Bay to the U.S.-Russia Convention Line between 12 June and 17 August 2016 using acoustic-trawl survey methods aboard the NOAA ship Oscar Dyson. Water column temperatures were warmer in 2016 (mean sea surface temperature $11.4^{\circ} \mathrm{C}$ ) compared with temperatures during the previous survey effort in 2014 (mean $9.6^{\circ} \mathrm{C}$ ), and much warmer than in prior cold years (2006-2012; means between $4.9^{\circ}-6.8^{\circ} \mathrm{C}$ ). The walleye pollock biomass was distributed evenly across the shelf, from west of Port Moller, AK, to the U.S.Russia border, primarily between 70- and 250-m isobaths. The estimated numbers of pollock in midwater (between 16 m from the sea surface and 3 m off bottom) were 10.78 billion fish with a biomass of 4.063 million metric tons ( t ). This was an 18\% increase in biomass from the 2014 estimate ( 3.439 million t ), more than twice that observed in 2012 ( 1.843 million t ), and exceeding all other estimates since 1988. Pollock east of $170^{\circ} \mathrm{W}$ numbered 2.82 billion fish and weighed 1.521 million $t(37 \%$ of the total shelf-wide biomass). Four-year-old pollock ( 41 cm mode fork length (FL)) composed $75 \%$ of the biomass east of $170^{\circ} \mathrm{W}$ and contributed to the increase in biomass compared to 2014. Pollock abundance west of $170^{\circ} \mathrm{W}$ was 7.954 billion fish weighing 2.542 million $t$ ( $63 \%$ of total shelf-wide biomass). Most pollock were aged 2, 3 and 4 years ( 24,33 , and 40 cm mode FLs, respectively). The amount of pollock between 0.5 m and 3 m above the seafloor, for the 2016 survey was 1.44 billion fish weighing 0.766 million t . The geographic distribution of these near-bottom fish was similar to fish higher in the water column (i.e., 3 m off bottom to near the sea surface). That is, roughly one-third of this biomass was also observed east of $170^{\circ} \mathrm{W}$. Both smaller (younger) and larger (older) pollock were observed near the seafloor, but rarely in midwater. The mean biomass-weighted depth of pollock for adults ( $\geq 30 \mathrm{~cm}$ FL, age-3+) was 78 m east of $170^{\circ} \mathrm{W}$ and 90 m west of $170^{\circ} \mathrm{W}$. The mean weighted depth of juveniles ( $<30 \mathrm{~cm}$ FL, ages 1 and 2) west of $170^{\circ} \mathrm{W}$ was 95 m . Euphausiids exhibited a patchy distribution over the surveyed area in 2016. The mean density estimate for 2016 was the lowest in the euphausiid time series, which started in 2004.


## CONTENTS

ABSTRACT ..... iii
INTRODUCTION ..... 1
METHODS ..... 2
Acoustic Equipment, Calibration, and Data Collection ..... 2
Trawl Gear and Oceanographic Equipment ..... 3
Survey Design ..... 5
Data Analysis ..... 8
RESULTS AND DISCUSSION ..... 11
CALIBRATION ..... 11
Water Temperature ..... 11
Trawl Sampling ..... 12
ACOUSTIC BACKSCATTER AND ABUNDANCE ESTIMATES ..... 13
Pollock Length and Age Composition ..... 15
LengTh and weight at age ..... 16
POLLOCK VERTICAL DISTRIBUTION ..... 16
historical population trends ..... 17
An Acoustic Index of Euphausiid Biomass in the EBS ..... 19
ACKNOWLEDGMENTS ..... 19
CITATIONS ..... 21
TABLES AND FIGURES ..... 25
Appendix I. -- ITINERARY ..... 77
Appendix II. -- SCIENTIFIC PERSONNEL ..... 78

## INTRODUCTION

Scientists from the Midwater Assessment and Conservation Engineering (MACE) Program of the Alaska Fisheries Science Center (AFSC) have conducted summer acoustic-trawl (AT) surveys to estimate the abundance and distribution of walleye pollock (Gadus chalcogrammus) on the eastern Bering Sea (EBS) shelf since 1979. Surveys were conducted triennially through 1994 and have been conducted either annually or biennially since 1994. They generally extend from seafloor depths of 50 m to $1,000 \mathrm{~m}$, encompassing the middle ( 50 to 100 m isobaths) and outer (100 to 200 m isobaths) domains of the Bering Sea shelf. The 2016 AT survey was carried out between 12 June and 17 August aboard the NOAA ship Oscar Dyson. Its primary objective was to collect acoustic and trawl information to estimate walleye pollock midwater abundance and distribution within the U.S. portion of the Bering Sea shelf. The adjoining Russian portion of the EBS shelf was not surveyed as permission to survey that region was not granted in 2016. Additional survey sampling included conductivity-temperature-depth (CTD) probes to characterize the Bering Sea shelf oceanographic conditions, and supplemental trawls to improve acoustic species classification, and to obtain an index of euphausiid biomass using multiple acoustic frequency techniques.

This report estimates 2016 walleye pollock abundance and biomass by size and age from near the sea surface to 3 m off bottom. It also estimates abundance and biomass between 3 m and 0.5 m of the seafloor using a new method to quantify the acoustically observed pollock in this near-bottom layer (Lauffenburger et al. 2017). Other survey results presented include 1) acoustic system calibration, 2) physical oceanographic (temperature) spatial patterns, 3) pollock biomass spatial patterns, 4) non-pollock classified backscatter ( 38 kHz ) spatial patterns, 5) pollock biomass-weighted vertical distributions, 6) AT survey time series of pollock abundance estimates, and 7) a preliminary distribution of the euphausiid biomass index.

## METHODS

MACE scientists conducted the AT survey (cruise DY2016-08) aboard the NOAA ship Oscar Dyson, a 64-m stern trawler equipped for fisheries and oceanographic research. The vessel itinerary and scientific personnel list are presented in Appendices I and II.

## Acoustic Equipment, Calibration, and Data Collection

Acoustic measurements were collected with a Simrad ER60 scientific echo sounding system (Simrad 2008, Bodholt and Solli 1992). Five split-beam transducers operating at 18, 38, 70, 120, and 200 kHz were mounted on the bottom of the vessel's retractable centerboard, which was extended 9.15 m below the water surface.

Standard sphere acoustic system calibrations were conducted at the start and end of the cruise to measure acoustic system performance. The vessel dynamic positioning system was used to maintain the vessel in a stationary position during calibrations. A tungsten carbide sphere ( 38.1 mm diameter) suspended below the centerboard-mounted transducers was used to calibrate the $38-$, $70-, 120-$, and $200-\mathrm{kHz}$ systems. A 64 mm diameter copper sphere was used to calibrate the $18-\mathrm{kHz}$ system. On-axis sensitivity (i.e., transducer gain and $\mathrm{s}_{\mathrm{A}}$ correction) was estimated from measurements with the sphere placed in the center of the beam following the procedure described in Foote et al. (1987). Transducer beam characteristics (i.e., beam angles and angle offsets) were estimated by moving the sphere in a horizontal plane through the beam and fitting these data to a second order polynomial model of the beam pattern using the EK60's calibration utility (Simrad 2008, Jech et al. 2005). The equivalent beam angle (which is used to characterize the volume sampled by the beam) cannot be estimated from the calibration approach used (knowledge is required of the absolute position of the sphere, see Demer et al. 2015). Thus, the transducer-specific equivalent beam angle measured by the echosounder manufacturer, and corrected for the local sound speed (see Bodholt 2002), was used in data processing.

Acoustic (raw) data were collected at the five frequencies with Simrad ER60 (v. 2.4.3) software. Acoustic telegram data were also logged with Echoview EchoLog 500 (v. 4.70.1.14256)
software as a backup. Ping rate for the EK60 system was variable depending on range to the seafloor, but was typically about $1.0 \mathrm{~s}^{-1}$. Results presented in this report, including calibration, are based on 38 kHz raw echo integration data with a post-processing $\mathrm{S}_{\mathrm{v}}$ threshold of -70 dB re 1 $\mathrm{m}^{-1}$. Acoustic measurements were analyzed from 16 m below the surface to within 0.5 m off the sounder detected bottom using Echoview post-processing software (v. 7.1.11 64 bit). The sounder-detected bottom was calculated using the mean of sounder-detected bottom lines for all five frequencies (Jones et al. 2011) and then manually quality-checked.

## Trawl Gear and Oceanographic Equipment

Midwater and near-bottom acoustic backscatter was sampled using an Aleutian wing 30/26 trawl (AWT). This trawl was constructed with full-mesh nylon wings and polyethylene mesh in the codend and aft section of the body. The headrope and footrope each measured 81.7 m ( 268 ft ). Mesh sizes tapered from 325.1 cm (128 in) in the forward section of the net to 8.9 cm ( 3.5 in ) in the codend, where it was fitted with a single 12 mm ( 0.5 in stretched-mesh) codend liner. Near-bottom backscatter was sampled with an 83-112 Eastern bottom trawl without roller gear and fitted with a 12 mm codend liner. A twice-modified Marinovich midwater trawl with a 12 m headrope and footrope, 30 m bridle, 6 m vertical opening, and mesh sizes ranging from 6.35 cm ( 2.5 in ; top and sides) to 1.91 cm ( 0.75 in ; codend) with a 3 mm ( $1 / 8 \mathrm{in}$ ) liner was used to sample age- 0 pollock and other small midwater fishes. The AWT, bottom trawl, and Marinovich were fished with $5 \mathrm{~m}^{2}$ Fishbuster trawl doors each weighing 1,089 kg. Vertical net openings and depths were monitored with either a Simrad FS70 third-wire netsounder or a Furuno CN24 acoustic-link netsonde attached to the headrope. A Simrad ITI unit was also used as a backup. Tom weights used for midwater trawls weighed $\sim 113 \mathrm{~kg}$ ( 250 lbs ) for the AWT and $\sim 45 \mathrm{~kg}(100 \mathrm{lbs})$ for the Marinovich. The AWT vertical net opening ranged from 16.5 to 30.9 m and averaged 23.2 m . The bottom trawl vertical net opening ranged from 1.8 to 4.5 m and averaged 3.5 m . The Marinovich trawl vertical opened ranged from 4.0 to 4.7 m and averaged 4.4 m . Detailed trawl gear specifications are described in Honkalehto et al. (2002).

A small mesh ( 12 mm ) recapture (also called 'pocket') net was permanently attached 10 meshes aft on the $3^{\text {rd }}$ bottom panel of the AWT intermediate to sample escapement. The net recaptures organisms that escape through the larger meshes of the trawl. Catch in the recapture net was
recorded independently from the catch in the codend. These data are being used in ongoing work to estimate the trawl selectivity of the AWT and to gauge escapement of juvenile pollock and other small fishes (Williams et al. 2011). Recapture net data were not used to adjust trawl codend catches or other estimates reported here. The AWT also included a stereo camera-trawl (CamTrawl) system used on nearly all hauls (Williams et al. 2010a, b). The CamTrawl consists of two cameras, strobes, and associated electronics mounted within a frame attached to the midsection of an AWT just forward of the codend. It operates autonomously to collect stereo images to identify species and estimate their length as they pass through the trawl.

A Methot trawl was used to sample euphausiid backscatter. The Methot trawl had a rigid square frame measuring 2.3 m on each side, which formed the mouth of the net. Mesh sizes were 2 by 3 mm in the body of the net and 1 mm in the codend. A 1.8 m dihedral depressor was suspended below the frame and a 45 kg lead weight attached to the bottom of the frame to generate additional downward force. A calibrated General Oceanics flowmeter was attached in the mouth of the trawl. The number of flowmeter propeller revolutions and the total time the net was in the water were used to determine the volume of water filtered during hauling. The trawl was attached to a single cable fed through a stern-mounted A-frame. Real-time trawl depths were monitored using a Simrad ITI acoustic link temperature-depth sensor attached to the bottom of the Methot frame. All survey operations were conducted as specified in NOAA protocols for fisheries acoustics surveys and related sampling ${ }^{1}$, and the acoustic units used are defined in MacLennan et al. (2002).

Physical oceanographic measurements were made throughout the cruise. Temperature-depth profiles were obtained at trawl sites with a Sea-Bird Electronics temperature-depth probe (SBE39) attached to the trawl headrope. These temperature profile data were subsequently averaged by geographic area and 1-m vertical depth bins. Conductivity-temperature-depth (CTD)

[^0]measurements were made with a Sea-Bird SBE 911plus CTD at calibration sites and throughout the survey to describe EBS shelf temperature features associated with pollock and euphausiids. CTD casts were made at the closest point along a survey transect to each of 19 nominal station locations selected to provide a systematic, representative set of water column observations (P. Stabeno, PMEL, pers. commun.) to complement SBE profiles. A cast was also made wherever the ship stopped surveying for the night if it was more than 20 nautical miles (nmi) from another nighttime cast. This sampling strategy is repeatable each survey year with minimal impact on other survey operations. Salinity bottle samples (e.g., one bottle every other day, alternating at surface and bottom of cast) were collected from the casts to calibrate the CTD conductivity sensor. Sea surface temperature (SST) was measured continuously using the vessel's Furuno T2000 SST system ( $\pm 0.2^{\circ} \mathrm{C}$ ), with the temperature probe located approximately 1.4 m below the vessel's waterline. SST was recorded using the ship's Scientific Computing System (SCS) and subsequently averaged at 1 nmi resolution. Other environmental data (not reported here) were also recorded using the SCS.

## Survey Design

The survey design initially consisted of 29 north-south oriented parallel transects spaced 20 nmi apart over the Bering Sea shelf from $162^{\circ}$ W (west of Port Moller, Alaska), across the U.S.Russia Convention Line to about $178^{\circ} 20$ E, including the area around Cape Navarin, Russia (Fig. 1). To add an element of randomization to this systematic transect design, the longitudinal position of the first transect was altered by adding a signed, randomly chosen amount that was less than the inter-transect distance, and then subsequent transects were offset by 20 nmi from that point (Rivoirard et al. 2000). The initial plan was amended with the following two changes: 1) Russian transects were removed as the Oscar Dyson was not granted permission to survey in the Russian Exclusive Economic Zone (EEZ), and 2) sufficient pollock backscatter was observed on the first transect to warrant adding 2 additional transects to the east in Bristol Bay yielding a final design with 28 transects (Fig. 1). Echo integration ( $\mathrm{s}_{\mathrm{A}}, \mathrm{m}^{2} \mathrm{nmi}^{-2}$ ) and trawl information were collected during daylight hours (typically between 0600 and 2400 local time). Daytime Methot trawls targeted suspected macrozooplankton backscatter to classify this non-pollock backscatter and to support an acoustic-trawl estimate of Bering Sea euphausiid ('krill') density.

Nighttime hours were devoted to special projects, which included collection of additional physical oceanographic data, additional trawl hauls for species classification (e.g., the Marinovich trawl to sample age-0 pollock, Methot tows to either capture live euphausiid specimens for target strength (TS) measurements or to estimate euphausiid density throughout the water column), and work with other specialized sampling devices. The latter included 1) tests of a lowered TS measurement package (dropTS), 2) broadband acoustic system field tests to estimate fish size, and 3) fish behavior studies with two lowered camera systems. The lowered cameras were designed to observe fish reaction to camera size (large camera platform: ~ 30 kg in air, and small platform: $\sim 5 \mathrm{~kg}$ in air) and strobe light color (red: $\sim 660 \mathrm{~nm}$ vs. white: $\sim 350-$ 700 nm ). In addition to these nighttime projects, two days were added to the survey to participate in field experiments with two autonomous sailing platforms (i.e., Saildrone) equipped with a 2-frequency echosounder system. The objective of one experiment was to evaluate the quality of the acoustic and other sensor data based on pairwise comparisons between the Saildrones and NOAA ship Oscar Dyson. For another experiment (i.e., northern fur seal (Callorhinus ursinus) study), Saildrone data were used to describe the northern fur seal prey field. Two Liquid Robotics wave gliders were also deployed for Pacific Marine Environmental Laboratory (PMEL) researchers during the survey.

Trawl haul catches were sampled to identify the species composition, length, and other biological characteristics of animals in acoustically observed aggregations. For hauls targeting walleye pollock, a portion of the catch was sampled to determine length and sex composition, sexual maturity, body weight, and to collect otoliths for age determination. If mixtures of juveniles and adults were encountered in a haul, the predominant size groups were sub-sampled separately. Approximately 50 to 400 individuals were randomly sampled for length by sex, and about 20 to 50 were sampled for body weight, maturity, and age. Fork lengths (FL) were measured to the nearest millimeter. An electronic motion-compensating scale (Marel M60) was used to weigh individual walleye pollock specimens to the nearest 2 g . Maturity was determined by visual gonad inspection and fish were categorized as immature, developing, mature/pre-
spawning, spawning, or post-spawning ${ }^{2}$. Walleye pollock otoliths were collected and stored in individually marked vials of glycerol-thymol solution. Otoliths were read by AFSC scientists in the Age and Growth Program following the survey to determine ages.

Additional biological samples were taken from most species in the catch. For select species or broader taxonomic groups, 25-100 lengths, and 10-75 lengths paired with individual weights (i.e., length-weights), were taken depending on species and dominance in the catch. These included young-of-the-year (age-0) pollock, forage fishes (e.g., capelin, eulachon, herring, sand lance, northern smoothtongue, myctophids), Pacific cod, rockfishes, and large jellyfishes. For all other species except sessile invertebrates caught in bottom trawls, either 10 length-weights were collected (organisms weighing $\geq 5 \mathrm{~g}$ ) or else 10 individuals were weighed in aggregate and then measured separately for lengths (organisms weighing $<5 \mathrm{~g}$ ). Fork lengths were measured for all fish species, except for capelin, Pacific viperfish, and myctophids, which were measured for standard length (SL). Carapace lengths were measured for shrimp and bell diameters were collected for jellyfishes.

Pocket net catch data were recorded independently from the catch in the codend. Pocket net catches were sorted to species for fishes or broader taxonomic groups for invertebrates, subsampled if necessary, counted and weighed. Twenty or more length samples were taken for each fish species caught in pocket nets. Trawl station and biological measurements were digitally recorded directly into a database using the Catch Logger for Acoustic Midwater Surveys (CLAMS), a customized software program developed by MACE scientists.

CamTrawl images were viewed and annotated if necessary. An automated image processing routine was used to extract length estimates for pollock seen in the CamTrawl images (Chuang et al. 2011). Lengths obtained from CamTrawl were used primarily in comparisons with physically measured fish lengths from the codend to evaluate the accuracy of the imaged-based lengths.

[^1]For Methot trawl hauls, the catch was transferred to a $\sim 0.5 \times 1 \mathrm{~m}$ rectangular plastic tub. Large organisms such as jellyfishes and small fishes were removed, identified to the lowest taxonomic group possible, weighed, and body lengths or diameters (jellyfishes) measured. The remainder of the catch was placed on a $1-\mathrm{mm}$ mesh screen to remove as much seawater as possible and weighed. A subsample of this zooplankton mixture was then weighed and sorted at sea into broad taxonomic groups, while a second subsample was weighed and preserved in a $5 \%$ buffered formalin solution for more detailed enumeration at the Polish Sorting Center in Szczecin, Poland. These results will be reported elsewhere.

Several special projects required additional sampling. Pollock ovaries were collected from all maturity stages of females for a reproductive biology study, along with gonad and liver weight measurements (M. Dorn/S. Neidetcher, AFSC). Whole age-0, age-1 pollock, and Pacific cod were collected for a study to identify potential misclassifications of Bering Sea age-0 pollock during age determination (A. Dougherty, AFSC). Tissue samples or whole fish (if small) were collected for selected species (pollock, Pacific herring, salmon, Pacific sand lance, Atka mackerel, northern smoothtongue, myctophids and gonatid squid) from inside and outside of the fur seal habitat area coinciding with the Saildrone survey. Pacific cod fin clips and otoliths were collected, as well as e-DNA samples for pollock and rockfish (M. Canino, AFSC). Pollock and Arctic cod (if observed) stomachs were collected for diet studies (T.Buckley/K. Aydin, AFSC).

## Data Analysis

Walleye pollock abundance was estimated by combining acoustic and trawl information. Acoustic backscatter was classified as age-1+ walleye pollock ( $\geq 8 \mathrm{~cm}$ ), non-pollock fishes, or an undifferentiated mixture (primarily plankton and small fishes), and integrated over 0.5 nmi elementary distance sampling units (EDSUs) horizontal by 10 m vertical resolution cells to within 0.5 m of the bottom. For a detailed explanation of the standard AT survey abundance estimation procedures (historically used to estimate midwater pollock, from near surface to 3 m off bottom), refer to Honkalehto et al. (2008). The following is a brief summary. Walleye pollock length compositions from 102 AT survey hauls were combined into 27 regional length strata based on geographic proximity, length composition similarities, and backscatter
characteristics. For determination of mean weight-at-length for pollock, hauls were stratified into two separate length-weight strata east and west of $170^{\circ} \mathrm{W}$, as walleye pollock weight-at-length is typically greater to the east than to the west of $170^{\circ} \mathrm{W}$ (Traynor and Nelson 1985, Honkalehto et al. 2002). Mean weight-at-length for each 1.0 cm-length interval was estimated from the trawl information when there were five or more fish for that length interval in a length-weight stratum. Within each length-weight stratum, for length intervals where $<5$ individual fish weights were available, weight was estimated from a linear regression of the natural logs of the length and weight data from the 2016 summer AT survey hauls in that stratum, including a correction for bias attributable to back-transformation (De Robertis and Williams 2008). For each length stratum, walleye pollock numbers-at-length were estimated by dividing the acoustic measurements of area backscattering coefficient ( $\mathrm{s}_{\mathrm{A}}$ ) by the mean backscattering cross section of pollock ( $\sigma_{\mathrm{bs}}$, MacLennan et al. 2002), which is derived by applying an acoustic target strength (TS) to length relationship of TS $=20 \log _{10}$ (FL)-66 to the mean length frequency for the stratum (Foote and Traynor 1988, Traynor 1996). Biomass was estimated by multiplying numbers-atlength by the corresponding mean fish weight-at-length. Results by length were converted into abundance-at-age using age-length keys that proportion the number-at-length into the appropriate age classes based on aged specimens taken from the trawl catches. One age-length key was used for the area to the west, and another to the east, of $170^{\circ} \mathrm{W}$. An improved method was used for estimating ages for instances where no age structures were available from the stratum sample for pollock in a particular length bin (see Jones et al. 2017, Appendix III). Total midwater population numbers and biomass were estimated by summing regional length stratum estimates. Walleye pollock distribution and abundance were also summarized by sub-areas east and west of $170^{\circ} \mathrm{W}$ and for the Steller sea lion Conservation Area (SCA; Fig. 1).

Historically, AT survey results on the U.S. EBS shelf have been presented for the water column which is defined as extending from a depth of 16 m down to 3 m off bottom. The water column did not extend deeper than 3 m above the seafloor because 1) greater contributions to the acoustic backscatter existed for non-pollock species within 3 m of the seafloor, and 2) the annual bottom trawl (BT) survey samples to a nominal depth of 2.5-3.0 m above the seafloor in the U.S.

EEZ (Conner and Lauth 2017, Ianelli et al. 2016, Lauth and Conner 2014). Recently, an approach was developed to estimate the acoustic contribution of pollock relative to other species in the diverse region between 0.5 and 3 m off bottom using a combination of AT and BT data (Lauffenburger et al. 2017). Species-specific parameters were fit using a regression model of simultaneously collected BT-survey acoustic backscatter and catch data. The pollock coefficient in the fitted regression model is used to estimate the contribution of pollock to AT survey backscatter and to compute numbers and biomass at length/age for that near-bottom depth layer, assuming the species composition at most locations does not vary substantially over the $\sim 2$ weeks between BT and AT surveys. The acoustic contribution of pollock between 0.5 and 3 m off bottom for each 0.5-nmi EDSU was computed for 2016 using the AT survey backscatter in that EDSU, distance-weighted mean catch composition from the closest (w/in 25 nmi ) BT survey hauls (BT survey haul data not shown), and the pollock-specific best fit parameter (Lauffenburger et al. 2017). Numbers and biomass by length were computed following the standard AT survey abundance estimation procedures (see above), using length frequencies from the distance-weighted BT catch. A single pollock length-weight relationship was estimated from all BT survey hauls. Age compositions were computed using one age-length key for east of $170^{\circ}$ W , and another for west of $170^{\circ} \mathrm{W}$, based on the BT catch data. Total population numbers and biomass within this near-bottom depth zone were computed by summing EDSU estimates across the surveyed area.

The vertical distribution of pollock was computed by plotting the mean biomass in each 10 m depth bin, at the midpoint of each bin, relative to 1 ) the surface and 2 ) the sea floor. The overall mean weighted depth ( $m w d$ ) and the mean weighted distance off the seafloor was computed for adult pollock ( $\geq 30 \mathrm{~cm}$ FL), and juvenile pollock ( $<30 \mathrm{~cm} \mathrm{FL}$ ) east and west of $170^{\circ} \mathrm{W}$ in the U.S. EEZ as follows:

$$
m w d=\frac{\sum_{d}\left(B_{d} \times d\right)}{\sum_{d}\left(B_{d}\right)}
$$

where $B$ is biomass (kg), and $d$ is either depth or distance from the seafloor (m) for each depth bin-EDSU combination.

Relative errors in the standard midwater biomass and abundance estimates associated with spatial structure in the acoustic data were derived using a one-dimensional (1D) geostatistical method (Petitgas 1993, Williamson and Traynor 1996, Walline 2007). Relative estimation error is defined as the ratio of the square root of the estimation variance to the estimate of biomass. Geostatistical methods were used for error computation because they account for the observed spatial structure in fish distribution. These errors quantify the acoustic sampling variability (Rivoirard et al. 2000). Other sources of error (e.g., target strength, trawl sampling) were not included in the estimate. Error estimates are not yet available for the near-bottom layer biomass estimates.

## RESULTS AND DISCUSSION

## Calibration

Initial acoustic system settings for the survey were based on results from the 13 June calibration (Table 1). The end-of-cruise sphere calibration on 17 August showed little change in integration gain for the $38-\mathrm{kHz}$ system, indicating that the system was stable throughout the survey. Acoustic data were processed using an average of the pre- and post-cruise (linearized) gain values. This resulted in a change of less than $0.1 \%$ to backscatter values processed with precruise gains.

## Water Temperature

Temperature measurements during the 2016 survey produced an estimated mean SST of $11.4^{\circ} \mathrm{C}$ (range $7.4^{\circ}-14.0^{\circ} \mathrm{C}$; Fig. 2, upper panel). The estimate was nearly $2^{\circ} \mathrm{C}$ warmer than 2014 (mean SST $9.6^{\circ} \mathrm{C}$, range $6.4^{\circ}-12.4^{\circ} \mathrm{C}$ ) and much warmer than in relatively cold survey years 2006-2012 (means between $4.9^{\circ}-6.8^{\circ} \mathrm{C}$ ). Seasonal warming of surface waters typically leads to maximum SST in late July-early August (Overland et al. 1999). The warmest SST observations occurred in a north-south band southeast of St. Matthew Island in mid-July. Temperatures were slightly cooler to the northwest near the survey end in early August. Bottom temperatures in 2016 measured by CTD casts were also much warmer than in recent years (mean bottom temperature $3.9^{\circ}$ C, Fig. 2, lower panel). A region of bottom temperatures $<2^{\circ}$ observed previously in the Bering Sea (i.e., termed cold-pool by Wyllie-Echeverria and Wooster 1998) was visible, but only on northern ends of transects from east of St. Matthew Island to the U.S.-Russia Convention

Line. Temperature-depth profiles from trawl headrope sensors indicate that the water column was vertically stratified throughout the EBS with a thermocline at roughly 20-40 m from the surface (Fig. 3). Temperatures below the thermocline in the northwest portion of the survey area were $>2^{\circ} \mathrm{C}$. Temperatures in this layer were cooler, but $>0^{\circ} \mathrm{C}$ in 2014. However, temperatures were well below $0^{\circ} \mathrm{C}$ in recent cold years (2007-2012). The AFSC BT survey, which started earlier than the AT survey, measured similar surface and bottom temperature increases in 2016 compared with prior survey years (R. Lauth, AFSC, personal communication).

## Trawl Sampling

Biological data and specimens were collected from 162 AT survey trawl hauls (Table 2, Fig. 1). The majority of these hauls (122) targeted backscatter during daytime for species classification: 104 with an AWT, 4 with a bottom trawl, 11 with a Methot trawl, and 3 with a Marinovich trawl. The remaining 40 hauls were either nighttime Marinovich tows (3) targeting age-0 pollock or Methot tows (37) targeting euphausiids. Catch data for some of these hauls assisted with backscatter classification. CamTrawl image data were successfully collected for 93 AWT hauls. Biological information collected for walleye pollock and other species is presented by haul in Tables 3-7.

Walleye pollock was the most abundant species in AWT midwater haul catches by weight (89.5\%) and by number (93.7\%), followed by northern sea nettle jellyfish (Chrysaora melanaster; $8.2 \%$ by weight and $3.6 \%$ by number; Table 3). Pollock was the most abundant species ( $80.9 \%$ by weight and $73.6 \%$ by number) in AT survey bottom trawl catches, followed by rock sole (Lepidopsetta spp.; 4.9\% by weight and $8.6 \%$ by number; Table 4). Aequoria spp. (42.4\%), northern sea nettles (34.7\%), lion’s mane (Cyanea capillata; 14.3\%) and Aurelia spp. (4.8\%) jellyfish dominated the catch by weight in Marinovich hauls, while euphausiids (55.6\%) and age-0 pollock (26.0\%) dominated the catch numerically (Table 5). Finally, Methot hauls were dominated by weight by northern sea nettles (57.9\%), euphausiids (20.5\%), and moon jellyfish (Aurelia labiata; 9.5\%), and numerically by euphausiids (90.8\%; Table 6).

Nearly 38,500 lengths were measured and over 6,400 specimen weights were collected for all species during the AT survey (Tables 3-6). Of those, over 35,000 lengths, 4,700 weights, and

2,300 otoliths were for walleye pollock (Table 7). Most pollock ( $89 \%$ of males and females) sampled were in the developing maturity stage (Fig. 4). Two females ( $0.1 \%$ ) were in a spawning stage of maturity ( 1 east and 1 west of $170^{\circ} \mathrm{W}$ ). Walleye pollock mean weight-at-length for fish greater than 50 cm tended to be less in 2016 than those in 2004-2014 (Fig. 5).

## Acoustic Backscatter and Abundance Estimates

About $52 \%$ of the summed acoustic backscatter observed between 16 m below the surface and 3 m off bottom (the midwater layer) during the 2016 survey was attributed to adult or juvenile walleye pollock. This was similar to the percentage of pollock observed in 2014 (45\%) and 2012 (56\%), but less than that observed in 2010 (82\%; Honkalehto and McCarthy 2015; Honkalehto et al. 2013, 2012). Most pollock were observed in a variety of aggregations including nearbottom layers, small dense schools (cherry balls) in midwater, and diffuse aggregations of individual fish. The remaining non-pollock midwater backscatter was attributed to an undifferentiated plankton-fishes mixture (46\%), or in a few isolated areas, to rockfishes (Sebastes spp.) or other fishes (2\%). The near-bottom analysis (Lauffenburger et al. 2017) attributed $\sim 71 \%$ of the backscatter in the near-bottom zone to pollock.

Estimated numbers and biomass of walleye pollock in midwater to within 3 m of bottom along the U.S. Bering Sea shelf were 10.78 billion fish weighing 4.063 million t (Tables 8-10). This 2016 biomass estimate represents $\sim 18 \%$ increase compared to 2014 ( 3.439 million t), and more than twice the biomass observed in 2012 ( 1.843 million t ). It is the largest estimate in the acoustic-trawl survey time series since the late 1980s. The relative estimation error for the U.S. EEZ midwater walleye pollock biomass estimate was 0.021 (Table 8). This was the lowest estimation error since 1994, when these sampling errors were first computed, and suggests pollock were relatively more uniformly distributed (less patchy) in 2016. Midwater pollock were observed throughout the surveyed area between the 50- and 200-m isobaths (Fig. 6, top panel). East of $170^{\circ}$ W, pollock abundance was 2.823 billion fish, weighing 1.521 million t ( $37 \%$ of total midwater biomass, Fig. 7). This was the highest pollock biomass observed east of the Pribilof Islands in the AT survey time series since 1994. In the U.S. EEZ west of $170^{\circ} \mathrm{W}$,
pollock numbered 7.954 billion and weighed 2.542 million t , which was $63 \%$ of total midwater biomass (Table 8, Fig. 7). Pollock biomass increased inside the SCA, where the entire survey and SCA estimates correlate well ( $\mathrm{r}^{2}=0.79 \mathrm{p}<0.001$ ) for the 1994-2016 survey time series (Table 8). Biomass inside the SCA was about half what was outside the SCA.

Estimated numbers and biomass of pollock in the near-bottom layer of the water column ( 0.5 m to 3 m off bottom) were 1.44 billion fish weighing 0.766 million t (Tables 11,12). The relative estimation error for the near-bottom walleye pollock biomass estimate was 0.038 , slightly higher than the midwater estimation error. The geographical distribution was generally similar to that in the midwater layer; $37 \%$ of the biomass was east of $170^{\circ} \mathrm{W}$ and $63 \%$ was west (Fig. 8). However, smaller-scale differences were detected between the near-bottom and midwater layers. For example, there were relatively fewer pollock in the outer edges of the outer shelf domain (100 to 200 m isobaths) between the Aleutian Chain and the Pribilof Islands (horseshoe area; Fig. 6). Additionally, only $\sim 10 \%$ of the total near-bottom biomass was observed within the SCA compared to about 50\% for the midwater layer (Fig. 6, bottom panel). Finally, near-bottom biomass was relatively higher on the outer southeast edge of Zhemchug Canyon, and lower along the $100-\mathrm{m}$ isobath compared to that seen with the midwater layer. This may have occurred because pollock biomass in the midwater layer was dominated by juvenile pollock, which are observed less frequently near the sea floor (Fig. 6).

Moderate pollock biomass was observed at the northern ends of several transects between the Pribilof Islands and the region surrounding St. Matthew Island (e.g., transects 14-18; Fig. 6). Thus, detectable pollock backscatter was anticipated to continue northward beyond the area that the AT survey typically covers, perhaps due to the warm temperatures. Unfortunately, these transects could not be extended northward due to time constraints so it is likely that some pollock biomass existed but was not assessed north of the AT survey area in 2016. Analyses of acoustic data collected during the summer 2017 Northern Bering Sea BT survey and Saildrone acoustic data collected in this northern area couple of weeks earlier in 2017 were used to assess the potential contribution of pollock (Mordy et al. 2017, Alex De Robertis, pers. commun.). Sufficient backscatter presumed to be pollock, combined with CPUE information from the BT
survey in the northern area not covered by the AT survey suggested that additional AT survey time be requested in 2018 to extend survey transects northward.

## Pollock Length and Age Composition

Pollock length compositions differed between midwater and near bottom layers, and modal lengths tended to decline to the west. East of $170^{\circ}$ W, midwater pollock ranged between 11 and 69 cm FL with a mode of 41 cm (Fig. 7). In the U.S. EEZ west of $170^{\circ} \mathrm{W}$, pollock ranged from 13 to 68 cm FL with multiple modes observed at 24, 33 and 40 cm FL (Fig. 7). Within the central region of the surveyed area (i.e., middle shelf; not shown), fish were characterized by having a modal length of 33 cm . Very few fish larger than 50 cm or smaller than 20 cm were observed in midwater in 2016. Near-bottom pollock also exhibited a tendency towards smaller fish to the west. East of $170^{\circ} \mathrm{W}$ these fish ranged from 10 to 77 cm FL , with most fish between 37 and 55 cm , and modes at 40 and 48 cm FL (Fig. 8). West of $170^{\circ} \mathrm{W}$ the near-bottom pollock lengths exhibited a mode at 46 cm FL, and smaller modes at 23 and 14 cm .

Pollock age information in 2016 resembled the patterns seen in the length data. In the midwater layer, fish numbers were dominated by 3-year-olds (2013 year class) and closely followed by 4-year-olds (2012 year class; Table 13). Four-year-olds were dominant in terms of biomass (49\% vs. $29 \%$ for 4 - and 3 -year-olds, respectively; Table 13). Estimated numbers of 4 -year-old pollock surpassed previous estimates in the Bering Sea shelf AT survey time series, with the exception of the 4 -year-olds (1978 year class) in 1982. East of $170^{\circ}$ W, 4-year-olds dominated population numbers (representing $75 \%$ of the biomass east of $170^{\circ}$ W; Fig. 9). Four-year-old pollock were also more abundant east than west of $170^{\circ} \mathrm{W}$, maintaining an eastward shift in distribution of pollock biomass that was observed in 2014 when these fish were 2 years old (Table 8). West of $170^{\circ} \mathrm{W}$, pollock aged as 3 - and 4-year-old fish dominated population numbers ( $43 \%$ and $34 \%$ of biomass west of $170^{\circ} \mathrm{W}$, respectively; Fig. 9). Although a single age group dominated numbers of near-bottom pollock east of $170^{\circ} \mathrm{W}$, this was not the case west of $170^{\circ} \mathrm{W}$ (Fig. 10). Four-year-old fish were numerically dominant near bottom (24\%), although the 8-year-old 2008 year class contributed slightly more biomass (23\%) than did 4-year-olds (22\%; Tables 14, 15).

## Length and Weight at Age

Mean length- and weight-at-age of pollock were plotted against data from AT surveys between 2004 and 2014 (Fig. 11). The results show similar patterns to the mean weight-at-length plot (Fig. 5); east of $170^{\circ} \mathrm{W}$, fish age 5 and older appear to be shorter (Fig. 11a) and lighter (Fig. 11b) in 2016 than in the earlier surveys. As is typical for EBS shelf pollock, length-at-age tended to be greater in the east than in the west, even though data were collected up to a month earlier east of $170^{\circ} \mathrm{W}$. This east west difference supports the use of two age-length keys to convert abundance-at-length to abundance-at-age (see Methods). Comparing mean weight-atages for 2016 with those from 2006-2014 showed relatively greater weights-at-age east than west of $170^{\circ} \mathrm{W}$ for fish < 10 years old for both data sets.

## Pollock Vertical Distribution

Vertical distribution of adult and juvenile pollock exhibited subtle difference to one another (Fig. 12). The estimated mean biomass-weighted depth for adult pollock ( $\geq 30 \mathrm{~cm}$ FL) was 78 m in the region east of $170^{\circ} \mathrm{W}$ and 90 m in the region west of $170^{\circ} \mathrm{W}$, slightly shallower ( 7 m east and 6 m west) compared to 2014. Note that bottom depths gradually increase to the west, which could partially explain the difference in mean depth between areas. The mean biomass-weighted depth for juveniles ( $<30 \mathrm{~cm}$ FL, ~ages 1 and 2 ) west of $170^{\circ} \mathrm{W}$ (relatively few juveniles were observed E of $170^{\circ} \mathrm{W}$ ) was 95 m , roughly 4 m deeper than adults ( 91 m ). However, the juveniles were distributed farther off bottom than adults. More than $89 \%$ of adults across the shelf were found within 50 m of the bottom (mean weighted depth off bottom $26 \mathrm{~m} ; 27 \mathrm{~m}$ east and 24.5 m west of $170^{\circ} \mathrm{W}$ ), whereas for juveniles in the western stratum (i.e., west of $170^{\circ} \mathrm{W}$ ), the proportion within 50 m of bottom was less ( $81 \%$; mean off-bottom depth 34 m ). This may occur (i.e., juveniles deeper but farther off-bottom) because of differences in bathymetry in the survey area. That is, greater proportions of juveniles compared to adults generally tended to occur farther to the west in this western stratum where bottom depths are relatively deeper (Fig. 6). Finally, although adult biomass increased towards the bottom, juvenile biomass peaked at about 20-40 m off bottom and then decreased towards the seafloor.

## Historical Population Trends

Spatial distribution of pollock biomass and non-pollock backscatter were evaluated over the period 2004-2016. Earlier spatial patterns (1999-2002) when the survey was also conducted in early summer (June-July) are presented elsewhere (e.g., Honkalehto et al. 2008, 2009, 2010, 2012, 2013; Honkalehto and McCarthy 2015). Pollock population numbers and biomass estimates were also examined from 1994 to highlight patterns emerging with the addition of results from the most recent surveys (e.g., 2012, 2014, 2016).

Pollock spatial distribution trends in midwater were compared for 2004 through 2016 survey years. While pollock backscatter was relatively widely distributed throughout the survey area in 2004 (Fig. 13), densities were lower and more concentrated west of $170^{\circ} \mathrm{W}$ from 2006 to 2012. In 2014, pollock backscatter increased east of the Pribilof Islands, resulting in a spatial distribution pattern similar to 2004. This spatial pattern continued with even higher backscatter densities in 2016. Spatial distribution patterns for near-bottom pollock backscatter between 2004 and 2016 suggest that from 2004 through 2012, pollock were most concentrated in the central portion of the survey area near the Pribilof Islands (Fig. 14). In 2014 and 2016, pollock backscatter increased and expanded across the entire survey area, with the exception of portions of the outer shelf area.

Temporal patterns in pollock numbers and biomass at length and age since 1994 were examined for both midwater and near-bottom pollock (Figs. 15-18, and Tables 13-15). Since 2014, the 2012 year class ( $40-41 \mathrm{~cm}$, 4-year-olds in 2016, the second most abundant in the time series since 1994) and the 2013 year class ( $33-35 \mathrm{~cm}$, 3 -year-olds in 2016), have grown to dominate the midwater abundance. Older year classes have generally contributed less of the total abundance in the AT survey since about 2006 compared to early years (1994+). For example, the 2008 year class ( $\sim 48-52 \mathrm{~cm}$, 8-year-olds) in 2016, though present, only made up about $8 \%$ of the total numbers.

The EBS pollock population tends to depend on the success of strong year classes at roughly a 35 year frequency (Ianelli et al. 2017). Years with good recruitment are evident in recent AT
survey results (e.g., 1997, 2007-2010, 2014) by the presence of relatively large numbers of 1-2 year olds (Table 13, Figs. 15, 17). In all survey years examined, the near bottom stratum appears to comprise mainly pollock over 40 cm (typically ages 4 to $10+$ ) and 8 to 19 cm (age-1 pollock; Table 14, Figs. 16, 18). In 2016, the 2008 year class made up $23 \%$ of the total nearbottom biomass and the 2012 year class made up 22\%; there were relatively few age 1 pollock.

Pollock biomass estimates for the stock portion in midwater, near-bottom, and combined were plotted for the U.S. EEZ survey area between 1994 and 2016 (Fig. 19). The midwater biomass averaged 2.54 million $t$. The near-bottom biomass averaged 0.64 million $t$, which represented about $21 \%$ of the average combined biomass of 3.17 million $t$. The near-bottom biomass ranged from $12 \%$ (2010) to $30 \%$ in (2009) of the combined biomass over the time series. The near bottom estimate was $16 \%$ of the combined estimate of 4.8 million $t$ in 2016. When these new, near-bottom survey estimates were added to the midwater estimates, the combined values were 14 to 43\% higher than midwater estimates alone over the 1994-2016 time series.

The non-pollock portion of observed midwater acoustic backscatter at 38 kHz ("non-pollock backscatter") is assumed to represent a temporally-varying mixture of largely unidentified zooplankton and fishes. This backscatter has varied spatially over the AT survey time series. Most non-pollock backscatter (at 38 kHz ) has been observed in the upper part of the water column above the thermocline (Honkalehto et al. 2008). Non-pollock backscatter observed in midwater in 2016, a very warm year, consisted of two large patches covering a broad region at the north ends of transects from south of St. Matthew Island eastward into Bristol Bay (Fig. 20). Non-pollock backscatter observed in 2004 covered large portions of the survey area on the middle shelf from the Alaska Peninsula to Cape Navarin, Russia. It diminished during years of relatively cold Bering Sea conditions between 2006 and 2010. Concentrations were observed in some years (e.g., 2007, 2008, 2012, and 2014) near the Pribilof Islands. This backscatter information should be interpreted with caution because the exact biological composition of the scatterers is unknown.

## An Acoustic Index of Euphausiid Biomass in the EBS

Euphausiids, principally Thysanoessa inermis and T. raschii, are among the most important prey items for walleye pollock in the Bering Sea (e.g., Livingston 1991, Lang et al. 2000, Brodeur et al. 2002). Acoustic data at four frequencies (18, 38, 120, and 200 kHz ) and Methot trawl sampling (2004-2016) were used to classify euphausiid backscatter and create an index of euphausiid biomass on the Bering Sea shelf from 2004 to the present (De Robertis et al. 2010, Ressler et al. 2012). In 2016, 10 Methot trawls targeted suspected euphausiid backscatter during daytime and 38 oblique Methot trawls were conducted at night as part of a study of euphausiid acoustical properties and net avoidance. Preliminary results show the spatial distribution and relative magnitude of the euphausiid backscatter was patchy across the survey area, with highest backscatter densities appearing near submarine canyon edges (Pribilof, Zhemchug, Pervenets, and Navarin canyons), near Unimak Pass, and across shallower regions of the southeastern shelf (Fig. 21). The total amount of euphausiid backscatter observed in 2016 was the lowest value of the entire euphausiid time series (Fig. 22).

## ACKNOWLEDGMENTS

The authors thank the officers and crew of the NOAA ship Oscar Dyson for their proficient field support. They thank the MACE lead scientists and staff for excellent field work and data analysis support.

## CITATIONS

Bodholt, H. 2002. The effect of water temperature and salinity on echo sounder measurements. ICES Symposium on Acoustics in Fisheries, Montpellier 10-14 June 2002.

Bodholt, H., and H. Solli. 1992. Split beam techniques used in Simrad EK500 to measure target strength, p.16-31. In World Fisheries Congress, May 1992, Athens, Greece.

Brodeur, R.D., M.T. Wilson, L. Ciannelli, M. Doyle, and J.M. Napp. 2002. Interannual and regional variability in distribution and ecology of juvenile pollock and their prey in frontal structures of the Bering Sea. Deep-sea Res. II 49: 6051-6067.

Conner, J., and R. R. Lauth. 2017. Results of the 2016 eastern Bering sea continental shelf bottom trawl survey of groundfish and invertebrate resources. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC 352,159 p.

Chuang, M.C., J.N. Hwang, K. Williams, and R. Towler. 2011. Automatic fish segmentation via double local thresholding for trawl-based underwater camera systems. In Image Processing (ICIP), 2011 18th IEEE International Conference on (pp. 3145-3148). IEEE.

Demer, D.A., Berger, L., Bernasconi, M., Bethke, E., Boswell, K., Chu, D., Domokos, R., et al. 2015. Calibration of acoustic instruments. ICES Coop. Res. Rep. 326, 133 pp.

De Robertis, A., D.R. McKelvey, and P.H. Ressler. 2010. Development and application of an empirical multifrequency method for backscatter classification. Can. J. Fish. Aquat. Sci. 67:1459-1474.

De Robertis, A., and K. Williams. 2008. Weight-length relationships in fisheries studies: the standard allometric model should be applied with caution. Trans. Am. Fish. Soc. 137:707-719.

Foote, K. G., H. P. Knudsen, G. Vestnes, D. N. MacLennan, and E. J. Simmonds. 1987. Calibration of acoustic instruments for fish density estimation: a practical guide. ICES Coop. Res. Rep. No. 144, 69 p.

Foote, K.G., and J. Traynor. 1988. Comparison of walleye pollock target-strength estimates determined from in situ measurements and calculations based on swimbladder form. J. Acoust. Soc. Am. 83: 9-17.

Honkalehto, T., W. Patton, S. de Blois, and N. Williamson. 2002. Echo integration-trawl survey results for walleye pollock (Theragra chalcogramma) on the Bering Sea shelf and slope during summer 2000. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-126, 66 p.

Honkalehto, T., N. Williamson, D. Jones, A. McCarthy, and D. McKelvey. 2008. Results of the echo integration-trawl survey of walleye pollock (Theragra chalcogramma) on the U.S. and Russian Bering Sea Shelf in June and July 2007. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-190, 53 p.

Honkalehto, T., D. Jones, A. McCarthy, D. McKelvey, M. Guttormsen, K. Williams, and N. Williamson. 2009. Results of the echo integration-trawl survey of walleye pollock (Theragra chalcogramma) on the U.S. and Russian Bering Sea shelf in June and July 2008. U.S. Dept. of Commer., NOAA Tech. Memo. NMFS-AFSC-194, 56 p.

Honkalehto, T., A. McCarthy, P. Ressler, S. Stienessen, and D. Jones. 2010. Results of the acoustic-trawl survey of walleye pollock (Theragra chalcogramma) on the U.S. and Russian Bering Sea shelf in June - August 2009 (DY0909). AFSC Processed Rep. 201003, 57 p. Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv., 7600 Sand Point Way NE, Seattle WA 98115.

Honkalehto, T., A. McCarthy, P. Ressler, K. Williams, and D. Jones. 2012. Results of the acoustic-trawl survey of walleye pollock (Theragra chalcogramma) on the U.S. and Russian Bering Sea shelf in June - August 2010 (DY1006). AFSC Processed Rep. 201201, 57 p. Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv., 7600 Sand Point Way NE, Seattle WA 98115.

Honkalehto, T., A. McCarthy, P. Ressler, and D. Jones. 2013. Results of the acoustic-trawl survey of walleye pollock (Theragra chalcogramma) on the U.S. and Russian Bering Sea shelf in June - August 2012 (DY1207). AFSC Processed Rep. 2013-02, 60 p. Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv., 7600 Sand Point Way NE, Seattle WA 98115.

Honkalehto, T., and A. McCarthy. 2015. Results of the acoustic-trawl survey of walleye pollock (Theragra chalcogramma) on the U.S. and Russian Bering Sea shelf in June - August 2014 (DY1407). AFSC Processed Rep. 2013-02, 60 p. Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv., 7600 Sand Point Way NE, Seattle WA 98115.

Ianelli, J. N., S. Kotiwicki, T. Honkalehto, K. Holsman, and B. Fissel, 2017. Assessment of the walleye pollock stock in the eastern Bering Sea, p. 55-184 In Stock assessment and fishery evaluation report for the groundfish resources of the Bering Sea/Aleutian Islands regions. N. Pac. Fish. Mgmt. Counc., 605 W. $4^{\text {th }}$ Ave., Anchorage, AK 99501-2252.

Ianelli, J. N., T. Honkalehto, S. Barbeaux, B. Fissel, and S. Kotwicki. 2016. Assessment of the walleye pollock stock in the eastern Bering Sea, p. 55-180 In Stock assessment and fishery evaluation report for the groundfish resources of the Bering Sea/Aleutian Islands regions. N. Pac. Fish. Mgmt. Counc., 605 W. $4^{\text {th }}$ Ave., Anchorage, AK 99501-2252.

Jech, J. M., K. G. Foote, D. Chu, and L. C. Hufnagle. 2005. Comparing two 38-kHz scientific echosounders. ICES J. Mar. Sci. 62: 1168-1179.

Jones, D. T., A. De Robertis, and N. J. Williamson. 2011. Statistical combination of multifrequency sounder-detected bottom lines reduces bottom integrations. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-219, 13 p.

Jones, D. T., S. Stienessen, and N. Lauffenburger. 2017. Results of the acoustic-trawl survey of walleye pollock (Gadus chalcogrammus) in the Gulf of Alaska, June-August 2015 (DY2015-06). AFSC Processed Rep. Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv., 7600 Sand Point Way NE, Seattle WA 98115.

Lang, G.M., R.D. Brodeur, J.M. Napp, and R. Schabetsberger. 2000. Variation in groundfish predation on juvenile walleye pollock relative to hydrographic structure near the Pribilof Islands, Alaska. ICES J. Mar. Sci. 57:265-271.

Lauffenburger, N., A. De Robertis, S. Kotwicki. 2017. Combining bottom trawls and acoustics in a diverse semipelagic environment: What is the contribution of walleye-pollock (Gadus chalcogrammus) to near-bottom acoustic backscatter in the eastern Bering Sea?. Can. J. Fish. Aquat. Sci. 74:256-264.

Lauth, R. R. and J. Conner. 2014. Results of the 2011 eastern Bering Sea continental shelf bottom trawl survey of groundfish and invertebrate fauna. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-227, 176 p.

Livingston, P.A. 1991. Walleye pollock. p. 9-30. In P.A. Livingston (ed.), Groundfish food habits and predation on commercially important prey species in the eastern Bering Sea, 1984-1986. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-F/NWC-207, 240 p.

MacLennan, D. N., Fernandes, P. G., and Dalen, J. 2002. A consistent approach to definitions and symbols in fisheries acoustics. ICES J. Mar. Sci. 59: 365-369.

Mordy, C., Cokelet, E., De Robertis, A., Jenkins, R., Kuhn, C. E., Lawrence-Slavas, N., Brerchok, C., et al. 2017. Saildrone Surveys of Oceanography, Fish and Marine Mammals in the Bering Sea. Oceanography, 30(2):113-116.

Overland, J.E., S.A. Salo, L.H. Kantha, and C.A. Clayson. 1999. Thermal stratification and mixing on the Bering Sea shelf, p. 129-146 In T.R. Loughlin and K. Ohtani (eds.), Dynamics of the Bering Sea: a summary of physical, chemical and biological characteristics and a synopsis of research on the Bering Sea. Sydney, British Columbia and Fairbanks, Alaska: North Pacific Marine Science Organization (PICES), and University of Alaska Sea Grant College Program AK-SG-99-03.

Petitgas, P. 1993. Geostatistics for fish stock assessments: a Review and an acoustic application. ICES J. Mar. Sci. 50:285-298.

Ressler, P.H., De Robertis, A., Warren, J.D., Smith, J.N., and Kotwicki, S. 2012. Developing an acoustic index of euphausiid abundance to understand trophic interactions in the Bering Sea ecosystem. Deep-Sea Res. II. 65-70 (2012): 184-195.

Rivoirard, J., Simmonds, J., Foote, K.G., Fernandez, P., and Bez, N. 2000. Geostatistics for estimating fish abundance. Blackwell Science, Ltd., Oxford, U.K., 206 p.

Simrad. 2008. Simrad ER60 scientific echo sounder manual Version Rev.C. Simrad Subsea A/S, Strandpromenaden 50, Box 111, N-3191 Horten, Norway.

Traynor, J.J. 1996. Target strength measurements of walleye pollock (Theragra chalcogramma) and Pacific whiting (Merluccius productus). ICES J. Mar. Sci. 64:559-569.

Traynor, J.J., and M.O. Nelson. 1985. Results of the U.S. hydroacoustic survey of pollock on the continental shelf and slope, p. 192-200. In R.G. Bakkala and K. Wakabayashi (eds.), Results of cooperative U.S.-Japan groundfish investigations in the Bering Sea during May-August 1979. Int. North Pac. Fish. Comm. Bull. 44.

Walline, P. D. 2007. Geostatistical simulations of eastern Bering Sea walleye pollock spatial distributions, to estimate sampling precision. ICES J. Mar. Sci. 64:559-569.

Williams, K., C. N. Rooper, and R. Towler. 2010a. Use of stereo camera systems for assessment of rockfish abundance in untrawlable areas and for recording pollock behavior during midwater trawls. Fish. Bull., U.S. 108: 352-362.

Williams, K., R. Towler, and C. Wilson. 2010b. Cam-trawl: A combination trawl and stereo-camera system. Sea Technol. 51(12):45-50.

Williams, K., A. E. Punt, C. D. Wilson, and J. K. Horne. 2011. Length-selective retention of walleye pollock, Theragra chalcogramma, by midwater trawls. ICES J.Mar. Sci. 68: 119-129.

Williamson, N., and J. Traynor. 1996. Application of a one-dimensional geostatistical procedure to fisheries acoustic surveys of Alaskan pollock. ICES J. Mar. Sci. 53:423428.

Wyllie-Echeverria T, and W. Wooster. 1998. Year-to-year variations in Bering Sea ice cover and some consequences for fish distributions. Fish. Oceanogr. 7: 159-170

## TABLES AND FIGURES

Table 1. -- Simrad ER60 38 kHz acoustic system description and settings used during the summer 2016 acoustic-trawl surveys of walleye pollock in the eastern Bering Sea, results from standard sphere acoustic system calibrations conducted in association with the surveys, and final analysis parameters.

|  | System settings | 13 June Captain's Bay Unalaska | 16 Aug. Captain's Bay Unalaska | Final analysis parameters |
| :---: | :---: | :---: | :---: | :---: |
| Echosounder | Simrad ER60 | -- | -- | Simrad ER60 |
| Transducer | ES38B | -- | -- | ES38B |
| Frequency (kHz) | 38 | -- | -- | 38 |
| Transducer depth (m) | 9.15 | -- | -- | 9.15 |
| Pulse length (ms) | 0.512 | -- | -- | 0.512 |
| Transmitted power (W) | 2000 | -- | -- | 2000 |
| Angle sensitivity Along | 22.76 | -- | -- | 22.76 |
| Athwart | 21.37 | -- | -- | 21.37 |
| 2-way beam angle (dB) | -20.74 | -- | -- | -20.74 |
| Gain (dB) | 21.80 | 21.80 | 21.84 | 21.82 |
| $\mathrm{s}_{\mathrm{A}}$ correction (dB) | -0.57 | -0.57 | -0.61 | -0.59 |
| Integration gain (dB) | 21.23 | 21.22 | 21.23 | 21.23 |
| 3 dB beamwidth Along | 6.76 | 6.76 | 6.74 | 6.75 |
| Athwart | 7.19 | 7.19 | 7.21 | 7.20 |
| Angle offset Along | -0.02 | -0.02 | -0.04 | -0.03 |
| Athwart | -0.04 | -0.04 | -0.06 | -0.05 |
| Post-processing sv threshold (dB) | -70 | -- | -- | -- |
| Measured standard sphere TS (dB) | -- | -42.16 | -42.21 | -- |
| Sphere range from transducer (m) | -- | 20.70 | 18.87 | -- |
| Absorption coefficient ( $\mathrm{dB} / \mathrm{m}$ ) | 0.0100 | 0.0098 | 0.0094 | 0.0100 |
| Sound velocity (m/s) | 1470.0 | 1473.8 | 1485.3 | 1470.0 |
| Water temp at transducer ( ${ }^{\circ} \mathrm{C}$ ) | -- | 7.4 | 10.6 | -- |

Note: Gain and beam pattern terms are defined in the Operator Manual for Simrad ER60 Scientific echosounder application, which is available from Simrad Strandpromenaden 50, Box 111, N-3191 Horten, Norway.

Table 2. -- Trawl stations and catch data summary from the summer 2016 eastern Bering sea shelf walleye pollock acoustic trawl survey

| Haul no. | area | $\begin{aligned} & \text { Gear }^{\mathrm{a}} \\ & \text { type } \end{aligned}$ | $\begin{gathered} \text { Date } \\ (\text { GMT }) \end{gathered}$ | Time (GMT) | $\begin{aligned} & \text { Duration } \\ & \text { (minutes) } \end{aligned}$ | Start position |  | Depth (m) |  | Temp. ( ${ }^{\circ} \mathrm{C}$ ) |  | Walleye pollock |  | Other (kg) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Lat. (N) | Long. (W) | footrope | bottom | headrope | surface ${ }^{\text {b }}$ | (kg) | number |  |
| 1 | U.S. east of $170^{\circ}$ | Methot | 14-Jun | 9:23 | 1.23 | 579.79 | -162 4.81 | 19.1 | 56.79 | 6.27 | 10.8 |  |  |  |
| 2 | U.S. east of $170^{\circ}$ | Methot | 14-Jun | 10:25 | 0.27 | 579.95 | -162 5.30 | 51.4 | 56.84 | 6.21 | 10.7 |  |  | 5.3 |
| 3 | U.S. east of $170^{\circ}$ | Methot | 14-Jun | 12:02 | 0.23 | 579.95 | -162 5.27 | 51.2 | 57.21 | 6.18 | 10.7 |  |  | 7.5 |
| 4 | U.S. east of $170^{\circ}$ | AWT | 14-Jun | 18:42 | 34.93 | 5635.60 | -162 7.31 | 65.5 | 75.99 | 5.2 | 11.3 | 57.1 | 88 | 171.4 |
| 5 | U.S. east of $170^{\circ}$ | AWT | 14-Jun | 23:19 | 30.57 | 5614.24 | -162 9.24 | 73.7 | 78.67 | 5.18 | 11 | 81.6 | 136 | 229.6 |
| 6 | U.S. east of $170^{\circ}$ | Methot | 15-Jun | 8:31 | 5.1 | 5630.17 | -161 32.81 | 21.7 | 66.33 | 7.39 | 10.6 |  |  |  |
| 7 | U.S. east of $170^{\circ}$ | Methot | 15-Jun | 9:29 | 0.18 | 5630.14 | -16132.98 | 61.7 | 65.86 | 5.74 | 10.6 |  |  | 13.5 |
| 8 | U.S. east of $170^{\circ}$ | Methot | 15-Jun | 11:06 | 0.08 | 5630.13 | -161 33.17 | 59.6 | 66 | 5.74 | 10.6 |  |  | 9.4 |
| 9 | U.S. east of $170^{\circ}$ | 83/112 | 15-Jun | 21:19 | 27.07 | 5645.19 | -160 55.97 | 67.2 | 67.14 | 5.79 | 11.7 | 5.4 | 7 | 31.5 |
| 10 | U.S. east of $170^{\circ}$ | 83/112 | 16-Jun | 3:58 | 12.78 | 5613.37 | -161 32.78 | 60.9 | 60.88 | 5.77 | 11.2 | 3,151.5 | 5,073 | 548.5 |
| 11 | U.S. east of $170^{\circ}$ | Methot | 16-Jun | 9:53 | 0.35 | 5549.14 | -162 45.66 | 61.5 | 68.6 | 5.52 | 10.9 |  |  |  |
| 12 | U.S. east of $170^{\circ}$ | AWT | 16-Jun | 16:39 | 18.83 | 5546.66 | -162 47.08 | 54.0 | 65.87 | 5.76 | 10.7 | 47.8 | 85 | 2,133.2 |
| 13 | U.S. east of $170^{\circ}$ | AWT | 17-Jun | 5:51 | 11.92 | 5653.00 | -163 18.46 | 55.4 | 68.66 | 4.94 | 11.4 | 2.8 | 6 | 118.0 |
| 14 | U.S. east of $170^{\circ}$ | StereoDropCam | 17-Jun | 8:29 | 9.35 | 5642.47 | -163 20.21 |  |  | 5.68 |  |  |  |  |
| 15 | U.S. east of $170^{\circ}$ | Methot | 17-Jun | 9:31 | 0.18 | 5642.77 | -163 19.51 | 69.6 | 73.36 | 4.82 | 11.2 |  |  | 7.5 |
| 16 | U.S. east of $170^{\circ}$ | Methot | 17-Jun | 10:59 | 0.27 | 5642.79 | -163 19.42 | 68.5 | 73.42 | 4.8 | 11.1 |  |  | 25.7 |
| 17 | U.S. east of $170^{\circ}$ | AWT | 17-Jun | 15:34 | 7.08 | 5639.86 | -163 18.39 | 71.7 | 75.65 | 4.8 | 10.9 | 133.8 | 244 | 82.4 |
| 18 | U.S. east of $170^{\circ}$ | AWT | 17-Jun | 20:18 | 9.95 | 567.22 | -163 21.22 | 82.0 | 86.41 | 4.66 | 10.6 | 157.4 | 286 | 502.4 |
| 19 | U.S. east of $170^{\circ}$ | AWT | 18-Jun | 0:52 | 44.33 | 5542.95 | -163 19.87 | 76.3 | 84.35 | 5.07 | 10.8 | 562.3 | 983 | 287.1 |
| 20 | U.S. east of $170^{\circ}$ | Methot | 18-Jun | 8:25 | 0.17 | 5516.21 | -163 54.05 | 59.3 | 65.27 | 6.55 | 10.6 |  |  | 38.7 |
| 21 | U.S. east of $170^{\circ}$ | Methot | 18-Jun | 10:19 | 0.38 | 5516.24 | -163 54.01 | 59.1 | 65.51 | 6.54 | 10.6 |  |  |  |
| 22 | U.S. east of $170^{\circ}$ | StereoDropCam | 18-Jun | 11:56 | 1.62 | 5516.18 | -163 53.95 |  |  | 6.54 |  |  |  |  |
| 23 | U.S. east of $170^{\circ}$ | AWT | 18-Jun | 21:42 | 14.48 | 566.10 | -163 56.29 | 69.4 | 89.28 | 5.06 | 10.6 | 119.8 | 210 | 390.5 |
| 24 | U.S. east of $170^{\circ}$ | 83/112 | 19-Jun | 3:50 | 19.15 | 5645.01 | -163 55.87 | 72.6 | 73.79 | 4.76 | 10.8 | 392.8 | 748 | 245.7 |
| 25 | U.S. east of $170^{\circ}$ | AWT | 19-Jun | 18:22 | 20.8 | 5641.29 | -164 31.80 | 66.6 | 74.67 | 4.92 | 10.2 | 433.7 | 727 | 51.9 |
| 26 | U.S. east of $170^{\circ}$ | AWT | 19-Jun | 23:05 | 1.92 | 5613.82 | -164 31.54 | 84.0 | 88.53 | 4.65 | 10.2 | 393.6 | 736 | 177.5 |
| 27 | U.S. east of $170^{\circ}$ | Methot | 20-Jun | 3:00 | 25.43 | 564.31 | -164 32.00 | 85.4 | 90.45 | 4.7 | 10.2 |  |  | 16.8 |
| 28 | U.S. east of $170^{\circ}$ | AWT | 20-Jun | 7:29 | 10.55 | 5551.64 | -164 30.51 | 82.9 | 94.94 | 4.88 | 9.9 | 449.2 | 902 | 4.3 |
| 29 | U.S. east of $170^{\circ}$ | Methot | 20-Jun | 10:58 | 0.3 | 5550.94 | -164 31.93 | 30.4 | 94.96 | 7.07 | 10 |  |  |  |
| 30 | U.S. east of $170^{\circ}$ | Methot | 20-Jun | 17:04 | 14.88 | 5527.45 | -164 32.02 | 95.4 | 101.32 | 5.51 | 9.9 |  |  | 1.1 |
| 31 | U.S. east of $170^{\circ}$ | AWT | 20-Jun | 22:18 | 21.57 | 557.10 | -164 30.41 | 64.5 | 73.38 | 6.5 | 9.9 | 312.5 | 617 | 176.1 |
| 32 | U.S. east of $170^{\circ}$ | Methot | 21-Jun | 8:38 | 0.33 | 5440.19 | -165 5.92 | 67.4 | 79.48 | 6.95 | 8.6 |  |  | 21.4 |
| 33 | U.S. east of $170^{\circ}$ | Methot | 21-Jun | 10:11 | 0.37 | 5440.15 | -165 6.04 | 69.2 | 79.95 | 7.22 | 8.6 |  |  | 29.0 |
| 34 | U.S. east of $170^{\circ}$ | StereoDropCam | 21-Jun | 12:19 | 1.03 | 5440.34 | -165 5.91 |  |  | 7.25 |  |  |  |  |
| 35 | U.S. east of $170^{\circ}$ | AWT | 21-Jun | 17:59 | 3.62 | 5457.41 | -165 5.83 | 83.5 | 105.19 | 6.77 | 8.8 | 179.7 | 347 | 7.7 |
| 36 | U.S. east of $170^{\circ}$ | AWT | 21-Jun | 21:38 | 2.33 | 5516.09 | -165 7.96 | 86.2 | 110 | 6.45 | 9.6 | 769.0 | 1493.92 | 6.2 |
| 37 | U.S. east of $170^{\circ}$ | AWT | 22-Jun | 3:06 | 0.93 | 5542.94 | -165 8.72 | 92.6 | 104.53 | 5.92 | 10.2 | 128.1 | 254 | 7.4 |

Table 2. -- Cont.

| Haul | Area | Gear ${ }^{\text {a }}$ | Date | Time | Duration | Start position |  |  |  | Depth (m) |  | Temp. ( ${ }^{\circ} \mathrm{C}$ ) |  | Walleye pollock |  | Other (kg) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| no. |  | type | (GMT) | (GMT) | (minutes) |  | (N) |  | g. (W) | footrope | bottom | headrope | surface ${ }^{\text {b }}$ | (kg) | number |  |
| 38 | U.S. east of $170^{\circ}$ | Methot | 22-Jun | 8:57 | 0.3 | 56 | 19.11 | -165 | 8.37 | 81.4 | 88.2 | 4.63 | 10.2 |  |  | 5.7 |
| 39 | U.S. east of $170^{\circ}$ | Methot | 22-Jun | 10:38 | 0.23 | 56 | 19.2 | -165 | 8.502 | 81.5 | 88.0 | 4.63 | 10.3 |  |  | 14.7 |
| 40 | U.S. east of $170^{\circ}$ | StereoDropCam | 22-Jun | 12:06 | 1.23 | 56 | 19.12 | -165 | 8.388 |  | 88.0 | 4.63 | 10.2 |  |  |  |
| 41 | U.S. east of $170^{\circ}$ | AWT | 22-Jun | 16:55 | 8.57 | 56 | 46.31 | -165 | 8.646 | 67.3 | 75.7 | 4.61 | 10.2 | 33.8 | 65 | 29.6 |
| 42 | U.S. east of $170^{\circ}$ | AWT | 23-Jun | 2:33 | 0.3 | 57 | 3.498 | -165 | 46.73 | 59.2 | 71.0 | 4.32 | 9.8 | 13.8 | 29 | 44.6 |
| 43 | U.S. east of $170^{\circ}$ | AWT | 23-Jun | 4:11 | 18.55 | 57 | 3.204 | -165 | 46.22 | 59.6 | 71.4 | 4.3 | 9.7 | 105.1 | 233 | 17.9 |
| 44 | U.S. east of $170^{\circ}$ | AWT | 23-Jun | 18:01 | 15.33 | 56 | 11.12 | -165 | 44.33 | 80.4 | 97.4 | 5.22 | 9.9 | 377.7 | 755 | 13.0 |
| 45 | U.S. east of $170^{\circ}$ | Methot | 25-Jun | 8:30 | 25.82 | 54 | 51.77 | -166 | 11.03 | 44.8 | 153.7 | 8.07 | 9.1 |  |  | 1.8 |
| 46 | U.S. east of $170^{\circ}$ | Methot | 25-Jun | 10:38 | 0.43 | 54 | 51.58 | -166 | 11.14 | 144.8 | 153.1 | 4.72 | 9.1 |  |  | 3.2 |
| 47 | U.S. east of $170^{\circ}$ | StereoDropCam | 25-Jun | 12:34 | 1.28 | 54 | 51.26 | -166 | 11.98 |  | 154.5 | 4.72 | 9.2 |  |  |  |
| 48 | U.S. east of $170^{\circ}$ | AWT | 25-Jun | 18:56 | 8.63 | 55 | 34.19 | -166 | 18.72 | 106.6 | 126.2 | 5.04 | 9.9 | 600.8 | 1163 | 1.1 |
| 49 | U.S. east of $170^{\circ}$ | Methot | 26-Jun | 8:41 | 0.23 | 57 | 43.03 | -166 | 26.18 | 58.0 | 65.9 | 4.67 | 9.9 |  |  | 5.1 |
| 50 | U.S. east of $170^{\circ}$ | Methot | 26-Jun | 10:23 | 0.27 | 57 | 42.97 | -166 | 25.97 | 59.1 | 66.0 | 4.67 | 9.9 |  |  | 6.9 |
| 51 | U.S. east of $170^{\circ}$ | AWT | 26-Jun | 21:07 | 16.08 | 56 | 34.38 | -166 | 57.01 | 87.1 | 100.6 | 4.96 | 9.8 | 394.1 | 842 | 1.0 |
| 52 | U.S. east of $170^{\circ}$ | AWT | 27-Jun | 1:59 | 8.75 | 56 | 5.958 | -166 | 56.24 | 114.2 | 128.4 | 4.74 | 10.2 | 302.1 | 564 | 13.0 |
| 53 | U.S. east of $170^{\circ}$ | Methot | 27-Jun | 8:40 | 0.23 | 55 | 13.06 | -166 | 53.39 | 137.0 | 143.2 | 4.66 | 10.2 |  |  | 5.9 |
| 54 | U.S. east of $170^{\circ}$ | Methot | 27-Jun | 10:31 | 0.28 | 55 | 13.04 | -166 | 53.27 | 136.6 | 143.0 | 4.66 | 10.2 |  |  | 6.7 |
| 55 | U.S. east of $170^{\circ}$ | StereoDropCam | 27-Jun | 12:18 | 3.98 | 55 | 12.89 | -166 | 52.85 |  | 142.6 | 4.66 | 10.2 |  |  |  |
| 56 | U.S. east of $170^{\circ}$ | Methot | 28-Jun | 1:09 | 30.45 | 55 | 22.48 | -167 | 29.55 | 131.8 | 143.6 | 4.7 | 10 |  |  | 2.0 |
| 57 | U.S. east of $170^{\circ}$ | Methot | 28-Jun | 2:54 | 30.43 | 55 | 22.41 | -167 | 29.56 | 131.3 | 143.5 | 4.66 | 10.2 |  |  | 3.0 |
| 58 | U.S. east of $170^{\circ}$ | StereoDropCam | 28-Jun | 4:23 | 15.95 | 55 | 22.03 | -167 | 29.35 |  | 143.2 | 4.64 | 10.1 |  |  |  |
| 59 | U.S. east of $170^{\circ}$ | AWT | 28-Jun | 6:43 | 3.52 | 55 | 29.01 | -167 | 30.11 | 107.2 | 139.4 | 4.91 | 10.6 | 674.6 | 1089 | 1.6 |
| 60 | U.S. east of $170^{\circ}$ | Methot | 28-Jun | 9:07 | 0.23 | 55 | 32.12 | -167 | 30.46 | 128.4 | 137.9 | 4.68 | 10.5 |  |  | 2.0 |
| 61 | U.S. east of $170^{\circ}$ | Methot | 28-Jun | 10:51 | 0.27 | 55 | 31.99 | -167 | 30.43 | 131.0 | 137.7 | 4.66 | 10.2 |  |  | 1.3 |
| 62 | U.S. east of $170^{\circ}$ | StereoDropCam | 28-Jun | 12:20 | 1.33 | 55 | 32.08 | -167 | 29.98 |  | 137.6 | 4.68 | 10.3 |  |  |  |
| 63 | U.S. east of $170^{\circ}$ | AWT | 28-Jun | 18:11 | 9.27 | 55 | 57.74 | -167 | 33.26 | 114.2 | 132.8 | 4.78 | 10.4 | 475.1 | 903 | 2.4 |
| 64 | U.S. east of $170^{\circ}$ | AWT | 29-Jun | 1:05 | 10.17 | 56 | 32.4 | -167 | 36.29 | 96.2 | 108.5 | 5.09 | 10.3 | 834.0 | 1647 | 5.6 |
| 65 | U.S. east of $170^{\circ}$ | AWT | 29-Jun | 7:16 | 41.55 | 57 | 9.798 | -167 | 39.85 | 60.9 | 74.8 | 5.15 | 10 | 106.0 | 197 | 12.5 |
| 66 | U.S. east of $170^{\circ}$ | Methot | 29-Jun | 10:31 | 0.3 | 57 | 9.408 | -167 | 39.12 | 69.4 | 75.3 | 4.44 | 10 |  |  | 3.6 |
| 67 | U.S. east of $170^{\circ}$ | Methot | 29-Jun | 12:12 | 0.28 | 57 | 9.27 | -167 | 39.08 | 64.0 | 75.3 | 4.43 | 9.9 |  |  | 2.4 |
| 68 | U.S. east of $170^{\circ}$ | 83/112 | 30-Jun | 2:41 | 13.3 | 57 | 16.88 | -168 | 17.65 | 74.1 | 75.1 | 4.57 | 10.5 | 247.7 | 392 | 72.9 |
| 69 | U.S. east of $170^{\circ}$ | Methot | 30-Jun | 8:42 | 0.25 | 56 | 26.69 | -168 | 12.34 | 120.6 | 129.4 | 4.72 | 10.6 |  |  | 2.2 |
| 70 | U.S. east of $170^{\circ}$ | Methot | 30-Jun | 10:18 | 0.35 | 56 | 26.69 | -168 | 12.11 | 122.4 | 129.6 | 4.71 | 10.5 |  |  | 4.0 |
| 71 | U.S. east of $170^{\circ}$ | StereoDropCam | 30-Jun | 12:02 | 1.9 | 56 | 26.78 | -168 | 11.71 |  | 129.3 | 4.72 | 10.4 |  |  |  |
| 72 | U.S. east of $170^{\circ}$ | AWT | 30-Jun | 16:24 | 5.92 | 56 | 21.09 | -168 | 12.86 | 116.6 | 148.4 | 4.71 | 10.2 | 641.3 | 1211 | 5.7 |
| 73 | U.S. east of $170^{\circ}$ | AWT | 30-Jun | 21:05 | 4 | 55 | 54.28 | -168 | 10.34 | 136.3 | 142.0 | 4.42 | 9.9 | 711.6 | 1132 | 5.0 |
| 74 | U.S. east of $170^{\circ}$ | AWT | 1-Jul | 6:23 | 16.9 | 55 | 53.96 | -168 | 44.56 | 151.5 | 155.3 | 4.06 | 9.8 | 413.3 | 538 | 6.0 |
| 75 | U.S. east of $170^{\circ}$ | Methot | 1-Jul | 9:44 | 0.08 | 55 | 54.03 | -168 | 44.68 | 143.5 | 157.5 | 4.05 | 9.7 |  |  | 0.6 |

Table 2. -- Cont.

| Haul | Area | Gear ${ }^{\text {a }}$ | Date | Time | Duration | Start position |  |  |  | Depth (m) |  | Temp. $\left({ }^{\circ} \mathrm{C}\right)$ |  | Walleye pollock |  | Other |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| no. |  | type | (GMT) | (GMT) | (minutes) | Lat. | $(\mathrm{N})$ |  | g. (W) | footrope | bottom | headrope | surface ${ }^{\text {b }}$ | $(\mathrm{kg})$ | number | (kg) |
| 76 | U.S. east of $170^{\circ}$ | Methot | 1-Jul | 11:33 | 0.32 | 55 | 54.04 | -168 | 44.77 | 147.2 | 157.7 | 4.15 | 9.7 |  |  | 0.5 |
| 77 | U.S. east of $170^{\circ}$ | AWT | 1-Jul | 20:07 | 26.57 | 56 | 34.49 | -168 | 50.67 | 98.8 | 106.7 | 4.77 | 10.9 | 776.5 | 1,463 | 10.9 |
| 78 | U.S. east of $170^{\circ}$ | StereoDropCam | 2-Jul | 7:39 | 1.5 | 58 | 20.38 | -169 | 2.01 |  | 67.5 | 4.28 | 11.9 |  |  |  |
| 79 | U.S. east of $170^{\circ}$ | Methot | 2-Jul | 9:10 | 0.28 | 58 | 20.12 | -169 | 2.12 | 59.4 | 67.6 | 4.28 | 11.9 |  |  | 17.0 |
| 80 | U.S. east of $170^{\circ}$ | StereoDropCam | 2-Jul | 10:20 | 0.5 | 58 | 20.05 | -169 | 1.79 |  | 67.6 | 4.3 | 11.4 |  |  |  |
| 81 | U.S. east of $170^{\circ}$ | Methot | 2-Jul | 11:08 | 0.4 | 58 | 19.97 | -169 | 2.19 | 61.2 | 67.7 | 4.28 | 11.8 |  |  | 20.2 |
| 82 | U.S. east of $170^{\circ}$ | AWT | 8-Jul | 12:15 | 20.53 | 58 | 35.44 | -169 | 42.32 | 62.8 | 67.2 | 4.22 | 12.1 | 286.3 | 925 | 116.9 |
| 83 | U.S. east of $170^{\circ}$ | AWT | 9-Jul | 2:36 | 9.72 | 56 | 46.92 | -169 | 27.89 | 70.2 | 76.6 | 5.99 | 10.9 | 339.1 | 573 | 1.4 |
| 84 | U.S. east of $170^{\circ}$ | AWT | 9-Jul | 16:42 | 15.85 | 56 | 1.33 | -169 | 57.20 | 126.6 | 133.7 | 4.57 | 11 | 322.4 | 560 | 16.1 |
| 85 | U.S. west of $170^{\circ}$ | AWT | 9-Jul | 22:13 | 10.08 | 56 | 31.82 | -170 | 0.85 | 87.0 | 100.3 | 6.37 | 9 | 842.4 | 1,685 | 3.0 |
| 86 | U.S. west of $170^{\circ}$ | AWT | 11-Jul | 8:51 | 18.37 | 57 | 49.47 | -170 | 14.13 | 66.7 | 73.7 | 4.53 | 12 | 238.7 | 490 | 239.6 |
| 87 | U.S. west of $170^{\circ}$ | Marinovich | 11-Jul | 19:51 | 31.58 | 58 | 29.29 | -170 | 20.33 | 14.1 | 73.9 | 11.21 | 12.8 |  |  | 15.8 |
| 88 | U.S. west of $170^{\circ}$ | AWT | 11-Jul | 23:35 | 30.63 | 58 | 47.98 | -170 | 21.73 | 70.3 | 72.1 | 3.29 | 12.7 | 127.1 | 322 | 9.0 |
| 89 | U.S. west of $170^{\circ}$ | AWT | 12-Jul | 4:15 | 18.83 | 59 | 9.50 | -170 | 26.74 | 73.0 | 68.9 | 3.34 | 12.9 | 173.6 | 691 | 147.7 |
| 90 | U.S. west of $170^{\circ}$ | AWT | 12-Jul | 8:06 | 24.53 | 59 | 29.35 | -170 | 29.29 | 60.9 | 67.2 | 3.56 | 13.1 | 532.6 | 1,847 | 33.9 |
| 91 | U.S. west of $170^{\circ}$ | AWT | 12-Jul | 23:38 | 27.67 | 59 | 24.31 | -171 | 8.50 | 72.6 | 74.4 | 2.67 | 13.3 | 472.7 | 1,508 | 130.6 |
| 92 | U.S. west of $170^{\circ}$ | AWT | 13-Jul | 8:33 | 24.43 | 58 | 1.31 | -170 | 54.20 | 73.3 | 84.9 | 4.22 | 13.4 | 1,276.2 | 2,965 | 5.0 |
| 93 | U.S. west of $170^{\circ}$ | Marinovich | 13-Jul | 18:44 | 38.25 | 57 | 25.38 | -170 | 48.15 | 20.0 | 81.3 | 9.74 | 12.4 |  |  | 13.7 |
| 94 | U.S. west of $170^{\circ}$ | AWT | 14-Jul | 1:42 | 7.67 | 56 | 37.41 | -170 | 40.15 | 123.3 | 114.3 | 4.79 | 12.3 | 122.4 | 249 | 1.8 |
| 95 | U.S. west of $170^{\circ}$ | AWT | 14-Jul | 5:31 | 10.67 | 56 | 15.39 | -170 | 36.47 | 111.0 | 122.9 | 4.71 | 11.9 | 1,246.5 | 2,390 | 6.5 |
| 96 | U.S. west of $170^{\circ}$ | AWT | 14-Jul | 8:25 | 4.13 | 56 | 9.49 | -170 | 35.84 | 115.5 | 169.7 | 4.64 | 11.8 | 715.2 | 1,167 | 5.1 |
| 97 | U.S. west of $170^{\circ}$ | AWT | 14-Jul | 16:40 | 22.75 | 56 | 20.26 | -171 | 13.41 | 135.3 | 139.5 | 4.51 | 11.6 | 365.6 | 569 | 8.2 |
| 98 | U.S. west of $170^{\circ}$ | AWT | 14-Jul | 22:04 | 9.43 | 56 | 47.34 | -171 | 18.11 | 109.8 | 115.2 | 4.9 | 11.8 | 795.2 | 1,661 | 1.2 |
| 99 | U.S. west of $170^{\circ}$ | Marinovich | 15-Jul | 9:48 | 34.03 | 58 | 48.82 | -171 | 18.70 | 17.3 | 114.4 | 10.26 | 11.8 |  |  | 18.1 |
| 100 | U.S. west of $170^{\circ}$ | AWT | 15-Jul | 18:41 | 8.25 | 57 | 18.82 | -171 | 24.35 | 94.4 | 99.3 | 5.09 | 12.2 | 308.2 | 682 | 4.4 |
| 101 | U.S. west of $170^{\circ}$ | AWT | 16-Jul | 8:35 | 14.35 | 58 | 2.93 | -171 | 32.30 | 81.0 | 96.6 | 3.45 | 12.9 | 1,186.9 | 3,276 | 0.1 |
| 102 | U.S. west of $170^{\circ}$ | Marinovich | 16-Jul | 9:52 | 30.75 | 58 | 3.78 | -171 | 29.81 | 19.7 | 95.8 | 10.08 | 12.9 |  |  |  |
| 103 | U.S. west of $170^{\circ}$ | Marinovich | 16-Jul | 11:10 | 32.45 | 58 | 4.40 | -171 | 24.69 | 20.0 | 94.4 | 10.39 | 12.9 | 0.0 | 1 | 1.7 |
| 104 | U.S. west of $170^{\circ}$ | Marinovich | 16-Jul | 18:01 | 10.35 | 58 | 30.85 | -171 | 36.67 | 18.7 | 93.3 | 9.48 | 13.2 |  |  | 13.0 |
| 105 | U.S. west of $170^{\circ}$ | AWT | 16-Jul | 21:08 | 9.32 | 58 | 32.30 | -171 | 37.13 | 85.2 | 92.9 | 2.37 | 13.2 | 679.6 | 1,739 | 4.9 |
| 106 | U.S. west of $170^{\circ}$ | AWT | 17-Jul | 1:28 | 33.23 | 59 | 2.74 | -171 | 42.68 | 79.2 | 84.5 | 2.44 | 14.2 | 567.5 | 1,572 | 25.0 |
| 107 | U.S. west of $170^{\circ}$ | AWT | 17-Jul | 10:00 | 47.37 | 59 | 49.54 | -171 | 52.36 | 70.2 | 74.9 | 2 | 13.8 | 206.2 | 1,542 | 4.3 |
| 108 | U.S. west of $170^{\circ}$ | AWT | 17-Jul | 21:19 | 9.98 | 59 | 13.02 | -172 | 23.79 | 83.8 | 89.8 | 1.96 | 13.3 | 985.7 | 2,710 | 18.3 |
| 109 | U.S. west of $170^{\circ}$ | AWT | 18-Jul | 3:11 | 10.98 | 58 | 40.45 | -172 | 17.32 | 91.1 | 101.0 | 2.38 | 14 | 811.8 | 2,670 | 4.6 |
| 110 | U.S. west of $170^{\circ}$ | AWT | 18-Jul | 8:35 | 14.92 | 58 | 6.29 | -172 | 10.39 | 91.8 | 103.3 | 4.07 | 13.8 | 416.2 | 1,086 | . 6 |
| 111 | U.S. west of $170^{\circ}$ | Methot | 18-Jul | 21:04 | 25.88 | 57 | 6.97 | -171 | 59.13 |  | 112.8 |  | 13.4 |  |  | 3.8 |
| 112 | U.S. west of $170^{\circ}$ | Methot | 18-Jul | 22:33 | 30.52 | 57 | 7.06 | -171 | 59.16 | 103.7 | 112.7 | 4.77 | 13.4 |  |  | 13.4 |
| 113 | U.S. west of $170^{\circ}$ | AWT | 19-Jul | 1:36 | 16.98 | 57 | 1.43 | -171 | 58.12 | 110.8 | 115.6 | 4.85 | 13.5 | 239.3 | 465 | 1.5 |
| 114 | U.S. west of $170^{\circ}$ | AWT | 19-Jul | 6:36 | 15.8 | 56 | 31.57 | -171 | 51.64 | 142.9 | 161.3 | 4.46 | 12.8 | 456.4 | 631 | 3.7 |
| 115 | U.S. west of $170^{\circ}$ | AWT | 19-Jul | 16:55 | 8.27 | 56 | 37.25 | -172 | 30.71 | 162.3 | 195.2 | 4.29 | 12.5 | 218.0 | 322 | 0.4 |

Table 2. -- Cont.

| Haul | Area | Gear ${ }^{\text {a }}$ | Date | Time | Duration | Start position |  |  |  | Depth (m) |  | Temp. $\left({ }^{\circ} \mathrm{C}\right)$ |  | Walleye pollock |  | Other |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| no. |  | type | (GMT) | (GMT) | (minutes) | Lat. | (N) |  | g. (W) | footrope | bottom | headrope | surface ${ }^{\text {D }}$ | (kg) | number | (kg) |
| 116 | U.S. west of $170^{\circ}$ | AWT | 20-Jul | 17:56 | 8.77 | 57 | 2.76 | -172 | 34.64 | 109.9 | 119.6 | 4.78 | 12.6 | 296.0 | 668 | 0.2 |
| 117 | U.S. west of $170^{\circ}$ | AWT | 21-Jul | 1:41 | 8.82 | 58 | 7.96 | -172 | 48.37 | 95.7 | 106.6 | 3.58 | 13.1 | 1,067.1 | 2871 | 0.2 |
| 118 | U.S. west of $170^{\circ}$ | AWT | 21-Jul | 8:51 | 12.33 | 59 | 1.40 | -172 | 59.15 | 79.3 | 105.7 | 3.9 | 12.8 | 870.8 | 2681 | 0.0 |
| 119 | U.S. west of $170^{\circ}$ | AWT | 21-Jul | 21:27 | 39.6 | 59 | 57.52 | -173 | 12.11 | 71.5 | 76.9 | 1.54 | 12.7 | 440.6 | 780 | 9.1 |
| 120 | U.S. west of $170^{\circ}$ | AWT | 22-Jul | 8:31 | 60.9 | 60 | 34.00 | -174 | 4.70 | 78.3 | 88.7 | 1.04 | 11.1 | 411.4 | 713 | 1.0 |
| 121 | U.S. west of $170^{\circ}$ | AWT | 22-Jul | 21:17 | 11.5 | 59 | 39.76 | -173 | 48.41 | 98.1 | 104.1 | 1.79 | 12.7 | 768.6 | 2110 | 3.5 |
| 122 | U.S. west of 170 | AWT | 23-Jul | 1:11 | 6.63 | 59 | 18.38 | -173 | 43.03 | 98.7 | 109.6 | 2.79 | 12.8 | 1,029.0 | 3263 | 0.3 |
| 123 | U.S. west of $170^{\circ}$ | AWT | 23-Jul | 8:18 | 7.28 | 58 | 29.84 | -173 | 31.83 | 101.6 | 120.6 | 4.35 | 12.1 | 320.5 | 912 | 7.0 |
| 124 | U.S. west of $170^{\circ}$ | Methot | 23-Jul | 10:03 | 0.08 | 58 | 28.12 | -173 | 30.07 | 110.0 | 119.3 | 4.13 | 12.2 |  |  | 3.0 |
| 125 | U.S. west of $170^{\circ}$ | Methot | 23-Jul | 10:55 | 0.6 | 58 | 28.15 | -173 | 30.01 | 109.7 | 119.2 | 4.13 | 12.1 |  |  | 2.2 |
| 126 | U.S. west of $170^{\circ}$ | AWT | 23-Jul | 19:19 | 5.5 | 57 | 56.35 | -173 | 23.89 | 109.2 | 118.6 | 4.15 | 12.1 | 783.3 | 1948 | 5.1 |
| 127 | U.S. west of $170^{\circ}$ | AWT | 24-Jul | 1:29 | 22.33 | 57 | 9.87 | -173 | 13.14 | 109.6 | 124.6 | 4.67 | 11.9 | 560.4 | 1087 | 6.8 |
| 128 | U.S. west of $170^{\circ}$ | AWT | 24-Jul | 6:38 | 7.85 | 56 | 40.13 | -173 | 5.44 |  | 146.4 | 4.51 | 12.1 | 505.7 | 800 | 4.1 |
| 129 | U.S. west of $170^{\circ}$ | AWT | 31-Jul | 6:56 | 25.75 | 57 | 17.53 | -173 | 52.28 | 234.5 | 241.0 | 3.97 | 12 | 13.5 | 16 | 121.4 |
| 130 | U.S. west of $170^{\circ}$ | AWT | 31-Jul | 19:47 | 34.72 | 57 | 41.37 | -173 | 58.52 | 98.8 | 121.8 | 4.5 | 12.1 | 10.0 | 15 | 527.8 |
| 131 | U.S. west of $170^{\circ}$ | AWT | 1-Aug | 2:07 | 26.12 | 58 | 17.21 | -174 | 7.50 | 124.7 | 129.9 | 4.33 | 12.4 | 550.9 | 896 | 10.5 |
| 132 | U.S. west of $170^{\circ}$ | AWT | 1-Aug | 7:59 | 1.83 | 58 | 58.13 | -174 | 18.16 | 93.5 | 128.9 | 3.56 | 12.6 | 379.8 | 1386 | 1.2 |
| 133 | U.S. west of $170^{\circ}$ | AWT | 1-Aug | 17:59 | 23.1 | 59 | 16.04 | -174 | 22.58 | 78.2 | 119.7 | 4.96 | 12.4 | 451.6 | 1783 | 6.7 |
| 134 | U.S. west of $170^{\circ}$ | AWT | 1-Aug | 23:20 | 9.35 | 59 | 48.07 | -174 | 30.46 | 97.2 | 112.2 | 2.58 | 12.5 | 726.5 | 2743 | 3.9 |
| 135 | U.S. west of $170^{\circ}$ | AWT | 2-Aug | 7:33 | 55.77 | 61 | 3.09 | -174 | 54.41 | 81.4 | 93.4 | 1.07 | 12.1 | 1,463.6 | 3517 | 9.1 |
| 136 | U.S. west of $170^{\circ}$ | AWT | 2-Aug | 19:20 | 25.4 | 61 | 30.97 | -174 | 59.94 | 77.5 | 87.0 | -0.75 | 11.4 | 1,380.3 | 3146 | 4.2 |
| 137 | U.S. west of $170^{\circ}$ | AWT | 3-Aug | 8:12 | 12.62 | 61 | 22.78 | -175 | 38.52 | 79.8 | 97.6 | 0.79 | 11.4 | 225.3 | 1821 | 1.3 |
| 138 | U.S. west of $170^{\circ}$ | Methot | 3-Aug | 11:29 | 0.57 | 61 | 21.10 | -175 | 40.43 | 90.6 | 98.1 | 0.88 | 11.4 | 0.4 | 3 | 8.7 |
| 139 | U.S. west of $170^{\circ}$ | Methot | 3-Aug | 12:38 | 0.92 | 61 | 21.81 | -175 | 39.95 | 87.7 | 97.9 | 0.81 | 11.4 |  | 3 | 9.1 |
| 140 | U.S. west of $170^{\circ}$ | AWT | 3-Aug | 21:04 | 16.02 | 60 | 30.20 | -175 | 21.90 | 90.1 | 108.8 | 1.64 | 12.1 | 739.2 | 1954 | 1.7 |
| 141 | U.S. west of $170^{\circ}$ | AWT | 4-Aug | 2:38 | 2.42 | 59 | 59.66 | -175 | 14.57 | 110.3 | 117.4 | 2.46 | 12.7 | 506.2 | 2027 | 2.4 |
| 142 | U.S. west of $170^{\circ}$ | AWT | 4-Aug | 6:15 | 6.83 | 59 | 39.31 | -175 | 8.58 | 99.8 | 126.8 | 2.73 | 12.6 | 492.9 | 2495 | 24.4 |
| 143 | U.S. west of $170^{\circ}$ | AWT | 4-Aug | 18:18 | 2.9 | 59 | 11.63 | -175 | 0.56 | 109.6 | 131.1 | 2.87 | 12.1 | 370.8 | 1509 | 3.0 |
| 144 | U.S. west of $170^{\circ}$ | AWT | 4-Aug | 22:03 | 11.12 | 58 | 54.58 | -174 | 55.70 | 110.8 | 129.8 | 3.51 | 12.3 | 566.7 | 1525 | 11.9 |
| 145 | U.S. west of $170^{\circ}$ | AWT | 5-Aug | 2:13 | 24.37 | 58 | 42.94 | -174 | 52.84 | 152.6 | 158.3 | 3.74 | 12.4 | 989.9 | 1636 | 0.4 |
| 146 | U.S. west of $170^{\circ}$ | Methot | 5-Aug | 10:50 | 0.47 | 58 | 44.57 | -174 | 52.34 | 141.7 | 147.4 | 3.69 | 12.4 |  |  | 3.2 |
| 147 | U.S. west of $170^{\circ}$ | Methot | 5-Aug | 12:00 | 0.4 | 58 | 44.60 | -174 | 52.52 | 139.1 | 146.9 | 3.68 | 12.5 | 0.6 | 1 | 6.2 |
| 148 | U.S. west of $170^{\circ}$ | AWT | 5-Aug | 20:44 | 10.2 | 58 | 53.27 | -175 | 34.68 | 111.9 | 129.7 | 2.55 | 12.1 | 2,160.0 | 7144 | 0.6 |
| 149 | U.S. west of $170^{\circ}$ | AWT | 6-Aug | 3:46 | 4.43 | 59 | 31.66 | -175 | 46.14 | 121.5 | 137.3 | 2.45 | 12.3 | 610.9 | 4395 | 1.3 |
| 150 | U.S. west of $170^{\circ}$ | AWT | 6-Aug | 8:18 | 11.2 | 59 | 48.44 | -175 | 51.35 | 107.8 | 135.0 | 2.66 | 12.3 | 397.9 | 2670 | 3.1 |
| 151 | U.S. west of $170^{\circ}$ | StereoDropCam | 6-Aug | 11:15 | 15.3 | 59 | 49.22 | -175 | 51.22 |  | 134.5 |  | 12.3 |  |  |  |
| 152 | U.S. west of $170^{\circ}$ | StereoDropCam | 6-Aug | 11:45 | 15.27 | 59 | 49.26 | -175 | 51.52 |  | 134.6 | 2.49 | 12.3 |  |  |  |
| 153 | U.S. west of $170^{\circ}$ | StereoDropCam | 6-Aug | 12:22 | 15.28 | 59 | 49.25 | -175 | 52.05 |  | 134.7 |  | 12.3 |  |  |  |
| 154 | U.S. west of $170^{\circ}$ | StereoDropCam | 6-Aug | 12:56 | 14.75 | 59 | 49.24 | -175 | 52.56 |  |  |  |  |  |  |  |
| 155 | U.S. west of $170^{\circ}$ | AWT | 6-Aug | 21:35 | 13.25 | 60 | 37.25 | -176 | 6.23 | 104.2 | 118.3 | 2.02 | 12.1 | 917.5 | 2823 | 3.9 |

Table 2. -- Cont.

| Haul | Area | Gear ${ }^{\text {a }}$ | Date | Time | Duration | Start position |  |  |  | Depth (m) |  | Temp. $\left({ }^{\circ} \mathrm{C}\right)$ |  | Walleye pollock |  | Other |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| no. |  | type | (GMT) | (GMT) | (minutes) |  | ( N ) |  | g. (W) | footrope | bottom | headrope | surface ${ }^{\text {o }}$ | (kg) | number | (kg) |
| 156 | U.S. west of $170^{\circ}$ | AWT | 7-Aug | 4:46 | 13.2 | 61 | 25.57 | -176 | 21.94 | 99.6 | 107.2 | 1.06 | 11.4 | 432.3 | 2,364 | 4.1 |
| 157 | U.S. west of $170^{\circ}$ | AWT | 7-Aug | 10:08 | 30.43 | 61 | 43.41 | -176 | 27.61 | 57.8 | 105.6 | 0.67 | 11 | 415.8 | 1,971 | 7.1 |
| 158 | U.S. west of $170^{\circ}$ | AWT | 7-Aug | 19:22 | 17.5 | 61 | 5.556 | -176 | 56.63 | 106.2 | 120.9 | 1.86 | 12.2 | 533.2 | 2,103 | 3.8 |
| 159 | U.S. west of $170^{\circ}$ | AWT | 8-Aug | 1:24 | 5.2 | 60 | 48.83 | -176 | 50.93 | 109.5 |  | 2.14 |  | 494.3 | 2,388 | 2.9 |
| 160 | U.S. west of $170^{\circ}$ | AWT | 8-Aug | 7:38 | 2.42 | 60 | 12.68 | -176 | 38.3 | 101.6 | 138.5 | 2.38 | 12.2 | 371.5 | 2,036 | 9.4 |
| 161 | U.S. west of $170^{\circ}$ | StereoDropCam | 8-Aug | 10:11 | 15.22 | 60 | 14.29 | -176 | 38.17 |  | 138.1 |  | 12.2 |  |  |  |
| 162 | U.S. west of $170^{\circ}$ | StereoDropCam | 8-Aug | 10:37 | 15.23 | 60 | 14.25 | -176 | 37.45 |  | 137.9 |  | 12.2 |  |  |  |
| 163 | U.S. west of $170^{\circ}$ | StereoDropCam | 8-Aug | 11:10 | 15.22 | 60 | 14.21 | -176 | 36.59 |  | 137.0 | 2.29 | 12.1 |  |  |  |
| 164 | U.S. west of $170^{\circ}$ | StereoDropCam | 8-Aug | 11:38 | 15.22 | 60 | 14.19 | -176 | 35.79 |  | 136.4 | 2.46 | 12.1 |  |  |  |
| 165 | U.S. west of $170^{\circ}$ | StereoDropCam | 8-Aug | 13:03 | 15.22 | 60 | 12.4 | -176 | 37.71 |  | 137.6 | 1.67 | 12.1 |  |  |  |
| 166 | U.S. west of $170^{\circ}$ | StereoDropCam | 8-Aug | 13:35 | 15.32 | 60 | 12.26 | -176 | 36.6 |  | 137.1 | 1.71 | 12.0 |  |  |  |
| 167 | U.S. west of $170^{\circ}$ | StereoDropCam | 8-Aug | 14:28 | 15 | 60 | 12.27 | -176 | 39.1 |  |  |  |  |  |  |  |
| 168 | U.S. west of $170^{\circ}$ | StereoDropCam | 8-Aug | 14:59 | 15.22 | 60 | 11.84 | -176 | 39.22 |  | 138.4 |  | 11.9 |  |  |  |
| 169 | U.S. west of $170^{\circ}$ | AWT | 8-Aug | 19:42 | 31.13 | 59 | 39.81 | -176 | 27.29 | 91.6 | 137.0 | 2.62 | 11.8 | 1,512.9 | 6,370 | 2.0 |
| 170 | U.S. west of $170^{\circ}$ | AWT | 9-Aug | 1:00 | 2.92 | 59 | 8.472 | -176 | 16.42 | 121.0 | 139.0 | 2.51 | 11.7 | 410.6 | 980 | 0.0 |
| 171 | U.S. west of $170^{\circ}$ | AWT | 9-Aug | 6:53 | 48.72 | 58 | 39.06 | -176 | 6.99 | 138.8 | 145.5 | 2.92 | 11.4 | 89.7 | 117 | 10.2 |
| 172 | U.S. west of $170^{\circ}$ | StereoDropCam | 9-Aug | 10:52 | 15.28 | 58 | 39.05 | -176 | 7.872 |  | 145.3 | 2.95 | 11.4 |  |  |  |
| 173 | U.S. west of $170^{\circ}$ | StereoDropCam | 9-Aug | 11:28 | 15.23 | 58 | 38.78 | -176 | 8.088 |  | 146.7 |  | 11.4 |  |  |  |
| 174 | U.S. west of $170^{\circ}$ | StereoDropCam | 9-Aug | 12:06 | 15.27 | 58 | 38.98 | -176 | 7.74 |  | 145.6 |  | 11.4 |  |  |  |
| 175 | U.S. west of $170^{\circ}$ | StereoDropCam | 9-Aug | 12:58 | 15.25 | 58 | 38.69 | -176 | 7.914 |  | 147.1 | 2.96 | 11.4 |  |  |  |
| 176 | U.S. west of $170^{\circ}$ | Methot | 9-Aug | 18:08 | 26.52 | 58 | 42.53 | -176 | 48.18 | 101.0 | 131.1 | 3.31 | 11.7 |  |  | 3.5 |
| 177 | U.S. west of $170^{\circ}$ | Methot | 9-Aug | 19:50 | 26.5 | 58 | 42.33 | -176 | 49.27 | 122.2 | 131.9 | 3.17 | 11.6 |  |  | 11.5 |
| 178 | U.S. west of $170^{\circ}$ | AWT | 10-Aug | 2:45 | 7.15 | 59 | 7.626 | -176 | 56.51 | 126.3 | 146.0 | 3.35 | 11.9 | 1,499.3 | 3,774 | 0.7 |
| 179 | U.S. west of $170^{\circ}$ | AWT | 10-Aug | 7:51 | 25.12 | 59 | 43.01 | -177 | 8.802 | 109.8 | 160.7 | 2.81 | 12 | 144.6 | 445 | 18.4 |
| 180 | U.S. west of $170^{\circ}$ | StereoDropCam | 10-Aug | 10:54 | 15.27 | 59 | 42.26 | -177 | 8.112 |  | 160.2 |  | 12.1 |  |  |  |
| 181 | U.S. west of $170^{\circ}$ | StereoDropCam | 10-Aug | 11:23 | 15.25 | 59 | 42.22 | -177 | 7.536 |  | 159.2 | 3.33 | 12.1 |  |  |  |
| 182 | U.S. west of $170^{\circ}$ | StereoDropCam | 10-Aug | 11:57 | 15.25 | 59 | 42.15 | -177 | 6.882 |  | 157.5 |  | 12.1 |  |  |  |
| 183 | U.S. west of $170^{\circ}$ | StereoDropCam | 10-Aug | 12:30 | 15.25 | 59 | 42.04 | -177 | 6.21 |  | 157.0 |  | 12.1 |  |  |  |
| 184 | U.S. west of $170^{\circ}$ | StereoDropCam | 10-Aug | 13:18 | 15.23 | 59 | 41.83 | -177 | 6.87 |  | 159.9 | 3.23 | 12.1 |  |  |  |
| 185 | U.S. west of $170^{\circ}$ | StereoDropCam | 10-Aug | 13:55 | 15 | 59 | 41.6 | -177 | 6.498 |  |  |  |  |  |  |  |
| 186 | U.S. west of $170^{\circ}$ | StereoDropCam | 10-Aug | 14:27 | 15 | 59 | 41.33 | -177 | 6.348 |  |  |  |  |  |  |  |
| 187 | U.S. west of $170^{\circ}$ | StereoDropCam | 10-Aug | 14:58 | 15.28 | 59 | 41.05 | -177 | 6.366 |  | 162.7 |  | 12.1 |  |  |  |
| 188 | U.S. west of $170^{\circ}$ | AWT | 10-Aug | 19:57 | 38.1 | 60 | 13.58 | -177 | 21.37 | 123.8 | 140.2 | 1.77 | 12.0 | 633.7 | 2,644 | 10.5 |
| 189 | U.S. west of $170^{\circ}$ | AWT | 11-Aug | 1:36 | 21.58 | 60 | 52.39 | -177 | 35.09 | 122.3 | 135.8 | 1.45 | 12.0 | 547.5 | 2,445 | 14.8 |
| 190 | U.S. west of $170^{\circ}$ | AWT | 11-Aug | 5:50 | 8.98 | 61 | 12.94 | -177 | 41.92 | 117.0 | 140.8 | 1.50 | 12.1 | 777.1 | 4,582 | 19.3 |
| 191 | U.S. west of $170^{\circ}$ | StereoDropCam | 11-Aug | 8:55 | 15.25 | 61 | 12.64 | -177 | 40.85 |  | 140.8 |  | 12.1 |  |  |  |
| 192 | U.S. west of $170^{\circ}$ | StereoDropCam | 11-Aug | 9:22 | 15.25 | 61 | 12.83 | -177 | 41.27 |  | 140.9 | 1.53 | 12.1 |  |  |  |
| 193 | U.S. west of $170^{\circ}$ | StereoDropCam | 11-Aug | 10:03 | 15.25 | 61 | 12.66 | -177 | 40.93 |  | 140.7 | 1.55 | 12.1 |  |  |  |
| 194 | U.S. west of $170^{\circ}$ | StereoDropCam | 11-Aug | 10:33 | 15.2 | 61 | 12.91 | -177 | 41.39 |  | 141.0 |  | 12.1 |  |  |  |

Table 2. -- Cont.

| Haul | Area | Gear ${ }^{\text {a }}$ | Date | Time | Duration | Start position |  |  |  | Depth (m) |  | Temp. $\left({ }^{\circ} \mathrm{C}\right)$ |  | Walleye pollock |  | $\frac{\text { Other }}{(\mathrm{kg})}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| no. |  | type | (GMT) | (GMT) | (minutes) |  | (N) |  | g. (W) | footrope | bottom | headrope | surface ${ }^{\text {D }}$ | (kg) | number |  |
| 195 | U.S. west of $170^{\circ}$ | StereoDropCam | 11-Aug | 11:04 | 15.23 | 61 | 13.16 | -177 | 41.95 |  | 141.3 |  | 12.1 |  |  |  |
| 196 | U.S. west of $170^{\circ}$ | StereoDropCam | 11-Aug | 11:31 | 15.22 | 61 | 13.47 | -177 | 42.44 |  | 141.5 |  | 12.1 |  |  |  |
| 197 | U.S. west of $170^{\circ}$ | StereoDropCam | 11-Aug | 12:33 | 15.22 | 61 | 12.81 | -177 | 41.44 |  | 140.8 | 1.54 | 12.0 |  |  |  |
| 198 | U.S. west of $170^{\circ}$ | StereoDropCam | 11-Aug | 13:06 | 15.2 | 61 | 13.20 | -177 | 42.2 |  | 141.2 | 1.54 | 12.1 |  |  |  |
| 199 | U.S. west of $170^{\circ}$ | AWT | 11-Aug | 18:26 | 2.07 | 60 | 43.93 | -178 | 13.64 | 125.2 | 166.1 | 2.17 | 11.4 | 430.7 | 2,655 | 0.31 |
| 200 | U.S. west of $170^{\circ}$ | AWT | 11-Aug | 23:25 | 16.67 | 60 | 20.56 | -178 | 2.178 | 144.2 | 154.2 | 2.02 | 11.9 | 298.1 | 1,297 | 0.23 |
| 201 | U.S. west of $170^{\circ}$ | AWT | 12-Aug | 6:08 | 13.08 | 59 | 48.07 | -177 | 50.24 | 122.4 | 144.9 | 2.14 | 11.7 | 425.3 | 1,314 | 7.17 |
| 202 | U.S. west of $170^{\circ}$ | StereoDropCam | 12-Aug | 9:18 | 15.25 | 59 | 39.26 | -177 | 46.88 |  | 231.8 |  | 11.7 |  |  |  |
| 203 | U.S. west of $170^{\circ}$ | StereoDropCam | 12-Aug | 10:05 | 15.27 | 59 | 39.04 | -177 | 46.21 |  | 218.2 | 3.55 | 11.7 |  |  |  |
| 204 | U.S. west of $170^{\circ}$ | StereoDropCam | 12-Aug | 10:53 | 15.25 | 59 | 39.01 | -177 | 46.55 |  | 228.0 | 3.58 | 11.7 |  |  |  |
| 205 | U.S. west of $170^{\circ}$ | Methot | 12-Aug | 22:46 | 27.97 | 58 | 46.11 | -177 | 26.54 | 130.2 | 137.8 | 3.53 | 11.1 |  |  | 1.51 |
| 206 | U.S. west of $170^{\circ}$ | Methot | 13-Aug | 0:29 | 28.6 | 58 | 45.65 | -177 | 26.38 | 135.2 | 139.0 | 3.41 | 11.1 |  |  | 2.60 |
| 207 | U.S. west of $170^{\circ}$ | StereoDropCam | 13-Aug | 10:32 | 15.23 | 59 | 17.09 | -178 | 10.85 |  | 288.8 |  | 11.3 |  |  |  |
| 208 | U.S. west of $170^{\circ}$ | StereoDropCam | 13-Aug | 11:09 | 15.23 | 59 | 17.08 | -178 | 11.3 |  | 282.1 | 4.01 | 11.4 |  |  |  |
| 209 | U.S. west of $170^{\circ}$ | StereoDropCam | 13-Aug | 11:46 | 15.23 | 59 | 17.13 | -178 | 11.84 |  | 282.8 | 4.04 | 11.4 |  |  |  |
| 210 | U.S. west of $170^{\circ}$ | StereoDropCam | 13-Aug | 12:27 | 15.2 | 59 | 17.22 | -178 | 12.56 |  | 301.6 |  | 11.4 |  |  |  |
| 211 | U.S. west of $170^{\circ}$ | StereoDropCam | 13-Aug | 13:22 | 15.27 | 59 | 16.88 | -178 | 10.17 |  | 274.1 |  | 11.3 |  |  |  |
| 212 | U.S. west of $170^{\circ}$ | StereoDropCam | 13-Aug | 14:04 | 15 | 59 | 17.09 | -178 | 11.29 |  |  |  |  |  |  |  |
| 213 | U.S. west of $170^{\circ}$ | StereoDropCam | 13-Aug | 14:48 | 15.23 | 59 | 17.26 | -178 | 12.41 |  | 304.0 | 3.93 | 11.3 |  |  |  |
| 214 | U.S. west of $170^{\circ}$ | StereoDropCam | 13-Aug | 15:49 | 15.38 | 59 | 17.18 | -178 | 11.51 |  | 291.9 | 3.95 | 11.3 |  |  |  |
| 215 | U.S. west of $170^{\circ}$ | StereoDropCam | 13-Aug | 16:39 | 15.22 | 59 | 17.35 | -178 | 11.97 |  | 301.2 |  | 11.3 |  |  |  |
| 216 | U.S. west of $170^{\circ}$ | AWT | 14-Aug | 2:15 | 18.08 | 60 | 38.18 | -178 | 49.74 | 214.9 | 232.7 | 2.74 | 12.2 | 302 | 591 | 62.18 |
| 217 | U.S. west of $170^{\circ}$ | AWT | 14-Aug | 20:50 | 20.48 | 61 | 7.45 | -173 | 28.83 | 68.6 | 75.2 | 0.90 | 11.8 | 109 | 208 | 15.13 |

${ }^{\text {a }} \mathrm{AWT}=$ Aleutian wing trawl, 83-112 $=$ eastern bottom trawl, Methot $=$ Methot trawl, Marinovich $=$ small mesh midwater trawl ${ }^{0}$ shipboard sensor at 1.4 m depth.

Table 3.--Catch by species, and numbers of individual length and weight measurements taken from 104 Aleutian wing (midwater) trawls during the summer 2016 acoustic-trawl survey of walleye pollock on the eastern Bering Sea shelf.

| Species name | Scientific name | Catch |  |  |  | Individual measurements |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Weight (kg) | \% | Number | \% | Length | Weight |
| walleye pollock (age 1+) | Gadus chalcogrammus | 53,654.4 | 89.5 | 151,758 | 93.7 | 33,919 | 4,560 |
| northern sea nettle | Chrysaora melanaster | 4,913.3 | 8.2 | 5,842 | 3.6 | 695 | 326 |
| northern rockfish | Sebastes polyspinis | 497.1 | 0.8 | 1,012 | 0.6 | 216 | 35 |
| Pacific herring | Clupea pallasi | 264.2 | 0.4 | 1,667 | 1.0 | 227 | 155 |
| chum salmon | Oncorhynchus keta | 201.2 | 0.3 | 94 | 0.1 | 94 | 93 |
| smooth lumpsucker | Aptocyclus ventricosus | 126.2 | 0.2 | 63 | <0.1 | 63 | 39 |
| Pacific ocean perch | Sebastes alutus | 117.3 | 0.2 | 153 | 0.1 | 153 | 55 |
| Pacific cod | Gadus macrocephalus | 52.5 | 0.1 | 18 | <0.1 | 18 | 17 |
| lion's mane | Cyanea capillata | 45.9 | 0.1 | 266 | 0.2 | 125 | 115 |
| Aequorea spp. | Aequoreidae (family) | 18.6 | <0.1 | 83 | 0.1 | 24 | 24 |
| dusky rockfish | Sebastes variabilis | 6.5 | <0.1 | 4 | <0.1 | 4 | 4 |
| fried egg jellyfish | Phacellophora camtchatica | 6.3 | <0.1 | 16 | <0.1 |  |  |
| yellowfin sole | Limanda aspera | 5.8 | <0.1 | 12 | <0.1 | 12 | 12 |
| jellyfish unident. | Scyphozoa (class) | 4.8 | <0.1 | 615 | 0.4 |  |  |
| northern rock sole | Lepidopsetta polyxystra | 2.8 | <0.1 | 5 | <0.1 | 5 | 5 |
| magistrate armhook squid | Berryteuthis magister | 1.7 | <0.1 | 4 | <0.1 | 4 | 4 |
| Alaska plaice | Pleuronectes quadrituberculatus | 1.5 | <0.1 | 1 | <0.1 | 1 | 1 |
| sturgeon poacher | Podothecus acipenserinus | 1.1 | <0.1 | 16 | <0.1 | 16 | 16 |
| Atka mackerel | Pleurogrammus monopterygius | 1.0 | <0.1 | 1 | <0.1 | 1 | 1 |
| rock sole sp. | Lepidopsetta spp. | 1.0 | <0.1 | 2 | <0.1 | 2 | 2 |
| flathead sole | Hippoglossoides elassodon | 0.6 | <0.1 | 1 | <0.1 | 1 | 1 |
| lamprey unidentified | Petromyzontidae (family) | 0.6 | <0.1 | 1 | <0.1 | 1 | 1 |
| capelin | Mallotus villosus | 0.5 | <0.1 | 36 | <0.1 | 36 | 36 |
| arrowtooth flounder | Atheresthes stomias | 0.4 | <0.1 | 1 | <0.1 | 1 | 1 |
| moon jelly | Aurelia labiata | 0.3 | <0.1 | 77 | <0.1 | 38 | 8 |
| eulachon | Thaleichthys pacificus | 0.3 | <0.1 | 5 | <0.1 | 5 | 5 |
| moon jelly unidentified | Aurelia spp. | 0.3 | <0.1 | 20 | <0.1 | 6 | 6 |
| eelpout unidentified | Zoarcidae (family) | 0.2 | <0.1 | 1 | <0.1 | 1 | 1 |
| hydrozoans unidentified | Hydrozoa (class) | 0.1 | <0.1 | 28 | <0.1 |  |  |
| walleye pollock (age 0) | Gadus chalcogrammus | 0.1 | <0.1 | 179 | 0.1 | 127 |  |
| helmet jellyfish | Periphylla periphylla | 0.1 | <0.1 | 6 | <0.1 |  |  |
| salps unidentified | Salpa (order) | $<0.1$ | <0.1 | 6 | <0.1 |  |  |
| comb jelly unidentified | Ctenophora (phylum) | <0.1 | <0.1 | 3 | <0.1 |  |  |
| prowfish | Zaprora silenus | <0.1 | <0.1 | 12 | <0.1 | 12 | 9 |
| squid unident. | Teuthoidea (order) | $<0.1$ | <0.1 | 2 | <0.1 | 2 | 1 |
| amphipod unident. | Amphipoda (order) | <0.1 | <0.1 | 20 | <0.1 |  |  |
| Greenland turbot | Reinhardtius hippoglossoides | <0.1 | <0.1 | 1 | <0.1 | 1 | 1 |
| purple-orange sea star | Pisaster ochraceus | <0.1 | <0.1 | 1 | <0.1 |  |  |
| Pacific sand lance | Ammodytes hexapterus | $<0.1$ | <0.1 | 3 | <0.1 | 2 | 0 |
| Gadid larvae | Gadidae (family) | <0.1 | <0.1 | 4 | <0.1 | 4 | 0 |
| Isopod unidentified | Isopoda (order) | <0.1 | <0.1 | 2 | <0.1 |  |  |
| Total |  | 59,926.4 |  | 162,041 |  | 35,689 | 5,534 |

Table 4.-- Catch by species, and numbers of individual length and weight measurements taken from four 83-112 bottom trawls during the summer 2016 acoustic-trawl survey of walleye pollock on the eastern Bering sea shelf.

| Species name | Scientific name | Catch |  |  |  | Individual measurements |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Weight (kg) | \% | Number | \% | Length | Weight |
| walleye pollock (age 1+) | Gadus chalcogrammus | 3797.4 | 80.9 | 6221 | 73.6 | 1249 | 163 |
| rock sole spp. | Lepidopsetta spp. | 230.5 | 4.9 | 731 | 8.6 | 63 | 22 |
| yellowfin sole | Limanda aspera | 212.3 | 4.5 | 671 | 7.9 | 73 | 23 |
| Pacific cod | Gadus macrocephalus | 152.7 | 3.3 | 43 | 0.5 | 30 | 30 |
| northern sea nettle | Chrysaora melanaster | 83.3 | 1.8 | 192 | 2.3 | 101 | 37 |
| Pacific sleeper shark | Somniosus pacificus | 51.0 | 1.1 | 1 | <0.1 | 1 | 1 |
| purple-orange sea star | Asterias amurensis | 44.7 | 1.0 | 240 | 2.8 |  |  |
| Alaska skate | Bathyraja parmifera | 27.5 | 0.6 | 5 | 0.1 | 2 | 2 |
| arrowtooth flounder | Atheresthes stomias | 25.7 | 0.5 | 55 | 0.7 | 36 | 14 |
| flathead sole | Hippoglossoides elassodon | 11.8 | 0.3 | 40 | 0.5 | 24 | 24 |
| hermit crab unident. | Paguridae (family) | 8.0 | 0.2 | 59 | 0.7 |  |  |
| Alaska plaice | Pleuronectes quadrituberculatus | 7.8 | 0.2 | 11 | 0.1 | 11 | 11 |
| whelk unident. | Buccinidae (family) | 6.2 | 0.1 | 52 | 0.6 |  |  |
| great sculpin | Myoxocephalus polyacathoceph | 6.2 | 0.1 | 4 | <0.1 | 4 | 4 |
| Pacific halibut | Hippoglossus stenolepis | 5.8 | 0.1 | 4 | <0.1 | 1 | 1 |
| sea anemone unident. | Actiniaria (order) | 5.4 | 0.1 | 18 | 0.2 |  |  |
| red king crab | Paralithodes camtschaticus | 5.4 | 0.1 | 4 | 0.1 | 1 | 1 |
| basketstar | Gorgonocephalus eucnemis | 5.3 | 0.1 | 11 | 0.1 |  |  |
| Tanner crab | Chionoecetes bairdi | 2.9 | 0.1 |  | 0.1 | 3 | 3 |
| Aequorea spp. | Aequoreidae (family) | 2.0 | <0.1 | 13 | 0.2 | 3 | 3 |
| bivalve unident. | Bivalvia (class) | 1.9 | <0.1 | 38 | 0.5 |  |  |
| Pacific lyre crab | Hyas lyratus | 0.7 | <0.1 | 4 | 0.1 |  |  |
| Kamchatka flounder | Atheresthes evermanni | 0.5 | <0.1 | 2 | <0.1 | 2 | 2 |
| tunicate unident. | Ascidiacea (class) | 0.5 | <0.1 | 10 | 0.1 |  |  |
| sturgeon poacher | Podothecus acipenserinus | 0.4 | <0.1 | 4 | <0.1 | 4 | 4 |
| lion's mane | Cyanea capillata | 0.1 | <0.1 | 2 | <0.1 | 2 | 2 |
| graceful decorator crab | Oregonia gracilis | 0.1 | <0.1 | 4 | <0.1 |  |  |
| lyre crab unident. | Hyas spp. | <0.1 | <0.1 | 1 | <0.1 |  |  |
| Amphipod unident. | Amphipoda (order) | <0.1 | <0.1 | 1 | <0.1 |  |  |
| Total |  | 4,696.0 |  | 8,449 |  | 1,610.0 | 347 |

Table 5. -- Catch by species, and numbers of individual length and weight measurements taken from six Marinovich (midwater) trawls during the summer 2016 acoustic-trawl survey of walleye pollock on the eastern Bering Sea shelf.

| Species name | Scientific name | Catch |  |  |  | Individual measurements |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Weight (kg) | \% | Number | \% | Length | Weight |
| Aequorea spp. | Aequoreidae (family) | 26.4 | 42.4 | 130 | 1.0 | 14 | 14 |
| northern sea nettle | Chrysaora melanaster | 21.6 | 34.7 | 44 | 0.3 | 14 | 14 |
| lion's mane | Cyanea capillata | 8.9 | 14.3 | 12 | 0.1 | 12 | 12 |
| Aurelia spp. | Aureliinae (subfamily) | 3.0 | 4.8 | 189 | 1.4 | 7 | 7 |
| walleye pollock (age 0) | Gadus chalcogrammus | 0.8 | 1.3 | 3,449 | 26.0 | 83 |  |
| euphausiid unident. | Euphausiidae (family) | 0.6 | 0.9 | 7,392 | 55.6 |  |  |
| jellyfish unident. | Scyphozoa (class) | 0.4 | 0.7 | 121 | 0.9 |  |  |
| crustacean unident. | Crustacea (subphylum) | 0.3 | 0.5 | 1,808 | 13.6 |  |  |
| snailfish unident. | Liparidae (family) | 0.1 | 0.1 | 9 | 0.1 | 1 | 1 |
| fish larvae unident. | Actinopterygii (class) | <0.1 | <0.1 | 93 | 0.7 |  |  |
| comb jelly unident. | Ctenophora (phylum) | $<0.1$ | <0.1 | 2 | <0.1 |  |  |
| walleye pollock (age $1+$ ) | Gadus chalcogrammus | <0.1 | <0.1 | 1 | <0.1 | 1 | 1 |
| prowfish | Zaprora silenus | <0.1 | <0.1 | 3 | <0.1 | 3 | 2 |
| squid unident. | Teuthoidea (order) | $<0.1$ | <0.1 | 7 | 0.1 | 7 | 0 |
| amphipod unident. | Amphipoda (order) | $<0.1$ | <0.1 | 27 | 0.2 |  |  |
| gadid larvae unident. | Gadidae (family) | $<0.1$ | <0.1 | 3 | <0.1 | 3 | 0 |
| Total |  | 62.3 |  | 13,290 |  | 145 | 51 |

Table 6. -- Catch by species, and numbers of individual length and weight measurements taken from 48 Methot trawls during the summer 2016 acoustic-trawl survey of walleye pollock on the eastern Bering Sea shelf.

| Species name | Scientific name | Catch |  |  |  | Individual measurements |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Weight (kg) | \% | Number | \% | Length | Weight |
| northern sea nettle | Chrysaora melanaster | 205.1 | 57.9 | 696 | 0.1 | 295 | 212 |
| euphausiid unident. | Euphausiidae (family) | 72.7 | 20.5 | 1,235,844 | 90.8 |  |  |
| moon jelly | Aurelia labiata | 33.6 | 9.5 | 152 | <0.1 | 57 | 24 |
| Aequorea jellyfish unident. | Aequorea spp. | 15.5 | 4.4 | 192 | <0.1 | 159 | 154 |
| jellyfish unident. | Scyphozoa (class) | 7.8 | 2.2 | 6,443 | 0.5 | 15 | 2 |
| coelenterate unident. | Cnidaria (phylum) | 3.2 | 0.9 | 3,075 | 0.2 | 20 | - |
| fried egg jellyfish | Phacellophora camtchatica | 2.6 | 0.7 | 2 | <0.1 | 2 | 2 |
| helmet jellyfish | Periphylla periphylla | 2.3 | 0.6 | 348 | <0.1 | 172 | 78 |
| copepod unident. | Copepoda (subclass) | 2.2 | 0.6 | 87,765 | 6.5 |  |  |
| lion's mane | Cyanea capillata | 1.8 | 0.5 | 27 | <0.1 | 27 | 27 |
| fish larvae unident. | Actinopterygii (class) | 1.1 | 0.3 | 4,539 | 0.3 |  |  |
| walleye pollock (age $1+$ ) | Gadus chalcogrammus | 1.0 | 0.3 | 4 | <0.1 | 4 | 4 |
| walleye pollock (age 0 ) | Gadus chalcogrammus | 0.9 | 0.3 | 6,565 | 0.5 | 119 |  |
| Alaska plaice | Pleuronectes quadrituberculatus | 0.8 | 0.2 | 1 | <0.1 | 1 | 1 |
| crab unident. | Decapoda (order) | 0.8 | 0.2 | 10,683 | 0.8 |  |  |
| comb jelly unident. | Ctenophora (phylum) | 0.7 | 0.2 | 35 | <0.1 | 26 | 26 |
| hermit crab unident. | Paguridae | 0.5 | 0.1 | 18 | <0.1 |  |  |
| amphipod unident. | Amphipoda (order) | 0.4 | 0.1 | 773 | 0.1 |  |  |
| flatfish larvae | Pleuronectifomes (order) | 0.3 | 0.1 | 894 | 0.1 |  |  |

Table 6.-- Continued.

| Species name | Scientific name | Weight (kg) | \% | Number | \% | Length | Weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| shrimp unident. | Decapoda (order) | 0.3 | 0.1 | 902 | 0.1 |  |  |
| Aurelia jellyfish unident. | Aurelia sp. | 0.2 | 0.1 | 36 | <0.1 |  |  |
| basketstar | Gorgonocephalus eucnemis | 0.1 | <0.1 | 1 | <0.1 |  |  |
| crustacean unident. | Crustacea (subphylum) | 0.1 | <0.1 | 391 | <0.1 |  |  |
| squid unident. | Teuthoidea (order) | 0.1 | <0.1 | 277 | <0.1 | 1 | - |
| flatfish unident. | Pleuronectiformes (order) | 0.1 | <0.1 | 145 | <0.1 |  |  |
| echiuroid worm unident. | Echiura (phylum) | 0.1 | <0.1 | 73 | <0.1 |  |  |
| Fusitriton sp. | Fusitriton sp. | 0.1 | <0.1 | 3 | <0.1 |  |  |
| humpy shrimp | Pandalus goniurus | 0.1 | <0.1 | 60 | <0.1 |  |  |
| starfish unident. | Asteroidea (class) | <0.1 | <0.1 | 1 | <0.1 |  |  |
| bat star | Asterina miniata | <0.1 | <0.1 | 16 | <0.1 |  |  |
| bivalve unident. | Bivalvia (class) | <0.1 | <0.1 | 5 | <0.1 |  |  |
| Pacific sand lance | Ammodytes hexapterus | <0.1 | <0.1 | 55 | <0.1 | 2 | - |
| flatworm unident. | Platyhelminthes (phylum) | <0.1 | <0.1 | 123 | <0.1 |  |  |
| worm unident. | Annelida (phylum) | $<0.1$ | <0.1 | 89 | <0.1 |  |  |
| Tanner crab | Chionoecetes sp. | <0.1 | <0.1 | 12 | <0.1 |  |  |
| fish eggs unident. |  | <0.1 | <0.1 | 142 | <0.1 |  |  |
| brittlestar unident. | Ophiuroidea (class) | <0.1 | <0.1 | 133 | <0.1 |  |  |
| fish unident. | Actinopterygii (class) | <0.1 | <0.1 | 31 | <0.1 |  |  |
| polychaete tubes | Polychaeta (class) | <0.1 | <0.1 | 14 | <0.1 |  |  |
| prowfish | Zaprora silenus | <0.1 | <0.1 | 3 | <0.1 | 3 | 3 |
| snail unident. | Gastropoda (class) | <0.1 | <0.1 | 4 | <0.1 |  |  |
| hydrozoan unident. | Hydrozoa (class) | <0.1 | <0.1 | 5 | <0.1 |  |  |
| unsorted shells, etc. |  | <0.1 | <0.1 | 14 | <0.1 |  |  |
| pandalid shrimp unident. | Pandalidae (family) | <0.1 | <0.1 | 5 | <0.1 |  |  |
| crangonid shrimp unident. | Crangon sp. | <0.1 | <0.1 | 3 | <0.1 | 3 | - |
| dungeness crab | Cancer magister | <0.1 | <0.1 | 2 | <0.1 |  |  |
| empty bivalve shells | Bivalvia (class) | $<0.1$ | <0.1 | 1 | <0.1 |  |  |
| gadidae larvae | Gadidae (family) | $<0.1$ | <0.1 | 4 | <0.1 | 4 | - |
| gammarid amphipod uniden | Gammaridae (family) | $<0.1$ | <0.1 | 4 | <0.1 |  |  |
| lyre crab unident. | Hyas sp. | <0.1 | <0.1 | 1 | <0.1 |  |  |
| prickleback unident. | Stichaeidae (family) | $<0.1$ | <0.1 | 1 | <0.1 | 1 | - |
| smooth lumpsucker | Aptocyclus ventricosus | $<0.1$ | <0.1 | 1 | <0.1 |  |  |
| Total |  | 354.3 |  | 1,360,611 |  | 924 | 536 |

Table 7. -- Number of walleye pollock biological samples and measurements collected during the summer 2016 acoustic-trawl survey of the eastern Bering Sea shelf.

| Haul no. | Walleye pollock age 1+ |  |  |  |  |  | Age-0 walleye pollock lengths |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Lengths | Weights | Maturity | Otoliths | Ovaries | Gonad wts |  |
| 4 | 88 | 60 | 60 | 30 | 17 | 15 |  |
| 5 | 137 | 50 | 50 | 30 | 12 | 0 | 1 |
| 9 | 7 | 7 | 7 | 7 | 2 | 1 |  |
| 10 | 424 | 50 | 50 | 33 | 11 | 1 |  |
| 12 | 95 | 50 | 50 | 30 | 13 | 1 | 10 |
| 13 | 6 | 6 | 6 | 6 | 4 | 2 |  |
| 16 |  |  |  |  |  |  | 10 |
| 17 | 244 | 50 | 50 | 30 | 16 | 0 |  |
| 18 | 306 | 50 | 50 | 30 | 16 | 1 | 20 |
| 19 | 362 | 50 | 50 | 32 | 10 | 2 | 4 |
| 23 | 210 | 50 | 50 | 30 | 21 | 3 |  |
| 24 | 426 | 51 | 51 | 31 | 14 | 4 |  |
| 25 | 451 | 52 | 52 | 32 | 14 | 5 |  |
| 26 | 434 | 50 | 50 | 30 | 17 | 0 |  |
| 28 | 369 | 50 | 50 | 30 | 10 | 0 |  |
| 31 | 376 | 50 | 50 | 22 | 9 | 0 |  |
| 35 | 347 | 50 | 50 | 20 | 7 | 0 |  |
| 36 | 412 | 50 | 50 | 20 | 10 | 0 |  |
| 37 | 256 | 50 | 50 | 20 | 10 | 0 | 2 |
| 41 | 75 | 49 | 49 | 20 | 11 | 0 | 10 |
| 42 | 29 | 1 | 1 | 1 | 1 | 0 |  |
| 43 | 233 | 50 | 50 | 22 | 12 | 3 |  |
| 44 | 317 | 50 | 50 | 20 | 9 | 0 |  |
| 48 | 339 | 50 | 50 | 20 | 10 | 0 |  |
| 49 |  |  |  |  |  |  | 20 |
| 51 | 358 | 50 | 50 | 20 | 6 | 0 |  |
| 52 | 411 | 55 | 55 | 24 | 15 | 10 |  |
| 59 | 404 | 50 | 50 | 20 | 14 | 0 |  |
| 63 | 401 | 51 | 51 | 22 | 16 | 3 |  |
| 64 | 385 | 50 | 50 | 20 | 13 | 1 |  |
| 65 | 197 | 50 | 50 | 20 | 13 | 7 |  |
| 66 |  |  |  |  |  |  | 18 |
| 67 |  |  |  |  |  |  | 20 |
| 68 | 392 | 55 | 55 | 30 | 12 | 12 |  |
| 72 | 371 | 50 | 50 | 20 | 10 | 2 |  |
| 73 | 330 | 52 | 52 | 30 | 22 | 5 |  |
| 74 | 350 | 50 | 50 | 30 | 22 | 5 |  |
| 77 | 313 | 53 | 53 | 23 | 12 | 1 |  |
| 81 |  |  |  |  |  |  | 20 |
| 82 | 423 | 72 | 57 | 35 | 19 | 0 |  |
| 83 | 354 | 50 | 50 | 20 | 11 | 10 |  |
| 84 | 327 | 32 | 31 | 20 | 8 | 0 |  |
| 85 | 311 | 47 | 47 | 20 | 13 | 0 |  |
| 86 | 490 | 49 | 49 | 19 | 6 | 2 |  |
| 87 |  |  |  |  |  |  | 20 |
| 88 | 322 | 50 | 50 | 23 | 8 | 2 |  |
| 89 | 377 | 54 | 54 | 25 | 14 | 1 | 11 |

Table 7. -- Cont.

| Haul no. | Walleye pollock |  |  |  |  |  | Age-0 walleye pollock |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Lengths | Weights | Maturity | Otoliths | Ovaries | Gonad wts |  |
| 90 | 368 | 54 | 54 | 29 | 13 | 3 |  |
| 91 | 434 | 52 | 52 | 26 | 20 | 1 | 20 |
| 92 | 361 | 53 | 53 | 23 | 7 | 0 |  |
| 93 |  |  |  |  |  |  | 20 |
| 94 | 254 | 49 | 49 | 19 | 8 | 0 | 6 |
| 95 | 301 | 55 | 55 | 18 | 11 | 0 |  |
| 96 | 329 | 50 | 50 | 20 | 14 | 1 |  |
| 97 | 218 | 24 | 24 | 20 | 8 | 0 |  |
| 98 | 232 | 31 | 31 | 20 | 7 | 0 |  |
| 99 |  |  |  |  |  |  | 25 |
| 100 | 221 | 33 | 33 | 20 | 13 | 0 | 6 |
| 101 | 382 | 70 | 50 | 30 | 14 | 1 |  |
| 103 |  |  |  |  |  |  | 8 |
| 104 |  |  |  |  |  |  | 10 |
| 105 | 251 | 34 | 34 | 20 | 8 | 0 |  |
| 106 | 369 | 42 | 42 | 21 | 6 | 2 |  |
| 107 | 339 | 56 | 54 | 30 | 16 | 0 |  |
| 108 | 351 | 49 | 49 | 19 | 8 | 1 | 2 |
| 109 | 353 | 41 | 40 | 20 | 11 | 0 |  |
| 110 | 318 | 43 | 42 | 22 | 12 | 1 |  |
| 111 |  |  |  |  |  |  | 7 |
| 112 |  |  |  |  |  |  | 4 |
| 113 | 347 | 40 | 40 | 20 | 7 | 3 | 13 |
| 114 | 385 | 40 | 40 | 20 | 13 | 7 |  |
| 115 | 253 | 30 | 30 | 20 | 11 | 0 | 2 |
| 116 | 242 | 38 | 38 | 20 | 9 | 0 | 2 |
| 117 | 329 | 40 | 40 | 20 | 8 | 2 |  |
| 118 | 372 | 41 | 41 | 20 | 8 | 1 |  |
| 119 | 220 | 29 | 29 | 20 | 7 | 1 |  |
| 120 | 361 | 40 | 40 | 20 | 15 | 4 |  |
| 121 | 239 | 32 | 32 | 17 | 6 | 1 |  |
| 122 | 431 | 40 | 40 | 20 | 9 | 1 |  |
| 123 | 326 | 40 | 40 | 20 | 5 | 0 |  |
| 126 | 268 | 31 | 31 | 20 | 12 | 0 |  |
| 127 | 324 | 40 | 40 | 20 | 11 | 0 |  |
| 128 | 284 | 41 | 41 | 20 | 9 | 0 |  |
| 129 | 17 | 16 | 16 | 0 | 0 | 0 | 1 |
| 130 | 15 | 15 | 15 | 15 | 10 | 1 |  |
| 131 | 313 | 40 | 40 | 20 | 10 | 8 | 6 |
| 132 | 379 | 40 | 40 | 20 | 8 | 0 |  |
| 133 | 407 | 50 | 50 | 30 | 15 | 0 |  |
| 134 | 384 | 50 | 46 | 26 | 8 | 0 |  |
| 135 | 386 | 40 | 40 | 20 | 11 | 5 |  |
| 136 | 516 | 50 | 50 | 30 | 16 | 3 |  |
| 137 | 504 | 40 | 40 | 20 | 8 | 1 |  |
| 138 |  |  |  |  |  |  | 20 |
| 140 | 377 | 40 | 40 | 20 | 11 | 1 | 3 |
| 141 | 341 | 40 | 40 | 20 | 9 | 0 |  |

Table 7. $-\frac{\text { - Cont. }}{\text { Haul }}$

| $\begin{gathered} \text { Haul } \\ \text { no. } \end{gathered}$ | Walleye pollock |  |  |  |  |  | Age-0 walleye pollock lengths |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Lengths | Weights | Maturity | Otoliths | Ovaries | Gonad wts |  |
| 142 | 366 | 40 | 40 | 20 | 13 | 0 |  |
| 143 | 542 | 52 | 51 | 30 | 9 | 0 |  |
| 144 | 344 | 40 | 40 | 23 | 15 | 0 |  |
| 145 | 303 | 40 | 40 | 20 | 12 | 1 |  |
| 148 | 433 | 40 | 40 | 20 | 14 | 2 |  |
| 149 | 434 | 40 | 40 | 20 | 6 | 0 |  |
| 150 | 316 | 42 | 42 | 22 | 14 | 1 |  |
| 155 | 397 | 40 | 40 | 20 | 6 | 1 |  |
| 156 | 437 | 48 | 43 | 20 | 9 | 0 |  |
| 157 | 339 | 40 | 39 | 20 | 7 | 0 |  |
| 158 | 391 | 42 | 41 | 21 | 10 | 1 |  |
| 159 | 349 | 42 | 42 | 22 | 11 | 1 |  |
| 160 | 387 | 40 | 40 | 20 | 12 | 0 |  |
| 169 | 416 | 44 | 44 | 25 | 17 | 2 |  |
| 170 | 301 | 40 | 40 | 20 | 8 | 0 | 2 |
| 171 | 117 | 40 | 40 | 30 | 21 | 12 |  |
| 178 | 372 | 40 | 40 | 22 | 14 | 2 |  |
| 179 | 377 | 40 | 40 | 20 | 10 | 0 |  |
| 188 | 418 | 49 | 49 | 28 | 12 | 0 |  |
| 189 | 370 | 56 | 44 | 24 | 12 | 1 | 1 |
| 190 | 426 | 42 | 42 | 22 | 14 | 2 | 2 |
| 199 | 515 | 41 | 41 | 21 | 7 | 0 |  |
| 200 | 340 | 40 | 40 | 20 | 8 | 0 |  |
| 201 | 349 | 41 | 41 | 21 | 14 | 1 |  |
| 216 | 358 | 40 | 40 | 20 | 15 | 0 |  |
| 217 | 211 | 39 | 39 | 21 | 8 | 0 | 3 |
| Total | 35,168 | 4,723 | 4,659 | 2,394 | 1,200 | 175 | 329 |

Table 8. -- Walleye pollock biomass from summer acoustic-trawl surveys on the U.S. EEZ portion of the Bering Sea shelf, 1994-2016. Data for the Steller sea lion Conservation Area (SCA), east of $170^{\circ} \mathrm{W}$ minus the SCA (E170-SCA), and the U.S. west of $170^{\circ} \mathrm{W}(\mathrm{W} 170)$ are estimated pollock biomass between near surface and 3 m off bottom. Relative estimation error for the biomass is indicated.

| Date |  | $\begin{gathered} \text { Area } \\ (\mathrm{nmi})^{2} \\ \hline \end{gathered}$ | Biomass, million metric tons (top) and percent of total (bottom) |  |  | Total biomass (million metric tons) | Relative estimation error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | SCA | E170-SCA | W170 |  |  |
| 1994 | 9 Jul-19 Aug | 78,251 | 0.312 | 0.399 | 2.176 | 2.886 | 0.047 |
|  |  |  | 10.8 | 13.8 | 75.4 |  |  |
| 1996 | 20 Jul-30 Aug | 93,810 | 0.215 | 0.269 | 1.826 | 2.311 | 0.039 |
|  |  |  | 9.3 | 11.7 | 79.0 |  |  |
| 1997 | 17 Jul-4 Sept | 102,770 | 0.246 | 0.527 | 1.818 | 2.592 | 0.037 |
|  |  |  | 9.5 | 20.3 | 70.1 |  |  |
| 1999 | 7 Jun-5 Aug | 103,670 | 0.299 | 0.579 | 2.408 | 3.285 | 0.055 |
|  |  |  | 9.1 | 17.6 | 73.3 |  |  |
| 2000 | 7 Jun-2 Aug | 106,140 | 0.393 | 0.498 | 2.158 | 3.049 | 0.032 |
|  |  |  | 12.9 | 16.3 | 70.8 |  |  |
| 2002 | 4 Jun -30 Jul | 99,526 | 0.647 | 0.797 | 2.178 | 3.622 | 0.031 |
|  |  |  | 17.9 | 22.0 | 60.1 |  |  |
| 2004 | 4 Jun -29 Jul | 99,659 | 0.498 | 0.516 | 2.293 | 3.307 | 0.037 |
|  |  |  | 15.1 | 15.6 | 69.3 |  |  |
| 2006 | 3 Jun -25 Jul | 89,550 | 0.131 | 0.254 | 1.175 | 1.560 | 0.039 |
|  |  |  | 8.4 | 16.3 | 75.3 |  |  |
| 2007 | 2 Jun -30 Jul | 92,944 | 0.084 | 0.168 | 1.517 | 1.769 | 0.045 |
|  |  |  | 4.7 | 9.5 | 85.8 |  |  |
| 2008 | 2 Jun -31 Jul | 95,374 | 0.085 | 0.029 | 0.883 | 0.997 | 0.076 |
|  |  |  | 8.5 | 2.9 | 88.6 |  |  |
| 2009 | 9 Jun -7 Aug | 91,414 | 0.070 | 0.018 | 0.835 | 0.924 | 0.088 |
|  |  |  | 7.6 | 2.0 | 90.4 |  |  |
| 2010 | 5 Jun -7 Aug | 92,849 | 0.067 | 0.113 | 2.143 | 2.323 | 0.060 |
|  |  |  | 2.9 | 4.8 | 92.3 |  |  |
| 2012 | 7 Jun -10 Aug | 96,852 | 0.142 | 0.138 | 1.563 | 1.843 | 0.042 |
|  |  |  | 7.7 | 7.5 | 84.8 |  |  |
| 2014 | 12 Jun -13 Aug | 94,361 | 0.426 | 1.000 | 2.014 | 3.439 | 0.046 |
|  |  |  | 12.4 | 29.1 | 58.6 |  |  |
| 2016 | 12 Jun -17 Aug | 100,674 | 0.516 | 1.005 | 2.542 | 4.063 | 0.021 |
|  |  |  | 12.7 | 24.7 | 62.6 |  |  |

Table 9. -- Numbers-at-length estimates (millions) of walleye pollock between near surface and 3 m off bottom from acoustic- trawl surveys in the U.S. EEZ, 1994-2016.

| Length (cm) | 1994 | 1996 | 1997 | 1999 | 2000 | 2002 | 2004 | 2006 | 2007 | 2008 | 2009 | 2010 | 2012 | 2014 | 2016 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 8 | 0 | 0 | 0 | 0 | 0.03 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 9 | 0 | 0 | 0 | 0.01 | 0.03 | 0 | 0 | 0 | 0 | 0 | 4.42 | 0 | 0.23 | 0 | 0 |
| 10 | 0 | 0 | 2.04 | 0.12 | 0.76 | 0.01 | 0.24 | 0 | 30.12 | 0 | 45.53 | 0 | 0.12 | 0.22 | 0 |
| 11 | 0.40 | 0 | 0.19 | 4.78 | 2.30 | 0.77 | 0.20 | 5.29 | 259.94 | 0.74 | 221.44 | 0.92 | 0.83 | 15.20 | 0.58 |
| 12 | 5.44 | 0.47 | 30.13 | 14.43 | 5.50 | 4.70 | 2.56 | 59.83 | 662.11 | 2.82 | 768.23 | 8.56 | 3.05 | 73.28 | 0.58 |
| 13 | 44.79 | 5.44 | 238.10 | 22.71 | 19.26 | 21.36 | 2.38 | 144.42 | 1329.33 | 6.70 | 1112.48 | 65.31 | 5.75 | 471.20 | 2.85 |
| 14 | 94.23 | 38.20 | 1416.21 | 22.35 | 36.70 | 100.48 | 4.08 | 117.62 | 1497.63 | 9.47 | 1087.89 | 259.44 | 9.52 | 915.69 | 2.87 |
| 15 | 179.82 | 131.29 | 2949.25 | 16.20 | 56.69 | 194.98 | 1.84 | 84.56 | 803.62 | 6.13 | 1046.86 | 508.46 | 14.37 | 1131.56 | 9.43 |
| 16 | 166.05 | 227.77 | 3364.00 | 5.20 | 79.57 | 178.72 | 1.80 | 27.81 | 563.27 | 4.38 | 535.32 | 799.69 | 14.04 | 922.81 | 5.99 |
| 17 | 105.16 | 317.31 | 2207.83 | 5.20 | 50.81 | 99.74 | 1.76 | 10.15 | 304.17 | 7.78 | 266.25 | 698.61 | 11.66 | 560.93 | 5.97 |
| 18 | 129.71 | 215.26 | 1309.13 | 12.92 | 22.39 | 33.47 | 1.12 | 2.90 | 114.52 | 49.99 | 84.01 | 304.04 | 8.78 | 294.77 | 4.43 |
| 19 | 212.54 | 115.39 | 569.51 | 44.60 | 30.27 | 40.07 | 4.34 | 4.73 | 133.95 | 128.23 | 82.88 | 155.46 | 24.43 | 102.72 | 11.32 |
| 20 | 381.96 | 64.79 | 181.06 | 152.57 | 47.16 | 61.90 | 8.40 | 10.85 | 117.76 | 264.22 | 55.95 | 175.31 | 78.52 | 70.99 | 20.72 |
| 21 | 589.69 | 37.20 | 74.90 | 251.49 | 92.37 | 162.63 | 23.15 | 17.43 | 145.33 | 402.13 | 77.20 | 228.58 | 188.37 | 101.82 | 56.09 |
| 22 | 794.28 | 64.41 | 81.07 | 314.31 | 136.41 | 289.69 | 34.90 | 31.71 | 147.44 | 440.61 | 106.28 | 374.84 | 311.68 | 209.38 | 121.39 |
| 23 | 788.35 | 60.24 | 150.80 | 288.90 | 185.76 | 485.72 | 47.06 | 37.50 | 129.53 | 568.91 | 135.13 | 629.53 | 391.40 | 434.88 | 163.12 |
| 24 | 772.58 | 70.32 | 255.93 | 220.31 | 186.04 | 734.73 | 48.21 | 33.77 | 142.76 | 447.11 | 112.14 | 938.65 | 357.38 | 1019.60 | 194.86 |
| 25 | 581.45 | 47.68 | 408.07 | 164.37 | 207.95 | 859.82 | 39.35 | 30.25 | 91.73 | 357.46 | 114.43 | 1170.05 | 290.16 | 1729.30 | 152.78 |
| 26 | 372.26 | 38.32 | 458.83 | 188.58 | 186.91 | 832.36 | 32.49 | 24.95 | 65.22 | 241.72 | 114.22 | 1174.04 | 224.05 | 1977.02 | 121.10 |
| 27 | 198.97 | 33.63 | 519.67 | 256.04 | 187.68 | 718.04 | 25.99 | 21.77 | 49.83 | 115.47 | 129.48 | 931.46 | 192.24 | 1520.76 | 111.38 |
| 28 | 122.07 | 60.16 | 422.68 | 302.47 | 168.93 | 516.42 | 29.43 | 25.52 | 32.98 | 79.93 | 139.98 | 578.26 | 207.61 | 950.43 | 140.09 |
| 29 | 135.90 | 85.07 | 296.50 | 419.16 | 164.76 | 491.26 | 69.82 | 29.78 | 21.87 | 104.00 | 181.74 | 273.70 | 261.16 | 486.46 | 166.61 |
| 30 | 138.25 | 122.81 | 175.36 | 435.28 | 167.17 | 507.57 | 90.09 | 35.24 | 18.40 | 129.13 | 205.96 | 131.43 | 304.50 | 324.20 | 282.41 |
| 31 | 178.83 | 183.98 | 115.83 | 417.13 | 169.72 | 592.86 | 148.82 | 42.19 | 16.21 | 119.63 | 253.04 | 89.40 | 279.21 | 216.79 | 455.19 |

Table 9. -- Cont.

| Length (cm) | 1994 | 1996 | 1997 | 1999 | 2000 | 2002 | 2004 | 2006 | 2007 | 2008 | 2009 | 2010 | 2012 | 2014 | 2016 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 32 | 234.80 | 240.98 | 79.12 | 410.19 | 167.23 | 539.68 | 151.19 | 45.36 | 35.23 | 135.96 | 243.92 | 103.67 | 223.70 | 164.12 | 621.05 |
| 33 | 239.39 | 341.56 | 69.15 | 372.65 | 188.70 | 533.40 | 180.25 | 51.47 | 46.64 | 117.44 | 197.30 | 114.41 | 188.73 | 151.82 | 737.69 |
| 34 | 291.50 | 408.41 | 68.83 | 393.58 | 221.59 | 421.17 | 185.43 | 68.74 | 61.27 | 112.26 | 149.26 | 129.05 | 200.60 | 121.32 | 718.79 |
| 35 | 296.57 | 458.38 | 89.48 | 415.94 | 332.90 | 291.90 | 237.90 | 82.66 | 74.85 | 82.94 | 100.61 | 162.44 | 246.99 | 165.12 | 685.40 |
| 36 | 326.66 | 477.95 | 146.28 | 433.11 | 360.41 | 239.36 | 302.68 | 111.93 | 64.09 | 40.17 | 76.70 | 233.18 | 311.10 | 182.14 | 521.07 |
| 37 | 343.99 | 400.98 | 220.62 | 393.54 | 414.22 | 218.57 | 430.24 | 118.70 | 79.64 | 28.85 | 50.97 | 288.73 | 381.18 | 233.20 | 417.38 |
| 38 | 305.79 | 333.42 | 321.35 | 403.47 | 369.24 | 222.31 | 476.40 | 124.99 | 75.28 | 23.58 | 34.05 | 382.43 | 397.66 | 247.01 | 471.25 |
| 39 | 294.82 | 253.70 | 397.12 | 359.07 | 344.63 | 218.51 | 539.43 | 118.56 | 83.27 | 32.67 | 26.29 | 400.38 | 363.86 | 245.55 | 679.86 |
| 40 | 311.31 | 214.24 | 397.83 | 304.48 | 297.14 | 209.21 | 499.73 | 126.41 | 106.70 | 23.19 | 20.55 | 359.88 | 304.71 | 214.08 | 933.56 |
| 41 | 271.09 | 168.18 | 350.37 | 243.06 | 331.55 | 200.43 | 511.11 | 140.54 | 113.05 | 24.95 | 15.78 | 278.88 | 200.56 | 182.09 | 904.75 |
| 42 | 289.53 | 154.99 | 292.97 | 240.38 | 316.41 | 179.46 | 475.59 | 154.29 | 141.30 | 26.81 | 18.00 | 196.02 | 127.26 | 192.21 | 658.92 |
| 43 | 273.09 | 149.27 | 222.05 | 265.33 | 331.24 | 186.32 | 453.93 | 163.58 | 191.31 | 38.14 | 14.29 | 127.23 | 78.63 | 242.26 | 409.12 |
| 44 | 243.93 | 133.46 | 172.49 | 321.32 | 302.44 | 185.26 | 388.07 | 178.01 | 189.44 | 39.27 | 11.12 | 86.81 | 63.74 | 257.74 | 273.54 |
| 45 | 256.58 | 117.96 | 125.08 | 328.57 | 290.08 | 197.15 | 339.54 | 170.87 | 210.76 | 44.81 | 11.44 | 57.23 | 58.98 | 266.42 | 192.79 |
| 46 | 216.09 | 103.48 | 93.20 | 304.97 | 249.82 | 183.59 | 247.30 | 158.64 | 213.99 | 50.85 | 13.24 | 36.97 | 55.40 | 242.74 | 133.80 |
| 47 | 177.93 | 98.39 | 74.75 | 238.84 | 235.52 | 182.87 | 196.13 | 146.34 | 185.68 | 54.78 | 12.35 | 21.51 | 57.10 | 184.11 | 101.77 |
| 48 | 148.15 | 94.29 | 59.37 | 182.91 | 176.81 | 168.36 | 150.84 | 130.84 | 150.01 | 54.71 | 21.23 | 11.68 | 50.86 | 148.74 | 77.14 |
| 49 | 73.11 | 83.67 | 45.51 | 122.90 | 143.24 | 154.43 | 113.57 | 105.90 | 128.80 | 47.05 | 22.51 | 7.53 | 42.00 | 111.65 | 58.81 |
| 50 | 66.74 | 79.87 | 40.23 | 88.16 | 106.27 | 133.48 | 78.29 | 88.25 | 101.90 | 41.79 | 20.42 | 6.85 | 30.46 | 78.56 | 48.30 |
| 51 | 33.15 | 72.52 | 33.10 | 60.42 | 78.54 | 117.74 | 64.53 | 73.93 | 73.22 | 39.74 | 19.56 | 6.24 | 21.95 | 54.24 | 32.00 |
| 52 | 30.35 | 60.21 | 31.72 | 42.15 | 48.15 | 91.92 | 56.33 | 62.45 | 52.96 | 29.92 | 20.66 | 3.61 | 17.31 | 43.54 | 21.75 |
| 53 | 18.15 | 50.89 | 29.59 | 33.02 | 35.75 | 88.43 | 41.08 | 45.82 | 41.04 | 23.84 | 15.37 | 2.75 | 12.90 | 30.24 | 15.89 |
| 54 | 15.68 | 38.44 | 23.91 | 26.90 | 22.09 | 62.98 | 30.20 | 35.31 | 32.46 | 21.89 | 13.54 | 1.69 | 11.94 | 19.01 | 9.48 |
| 55 | 18.57 | 25.63 | 19.77 | 16.14 | 16.58 | 44.34 | 19.12 | 23.01 | 23.25 | 16.11 | 16.29 | 3.16 | 7.02 | 14.93 | 6.81 |
| 56 | 11.05 | 14.07 | 14.58 | 9.26 | 12.58 | 40.16 | 14.43 | 19.33 | 16.43 | 12.38 | 9.96 | 2.24 | 4.88 | 10.64 | 5.19 |
| 57 | 9.52 | 7.65 | 10.61 | 9.40 | 8.92 | 24.16 | 8.83 | 14.93 | 13.02 | 10.47 | 8.63 | 3.51 | 4.24 | 10.08 | 4.78 |
| 58 | 4.85 | 7.68 | 8.60 | 5.68 | 6.41 | 18.77 | 5.83 | 10.63 | 7.51 | 9.21 | 9.24 | 3.05 | 4.61 | 6.47 | 0.91 |
| 59 | 2.96 | 3.02 | 5.98 | 3.24 | 5.13 | 11.26 | 6.16 | 8.11 | 4.76 | 8.31 | 5.28 | 2.79 | 3.07 | 7.71 | 1.00 |
| 60 | 3.47 | 4.71 | 3.45 | 3.04 | 1.87 | 10.58 | 4.00 | 5.39 | 3.72 | 7.39 | 4.50 | 3.20 | 4.16 | 5.58 | 1.02 |
| 61 | 6.63 | 2.88 | 4.58 | 2.40 | 2.30 | 7.11 | 2.89 | 4.60 | 1.86 | 4.09 | 2.37 | 4.29 | 2.88 | 6.04 | 0.65 |
| 62 | 1.39 | 1.79 | 1.55 | 2.12 | 1.72 | 3.92 | 1.95 | 2.07 | 1.13 | 4.94 | 2.41 | 1.76 | 3.00 | 3.41 | 0.54 |
| 63 | 0.71 | 0.28 | 2.01 | 0.62 | 1.57 | 2.18 | 2.07 | 1.17 | 1.09 | 2.62 | 1.70 | 1.26 | 1.18 | 3.48 | 0.47 |
| 64 | 0.49 | 0.59 | 0.47 | 0.57 | 0.98 | 1.74 | 0.08 | 1.98 | 1.06 | 2.12 | 1.21 | 1.55 | 2.04 | 1.74 | 0.38 |

Table 9. -- Cont.

| Length (cm) | 1994 | 1996 | 1997 | 1999 | 2000 | 2002 | 2004 | 2006 | 2007 | 2008 | 2009 | 2010 | 2012 | 2014 | 2016 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 65 | 1.86 | 0.85 | 0.81 | 0.93 | 0.64 | 1.74 | 0.30 | 0.73 | 0.48 | 1.48 | 1.42 | 1.16 | 1.55 | 2.34 | 0.50 |
| 66 | 0.77 | 0.35 | 0.32 | 1.42 | 0.70 | 1.16 | 0.55 | 0.85 | 0.60 | 0.67 | 1.15 | 1.26 | 0.72 | 0.71 | 0.00 |
| 67 | 0.97 | 0.66 | 1.27 | 0.48 | 0.03 | 0.27 | 0.35 | 0.27 | 0.35 | 0.58 | 0.50 | 1.13 | 0.00 | 0.40 | 0.66 |
| 68 | 1.46 | 0 | 0.19 | 0.30 | 0.27 | 0.17 | 0.19 | 0.02 | 0.21 | 0.51 | 0.30 | 1.36 | 0.55 | 0.64 | 0.19 |
| 69 | 0 | 0 | 0.59 | 0.29 | 0.59 | 0 | 0 | 0 | 0.02 | 0.12 | 0.44 | 0.14 | 0.00 | 0.24 | 0.41 |
| 70 | 1.93 | 0 | 0.10 | 0 | 0 | 0.43 | 0 | 0.02 | 0.30 | 0.21 | 0.04 | 0.36 | 0.40 | 0.76 | 0 |
| 71 | 0.49 | 0.11 | 0 | $<0.01$ | 0 | 0.01 | 0 | 0.14 | 0.21 | 0.06 | 0 | 0 | 0 | 0.10 | 0 |
| 72 | 0.97 | 0 | 0 | 0.11 | 0.15 | 0 | 0 | 0.46 | 0 | 0.42 | 0 | 0.17 | 0 | 0.27 | 0 |
| 73 | 0.49 | 0 | 0.05 | 0.16 | 0 | 0 | 0 | 0.02 | 0 | 0.04 | 0 | 0.83 | 0 | 0 | 0 |
| 74 | 0 | 0 | 0 | 0 | 0.14 | 0 | 0 | 0 | 0.06 | 0.05 | 0 | 0.17 | 0.31 | 0.08 | 0 |
| 75 | 0 | 0 | 0 | 0.04 | 0 | 0 | 0 | 0 | 0 | 0.03 | 0.03 | 0.00 | 0 | 0 | 0 |
| 76 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.14 | 0 | 0 | 0 |
| 77 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.07 | 0 |
| 78 | 0.49 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.14 | 0 | 0 | 0 |
| 79 | 0 | 0 | 0 | 0.39 | 0 | 0 | 0 | 0.08 | 0 | 0.06 | 0 | 0 | 0 | 0 | 0 |
| 80 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total | 10,821 | 6,525 | 18,686 | 9,601 | 7,630 | 12,122 | 6,835 | 3,396 | 9,207 | 4,704 | 8,075 | 12,549 | 6,667 | 17,384 | 10,777 |

Table 10. -- Estimated numbers at length (millions) for walleye pollock observed between 0.5 and 3 m off bottom in the U.S. EEZ from summer
Bering Sea shelf acoustic-trawl surveys 1994-2016. Trace amounts are indicated as 'tr'.

| Length (cm) | 1994 | 1996 | 1997 | 1999 | 2000 | 2002 | 2004 | 2006 | 2007 | 2008 | 2009 | 2010 | 2012 | 2014 | 2016 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.15 | 0.26 | 0.22 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 |
| 5 | 0.05 | 0.00 | 0.00 | 0.00 | 0.07 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 |
| 6 | 0.00 | 0.00 | 0.08 | 0.10 | 0.00 | 0.10 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | tr | 0.03 | 0.00 | 0.00 |
| 7 | tr | 0.00 | 0.11 | 0.00 | 0.01 | 0.01 | 0.39 | 0.06 | tr | 0.00 | 0.00 | 0.00 | 0.14 | 0.00 | 0.00 |
| 8 | 0.09 | 0.92 | 0.44 | 0.10 | 0.33 | 0.35 | 0.04 | 0.19 | 0.13 | 0.04 | 0.05 | 0.02 | 0.11 | 0.02 | 0.00 |
| 9 | 0.88 | 4.08 | 6.84 | 2.63 | 1.96 | 1.59 | 0.34 | 1.00 | 0.56 | 0.08 | 1.13 | 0.07 | 0.67 | 1.11 | 0.00 |
| 10 | 13.03 | 37.16 | 32.57 | 12.69 | 8.24 | 4.64 | 0.77 | 4.64 | 3.27 | 0.36 | 4.08 | 0.03 | 2.53 | 6.33 | 0.23 |
| 11 | 28.49 | 121.09 | 79.98 | 44.72 | 15.70 | 12.39 | 1.44 | 6.49 | 12.07 | 1.63 | 8.04 | 0.26 | 12.77 | 16.65 | 3.52 |
| 12 | 63.41 | 145.52 | 97.58 | 68.11 | 25.88 | 18.35 | 4.02 | 8.22 | 24.95 | 3.64 | 10.54 | 1.44 | 18.51 | 37.89 | 10.13 |
| 13 | 83.06 | 177.62 | 237.62 | 69.64 | 39.47 | 27.83 | 8.46 | 10.68 | 45.71 | 7.92 | 13.36 | 5.06 | 18.26 | 62.17 | 21.66 |
| 14 | 127.92 | 159.40 | 153.21 | 99.56 | 49.93 | 34.16 | 11.85 | 15.18 | 46.91 | 10.38 | 14.40 | 11.40 | 23.25 | 70.96 | 26.64 |
| 15 | 104.39 | 129.86 | 159.02 | 96.64 | 30.19 | 42.07 | 10.37 | 13.45 | 27.54 | 6.56 | 7.62 | 12.94 | 14.79 | 47.90 | 21.82 |
| 16 | 59.46 | 69.41 | 96.58 | 77.00 | 26.56 | 32.11 | 14.81 | 6.00 | 13.91 | 3.07 | 6.67 | 5.34 | 12.98 | 37.71 | 19.59 |
| 17 | 49.82 | 41.29 | 46.86 | 44.04 | 10.29 | 16.30 | 7.09 | 1.73 | 7.94 | 1.35 | 2.78 | 5.44 | 4.66 | 19.43 | 12.59 |
| 18 | 27.53 | 5.53 | 24.20 | 13.93 | 3.72 | 8.04 | 7.49 | 1.83 | 3.80 | 1.42 | 1.56 | 1.42 | 2.12 | 9.49 | 8.61 |
| 19 | 28.49 | 2.93 | 5.01 | 15.85 | 2.28 | 2.24 | 3.78 | 0.95 | 1.79 | 1.96 | 1.68 | 0.80 | 1.86 | 2.46 | 9.41 |
| 20 | 19.29 | 3.93 | 3.42 | 20.10 | 4.76 | 2.78 | 3.24 | 1.10 | 1.74 | 1.84 | 1.70 | 0.52 | 2.94 | 1.45 | 12.44 |
| 21 | 40.13 | 4.59 | 3.39 | 25.97 | 6.79 | 3.93 | 2.66 | 1.11 | 0.48 | 1.06 | 2.07 | 0.78 | 4.08 | 2.50 | 13.32 |
| 22 | 18.76 | 9.01 | 4.65 | 31.27 | 5.78 | 6.48 | 4.19 | 1.59 | 0.92 | 0.92 | 2.75 | 0.72 | 3.98 | 2.02 | 19.38 |
| 23 | 15.32 | 6.39 | 6.66 | 24.80 | 5.66 | 7.11 | 3.99 | 1.07 | 0.71 | 0.43 | 2.21 | 0.63 | 3.40 | 4.35 | 14.15 |
| 24 | 10.55 | 7.32 | 10.02 | 18.75 | 6.61 | 9.64 | 4.67 | 1.81 | 1.16 | 0.68 | 2.09 | 1.06 | 3.93 | 4.20 | 10.09 |
| 25 | 10.14 | 8.99 | 7.91 | 15.21 | 5.40 | 8.62 | 2.99 | 0.83 | 1.37 | 0.48 | 2.29 | 1.07 | 3.17 | 6.49 | 8.31 |
| 26 | 11.49 | 9.72 | 8.94 | 14.33 | 5.32 | 7.75 | 2.51 | 1.35 | 1.86 | 0.75 | 2.01 | 1.06 | 3.20 | 4.87 | 8.60 |
| 27 | 6.44 | 8.91 | 10.69 | 13.92 | 3.89 | 6.24 | 3.42 | 1.27 | 1.68 | 1.09 | 2.53 | 0.65 | 3.95 | 7.53 | 7.74 |
| 28 | 11.09 | 8.67 | 7.05 | 18.88 | 4.55 | 5.74 | 2.88 | 1.09 | 2.43 | 1.02 | 3.17 | 1.51 | 3.87 | 3.81 | 9.71 |
| 29 | 9.03 | 6.48 | 6.49 | 12.20 | 3.99 | 7.61 | 2.50 | 1.28 | 1.13 | 1.29 | 4.56 | 0.89 | 5.21 | 4.40 | 8.11 |
| 30 | 12.13 | 6.19 | 7.21 | 10.65 | 4.47 | 6.54 | 3.60 | 1.11 | 1.87 | 1.29 | 4.28 | 0.71 | 4.54 | 3.89 | 12.15 |
| 31 | 12.99 | 7.71 | 6.22 | 10.32 | 3.90 | 7.56 | 4.21 | 1.30 | 1.13 | 1.27 | 4.25 | 1.15 | 5.10 | 3.23 | 12.93 |
| 32 | 9.13 | 7.58 | 4.88 | 12.99 | 5.44 | 12.35 | 3.44 | 1.78 | 1.30 | 1.47 | 4.21 | 0.95 | 6.97 | 2.76 | 11.90 |
| 33 | 9.21 | 8.93 | 5.08 | 10.51 | 6.51 | 11.44 | 2.23 | 1.79 | 1.12 | 1.47 | 4.56 | 0.94 | 7.67 | 1.85 | 12.54 |
| 34 | 11.37 | 6.86 | 17.36 | 13.30 | 9.61 | 12.66 | 2.20 | 2.69 | 2.55 | 0.91 | 5.33 | 1.39 | 12.48 | 3.56 | 12.23 |

Table 10. -- Continued.

| Length (cm) | 1994 | 1996 | 1997 | 1999 | 2000 | 2002 | 2004 | 2006 | 2007 | 2008 | 2009 | 2010 | 2012 | 2014 | 2016 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 35 | 15.20 | 7.51 | 11.32 | 14.82 | 9.86 | 8.43 | 2.57 | 3.37 | 2.89 | 1.04 | 7.84 | 2.15 | 18.87 | 8.30 | 10.58 |
| 36 | 17.87 | 7.63 | 34.56 | 18.08 | 14.33 | 19.79 | 3.24 | 5.16 | 3.96 | 2.61 | 11.78 | 3.94 | 31.19 | 12.38 | 12.59 |
| 37 | 19.76 | 6.90 | 66.30 | 22.78 | 15.17 | 18.15 | 3.90 | 5.94 | 6.09 | 2.25 | 14.15 | 6.39 | 32.89 | 18.87 | 17.00 |
| 38 | 24.18 | 10.14 | 75.50 | 33.27 | 19.04 | 36.75 | 8.20 | 10.68 | 6.61 | 5.35 | 12.60 | 10.67 | 48.98 | 26.37 | 33.48 |
| 39 | 28.02 | 10.21 | 100.85 | 32.23 | 18.07 | 31.03 | 12.00 | 9.35 | 10.20 | 5.75 | 13.52 | 16.94 | 41.19 | 43.34 | 49.54 |
| 40 | 34.07 | 12.88 | 79.46 | 29.71 | 25.68 | 42.99 | 27.34 | 16.91 | 13.10 | 8.02 | 14.15 | 24.83 | 43.00 | 40.88 | 74.47 |
| 41 | 34.47 | 18.12 | 61.74 | 33.18 | 29.38 | 37.39 | 31.90 | 14.06 | 17.13 | 8.78 | 13.62 | 20.35 | 29.34 | 77.53 | 79.15 |
| 42 | 38.62 | 22.55 | 53.81 | 47.50 | 43.52 | 48.51 | 51.03 | 24.12 | 25.93 | 19.38 | 12.32 | 20.84 | 28.86 | 85.65 | 81.58 |
| 43 | 57.55 | 24.57 | 35.42 | 61.91 | 40.16 | 46.53 | 58.04 | 25.85 | 30.65 | 14.37 | 12.80 | 19.77 | 18.22 | 155.03 | 80.14 |
| 44 | 62.51 | 27.12 | 26.62 | 74.45 | 49.42 | 55.99 | 76.71 | 29.30 | 37.93 | 23.83 | 11.22 | 15.44 | 26.44 | 158.94 | 79.45 |
| 45 | 72.92 | 30.43 | 25.05 | 78.98 | 58.49 | 49.02 | 65.76 | 26.92 | 51.20 | 24.15 | 13.78 | 12.57 | 21.72 | 210.24 | 80.74 |
| 46 | 65.02 | 31.57 | 29.32 | 78.97 | 73.76 | 56.52 | 71.06 | 31.46 | 44.80 | 38.68 | 14.46 | 14.39 | 32.60 | 169.21 | 76.94 |
| 47 | 56.31 | 31.28 | 31.18 | 66.56 | 66.27 | 55.05 | 65.90 | 26.80 | 43.17 | 32.91 | 17.82 | 9.44 | 25.29 | 157.77 | 75.67 |
| 48 | 48.14 | 40.93 | 35.51 | 70.86 | 62.10 | 57.73 | 72.37 | 30.60 | 45.51 | 42.73 | 22.46 | 8.96 | 27.55 | 108.00 | 73.90 |
| 49 | 33.67 | 32.60 | 29.11 | 49.61 | 42.91 | 52.05 | 64.89 | 22.91 | 39.67 | 34.13 | 24.11 | 9.71 | 23.60 | 86.83 | 63.11 |
| 50 | 27.81 | 23.64 | 36.47 | 44.87 | 41.14 | 48.50 | 62.41 | 25.55 | 40.57 | 30.74 | 22.95 | 13.23 | 23.75 | 69.94 | 52.63 |
| 51 | 26.33 | 30.82 | 30.51 | 43.37 | 33.10 | 41.53 | 46.67 | 16.21 | 38.26 | 29.96 | 22.80 | 11.86 | 16.55 | 64.12 | 43.41 |
| 52 | 22.42 | 26.71 | 33.99 | 34.52 | 32.30 | 41.21 | 44.97 | 17.35 | 32.61 | 28.90 | 21.08 | 14.78 | 16.65 | 46.44 | 33.68 |
| 53 | 16.27 | 21.63 | 33.47 | 30.55 | 20.62 | 32.04 | 36.17 | 13.72 | 24.46 | 20.89 | 22.44 | 13.77 | 14.15 | 40.43 | 26.18 |
| 54 | 14.84 | 22.16 | 29.57 | 30.36 | 17.71 | 24.73 | 29.46 | 11.94 | 25.79 | 18.09 | 21.49 | 17.92 | 15.12 | 33.88 | 22.33 |
| 55 | 19.96 | 18.92 | 31.02 | 24.94 | 13.72 | 21.70 | 23.44 | 9.49 | 15.07 | 15.63 | 14.19 | 12.91 | 12.11 | 25.13 | 15.19 |
| 56 | 15.48 | 17.58 | 28.83 | 22.38 | 12.81 | 19.06 | 21.07 | 8.74 | 15.46 | 14.50 | 14.74 | 12.67 | 12.24 | 20.67 | 12.00 |
| 57 | 17.97 | 15.95 | 24.81 | 23.15 | 10.59 | 11.21 | 14.95 | 7.01 | 11.37 | 11.25 | 11.59 | 11.01 | 9.44 | 17.17 | 9.16 |
| 58 | 14.50 | 14.99 | 25.30 | 16.35 | 9.26 | 12.01 | 10.43 | 6.18 | 8.71 | 9.46 | 10.59 | 10.83 | 9.94 | 19.33 | 7.03 |
| 59 | 12.45 | 14.41 | 23.53 | 13.26 | 7.52 | 8.38 | 8.52 | 4.76 | 7.74 | 6.73 | 6.52 | 6.95 | 9.08 | 14.12 | 5.11 |
| 60 | 11.29 | 10.99 | 21.36 | 12.57 | 5.84 | 7.79 | 7.06 | 3.55 | 5.31 | 6.81 | 7.61 | 8.05 | 8.18 | 10.03 | 3.56 |
| 61 | 10.63 | 14.45 | 19.49 | 12.85 | 4.83 | 4.61 | 5.60 | 3.44 | 3.63 | 3.98 | 8.03 | 5.87 | 6.76 | 8.88 | 2.58 |
| 62 | 8.67 | 9.34 | 14.92 | 8.39 | 4.69 | 5.86 | 4.29 | 2.39 | 4.41 | 4.74 | 5.70 | 5.56 | 7.31 | 8.11 | 3.03 |
| 63 | 8.66 | 8.93 | 11.10 | 5.69 | 3.36 | 3.58 | 2.91 | 2.46 | 3.16 | 3.94 | 3.43 | 4.25 | 4.90 | 4.78 | 2.91 |
| 64 | 5.73 | 9.41 | 12.61 | 5.09 | 3.58 | 3.39 | 1.84 | 1.86 | 2.47 | 2.43 | 3.70 | 4.41 | 5.19 | 4.27 | 1.60 |
| 65 | 5.43 | 7.31 | 11.20 | 5.12 | 2.16 | 2.86 | 1.23 | 1.07 | 1.75 | 2.11 | 4.89 | 2.71 | 2.67 | 3.65 | 1.06 |
| 66 | 3.16 | 6.63 | 7.79 | 4.16 | 1.48 | 1.99 | 0.94 | 1.09 | 1.37 | 1.95 | 3.81 | 1.98 | 3.16 | 3.07 | 1.28 |
| 67 | 3.19 | 3.16 | 7.30 | 2.56 | 0.99 | 1.35 | 0.56 | 0.73 | 1.12 | 1.33 | 2.46 | 1.46 | 2.44 | 1.44 | 0.75 |
| 68 | 2.36 | 3.33 | 6.04 | 2.84 | 1.31 | 1.37 | 0.62 | 0.67 | 0.68 | 1.21 | 1.62 | 1.41 | 2.35 | 0.85 | 0.24 |
| 69 | 1.18 | 2.49 | 5.04 | 2.27 | 1.11 | 0.60 | 0.23 | 0.40 | 0.46 | 0.53 | 1.61 | 0.87 | 1.19 | 1.54 | 0.64 |

Table 10. -- Continued.

| Length (cm) | 1994 | 1996 | 1997 | 1999 | 2000 | 2002 | 2004 | 2006 | 2007 | 2008 | 2009 | 2010 | 2012 | 2014 | 2016 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 70 | 1.17 | 2.62 | 1.87 | 1.76 | 0.37 | 1.16 | 0.28 | 0.35 | 0.93 | 0.65 | 1.34 | 0.65 | 1.63 | 0.77 | 0.31 |
| 71 | 2.03 | 1.58 | 1.80 | 1.59 | 0.24 | 0.09 | 0.27 | 0.15 | 0.35 | 0.37 | 0.99 | 0.29 | 0.87 | 0.36 | 0.51 |
| 72 | 0.83 | 1.61 | 2.87 | 1.12 | 0.76 | 0.18 | 0.15 | 0.09 | 0.28 | 0.35 | 0.89 | 0.73 | 0.68 | 0.63 | 0.29 |
| 73 | 0.46 | 0.88 | 2.69 | 1.24 | 0.57 | 0.08 | 0.13 | 0.09 | 0.23 | 0.27 | 0.94 | 0.11 | 0.55 | 0.63 | 0.33 |
| 74 | 0.39 | 1.09 | 0.92 | 1.53 | 0.29 | 0.04 | 0.11 | 0.13 | 0.21 | 0.31 | 0.58 | 0.25 | 0.25 | 0.02 | 0.13 |
| 75 | 0.24 | 0.28 | 1.38 | 0.52 | 0.06 | 0.18 | 0.11 | 0.05 | 0.05 | 0.17 | 0.51 | 0.13 | 0.38 | 0.17 | 0.12 |
| 76 | 0.34 | 0.42 | 0.58 | 0.25 | 0.11 | 0.05 | 0.02 | 0.02 | 0.15 | 0.12 | 0.19 | 0.06 | 0.20 | 0.13 | 0.07 |
| 77 | 0.16 | 0.35 | 0.26 | 0.39 | 0.08 | 0.00 | 0.02 | 0.05 | 0.05 | 0.05 | 0.29 | 0.03 | 0.01 | 0.01 | 0.04 |
| 78 | 0.18 | 0.46 | 0.16 | 0.18 | 0.25 | 0.11 | 0.07 | 0.01 | 0.01 | 0.05 | 0.32 | 0.03 | 0.06 | 0.04 | 0.00 |
| 79 | 0.10 | 0.11 | 0.05 | 0.27 | 0.06 | 0.06 | 0.04 | tr | 0.08 | 0.03 | 0.09 | 0.03 | 0.06 | 0.15 | 0.00 |
| 80 | 0.11 | 0.47 | 0.42 | 0.02 | 0.02 | 0.09 | 0.08 | 0.03 | 0.01 | 0.05 | 0.15 | 0.05 | 0.01 | 0.00 | 0.00 |
| 81 | tr | 0.04 | 0.04 | 0.10 | 0.03 | tr | 0.00 | tr | 0.04 | 0.01 | 0.06 | 0.01 | tr | 0.00 | 0.00 |
| 82 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.06 | 0.01 | tr | tr | 0.00 | 0.00 |
| 83 | 0.00 | 0.00 | 0.00 | 0.08 | 0.01 | 0.00 | 0.01 | 0.00 | 0.01 | tr | tr | 0.00 | 0.00 | 0.00 | 0.00 |
| 84 | 0.00 | 0.00 | 0.28 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | tr | tr | 0.00 | 0.00 | 0.00 |
| 85 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | tr | 0.00 | 0.00 | 0.00 |
| 86 | 0.00 | 0.00 | 0.00 | 0.00 | tr | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 |
| 87 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | tr | 0.00 | 0.00 | 0.00 |
| 88 | 0.00 | 0.00 | 0.42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 89 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 90 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 91 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | tr | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 92 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 93 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 94 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 95 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Total | 1,656 | 1,613 | 2,174 | 1,866 | 1,097 | 1,229 | 1,059 | 515 | 836 | 536 | 554 | 420 | 825 | 2,129 | 1,442 |

Table 11. -- Biomass-at-length estimates (metric tons) of walleye pollock between near surface and 3 m off bottom on the Bering Sea shelf from acoustic-trawl surveys in the U.S. EEZ, 1994-2016.

| Length (cm) | 1994 | 1996 | 1997 | 1999 | 2000 | 2002 | 2004 | 2006 | 2007 | 2008 | 2009 | 2010 | 2012 | 2014 | 2016 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 8 | 0 | 0 | 0 | 0 | $<1$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 9 | 0 | 0 | 0 | <1 | $<1$ | 0 | 0 | 0 | 0 | 0 | 24 | 0 | 1 | 0 | 0 |
| 10 | 0 | 0 | 14 | 1 | 8 | 0 | 2 | 0 | 200 | 0 | 336 | 0 | 1 | 2 | 0 |
| 11 | 4 | 0 | 2 | 59 | 30 | 9 | 2 | 54 | 2,469 | 7 | 2,003 | 9 | 8 | 139 | 7 |
| 12 | 71 | 6 | 394 | 227 | 88 | 75 | 30 | 762 | 7,313 | 34 | 9,219 | 112 | 36 | 840 | 9 |
| 13 | 744 | 92 | 4,148 | 445 | 370 | 428 | 36 | 2,366 | 19,068 | 104 | 17,136 | 1,064 | 86 | 7,104 | 51 |
| 14 | 1,937 | 804 | 31,282 | 538 | 859 | 2,488 | 81 | 2,176 | 25,781 | 168 | 21,613 | 5,436 | 165 | 17,128 | 63 |
| 15 | 4,520 | 3,384 | 81,544 | 472 | 1,613 | 5,841 | 48 | 1,997 | 17,771 | 145 | 25,658 | 12,983 | 319 | 26,458 | 222 |
| 16 | 5,040 | 7,098 | 111,182 | 181 | 2,713 | 6,393 | 57 | 815 | 14,870 | 125 | 16,147 | 25,180 | 357 | 26,150 | 166 |
| 17 | 3,817 | 11,818 | 84,460 | 214 | 2,055 | 4,231 | 67 | 365 | 9,873 | 254 | 10,147 | 26,219 | 357 | 18,947 | 208 |
| 18 | 5,553 | 9,485 | 58,223 | 623 | 1,064 | 1,664 | 50 | 123 | 4,401 | 1,923 | 3,671 | 13,313 | 307 | 11,997 | 173 |
| 19 | 10,655 | 5,960 | 28,768 | 2,499 | 1,677 | 2,284 | 210 | 235 | 6,200 | 5,880 | 4,185 | 7,577 | 1,146 | 4,750 | 498 |
| 20 | 22,244 | 3,892 | 10,677 | 9,852 | 3,017 | 4,072 | 498 | 626 | 6,392 | 14,049 | 3,204 | 10,002 | 4,154 | 3,863 | 1,049 |
| 21 | 39,601 | 2,579 | 4,900 | 18,587 | 6,782 | 12,242 | 1,595 | 1,133 | 9,810 | 24,584 | 5,259 | 15,444 | 11,763 | 6,377 | 3,409 |
| 22 | 61,100 | 5,121 | 6,101 | 26,421 | 11,419 | 24,828 | 2,730 | 2,413 | 11,643 | 31,976 | 8,715 | 29,774 | 22,304 | 15,711 | 8,791 |
| 23 | 69,048 | 5,458 | 12,962 | 27,464 | 17,629 | 47,351 | 4,265 | 3,277 | 11,513 | 48,149 | 12,534 | 56,840 | 33,139 | 39,878 | 13,107 |
| 24 | 76,622 | 7,221 | 24,999 | 23,562 | 19,911 | 81,309 | 4,887 | 3,259 | 14,551 | 42,932 | 11,518 | 97,422 | 34,485 | 107,266 | 18,447 |
| 25 | 64,967 | 5,520 | 45,081 | 19,681 | 24,970 | 107,760 | 4,475 | 3,176 | 10,266 | 38,541 | 14,070 | 137,766 | 31,345 | 208,239 | 16,101 |
| 26 | 46,652 | 4,979 | 56,998 | 25,168 | 25,070 | 117,666 | 4,347 | 3,107 | 8,010 | 29,360 | 15,332 | 154,353 | 27,161 | 267,901 | 14,415 |
| 27 | 27,847 | 4,884 | 72,339 | 37,933 | 28,002 | 113,478 | 3,876 | 2,946 | 6,844 | 15,725 | 20,391 | 136,592 | 26,428 | 228,940 | 15,162 |
| 28 | 19,028 | 9,721 | 65,700 | 49,557 | 27,927 | 89,827 | 4,813 | 3,917 | 5,073 | 12,102 | 23,816 | 95,619 | 31,668 | 156,028 | 21,374 |
| 29 | 23,550 | 15,240 | 51,328 | 75,679 | 30,072 | 92,941 | 12,745 | 5,050 | 3,697 | 17,423 | 35,978 | 49,597 | 44,989 | 86,420 | 28,102 |
| 30 | 26,437 | 24,307 | 33,691 | 86,321 | 33,574 | 104,158 | 17,942 | 6,561 | 3,462 | 23,802 | 44,259 | 25,366 | 57,178 | 64,579 | 51,903 |
| 31 | 37,756 | 40,104 | 24,685 | 90,579 | 37,396 | 132,640 | 32,663 | 9,236 | 3,428 | 24,696 | 60,686 | 19,576 | 59,223 | 46,661 | 94,484 |
| 32 | 54,180 | 57,669 | 18,522 | 97,251 | 40,301 | 131,538 | 36,257 | 10,767 | 8,606 | 30,634 | 63,679 | 24,976 | 51,591 | 39,050 | 143,530 |
| 33 | 60,378 | 89,480 | 17,709 | 96,204 | 49,614 | 141,718 | 48,265 | 13,252 | 12,233 | 29,302 | 56,444 | 30,732 | 47,159 | 39,535 | 186,315 |
| 34 | 80,001 | 116,812 | 19,201 | 110,357 | 63,403 | 122,045 | 53,459 | 19,248 | 17,643 | 29,881 | 46,340 | 38,481 | 54,640 | 34,538 | 198,797 |
| 35 | 88,546 | 142,771 | 27,148 | 126,368 | 103,387 | 92,414 | 74,135 | 25,252 | 23,484 | 24,798 | 33,904 | 52,816 | 72,975 | 51,898 | 207,856 |
| 36 | 105,903 | 161,724 | 48,272 | 142,256 | 121,237 | 82,291 | 103,401 | 36,989 | 21,662 | 13,229 | 27,902 | 82,376 | 100,285 | 62,907 | 174,036 |
| 37 | 120,806 | 147,067 | 79,075 | 139,441 | 150,552 | 81,503 | 156,813 | 41,377 | 29,517 | 10,234 | 19,593 | 110,112 | 134,105 | 86,816 | 152,411 |
| 38 | 116,110 | 132,264 | 124,841 | 153,908 | 144,826 | 88,680 | 188,084 | 47,836 | 30,240 | 9,163 | 14,455 | 160,201 | 148,383 | 99,388 | 192,868 |
| 39 | 121,143 | 108,629 | 166,999 | 147,178 | 145,465 | 93,405 | 229,225 | 49,056 | 35,953 | 13,611 | 11,726 | 178,105 | 146,555 | 105,423 | 305,474 |
| 40 | 137,651 | 98,825 | 180,668 | 133,859 | 135,080 | 95,675 | 230,733 | 55,427 | 48,709 | 10,622 | 9,876 | 173,381 | 132,499 | 99,352 | 454,727 |

Table 11. -- Cont.

| Length (cm) | 1994 | 1996 | 1997 | 1999 | 2000 | 2002 | 2004 | 2006 | 2007 | 2008 | 2009 | 2010 | 2012 | 2014 | 2016 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 41 | 129,335 | 83,422 | 171,750 | 114,415 | 161,884 | 98,165 | 252,339 | 65,790 | 54,826 | 11,866 | 8,172 | 143,345 | 93,497 | 91,794 | 471,196 |
| 42 | 149,294 | 82,523 | 154,670 | 120,957 | 165,982 | 94,168 | 253,443 | 78,528 | 72,602 | 13,379 | 9,940 | 107,271 | 63,506 | 102,788 | 363,575 |
| 43 | 152,526 | 85,177 | 125,886 | 142,492 | 185,961 | 104,975 | 261,967 | 87,505 | 105,904 | 20,806 | 8,596 | 73,519 | 41,934 | 139,170 | 234,856 |
| 44 | 147,017 | 81,478 | 104,750 | 183,897 | 181,482 | 110,994 | 239,860 | 102,839 | 111,390 | 22,429 | 6,934 | 53,494 | 36,511 | 156,242 | 165,797 |
| 45 | 166,444 | 76,937 | 81,320 | 200,114 | 185,345 | 125,772 | 222,131 | 103,984 | 131,381 | 27,203 | 7,500 | 37,336 | 36,256 | 171,248 | 122,806 |
| 46 | 149,720 | 71,999 | 64,736 | 197,389 | 169,854 | 124,740 | 171,216 | 102,312 | 143,460 | 32,686 | 9,387 | 26,169 | 36,036 | 165,883 | 89,126 |
| 47 | 131,130 | 72,930 | 55,323 | 164,067 | 170,024 | 132,267 | 142,845 | 100,258 | 131,598 | 37,569 | 9,438 | 15,750 | 40,265 | 132,669 | 69,365 |
| 48 | 115,921 | 74,352 | 46,750 | 133,183 | 135,575 | 129,623 | 115,709 | 94,693 | 112,575 | 38,443 | 16,576 | 9,524 | 39,020 | 112,824 | 57,571 |
| 49 | 60,566 | 70,102 | 38,100 | 94,742 | 116,332 | 126,481 | 92,215 | 81,175 | 101,538 | 36,199 | 18,743 | 6,433 | 33,595 | 89,084 | 45,699 |
| 50 | 58,531 | 71,016 | 35,728 | 71,872 | 91,389 | 115,778 | 67,512 | 73,481 | 85,481 | 34,038 | 18,222 | 6,199 | 25,604 | 66,638 | 38,869 |
| 51 | 30,462 | 68,346 | 31,145 | 52,026 | 71,352 | 108,641 | 58,478 | 63,585 | 64,652 | 33,569 | 18,440 | 6,300 | 19,684 | 48,778 | 27,148 |
| 52 | 29,789 | 60,080 | 31,560 | 38,303 | 46,186 | 89,753 | 53,394 | 56,209 | 49,596 | 26,625 | 20,583 | 3,889 | 16,239 | 42,644 | 19,215 |
| 53 | 18,463 | 53,710 | 31,087 | 31,630 | 36,163 | 91,552 | 41,489 | 44,479 | 39,922 | 23,325 | 15,872 | 2,942 | 13,233 | 30,283 | 14,888 |
| 54 | 16,856 | 42,859 | 26,500 | 27,130 | 23,496 | 68,832 | 31,998 | 36,086 | 34,719 | 22,249 | 14,241 | 1,945 | 13,440 | 20,268 | 9,119 |
| 55 | 21,296 | 30,163 | 23,075 | 17,129 | 18,562 | 51,122 | 21,285 | 25,029 | 26,503 | 17,789 | 17,943 | 3,908 | 8,339 | 16,845 | 7,338 |
| 56 | 13,207 | 17,456 | 17,914 | 10,327 | 14,788 | 48,961 | 17,136 | 21,089 | 19,415 | 15,024 | 12,046 | 3,032 | 6,059 | 12,796 | 5,537 |
| 57 | 11,943 | 9,998 | 13,712 | 11,013 | 11,004 | 30,986 | 11,453 | 17,519 | 16,742 | 13,074 | 11,371 | 4,615 | 5,545 | 12,308 | 5,613 |
| 58 | 6,368 | 10,573 | 11,671 | 6,984 | 8,300 | 25,335 | 7,517 | 13,507 | 9,953 | 12,444 | 11,563 | 4,159 | 6,376 | 8,237 | 1,264 |
| 59 | 4,167 | 4,365 | 8,530 | 4,174 | 6,962 | 15,953 | 8,825 | 10,892 | 6,815 | 11,544 | 8,251 | 4,250 | 4,169 | 10,857 | 1,458 |
| 60 | 5,001 | 7,163 | 5,155 | 4,104 | 2,656 | 15,550 | 6,038 | 7,784 | 5,687 | 11,354 | 7,402 | 5,271 | 6,400 | 8,005 | 1,554 |
| 61 | 10,199 | 4,591 | 7,172 | 3,394 | 3,421 | 11,003 | 4,574 | 6,869 | 2,990 | 6,534 | 4,100 | 7,381 | 4,387 | 9,196 | 1,038 |
| 62 | 2,285 | 2,998 | 2,550 | 3,135 | 2,679 | 6,415 | 3,214 | 3,241 | 1,874 | 8,250 | 4,373 | 2,936 | 5,028 | 5,838 | 908 |
| 63 | 1,196 | 498 | 3,448 | 953 | 2,551 | 3,683 | 3,585 | 1,937 | 1,934 | 4,528 | 3,241 | 2,241 | 2,028 | 5,604 | 821 |
| 64 | 844 | 1,084 | 843 | 925 | 1,660 | 3,109 | 139 | 3,360 | 1,958 | 3,835 | 2,423 | 2,844 | 3,478 | 3,009 | 703 |
| 65 | 3,382 | 1,637 | 1,531 | 1,562 | 1,122 | 3,223 | 562 | 1,314 | 928 | 2,717 | 2,978 | 2,325 | 2,921 | 4,148 | 955 |
| 66 | 1,467 | 704 | 617 | 2,497 | 1,296 | 2,202 | 1,097 | 1,587 | 1,212 | 1,303 | 2,525 | 2,802 | 1,432 | 1,446 | 0 |
| 67 | 1,929 | 1,386 | 2,622 | 876 | 52 | 505 | 717 | 519 | 734 | 1,201 | 1,150 | 2,522 | 0 | 864 | 1,384 |
| 68 | 3,021 | 0 | 413 | 567 | 551 | 352 | 406 | 46 | 464 | 1,072 | 729 | 3,292 | 1,192 | 1,422 | 424 |
| 69 | 0 | 0 | 1,351 | 585 | 1,244 | 0 | 0 | 0 | 45 | 273 | 1,096 | 343 | 0 | 556 | 938 |
| 70 | 4,349 | 0 | 230 | 0 | 0 | 945 | 0 | 51 | 720 | 493 | 101 | 911 | 947 | 1,845 | 0 |
| 71 | 1,142 | 267 | 0 | 3 | 0 | 33 | 0 | 322 | 538 | 132 | 0 | 0 | 0 | 253 | 0 |
| 72 | 2,380 | 0 | 0 | 238 | 351 | 0 | 0 | 1,084 | 0 | 1,016 | 0 | 453 | 0 | 707 | 0 |
| 73 | 1,239 | 0 | 126 | 362 | 0 | 0 | 0 | 57 | 0 | 112 | 0 | 2,365 | 0 | 0 | 0 |
| 74 | 0 | 0 | 0 | 0 | 362 | 0 | 0 | 0 | 181 | 135 | 0 | 492 | 858 | 232 | 0 |
| 75 | 1,340 | 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 90 | 86 | 11 | 0 | 0 | 0 |
| 76 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 457 | 0 | 0 | 0 |
| 77 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 220 | 0 |
| 78 | 1,503 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 494 | 0 | 0 | 0 |
| 79 | 0 | 0 | 0 | 1,118 | 0 | 0 | 0 | 245 | 0 | 181 | 0 | 0 | 0 | 0 | 0 |
| 80 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total | 2,886,223 | 2,310,728 | 2,592,178 | 3,285,138 | 3,048,697 | 3,622,072 | 3,306,935 | 1,560,174 | 1,769,019 | 996,939 | 923,843 | 2,322,643 | 1,842,792 | 3,438,986 | 4,062,918 |

Table 12. -- Estimated biomass at length (metric tons) for walleye pollock observed between 0.5 and 3 m off bottom in the U.S. EEZ from summer Bering Sea shelf acoustic-trawl surveys 1994-2016. "0" indicates <1 metric ton.

| Length (cm) | 1994 | 1996 | 1997 | 1999 | 2000 | 2002 | 2004 | 2006 | 2007 | 2008 | 2009 | 2010 | 2012 | 2014 | 2016 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 3 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 4 | - | - | - | - | 0 | 0 | 0 | 0 | - | - | - | - | 0 | - | - |
| 5 | 0 | - | - | - | 0 | 0 | 0 | - | - | - | - | - | 0 | - | - |
| 6 | - | - | 0 | 0 | - | 0 | 0 | 0 | - | - | 0 | 0 | 0 | - | - |
| 7 | 0 | - | 0 | - | 0 | 0 | 1 | 0 | 0 | - | 0 | - | 0 | - | - |
| 8 | 0 | 4 | 2 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | - |
| 9 | 4 | 23 | 37 | 16 | 10 | 8 | 2 | 4 | 2 | 0 | 5 | 0 | 3 | 5 | - |
| 10 | 91 | 281 | 242 | 103 | 53 | 28 | 5 | 28 | 20 | 2 | 25 | 0 | 15 | 38 | 2 |
| 11 | 266 | 1,215 | 789 | 476 | 143 | 104 | 12 | 52 | 97 | 13 | 64 | 2 | 102 | 133 | 31 |
| 12 | 769 | 1,891 | 1,247 | 931 | 281 | 200 | 42 | 82 | 249 | 36 | 105 | 16 | 185 | 409 | 122 |
| 13 | 1,262 | 2,927 | 3,856 | 1,132 | 586 | 415 | 128 | 137 | 592 | 103 | 174 | 69 | 234 | 923 | 321 |
| 14 | 2,558 | 3,273 | 3,102 | 1,872 | 870 | 611 | 211 | 251 | 743 | 165 | 230 | 200 | 360 | 1,264 | 502 |
| 15 | 2,484 | 3,453 | 3,987 | 2,227 | 640 | 915 | 216 | 265 | 536 | 135 | 154 | 281 | 297 | 1,044 | 489 |
| 16 | 1,729 | 2,124 | 2,893 | 2,407 | 729 | 881 | 407 | 152 | 351 | 74 | 164 | 141 | 318 | 1,007 | 538 |
| 17 | 1,704 | 1,550 | 1,668 | 1,639 | 327 | 519 | 233 | 51 | 246 | 40 | 83 | 170 | 137 | 615 | 423 |
| 18 | 1,149 | 249 | 1,028 | 611 | 145 | 296 | 292 | 65 | 136 | 51 | 57 | 54 | 72 | 371 | 335 |
| 19 | 1,384 | 149 | 253 | 812 | 104 | 102 | 174 | 40 | 76 | 82 | 69 | 35 | 78 | 112 | 437 |
| 20 | 1,089 | 232 | 211 | 1,086 | 247 | 148 | 171 | 54 | 86 | 91 | 85 | 27 | 140 | 77 | 679 |
| 21 | 2,665 | 308 | 230 | 1,638 | 402 | 251 | 163 | 63 | 27 | 61 | 120 | 48 | 232 | 154 | 839 |
| 22 | 1,426 | 716 | 354 | 2,320 | 395 | 469 | 287 | 104 | 61 | 61 | 183 | 50 | 252 | 143 | 1,357 |
| 23 | 1,322 | 573 | 582 | 2,121 | 441 | 563 | 310 | 80 | 54 | 33 | 169 | 51 | 254 | 353 | 1,170 |
| 24 | 1,032 | 753 | 1,037 | 1,780 | 592 | 896 | 419 | 155 | 101 | 59 | 183 | 97 | 345 | 388 | 941 |
| 25 | 1,128 | 1,043 | 926 | 1,649 | 560 | 879 | 309 | 80 | 135 | 47 | 225 | 111 | 314 | 677 | 851 |
| 26 | 1,440 | 1,267 | 1,156 | 1,769 | 615 | 910 | 283 | 147 | 207 | 83 | 229 | 125 | 349 | 613 | 1,047 |
| 27 | 894 | 1,307 | 1,552 | 1,894 | 499 | 801 | 435 | 155 | 213 | 134 | 318 | 85 | 485 | 1,050 | 1,075 |
| 28 | 1,758 | 1,385 | 1,132 | 2,946 | 672 | 799 | 422 | 150 | 341 | 142 | 450 | 223 | 546 | 560 | 1,491 |
| 29 | 1,597 | 1,157 | 1,170 | 2,127 | 648 | 1,241 | 409 | 194 | 176 | 199 | 717 | 152 | 831 | 720 | 1,320 |
| 30 | 2,331 | 1,199 | 1,448 | 2,059 | 796 | 1,194 | 640 | 188 | 324 | 221 | 756 | 131 | 768 | 705 | 2,308 |
| 31 | 2,771 | 1,690 | 1,380 | 2,213 | 770 | 1,502 | 848 | 242 | 226 | 240 | 813 | 228 | 953 | 646 | 2,721 |
| 32 | 2,120 | 1,836 | 1,151 | 3,058 | 1,173 | 2,669 | 745 | 366 | 274 | 307 | 896 | 210 | 1,436 | 608 | 2,588 |
| 33 | 2,332 | 2,331 | 1,317 | 2,694 | 1,563 | 2,714 | 549 | 404 | 260 | 338 | 1,067 | 229 | 1,818 | 448 | 3,268 |
| 34 | 3,136 | 1,970 | 4,945 | 3,756 | 2,562 | 3,390 | 578 | 664 | 647 | 228 | 1,369 | 371 | 3,280 | 942 | 3,443 |
| 35 | 4,547 | 2,340 | 3,476 | 4,574 | 2,867 | 2,443 | 753 | 910 | 804 | 287 | 2,203 | 626 | 5,391 | 2,397 | 3,183 |

Table 12. -- Continued.

| Length (cm) | 1994 | 1996 | 1997 | 1999 | 2000 | 2002 | 2004 | 2006 | 2007 | 2008 | 2009 | 2010 | 2012 | 2014 | 2016 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 36 | 5,867 | 2,590 | 11,715 | 6,057 | 4,501 | 6,447 | 981 | 1,519 | 1,202 | 783 | 3,610 | 1,251 | 9,866 | 4,215 | 3,871 |
| 37 | 6,959 | 2,489 | 24,608 | 8,254 | 5,262 | 6,435 | 1,322 | 1,902 | 2,010 | 734 | 4,719 | 2,462 | 11,192 | 6,742 | 6,099 |
| 38 | 9,219 | 3,990 | 30,196 | 12,948 | 7,064 | 13,712 | 2,915 | 3,707 | 2,368 | 1,895 | 4,813 | 4,147 | 18,028 | 10,485 | 12,907 |
| 39 | 11,650 | 4,262 | 43,474 | 13,424 | 7,085 | 12,668 | 4,680 | 3,687 | 3,962 | 2,204 | 5,308 | 7,152 | 16,392 | 18,675 | 20,708 |
| 40 | 15,201 | 5,884 | 36,710 | 13,153 | 11,230 | 19,253 | 11,465 | 7,289 | 5,502 | 3,326 | 6,171 | 11,532 | 18,296 | 18,761 | 33,999 |
| 41 | 16,650 | 8,788 | 30,629 | 15,737 | 13,627 | 17,722 | 14,596 | 6,508 | 8,101 | 4,111 | 6,757 | 10,085 | 13,231 | 37,534 | 38,838 |
| 42 | 20,428 | 11,926 | 28,668 | 24,245 | 21,670 | 24,332 | 24,600 | 11,869 | 13,008 | 9,426 | 6,424 | 10,998 | 14,311 | 44,705 | 41,286 |
| 43 | 32,746 | 13,697 | 19,880 | 33,399 | 21,205 | 25,070 | 31,153 | 13,611 | 17,029 | 7,693 | 7,125 | 11,573 | 9,505 | 86,891 | 44,107 |
| 44 | 38,574 | 16,526 | 16,012 | 42,782 | 27,898 | 31,990 | 43,530 | 16,630 | 21,475 | 13,703 | 6,771 | 9,477 | 14,553 | 95,200 | 45,795 |
| 45 | 48,328 | 19,802 | 16,078 | 47,810 | 34,486 | 29,607 | 39,782 | 16,102 | 32,489 | 15,087 | 8,421 | 8,102 | 12,889 | 134,118 | 49,256 |
| 46 | 45,753 | 21,795 | 20,212 | 50,938 | 47,304 | 37,090 | 45,207 | 20,166 | 30,164 | 25,121 | 9,850 | 9,749 | 20,691 | 114,064 | 48,923 |
| 47 | 42,070 | 23,164 | 22,800 | 45,087 | 43,574 | 37,807 | 45,305 | 18,383 | 29,839 | 22,835 | 12,789 | 6,910 | 17,134 | 112,902 | 51,215 |
| 48 | 37,768 | 33,066 | 28,073 | 51,065 | 43,979 | 42,207 | 51,523 | 21,482 | 34,659 | 31,146 | 17,665 | 6,877 | 19,496 | 81,734 | 51,701 |
| 49 | 28,003 | 27,536 | 24,640 | 38,068 | 31,686 | 40,808 | 49,093 | 17,321 | 31,232 | 26,263 | 19,500 | 7,975 | 18,001 | 69,602 | 46,803 |
| 50 | 24,617 | 21,222 | 32,957 | 36,503 | 32,197 | 39,259 | 50,379 | 20,439 | 34,703 | 25,437 | 19,914 | 11,434 | 19,008 | 58,711 | 41,297 |
| 51 | 24,723 | 29,651 | 29,374 | 36,856 | 27,173 | 35,550 | 40,127 | 13,692 | 33,932 | 25,696 | 20,751 | 10,794 | 14,387 | 57,806 | 36,004 |
| 52 | 22,651 | 27,182 | 34,403 | 31,294 | 28,155 | 37,961 | 40,458 | 15,589 | 30,873 | 27,418 | 20,580 | 14,258 | 14,819 | 43,669 | 29,422 |
| 53 | 17,336 | 23,313 | 35,894 | 29,093 | 19,497 | 31,555 | 34,587 | 13,178 | 24,114 | 20,822 | 22,472 | 14,069 | 13,618 | 40,524 | 23,720 |
| 54 | 17,047 | 24,959 | 33,822 | 30,534 | 16,899 | 25,167 | 29,925 | 12,202 | 27,218 | 18,518 | 23,318 | 19,526 | 14,894 | 35,814 | 22,039 |
| 55 | 24,147 | 22,629 | 37,153 | 26,382 | 14,228 | 23,406 | 24,596 | 10,058 | 16,745 | 17,026 | 15,856 | 14,576 | 12,870 | 27,990 | 15,857 |
| 56 | 19,945 | 22,333 | 36,860 | 25,382 | 13,813 | 21,686 | 23,867 | 9,680 | 18,253 | 17,005 | 17,702 | 15,318 | 13,310 | 24,004 | 12,966 |
| 57 | 24,466 | 21,450 | 33,959 | 27,491 | 12,091 | 13,447 | 17,705 | 8,381 | 14,006 | 13,523 | 14,723 | 13,723 | 11,037 | 20,846 | 10,542 |
| 58 | 20,858 | 21,477 | 37,021 | 20,726 | 10,994 | 15,454 | 12,780 | 7,601 | 11,222 | 12,252 | 14,058 | 14,461 | 12,099 | 25,259 | 8,410 |
| 59 | 18,208 | 21,531 | 36,018 | 17,224 | 9,627 | 11,198 | 11,245 | 6,173 | 10,715 | 8,869 | 9,177 | 9,807 | 11,586 | 19,441 | 6,712 |
| 60 | 17,571 | 16,808 | 34,229 | 17,484 | 7,913 | 10,925 | 9,598 | 4,982 | 7,558 | 9,640 | 11,032 | 12,007 | 11,181 | 14,538 | 4,629 |
| 61 | 17,383 | 23,873 | 33,296 | 18,798 | 6,710 | 6,802 | 8,377 | 4,879 | 5,408 | 5,938 | 12,742 | 9,077 | 9,842 | 13,201 | 3,650 |
| 62 | 14,642 | 16,268 | 26,934 | 13,185 | 6,975 | 8,977 | 6,411 | 3,668 | 7,047 | 7,684 | 9,005 | 9,231 | 11,209 | 13,076 | 4,604 |
| 63 | 15,515 | 15,911 | 19,502 | 9,176 | 5,346 | 5,909 | 4,661 | 3,880 | 5,454 | 6,500 | 5,871 | 7,477 | 7,788 | 8,085 | 4,635 |
| 64 | 10,766 | 17,569 | 23,687 | 8,914 | 5,813 | 5,787 | 3,047 | 3,067 | 4,373 | 4,175 | 6,604 | 8,180 | 8,741 | 7,698 | 2,678 |
| 65 | 10,692 | 14,293 | 22,026 | 9,025 | 3,724 | 5,301 | 2,144 | 1,901 | 3,255 | 3,870 | 9,273 | 5,220 | 4,787 | 6,724 | 1,857 |
| 66 | 6,517 | 13,567 | 16,029 | 7,673 | 2,699 | 3,661 | 1,703 | 2,046 | 2,738 | 3,637 | 7,675 | 4,016 | 5,861 | 6,167 | 2,333 |
| 67 | 6,876 | 6,747 | 15,712 | 4,930 | 1,943 | 2,708 | 1,078 | 1,406 | 2,261 | 2,735 | 5,056 | 3,084 | 4,843 | 2,896 | 1,426 |
| 68 | 5,330 | 7,438 | 13,590 | 5,696 | 2,589 | 2,754 | 1,276 | 1,370 | 1,500 | 2,496 | 3,439 | 3,114 | 4,728 | 1,806 | 469 |
| 69 | 2,790 | 5,815 | 11,846 | 4,753 | 2,316 | 1,291 | 477 | 878 | 1,020 | 1,164 | 3,581 | 1,993 | 2,489 | 3,214 | 1,335 |
| 70 | 2,757 | 6,371 | 4,577 | 3,850 | 832 | 2,515 | 601 | 763 | 2,277 | 1,474 | 3,141 | 1,595 | 3,433 | 1,677 | 681 |
| 71 | 5,213 | 4,018 | 4,616 | 3,610 | 558 | 199 | 620 | 345 | 839 | 919 | 2,514 | 713 | 2,022 | 851 | 1,152 |

Table 12. -- Continued.

| Length (cm) | 1994 | 1996 | 1997 | 1999 | 2000 | 2002 | 2004 | 2006 | 2007 | 2008 | 2009 | 2010 | 2012 | 2014 | 2016 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 72 | 2,236 | 4,262 | 7,661 | 2,651 | 1,806 | 441 | 342 | 223 | 755 | 919 | 2,259 | 1,870 | 1,731 | 1,460 | 687 |
| 73 | 1,297 | 2,430 | 7,483 | 3,044 | 1,405 | 204 | 327 | 241 | 622 | 729 | 2,591 | 303 | 1,380 | 1,677 | 805 |
| 74 | 1,138 | 3,118 | 2,677 | 3,912 | 733 | 106 | 284 | 331 | 601 | 831 | 1,649 | 697 | 661 | 60 | 338 |
| 75 | 723 | 828 | 4,144 | 1,387 | 154 | 478 | 308 | 130 | 144 | 463 | 1,486 | 374 | 1,022 | 504 | 328 |
| 76 | 1,070 | 1,292 | 1,821 | 705 | 295 | 133 | 45 | 46 | 471 | 359 | 566 | 183 | 576 | 408 | 191 |
| 77 | 523 | 1,120 | 844 | 1,123 | 225 | 1 | 60 | 137 | 167 | 149 | 928 | 108 | 26 | 25 | 122 |
| 78 | 612 | 1,546 | 545 | 547 | 755 | 330 | 223 | 32 | 36 | 158 | 1,064 | 106 | 197 | 133 | - |
| 79 | 358 | 389 | 191 | 850 | 188 | 199 | 135 | 1 | 260 | 86 | 285 | 99 | 192 | 505 | - |
| 80 | 419 | 1,704 | 1,544 | 61 | 51 | 290 | 265 | 99 | 19 | 162 | 538 | 176 | 34 | - | - |
| 81 | 8 | 155 | 141 | 342 | 115 | 0 | - | 3 | 160 | 29 | 211 | 32 | 7 | - | - |
| 82 | 58 | - | - | - | - | - | - | - | 109 | 219 | 23 | 6 | 2 | - | - |
| 83 | - | - | - | 295 | 30 | - | 40 | - | 44 | 13 | 1 | - | - | - | - |
| 84 | - | - | 1,186 | - | - | - | 105 | - | - | - | 12 | 14 | - | - | - |
| 85 | - | - | - | - | - | - | - | - | - | - | - | 4 | - | - | - |
| 86 | - | - | - | - | 1 | - | - | - | - | - | - | - | - | 42 | - |
| 87 | - | - | - | - | - | - | - | - | - | - | - | 5 | - | - | - |
| 88 | - | - | 2,051 | - | - | - | - | - | - | - | - | - | - | - | - |
| 89 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 90 | - | - | - | - | - | - | - | - | - | 169 | - | - | - | - | - |
| 91 | - | - | - | - | - | - | - | - | - | 9 | - | - | - | - | - |
| 92 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 93 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 94 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 95 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Total | 742,694 | 634,030 | 998,659 | 856,371 | 577,108 | 683,790 | 702,991 | 312,681 | 508,925 | 408,651 | 400,938 | 319,675 | 453,160 | 1,290,842 | 765,876 |

Table 13. -- Estimated numbers-at-age (millions, top panel) and biomass-at-age (thousand metric tons, bottom panel) for walleye pollock observed between near surface and 3 m off bottom in the U.S. EEZ from summer Bering Sea shelf acoustic-trawl surveys 1994-2016. Trace amounts are indicated as 'tr'.

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Age | 1994 | 1996 | 1997 | 1999 | 2000 | 2002 | 2004 | 2006 | 2007 | 2008 | 2009 | 2010 | 2012 | 2014 | 2016 |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 610.2 | 972.3 | $12,360.0$ | 111.9 | 257.9 | 634.8 | 15.8 | 455.6 | 5588.5 | 36.5 | 5127.9 | 2525.5 | 66.9 | 4438.3 | 38.9 |  |  |
| 2 | $4,781.1$ | 446.4 | $2,745.2$ | $1,587.6$ | $1,272.3$ | $4,850.4$ | 275.1 | 208.6 | 1026.2 | 2905.3 | 797.5 | 6395.2 | 1963.1 | 8614.9 | 954.0 |  |  |
| 3 | $1,336.0$ | 520.4 | 386.2 | $3,597.0$ | $1,184.9$ | $3,295.1$ | $1,189.3$ | 282.0 | 319.7 | 1031.6 | 1675.9 | 973.5 | 1640.6 | 941.3 | 4369.1 |  |  |
| 4 | $1,655.7$ | $2,686.5$ | 490.9 | $1,683.6$ | $2,480.0$ | $1,155.0$ | $2,933.9$ | 610.1 | 430.1 | 144.4 | 202.8 | 2183.5 | 2444.1 | 1100.7 | 4129.4 |  |  |
| 5 | $1,898.1$ | 820.7 | $1,921.5$ | 582.6 | 899.7 | 507.2 | $1,442.1$ | 695.3 | 669.2 | 106.9 | 40.1 | 383.6 | 202.6 | 892.3 | 560.7 |  |  |
| 6 | 296.1 | 509.3 | 384.4 | 273.9 | 243.9 | 756.8 | 416.6 | 551.8 | 588.8 | 170.2 | 44.0 | 46.3 | 246.1 | 974.6 | 231.5 |  |  |
| 7 | 71.2 | 434.4 | 205.2 | $1,169.1$ | 234.0 | 436.7 | 199.2 | 319.7 | 305.7 | 132.4 | 62.0 | 6.2 | 63.6 | 316.9 | 230.5 |  |  |
| 8 | 65.2 | 84.9 | 142.5 | 400.2 | 725.1 | 91.4 | 194.0 | 110.1 | 166.2 | 70.7 | 55.5 | 7.4 | 13.1 | 66.9 | 200.5 |  |  |
| 9 | 31.9 | 16.7 | 32.7 | 104.6 | 190.4 | 110.3 | 68.3 | 53.0 | 60.2 | 58.2 | 32.6 | 6.8 | 8.3 | 21.5 | 48.6 |  |  |
| 10 | 23.2 | 6.3 | 3.9 | 66.9 | 84.7 | 205.4 | 33.5 | 40.3 | 18.8 | 15.0 | 21.2 | 6.5 | 6.5 | 5.8 | 7.0 |  |  |
| 11 | 8.5 | 5.7 | 4.9 | 14.5 | 35.6 | 52.1 | 24.8 | 23.3 | 20.2 | 15.1 | 8.2 | 6.0 | 6.6 | 2.7 | 5.2 |  |  |
| 12 | 19.3 | 12.1 | 2.0 | 6.5 | 18.1 | 17.9 | 19.8 | 16.2 | 5.7 | 6.9 | 3.8 | 2.6 | 2.0 | 1.8 | 1.0 |  |  |
| 13 | 4.8 | 1.3 | 2.2 | 1.7 | 1.2 | 3.1 | 12.1 | 8.6 | 1.7 | 4.5 | 2.0 | 1.9 | 2.5 | 2.8 | 0.0 |  |  |
| 14 | 5.7 | 4.8 | 2.3 | 0.0 | 1.4 | 5.9 | 5.8 | 9.9 | 2.1 | 1.9 | 1.2 | 1.3 | 0.6 | 1.2 | 0.0 |  |  |
| 15 | 1.2 | 2.4 | 2.0 | 0.1 | 0.1 | 0.0 | 4.3 | 5.0 | 1.8 | 0.9 | 0.1 | 1.1 | 0.2 | 1.5 | 0.8 |  |  |
| 16 | 7.9 | 0.5 | 0.0 | 0.1 | 0.3 | 0.0 | 0.0 | 3.8 | 0.2 | 2.0 | 0.0 | 0.3 | 0.3 | 0.2 | 0.2 |  |  |
| 17 | 3.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.1 | 0.6 | 0.0 | 0.3 | 0.3 | tr | 0.0 |  |  |
| 18 | 0.0 | 0.5 | 0.0 | 0.4 | 0.1 | 0.0 | 0.0 | 0.1 | 0.0 | 0.6 | tr | 0.4 | 0.0 | tr | 0.0 |  |  |
| 19 | 0.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.1 | 0.6 | 0.4 | tr | 0.1 | 0.0 | tr | 0.0 |  |  |
| 20 | 0.0 | 0.0 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | 0.1 | 0.0 | 0.0 | 0.0 |  |  |
| $21+$ | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8 | tr | 0.0 | tr | 0.0 | tr | 0.0 |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Total | 10,821 | 6,525 | 18,686 | 9,601 | 7,630 | 12,122 | 6,834 | 3,396 | 9,207 | 4,704 | 8075.5 | 12,549 | 6,667 | 17,384 | 10,777 |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 14. -- Estimated numbers at age (millions) for walleye pollock observed between 0.5 and 3 m off bottom in the U.S. EEZ from summer Bering Sea shelf acoustic-trawl surveys 1994-2016. Trace amounts are indicated as 'tr'.

| Age | 1994 | 1996 | 1997 | 1999 | 2000 | 2002 | 2004 | 2006 | 2007 | 2008 | 2009 | 2010 | 2012 | 2014 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 15. -- Estimated biomass at age (thousand metric tons) for walleye pollock observed between 0.5 and 3 m off bottom in the U.S. EEZ from summer Bering Sea shelf acoustic-trawl surveys 1994-2016. Trace amounts are indicated as 'tr'.

| Age | 1994 | 1996 | 1997 | 1999 | 2000 | 2002 | 2004 | 2006 | 2007 | 2008 | 2009 | 2010 | 2012 | 2014 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |



Figure 1.-- Transect lines with locations of Aleutian wing trawls, 83-112 trawls, Marinovich, stereo camera and Methot trawls during the summer 2016 acoustic-trawl survey of walleye pollock on the eastern Bering Sea shelf. Transect numbers are noted above transects. Steller sea lion conservation area is outlined in pink.


Figure 2. -- Temperature $\left({ }^{\circ} \mathrm{C}\right)$ a) measured at the sea surface using shipboard surface temperature sensors along survey transects averaged at 10 nautical mile resolution, and b) at the bottom using conductivity-temperature-depth profilers (CTDs, $\mathrm{n}=56$ ), during the summer 2016 acoustic-trawl survey of the eastern Bering Sea shelf.


Figure 3. -- Mean water temperature ( ${ }^{\circ} \mathrm{C}$; solid line) by 1-m depth intervals for trawl haul locations during the summer 2016 eastern Bering Sea acoustic-trawl survey. Data were collected with a Sea-Bird Electronics temperature-depth probe (SBE-39) attached to the trawl headrope. Gray region represents minimum and maximum temperatures observed. Profiles are shown for trawls east of $170^{\circ} \mathrm{W}\left(\mathrm{n}=84\right.$; left) and west of $170^{\circ} \mathrm{W}$ in the U.S. EEZ ( $\mathrm{n}=132$; right).


Figure 4. -- Maturity stages by sex for walleye pollock $\geq 34 \mathrm{~cm}$ observed during the summer 2016 eastern Bering Sea shelf acoustic-trawl survey a) east of $170^{\circ} \mathrm{W}$, and b) in U.S. waters west of $170^{\circ} \mathrm{W}$.


Figure 5. -- Mean weight-at-length for walleye pollock measured in the U.S. EEZ east and west of $170^{\circ} \mathrm{W}$ during the summer 2016 eastern Bering Sea shelf acoustic-trawl survey, plotted against mean values for 2004, 2006-2010, 2012, and 2014. Error bars represent $\pm 1$ standard deviation around the 2004-2014 data points.


Figure 6.-Estimated walleye pollock biomass per sq. nmi for the summer 2016 acoustic-trawl survey. Top panel: 16 m from surface to 3 m off bottom. Age 1 fish (blue), age 2 and 3 fish (yellow), and age 4+ fish (red) are indicated. Bottom panel: 3m off bottom to 0.5 m off bottom for all ages. The Steller sea lion Conservation Area (SCA) is outlined in green.


Figure 7. -- Population numbers (histogram bars) and biomass (lines) at length (cm) estimated for walleye pollock between 16 m from the surface and 3 m off the bottom from the summer 2016 eastern Bering Sea shelf acoustic-trawl survey in two geographic regions.


Figure 8. -- Population numbers (histogram bars) and biomass (lines) at length (cm) estimated for walleye pollock between 3 m to 0.5 m off the bottom from the summer 2016 eastern Bering Sea shelf acoustic-trawl survey in two geographic regions.


Age
Figure 9. -- Population numbers (histogram bars) and biomass (lines) at age estimated for walleye pollock between 16 m from surface and 3 m off bottom for different geographic regions during the summer eastern Bering Sea shelf acoustic-trawl survey. Note: Y-axis scales differ.


Age
Figure 10.-- Population numbers (histogram bars) and biomass (lines) at age estimated for walleye pollock between 3 m to 0.5 m off bottom for different geographic regions during the summer eastern Bering Sea shelf acoustic-trawl survey. Note: Y-axis scales differ.


Figure 11. -- Mean a) length- and b) weight-at-age for walleye pollock in the U.S. EEZ east and west of $170^{\circ} \mathrm{W}$ for the summer 2016 eastern Bering Sea shelf acoustic-trawl survey, and mean estimates for 2004-2014 surveys combined. Error bars represent $\pm 1$ standard deviation around the 2004-2014 means.


Figure 12.-- Depth distribution (m) of adult ( $\geq 30 \mathrm{~cm} \mathrm{FL}$ ) or juvenile ( $<30 \mathrm{~cm} \mathrm{FL}$ ) walleye pollock biomass (thousand metric tons) east and west of $170^{\circ} \mathrm{W}$ longitude in the U.S. EEZ of the Bering Sea shelf during the summer 2016 acoustic-trawl survey. Depth is referenced to the surface ( $\mathrm{a}, \mathrm{b}$ ) and to the bottom ( $\mathrm{c}, \mathrm{d}$ ). Data were averaged in 10 m depth bins from near surface to within 0.5 m of the seafloor.


Figure 13.-- Walleye pollock backscatter ( $\mathrm{s}_{\mathrm{A},} \mathrm{m}^{2} \mathrm{nmi}^{-2}$ ) between near surface and 3 m off bottom at 38 kHz observed along tracklines during summer eastern Bering Sea acoustic-trawl surveys conducted between 2004 and 2016.


Figure 14. -- Walleye pollock backscatter ( $\mathrm{s}_{\mathrm{A}}, \mathrm{m}^{2} \mathrm{nmi}^{-2}$ ) between 3 m and 0.5 m off bottom at 38 kHz observed along tracklines during summer eastern Bering Sea acoustic-trawl surveys conducted between 2004 and 2016.


Figure 15. -- Historical numbers at length between near surface and 3 m off bottom in the U.S. EEZ for the summer eastern Bering Sea shelf acoustic-trawl surveys between 1994 and 2016.


Figure 16. -- Historical numbers at length between 3 m and 0.5 m off bottom in the U.S. EEZ for the summer eastern Bering Sea shelf acoustic-trawl surveys between 1994 and 2016.


Figure 17. -- Historical numbers at age of walleye pollock between near surface and 3 m off bottom in the U.S. EEZ for summer eastern Bering Sea shelf acoustic-trawl surveys between 1994 and 2016. Strong year classes are indicated with dark columns.


Figure 18. -- Historical numbers at age of walleye pollock between 3 m and 0.5 m off bottom bottom in the U.S. EEZ for summer eastern Bering Sea shelf acoustic-trawl surveys between 1994 and 2016. Strong year classes are indicated with dark columns.


Figure 19. -- (Top panel) Pollock biomass by year in million metric tons for the region between the surface and 3 m above bottom (solid line), the region between 0.5 and 3 m above bottom (dotted line), and the sum of these two regions (dashed line). (Bottom panel) Percent increase from the region between the surface and 3 m above bottom to the total water column.


Figure 20.-- Non-pollock, non-fish backscatter ( $\mathrm{s} A, \mathrm{~m}^{2} \mathrm{nmi}^{-2}$ ) from near surface to 3 m off bottom at 38 kHz frequency along tracklines during summer eastern Bering Sea acoustictrawl surveys 2004-2016.


Figure 21. -- Preliminary map of the spatial distribution of euphausiid backscatter ( $\mathrm{s} A_{\mathrm{A}}, \mathrm{m}^{2} \mathrm{nmi}^{-2}$ ) during the summer 2016 acoustic-trawl survey of the eastern Bering Sea shelf. Data are shown at 120 kHz .


Figure 22. -- Acoustic estimate of average euphausiid abundance (no. $\mathrm{m}^{3}$ ) from summer eastern Bering Sea acoustic-trawl surveys (2004-2016). Error bars are approximate 95\% confidence intervals computed from geostatistical estimates of sampling error (Petitgas 1993).

## Appendix I. -- Itinerary

## Leg 1

12-14 June Calibration in Captains Bay. Depart Dutch Harbor, AK. Transit to survey start area in Bristol Bay, eastern Bering Sea

14 Jun.-3 Jul. Acoustic-trawl survey of the Bering Sea shelf (through transect 12).
Transit to Unalaska Island, AK.
3-6 July In port Dutch Harbor, AK.

## Leg 2

6-7 July Transit to survey resume point

7-23 July
23-26 July Transit to Unalaska Island
26-28 July In port Dutch Harbor

## Leg 3

29-30 July Transit to survey resume point
30 Jul.-14 Aug.
14-16 Aug.

16-17 Aug. Acoustic sphere calibration in Captains Bay, Dutch Harbor. End of cruise.

## Appendix II. -- Scientific Personnel

Leg 1 (12 June -3 July)

| Name | $\frac{\text { Position }}{\text { Darin Jones }}$ | Chief Scientist | Organization |
| :--- | :--- | :--- | :--- |

Leg 2 (6-25 July)

| Chris Wilson | Chief Scientist | AFSC | USA |
| :--- | :--- | :--- | :--- |
| Alex De Robertis | Fishery Biologist | AFSC | USA |
| Chris Bassett | Info. Tech. Specialist | AFSC | USA |
| Robert Levine | Fishery Biologist | OAI | USA |
| Matthew Phillips | Observer | AIS | USA |
| Mike Gallagher | Fishery Biologist | AFSC | USA |
| Tom Weber | Guest Scientist | UNH | USA |
| Scott Loranger | Graduate Student | UNH | USA |

Leg 3 (29 July -17 August)

| Taina Honkalehto | Chief Scientist | AFSC | USA |
| :--- | :--- | :--- | :--- |
| Rick Towler | Info. Tech. Specialist | AFSC | USA |
| Darin Jones | Fishery Biologist | AFSC | USA |
| Anatoli Smirnov | Fishery Biologist | TINRO | Russia |
| Nate Lauffenburger | Fishery Biologist | AFSC | USA |
| Troy Buckley | Fishery Biologist | AFSC | USA |
| Matthew Phillips | Observer | AIS | USA |
| Denise McKelvey | Fishery Biologist | AFSC | USA |
| Brian Robb | Medical Officer | NOAA | USA |


| AFSC | Alaska Fisheries Science Center, Seattle WA |
| :--- | :--- |
| AIS | AIS, Inc., New Bedford, MA |
| OAI | Ocean Associates, Inc. |
| TINRO | Pacific Research Institute of Fisheries and Oceanography |
|  | Vladivostok, Russia |
| NOAA | National Oceanic and Atmospheric Administration, Teacher at Sea Program |
| SBU | Stony Brook University, Southampton, NY |
| UNH | University of New Hampshire, Durham, NH |


[^0]:    ${ }^{1}$ National Marine Fisheries Service (NMFS) 2013. NOAA protocols for fisheries acoustics surveys and related sampling (Alaska Fisheries Science Center), 23 p. Prepared by Midwater Assessment and Conservation Engineering Program, Alaska Fish. Sci. Center, Natl. Mar. Fish. Serv., NOAA. Available online: http://www.afsc.noaa.gov/RACE/midwater/AFSC\%20AT\%20Survey\%20Protocols_Feb\%202013.pdf.

[^1]:    ${ }^{2}$ ADP Code Book. 2016. Unpublished document. Resource Assessment and Conservation Engineering Division, Alaska Fisheries Science Center, 7600 Sand Point Way NE, Seattle WA 98115.

