

National Marine Fisheries Service

U.S DEPARTMENT OF COMMERCE

AFSC PROCESSED REPORT 96-05

1992 Bottom Trawl Survey of the Eastern Bering Sea Continental Shelf

June 1996

This report does not constitute a publication and is for information only. All data herein are to be considered provisional.

ERRATA NOTICE

This document is being made available in .PDF format for the convenience of users; however, the accuracy and correctness of the document can only be certified as was presented in the original hard copy format.

Inaccuracies in the OCR scanning process may influence text searches of the .PDF file. Light or faded ink in the original document may also affect the quality of the scanned document.

C

C

.0

1992 BOTTOM TRAWL SURVEY OF THE EASTERN BERING SEA CONTINENTAL SHELF

Gary Walters Compiler

Bering Sea Subtask

Claire Armistead Pamela Goddard Daniel Nichol Terrance Sample

Resource Assessment and Conservation Engineering Division Alaska Fisheries Science Center National Marine Fisheries Service National Oceanic and Atmospheric Administration 7600 Sand Point Way N.E., Bin C15700 Seattle, WA 98115-0070

June 1996

 $\langle \hat{x} \rangle$

ABSTRACT

The Resource Assessment and Conservation Engineering Division of the Alaska Fisheries Science Center conducts annual bottom trawl surveys to monitor the condition of the demersal fish and crab stocks of the eastern Bering Sea continental shelf. The standard study area, surveyed each year since 1979, encompasses a major portion of the eastern Bering Sea shelf between the 20-m and the 200-m isobaths and from the Alaska Peninsula north to approximately the latitude of St. Matthew Island (lat. 60° 50' N). In 1992, this area was again surveyed by two chartered trawlers, the 30.5 m <u>Alaska</u> and the 30.5 m <u>Tracy Anne</u>.

Demersal populations were sampled by trawling for 30 minutes at stations centered in 20 x 20 nautical mile grids covering the survey area. At each station, species composition of the catch was determined and commercially important species were sampled to obtain length distributions and age structure samples.

Survey results presented in this report include relative fishing powers of the survey vessels, abundance estimates for fish and invertebrates, geographic distributions of important fish species, size composition of principal fish species, and age and growth information for selected species. Surface and bottom temperatures recorded at each sampling station are also presented.

Appendices provide station data, species listings, and detailed results of analyses of abundance and biological data of the sampled populations.

 $\langle \hat{x} \rangle$

CONTENTS

Introduction
Methods3Survey Area and Sampling Design3Vessels and Fishing Gear5Data Collection9Data Analysis13Special Studies14
Results 16 Station Data 16 Environmental Conditions 16 Relative Fishing Powers of Survey Vessels 16 Relative Fishing Powers of Survey Vessels 20 Estimated Biomass of Major Fish and Invertebrate Groups 22 Relative Abundance of Individual Fish Species 22 Abundance, Distribution, and Size and 27
Walleye pollock28Pacific cod35Yellowfin sole42Rock sole49Hippoglossoides spp.56Alaska plaice63Greenland turbot70Atheresthes spp.73Pacific halibut76Skates79Great sculpin81Plain sculpin83Bigmouth sculpin85Wattled eelpout87Shortfin eelpout89Marbled eelpout91Sturgeon poacher93
Bering poacher 95 Eulachon 97 Capelin 98 Pacific herring 99

ï

Citations		100
Appendix A.	Station Data	102
Appendix B.	List of Species Encountered	114
Appendix C.	Rank Order of Relative Abundance of Fish and Invertebrates	124
Appendix D.	Abundance Estimates for Principal Fish Species	131
Appendix E.	Population Estimates by Sex and Size Groups for Principal Fish Species	151

vi

INTRODUCTION

The eastern Bering Sea continental shelf supports one of the most productive groundfish fisheries in the world (Bakkala 1988). Since 1970, annual commercial catches of groundfish have ranged from 1.2 to 2.2 million metric tons (t) (North Pacific Fishery Management Council 1990). Although many species are caught commercially, the most abundant has been walleye pollock (Theragra chalcogramma) which, since 1970, has comprised more than 70% of the total landings. The next most abundant species have been yellowfin sole (Pleuronectes asper) and Pacific cod (Gadus macrocephalus) which have comprised 8% and 5%, respectively, of the commercial landings.

Since 1971, the Resource Assessment and Conservation Engineering (RACE) Division of the Alaska Fisheries Science Center (AFSC) has conducted annual bottom trawl surveys of the eastern Bering Sea continental shelf. In 1975, the first large-scale survey of the eastern Bering Sea shelf was conducted under contract from the Bureau of Land Management in response to a need for baseline data to assess the potential impact of proposed offshore oil exploration and development on fishery resources (Pereyra et al. 1976). During this baseline survey, sampling was conducted over the eastern Bering Sea shelf between the 20 m and 200 m isobaths and from the Alaska Peninsula north to approximately 62°N latitude. In subsequent years, the areal coverage of the annual surveys was reduced, until 1979 when the most comprehensive survey of the Bering Sea shelf was undertaken in cooperation with the Japan Fisheries Agency (Bakkala and Wakabayashi 1985). The 1979 survey encompassed the entire region sampled in the 1975 baseline study, and in addition, the continental slope waters between the Aleutian Islands and the U.S.-U.S.S.R. convention line, and the shelf region between St. Matthew and St. Lawrence Islands. A hydroacoustic survey was also conducted in 1979 to assess the midwater component of the walleye pollock population. Subsequent annual bottom trawl surveys have essentially resampled the stations established during the 1975 survey, with slight modifications each year. This region encompasses the major portion of economically important eastern Bering Sea groundfish populations, except those primarily located in continental slope waters. Every third year (1979, 1982, 1985, 1988, 1991) an extended survey has been conducted, including hydroacoustic assessment of midwater pollock, bottom trawl sampling of the continental slope, and bottom trawl sampling in the region between St. Matthew and St. Lawrence Islands. The information gathered by the annual surveys serves to: 1) provide the North Pacific Fishery Management Council with annual fishery-independent estimates of abundance and biological condition of commercially exploited stocks, 2) provide distribution and abundance information to commercial fishermen, and 3) develop a time-series data base contributing to our understanding of the population dynamics and interactions of groundfish species.

This report presents information collected by the AFSC in the eastern Bering Sea during the 1992 bottom trawl survey. The groundfish/crab survey and several ancillary projects were conducted from 1 June to 6 August by two U.S. vessels. A cooperative U.S.-Russian survey of portions of the western Bering Sea shelf was performed aboard the <u>Mys Babushkina</u> from June 5 to July 29. The results of that survey will be reported elsewhere. Also, detailed information on principal crab species can be found in a report by Stevens et al. (1992).

METHODS

Survey Area and Sampling Design

The standard station pattern for the eastern Bering Sea survey is based on a systematic 20 x 20 nautical mile grid. In areas surrounding St. Matthew and the Pribilof Islands, grid block corners were also sampled to better assess blue king crab (Paralithodes platypus) concentrations. The survey design pattern called for 356 stations. In 1992, 336 standard stations and 20 additional stations north-west of the standard pattern were successfully sampled (Fig. 1, Appendix A). Due to extreme weather conditions, vessel breakdowns, and a medical emergency, a block of 18 stations on the north-central edge of the pattern was not sampled.

Starting with the eastern stations, the two vessels fished alternate north/south lines of stations such that coverage of the survey area was similar for each vessel. This sampling design facilitated the computation of relative fishing powers (or catch efficiencies) of the two vessels. The progression from east to west was established to prevent multiple encounters of yellowfin sole, Alaska plaice (<u>Pleuronectes quadrituberculatus</u>), and perhaps other species which may be migrating eastward during the course of the survey (Smith and Bakkala 1982). Tows were usually 30 minutes in duration and fishing was limited to daylight hours. For data analysis, the survey region was divided into six subareas bounded by the 50 m, 100 m, and 200 m isobaths and by a line separating the northwest and southeast portions of the study area (Fig. 1). This stratification scheme was designed to reduce the variances of population and biomass estimates by conforming to oceanographic domains which seem related to distributions of Bering Sea fishes (Bakkala 1988). The presence of high-density sampling for blue king crab in subareas 3, 4, and 6 necessitated a further division of these subareas into high-density and standard-density

Figure 1.--Standard and special study stations sampled during the 1992 eastern Bering Sea bottom trawl survey, and stratification used for analysis of data.

sample strata, resulting in a total of 10 geographic strata. The overall sampling density for the entire survey area was one station per 1,304 km² (Table 1). However, because of the high-density sampling in subareas 3, 4, and 6, and the irregular subarea boundaries, sampling density among the six subareas varied from one station per 1,096 km² to one per 1,492 km². Subareas 2 and 4, where some designated stations were missed (Fig. 1), were adjusted to include only those grid blocks actually sampled and not the standard area sampled in prior years.

Subarea	Area (km²)	No. stations successfully sampled	Sampling density (km²/stn)	
1	77,871	57	1,366	
2	20,740ª	16	1,296	
3	103,300	76	1,359	
4	102,966ª	94	1,096	
5	38,792	26	1,492	
6	94,562	67	1,411	
Subareas combined	438,262	336	1,304	

Table 1.--Size of subareas and sampling densities by subarea for the 1992 eastern Bering Sea bottom trawl survey (see also Fig. 1).

^a Subareas 2 and 4 are smaller than in previous years. See text for explanation.

Vessels and Fishing Gear

The 1992 eastern Bering Sea bottom trawl survey was conducted aboard the 30.5 m University of Washington research vessel <u>Alaska</u> and the 30.5 m fishing vessel <u>Tracy Anne</u> (Table 2). As in previous years, both vessels were equipped with 83-112 eastern otter trawls which have 25.3 m (83 ft) headropes and 34.1 m (112 ft) footropes (Fig. 2). These nets were attached to tail chains with 54.9 m (30 fathoms) paired dandylines. Each lower dandyline had a 0.61 m chain extension connected to the lower wing edge to improve bottom tending characteristics. Steel "V"-doors measuring 1.8 x 2.7 m and weighing 816 kg were used.

Table	2Characteristics of vessels used dur	ring the	1992	eastern
	Bering Sea bottom trawl survey.			

	Overall	Gross		Survey	period
Vessel	length(m)	tonnage	Horsepower	Start	Finish
Alaska	30.5	219	850	1 June	6 August
Tracy Anne	30.5	189	825	1 June	6 August

SCANMAR¹ net mensuration systems were used aboard each vessel to measure net height and width. Net width was measured by the distance between two sensors attached to the upper starboard and port dandylines, about 0.61 m in front of the net. Mean net widths were calculated from observations recorded within each tow. These data were then used to establish a net width-scope (wire-out) relationship for each vessel to enable prediction of net width for tows where net width data were not available (Fig. 3) as described by Rose and Walters (1990). Estimates of net width were used in area-swept calculations.

¹ Reference to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA.

83/112 EASTERN

eastern Bering Sea bottom trawl survey.

Data Collection

Sampling procedures used in RACE eastern Bering Sea assessment surveys are described in detail by Wakabayashi et al. (1985). A brief summary follows.

Samples were collected by trawling at the center of each 20 x 20 nautical mile grid block (or corner station, in the case of high-density strata) for 30 minutes (timed after the net had settled on the bottom), towing at a speed of 1.54 m/sec (3 knots). If the bottom appeared to be untrawlable at the specified location, the nearest trawlable site within the same grid square was used. If the net was ripped or "hung up" on some object on the bottom during the tow, the catch was discarded and a new sample obtained.

Catches of less than approximately 1,150 kg (2,500 lb) were processed entirely while larger catches were subsampled. Economically important fish and invertebrates were sorted to species with the exception of four species of flatfish. Similar features between arrowtooth (Atheresthes stomias) and Kamchatka flounder (Atheresthes evermanni), and flathead sole (Hippoglossoides elassodon) and Bering flounder (Hippoglossoides robustus) made identification of these species difficult within the time constraints of the survey; thus, these species were grouped by genus for purposes of this report. Minor species of fish and invertebrates were sorted to the lowest taxonomic level practicable. Catch weights and numbers by species or species group were estimated directly or, when subsampled, estimated by extrapolating the proportion in the subsample to that of the entire catch weight. Pacific halibut (Hippoglossus stenolepis) and crab species of the genera <u>Paralithodes</u> (red and blue king crabs, camtschatica and platypus, respectively), <u>Chionoecetes</u> (snow and Tanner crabs, <u>opilio</u> and <u>bairdi</u>, respectively), and <u>Erimacrus</u> (hair crabs, <u>isenbeckii</u>) were usually weighed and enumerated from the entire catch.

Size composition data were collected for each commercially important species. Pacific halibut, walleye pollock, Pacific cod, and yellowfin sole were measured whenever caught while other species were measured as time permitted (Table 3). Pacific halibut were measured immediately upon capture and returned to the sea in an effort to reduce sampling mortality for this species. Random samples of the remaining species of up to approximately 200 individuals (300 in the case of walleye pollock) were sexed and measured to the nearest centimeter from the tip of the snout to the end of the middle rays of the caudal fin (fork length).

Sagittal otoliths were collected from nine fish species (Table 4). In both the northwestern and southeastern divisions of the survey area, three otolith pairs per sex/centimeter interval were collected for Pacific cod and rock sole (Pleuronectes bilineatus), and five pairs per sex/centimeter interval for all other species. Scales as well as otoliths were taken from Pacific cod to aid in age determination of young fish. Individual fish weight data were collected for Alaska plaice in conjunction with otolith sampling. In the case of the Hippoglossoides, otoliths were collected only from individuals that were identified with certainty as flathead sole. Age structures for roundfish were preserved in 50% ethanol/water; flatfish otoliths were preserved in 50%

Temperature profiles were taken at each station using either a micro-bathythermograph (MBT) attached to the head rope of the net or with an expendable bathythermograph cast (XBT); surface temperatures were taken by bucket thermometer.

		Length	measure	ments by	subarea	0	
Species	1	2	3	4	5	6	Total
Walleye pollock	1,854	909	8,202	8,768	3,860	10,431	34,024
Rock sole	7,988	2,133	8,606	6,662	133	1,572	27,094
Yellowfin sole	8,919	2,509	8,167	4,017	14		23,626
Flathead sole	477	2	4,848	1,729	3,777	4,980	15,813
Pacific cod	2,308	411	2,082	2,668	445	1,550	9,464
Alaska plaice	1,710	672	1,599	3,436	2	162	7,581
Arrowtooth flounder	21		1,041	342	2,492	1,814	5,710
Bering flounder				1,680		414	2,094
Pacific halibut	467	139	304	257	85	137	1,389
Rex sole	3		16		356	157	532
Greenland turbot		~-	2	33	1	404	440
Pacific herring	247					18	265
Starry flounder	155	8	49				212
Arctic cod		24		111			111
Pacific ocean perch						109	109
Longhead dab	89						89
Saffron cod		42					42
Northern rockfish					35		34
Dover sole					22		35
Cakhalin golo					4	2	6
Sakhalin Soie	1.000			1			1

Table 3.--Number of length measurements taken during the 1992 eastern Bering Sea bottom trawl survey.

Table 4.--Number of fish in which age structures were collected, by species and subarea, during the 1992 eastern Bering Sea bottom trawl survey.

Subarea										
1	2	3	4	5	6	Total				
178	0	303	197	162	305	1,279				
146	29	69	205	102	140	731				
383	67	45	116	0	0	611				
262	0	44	104	0	98	535				
0	0	167	0	92	161	420				
96	7	65	150	0 _.	0	318				
0	0	2	1	1	3	7				
0	0	0	0	84	13	97				
0	0	26	0	110	29	165				
	1 178 146 383 262 0 96 0 0 0 0	Su 1 2 178 0 146 29 383 67 262 0 0 0 96 7 0 0 96 7 0 0 0 0 0 0 0 0	Subarea 1 2 3 178 0 303 146 29 69 383 67 45 262 0 44 0 0 167 96 7 65 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2	Subarea 1 2 3 4 178 0 303 197 146 29 69 205 383 67 45 116 262 0 44 104 0 0 167 0 96 7 65 150 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 0	Subarea123451780303197162146296920510238367451160262044104000167092967651500002110008400260110	Subarea12345617803031971623051462969205102140383674511600262044104098001670921619676515000002113000084130026011029				

^a Some age structures were collected outside the standard survey area, therefore, the numbers collected for the six subareas do not add to the total.

^b Scales were also taken.

Data Analysis

A brief description of the procedures used in analysis of RACE Bering Sea survey data follows (for a detailed description see Wakabayashi et al. 1985). Some of the species collected were grouped by family for data analysis because of their insignificant commercial value or questionable identification.

Relative fishing powers between the two vessels were determined using the methods of Kappenman (1992). Two-hundred-ninety-two stations sampled by the two vessels during the standard survey (Fig. 1) plus 10 stations from special studies were used in that analysis (see Appendix A).

Mean catch per unit effort (CPUE) values for each species were calculated in kilograms per hectare and number per hectare for each of the 10 strata; area swept (hectares) was computed as the distance towed multiplied by the mean net width (Alverson and Pereyra 1969). Mean CPUE values, weighted by strata areas, were calculated for individual subareas and for the overall survey area. Biomass and population estimates were derived for each stratum by multiplying the stratum mean CPUE by the stratum area. Stratum totals were then added together to produce estimates for each subarea and for the total survey area.

In estimating the size composition of populations of principal commercial species, length-frequency data obtained at each station were expanded to the station catch by proportion and then extrapolated to the stratum population by the weighted CPUE. Stratum estimates were summed to derive the estimated size composition by subarea and for the overall survey area.

Otolith and scale samples collected during the survey were read by the Age and Growth

Determination Unit of the AFSC's Resource Ecology and Fisheries Management (REFM) Division. From these age samples, stratified by sex and length, an age-length key was produced that showed the distribution of ages by sex at each centimeter interval. Population age composition was estimated by apportioning ages to the estimated population number at each length interval. Only species whose age samples have been read by the time of writing of this publication have been included in the age analyses. Species completed at a later date will be presented in subsequent publications.

Growth characteristics of principal species were described with von Bertalanffy (1938) growth curves fitted to age-length data collected in this survey.

Special Studies

Stomach samples from several of the most prevalent commercial species in each haul were collected and preserved in formalin for later examination by the Food Habits Program of the AFSC's REFM Division (Table 5).

Additional activities included collecting specimens for observer training programs, collecting samples for fish and crab pathology studies (Table 5), and fulfilling requests from academic institutions.

Species	Stomach samples collected	Pathobiological samples collected
Walleye pollock	2,747	92
Pacific cod	1,981	102
Yellowfin sole	848	2
Rock sole	449	2
Flathead sole	485	
Pacific halibut	329	
Alaska plaice	264	
Arrowtooth flounder	97	
Greenland turbot	89	
Skates	459	
Pacific herring		31

Table 5.--Biological fish samples collected for special studies during the 1992 eastern Bering Sea bottom trawl survey.

RESULTS

Station Data

Station data from the 1992 survey are listed in Appendix A. Relevant information such as position, tow parameters, time, and environmental measurements are listed for each vessel for all standard bottom trawl stations used in the analyses.

Environmental Conditions

Sea surface temperatures recorded during the survey ranged from 3.1° to 10.6°C (Fig. 4). As in most previous years, surface temperature increased from east to west across the shelf, probably reflecting the progression of summer warming as the survey proceeded from east to west.

Bottom temperatures ranged from -2.0° to 7.4°C (Fig. 5). The warmest temperatures (above 4°C) occurred in shallow waters along the Alaska mainland, along portions of the outer shelf, and in the southern portion of the outer shelf just north of Unimak Pass. The coldest bottom temperatures observed were in the northern portion of the mid-shelf at depths between 50 and 100 m.

The mean bottom water temperature for the total survey area in 1992 was 1.76°C (Fig. 6). Historically, this is the lowest average value ever recorded for mean summer bottom water temperatures in the standard survey area (range in annual means 1.8° to 5.1°C, average of annual means 2.8°C). Mean bottom temperatures observed over a more limited region of the southeast Bering Sea, which has been sampled annually since 1971, have ranged from 1.2° to 4.8°C; the

Figure 4.--Distribution of surface water temperatures (C) observed during the 1992 eastern Bering Sea bottom trawl survey.

*/

Figure 5.--Distribution of bottom water temperatures (°C) observed during the 1992 eastern Bering Sea bottom trawl survey.

Figure 6.--Mean summer bottom water temperatures based on bathythermograph casts made during Alaska Fisheries Science Center bottom trawl surveys. The 1971-92 means (dashed line) are from the southeast Bering Sea (see inset) and the 1975 and 1979-92 means are from the larger survey area outlined on the inset. The 1975 data point for the overall survey area is based on data collected from August through September, while those in all other years and areas were collected from June through early August.

1992 value for this area was 2.5°C, the lowest value since 1982 and well below the long-term average (3.1°C)(Fig. 6.). The distribution of bottom water temperatures was somewhat unusual in 1992 in that there was a relatively broad distribution of 0°C and colder water on the northern midshelf that extended as far south as the Pribilof Islands. In addition the 2°C isotherm extended farther south and east than normal. A residual pool of 0.0° C or colder water remained as far east as longitude 164°. Overall, 1992 appears to have been the coldest year in the eastern Bering Sea since 1976.

Relative Fishing Powers of Survey Vessels

A total of 302 alternate-row tows (<u>Alaska</u> = 149, <u>Tracy Anne</u> = 153) were used in the comparison of vessel catch rates with the methods developed by Kappenman (1992). There were 292 tows from the standard area and 10 more from the special studies work (Appendix A). Based on this analysis, the <u>Tracy Anne</u> was significantly more efficient than the <u>Alaska</u> at capturing the following species and species groups: walleye pollock, Pacific cod, <u>Hippoglossoides</u> spp., Alaska plaice, <u>Atheresthes</u> spp., Pacific halibut, <u>Myoxocephalus</u> spp., yellowfin sole, rock sole, and snow crab. Fishing power corrections were applied to catches (by species) of the less efficient vessel (Table 6).

Table 6.--Species for which fishing power corrections were applied, and scaling factors

	Hauls	with catch	Catch multiplie			
Species	<u>Alaska Tracy Anne</u>		<u>Alaska</u>	<u>Tracy Anne</u>		
Walleye pollock	144	148	1.03	1.00		
Pacific cod	146	145	1.09	1.00		
Rock sole	135	139	1.10	1.00		
Hippoglossoides spp.	134	134	1.14	1.00		
Alaska plaice	106	95	1.06	1.00		
Atheresthes spp.	51	59	1.28	1.00		
Pacific halibut	110	115	1.18	1.00		
Yellowfin sole	108	100	1.11	1.00		
Myoxocephalus spp.	106	104	1.03	1.00		
Snow crab	108	112	1.19	1.00		

determined by the method of Kappenman (1992) based on 302 total hauls.

Estimated Biomass of Major Fish and Invertebrate Groups

Total demersal animal biomass for the overall survey area was estimated at 13.9 million t, of which fish species accounted for 78% (10.8 million t, Table 7), and invertebrates 22% (3.1 million t, Table 8). Concentrations of fish biomass were located in Bristol Bay and along the Alaska Peninsula, around the Pribilof Islands, and northwest of the Pribilofs (Fig. 7). Although 21 families and 74 species of fish were identified in the catches (Appendix B), the fish biomass was dominated by flatfishes (Pleuronectidae, 5.2 million t) and cods (Gadidae, 4.9 million t) (Table 7). The biomass of invertebrates was comprised primarily of the phyla Echinodermata (1.2 million t), Crustacea (1.1 million t), and Mollusca (0.3 million t). A total of 75 invertebrate species from 10 phyla were identified in the survey (Table 8, Appendix B).

Relative Abundance of Individual Fish Species

Relative abundance of the 11 most abundant species and species groups of fish are shown in Figure 8. These taxa accounted for 76% (238 kg/ha) of total animal mean CPUE (313 kg/ha) and 97% of total fish mean CPUE (245 kg/ha). Overall, but particularly in water deeper than 50 m, walleye pollock were the dominant species in the catch with a mean CPUE of 98 kg/ha. Similarly, Pacific cod were more abundant at depths exceeding 50 m, but their overall mean CPUE was only 12 kg/ha. Yellowfin sole and rock sole, with overall mean catch rates of 45 kg/ha and 36 kg/ha respectively, dominated catches in water less than 50 m. Yellowfin sole and rock sole were also prominent on the mid-shelf in waters between 50 and 100 m along with Alaska plaice and Hippogloissoides spp. The Myoxocephalus sculpins were spread across both the inner and mid-shelf. Conversely, <u>Hippoglossoides</u> spp., <u>Atheresthes</u> spp., and skates were most abundant in water greater than 100 m. Pacific halibut were present at low levels in all depth zones. See Appendix C for a descending rank of all organisms caught.

	Estimated	ated total Proportion		ated total Proportion				n hy subspace (
	95% confi	dence	nce animal		E:	crinated bromas	is by subarea (0		
Taxon	interval		biomass [□]	11	2°	3	4 ^c	5	6	
Walleye pollock Pacific cod	4,324,825 535,645	± 24% ± 16%	0.314 0.039	171,102 113,963	24,257 11,359	973,834 134,442	613,850 91,496	248,299 51,956	2,293,483 132,428	
Uther cods Total cods	4,863,277	± 43% ± 21%	0.353	$\frac{47}{285,113}$	$\frac{571}{36,188}$	1,108,277	2,187	300,255	2,425,912	
Anoplopomatidae Sablefish	294	± 139%	<0.001	0	0	0	0	294	0	
Scorpaenidae (rockfish)										
Pacific ocean perch	15,444	<u>+</u> 198%	0.001	0	0	0	0	101	15,343	
Other rockfish Total rockfish	<u>3,835</u> 19,279	± 201% ± 164%	<u><0.001</u> 0.001	_ <u>0</u> 0	_ <u>0</u> 0	<u>14</u> 14	_0_ 0	<u>3.821</u> 3,923	0 15,343	
Pleuronectidae (flatfishes) Yellowfin sole	1.997.641	+ 16%	0.145	858.189	295,886	652.497	189.897	1,172	0	
Rock sole	1,480,775	± 14%	0.108	677,582	130,242	322,043	292,332	5,707	52,869	
<u>Hippoglossoides</u> spp.	649,543	<u>+</u> 20%	0.047	20,879	32	254,246	51,752	136,596	186,038	
Alaska plaice	489,327	± 21%	0.036	75,645	28,358	117,243	222,134	26	45,920	
Atherestnes spp.	420,170	+ 25%	0.031	582	0	85,710	0,830	162,701	166,342	
Pacific halibut	98.302	+ 17%	0.007	23.406	6.594	24 372	9,822	16 435	17 673	
Other flatfish	50,168	+ 31%	0.004	27,657	3,728	6.650	71	8,680	3,382	
Total flatfish	5,209,929	± 10%	0.378	1,683,940	464,840	1,461,385	773,886	331,531	494,347	
Clupeidae			0.004	5.00/	705		704			
Pacific herring	8,461	± 91%	0.001	5,886	705	880	721	27	242	
Cottidae (sculpins)	223,972	<u>+</u> 18%	0.016	39,612	15,616	34,591	91,759	7,863	34,530	
Zoarcidae (eelpouts)	33,198	± 21%	0.002	0	0	3,121	7,966	1,902	20,209	
Osmeridae (smelts)	8,293	<u>+</u> 39%	0.001	4,664	386	625	50	2,562	6	
Agonidae (poachers)	23,342	<u>+</u> 19%	0.002	6,618	2,839	5,580	6,590	1,197	518	
Cyclopteridae (snailfishes)	4,102	± 35%	<0.001	3	6	32	2,582	104	1,375	
Rajidae (skates)	377,535	± 18%	0.027	9,362	9,861	68,891	56,210	59,711	173,499	
Other fish	21,425	<u>+</u> 58%	0.002	3.394	1.355	426	559	8,224	7,468	
Total fish	10,793,106	± 11%	0.784	2,038,591	531,795	2,683,824	1,647,855	717,592	3,173,449	

Table 7.--Biomass estimates (t) for major fish species and fish groups taken during the 1992 eastern Bering Sea bottom trawl survey.

^aDifferences in sums of estimates and totals are due to rounding ^bProportion of total estimated biomass, fish and invertebrates combined, for the total survey area. Total estimated biomass= 13,923,797 ^cStrata 2 and 4 were not completely surveyed in 1992. See text for details

	Estimated total biomass (t ^a) and	Proportion of total		Est	timated biomass	s by subarea (t)	
	95% confidence	animal biomass ^b	- 1	2°	3	4 ^c	5	6
laxon Crustacea			1 500	77 /77	179 175	277 567	30.906	167,441
Chionoecetes SPP.	651,994 <u>+</u> 23%	0.045	4,508	55,451	130,133	211,507	30,700	
(snow crab)		0.000	n	0	0	0	0	0
Lithodes spp.	0 ± 0	0.000	v	•				
king crab	57 675 + 392	0.004	10,600	632	25,210	19,198	0	1,986
Paralithodes spp.	51,025 ± 574			_		4 250	00	12
(King CraD)	1.727 ± 59%	<0.001	63	7	287	1,259	YY	12
(bair crab)			47.004	E 74/	126 008	115 501	7.632	83,744
Paguridae	352,369 <u>+</u> 22%	0.024	13,091	5,514	120,770	113,371	.,	
hermit crab	17 million (1774)	0.007	10 050	6 776	13.276	12,508	238	460
Other crab	$\frac{43.314}{47}$	0.027	38 320	46, 163	307,662	429,112	38,874	253,642
Total crab	$1,115,774 \pm 104$	0.077	14	62	65	429	485	10,107
Shrimps	676 + 1992	<0.001	4	0	16	643	75 750	$\frac{10}{2(7, 760)}$
Other crustaceans	1 125 609 + 16%	0.078	38,338	46,225	307,743	430,184	39,339	203,700
Total crustaceans	1,125,007							
Noliusca				47 (10	108 1/8	85 300	6.783	74.903
Gastropoda (snails)	302,862 ± 23%	0.021	14,009	13,019	2 976	515	197	143
Pelecypoda (bivalves)	5,353 ± 92%	<0.001	1,000		2,7.4	Ő	6	20
Squids	$\frac{26 + 1823}{1078}$	<0.001	254	ŏ	2.854	295	855	1,068
Octopuses	$5,326 \pm 1236$	0.001	2,4	ŏ	Q	0	0	0
Other mollusks	$\frac{0}{717}$ 549 \rightarrow 22%	0.000	15.350	14,058	113,977	86,208	7,841	76,135
Total mollusks	313,300 - 224	U.ULL						
T-hinodormata					757 477	110 2/4	1 025	54.398
Actoroidea	1,021,895 <u>+</u> 30%	0.070	314,123	175,967	357,157	119,240	1,025	54,570
(starfish)			1 (/2	2 7/3	32 503	22.809	7,266	102,618
Ophiuroidea	169,600 <u>+</u> 42%	0.012	1,002	2,145	56,505	,		•
(brittle stars)		0.001	7	0	682	560	3,933	2,139
Echinoidea	(,322 ± 13/A	0.001	•	-			-	-
(sea urchin)	7 007 + 123%	<0.001	2,988	0	<u>2,992</u>	1,022	Q	5
Holothuroidea	<u></u>						40.00/	150 215
(sea cucumbers)	1.207.396 + 26%	0.083	320,221	178,709	393,367	145,000	12,224	137,213
lotat echimodernis	.,			5 000	(2.0//	86 777	451	0
Ascidiacea	165,892 <u>+</u> 54%	0.011	11,239	5,820	02,044	0,331	421	•
Ascialacca		0.001	53/	30/	47 040	5.739	. 595	301
Porifera (sponges)	55,501 <u>+</u> 118%	0.094	524	374				
		0.012	11 088	980	82,046	55,585	11,381	6,003
Coelenterata	167,985 ± 204	0.012	11,700			-		
	06 314 + 382	0.007	9,615	<u>1.967</u>	<u>50,714</u>	26,700	<u>1,172</u>	<u>6.146</u>
Other invertebrates	<u></u>	<u>VI VVI.</u>					77 033	E11 E0/
and investor	3.130.691 + 14%	0.216	405,833	248,154	1,057,787	834, 391	(3,022	211,204
lotal invertebrates	VI IVI VI VI							

Table 8.--Biomass estimates (t) for major invertebrate species and invertebrate groups taken during the 1992 eastern Bering Sea bottom trawl survey.

^aDifferences in sums of estimates and totals are due to rounding ^bProportion of total estimated biomass, fish and invertebrates combined, for the total survey area. Total estimated biomass=13,923,797 t. ^cStrata 2 and 4 were not completely surveyed in 1992. See text for details.

Figure 7.--Distribution and relative abundance of total fish, 1992 eastern Bering Sea bottom trawl survey.

Figure 8.--Relative abundance (%CPUE in kg/ha) of principal groundfish species (top 11 for all depths combined) by depth zone and for all depths combined, 1992 eastern Bering Sea bottom trawl survey.

Abundance, Distribution, and Size and Age Composition of Principal Species and Species Groups

Geographical distributions, population numbers, biomass estimates, and size composition are presented for each of the following commercially important eastern Bering Sea groundfish: walleye pollock, Pacific cod, yellowfin sole, rock sole, Hippoglossoides spp., Alaska plaice, Greenland turbot (Reinhardtius hippoglossoides), Atheresthes spp., and Pacific halibut. Estimated biomass, population numbers, and mean size (by length and weight) are summarized by subarea and for the entire survey area. Size composition data are illustrated in histograms relating the population percentage of length by centimeter interval for each subarea and in population numbers for the total survey area. Age composition and von Bertalanffy growth parameters are given for walleye pollock. Pacific cod, yellowfin sole, rock sole, <u>Hippoglossoides</u> spp., and Alaska plaice. Geographical distributions for some common, but generally noncommercial fish species are presented. These are total skates, great sculpin, plain sculpin, bigmouth sculpin, wattled eelpout, shortfin eelpout, marbled eelpout, sturgeon poacher, Bering poacher, eulachon, capelin, and Pacific herring. Biomass and population estimates as well as mean weight are given by subarea and total area. These tables are not given for the pelagic species eulachon, capelin, and Pacific herring due to the bottom sampling nature of the survey. We do not feel these species are adequately represented in the samples, however, plots are shown to give some idea of geographic distribution.

Appendices to the report contain detailed results of the analysis. CPUE, population, and biomass estimates as well as the variances and confidence limits for each species by stratum in are given Appendix D. Population estimates by sex and size class for the total survey area are listed in Appendix E.

- 20

Figure 9.--Distribution and relative abundance in kg/ha of walleye pollock, 1992 eastern Bering Sea bottom trawl survey.

	Mean	Estimated	Proportion	Estimated	Proportion	Mean	Size
Subarea	CPUE (kg/ha)ª	biomass (t)ª	of estimated biomass	population numbers ^a	of estimated population	Weight (kg)	Length (cm)
1	21.97	171,102	0.040	128,073,058	0.019	1.336	51.5
2 ^b	11.69	24,257	0.006	240,167,259	0.036	0.101	14.5
3	94.27	973,834	0.225	1,439,145,116	0.214	0.677	43.7
4 ^b	59.60	613,850	0.142 1	1,015,236,713	0.151	0.605	36.1
5	64.01	248,299	0.057	309,870,667	0.046	0.801	45.6
6	242.54	2,293,483	0.530	3,603,569,934	0.535	0.636	41.1
All subareas combined	² 98.68	4,324,825	1.000 6	5,736,062,747	1.000	0.642	40.3
95% Confiden interval	ce	<u>+</u> 1,021,923	<u>+</u> 1	,544,756,449			

Table 9.--Abundance estimates and mean size of walleye pollock by subarea, 1992 eastern Bering Sea bottom trawl survey.

^aVariances of abundance estimates are given in Appendix D. ^bSubareas 2 and 4 were not completely surveyed in 1992. See text for details. ^cDifferences in sums of estimates and totals are due to rounding

Figure 10.--Estimated relative size distribution (sexes combined) of walleye pollock in terms of population numbers and percent for subareas 1-6, 1992 eastern Bering Sea bottom trawl survey.

			DE	EPTH AND SL	JBAREA				
)0-200 m	5	50-100 m	¥ <	<50 m		
AGE	YEAR CLASS	6	5	4	3	2	1	ALL SUBAREAS COMBINED	PROPORTION
1	1991	369.13	18.43	389.44	35.22	219.82	25.14	1,057.18	0.1569
2	1990	228.49	16.42	17.83	26.44	0.93	1.08	291.18	0.0432
. 3	1989	903.36	63.16	65.03	621.50	0.00	0.25	1,653.30	0.2454
4	1988	178.55	8.02	10.53	68.91	0.00	0.00	266.01	0.0395
5	1987	215.58	9.73	20.71	45.07	0.02	0.32	291.44	0.0433
6	1986	353.58	18.87	41.93	62.32	0.03	0.75	477.48	0.0709
7	1985	283.49	24.49	62.83	72.49	0.35	2.81	446.46	0.0663
8	1984	377.75	40.84	96.08	122.33	0.88	7.60	645.48	0.0958
9	1983	155.95	20.27	49.52	63.73	0.69	7.59	297.77	0.0442
10	1982	273.68	41.41	99.95	126.39	1.52	15.14	558.10	0.0829
11	1981	89.21	15.26	43.19	53.37	1.30	9.84	212.15	0.0315
12	1980	89.78	17.32	53.52	67.81	2.82	21.41	252.65	0.0375
13	1979	31.17	6.38	24.62	30.55	2.00	15.30	110.02	0.0163
14	1978	26.38	5.40	18.60	24.49	1.68	10.32	86.87	0.0129
15	1977	21.88	3.21	11.92	14.46	0.67	4.99	57.13	0.0085
16	1976	3.31	0.58	2.26	2.49	0.31	1.76	10.71	0.0016
17	1975	1.26	0.08	0.53	0.57	0.02	0.62	3.08	0.0005
18	1974	0.37	0.01	0.39	0.54	0.16	0.93	2.39	0.0004
Age Unknown		0.65	0.00	6.37	0.46	6.96	2.23	16.66	0.0025
A11 Ages Com	bined	3.603.57	309.87	1.015.24	1.439.15	240.17	128.07	6.736.06	1.0000

Table 10.--Estimated population numbers (millions of fish) of walleye pollock by age group and subarea, 1992 eastern Bering Sea bottom trawl survey.

Figure 11.--Distribution of walleye pollock aged samples from the 1992 eastern Bering Sea bottom trawl survey by length for males (A) and females (B) with symbols showing non-linear von-Bertalanffy estimates. Males and females compared (C).

Table 11.--von-Bertalanffy growth parameter estimates for walleye pollock by sex, based on otolith age reading and length data from the 1992 eastern Bering Sea bottom trawl survey.

	Number of age	Age range	Length range	<	Param	eters
Sex	readings	(years)	(cm)	L_{inf}	ĸ	t。
Male	599	1-18	14-74	65.5	0.18	-0.97
Female	643	1-17	14-82	75.1	0.14	-1.19

Figure 13.--Distribution and relative abundance in kg/ha of Pacific cod, 1992 eastern Bering Sea bottom trawl survey.

Subarea	Mean CPUE (kg/ha)®	Estimated biomass (t) ^a	Proportion of estimated biomass	Estimated population numbers ^a	Proportion of estimated population	<u>Mean</u> Weight (kg)	<u>Size</u> Length (cm)
1	14.64	113,963	0.213	178,742,320	0.317	0.638	31.7
2 ^b	5.48	11,359	0.021	31,619,358	0.056	0.359	26.1
3	13.02	134,442	0.251	137,478,337	0.244	0.978	38.6
4 ^b	8.88	91,496	0.171	143,240,482	0.254	0.639	34.5
5	13.39	51,956	0.097	19,807,987	0.035	2.623	56.1
6	14.00	132,428	0.247	53,492,624	0.095	2.476	52.8
All subarea combine	s d ^c 12.22	535,645	1.000	564,381,108	1.000	0.949	36.6
95% Confide interva	nce 1	<u>+</u> 87,860		<u>+</u> 126,011,530			

Table 12.--Abundance estimates and mean size of Pacific cod by subarea, 1992 eastern Bering Sea bottom trawl survey.

^aVariances of abundance estimates are given in Appendix D. ^bSubareas 2 and 4 were not completely surveyed in 1992. See text for details. ^cDifferences in sums of estimates and totals are due to rounding

Figure 14.--Estimated relative size distribution (sexes combined) of Pacific cod in terms of population numbers, and percent for subareas 1-6, 1992 eastern Bering Sea bottom trawl survey.

			DEPT	'H AND SUB	AREA				
		100	-200 m	50	-100 m	<5	0 m		
AGE	YEAR CLASS	6	5	4	3	2	1	ALL SUBAREAS COMBINED	PROPORTION
		0.46	0.00	24 11	4.15	16.61	44.94	90.27	0.1599
1	1991	1 70	0.00	28 41	31.73	5.71	36.88	104.52	0.1852
2	1990	1.70	1 33	43 06	54 00	4.45	39.53	149.46	0.2648
3	1989	7.00	7 29	32 71	24 28	2.58	29.96	114.91	0.2036
4	1988	10.02	1.50	7 94	9 81	1.56	12.32	46.88	0.0831
5	1987	10.03	4.02	2 94	5 95	0.33	5.61	23.08	0.0409
6	1986	5./3	2.52	1 01	2 43	0.26	0.81	11.42	0.0202
7	1985	4.43	1.30	0.71	1 75	0.02	0.96	6.27	0.0111
8	1984	1.90	0.07	0.71	1 10	0.08	0.62	3.61	0.0064
9	1983	1.10	0.47	0.23	0 17	0.02	0.01	0.77	0.0014
10	1982	0.37	0.10	0.04	0.37	0.00	0.34	1.28	0.0023
11	1981	0.27	0.20	0.05	0.09	0.00	0.10	0.73	0.0013
12	<u>1980</u>	0.35	0.19	0.02	0.05	0.00	0.00	0.14	0.0002
13	19/9	0.03	0.04	0.02	0.03	0.00	0.09	0.37	0.0006
14	. 19/8	0.08	0.00	0.02	1 11	0.00	6 57	10.68	0.0189
Age Unknow	<i>i</i> n	1.22	0.44	1.01	1.44	0.00			
All Ages (Combined	53.49	19.81	143.24	137.48	31.62	178.74	564.38	1.0000

Table 13.--Estimated population numbers (millions of fish) of Pacific cod by age group and subarea, 1992 eastern Bering Sea bottom trawl survey.

Figure 15.--Distribution of Pacific cod aged samples from the 1992 eastern Bering Sea bottom trawl survey by length for males (A) and females (B) with symbols showing non-linear von-Bertalanffy estimates. Males and females compared (C).

Table 14.--von-Bertalanffy growth parameter estimates for Pacific cod by sex, based on otolith and scale age reading and length data from the 1992 eastern Bering Sea bottom trawl survey.

Sex	Number of age readings	Age range (years)	Length range (cm)	 L _{inf}	<u>Param</u> K	<u>eters</u> t.
Male	368	1-11	13-94	209.6	0.05	-0.46
Female	349	1-14	13-117	175.1	0.07	-0.31

Figure 16.--Population number estimates by age for Pacific cod, 1992 eastern Bering Sea bottom trawl survey.

and the second second

Figure 17.--Distribution and relative abundance in kg/ha of yellowfin sole, 1992 eastern Bering Sea bottom trawl survey.

Subarea	Mean CPUE (kg/ha)ª	Estimated biomass (t)ª	Proportion of estimated biomass	Estimated population numbers ^a	Proportion of estimated population	<u>Mean</u> Weight (kg)	<u>Size</u> Length (cm)
1	110.21	858,189	0.430	3,680,541,997	0.446	0.233	25.7
2 ^b	142.66	295,886	0.148	1,554,782,213	0.188	0.190	23.3
3	63.17	652,497	0.327	2,438,828,156	0.295	0.268	27.8
4 ^b	18.44	189,897	0.095	582,182,495	0.070	0.326	29.3
5	0.30	1,172	0.001	2,486,019	0.000	0.471	32.2
6	0.00	0	0.000	0	0.000	0.000	0.0
All subareas combined	° 45.58	1,997,641	1.000	8,258,820,880	1.000	0.242	26.1
95% Confiden interval	ce	<u>+</u> 322,186	±	1,318,294,863			

Table 15.--Abundance estimates and mean size of yellowfin sole by subarea, 1992 eastern Bering Sea bottom trawl survey.

^aVariances of abundance estimates are given in Appendix D. ^bSubareas 2 and 4 were not completely surveyed in 1992. See text for details. ^cDifferences in sums of estimates and totals are due to rounding.

					DEPTH	AND SUBAR	EA			
			(6)	100-200	m	50	-100 m		<50 m	-
	AGE	YEAR CLASS	6	5	4	3	2	1	ALL SUBAREAS COMBINED	- PROPORTION
	3	1989	0.00	0.00	0.00	0.00	6.78	5.92	12.70	0.0015
	4	1988	0.00	0.00	0.00	1.11	131.40	131.66	264.18	0.0320
	5	1987	0.00	0.00	2.85	35.97	263.01	370.07	671.90	0.0814
	6	1986	0.00	0.00	16.14	153.73	232.04	456.52	858.42	0.1039
	7	1985	0.00	0.02	15.03	99.77	86.82	187.16	388.81	0.0471
	8	1984	0.00	0.04	35.42	158.66	71.79	174.04	439.95	0.0533
	9	1983	0.00	0.16	133.69	612.05	214.53	572.61	1,533.03	0.1856
	10	1982	0.00	0.04	20.03	74.53	23.74	66.31	184.65	0.0224
	11	1981	0.00	0.82	141.45	581.12	194.12	619.24	1,536.75	0.1861
	12	1980	0.00	0.14	17.92	80.04	34.36	101.33	233.78	0.0283
	13	1979	0.00	0.31	44.75	172.85	50.94	201.37	470.22	0.0569
	14	1978	0.00	0.08	15.08	47.54	11.82	54.31	128.84	0.0156
	15	1977	0.00	0.10	17.15	43.50	14.04	59.87	134.66	0.0163
	16	1976	0.00	0.10	23.13	65.17	25.23	91.47	205.09	0.0248
	17	1975	0.00	0.03	12.99	42.53	15.49	60.34	131.38	0.0159
	18	1974	0.00	0.06	14.56	46.51	29.63	89.88	180.63	0.0219
	19	1973	0.00	0.03	13.81	41.47	12.91	52.09	120.32	0.0146
	20	1972	0.00	0.06	8.44	30.88	15.99	52.29	107.67	0.0130
	21	1971	0.00	0.01	11.08	25.25	13.88	44.85	95.07	0.0115
	22	1970	0.00	0.05	12.40	34.80	18.17	57.94	123.37	0.0149
	23	1969	0.00	0.05	9.07	29.24	28.15	81.77	148.28	0.0180
	24	1968	0.00	0.01	6.94	27.86	17.28	57.16	109.26	0.0132
	25	1967	0.00	0.00	3.82	10.47	10.85	24.48	49.62	0.0060
	26	1966	0.00	0.03	3.59	9.25	1.73	7.41	22.01	0.0027
	27	1965	0.00	0.05	1.00	1.17	0.97	4.29	7.49	0.0009
	28	1964	0.00	0.00	0.74	5.34	2.30	8.01	16.39	0.0020
	29	1963	0.00	0.00	0.57	7.87	7.28	19.47	35.19	0.0043
è	Unknown		0.00	0.30	0.52	0.15	19.52	28.68	49.16	0.0060
1	Ages Combi	ned	0.00	2.49	582.18	2,438.83	1,554.78	3.680.54	8,258.82	1.0000

Table 16.--Estimated population numbers (millions of fish) of yellowfin sole by age group and subarea, 1992eastern Bering Sea bottom trawl survey.

Figure 19.--Distribution of yellowfin sole aged samples from the 1992 eastern Bering Sea bottom trawl survey by length for males (A) and females (B) with symbols showing non-linear von-Bertalanffy estimates. Males and females compared (C).

Table 17.	von-Bertalanffy	' growth par	ameter est	imates for	yellowfin	sole by sex	, based on	otolith
	age reading and	l length data	a from the	1992 east	ern Bering	Sea bottom	trawl surv	/ey.

	Number of age	Age range	Length range	8 	Param	eters_
Sex	readings	(years)	(cm)	L_{inf}	K	t。
Male	248	4-29	11-40	34.3	0.17	1.16
Female	358	3-27	12-41	39.4	0.13	0.69

Figure 20.--Population number estimates by age for yellowfin sole, 1992 eastern Bering Sea bottom trawl survey.

Figure 21.--Distribution and relative abundance in kg/ha of rock sole, 1992 eastern Bering Sea bottom trawl survey.

Subarea	Mean CPUE (kg/ha)ª	Estimated biomass (t)ª	Proportion of estimated biomass	Estimated population numbers®	Proportion of estimated population	<u>Mean</u> Weight (kg)	<u>Size</u> Length (cm)
1	87.01	677,582	0.458	4,465,538,111	0.493	0.152	21.7
2 ^b	62.80	130,242	0.088	935,278,438	0.103	0.139	20.7
3	31.17	322,043	0.217	2,207,995,498	0.244	0.146	22.5
4 ^b	28.38	292,332	0.197	1,313,729,581	0.145	0.223	24.6
5	1.47	5,707	0.004	14,756,593	0.002	0.387	29.4
6	5.59	52,869	0.036	120,561,584	0.013	0.439	31.8
All subareas combined	5 1°33.79	1,480,775	1.000	9,057,859,806	1.000	0.163	22.4
95% Confide interva	nce 1	<u>+</u> 211,750		<u>+</u> 1,450,716,534	9		

Table 18.--Abundance estimates and mean size of rock sole by subarea, 1992 eastern Bering Sea bottom trawl survey.

^aVariances of abundance estimates are given in Appendix D. ^bSubareas 2 and 4 were not completely surveyed in 1992. See text for details. ^cDifferences in sums of estimates and totals are due to rounding

Figure 22.--Estimated relative size distribution (sexes combined) of rock sole in terms of population numbers, and percent for subareas 1-6, 1992 eastern Bering Sea bottom trawl survey.

				DEPTH	AND SUBAREA				
		-	100-200	m	50-1	100 m		<50 m	
AGE	YEAR CLASS	6	5	4	3	2	1	ALL SUBAREAS COMBINED	PROPORTION
2	1990	 0 00	0 00	0.00	0.45	2.31	4.96	7.71	0.0009
2	1990	0.00	0.00	7.95	7.61	74.43	137.34	227.36	0.0251
3	1088	0.01	0.01	62.96	86.28	121.29	344.12	614.92	0.0679
4	1900	··· 5 14	0.69	339.03	659.20	292.73	1,461.13	2,757.94	0.3045
ິ ເ	1986	10 02	2.51	244.78	637.29	163.44	1,078.42	2,136.47	0.2359
7	1900	9.22	1 40	123.53	229.42	65.14	382.33	811.04	0.0895
, 0	1984	17 40	2.97	165.54	278.09	80.31	442.70	987.01	0.1090
0	1083	13 76	1.71	99.05	118.03	42.19	196.82	471.56	0.0521
10	1982	15 47	1.26	63.69	54.97	22.34	122.44	280.17	0.0309
11	1981	15.52	1.28	69.52	55.29	24.58	112.39	278.57	0.0308
12	1980	10.67	0.90	46.57	29.49	16.45	68.79	172.87	0.0191
13	1979	8.25	0.74	35.67	23.22	11.05	42.42	121.35	0.0134
10	1978	5.20	0.51	25.43	15.46	8.87	29.71	85.18	0.0094
15	1970	3.00	0.27	12.12	6.47	3.98	16.54	42.39	0.0047
16	1976	1.60	0.10	7.19	3.67	1.81	8.88	23.26	0.0026
10	1975	1.00	0.06	3.85	1.58	1.42	3.69	11.59	0.0013
10	1973	0.90	0.11	3.44	0.53	1.07	4.22	10.28	0.0011
22	1970	0.60	0.00	0.95	0.53	0.37	2.54	4.98	0.0006
Age Unknown	15/0	2.52	0.25	2.45	0.41	1.51	6.09	13.24	0.0015
All Ages Cor	mbined	120.56	14.76	1,313.73	2,208.00	935.28	4,465.54	9,057.86	1.0000

Table 19.--Estimated population numbers (millions of fish) of rock sole by age group and subarea, 1992 eastern Bering Sea bottom trawl survey.

Figure 23.--Distribution of rock sole aged samples from the 1992
eastern Bering Sea bottom trawl survey by length for
males (A) and females (B) with symbols showing non linear von-Bertalanffy estimates. Males and females
compared (C).

Sex	Number	Age	Length	Parameters			
	readings	(years)	(cm)	L_{inf}	K	t,	
Male	216	2-17	10-37	37.9	0.18	1.35	
Female	306	3-22	10-44	46.7	0.14	1.33	

Table 20.--von-Bertalanffy growth parameter estimates for rock sole by sex, based on otolith age reading and length data from the 1992 eastern Bering Sea bottom trawl survey.

Figure 24.--Population number estimates by age for rock sole, 1992 eastern Bering Sea bottom trawl survey.

Figure 25.--Distribution and relative abundance in kg/ha of <u>Hippoglossoides</u> spp., 1992 eastern Bering Sea bottom trawl survey.

	Mean	Estimated	Proportion	Estimated	Proportion	Mean Size	
Subarea	CPUE (kg/ha)ª	biomass (t)ª	of estimated biomass	l population numbers®	of estimated population	Weight (kg)	Length (cm)
1	2.68	20,879	0.032	45,872,766	0.017	0.455	35.5
2 ^b	0.01	32	0.000	61,277	0.000	0.522	33.0
3	24.61	254,246	0.391	830,436,089	0.304	0.306	30.8
4 ^b	5.03	51,752	0.080	167,031,472	0.061	0.310	29.4
5	35.21	136,596	0.210	724,713,302	0.265	0.188	26.3
6	19.67	186,038	0.286	962,395,825	0.352	0.193	24 7
All subareas combined 95%	° 14.82	649,543	1.000	2,730,510,732	1.000	0.238	27.5
Confiden interval	ce	<u>+</u> 132,378		<u>+</u> 541,586,992			

Table 21.--Abundance estimates and mean size of Hippoglossoides spp. by subarea, 1992 eastern Bering Sea bottom trawl survey.

^aVariances of abundance estimates are given in Appendix D. ^bSubareas 2 and 4 were not completely surveyed in 1992. See text for details. ^cDifferences in sums of estimates and totals are due to rounding

٦.

Figure 26.--Estimated relative size distribution (sexes combined) of <u>Hippoglossoides</u> spp. in terms of population numbers, and percent for subareas 1-6, 1992 eastern Bering Sea bottom trawl survey.

				DEP	TH AND SUE	BAREA				
		100-200 m		50-100 m		<50 m				
	AGE	YEAR CLASS	6	5	4	3	2	1	ALL SUBAREAS COMBINED	PROPORTION
	2	1990	63.68	13.14	3.33	3.08	0.00	0.03	83.26	0.0305
	3	1989	195.53	65.29	11.16	13.76	0.00	0.25	285.99	0.1047
	4	1988	40.93	35.70	5.03	11.85	0.00	0.02	93.52	0.0343
	5	1987	151.95	137.36	20.54	102.42	0.00	1.23	413.50	0.1514
	6	1986	93.71	96.24	20.00	87.00	0.00	1.84	298.78	0.1094
	7	1985	117.27	123.77	22.81	128.48	0.01	4.13	396.46	0.1452
	8	1984	47.71	60.48	10.57	71.04	0.01	3.04	192.84	0.0706
	9	1983	63.30	68.47	17.70	99.65	0.01	6.82	255.96	0.0937
	10	1982	50.00	50.85	12.90	89.97	0.02	3.80	207.54	0.0760
	11	1981	32.55	22.80	9.48	55.79	0.00	5.95	126.57	0.0464
	12	1980	44.08	25.75	15.47	73.00	0.00	9.66	167.96	0.0615
	13	1979	32.04	17.35	9.35	54.91	0.01	5.38	119.04	0.0436
	14	1978	11.17	2.57	3.81	15.56	0.00	1.56	34.68	0.0127
	15	1977	2.96	1.83	1.21	4.51	0.00	0.87	11.39	0.0042
	16	1976	3.44	0.37	1.19	5.72	0.00	0.56	11.28	0.0041
	17	1975	4.98	1.66	1.21	8.53	0.00	0.65	17.03	0.0062
	18	1974	1.55	0.00	0.31	1.89	0.00	0.05	3.79	0.0014
	21	1971	0.56	0.07	0.15	0.70	0.00	0.03	1.51	0.0006
\ge	Unknown		5.00	1.03	0.84	2.58	0.00	0.00	9.46	0.0035
11	Ages Comb	- ined	962.40	724.71	167.06	830.44	0.06	45.87	2,730.54	1.0000

Table 22.--Estimated population numbers (millions of fish) of <u>Hippoglossoides</u> spp. by age group and subarea, 1992 eastern Bering Sea bottom trawl survey.

Figure 27.--Distribution of flathead sole aged samples from the 1992 eastern Bering Sea bottom trawl survey by length for males (A) and females (B) with symbols showing non-linear von-Bertalanffy estimates. Males and females compared (C).

	Number of age	Age range	Length range	Parameters			
Sex	readings	(years)	(cm)	L_{inf}	K	t。	
Male	191	2-17	11-41	42.9	0.14	-0.24	
Female	228	2-21	10-52	62.9	0.08	-0.64	

Table 23.--von-Bertalanffy growth parameter estimates for flathead sole by sex, based on otolith age reading and length data from the 1992 eastern Bering Sea bottom trawl survey.

Figure 28.--Population number estimates by age for <u>Hippoglossoides</u> spp., 1992 eastern Bering Sea bottom trawl survey.

Figure 29.--Distribution and relative abundance in kg/ha of Alaska plaice, 1992 eastern Bering Sea bottom trawl survey.
Subarea	Mean CPUE (kg/ha)ª	Estimated biomass (t)ª	Proportion of estimated biomass	Estimated population numbers ^a	Proportion of estimated population	<u>Mean</u> Weight (kg)	<u>Size</u> Length (cm)
1	9.71	75,645	0.155	148,501,734	0.217	0.509	32.7
_ 2 [⊳]	13.67	28,358	0.058	70,294,572	0.103	0.403	30.0
3	11.35	117,243	0.240	156,907,820	0.229	0.747	38.1
4 ^b	21.57	222,134	0.454	284,959,909	0.416	0.780	38.1
5	0.01	26	0.000	57,704	0.000	0.451	32.0
6	4.86	45,920	0.094	24,442,465	0.036	1.879	48.6
All subarea combine	s d° 11.16	489,327	1.000	685,164,204	1.000	0.714	36.5
95% Confide interva	nce 1	<u>+</u> 103,687		<u>+</u> 149,545,188			

Table 24.--Abundance estimates and mean size of Alaska plaice by subarea, 1992 eastern Bering Sea bottom trawl survey.

Figure 30.--Estimated relative size distribution (sexes combined) of Alaska plaice in terms of population numbers, and percent for subareas 1-6, 1992 eastern Bering Sea bottom trawl survey.

			DEPT	'H AND SUBA	REA				
		100	-200 m	50-	100 m	<	50 m		
ACE	YEAR	6	5	4	3	2	1	ALL SUBAREAS COMBINED	PROPORTION
·				0 27	0.07	1.55	1.87	3.77	0.0055
4	1988	0.00	0.00	3 44	1.88	4.57	6.42	16.32	0.0238
5	1987	0.00	0.00	1 51	1.11	0.87	1.74	5.23	0.0076
6	1986	0.00	0.00	5 17	3.98	6.13	8.91	24.20	0.0353
7	1985	0.00	0.00	14 18	8.88	10.19	18.00	51.24	0.0748
8	1984	0.00	0.00	15 58	8.92	5.78	10.77	41.23	0.0602
9	1983	0.14	0.03	15.80	7.51	4.16	10.35	37.82	0.0552
10	1982	0.00	0.00	33.43	16.73	5.60	17.98	73.81	0.1077
11	1981	0.07	0.00	22.24	10.73	2.90	9.61	45.73	0.0667
12	1980	0.24	0.00	18.20	9.27	1.47	5.62	34.85	0.0509
13	1979	1 25	0.00	23.62	11.25	1.54	5.17	42.84	0.0625
14	1978	1 29	0.01	16.95	8.06	0.98	3.94	31.31	0.0457
15	1977	2.35	0.00	15.37	7.90	0.98	3.36	29.61	0.0432
16	1976	2.01	0.00	16.12	9.07	1.58	5.29	34.78	0.0508
17	1975	2.73	0.00	21.46	13.51	1.47	5.40	45.12	0.0659
18	1974	3.20	0 01	14.84	7.99	0.78	2.93	29.42	0.0429
19	1973	2.0/	0.01	10.50	6.07	0.77	2.57	21.08	0.0308
20	1972	1 54	0.00	5.75	3.31	0.34	1.78	12.72	0.0186
21	1971	1.54	0.00	3.18	2.28	0.36	1.33	7.35	0.0107
22	1970	1 54	0.00	6.25	4.15	0.25	1.15	13.35	0.0195
23	1969	1.34 0.13	0.00	10.92	7.58	0.61	2.45	23.69	0.0346
24	1968	2.13	0.01	1.77	1.87	0.12	0.45	4.21	0.0061
25	1967	0.00	0.00	1.77	1.06	0.07	0.37	3.73	0.0054
26	1966	0.46	0.00	1.27	0.94	0.05	0.30	3.21	0.0047
27	1965	0.05	0.00	0.48	1.03	0.02	0.33	2.56	0.0037
28	1964	1 20	0.00	4.88	1.76	17.15	20.40	46.00	0.0671
Age Unknown	1			204 96	156.91	70.29	148.50	685.16	1.0000
All Ages Co	ombined	24.44	0.06	204.70	150.51				

Table 25.--Estimated population numbers (millions of fish) of Alaska plaice by age group and subarea, 1992 eastern Bering Sea bottom trawl survey.

Figure 31.--Distribution of Alaska plaice aged samples from the 1992 eastern Bering Sea bottom trawl survey by length for males (A) and females (B) with symbols showing non-linear von-Bertalanffy estimates. Males and females compared (C).

	Number	Age range	Length range		Param	<u>eters</u>
Sex	readings	(years)	(cm)	L_{inf}	K	t_,
Male	127	4-28	19-42	38.9	0.16	-1.62
Female	184	5-28	23-54	52.6	0.10	-1.74

Table 26.--von-Bertalanffy growth parameter estimates for Alaska plaice by sex, based on otolith age reading and length data from the 1992 eastern Bering Sea bottom trawl survey.

Figure 32.--Population number estimates by age for Alaska plaice, 1992 eastern Bering Sea bottom trawl survey.

Figure 33.--Distribution and relative abundance in kg/ha of Greenland turbot, 1992 eastern Bering Sea bottom trawl survey.

Subarea	Mean CPUE (kg/ha)ª	Estimated biomass (t)ª	Proportion of estimated biomass	Estimated population numbersª	Proportion of estimated population	<u>Mean</u> Weight (kg)	<u>Size</u> Length (cm)
1	0.00	0	0.000	0	0.000	0.000	0.0
2 ^b	0.00	0	0.000	0	0.000	0.000	0.0
3	0.06	617	0.026	112,251	0.005	5.497	80.8
4 ^b	0.10	1,041	0.043	1,322,196	0.061	0.787	34.8
5	0.05	214	0.009	27,706	0.001	7.724	87.0
6	2.34	22,125	0.922	20,106,857	0.932	1.100	40.3
All subareas combined ^c	0.55	23,997	1.000	21,569,010	1.000	1.113	40.2
95% Confidence interval	9	<u>+</u> 11,473		<u>+</u> 8,734,840			

Table 27Abundance estimates and mean size of Greenland turbot by subarea,	1992 eastern Bering
Sea bottom trawl survey.	

Figure 34.--Estimated relative size distribution (sexes combined) of Greenland turbot in terms of population numbers, and percent for subareas 1-6, 1992 eastern Bering Sea bottom trawl survey.

Figure 35.--Distribution and relative abundance in kg/ha of <u>Atheresthes</u> spp., 1992 eastern Bering Sea bottom trawl survey.

Subarea	Mean CPUE (kg/ha)ª	Estimated biomass (t)ª	Proportion of estimated biomass	Estimated population numbersª	Proportion of estimated population	<u>Mean</u> Weight (kg)	<u>Size</u> Length (cm)
1	0.08	582	0.001	1,888,699	0.003	0.308	33.1
2 ^b	0.00	0	0.000	0	0.000	0.000	0.0
3	8.10	83,716	0.199	203,027,314	0.279	0.412	34.5
4 ^b	0.66	6,836	0.016	25,297,531	0.035	0.270	28.3
5	41.94	162,701	0.387	286,056,610	0.392	0.569	37.5
6	17.59	166,342	0.396	212,625,355	0.292	0.782	39.7
All subareas combined	² 9.59	420,176	1.000	728,895,509	1.000	0.576	37.0
95% Confiden interval	ce	<u>+</u> 98,250	r.	<u>+</u> 195.544,215			

Table 28.--Abundance estimates and mean size of <u>Atheresthes</u> spp. by subarea, 1992 eastern Bering Sea bottom trawl survey.

Figure 36.--Estimated relative size distribution (sexes combined) of <u>Atheresthes</u> spp. in terms of population numbers, and percent for subareas 1-6, 1992 eastern Bering Sea bottom trawl survey.

Figure 37.--Distribution and relative abundance in kg/ha of Pacific halibut, 1992 eastern Bering Sea bottom trawl survey.

	Mean	Estimated	Proportion	Estimated	Proportion	Mean	Size
Subarea	CPUE (kg/ha)ª	biomass (t)ª	of estimated biomass	population numbersª	of estimated population	Weight (kg)	Length (cm)
1	3.01	23,406	0.238	16,414,592	0.360	1.426	48.3
2⁵	3.18	6,594	0.067	4,927,824	0.108	1.338	44.9
3	2.36	24,372	0.248	10,214,930	0.224	2.386	54.0
4 ^b	0.95	9,822	0.100	6,715,255	0.147	1.463	46.1
5	4.24	16,435	0.167	2,945,414	0.065	5.580	71.4
6	1.87	17,673	0.180	4,354,245	0.096	4.059	63.6
All subareas combined	2.24	98,302	1.000	45,572,261	1.000	2.157	51.8
95% Confiden interval	ce	<u>+</u> 17,001		<u>+</u> 8,224,033			

Table 29Abundance estimates and mean	size of Pacific halibut by subarea, 1992 eastern
Bering Sea bottom trawl survey	·.

Figure 38.--Estimated relative size distribution (sexes combined) of Pacific halibut in terms of population numbers, and percent for subareas 1-6, 1992 eastern Bering Sea bottom trawl survey.

Figure 39.--Distribution and relative abundance in kg/ha of total skates, 1992 eastern Bering Sea bottom trawl survey.

Subarea	Mean CPUE (kg/ha)ª	Estimated biomass (t)ª	Proportion of estimated biomass	Estimated population numbers ^a	Proportion of estimated population	Mean Weight (kg)
1	1.20	9,362	0.025	1,512,499	0.018	6.190
2 ^b	4.76	9,861	0.026	1,417,578	0.017	6.956
3	6.67	68,891	0.182	18,007,863	0.214	3.826
4 ^b	5.46	56,210	0.149	11,939,283	0.142	4.708
5	15.39	59,711	0.158	13,818,078	0.165	4.321
6	18.35	173,499	0.460	37,269,098	0.444	4.655
All subareas combined	[:] 8.61	377,535	1.000	83,964,399	1.000	4.496
95% Confiden interval	ce	<u>+</u> 66,240		<u>+</u> 15,868,638		

Table 30.--Abundance estimates and mean size of skates by subarea, 1992 eastern Bering Sea bottom trawl survey.

Figure 40.--Distribution and relative abundance in kg/ha of great sculpin, 1992 eastern Bering Sea bottom trawl survey.

Subarea	Mean CPUE (kg/ha)ª	Estimated biomass (t)ª	Proportion of estimated biomass	Estimated population numbers ^a	Proportion of estimated population	Mean Weight (kg)
1	0.35	2,707	0.030	1,440,132	0.021	1.880
2⁵	0.00	0	0.000	0	0.000	0.000
3	1.51	15,598	0.173	10,848,285	0.159	1.438
4 ^b	5.13	52,810	0.584	49,329,629	0.723	1.071
5	0.22	844	0.009	375,380	0.006	2.248
6	1.95	18.440	0.204	6,210,242	0.091	2.969
All subareas combined	° 2.06	90,399	1.000	68,203,669	1.000	1.325
95% Confiden interval	ce	<u>+</u> 26,358		<u>+</u> 23,179,649		-

Table 31.--Abundance estimates and mean size of great sculpin by subarea, 1992 eastern Bering Sea bottom trawl survey.

Figure 41.--Distribution and relative abundance in kg/ha of plain sculpin, 1992 eastern Bering Sea bottom trawl survey.

Subarea	Mean CPUE (kg/ha)ª	Estimated biomass (t)ª	Proportion of estimated biomass	Estimated population numbers ^a	Proportion of estimated population	Mean Weight (kg)
1	4.41	34,349	0.579	59,573,712	0.646	0.577
_ 2 [⊳]	7.39	15,334	0.258	22,085,210	0.239	0.694
3	0.42	4,353	0.073	4,915,296	0.053	0.886
4 ^b	0.51	5,308	0.089	5,674,030	0.062	0.935
5	0.00	0	0.000	0	0.000	0.000
6	0.00	0	0.000	0	0.000	0.000
All subareas combined	° 1.35	59,343	1.000	92,248,248	1.000	0.643
95% Confider interval	ice	<u>+</u> 13,372		<u>+</u> 20,351,186		

Table 32.--Abundance estimates and mean size of plain sculpin by subarea, 1992 eastern Bering Sea bottom trawl survey.

Figure 42.--Distribution and relative abundance in kg/ha of bigmouth sculpin, 1992 eastern Bering Sea bottom trawl survey.

Subarea	Mean CPUE (kg/ha)ª	Estimated biomass (t)ª	Proportion of estimated biomass	Estimated population numbers ^a	Proportion of estimated population	Mean Weight (kg)
1	0.00	0	0.000	0	0.000	0.000
- 2 ^b	0.00	0	0.000	0	0.000	0.000
3	0.42	4,324	0.236	1,045,172	0.175	4.137
4 ^b	0.07	706	0.039	191,155	0.032	3.693
5	1.31	5,087	0.278	1,317,371	0.220	3.861
6	0.87	8,184	0.447	3,429,178	0.573	2.387
All subareas combined	i 1° 0.42	18,300	1.000	5,982,876	1.000	3.059
95% Confider interva	nce	<u>+</u> 7.826		<u>+</u> 2,149,877		

Table 33.--Abundance estimates and mean size of bigmouth sculpin by subarea, 1992 eastern Bering Sea bottom trawl survey.

Figure 43.--Distribution and relative abundance in kg/ha of wattled eelpout, 1992 eastern Bering Sea bottom trawl survey.

Subarea	Mean CPUE (kg/ha)ª	Estimated biomass (t)ª	Proportion of estimated biomass	Estimated population numbers ^a	Proportion of estimated population	Mean Weight (kg)
1	0.00	0	0.000	0	0.000	0.000
2 ^b	0.00	0	0.000	0	0.000	0.000
3	0.29	2,988	0.238	15,002.057	0.163	0.199
4 ^b	0.19	1,938	0.154	13,088,255	0.143	0.148
5	0.21	806	0.064	3,146,914	0.034	0.256
6	0.72	6,824	0.544	60,541,418	0.660	0.113
All subareas combined	° 0.29	12,555	1.000	91,778,644	1.000	0.137
95% Confiden interval	се	<u>+</u> 3,525		<u>+</u> 34,472,050		

Table 34.--Abundance estimates and mean size of wattled eelpout by subarea, 1992 eastern Bering Sea bottom trawl survey.

Figure 44.--Distribution and relative abundance in kg/ha of shortfin eelpout, 1992 eastern Bering Sea bottom trawl survey.

Subarea	Mean CPUE (kg/ha)ª	Estimated biomass (t)ª	Proportion of estimated biomass	Estimated population numbersª	Proportion of estimated population	Mean Weight (kg)
1	0.00	0	0.000	0	0.000	0.000
2 ^b	0.00	0	0.000	0	0.000	0.000
3	0.01	134	0.009	1,060,971	0.004	0.126
4 ^b	0.08	835	0.056	15,133,410	0.059	0.055
5	0.28	1,096	0.073	18,205,217	0.071	0.060
6	1.37	12,906	0.862	220,730,011	0.865	0.058
All subareas combined	° 0.34	14,970	1.000	255,129,608	1.000	0.059
95% Confiden interval	ce	<u>+</u> 5,391		<u>+</u> 78,230,654		

Table 35.--Abundance estimates and mean size of shortfin eelpout by subarea, 1992 eastern Bering Sea bottom trawl survey.

Figure 45.--Distribution and relative abundance in kg/ha of marbled eelpout, 1992 eastern Bering Sea bottom trawl survey.

Subarea	Mean CPUE (kg/ha)ª	Estimated biomass (t)ª	Proportion of estimated biomass	Estimated population numbers ^a	Proportion of estimated population	Mean Weight (kg)
1	0.00	0	0.000	0	0:000	0.000
- 2 ^b	0.00	0	0.000	0	0.000	0.000
3	0.00	0	0.000	0	0.000	0.000
4 ^b	0.22	2,230	0.895	2,332,712	0.954	0.956
5	0.00	0	0.000	0	0.000	0.000
6	0.03	264	0.106	112,980	0.046	2.337
All subareas combined	° 0.06	2.493	1.000	2,445,692	1.000	1.019
95% Confider interval	ice	<u>+</u> 1,468		<u>+</u> 1,400,573		

Table 36.--Abundance estimates and mean size of marbled eelpout by subarea, 1992 eastern Bering Sea bottom trawl survey.

Figure 46.--Distribution and relative abundance in kg/ha of sturgeon poacher, 1992 eastern Bering Sea bottom trawl survey.

Subarea	Mean CPUE (kg/ha)ª	Estimated biomass (t) ^a	Proportion of estimated biomass	Estimated population numbers®	Proportion of estimated population	Mean Weight (kg)
1	0.84	6,519	0.306	74,991,494	0.259	0.087
2 ^b	1.35	2,805	0.132	44,514,041	0.154	0.063
3	0.51	5,289	0.248	75,070,356	0.260	0.070
4 ^b	0.62	6,383	0.300	89,800,103	0.311	0.071
5	0.07	276	0.013	3,949,995	0.014	0.070
6	0.00	34	0.002	836,251	0.003	0.041
All subareas combined	^c 0.49	21,306	1.000	289,162,239	1.000	0.074
95% Confider interval	ice	<u>+</u> 4,256		<u>+</u> 64,448,664		

Table 37.--Abundance estimates and mean size of sturgeon poacher by subarea, 1992 eastern Bering Sea bottom trawl survey.

Figure 47.--Distribution and relative abundance in kg/ha of Bering poacher, 1992 eastern Bering Sea bottom trawl survey.

Subarea	Mean CPUE (kg/ha)ª	Estimated biomass (t)ª	Proportion of estimated biomass	Estimated population numbers ^a	Proportion of estimated population	Mean Weight (kg)
1	0.01	93	0.633	1,835,925	0.525	0.051
2 ^b	0.01	27	0.184	930,621	0.266	0.029
3	0.00	14	0.095	192,345	0.055	0.073
4 ^b	0.00	11	0.075	497,288	0.142	0.022
5	0.00	0	0.000	0	0.000	0.000
6	0.00	2	0.014	40,267	0.012	0.050
All subareas combined	^c 0.00	147	1.000	3,496,447	1.000	0.042
95% Confider interval	nce	<u>+</u> 85		<u>+</u> 1,987,071		

Table 38.--Abundance estimates and mean size of Bering poacher by subarea, 1992 eastern Bering Sea bottom trawl survey.

Figure 48.--Distribution and relative abundance in kg/ha of eulachon, 1992 eastern Bering Sea bottom trawl survey.

.

Figure 49.--Distribution and relative abundance in kg/ha of capelin, 1992 eastern Bering Sea bottom trawl survey.

Figure 50.--Distribution and relative abundance in kg/ha of Pacific herring, 1992 eastern Bering Sea bottom trawl survey.
CITATIONS

- Alverson, D. L., and W. T. Pereyra. 1969. Demersal fish explorations in the northeast Pacific Ocean--An evaluation of exploratory fishing methods and analytical approaches to stock size and yield forecasts. J. Fish. Res. Board Can. 26:1985-2001.
- Bakkala, R. G., and K. Wakabayashi (editors). 1985. Results of cooperative U.S.-Japan groundfish investigations in the Bering Sea during May-August 1979. Int. North Pac. Fish. Comm., Bull. 44, 252 p.
- Bakkala, R. G. 1988. Structure and historical changes in the groundfish complex of the eastern Bering Sea. Ph.D. Diss., Hokkaido Univ., Hakodate, Japan, 187 p.
- Kappenman, R. F. 1992. Robust estimation of the ratio of scale parameters for positive random variables. AFSC Processed Rep. 92-01, 10 p. Alaska Fish. Sci. Cent., Natl. Mar. Fish. Serv., 7600 Sand Point Way NE, BIN C15700, Seattle, WA 98115.
- North Pacific Fishery Management Council. 1990. Stock assessment and fishery evaluation document for groundfish resources in the Bering Sea/Aleutian Islands region as projected for 1991, 281 p. Available from North Pacific Fishery Management Council, P.O. Box 103136, Anchorage, AK 99510.
- Pereyra, W. T., J. E. Reeves, and R. G. Bakkala. 1976. Demersal fish and shellfish resources of the eastern Bering Sea in the baseline year 1975. Processed Rep., 619 p. Northwest and Alaska Fish. Cent., Natl. Mar. Fish. Serv., NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112.
- Rose, C. S., and G. E. Walters. 1990. Trawl width variation during bottom trawl surveys: causes and consequences. <u>In</u> L. Low (editor), Proceedings of the symposium on application of stock assessment techniques to gadids, p. 57-67. Int. North Pac. Fish. Comm., Bull. 50.

- Smith, G. B., and R. G. Bakkala. 1982. Demersal fish resources of the eastern Bering Sea: Spring 1976. U.S. Dep. Commer., NOAA Tech. Rep. NMFS SSRF-754, 129 p.
- Stevens, B. G., J. H. Bowerman, R. A. MacIntosh, and J. A. Haaga. 1992. Report to industry on the 1992 eastern Bering Sea crab survey. AFSC Processed Rep. 92-12, 57 p. Kodiak Facility, Alaska Fish. Sci. Cent., Natl. Mar. Fish. Serv., P.O. Box 1638, Kodiak, AK 99615.
- von Bertalanffy, L. 1938. A quantitative theory of organic growth. Hum. Biol. 10:181-213.
- Wakabayashi, K., R. G. Bakkala, and M. S. Alton. 1985. Methods of the U.S.-Japan demersal trawl surveys. <u>In</u> R. G. Bakkala and K. Wakabayashi (editors), Results of cooperative U.S.-Japan groundfish investigations in the Bering Sea during May-August 1979, p. 7-29. Int. North Pac. Fish. Comm., Bull. 44.

APPENDIX A

Station Data, 1992 Eastern Bering Sea Bottom Trawl Survey

Appendix A contains station data by vessel for the 336 successfuly completed standard survey stations. In using the tables, the following should be noted:

- 1. Time represents the nearest hour at the start of the tow.
- 2. Haul numbers are not always sequential because special study and unsatisfactory hauls were omitted.
- 3. Negative longitude indicates western hemisphere.
- 4. Width codes are as follows:

M = Net width was measured by mensuration gear.

F = Net width was estimated from a function of wire out or wire out and net height.

 Hauls marked with an "*" were used for the FPC analysis. Ten additional special study hauls not listed here were also used for that analysis. For reference purposes, these hauls were: <u>Alaska</u>- 153,165,166,167,187- <u>Tracy Anne</u>-15,151,152,153,174.

List of Tables

<u>Table</u>		<u>age</u>
A-1.	<u>Alaska</u>	103
A-2.	Tracy Anne	109

ŀ	lau 1	MM/DD/YY	Latitude	Longitude	Depth	Time D	uration	Distance	Strata	Surf.	Gear.	Net Width	Width
					(m)	(hr.)	(hr.)	(km)		Temp.	Temp.	(m)	Code
*	1	06/06/92	58.019	-158.969	42	07	0.50	2.83	10	4.5		15.7	F
*	2	06/06/92	57.683	-159.023	46	10	0.50	3.11	10	3.1		16.6	F
*	3	06/06/92	57.348	-159.068	46	12	0.50	2.93	10	3.1		16.0	F
*	4	06/06/92	57.017	-159.113	31	15	0.50	2.82	10	5.5		14.7	F
*	5	06/07/92	56.659	-160.368	60	06	0.50	2.67	31	5.8		16.9	F
*	6	06/07/92	56.988	-160.334	62	09	0.50	2.80	31	5.9		16.9	F
*	7	06/07/92	57.323	-160.300	59	12	0.50	2.80	31	5.1		16.9	F
*	8	06/07/92	57.657	-160.267	53	15	0.50	2.85	31	5.8		15.2	F
*	9	06/07/92	57.992	-160.218	49	17	0.50	2.98	10	3.9		15.7	F
*	10	06/08/92	58.327	-160.177	16	07	0.50	2.87	10	5.5		13.5	F
*	11	06/08/92	58.349	-161.404	29	13	0.50	2.74	10	5.5		15.4	F
*	12	06/08/92	58.008	-161.484	53	16	0.50	2.80	10	3.2		15.8	F
* .	13	06/08/92	57.676	-161.506	51	19	0.50	2.87	10	5.2		16.1	F
*	14	06/09/92	57.338	-161.535	55	06	0.50	3.04	31	6.0		15.4	F
*	15	06/09/92	57.011	-161.570	66	09	0.50	2.83	31	6.5		16.9	F
*	16	06/09/92	56.677	-161.585	88	12	0.40	2.50	31	6.5		17.2	F
*	17	06/09/92	56.345	-161.617	64	15	0.30	1.57	10	6.2		16.2	F
	18	06/09/92	56.344	-162.199	77	17	0.33	1.91	31	6.3		17.2	F
	19	06/11/92	56.015	-162.232	68	06	0.50	2.72	31	6.3	2.5	16.9	F
*	20	06/11/92	55.658	-162.834	48	10	0.50	2.89	10	6.3		16.3	F
*	21	06/11/92	55. 991	-162.817	77	12	0.50	2.76	31	7.7	2.1	17.2	F
*	22	06/11/92	56.323	-162.801 .	77	15	0.50	2.91	31	7.5	1.1	17.2	F
*	23	06/11/92	56.662	-162.785	71	18	0.50	2.89	31	6.9		17.2	F
*	24	06/12/92	56.993	-162.789	60	06	0.50	2.82	31	6.8		16.9	F
*	25	06/12/92	57.327	-162.762	48	09	0.50	2.57	10	5.2		16.9	F
*	27	06/14/92	58.683	-162.707	18	15	0.50	2.89	10	5.1	4.7	13.5	F
*	28	06/14/92	58.346	-162.720	27	18	0.50	2.69	10	4.5	4.0	15.6	F
*	29	06/14/92	58.018	-162.752	38	20	0.50	2.78	10	4.1	3.4	15.6	F
*	30	06/15/92	57.678	-162.753	42	06	0.50	2.74	10	4.2	4.0	16.3	F
*	31	06/15/92	57.658	-164.002	49	11	0.50	2.76	10	3.7	3.3	16.3	F
*	32	06/15/92	57.987	-164.002	44	14	0.50	2.72	10	3.9	2.8	16.3	F
*	33	06/15/92	58.326	-164.004	38	17	0.50	2.91	10	3.9	3.2	16.0	F

Table A-1.--Haul data for stations sampled by the RV <u>Alaska</u> during the 1992 eastern Bering Sea bottom trawl survey.

Table A-1.--Continued.

-			Latituda	Longitudo	Denth	Time D	uration	Distance	Strata	Surf.	Gear.	Net Width	Width
	Haul	MM/UD/YY	Latitude	Longitude	(m)	(hr.)	(hr.)	(km)		Temp.	Temp.	(m)	Code
				164 005	21	06	0.50	2 91	10	3.9	3.7	15.4	F
*	34	06/16/92	58.659	-164.005	26	00	0.50	2 98	10	4.4	4.2	15.1	F
*	35	06/16/92	58.989	-104.011	20	11	0.50	2.85	10	6.2	5.9	14.7	F
*	36	06/16/92	59.327	-164.002	20	11	0.50	2.83	10	5.2	5.0	15.9	F
	37	06/16/92	59.346	-164.643	20	14	0.50	2.87	10	4.2	4.4	15.5	F
	38	06/16/92	59.011	-164.644	24	1/	0.50	2.07	10	3.8	2.9	15.4	F
	39	06/17/92	58.65/	-164.653	30	11	0.50	2.65	10	3.4	3.2	16.3	F
	40	06/17/92	58.345	-164.630	42	11	0.50	2.03	10	4 0	3.1	16.2	F
	41	06/17/92	58.011	-164.619	42	14	0.50	2.70	10	4.8	19	16.1	F
	42	06/17/92	57.677	-164.619	51	10	0.50	2.00	31	5.8	0.2	16.7	F
	43	06/17/92	57.346	-164.620	64	19	0.50	2.03	31	57	0.8	16.5	F
*	44	06/18/92	57.346	-164.006	60	10	0.50	2.72	31	6.0	-0.4	16.9	F
*	45	06/18/92	57.013	-164.011	58	12	0.50	2.80	31	73	-0.4	17.2	F
*	46	06/18/92	56.678	-164.003	/3	10	0.50	2.00	31	6.9	-0.7	17.2	F
*	47	06/18/92	56.680	-164.601	/3	10	0.50	2.07	31	6.7	017	17.2	F
*	48	06/19/92	56.346	-164.585	90	10	0.50	2.70	31	7 0	1.2	17.2	F
*	49	06/19/92	56.344	-164.005	80	10	0.50	2.70	31	77	1.5	17.5	F
*	50	06/19/92	56.011	-164.004	90	14 10	0,00	1 52	31	78	0.9	17.5	F
*	51	06/19/92	56.014	-164.58/	91	10	0.25	2 50	31	7.6	2 5	17.5	F
*	52	06/20/92	55.682	-164.595	95	10	0.40	2.35	31	7 2	2.5	17.5	F
*	53	06/20/92	55.681	-164.005	93	10	0.50	2.05	21	9.0	4.8	17.2	F
*	54	06/20/92	55.349	-164.007	/5	13	0.50	2.0/	31	5.0	-0.4	17.3	F
*	56	06/27/92	56.991	-165.21/	/1	00	0.50	2.70	21	6.7	0.1	16.6	F
*	57	06/27/92	57.322	-165.235	66	10	0.50	2.70	31	6.8	0.1	16.9	F
*	58	06/27/92	57.652	-165.252	59	13	0.50	2.09	10	6.0	3.3	16.2	F
*	59	06/27/92	57.988	-165.248	48	19	0.50	2.00	10	5 1	34	16 1	F
*	60	06/28/92	58.321	-165.282	44	06	0.50	2.70	10	5.5	21	15.2	F
*	61	06/28/92	58.653	-165.298	38	09	0.50	2.72	10	6 1	55	14.6	F
*	62	06/28/92	58.988	-165.303	26	12	0.50	2.90	10	7 2	5.J 6.7	12.8	F
*	63	06/28/92	59.322	-165.320	16	15	0.50	2.91	20	7.2 5.0	۰./ ۸ ۵	14 5	F
*	64	06/28/92	59.681	-166.635	26	20	0.50	2.83	20	0.0 7 1	4.0	14.5	F
*	65	06/29/92	59.354	-166.601	26	06	0.50	2.82	20	4./	4.4	14.7	F
*	66	06/29/92	59.015	-166.603	31	09	0.50	2.52	20	4.8	4.0	15.4	F
*	67	06/29/92	58.677	-166.565	38	12	0.50	2.78	20	4./	5.4	10.2	,

Table A-1.--Continued.

-	Hau1	MM/DD/YY	Latitude	Longitude	Depth	Time D	uration	Distance	Strata	Surf.	Gear.	Net Width	Width
_					(11)	(00.)	(nr.)		_	remp.	Temp.	(#)	Code
*	68	06/29/92	58.343	-166.557	46	15	0.50	2.65	10	5.4	3.3	16.3	F
*	69	06/29/92	58.015	-166.519	59	18	0.50	2.76	31	5.9	0.8	17.0	F
*	70	06/29/92	57.679	-166.506	66	20	0.50	2.85	31	4.9	0.9	16.9	F
*	71	06/30/92	57.348	-166.493	70	06	0.50	2.89	31	5.1	1.2	16.8	F
*	72	06/30/92	56.994	-166.445	73	10	0.33	1.95	31	6.9		17.2	F
*	73	06/30/92	56.678	-166.442	84	15	0.40	2.19	31	7.6	-0.5	17.2	F
*	74	06/30/92	56.344	-166.425	102	19	0.25	1.24	31	8.0	3.6	17.8	F
*	75	07/02/92	56.009	-166.401	123	08	0.40	2.28	50	7.6	0.0	17.8	F
*	76	07/02/92	55.674	-166.382	126	11	0.50	2.95	50	7.3	3.9	18.4	F
*	77	07/02/92	55.349	-166.355	130	14	0.50	2.80	50	7.3	3.8	18.4	F
*	78	07/02/92	55.018	-166.332	141	16	0.33	1.85	50	7.5	4.0	17.9	F
	79	07/03/92	54.996	-166.919	155	07	0.50	2.83	50	7.3	4.0	18.5	F
	80	07/03/92	55.329	-166.960	139	09	0.50	3.02	50	7.2	3.9	17.5	F
	81	07/04/92	55.329	-167.551	146	09	0.50	2.89	50	7.2	4.0	18.6	F
*	82	07/04/92	55.658	-167.584	135	11	0.50	2.78	50	7.4	3.9	18.1	F
	83	07/04/92	55.650	-168.185	135	14	0.50	2.74	50	7.7	0.0	17.4	F
	84	07/04/92	55.986	-168.218	148	17	0.50	2.89	50	7.1	0.0	18.2	F
*	85	07/04/92	55.984	-167.622	134	20	0.50	2.85	50	7.6	3.8	18.7	F
*	86	07/05/92	56.320	-167.651	128	07	0.50	2.72	50	7.8	3.5	18.2	F
*	87	07/05/92	56.653	-167.671	104	10	0.25	1.50	31	7.6	0.3	18.8	F
*	88	07/05/92	56.988	-167.698	77	12	0.50	2.82	31	6.6	0.9	17.0	F
	89	07/05/92	56.985	-168.329	80	16	0.50	2.72	32	6.3	0.0	17.4	F
	90	07/05/92	57.321	-168.369	73	19	0.50	2.82	32	6.6	1.0	17.6	F
	91	07/06/92	57.654	-168.398	70	07	0.50	2.72	42	6.6	0.7	16.7	F
*	92	07/06/92	57.658	-167.767	68	10	0.50	2.93	31	6.2	0.9	17.0	F
*	93	07/06/92	57.9 87	-167.802	66	13	0.40	2.32	41	4.7	0.8	16.9	F
*	94	07/06/92	58.323	-167.837	59	16	0.33	1.87	41	5.5	2.5	17.1	F
*	95	07/06/92	58.655	-167.867	44	19	0.50	2.76	20	4.9	4.1	16.3	F
	96	07/07/92	59.019	-169.184	51	06	0.33	1.98	41	5.7	3.0	16.4	F
	97	07/07/92	59.003	-169.841	60	09	0.33	1.89	41	6.1	-0.7	17.3	F
*	98	07/07/92	58.680	-169.788	64	12	0.33	1.85	41	6.7	-0.7	16.6	F
*	99	07/07/92	58.346	-169.118	66	16	0.40	2.28	41	7.0	-0.5	17.3	F
*	100	07/07/92	58.011	-169.072	68	19	0.40	2.43	42	7.4	0.0	17.6	F

 ${\bf x} \in$

Table A-1.--Continued.

.

			Latitudo	Longitudo	Depth	Time D	ration	Distance	Strata	Surf.	Gear.	Net Width	Width
	Haul	MM/UU/11	Latitude	Longitude	(m)	(hr.)	(hr.)	(km)		Temp.	Temp.	(m)	Code
	_												
*	101	07/08/92	57.844	-169.379	64	06	0.40	2.32	42	6.4	-0.5	17.5	F
*	101	07/08/92	57.678	-169.037	66	09	0.33	1.85	42	7.1	-0.1	17.3	F
*	102	07/08/92	57.512	-169.367	70	11	0.33	1.89	42	6.8	-0.2	16.2	F
*	103	07/08/92	57.347	-168.988	68	14	0.33	1.78	42	7.4	0.2	16.9	F
*	104	07/08/92	57.182	-169.315	71	16	0.33	1.95	42	6.6	-0.4	17.2	
*	105	07/08/92	57.012	-168.960	79	19	0.33	1.96	32	7.6	0.7	17.2	F
*	107	07/09/92	56.844	-169.300	79	07	0.33	2.00	32	5.7	0.6	17.2	F F
*	108	07/09/92	56.681	-168.904	99	09	0.33	1.93	32	7.9	1.4	17.5	
*	100	07/09/92	56.354	-168.864	124	12	0.33	2.00	50	7.6	3.7	1/./	۲ ۲
*	110	07/09/92	56.329	-170.067	110	18	0.33	2.19	50	7.0	3.0	1/./	F
*	111	07/10/92	56,658	-170.118	97	07	0.33	2.11	42	5.1	2.4	17.5	۲ ۲
*	112	07/10/92	56.816	-170.481	101	09	0.33	1.85	42	6.7	2.7	1/.5	r r
*	113	07/10/92	56.995	-170.164	66	12	0.33	1.87	42	4.9	3.9	16.9	r r
*	114	07/10/92	57.126	-170.471	48	14	0.40	2.11	42	5./	5.0	10.3	r c
*	115	07/11/92	57.324	-170.219	53	07	0.50	2.91	42	7.0	4.3	10.3	r F
*	116	07/11/92	57.490	-170.588	71	10	0.33	1.85	42	6.5	1.7	17.2	Г
*	117	07/11/92	57.657	-170.277	71	14	0.33	1.91	42	6./	0.5	17.2	r c
*	118	07/11/92	57.826	-170.623	75	17	0.25	1.50	42	6./	1.1	17.2	r c
*	119	07/12/92	57.989	-170.338	73	07	0.50	2.67	42	6./	0.1	17.2	r c
*	120	07/12/92	58.321	-170.387	73	10	0.50	2.72	41	6.6	-1.0	17.2	r r
*	121	07/12/92	58.657	-170.438	71	13	0.50	2.85	41	6.6	-1.2	1/.2	r c
*	122	07/12/92	58.989	-170.485	70	16	0.50	2.93	41	6.6	-1.2	16.9	r C
*	123	07/12/92	59.322	-170.535	66	19	0.50	2.87	41	6.2	-1.1	16.9	r c
*	124	07/13/92	59.654	-170.586	66	07	0.50	2.78	41	5.9	-1.2	10.9	r F
*	125	07/13/92	59.988	-170.637	64	10	0.50	2.80	41	5.9	-0.9	10.9	L L
*	126	07/13/92	60.322	-170.666	60	13	0.50	2.83	41	6.8	-1.4	16.9	г с
*	127	07/13/92	60.013	-171.966	64	18	0.50	2.83	43	0.5	-1.4	10.9	Ē
*	128	07/13/92	59.848	-172.249	73	20	0.50	2.74	43	0.5	-1.5	17.2	, C
*	129	07/14/92	59.683	-171.905	77	07	0.50	2.72	43	6.2	-1.5	17.2	I F
*	130	07/14/92	59.343	-171.833	79	09	0.50	2.89	43	6.2	-1.5	1/.2	г С
*	131	07/14/92	59.011	-171.787	86	12	0.50	2.87	41	6./	-1.3	1/.Z	r F
*	132	07/14/92	58.676	-171.720	91	15	0.50	2.80	41	7.3	-0.2	1/.5 17 E	r c
	133	07/14/92	58.681	-172.369	101	18	0.50	2.6/	61	1.4	0.9	C. /1	Г

Table A-1.--Continued.

-	Hau1	MM/DD/YY	Latitude	Longitude	e Depth	Time D	uration	Distance	Strata	Surf.	Gear.	Net Width	Width
-					(m) 	(hr.)	(hr.)	(km)		Temp.	Temp.	(m)	Code
*	134	07/23/92	56.982	-172.650	121	08	0.50	2.98	61	75	3.9	17 1	F
*	135	07/23/92	57.314	-172.715	115	10	0.50	2.65	61	6.8	0.5	17.1	F
*	136	07/23/92	57.652	-172.802	119	14	0.40	2.20	61	10.6		17.7	F
*	137	07/23/92	57.989	172.877	108	17	0.33	2.00	61	8.9	2.4	17 1	F
*	138	07/23/92	58.324	-172.933	108	19	0.40	2.30	61	8.8	1.7	17.3	F
*	139	07/24/92	58.661	-173.006	112	07	0.33	1.95	61	8.3	2.0	17.3	F
*	140	07/24/92	58.992	-173.085	106	09	0.33	1.89	61	8.2	1.4	13.5	F
*	141	07/24/92	59.326	-173.151	99	12	0.33	1.98	43	8.2	0.2	18.1	F
*	142	07/24/92	59.490	-173.501	102	14	0.33	1.96	43	8.2	-0.4	18.1	F
*	143	07/24/92	59.658	-173.234	95	17	0.50	2.95	43	8.3	-1.1	18.1	F
*	144	07/24/92	59.824	-173.583	95	19	0.50	2.70	43	8.2	-1.0	18.3	F
*	145	07/25/92	59.988	-173.299	73	07	0.50	2.80	43	8.1		16.9	F
*	146	07/25/92	60.132	-173.567	73	10	0.40	2.28	43	7.8		16.9	F
*	147	07/25/92	60.312	-173.420	60	12	0.50	2.95	43	7.7		16.6	F
*	148	07/25/92	60.656	-173.468	64	15	0.50	2.85	41	8.1		16.9	F
	149	07/26/92	60.986	-171.483	59	07	0.50	2.87	41	8.7	-1.5	17.6	F
	150	07/26/92	61.009	-172.166	62	10	0.50	2.89	41	8.2	-1.4	17.9	F
	151	07/26/92	60.989	-172.817	64	13	0.50	2.85	41	7.6	-0.9	18.2	F
*	152	07/26/92	60.991	-173.500	73	16	0.50	2.85	41	8.0	-1.2	17.9	F
*	168	07/29/92	60.681	-176.199	119	18	0.50	2.78	61	8.7	8.0	17.1	F
*	169	07/30/92	60.681	-175.452	108	07	0.50	2.78	61	8.9	0.2	17.5	F
*	170	07/30/92	60.350	-175.382	110	10	0.50	2.83	61	9.0	0.8	18.0	F
*	171	07/30/92	60.345	-176.033	121	13	0.33	1.89	61	9.0	1.6	17.6	F
*	172	07/30/92	60.010	-175.933	128	16	0.33	1.95	61	9.3	1.6	17.3	F
*	173	07/30/92	60.012	-175.269	117	19	0.33	1.91	61	8.5	1.4	16.7	F
*	174	07/31/92	59.680	-175.120	124	08	0.33	1.91	61	9.1	1.8	17.9	F
*	175	07/31/92	59.342	-175.100	132	11	0.50	2.96	61	9.0	2.4	18.0	F
*	176	07/31/92	59.008	-175.002	128	14	0.33	2.00	61	9.1	2.2	17.9	F
*	177	07/31/92	58.674	-174.892	218	18	0.33	1.98	61	8.8	3.1	18.3	F
*	178	08/01/92	58.656	-176.201	143	07	0.50	2.89	61	8.6	2.9	18.8	F
*	179	08/01/92	58.998	-176.312	134	10	0.33	1.87	61	8.6	2.8	18.5	F
*	180	08/01/92	59.327	-176.384	135	13	0.40	2.24	61	8.9	2.1	17.9	F
*	181	08/01/92	59.658	-176.534	134	16	0.33	1.91	61	8.8	2.0	18.1	F

Table A-1.--Continued.

_	Haul	MM/DD/YY	Latitude	Longitude	Depth (m)	Time D (hr.)	uration (hr.)	Distance (km)	Strat	a Surf. Temp.	Gear. Temp.	Net Width (m)	Width Code
* * *	182 183 184 185 186	08/02/92 08/02/92 08/02/92 08/02/92 08/03/92	59.992 59.995 60.323 60.657 60.656	-177.900 -177.217 -177.386 -177.503 -178.198	141 137 144 146 161	07 11 13 16 08	0.50 0.50 0.50 0.50 0.50 0.50	2.87 2.96 2.87 2.87 2.83	61 61 61 61	8.8 9.0 9.1 8.8 8.5	1.7 1.9 1.6 1.5 2.0	17.2 17.5 16.5 17.4 17.4	F F F F

-	Hau1	MM/DD/YY	Latitude	Longitude	Depth	Time D	uration	Distance	Strata	Surf.	Gear.	Net Width	Width
				-	(m)	(hr.)	(hr.)	(km)		Temp.	Temp.	(m)	Code
*	1	06/05/92	57.334	-158.405	29	09	0.50	2.67	10	4.7		14.6	F
*	2	06/05/92	57.671	-158.346	33	14	0.50	3.07	10	4.5		14.8	F
*	3	06/05/92	58.015	-158.310	31	17	0.50	3.24	10	4.7		15.6	М
*	4	06/06/92	58.350	-159.553	24	07	0.50	1.82	10	5.6	5.1	14.8	F
*	5	06/06/92	57.994	-159.604	40	10	0.50	3.22	10	4.9		14.8	F
*	6	06/06/92	57.659	-159.637	48	13	0.50	3.11	10	3.5		16.1	F
*	7	06/06/92	57.325	-159.666	55	16	0.50	3.17	10		2.6	16.8	F
*	8	06/06/92	56.989	-159.708	55	19	0.50	3.11	10	5.1	2.3	15.9	М
*	9	06/07/92	56.673	-159.747	37	06	0.50	3.30	10	4.4	3.8	13.5	М
*	10	06/07/92	56.326	-161.005	51	12	0.25	1.19	10	7.0	3.1	14.8	М
*	11	06/07/92	56.671	-160.987	66	15	0.50	3.24	31	6.7	2.6	16.0	F
*	12	06/07/92	57. 007	-160.945	62	17	0.50	3.15	31	10.4	2.6	15.7	М
*	13	06/08/92	57.329	-160.947	59	07	0.50	2.89	31	5.4	2.6	16.8	F
*	14	06/08/92	57.669	-160.888	55	09	0.50	3.02	31	5.1	2.1	16.2	М
*	16	06/08/92	58.332	-160.758	18	15	0.50	2.70	10	7.7		14.8	F
*	17	06/09/92	58.330	-162.069	46	07	0.50	2.69	10	4.1	3.8	16.1	F
*	18	06/09/92	57.992	-162.115	37	09	0.50	2.63	10	3.3	2.8	15.1	М
*	19	06/09/92	57.660	-162.139	44	12	0.33	1.74	10	5.4	3.8	15.8	М
*	20	06/09/92	57.325	-162.150	48	15	0.33	1.98	10	6.3	3.9	17.2	М
*	21	06/09/92	56.990	-162.165	60	17	0.33	1.80	31	7.5	2.1	16.8	F
*	22	06/09/92	56.659	-162.181	73	20	0.33	1.80	31	7.4	1.3	17.3	F
*	23	06/11/92	55.334	-163.416	51	07	0.50	2.76	31	4.7	2.1	15.2	М
*	24	06/11/92	55.687	-163.404	80	10	0.50	2.67	31	7.6	2.3	17.3	F
*	25	06/11/92	55.993	-163.402	88	13	0.33	2.15	31	8.1	1.8	17.6	F
*	26	06/11/92	56.344	-163.398	84	16	0.50	2.83	31	7.8		17.3	F
*	27	06/11/92	56.662	-163.384	75	18	0.50	3.09	31	6.9	0.6	17.3	F
*	28	06/12/92	56.998	-163.384	64	07	0.50	2.82	31	5.6	0.7	16.8	F
*	29	06/12/92	57.328	-163.382	53	10	0.50	2.93	10	5.3	2.4	16.8	F
*	30	06/14/92	59.014	-163.356	18	14	0.50	2.80	10	5.3	4.4	14.0	М
*	31	06/14/92	58.673	-163.352	29	17	0.50	2.78	10	5.3	4.4	15.2	М
*	32	06/15/92	58.353	-163.363	35	07	0.50	2.61	10	4.6	3.9	15.2	F
*	34	06/15/92	57.996	-163.388	42	11	0.20	0.89	10	4.0	3.1	18.6	М

Table A-2.--Haul data for stations sampled by the F/V Tracy Anne during the 1992 eastern Bering Sea bottom trawl survey.

Table A-2.--Continued.

80 - 198

	Unul		Latitude	Longitude	Denth	Time D	uration	Distance	Strata	Surf.	Gear.	Net Width	Width
	Haul	ו זעט ווייי	Latitude	Longroude	(m)	(hr.)	(hr.)	(km)		Temp.	Temp.	(m)	Code
	25	06/15/02	57 670	-163 373	44	13	0.50	3.00	10	4.5	3.5	16.5	М
т х	35	00/10/92	57 009	-164 607	70	10	0.50	2.78	31	6.3		16.8	F
^	30	06/10/32	5/ 780	-165 516	210	08	0.50	2.78	50	6.7		18.6	F
	3/	00/20/92	54 684	-165 129	80	12	0.50	2.80	31	7.4		17.3	F
	20	06/20/92	54.004	-165 151	110	14	0.50	2.69	50	7.9	4.8 -	17.9	F
*	39	06/20/92	54 998	-165.760	128	17	0.50	2.72	50	7.8	4.1	18.1	F
*	40	06/21/92	55 332	-164.586	101	07	0.33	1.41	31		3.9	17.6	F
~	41	06/21/92	55 332	-165.169	110	09	0.50	2.76	50	7.5	4.5	17.9	F
*	42	06/21/92	55 663	-165.163	108	12	0.50	2.91	31	8.6	4.2	17.9	F
*	43	06/21/92	55 993	-165.184	95	15	0.50	2.78	31	8.8	3.0	17.6	F
*	44	06/21/92	56.326	-165.202	86	17	0.33	1.80	31	8.3	0.5	17.3	ŀ
*	45	06/21/92	56.660	-165.217	75.	20	0.50	2.78	31	8.1	-0.9	17.3	۲ -
*	40	06/22/92	56.674	-165.840	77	07	0.50	2.72	31	6.7	-0.3	17.3	F
*	47	06/22/92	56.337	-165.796	91	09	0.50	2.93	31	8.1	-0.7	17.6	F
*	40	06/22/92	56.010	-165.785	104	12	0.50	2.72	31	9.4	4.2	17.6	F
*	50	06/22/92	55,679	-165.799	117	14	0.50	2.80	50	8.9	4.2	17.9	
*	51	06/22/92	55.340	-165.784	119	17	0.50	2.93	50	9.0	4.1	17.9	F
*	52	06/27/92	56.989	-165.851	71	07	0.50	2.54	31	6.6		1/.6	M
*	53	06/27/92	57.309	-165.863	66	11	0.50	2.82	31		0.2	16.5	M
*	54	06/27/92	57.658	-165.883	62	15	0.50	2.91	31	6.4	0.2	1/.3	M
*	55	06/27/92	57.985	-165.895	55	18	0.50	2.93	10	6.7	2.1	16.3	m
*	56	06/28/92	58.320	-165.917	42	07	0.50	2.78	10	5.3	3.2	16.1	F F
*	57	06/28/92	58.657	-165.933	35	09	0.50	2.98	10	5.5	3.3	15.3	r r
*	58	06/28/92	58.991	-165.936	27	12	0.50	2.87	20	5.8	5.0	15.2	r r
*	59	06/28/92	59.325	-165.951	22	15	0.50	3.11	20	6.3	5.5	14.8	г г
*	60	06/28/92	59.638	-165.972	22	17	0.45	2.41	20	8.0	/.4	14.8	r c
	61	06/29/92	60.358	-167.309	27	07	0.50	2.80	20	3.7	3.2	14.0	r r
*	62	06/29/92	59.681	-167.289	31	13	0.50	2.72	20	4.8	3.9	14.0	Г М
*	63	06/29/92	59.345	-167.270	29	16	0.50	2.72	20	5.2	4.5	15.3	
*	64	06/29/92	59.014	-167.233	38	19	0.50	2.67	20	4./	J./	14.8	r F
*	65	06/30/92	58.684	-167.219	42	07	0.50	2.95	20	4.0	3.4	10.1	Г
*	66	06/30/92	58.341	-167.183	49	10	0.50	3.07	20	5.0	2.7	16.0	ri F
*	67	06/30/92	58.010	-167.166	62	13	0.50	2.91	31	4.9	1.0	10.8	Г

9

<u>.</u>

Table A-2.--Continued.

1.4	Haul	MM/DD/YY	Latitude	Longitude	Depth	Time D	uration	Distance	Strata	Surf.	Gear.	Net Width	Width
					(m)	(hr.)	(hr.)	(km)		Temp.	Temp.	(m)	Code
*	68	06/30/92	57.682	-167.132	66	18	0.50	2.65	31		0.6	16.5	M
*	69	07/03/92	55.688	-166.968	134	07	0.50	2.52	50	7.8	3.8	17.8	M
*	70	07/03/92	55.993	-167.019	135	11	~0.50	2.80	50	7.7	3.6	18.1	F
*	71	07/03/92	56.328	-167.021	113	15	0.50	2.59	50	7.8	3.2	17.9	F
*	72	07/03/92	56.660	-167.023	93	19	0.50	2.67	31	7.4	0.6	17.6	Εœ
*	73	07/04/92	56.998	-167.039	73	09	0.50	2.56	31	6.2	1.1	17.3	F
*	74	07/04/92	57.327	-167.074	70	13	0.50	2.65	31	6.7	0.7	16.8	F
	75	07/04/92	57.330	-167.709	73	17	0.50	2.87	31	6.7	0.7	17.3	F
*	76	07/05/92	56.343	-168.254	152	07	0.50	2.65	50	3.8	3.8	18.5	F
*	77	07/05/92	56.651	-168.274	108	11	0.50	2.63	50	7.6	0.5	18.0	М
*	78	07/05/92	56.823	-168.583	99	14	0.33	2.30	32	7.3	0.0	17.6	F
*	79	07/05/92	57.155	-168.650	75	18	0.50	2.54	32	7.0	-0.1	19.7	М
*	80	07/06/92	57.493	-168.731	70	07	0.50	2.80	42	6.5	0.1	16.8	М
*	81	07/06/92	57.843	-168.724	70	11	0.50	2.59	42	6.7	0.7	16.6	М
*	82	07/06/92	57.992	-168.424	68	16	0.33	1.69	42		0.2	16.6	М
*	83	07/06/92	58.327	-168.432	64	20	0.33	2.00	41	6.3	1.5	17.8	М
*	84	07/07/92	58.668	-168.498	51	07	0.33	1.83	20		3.5	15.6	М
*	85	07/07/92	58.667	-169.157	60	10	0.25	1.26	41	6.3	1.6	16.3	М
*	86	07/07/92	58.343	-169.743	70	15	0.33	1.87	41		-0.7	18.0	M
*	87	07/07/92	57.999	-169.707	70	18	0.33	1.83	42	7.7	-0.7	18.6	М
*	88	07/08/92	57.832	-169.988	71	07	0.33	1.89	42	6.8	-0.5	17.2	М
*	89	07/08/92	57.675	-169.674	71	09	0.33	2.09	42	6.3	-0.5	16.6	Μ
*	90	07/08/92	57.501	-169.974	66	11	0.25	1.46	42	6.5	0.7	15.5	М
*	91	07/08/92	57.341	-169.606	62	14	0.33	2.09	42	6.8	0.7	16.8	F
*	92	07/08/92	57.179	-169.882	46	17	0.33	2.02	42	6.8	4.5	15.4	Μ
*	93	07/09/92	56.999	-169.554	59	06	0.33	1.78	42	5.2	0.7	15.8	М
*	94	07/09/92	56.833	-169.862	71	09	0.33	1.72	42	5.8	2.4	16.5	М
*	95	07/09/92	56.677	-169.532	79	12	0.33	1.76	32		2.8	17.3	F
*	96	07/09/92	56.350	-169.506	137	17	0.33	1.76	50	7.3	3.8	17.8	M
*	97	07/10/92	56.340	-170.690	121	07	0.33	2.04	61	7.3	4.2	17.9	F
*	98	07/10/92	56.660	-170.730	113	09	0.33	1.82	61	7.1	5.3	17.9	F
*	99	07/10/92	56.997	-170.776	95	12	0.33	1.95	42	6.9	2.6	17.6	F
*	100	07/10/92	57.346	-170.847	82	14	0.33	2.07	42	6.4	1.4	17.0	М
*	101	07/11/92	57.663	-170.890	84	07	0.33	1.80	42	7.2	1.5	17.3	F

Table A-2.--Continued.

	Hau]	MM/DD/YY	Latitude	Longitude	Depth	Time D	uration	Distance	Strata	Surf. Temp	Gear. Temp.	Net Width (m)	Width Code
					(10)	(10.)	(10.7	(Kiii)		Tempi		,	
*	102	07/11/92	57.994	-170.949	86	10	0.33	1.87	42	6.7	1.0	17.3	F
*	102	07/11/92	58.340	-171.039	84	14	0.33	1.70	41	6.8	-0.4	17.3	F
*	104	07/11/92	58,660	-171.060	82	18	0.33	1.82	41	6.7	-1.2	17.3	F
*	105	07/12/92	58,990	-171.099	77	07	0.50	2.69	41	5.9	-1.5	17.3	F
*	106	07/12/92	59.334	-171.176	75	10	0.50	2.82	.41	6.1	-1.5	17.3	F
*	107	07/12/92	59,658	-171.210	71	13	0.50	2.83	41	6.6	-1.6	17.3	F
*	108	07/12/92	59.985	-171.281	70	18	0.50	2.65	41	6.7	-1.5	16.7	F
*	109	07/13/92	60.325	-171.358	66	07	0.50	2.82	41	6.8	-1.5.	16.8	+
	110	07/13/92	60.329	-172.045	59	10	0.50	2.61	43	6.4	-1.1	16.8	F
	111	07/13/92	60.164	-172.349	57	13	0.50	2.59	43	5.6	1.2	16.8	E E
*	112	07/13/92	59.999	-172.636	66	15	0.50	2.70	43	7.2	-1.3	16.8	F
*	113	07/13/92	60.169	-173.023	59	18	0.50	2.70	43	6.5	-0.7	16.8	F
*	114	07/14/92	59.803	-172.860	80	07	0.30	1.63	43	7.2		17:3	F
*	115	07/14/92	59.677	-172.576	86	09	0.50	2.87	43	6.7	-1.4	17.3	F
*	116	07/14/92	59.500	-172.882	93	11	0.50	3.00	43	6.7	-1.3	1/.6	F
*	117	07/14/92	59.336	-172.501	86	14	0.50	2.82	43	7.5	-1.1	17.3	F F
*	118	07/14/92	59.003	-172.450	99	17	0.50	2.57	41		-0.1	17.6	F
	119	07/20/92	56.664	-171.353	119	07	0.50	2.91	61	7.6	~ ~	17.9	F
	121	07/20/92	56.994	-171.390	110	12	0.50	2.85	61	8.1	3.3	- 17.9	F
	122	07/20/92	57.320	-171.467	101	15	0.50	2.89	41	8.1	3.3	17.6	F
	123	07/20/92	57.652	-171.532	99	18	0.50	2.83	41	7.8	2.3	17.6	
	124	07/21/92	57.989	-171.605	97	07	0.50	2.74	41	7.9	2.7	17.6	
	125	07/21/92	58.324	-171.649	95	10	0.33	1.83	41	8.0	1.6	17.6	F
*	126	07/21/92	58.345	-172.305	102	13	0.50	2.78	61	8.1	1.1	17.6	F
*	127	07/21/92	58.008	-172.234	106	16	0.50	2.95	61	8.4	3.0	17.9	r r
*	128	07/22/92	57.670	-172.171	108	07	.0.50	2.98	61	8.3		17.9	F
*	129	07/22/92	57.340	-172.099	108	10	0.33	1.37	61	7.8		17.9	F
*	130	07/22/92	57.008	-172.033	115	12	0.50	2.96	61	1.7	4.1	1/.9	۲ ۲
*	131	07/22/92	56.676	-171.968	124	15	0.50	2.80	61	8.9	3.9	18.1	ר ד
	132	07/22/92	56.653	-172.566	137	18	0.50	3.00	61	8.5	3.8	18.1	F
*	133	07/23/92	56.989	-173.253	141	07	0.50	2.87	61	8.5	3.4	18.1	۲ ۲
*	134	07/23/92	57.331	-173.325	119	10	0.33	2.04	61	9.2	3.5	1/.9	F
*	135	07/23/92	57.674	-173.386	146	13	0.50	3.15	61		3.3	18.3	F

Table A-2.--Continued.

3 <u>-</u>	Hau1	MM/DD/YY	Latitude	Longitude	Depth	Time D	uration	Distance	Strata	Surf.	Gear.	Net Width	Width
					(m)	(hr.)	(hr.)	(km)		Temp.	Temp.	(m)	Code
*	136	07/23/92	57.995	-173.486	117	15	0.50	2.87	61	9.6	3.3	17.9	F
*	137	07/23/92	58.321	-173.567	115	18	0.50	2.93	61	9.1	3.3	17.9	F
*	138	07/24/92	58.656	-173.635	126	07	0.16	0.89	61	8.5	3.2	18.1	F
*	139	07/24/92	58.992	-173.717	117	10	0.16	0.91	61	8.3	-2.0	17.9	F
*	140	07/24/92	59.325	-173.798	110	12	0.50	2.95	62	8.3	0.9	17.9	F
*	141	07/24/92	59.658	-173.867	102	14	0.50	2.96	62	8.5	-0.1	17.6	F
*	142	07/24/92	59.822	-174.234	108	17	0.50	2.96	62	8.4	-0.1	17.9	F
*	143	07/25/92	59.988	-173.953	97	07	0.50	2.85	43	7.9	-0.9	17.6	F
*	144	07/25/92	60.156	-174.353	101	09	0.50	2.89	43	7.9	-0.7	17.6	F
*	145	07/25/92	60.321	-174.065	90	12	0.50	3.00	43		-1.3	17.6	F
*	146	07/25/92	60.656	-174.133	86	14	0.50	3.17	41	7.9	-1.2	17.3	F
	147	07/26/92	60.669	-171.414	62	07	0.50	2.72	41	8.5	-1.2	16.8	F
	148	07/26/92	60.664	-172.066	60	10	0.50	3.24	41	8.5	-1.5	16.8	F
*	149	07/26/92	60.667	-172.740	42	12 ·	0.50	3.00	41	6.6	1.6	16.6	F
*	150	07/26/92	60.989	-174.184	84	18	0.50	2.98	41	8.4 [·]	-1.5	17.3	F
*	154	07/27/92	60.675	-174.817	97	15	0.50	3.00	41	8.9	-0.2	17.6	F
*	155	07/27/92	60.345	-174.717	102	18	0.50	2.89	62	9.3	-0.2	17.6	F
*	156	07/27/92	60.009	-174.600	110	20	0.50	2.70	62	8.9	0.4	17.9	F
*	157	07/28/92	59.686	-174.450	115	07	0.50	3.11	62	8.8	0.7	17.9	F
*	158	07/28/92	59.344	-174.447	119	10	0.50	3.11	62	8.8	1.8	17.9	F
*	159	07/28/92	59.015	-174.370	126	12	0.50	2.76	61	9.0	1.8	18.1	F
*	160	07/28/92	58.676	-174.266	154	15	0.50	2.69	61	9.3 '	3.2	18.3	F
	161	07/28/92	58.348	-174.322	183	18	0.50	3.48	61	9.6	3.6	18.5	F
*	162	07/31/92	59.679	-175.867	137	08	0.50	2.82	61	9.2	2.4	18.1	F
*	163	07/31/92	59.347	-175.753	137	11	0.50	2.83	61	9.1	2.3	18.1	F
*	164	07/31/92	59.009	-175.735	134	13	0.50	3.02	61	8.8	2.8	18.1	F
*	165	07/31/92	58.682	-175.554	134	18	0.50	2.69	61		3.3	18.1	F
*	166	08/01/92	58.652	-176.836	141	80	0.50	2.93	61	8.8	6.0	18.1	F
	167	08/01/92	58.986	-177.599	135	11	0.50	3.09	61	9.1	2.9	18.1	F
*	168	08/01/92	58 <i>.</i> 990	-176.951	135	15	0.50	3.04	61	9.6	3.1	18.1	F
*	169	08/01/92	59.325	-177.068	150	18	0.50	2.98	61	9.0	2.6	18.3	F
*	170	08/02/92	59.657	-177.150	179	08	0.50	2.85	61		2.1	18.4	F
*	= 171	08/02/92	59.990	-176.715	141	11	0.50	3.11	61	9.0	1.9	18.1	F
*	172	08/02/92	60.323	-176.716	135	14	0.50	2.98	⇒ 61	9.2	1.8	18.1	F
*	173	08/02/92	60.653	-176.801	128	16	0.50	2.87	61	9.1	1.0	18.1	F

APPENDIX B

List of Species Encountered

Appendix B contains a listing of all fish and invertebrate species taken during the 1992 eastern Bering Sea bottom trawl survey.

List of Tables

Table	Page
B-1. Fish species encountered	115
B-2. Invertebrate species encountered	119

Table B-1.--Fish species encountered during the 1992 U.S. eastern Bering Sea bottom trawl survey.

Common name	Scientific name
Family Squalidae	
Pacific sleeper shark	<u>Somniosus pacificus</u>
Family Rajidae	
Bering skate	<u>Bathyraja interrupta</u>
Alaska skate	<u>Bathyraja parmifera</u>
Skate unident.	Rajidae unident.
Family Clupeidae	
Pacific herring	<u>Clupea pallasii</u>
Ferile Coleration	
Family Salmonidae	
Sockeye salmon	Onchorynchus nerka
Family Osmeridae	
Capelin	<u>Mallotus villosus</u>
Smelt unident	Osmeridae
Rainbow smelt	<u>Osmerus mordax</u>
Eulachon	Thaleichthys pacificus
Family Oneirodidae	
<u>Oneirodes</u> unident.	<u>Oneirodes</u> sp.
Family Gadidae	
Arctic cod	Boreogadus salda
Sairron cod	Eleginus gracilis
Pacific cod	<u>Gadus macrocephalus</u>
Walleye pollock	Theragra chalcogramma
Family Zoarcidae	
Shortfin eelpout	Lycodes brevipes
Wattled eelpout	Lycodes palearis
Marbled eelpout	Lycodes raridens
Lycodes unident.	Lycodes sp.
Polar eelpout	Lycodes turneri
Family Trichodontidae	-
Pacific sandfish	Trichodon trichodon

Table B-1.--Continued.

Common name	Scientific name
Family Stichaeidae Pighead prickleback Slender eelblenny Daubed shanny Snake prickleback <u>Lumpenus</u> unident. Whitebarred prickleback Prickleback unident.	Acantholumpenus mackayi Lumpenus fabricii Lumpenus maculatus Lumpenus sagitta Lumpenus sp. Poroclinus rothrocki Stichaeidae
Family Bathymasteridae Searcher Ronquil unident. Northern ronquil	<u>Bathymaster signatus</u> Bathymasteridae <u>Ronquilus jordani</u>
Family Anarhichadidae Bering wolffish	<u>Anarhichas</u> <u>orientalis</u>
Family Zaproridae Prowfish	Zaprora silenus
Family Ammodytidae Pacific sand lance	Ammodytes hexapterus
Family Scorpaenidae Pacific ocean perch Dusky rockfish Northern rockfish Rockfish unident.	<u>Sebastes alutus</u> <u>Sebastes ciliatus</u> <u>Sebastes polyspinis</u> <u>Sebastes</u> sp.
Family Anaplopomatidae Sablefish	Anoplopoma fimbria
Family Hexagrammidae Greenling unident. Kelp greenling <u>Hexagrammos</u> unident. Whitespotted greenling Atka mackerel	Hexagrammidae <u>Hexagrammos decagrammus</u> <u>Hexagrammos</u> sp. <u>Hexagrammos stelleri</u> <u>Pleurogrammus monopterygius</u>

Table B-1.--Continued.

Com	mon name	Scientific name
Fam	ily Cottidae	
	Pacific hookear sculpin	Artediellus pacificus
	Artediellus unident.	Artediellus sp.
	Sculpin unident.	Cottidae
	Spinyhead sculpin	Dasvcottus setiger
	Antlered sculpin	Enophrys diceraus
	Armorhead sculpin	Gymnocanthus galeatus
	Threaded sculpin	Gymnocanthus pistilliger
	<u>Gymnocanthus</u> unident.	Gymnocanthus sp.
	Red Irish Lord	Hemilepidotus hemilepidotus
	Yellow Irish Lord	Hemilepidotus jordani
	Butterfly sculpin	Hemilepidotus papilio
	Bigmouth sculpin	Hemitripterus bolini
	Icelus unident.	Icelus sp.
	Spatulate sculpin	Icelus spatula
	Thorny sculpin	Icelus spiniger
	Malacocottus unident.	Malacocottus sp.
	Darkfin sculpin	Malacocottus zonurus
	Plain Sculpin	<u>Myoxocephalus</u> <u>jaok</u>
	Great Sculpin	Myoxocephalus polyacanthocephalus
	Myoxocephalus unident.	Myoxocephalus sp.
	Eyeshade sculpin	Nautichthys oculofasciatus
	Ribbed sculpin	<u>Triglops pingeli</u>
	Speckled sculpin	<u>Triglops</u> <u>scepticus</u>
	Triglops unident.	<u>Triglops</u> sp.
Fam	ily Agonidae	
	Poacher unident.	Agonidae
	Sturgeon poacher	<u>Agonus acipenserinus</u>
	Aleutian alligatorfish	Aspidophoroides bartoni
	Arctic alligatorfish	Aspidophoroides olriki
	Bering poacher	Occella dodecaedron
	Sawback poacher	Sarritor frenatus
Fam	ily Cyclopteridae	
	Smooth lumpsucker	<u>Aptocyclus ventricosus</u>
	Peachskin snailfish	Careproctus scottae
	Snailfish unident.	Cyclopteridae (Liparidinae)

Table B-1.--Continued.

Common name	Scientific name
Pacific spiny lumpsucker <u>Liparis</u> unident.	<u>Eumicrotremus orbis</u> <u>Liparis</u> sp.
Family Pleuronectidae Kamchatka flounder Arrowtooth flounder Rex Sole Flathead sole Bering flounder Pacific halibut Butter sole Rock sole Dover sole Starry flounder Yellowfin sole Longhead dab Alaska plaice Sakhalin sole Greenland turbot	Atheresthes evermanni Atheresthes stomias Glyptocephalus zachirus Hippoglossoides elassodon Hippoglossoides robustus Hippoglossus stenolepis Isopsetta isolepis Lepidopsetta bilineatus Microstomus pacificus Platichthys stellatus Pleuronectes aspera Pleuronectes guadrituberculatus Pleuronectus sakhalinensis Reinhardtius hippoglossoides

Table B-2.--Invertebrate species encountered during the 1992 U.S. eastern Bering Sea bottom trawl survey.

Common name	Scientific name
Phylum Porifera	
Sponge unident.	Porifera
Phylum Coelenterata	
Sea anemone unident.	Actinaria (order)
Sea raspberry	<u>Eunephthva</u> rubiformis
Hydractinia unident.	Hvdractinia sp.
Hydroid unident.	Hydrozoa (class)
Metridium senile	Metridium senile
Sea Pen unident.	Pennatulacea (order)
Jellyfish unident.	Scyphozoa (class)
Phylum Mollusca	
Gastropods	
Keeled aforia	<u>Aforia circinata</u>
Alaska volute	Artomelon stearnsii
Northern beringius	<u>Beringius beringii</u>
<u>Beringius</u> unident.	Beringius sp.
Angled whelk	Buccinum angulosum
Sinuous whelk	Buccinum plectrum
Polar whelk	Buccinum polare
Ladder (silky) whelk	Buccinum scalariforme
<u>Buccinum</u> unident.	Buccinum sp.
<u>Colus</u> unident.	<u>Colus</u> sp.
Thick-ribbed whelk	<u>Colus spitzbergensis</u>
Oregon triton	<u>Fusitriton oregonensis</u>
<u>Fusitriton</u> unident.	<u>Fusitriton</u> sp.
Snail unident.	Gastropoda (phylum)
<u>Natica</u> unident.	<u>Natica</u> sp.
Little neptune	<u>Neptunea borealis</u>
Northern neptune	<u>Neptunea heros</u>
Lyre whelk	<u>Neptunea lyrata</u>
Helmet whelk	Neptunea magma
Pribilof whelk	<u>Neptunea pribiloffensis</u>
<u>Neptunea</u> unident.	<u>Neptunea</u> sp.
Fat whelk	<u>Neptunea ventricosa</u>
Nudibranch unident.	Onchidoridae (family)

:+:

Table B-2.--Continued.

Common name	Scientific name
Gastropods (cont'd) Kroyer's plicifus <u>Plicifusus</u> unident. <u>Polinices</u> unident. Snail (gastropod) eggs Rosy tritonia Warped whelk Threaded whelk	<u>Plicifusus kroyeri</u> <u>Plicifusus</u> sp. <u>Polinices</u> sp. Snail (gastropod) eggs <u>Tritonia diomedea</u> <u>Volutopsius deformis</u> <u>Volutpsius filosus</u>
Fragile whelk Large melon snail Tulip whelk <u>Volutopsius</u> unident.	<u>Volutopsius fragilis</u> <u>Volutopsius melonis</u> <u>Volutopsius middendorffii</u> <u>Volutopsius</u> sp.
Bivalves Bivalve unident. Cockle unident. Chlamys unident. Hairy cockle Clinocardium unident. Macoma unident. Artic surfclam Mactromeris unident. Mussel unident. Blue mussel Weathervane scallop Scallop unident. Pododesmus unident Greenland cockle Serripes unident Alaska razor clam	Bivalvia (class) Cardiidae (family) Chlamys sp. Clinocardium ciliatum Clinocardium sp. Macoma sp. Mactromeris polynyma Mactromeris sp. Mytilidae (family) Mytilus edulis Patinopectin caurinus Pectinidae (family) Pododesmus sp. Serripes groenlandicus Serripes sp. Siliqua alta
Cephalopods Octopus unident. Squid unident.	Octopodidae (family) Teuthoidea (order)
Phylum Annelida Sea mouse unident. Depressed scale worm Giant scale worm	Aphroditidae (family) <u>Eunoe depressa</u> <u>Eunoe nodosa</u>

121

Table B-2.--Continued.

Common name	Scientific name		
Phylum Annelida (cont'd)			
Eunoe unident.	Eunoe sp.		
Scale worm unident.	Polynoidae (family)		
Leech unident.	Hirudinea (class)		
Phylum Arthropoda			
Giant barnacle	<u>Balanus evermanni</u>		
Barnacle unident.	Thoracica (order)		
Crab			
Dungeness crab	<u>Cancer magister</u>		
Oregon rock crab	<u>Cancer</u> oregonensis		
Broad snow crab	<u>Chionoecetes</u> bairdi		
Tanner crab	<u>Chionoecetes</u> hybrid		
Narrow snow crab	<u>Chionoecetes</u> <u>opilio</u>		
Tanner crab unident.	<u>Chionoecetes</u> sp.		
Horsehair crab	<u>Erimacrus isenbeckii</u>		
Circumboreal toad crab	<u>Hyas coarctatus</u>		
North Pacific toad crab	<u>Hyas lyratus</u>		
<u>Hyas</u> unident.	<u>Hyas</u> sp.		
Longhorned decorator crab	<u>Oregonia gracilis</u>		
Hermit crab unident.	Paguridae (family)		
Alaskan hermit crab	<u>Pagurus</u> <u>ochotensis</u>		
Red king crab	<u>Paralithodes</u> camtschatica		
Blue king crab	<u>Paralithodes</u> <u>platypus</u>		
Helmet crab	<u>Telmessus</u> <u>cheiragonus</u>		
Shrimp			
Artic argid	<u>Argis dentata</u>		
Northern argid	<u>Argis lar</u>		
<u>Argis</u> unident.	<u>Argis</u> sp.		
<u>Crangon</u> unident.	<u>Crangon</u> sp.		
<u>Lebbeus</u> unident.	<u>Lebbeus</u> sp.		
Sidestripe shrimp	<u>Pandalopsis</u> <u>dispar</u>		
Northern (pink) shrimp	<u>Pandalus</u> borealis		
Humpy shrimp	<u>Pandalus</u> <u>goniurus</u>		
<u>Pandalus</u> unident.	<u>Pandalus</u> sp.		
Sclerocrangon unident.	<u>Sclerocrangon</u> sp.		
<u>Spirontocaris</u> unident.	<u>Spirontocaris</u> sp.		

Table B-2.--Continued.

Phylum Sipuncula	
Sipunculid worm unident. Sipuncul	.a (phylum)
Phylum Bryozoa	(mhanlann)
Bryozoan unident. Bryozoa	
Feathery bryozoan <u>Eucratea</u>	<u>IOFICALA</u>
Leafy bryozoan <u>Flustra</u>	serfulata
Phylum Echinodermata	
Holothuroidea	5-11
Sea football <u>Cucumari</u>	La IALLAX
<u>Cucumaria</u> unident. <u>Cucumari</u>	La sp.
Sea cucumber unident Holothur	roidea (Class)
Redscaled sea cucumber <u>Psolus</u> s	sp.
Echinoidea	
Sand dollar unident. Clypeast	teroida (order)
Sea urchin unident. Sea urch	hin unident.
Green sea urchin Strongy	locentrotus
droebacl	<u>hiensis</u>
Asteroidea	
Purple-orange sea star Asteria	<u>s amurensis</u>
Asterias unident. Asteria	<u>s</u> sp.
Starfish unident. Asteroi	dea (subclass)
Red bat star <u>Ceramas</u>	<u>ter japonicus</u>
Orange bat star <u>Ceramas</u>	<u>ter patagonicus</u>
Bat star unident. <u>Ceramas</u>	ter sp.
Rose sea star <u>Crossas</u>	ter papposus
Common mud star <u>Ctenodi</u>	<u>scus</u> crispatus
<u>Ctenodiscus</u> unident. <u>Ctenodi</u>	scus sp.
Northern sea star <u>Diplopt</u>	eraster borealis
Pincushion sea star <u>Diplopt</u>	eraster multipes
Giant sea star <u>Evaster</u>	<u>ias echinosoma</u>
<u>Henricia</u> unident. <u>Henrici</u>	a sp.
Tumid sea star <u>Henrici</u>	<u>a tumida</u>
Arctic sea star <u>Leptast</u>	<u>erias arctica</u>
Knobby six-rayed sea star <u>Leptast</u>	<u>erias polaris</u>

Table B-2.--Continued.

9.63

Common name	Scientific name		
Asteroidea (cont'd)			
<u>Leptasterias</u> unident.	<u>Leptasterias</u> sp.		
Blackspined sea star	<u>Lethasterias nanimensis</u>		
Scarlet sea star	<u>Pseudarchaster</u> parelii		
Obscure sea star	<u>Pteraster</u> <u>obscurus</u>		
<u>Pteraster</u> unident.	<u>Pteraster</u> sp.		
Cushion sea star	<u>Pteraster</u> <u>tesselatus</u>		
<u>Solaster</u> unident.	<u>Solaster</u> sp.		
Ophiuroidea			
Basket star	<u>Gorgonocephalus</u> <u>caryi</u>		
Notched brittlestar	<u>Ophiura sarsi</u>		
Brittlestarfish unident.	Ophiuroidea (subclass)		
Phylum Chordata			
<u>Aplidium</u> unident.	Aplidium sp.		
Tunicate unident.	Ascidian unident.		
Sea onion	<u>Boltenia ovifera</u>		
Sea onion unident.	<u>Boltenia</u> sp.		
Compound ascidian unident.	Compound ascidian unident.		
Sea peach	<u>Halocynthia</u> aurantium		
Sea grape	Molgula grifithsii		
Sea potato	Styela rustica		

APPENDIX C

Rank Order of Relative Abundance of Fish and Invertebrates

Appendix C ranks all fish and invertebrates caught during the 1992 eastern Bering Sea bottom

trawl survey by descending CPUE (kg/ha).

Table C-1.--Rank order of fish and invertebrate taxa by relative abundance (kg/ha) from the 1992 eastern Bering Sea bottom trawl survey.

		MEAN CPUE		95 PER	CENT		CUMULATIVE	
RANK	SPECIES	(KG/HA)	VARIANCE	CONFIDEN	CE LIMITS	PROPORTION	PROPORTION	NAME
	847/0	07.0(007	17/ 0/4	TT 00070	120 /300/	0.7400/000		
1	21740	97.86823	134.961	75.09839	120.63806	0.31226999	0.31226999	THERAGRA CHALCOGRAMMA
4	10210	43.10243	19.891	30.42104	53.90386	0.14410099	0.4063/101	PLEURONECTES ASPER
Ş	10260	37.73434	10.345	29.40038	42.058/1	0.11408500	0.57045400	PLEURONECTES BILINEATUS
4	81/42	17.58892	2.832	12-80040	22.32239	0.05612100	0.0200/001	ASTERIAS AMUKENSIS
2	10150	13.0/243	2.240	10./3374	10.01133	0.04302300	0.0/020100	
0	21720	11.95847	0.940	10.03832	13.83862	0.03809200	0.70829302	
(10285	11.42392	1.000	0.90121	13.00070	0.03643100	0.74474400	PLEURONECTES WOADKITUBERLULATUS
8	68580	11.01930	1.212	8.80120	13.17733	0.03516000	0.77990299	
	69010	8.52568	0.616	6.98/41	10.06396	0.02720300	0.80/10602	PAGURIDAE
10	400	1.8/22/	0.655	6.28579	9.458/5	0.02511800	0.85222401	RAJIDAE UNIDENI.
11	10110	7.63770	1.381	5.33478	9.94062	0.02437000	0.85659403	ATHERESTHES STOMIAS
12	68560	3.30142	0.341	2.15756	4.44528	0.01053400	0.86712801	CHIONOECETES BAIRDI
13	40500	2.35579	0.063	1.86287	2.84870	0.00/51/00	0.8/464499	SCYPHOZOA (CLASS)
14	21370	2.31676	0.134	1.60011	3.03341	0.00739200	0.88203698	MYOXOCEPHALUS POLYACANTHOCEPHALUS
15	10120	2.17885	0.039	1.78966	2.56804	0.00695200	0.88898897	HIPPOGLOSSUS STENOLEPIS
16	71820	1.95813	0.101	1.33589	2.58038	0.00624800	0.89523703	NEPTUNEA PRIBILOFFENSIS
17	83010	1.91595	0.173	1.10117	2.73074	0.00611300	0.90135002	BASKETSTARFISH UNIDENT.
18	80000	1.79550	0.612	0.26260	3.32839	0.00572900	0.90707898	STARFISH UNIDENT.
19	98000	1.76717	0.281	0.72754	2.80680	0.00563900	0.91271800	ASCIDIAN UNIDENT.
20	43000	1.74019	0.246	0.76823	2.71215	0.00555200	0.91826999	ACTINIARIA (ORDER)
21	98082	1.43754	0.235	0.48759	2.38748	0.00458700	0.92285699	STYELA RUSTICA
22	21371	1.31991	0.034	0.95794	1.68188	0.00421100	0.92706800	MYOXOCEPHALUS JAOK
23	91000	1.25296	0.263	0.24857	2.25735	0.00399800	0.93106598	PORIFERA
24	10112	1.03758	0.019	0.76599	1.30916	0.00331100	0.93437701	ATHERESTHES EVERMANNI
25	71884	1.00459	0.038	0.62077	1.38841	0.00320500	0.93758202	NEPTUNEA HEROS
26	69322	0.99272	0.047	0.56762	1.41782	0.00316700	0.94075000	PARALITHODES CAMTSCHATICA
27	71882	0.96238	0.028	0.63280	1.29197	0.00307100	0.94382000	NEPTUNEA VENTRICOSA
28	83000	0.78886	0.103	0.16059	1.41712	0.00251700	0.94633698	OPHIUROID UNIDENT.
29	71870	0.77194	0.027	0.45236	1.09152	0.00246300	0.94880003	NEPTUNEA LYRATA
30	83020	0.68947	0.015	0.44826	0.93068	0.00220000	0.95099998	GORGONOCEPHALUS CARYI
31	68577	0.68620	0.035	0.31981	1.05260	0.00218900	0.95319003	HYAS COARCTATUS
32	80590	0.64275	0.017	0.38774	0.89775	0.00205100	0.95524102	LEPTASTERIAS POLARIS
33	71800	0.58031	0.042	0.17805	0.98257	0.00185200	0.95709199	NEPTUNEA SP.
34	10220	0.57074	0.020	0.29317	0.84832	0.00182100	0.95891303	PLATICHTHYS STELLATUS
35	20040	0.55753	0.005	0.41298	0.70207	0.00177900	0.96069199	PODOTHECUS ACIPENSERINUS
36	69323	0.52851	0.021	0.24678	0.81024	0.00168600	0.96237898	PARALITHODES PLATYPUS
37	21347	0.51331	0.015	0.27224	0.75438	0.00163800	0.96401602	HEMILEPIDOTUS JORDANI
38	10115	0.50740	0.016	0.25754	0.75726	0.00161900	0.96563500	REINHARDTIUS HIPPOGLOSSOIDES
39	98200	0.45612	0.071	0.00000	0.97952	0.00145500	0.96709102	HALOCYNTHIA SP.
40	21348	0.45417	0.056	0.00000	0.91947	0.00144900	0.96854001	HEMILEPIDOTUS PAPILIO
41	71500	0.40761	0.005	0.26936	0.54587	0.00130100	0.96984100	GASTROPOD UNIDENT.
42	21420	0.39964	0.008	0.22530	0.57398	0.00127500	0.97111601	HEMITRIPTERUS BOLINI
43	81779	0.39895	0.024	0.09449	0.70342	0.00127300	0.97238898	CTENODISCUS SP.
44	81780	0.39419	0.043	0.00000	0.79997	0.00125800	0.97364599	CTENODISCUS CRISPATUS

Table	C-1	Continue	ed.
Iaure	U-1	Conunu	

		MEAN COLLE		95 PERCE	NT		CUMULATIVE	
RANK	SPECIES	(KG/HA)	VARIANCE	CONFIDENCE	LIMITS	PROPORTION	PROPORTION	NAME
-75	/71	0 30218	0.008	0.21536	0.56899	0.00125100	0.97489798	BATHYRAJA PARMIFERA
45	4/1	0.39210	0.006	0.21810	0.51076	0.00116300	0.97605997	HIPPOGLOSSOIDES ROBUSIUS
46	10140	0.30443	0.006	0.19574	0.44373	0.00102000	0.97708100	LYCODES BREVIPES
47	24191	0.319/3	0.004	0 00000	0.92062	0.00099800	0.97807902	SEBASTES ALUTUS
48	30060	0.31209	0.005	0 13892	0.42799	0.00090400	0.97898299	GLYPTOCEPHALUS ZACHIRUS
49	10200	0.28545	0.005	0 15914	0.40731	0.00090400	0.97988701	FUSITRITON OREGONENSIS
50	72500	0.28522	0.004	0 20179	0.36174	0.00089900	0.98078603	LYCODES PALEARIS
51	24185	0.28176	0.002	0.00000	0.60090	0.00089600	0.98168200	GYMNOCANTHUS SP.
52	21313	0.28079	0.021	0.00000	0.54926	0.00084200	0.98252398	PYRULOFUSUS DEFORMIS
53	71753	0.26392	0.021	0 13201	0.37194	0.00080500	0.98333001	BOLTENIA SP.
54	98100	0.25245	0.004	0.00000	0.50305	0.00076300	0.98409200	OPHIURA SARSI
55	83320	0.23902	0.010	0.03357	0.41981	0.00072300	0.98481601	BATHYMASTER SIGNATUS
56	20720	0.22669	0.017	0.00000	0.44049	0.00069200	0.98550701	ANOMURA
57	69000	0.216/8	0.015	0.06068	0.35824	0.00068300	0.98619002	PANDALUS BOREALIS
58	66031	0.21396	0.005	0.02278	0.35490	0.00060300	0.98679203	CLUPEA PALLASI
59	21110	0.18884	0.007	0 11651	0.26085	0.00060200	0.98739398	LIMANDA PROBOSCIDEA
60	10211	0.18868	0.001	0.07889	0 24606	0.00051800	0.98791301	HYAS SP.
61	69520	0.16248	0.002	0.06400	0.20058	0.00042200	0.98833501	LETHASTERIAS NANIMENSIS
62	80200	0.13229	0.001	0.00000	0 29992	0.00039800	0.98873299	APLIDIUM SP.
63	98310	0.12468	0.008	0.00000	0 16972	0.00039500	0.98912799	CHIONOECETES HYBRID
64	68590	0.12394	0.001	0.00000	0 25527	0.00037400	0.98950201	SEA URCHIN UNIDENT.
65	82500	0.11709	0.005	0.01757	0 21574	0.00037200	0.98987401	OCTOPUS UNIDENT.
66	78010	0.11666	0.005	0.00000	0 33621	0.00036000	0,99023402	CHIONOECETES SP.
67	68541	0.11291	0.015	0.06107	0 16363	0.00035800	0.99059302	MALLOTUS VILLOSUS
68	23041	0.11235	0.001	0.06073	0 15352	0 00035600	0.99094898	BUCCINUM POLARE
69	72755	0.11162	0.000	0.06975	0 14155	0.00033700	0.99128598	BUCCINUM SCALARIFORME
70	72752	0.10563	0.000	0.00771	0 17740	0.00033500	0.99162102	LEPTASTERIAS ARCTICA
71	80594	0.10498	0.001	0.03233	0 15693	0.00032500	0.99194598	GERSEMIA SP.
72	41201	0.10193	0.001	0.04093	0 22430	0.00031100	0.99225700	BUCCINUM PLECTRUM
73	72751	0.09756	0.004	0.05/01	0 11659	0.00027400	0.99253100	BUCCINUM ANGULOSUM
74	72743	0.08575	0.000	0.00000	0 10010	0.00027200	0.99280298	CUCUMARIA SP.
75	85200	0.08532	0.003	0.00000	0 18457	0.00026200	0.99306500	MYOXOCEPHALUS SP.
76	21375	0.08206	0.005	0.00000	0 21605	0.00023300	0,99329799	SEBASTES POLYSPINIS
77	30420	0.07299	0.005	0.00000	0 15990	0.00023000	0.99352801	EVASTERIAS ECHINOSOMA
78	80020	0.07220	0.002	0.00000	0.00867	0 00021700	0.99374598	DASYCOTTUS SETIGER
79	21390	0.06816	0.000	0.03704	0.00005	0.00021500	0.99396098	ICELUS SP.
80	21446	0.06742	0.000	0.04300	0 1/606	0.00020000	0.99416101	TRICHODON TRICHODON
81	21592	0.06268	0.002	0.00000	0.14090	0.00020000	0 99435198	THALEICHTHYS PACIFICUS
82	23010	0.05985	0.001	0.00988	0.10902	0.00019100	0 99453998	GYMNOCANTHUS GALEATUS
83	21316	0.05880	0.001	0.00000	0.08/70	0.00018700	0.99472600	SNAIL (GASTROPOD) EGGS
84	71001	0.05848	0.000	0.03227	0.00470	0.00010700	0 00400702	LYCODES RARIDENS
85	24184	0.05675	0.000	0.022/8	0.09072	0.00018100	0 00508707	HYAS LYRATUS
84	68578	0.05629	0.000	0.02781	0.084//	0.00013000	0.77500703	EDIMACRUS ISENRECKII
87	69400	0.05509	0.000	0.02764	0.08254	0.00017600	0.97720270	
90	72760	0.05348	0.000	0.01292	0.09404	0.00017100	0.77743271	

Table C-1.--Continued.

		MEAN CPUE		95 PERC	CENT		CUMULATIVE	
RANK	SPECIES	(KG/HA)	VARIANCE	CONFIDENC	E LIMITS	PROPORTION	PROPORTION	NAME
89	320	0.05114	0.001	0.00000	0.12465	0.00016300	0.99559599	SOMNIOSUS PACIFICUS
90	21725	0.05092	0.000	0.02576	0.07609	0.00016200	0.99575901	BOREOGADUS SAIDA
91	22200	0.05086	0.000	0.02757	0.07415	0.00016200	0.99592102	CYCLOPTERIDAE (LIPARIDINAE)
92	71750	0.05038	0.001	0.00509	0.09567	0.00016100	0.99608201	VOLUTOPSIUS SP.
93	22201	0.04902	0.000	0.01594	0.08209	0.00015600	0.99623799	LIPARIS SP.
94	68781	0.04530	0.000	0.02334	0.06725	0.00014500	0.99638301	TELMESSUS CHEIRAGONUS
95	24001	0.04509	0.001	0.00000	0.10454	0.00014400	0.99652702	ZAPRORA SILENUS
96	85201	0.04325	0.001	0.00000	0.10572	0.00013800	0.99666500	CUCUMARIA FALLAX
97	82510	0.04313	0.000	0.01502	0.07123	0.00013800	0.99680197	STRONGYLOCENTROTUS DROEBACHIENSIS
98	20006	0.04045	0.000	0.01842	0.06248	0.00012900	0.99693102	SARRITOR FRENATUS
99	20322	0.03780	0.000	0.00396	0.07165	0.00012100	0.99705201	ANARHICHAS ORIENTALIS
100	81310	0.03706	0.000	0.00000	0.07924	0.00011800	0.99716997	PTERASTER SP.
101	95030	0.03705	0.000	0.00929	0.06481	0.00011800	0.99728799	FLUSTRA SERRULATA
102	24189	0.03644	0.000	0.00360	0.06929	0.00011600	0.99740499	LYCODES TURNERI
103	74120	0.03494	0.001	0.00000	0.10291	0.00011100	0.99751598	PATINOPECTEN CAURINUS
104	82730	0.03418	0.001	0.00000	0.08644	0.00010900	0.99762499	SAND DOLLAR UNIDENT.
105	21438	0.03239	0.001	0.00000	0.08426	0.00010300	0.99772900	ICELUS SPINIGER
106	56311	0.03237	0.000	0.00000	0.06857	0.00010300	0.99783200	EUNOE NODOSA
107	74000	0.03235	0.000	0.00864	0.05606	0.00010300	0.99793500	PELECYPODA UNIDENT.
108	24180	0.03111	0.000	0.00000	0.06906	0.00009900	0.99803400	LYCODES SP.
109	81741	0.03083	0.001	0.00000	0.09125	0.0009800	0.99813300	ASTERIAS SP.
110	85210	0.03023	0.000	0.00000	0.06489	0.00009600	0.99822903	PSOLUS SP.
111	72501	0.02934	0.000	0.00909	0.04959	0.00009400	0.99832302	FUSITRITON SP.
112	95000	0.02676	0.001	0.00000	0.07310	0.00008500	0.99840802	BRYOZOAN UNIDENT.
113	10270	0.02649	0.000	0.00000	0.06256	0.00008500	0.99849302	ISOPSETTA ISOLEPIS
114	50160	0.02592	0.000	0.00000	0.05479	0.00008300	0.99857497	APHRODITIDAE
115	80595	0.02515	0.000	0.00531	0.04499	0.0008000	0.99865597	LEPTASTERIAS SP.
116	81095	0.02098	0.000	0.00000	0.04199	0.00006700	0.99872297	CROSSASTER PAPPOSUS
117	71769	0.01969	0.000	0.00000	0.04313	0.00006300	0.99878502	BERINGIUS SP.
118	75110	0.01865	0.000	0.00216	0.03514	0.0006000	0.99884498	MACTROMERIS SP.
119	404	0.01749	0.000	0.00000	0.04906	0.00005600	0.99890101	RAJA SP.
120	71886	0.01655	0.000	0.00651	0.02659	0.00005300	0.99895400	NEPTUNEA MAGNA
121	81355	0.01396	0.000	0.00325	0.02468	0.00004500	0.99899799	PTERASTER OBSCURUS
122	40020	0.01382	0.000	0.00000	0.04091	0.00004400	0.99904197	HYDRACTINIA SP.
123	65203	0.01375	0.000	0.00000	0.04071	0.00004400	0.99908602	BALANUS EVERMANNI
124	21735	0.01301	0.000	0.00000	0.02736	0.00004200	0.99912798	ELEGINUS GRACILIS
125	71010	0.01151	0.000	0.00178	0.02123	0.00003700	0.99916399	NUDIBRANCH UNIDENT.
126	71835	0.01074	0.000	0.00430	0.01717	0.00003400	0.99919897	NEPTUNEA BOREALIS
127	21932	0.01010	0.000	0.00000	0.02051	0.00003200	0.99923098	HEXAGRAMMOS STELLERI
128	74981	0.01006	0.000	0.00299	0.01714	0.00003200	0.99926299	COCKLE UNIDENT.
129	71772	0.00997	0.000	0.00000	0.01999	0.00003200	0.99929500	BERINGIUS BERINGII
130	21350	0.00987	0.000	0.00000	0.02439	0.00003200	0.99932599	TRIGLOPS SP.
131	81360	0.00980	0.000	0.00000	0.02217	0.00003100	0.99935800	DIPLOPTERASTER MULTIPES
132	68020	0.00969	0.000	0.00000	0.02708	0.00003100	0.99938798	CANCER MAGISTER

Table C-1.--Continued.

		MEAN COME		95 PERCENT			CUMULATIVE	
RANK	SPECIES	(KG/HA)	VARIANCE	CONFIDENCE	LIMITS	PROPORTION	PROPORTION	NAME
177	21//1	0.00924	0.000	0.00000	0.02618	0.00002900	0.99941802	ICELUS SPATULA
133	71525	0.00020	0.000	0.00163	0.01678	0.00002900	0.99944699	NATICA SP.
134	71323	0.00754	0.000	0.00000	0.01684	0.00002400	0.99947101	PECTINID UNIDENT.
135	74100	0.00732	0.000	0.00000	0.02037	0.00002300	0.99949503	COLUS SP.
130	71710	0.00732	0.000	0.00000	0.01963	0.00002300	0.99951798	CERAMASTER SP.
157	80728	0.00710	0.000	0.00279	0.01140	0.00002300	0.99953997	PANDALUS GONIURUS
158	00045	0.00770	0.000	0.00161	0.01179	0.00002100	0.99956203	ARGIS SP.
139	00570	0.00673	0.000	0.00000	0.01587	0.00002000	0.99958199	BOLTENIA OVIFERA
140	98105	0.00633	0.000	0.00000	0.01840	0.00002000	0.99960202	CIRRIPEDIA (CLASS)
141	65000	0.00020	0.000	0.00000	0.01404	0.00001900	0.99962097	ANOPLOPOMA FIMBRIA
142	20510	0.00560	0.000	0.00000	0.01402	0.00001800	0.99963802	MOLGULA GRIFITHSII
143	99902	0.00559	0.000	0.00000	0.01307	0.00001700	0.99965602	TRIGLOPS PINGELI
144	21355	0.00544	0.000	0.00000	0.01537	0.00001700	0.99967200	ONCORHYNCHUS NERKA
145	23240	0.00519	0.000	0.00046	0.00935	0.00001600	0.99968803	GYMNOCANTHUS PISTILLIGER
146	21314	0.00490	0.000	0.00198	0.00768	0.00001500	0.99970299	OREGONIA GRACILIS
147	68510	0.00485	0.000	0.00108	0.00760	0.00001400	0.99971700	SERRIPES GROENLANDICUS
148	75285	0.00434	0.000	0.00000	0.00954	0.00001400	0.99973100	TRITONIA DIOMEDEA
149	71030	0.00428	0.000	0.00000	0.00895	0.00001300	0.99974400	OSMERUS MORDAX
150	23055	0.00408	0.000	0.00000	0.01171	0.00001300	0.99975699	HEXAGRAMMOS DECAGRAMMUS
151	21935	0.00407	0.000	0.00126	0.00587	0.00001100	0.99976802	SKATE EGG CASE UNIDENT.
152	401	0.00357	0.000	0 00142	0.00541	0.00001100	0.99977899	OCCELLA DODECAEDRON
153	20061	0.00342	0.000	0 00000	0.00999	0.00001100	0.99979001	PODODESMUS SP.
154	75605	0.00336	0.000	0.00000	0.00959	0.00001000	0.99980003	SEBASTES SP.
155	30040	0.00524	0.000	0.00000	0.00897	0.00001000	0.99980998	VOLUTOPSIUS MIDDENDORFFII
156	71764	0.00505	0.000	0.00000	0.00606	0.00000900	0.99981898	EUNOE SP.
157	56310	0.00288	0.000	0.00000	0.00594	0.00000900	0.99982798	MICROSTOMUS PACIFICUS
158	10180	0.002/7	0.000	0.00067	0.00464	0.00000800	0.99983603	ARGIS LAR
159	66611	0.00265	0.000	0.00000	0.00564	0.00000800	0.99984503	HEXAGRAMMOS SP.
160	21930	0.00262	0.000	0.00000	0.00743	0.00000800	0.99985301	METRIDIUM SENILE
161	43020	0.00251	0.000	0.00000	0.00607	0.00000800	0.99986100	HOLOTHUROIDEA UNIDENT.
162	85000	0.00248	0.000	0.00000	0.00633	0.00000700	0.99986798	SIPUNCULA (PHYLUM)
163	94000	0.00228	0.000	0.00000	0.00525	0.00000700	0.99987501	PENNATULACEA (ORDER)
164	42000	0.00218	0.000	0.00106	0.00324	0.00000700	0.99988198	LUMPENUS SAGITTA
165	23808	0.00215	0.000	0.00000	0.00468	0.00000700	0.99988902	MALACOCOTTUS SP.
166	21339	0.00214	0.000	0.00000	0.00417	0.00000600	0.99989498	LIMANDA SAKHALINENSIS
167	10212	0.00198	0.000	0.00000	0.00467	0.00000600	0.99990100	EUCRATEA LORICATA
168	95020	0.00182	0.000	0.00050	0.00299	0.00000600	0,99990600	HENRICIA SP.
169	80540	0.00174	0.000	0.00017	0.00317	0.0000500	0.99991202	HYDROID UNIDENT.
170	40011	0.00167	0.000	0.00000	0.00607	0.00000500	0.99991697	MACOMA SP.
171	75240	0.00159	. 0.000	0.00000	0 00298	0.00000500	0.99992102	PSEUDARCHASTER PARELII
172	80660	0.00149	0.000	0.00000	0 00325	0.000000000	0.99992597	MYTILUS EDULIS
173	74080	0.00135	0.000	0.00000	0.00347	0.00000400	0.99993002	CAREPROCTUS SCOTTAE
174	22232	0.00124	0.000	0.00000	0.00367	0.00000400	0 00003300	PLEUROGRAMMUS MONOPTERYGIUS
175	21921	0.00107	0.000	0.00000	0.00200	0.00000300	0 00003700	EUNOE DEPRESSA
176	56312	0.00104	0.000	0.00000	0.00249	0.00000000	V.77773700	

Table C-1.--Continued.

		MEAN CPUE		95 PERC	CENT		CUMULATIVE		
RANK	SPECIES	(KG/HA)	VARIANCE	CONFIDENC	E LIMITS	PROPORTION	PROPORTION	NAME	
177	71575	0.00094	0.000	0.00000	0.00253	0.00000300	0.99993998	POLINICES SP.	
178	20050	0.00094	0.000	0.00025	0.00162	0.00000300	0.99994302	ASPIDOPHOROIDES BARTONI	
179	74050	0.00088	0.000	0.00000	0.00209	0.00000300	0.99994498	MYTILIDAE	
180	66502	0.00088	0.000	0.00018	0.00158	0.00000300	0.99994802	CRANGON SP.	
181	20000	0.00085	0.000	0.00000	0.00195	0.0000300	0.99995100	AGONIDAE	
182	81060	0.00081	0.000	0.00000	0.00186	0.00000300	0.99995297	SOLASTER SP.	
183	20202	0.00079	0.000	0.0000	0.00162	0.00000300	0.99995601	AMMODYTES HEXAPTERUS	
184	74104	0.00075	0.000	0.00000	0.00201	0.00000200	0.99995798	CHLAMYS SP.	
185	71726	0.00074	0.000	0.00000	0.00219	0.00000200	0.99996102	COLUS SPITZBERGENSIS	
186	21354	0.00073	0.000	0.0000	0.00183	0.00000200	0.99996299	TRIGLOPS SCEPTICUS	
187	66120	0.00067	0.000	0.0000	0.00198	0.00000200	0.99996501	PANDALOPSIS DISPAR	
188	72063	0.00064	0.000	0.00000	0.00162	0.00000200	0.99996698	AFORIA CIRCINATA	
189	68040	0.00060	0.000	0.00014	0.00106	0.00000200	0.99996901	CANCER OREGONENSIS	
190	21333	0.00057	0.000	0.00000	0.00119	0.0000200	0.99997097	ARTEDIELLUS PACIFICUS	
191	79000	0.00053	0.000	0.00000	0.00122	0.00000200	0.99997300	SQUID UNIDENT.	
192	71891	0.00050	0.000	0.00000	0.00118	0.00000200	0.99997401	PLICIFUSUS KROYERI	
193	66530	0.00044	0.000	0.00003	0.00084	0.00000100	0.99997598	CRANGON DALLI	
194	80546	0.00043	0.000	0.0000	0.00095	0.00000100	0.99997699	HENRICIA TUMIDA	
195	80729	0.00039	0.000	0.00000	0.00114	0.00000100	0.99997801	CERAMASTER JAPONICUS	
196	71761	0.00038	0.000	0.00000	0.00113	0.00000100	0.99997902	PYRULOFUSUS MELONIS	
197	98300	0.00038	0.000	0.00000	0.00095	0.00000100	0.99998099	COMPOUND ASCIDIAN UNIDENT.	
198	62000	0.00035	0.000	0.00000	0.00103	0.00000100	0.99998200	ISOPODA (ORDER)	
199	74980	0.00034	0.000	0.00000	0.00096	0.00000100	0.99998301	CLINOCARDIUM SP.	
200	50000	0.00033	0.000	0.0000	0.00098	0.00000100	0.99998403	POLYCHAETA (CLASS)	
201	435	0.00033	0.000	0.00000	0.00097	0.00000100	0.99998498	BATHYRAJA INTERRUPTA	
202	56300	0.00031	0.000	0.00000	0.00090	0.00000100	0.99998599	POLYNOIDAE	
203	23807	0.00030	0.000	0.00000	0.00065	0.00000100	0.99998701	LUMPENUS FABRICII	
204	22178	0.00029	0.000	0.00000	0.00067	0.00000100	0.99998802		
205	30150	0.00029	0.000	0.00000	0.00087	0.00000100	0.99998897	SEBASTES CILIATUS	
206	21900	0.00028	0.000	0.00000	0.00085	0.00000100	0.99998999	HEXAGRAMMIDAE	
207	22175	0.00024	0.000	0.00000	0.00070	0.00000100	0.99998999	APTUCTCLUS VENTRICUSUS	
208	81315	0.00022	0.000	0.00000	0.00066	0.00000100	0.999999100	PIERASIER IESSELATUS	
209	65100	0.00021	0.000	0.00000	0.00062	0.00000100	0.99999201		
210	/1890	0.00020	0.000	0.00000	0.00039	0.00000100	0.99999201		
211	66200	0.00018	0.000	0.00000	0.00043	0.00000100	0.999999303		
212	81870	0.00016	0.000	0.00000	0.00047	0.00000100	0.999999398	DIPSALASIEK BUKEALIS	
213	23805	0.00016	0.000	0.00000	0.00038	0.00000000	0.999999398		
214	21346	0.00014	0.000	0.00000	0.00041	0.00000000	0.999999398	REMILEPIDUIUS REMILEPIDUIUS	
215	20051	0.00014	0.000	0.00000	0.00057	0.00000000	0.999999499		
216	59100	0.00014	0.000	0.00000	0.00041	0.00000000	0.99999499	HIKUDINEA UNIDENI.	
217	21388	0.00013	0.000	0.00000	0.00039	0.00000000	0.99999601	ENUPHRTS DICERAUS	
218	23801	0.00013	0.000	0.00000	0.00032	0.00000000	0.99999601	LUMPENUS SP.	
219	23809	0.00013	0.000	0.00000	0.00038	0.00000000	0.99999702	ACAN HOLUMPENUS MACKAYI	
220	21341	0.00013	0.000	0.00000	0.00038	0.000000000	0.99999702	MALACOCOTTUS ZONURUS	

|--|

RANK	SPECIES	MEAN CPUE (KG/HA)	VARIANCE	95 PERC CONFIDENC	ENT E LIMITS	PROPORTION	CUMULATIVE	NAME
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236	66020 72790 80730 20700 75284 23800 21331 21300 66600 71759 75267 23850 69090 21405 66160 23000	0.00013 0.00011 0.00010 0.00009 0.00008 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00037 0.00033 0.00031 0.00028 0.00026 0.00018 0.00020 0.00009 0.00009 0.00009 0.00009 0.00009 0.00008 0.00008 0.00008 0.00008 0.00008	0.00000000 0.0000000 0.0000000 0.0000000	0.99999702 0.99999797 0.99999797 0.99999797 0.99999899 0.99999899 0.99999899 0.99999899 0.99999899 0.99999899 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000	PANDALUS SP. ARCTOMELON STEARNSII CERAMASTER PATAGONICUS BATHYMASTERIDAE SERRIPES SP. STICHAEIDAE ARTEDIELLUS SP. COTTIDAE SCLEROCRANGON SP. VOLUTOPSIUS FILOSUS SILIGUA ALTA POROCLINUS ROTHROCKI PAGURUS OCHOTENSIS NAUTICHTHYS PRIBILOVIUS SPIRONTOCARIS SP. OSMERIDAE

 \mathfrak{X}

APPENDIX D

Abundance Estimates for Principal Fish Species

Appendix D presents estimates of catch-per-unit-effort (CPUE), population numbers and biomass for the principal fish species. Estimates of variance and confidence intervals do not incorporate variation associated with fishing power corrections or measurements of effort. CPUE is measured in kilograms (kg) and numbers (no.) per hectare. Estimates are given separately for each of the 10 geographic strata used in the analysis; estimates for each of the six standard subareas are presented as subtotals of the component strata. Stratum codes correspond to subareas as follows:

<u>Subarea</u>	Stratum
1	10
2	20
3	31
	32 (Pribilof Islands high density)
4	41
	42 (Pribilof Islands high density)
	43 (St. Matthew Island high density)
5	50
6	61
	62 (St. Matthew Island high density)

List of Tables

<u>Table</u>	- Pa	ge
D-1.	Walleye pollock	33
D - 2.	Pacific cod 1	35
D-3.	Yellowfin sole1	37
D-4.	Rock sole 1	.39
D-5.	Hippoglossoides spp	41
D-6.	Alaska plaice 1	43
D-7.	Greenland turbot1	45
D-8.	Atheresthes spp 1	47
D-9.	Pacific halibut 1	.49

CPUE								
Stratum	Total hauls	Hauls with catch	Hauls with nums.	Hauls with L-F	Mean CPUE (kg/ha)	Variance mean CPUE (kg/ha)	Mean CPUE (no/ha)	Variance mean CPUE (no/ha)
10	57	50	50	50	21.97	.39740E+02	16.45	.16110E+02
20	16	15	15	15	11.70	.77020E+01	115.80	.37080E+04
31	68	67	67	67	79.88	.20150E+03	115.13	.12130E+04
32	8	8	8	8	249.32	.57990E+04	399.84	.30880E+05
Subtotal	76	75	75	75	94.27	.21060E+03	139.32	.12390E+04
41	41	41	41	41	40.03	.15260E+03	85.41	.61120E+03
42	31	30	30	30	142.22	.84340E+03	190.76	.22840E+04
43	22	21	21	21	19.29	.57980E+02	29.80	.51610E+02
Subtotal	94	92	92	92	59.60	.96460E+02	98.57	.31930E+03
50	26	26	26	26	64.01	.10840E+03	79.88	.44160E+03
61	60	58	58	58	252.84	.28860E+04	400.56	.52330E+04
62	7	7	7	7	101.30	.33530E+03	113.95	.11040E+04
Subtota1	67	65	65	65	242.54	.25080E+04	381.08	.45510E+04
Total	336	323	323	323	97.87	.13500E+03	151.18	. 32220E+03

Table D-1CPUE,	population,	and biomass	estimates	for walleye	pollock.

POPULATION

Stratum	Population	Variance population	Eff. deg. freedom	95% Confid Lower	ence Limits Upper
10	128.073.058	.97703E+15	56.00	64,901,781	191,244,335
20	240,167,259	.15952E+17	15.00	0	509,313,094
31 32	1.088.317.110 350.828.005	.10840E+18 .23775E+17	67.00 7.00	429.829.514 0	1.746.804.707 715.494.088
SUDTOLAI	1,439,145,116	.13218E+18	68.21	/12,022,257	2,166,267,974
41 42	494,308,660 458,029,916	.204/5E+17 .13168E+17	40.00 30.00	205,122,057 223,708,559	783,495,263 692,351,273
45 Subtotal	1,015,236,713	.33873E+15	70.55	31,265,728 647,145,892	94,530,546 1,383,327,534
50	309.870.667	.66448E+16	25.00	141,622,282	478.119.053
61 62	3,530,318,029 73,251,905	.40649E+18 .45619E+15	59.00 6.00	2,241,799,822 20,987,211	4,818,836,235 125,516,599
Subtotal Total	3,603,569,934 6,736,062,747	. 40694E+18 . 59657E+18	59.13 115.11	2,314,328,892 5,191,306,299	4,892,810,975 8,280,819,196

Table	: D-]	IContinued.	
-------	---------------	-------------	--

BIOMASS						
		Variance	Eff. deg.	95% Confidence Limits		
Stratum	Biomass (t)	biomass	freedom	Lower	Upper	
10	171.102	.24100E+10	56.00	71,889	270.316	
20	24,257	.33129E+08	15.00	11.911	36,603	
21	755 080	18006F+11	67.00	486,709	1,023,451	
31	218 754	44646F+10	7.00	55,250	382,258	
Subtotal	973,834	.22470E+11	65.69	674,031	1,273,636	
41	221 652	51119E+10	40.00	87.157	376,150	
41	201,000	48627F+10	30.00	199.081	483,869	
42	An 722	25833E+09	21.00	7,290	74,153	
43 Subtotal	613,850	.10233E+11	72.49	411,535	816,165	
50	248,299	.16312E+10	25.00	165,100	331.498	
61	2 220 260	22417F+12	59 00	1.271.495	3,185,225	
61	2,220,300	139565+09	6.00	34,859	95,387	
62 Subtotal	2,293,483	.22430E+12	59.07	1,336,322	3,250,644	
Total	4,324,825	.26108E+12	79.16	3,302,902	5,346,748	

CPUE							<u>)</u> #	
Stratum	Total hauls	Hauls with catch	Hauls with nums.	Hauls with L-F	Mean CPUE (kg/ha)	Variance mean CPUE (kg/ha)	Mean CPUE (no/ha)	Variance mean CPUE (no/ha)
10	57	53	53	52	14.63	.14330E+02	22.95	.30410E+02
20	16	14	14	14	5.48	.42380E+01	15.25	.60640E+02
31	68	67	67	67	13.60	.30460E+01	14.24	.74760E+01
32	8	7	7	7	6.69	.83480E+01	3.26	.11380E+01
Subtota1	76	74	74	74	13.01	.26110E+01	13.31	.62680E+01
41	41	37	37	35	9.56	.12660E+02	13.44	.28750E+02
42	31	31	31	31	11.53	.41830E+01	20.81	.31290E+02
43	22	22	22	22	4.02	.18070E+01	7.34	.29330E+01
Subtotal	94	90	90	88	8.88	.43000E+01	13.91	.10900E+02
50	26	25	25	25	13.39	.67860E+01	5.11	.16850E+01
61	60	59	59	59	14.37	.31440E+01	5.37	.11870E+01
62	7	7	7	7	8.95	21790E+01	9.63	58450E+01
Subtotal	67	66	66	66	14.00	.27410E+01	5.66	.10580E+01
Total	336	322	322	319	11.94	.93990E+00	13.17	.21610E+01

Table D-2.--CPUE, population, and biomass estimates for Pacific cod.

POPULATION

Stratum	Population	Variance population	Eff. deg. freedom	95% Confide Lower	nce Limits Upper	
10	178,742,320	.18442E+16	56.00	91,951,885	265,532,754	
20	31,619,358	.26086E+15	15.00	0	66,263,283	
31 32	134,614,176 2,864,161	.66799E+15 .87574E+12	67.00 7.00	82,923,200 650,976	186,305,152 5,077,346	
Subtotal	137,478,337	.66886E+15	67.17	85,753,489	189,203,185	
41 42	77,779,296 49,961,283	.96296E+15 .18039E+15	40.00 30.00	14,412,698 22,495,100	141.145.894 77.427.466	
43 Subtotal	15,499,904 143,240,482	.13069E+14 .11564E+16	21.00 55.08	7.958.872 74.513.999	23,040,936 211,966,966	
50	19,807,987	.25361E+14	25.00	9,433,799	30,182,176	
61	47,301,062	.92198E+14	59.00	27,895,487	66,706,637	
62	6,191,562	.24154E+13	6.00	2,388,550	9,994,574	
Subtotal	53,492,624	.94613E+14	61.71	34,038,765	72.946.483	
Total	564,381,108	.40503E+16	170.21	438,369,579	690,392,638	
BIOMASS						
----------------	-------------	------------	-----------	-----------------------	---------	--
-		Variance	Eff. deg.	95% Confidence Limits		
Stratum	Biomass (t)	biomass	freedom	Lower	Upper	
10	113,963	.86876E+09	56.00	54,395	173,532	
20	11,359	.18229E+08	15.00	2,261	20,458	
01	120 560	27217F+09	67 00	95.574	161,564	
31	120,009	64265E+07	7 00	0	12,076	
32 Subtotal	134,442	.27859E+09	69.83	101.060	167.824	
	FF 220	42402E+09	40 00	13,704	96,936	
41	55,320	241185+08	30.00	17.642	37,728	
42	27,000	241102-00	21 00	2,589	14,393	
43 Subtotal	91,496	.45619E+09	46.07	48,330	134,662	
50	51,956	.10211E+09	25.00	31.139	72,772	
6 1	126 677	24422F+09	59.00	95,094	158,261	
60	5 751	90069E+06	6.00	3,428	8,073	
62 Subtotal	132,428	.24512E+09	59.43	100,786	164,070	
Total	535,645	.19690E+10	188.60	447,785	623,504	
Total	535,645	.190906+10	100.00	+17,700		

Table D-2.--Continued.

1	3	7
_	_	

CPUE								
Stratum	Total hauls	Hauls with catch	Hauls with nums.	Hauls with L-F	Mean CPUE (kg/ha)	Variance mean CPUE (kg/ha)	Mean CPUE (no/ha)	Variance mean CPUE (no/ha)
10	57	57	57	57	110.21	.23160E+03	472.64	.32320E+04
20	16	16	16	16	142.66	.10060E+04	749.64	.29430E+05
31	68	67	66	65	68.75	.71820E+02	257.44	.10740E+04
32	8	7	7	7	3.01	.10190E+01	6.11	.51630E+01
Subtotal	76	74	73	72	63.17	.60140E+02	236.09	.89970E+03
41	41	37	37	37	15.99	.14070E+02	53.54	.17710E+03
42	31	27	27	27	39.03	.21040E+03	107.93	.17220E+04
43	22	17	17	16	1.71	.40820E+00	6.23	.65100E+01
Subtotal	94	81	81	80	18.44	.15900E+02	56.52	.14980E+03
50	26	3	3	3	0.30	.40390E-01	0.64	.19930E+00
61	60	0	0	0	0.00	.00000E+00	0.00	.00000E+00
62	7	0	0	0	0.00	.00000E+00	0.00	.00000E+00
Subtotal	67	0	0	0	0.00	.00000E+00	0.00	.00000E+00
Total	336	231	230	228	45.16	.19890E+02	184.86	.35010E+03

Table D-3.--CPUE, population, and biomass estimates for yellowfin sole.

Stratum	Population	Variance population	Eff. deg. freedom	95% Confid Lower	ence Limits Upper
10	3,680,541,997	.19599E+18	56.00	2,785,837,351	4,575,246,643
20	1,554,782,213	.12659E+18	15.00	796,595,012	2,312,969,414
31 32	2,433,466,406 5,361,750	.96007E+17 39750F+13	67.00 7.00	1,813,767,339	3,053,165,473
Subtotal	2.438.828.156	.96011E+17	67.01	1,819,116,260	3,058,540,052
41 42 43	309,889,386 259,153,033 13,140,076	.59322E+16 .99275E+16 29005E+14	40.00 30.00 21.00	154,229,994 55,694,317 1,937,886	465.548.777 462.611.749 24.342.267
Subtotal	582,182,495	.15889E+17	60.62	330.081.213	834,283,777
50	2,486,019	.29988E+13	25.00	0	6.053.344
61 62	0 0	.00000E+00 .00000E+00	59.00 6.00	0 0	0 0
Subtotal	0	.00000E+00	63.21	0	0
Total	8,258,820,880	.43448E+18	99.57	6,940,526,017	9,577,115,743

Table D-3Co	ontinued.
-------------	-----------

Stratum	Biomass (t)	Variance biomass	Eff. deg. freedom	95% Conth Lower	Upper
10	858,189	.14044E+11	56.00	618,684	1,097.694
20	295,886	.43291E+10	15.00	154,754	437.018
21	640 859	64169F+10	67 00	489.647	810,070
32	2 630	78435E+06	7.00	544	4,733
Subtotal	652,497	.64177E+10	67.02	492,275	812.718
A1	92 564	47129F+09	40.00	48,690	136,439
41	92,304	12131F+10	30.00	22,601	· 164,847
42	3 609	18187E+07	21.00	796	6,422
Subtotal	189,897	.16862E+10	52.08	106,907	272,887
50	1,172	.60774E+06	25.00	0	2,781
61	0	00000E+00	59.00	0	0
62	ů N	00000E+00	6.00	0	0
Subtotal	Ö	.00000E+00	63.21	0	0
Total	1,997,641	.26478E+11	128.87	1,675,455	2,319,827

CPUE								2
Stratum	Total hauls	Hauls with catch	Hauls with nums.	Hauls with L-F	Mean CPUE (kg/ha)	Variance mean CPUE (kg/ha)	Mean CPUE (no/ha)	Variance mean CPUE (no/ha)
10	57	57	57	57	87.01	.10830E+03	573.45	.55120E+04
20	16	16	16	16	62.80	.13180E+03	450.95	.77710E+04
31	68	66	66	66	31.56	.15430E+02	223.15	.10500E+04
32	8	8	8	8	27.05	.91800E+01	112.39	.20210E+03
Subtotal	76	74	74	74	31.18	.12980E+02	213.75	.88040E+03
41	41	40	40	38	12.66	.17960E+02	86.32	.11820E+04
42	31	31	31	31	79.15	.32450E+03	297.45	.57820E+04
43	22	22	22	22	13.75	.73840E+02	47.36	36620E+03
Subtotal	94	93	93	91	28.38	.26400E+02	127.55	.70280E+03
50	26	²² 9	9	9	1.47	.73250E+00	3.80	.42350E+01
61	60	49	49	38	5.63	.13830E+01	12.77	.73370E+01
62	7	7	7	7	5.10	.51760E+00	12.49	.48310E+01
Subtota1	67	56	56	45	5.59	.12040E+01	12.75	.63960E+01
Total	336	305	305	292	35.75	.10350E+02	210.50	.40400E+03

Table D-4.--CPUE, population, and biomass estimates for rock sole.

Stratum	Population	Variance population	Eff. deg. freedom	95% Confid Lower	ence Limits Upper	
10	4,465,538,111	.33426E+18	56.00	3,297,092,713	5,633,983,510	
20	935,278,438	.33429E+17	15.00	545,652,403	1,324,904,473	
31 32	2,109,383,358 98,612,140	.93789E+17 .15561E+15	67.00 7.00	1,496,883,086 69,110,504	2,721,883,630 128,113,776	
Subtotal	2.207,995,498	.93945E+17	67.22	1,594,987,332	2,821,003,665	
41 42 43	499.574.317 714.199.421 99.955.843	.39589E+17 .33337E+17 16316E+16	40.00 30.00 21.00	93,277,232 340,814,038	905.871.403 1.087.584.804	
Subtotal	1,313.729,581	.74558E+17	72.81	767,624,094	1,859,835,069	
50	14,756,593	.63734E+14	25.00	0	31,202,342	
61 62	112,529,910 8,031,674	.56991E+15 .19964E+13	59.00 6.00	64,283,034 4,399,016	160,776,786 11,664,332	
Subtotal	120,561,584	.57191E+15	59.41	72,230,278	168,892,891	
Total	9,057,859,806	.53683E+18	126.54	7,607,143,272	10,508,576,340	

		Variance	Eff. dea.	95% Confid	lence Limits
Stratum	Biomass (t)	biomass	freedom	Lower	Upper
10	677,582	.65650E+10	56.00	513,831	841,332
20	130,242	.56696E+09	15.00	79,168	181,317
21	208 307	13785F+10	67.00	224,052	372,562
31	230,307	70676F+07	7 00	17.449	30,023
32 Subtotal	322,043	.13855E+10	67.67	247,598	396,488
	70 064	60147E+00	40 00	23,184	123,344
41	/3,204	107065+10	30.00	101 727	278.361
42	190,044	.10/001+10	21 00	101,727	66.750
43 Subtotal	29,024 292,332	.28010E+10	59.98	185.371	399,293
50	5,707	.11023E+08	25.00	0	12,546
~	40 501	107425+00	59 00	28.645	70,537
61	49,591	.10/425-05	6 00	2 146	4,409
62	3.277	.21390E+00	0.00	21 001	73 836
Subtotal	52,869	.10/63E+09	59.23	21,301	/0,000
Total	1,480,775	.11437E+11	137.62	1,269,024	1,692,525

Table D-4.--Continued.

1	4	1
-	-	-

CPUE									
Stratum	Total hauls	Hauls with catch	Hauls with nums.	Hauls with L-F	Mean CPUE (kg/ha)	Variance mean CPUE (kg/ha)	Mean CPUE (no/ha)	Variance mean CPUE (no/ha)	
10	57	36	36	34	2.68	.27080E+00	5.89	.17300E+01	
20	16	1	1	1	0.02	.23340E-03	0.03	.87290E-03	
31	68	68	68	68	26.04	.17510E+02	85.46	.38890E+03	
32	8	8	8	8	9.19	.14530E+02	25.74	.12030E+03	
Subtotal	76	76	76	76	24.61	.14770E+02	80.39	.32650E+03	
41	41	40	40	40	3.75	.53710E+00	15.83	.12630E+02	
42	31	29	29	29	10.50	.54440E+01	22.35	.27220E+02	
43	22	21	21	20	2.29	.21500E+00	10.29	.43700E+01	
Subtotal	94	90	90	89	5.02	.47450E+00	16.22	.56510E+01	
50	26	26	26	26	35.21	.14560E+03	186.82	.15420E+04	
61	60	60	60	60	20.91	.70370E+01	108.06	.20670E+03	
62	7	7	7	7	2.72	.14720E+01	15.53	.45740E+02	
Subtotal	67	67	67	67	19.67	.61190E+01	101.77	.17970E+03	
Total	336	296	296	293	14.04	.22280E+01	57.65	.40800E+02	

Table D-5.--CPUE, population, and biomass estimates for <u>Hippoglossoides</u> spp.

Stratum	Population	Variance population	Eff. deg. freedom	95% Confid Lower	ence Limits Upper
10	45,872,766	.10490E+15	56.00	25,173,805	66,571,728
20	61,277	.37548E+10	15.00	0	192,715
31	807,855,724	.34746E+17	67.00	435,050,739	1,180,660,708
Subtotal	830,436,089	.34838E+17	67.35	0 457,134,728	45,336,972 1,203,737,451
41	91,635,978	.42309E+15	40.00	50,065,751	133,206,205
42 43	53,668,108 21,727,386	.15691E+15 .19471E+14	30.00 21.00	28,051,662 12,549,117	79,284,554 30,905,655
Subtotal	167.031.472	.59947E+15	67.62	118.063,282	215,999,661
50	724,713,302	.23204E+17	25.00	410,310,090	1,039,116,515
61	952.412,876	.16053E+17	59.00	696,353,783	1,208,471,970
Subtotal	9,982,949 962,395,825	.16072E+17	59.14	0 706,186,026	20,621,475 1,218,605,625
Total	2,730,510,732	.74818E+17	127.42	2,188,923,740	3,272,097,724

		Variance	Eff. dea.	95% Confid	ence Limits	
Stratum	Biomass (t)	biomass	freedom	Lower	Upper	
10	20,879	.16422E+08	56.00	12,690	29,069	
20	32	.10040E+04	15.00	0	99	
01	246 192	15645E+10	67.00	167.075	325,289	
31	240,102	11185F+08	7 00	155	15,974	
32 Subtotal	254,246	.15757E+10	67.93	174,857	333,636	÷.
	01 705	170025+08	40 00	13,132	30,277	
41	21,705	212055-00	30.00	13 751	36,664	
42	25,207	.010001-00	21 00	2 805	6,876	
43 Subtotal	4,841 51,752	.50334E+08	61.85	37,563	65,942	
50	136,596	.21914E+10	25.00	40,162	233,029	
61	184 202	54657F+09	59.00	137.044	231,540	
60	1 746	60833E+06	6.00	0	3,751	
62 Subtotal	186.038	.54717E+09	59.13	138,763	233,313	
Total	649,543	.43810E+10	82.11	517,165	781,921	

Table D-5.--Continued.

able	D-6CPUE	nonulation	and hiomas	s estimates	for Alas	ka nlaice
	$D^{-}V = U U U U$. DODUIALIOIL	. anu munnas	S CSHIIIAICS	101 0103	ika maile

CPUE								
Stratum	Total hauls	Hauls with catch	Hauls with nums.	Hauls with L-F	Mean CPUE (kg/ha)	Variance mean CPUE (kg/ha)	Mean CPUE (no/ha)	Variance mean CPUE (no/ha)
10	57	45	45	43	9.71	.53940E+01	19.07	.14490E+02
20	16	16	16	15	13.67	.16640E+02	33.89	.81490E+02
31 32	68 8	59	58	55	11.78	.37780E+01	16.08	.86160E+01
Subtotal	76	65	64	61	11.35	.32260E+01	15.19	.72520E+01
41 42 43	41 31 22	38 26 20	38 26 20	37 26 19	27.70 19.38 7.23	.40170E+02 .28870E+02 30800E+01	37.27 21.93 7.85	.93870E+02 .48780E+02 .44590E+01
Subtotal	94	84	84	82	21.57	.14380E+02	27.67	.32480E+02
50	26	1	1	1	0.01	.45510E-04	0.01	.22130E-03
61 62 Subtotal	60 7 67	16 2 18	16 2 18	14 2 16	5.13 1.05 4.86	.60960E+01 .46320E+00 .52980E+01	2.74 0.50 2.58	.18280E+01 .10580E+00 .15880E+01
Total	336	229	228	218	11.42	.15530E+01	15.82	. 32000E+01

Ta biomass estimates for Alaska plaice. s, por

Stratum	Population	Variance population	Eff. deg. freedom	95% Confide Lower	nce Limits Upper
10	148,501,734	.87891E+15	56.00	88,586,298	208,417,171
20	70,294,572	.35056E+15	15.00	30,395,406	110,193,738
31 32 Subtotal	151,994,706 4,913,114 156,907,820	.76989E+15 .40018E+13 .77389E+15	67.00 7.00 67.68	96.501.027 182.060 101.270.103	207,488,385 9,644,168 212,545,537
41 42 43 Subtotal	215,729,902 52,660,232 16,569,775 284,959,909	.31445E+16 .28122E+15 .19866E+14 .34455E+16	40.00 30.00 21.00 47.51	102.401.352 18.366.574 7.298.830 166.329.741	329.058.453 86.953.890 25.840.719 403.590.076
50	57,704	.33298E+10	25.00	0	176,575
61 62 Subtotal	24,119,970 322,495 24,442,465	. 14199E+15 . 43722E+11 . 14204E+15	59.00 6.00 59.04	37,619 0 356,406	48,202,321 834,158 48,528,523
Total	685,164,204	.55909E+16	111.22	535,619,016	834,709,392

Table D-6Co	ntinued.
-------------	----------

		Vanianco	Eff dea	95% Confid	ence Limits
Stratum	Biomass (t)	biomass	freedom	Lower	Upper
10	75,645	.32707E+09	56.00	39,095	112,195
20	28,358	.71582E+08	15.00	10,210	46,506
- 21	111 252	33750F+09	67 00	74,606	148,101
31	£ 000	.55/552-05	7 00	0	11,987
32 Subtotal	117,243	.34424E+09	69.41	80,136	154,350
41	160 344	13456F+10	40.00	85,439	235,248
41	46 527	16645E+09	30.00	20,183	72.872
42	40,027	13724F+08	21 00	7.558	22,969
43 Subtotal	222,134	.15257E+10	50.39	143,193	301,076
50	26	.68481E+03	25.00	0	80
61	45 244	47352E+09	59.00	1,266	89,222
62	-3,2	19141F+06	6.00	0	1,746
52 Subtotal	45,920	.47371E+09	59.05	1,933	89,907
Total	489,327	.27423E+10	139.37	385,640	593.014

CPUE								
Stratum	Total hauls	Hauls with catch	Hauls with nums.	Hauls with L-F	Mean CPUE (kg/ha)	Variance mean CPUE (kg/ha)	Mean CPUE (no/ha)	Variance mean CPUE (no/ha)
10	57	0	0	0	0.00	.00000E+00	0.00	.00000E+00
20	16	0	0	0	0.00	.00000E+00	0.00	.00000E+00
31 32	68 8	2	2	2	0.07	.21910E-02	0.01	.70540E-04 .00000E+00
Subtotal	76	2	2	2	0.06	.18350E-02	0.01	.59070E-04
41 42 43	41 31 22	6 2 7	6 2 7	5 2	0.04	.39820E-03 .64780E-01	0.13 0.09	.45300E-02 .39640E-02 .42820E-02
Subtotal	94	15	15	13	0.10	.39710E-02	0.13	.18300E-02
50	26	1	1	1	0.06	.30330E-02	0.01	.51010E-04
61 62 Subtotal	60 7 67	34 7 41	34 7 41	28 7 35	2.45 0.89 2.34	.41450E+00 .11740E+00 .36060E+00	2.08 2.82 2.13	.24160E+00 .26320E+00 .21110E+00
Total	336	59	59	51	0.51	.16250E-01	0.47	.99690E-02

Table D-7.--CPUE, population, and biomass estimates for Greenland turbot.

Stratum	Population	Variance population	Eff. deg. freedom	95% Confiden Lower	ce Limits Upper
10	0	.00000E+00	56.00	0	0
20	0	.00000E+00	15.00	0	0
31 32	112.251 0	.63030E+10 .00000E+00	67.00 7.00	0 0	271,033 0
Subtotal	112.251	.63030E+10	7.94	0	300.011
41 42 43 Subtotal	773,639 207,258 341,299 1,322,196	.15174E+12 .22852E+11 .19524E+11 .19412E+12	40.00 30.00 21.00 61.64	0 0 49.823 441.024	1.560.896 516.396 632.775 2.203.368
50	27,706	.76765E+09	25.00	0	84,782
61 62 Subtotal	18.291.978 1.814.879 20.106.857	.18764E+14 .10879E+12 .18873E+14	59.00 6.00 59.67	9,537,437 966,865 11,326,974	27.046.518 2.662.894 28.886.740
Total	21,569,010	.19074E+14	70.10	12,834,170	30,303,850

BIOMASS						
Stratum	Biomass (t)	Variance biomass	Eff. deg. freedom	95% Confide Lower	ence Limits Upper	
10	0	.00000E+00	56.00	0.	0	
20	0	.00000E+00	15.00	0	0	
21	617	19576E+06	67.00	0	1,502	
32	0	00000E+00	7.00	0	0	
Subtotal	617	.19576E+06	45.00	0	1,511	
41	21.0	133385+05	40 00	0	454	
41	210	37346E+06	30 00	Ō	1,862	
42	014	244555+05	21 00	0	595	
43 Subtotal	1,041	.42125E+06	37.68	0	2,367	
50	214	.45644E+05	25.00	0	654	
61	21 551	.32197E+08	59.00	10,084	33,019	
62	573	48508E+05	6.00	7	1,139	
Subtotal	22,125	.32245E+08	59.18	10.648	33,601	
Tota]	23,997	.32908E+08	66.98	12,524	35,470	

Table D-7.--Continued.

CPUE								
Stratum	Total hauls	Hauls with catch	Hauls with nums.	Hauls with L-F	Mean CPUE (kg/ha)	Variance mean CPUE (kg/ha)	Mean CPUE (no/ha)	Variance mean CPUE (no/ha)
10	57	4	4	2	0.07	.37010E-02	0.24	.27670E-01
20	16	0	0	0	0.00	.00000E+00	0.00	.00000E+00
31	68	24	24	23	8.35	.16970E+02	19.37	.72020E+02
32 Subtotal	8 76	6 30	6 30	6 29	5.42	.80740E+01	22.71	.15440E+03
JUDCOLOT	70	30	30	29	0.10	.142/02+02	19.05	.014202+02
41	41	4	4	4	0.40	.50700E-01	0.76	.19460E+00
42	31	11	11	10	1.89	.14870E+01	8.70	.24400E+02
43	22	0	0	0	0.00	.00000E+00	0.00	.00000E+00
Subtota1	94	15	15	14	0.66	.96850E-01	2.46	.13880E+01
50	26	26	26	26	41.94	.27830E+02	73.74	.12100E+03
61	60	55	55	53	18.83	.65650E+01	24.10	.13340E+02
62	7	1	1	1	0.56	.31690E+00	0.38	.14790E+00
Subtotal	67	56	56	54	17.59	.57040E+01	22.49	.11590E+02
Total	336	131	131	125	8.68	.14880E+01	15.42	.54560E+01

Table D-8.--CPUE, population, and biomass estimates for <u>Atheresthes</u> spp.

Stratum	Population	Variance population	Eff. deg. freedom	95% Confide Lower	nce Limits Upper	2
10	1,888,699	.16780E+13	56.00	0	4,506,666	
20	0	.00000E+00	15.00	0	0	
31 32	183.102.883 19.924.431	.64349E+16 .11884E+15	67.00 7.00	22,667,730 0	343,538,037 45,706,246	
Subtotal	203,027,314	.65537E+16	69.27	41,117,461	364.937.168	
41 42 43	4.397.734 20.899.797 0	.65173E+13 .14068E+15 .00000E+00	40.00 30.00 21.00	0 0	9,557,143 45,155,363	
Subtotal	25,297,531	.14720E+15	32.88	522,883	50,072,178	
50	286,056,610	.18207E+16	25.00	198,158,028	373,955,191	
61 62	212,378,090 247,265	.10361E+16 .61140E+11	59.00 6.00	147,325,578 0	277,430,602 882,985	
Subtotal	212,625,355	.10361E+16	59.01	147,570,924	277,679,786	
Total	728,895,509	.95594E+16	118.46	533,351,294	924.439,724	

Table	D-8(Continued.
-------	------	------------

Stratum	Biomass (t)	Variance biomass	freedom	Lower	Upper		
10	582	.22441E+06	56.00	0	1,539		
20	0	.00000E+00	15.00	0	0		
	70.000	151675+10	67 00	1.071	156.849		
31	78,900		7 00	0	10,857		
32 Subtotal	4,756 83,716	.15229E+10	67.54	5,668	161,764		
	2 207	160835+07	40 00	0	4,931		
41	2,29/	967626+07	30.00	0	10,527		
42	4,539	.007022+07	21 00	0	0		
43 Subtotal	6,836	.10273E+08	43.47	358	13,313		
50	162,701	.41881E+09	25.00	120,543	204,859		
C1	165 090	509935+09	59 00	120,342	211,618		
61	102,300	12007E+06	6.00	0	1,247		
62	302	.1009/2400	59.00	120 698	211,985		
Subtotal	166.342	.21006F+03	59.05	120,000			
Total	420,176	.24623E+10	132.53	321,926	518,426		

CPUE									
Stratum	Total hauls	Hauls with catch	Hauls with nums.	Hauls with L-F	Mean CPUE (kg/ha)	Variance mean CPUE (kg/ha)	Mean CPUE (no/ha)	Variance mean CPUE (no/ha)	
10	57	50	50	50	3.01	.22330E+00	2.11	.10680E+00	
20	16	15	15	15	3.18	.90590E+00	2.38	.42480E+00	
31	68	58	58	58	2.50	.26900E+00	1.00	.50370E-01	
32	8	7	7	7	0.82	.12530E+00	0.82	.12670E+00	
Subtota1	76	65	65	65	2.36	.22610E+00	0.99	.43090E-01	
41	41	23	23	23	0.68	.37670E-01	0.43	.73800E-02	
42	31	26	26	26	2.19	.66730E+00	1.56	.45300E+00	
43	22	12	12	12	0.30	.17350E-01	0.21	.36930E-02	
Subtota1	94	61	61	61	0.95	.48890E-01	0.65	.27100E-01	
50	26	23	23	23	4.24	.88740E+00	0.76	.44180E-01	
61	60	35	35	35	1.99	.17540E+00	0.48	.10410E-01	
62	7	3	3	3	0.15	.52910E-02	0.13	57750E-02	
Subtotal	67	38	38	38	1.87	.15230E+00	0.46	.90690E-02	
Total	336	252	252	252	2.18	.39430E-01	1.05	.11900E-01	

Table D-9.--CPUE, population, and biomass estimates for Pacific halibut.

POPULATION

 $\left| \mathbf{x} \right|$

Stratum	Population	Variance population	Eff. deg. freedom	95% Confiden Lower	ce Limits Upper
10	16,414,592	.64760E+13	56.00	11,271,539	21,557,646
20	4,927,824	.18272E+13	15.00	2.028.344	7,827,304
31 32	9,497,772 717,159	.45004E+13 .97524E+11	67.00 7.00	5,254,928 0	13,740,616
Subtotal	10,214,930	.45980E+13	69.62	5,926.362	14,503,499
41 42	2,507,735 3,756,519	.24720E+12 .26114E+13	40.00 30.00	1,502,900 456,676	3,512,570 7,056,361
43 Subtotal	451.001 6,715.255	.16452E+11 .28751E+13	21.00 36.12	184,212 3,252,836	717,791 10,177,674
50	2,945,414	.66478E+12	25.00	1,262,545	4,628,283
61 62	4,269,207 85,039	.80856E+12 .23868E+10	59.00 6.00	2,451,921 0	6,086,493 204,585
Subtotal	4,354,245	.81095E+12	59.34	2,534,279	6,174,211
Total	45,572,261	.17252E+14	194.18	37,348,229	53,796,294

		Variance	Eff. deg.	95% Confid	ence Limits
Stratum	Biomass (t)	biomass	freedom	Lower	Upper
10	23,406	.13538E+08	56.00	15,970	30.842
20	6,594	.38967E+07	15.00	2,360	10.828
21	23 654	24033E+08	67.00	13.849	33,459
22	23.034	96460E+05	7.00	0	1,453
Subtotal	24,372	.24129E+08	67.53	14,548	34,196
41	2 027	12619E+07	40 00	1.657	6,198
41	5, 252	38471E+07	30.00	1.241	9,263
42	5,252	77319E+05	21.00	65	1,221
43 Subtotal	9,822	.51863E+07	50.44	5,219	14.424
50	16,435	.13354E+08	25.00	8,907	23,963
61	17 576	13621F+08	59.00	10.117	25,035
62	17,570	21865F+04	6 00	0	211
52 Subtotal	17.673	.13623E+08	59.02	10.214	25,132
Total	08 302	73727F+08	229.17	81.301	115,303

Table D-9.--Continued.

APPENDIX E

Population Estimates by Sex and Size Groups for Principal Fish Species

Appendix E presents estimates of the numbers of individuals within the overall survey area by sex and size group for principal fish species.

List of Tables

<u>Table</u>		Page
E-1.	Walleye pollock	. 152
E-2.	Pacific cod	. 154
E-3.	Yellowfin sole	. 156
E-4.	Rock sole	. 157
E-5.	Hippoglossoides spp	. 158
E-6.	Alaska plaice	. 159
E-7.	Greenland turbot	. 160
E-8.	Atheresthes spp	. 162
E-9.	Pacific halibut	. 163

Males Females Unsexed IDEAL Proportion Proportion 70 0 0 0 1,695,946 1,695,946 0.0003 90 0 0 12,486,996 12,646,996 0.0019 100 577,892 0 189,922,578 190,500,470 0.02283 120 224,355 430,425,223 143,101,377 145,035,757 0.0169 130 744,955 480,423 143,810,377 145,035,757 0.0169 150 4,134,946 2,592,059 87,232,357 93,959,362 0.0119 160 4,341,426 4,050,207 71,814,220 80,185,653 0.0119 170 6,043,003 8,857,204 49,851,307 46,694,985 0.0068 180 4,714,145 7,660,978 3,836,972 17,232,463 0.0026 220 10,696,501 5,332,084 395,577 16,424,163 0.0027 240 9,737,186 9,345,301 145,941 0 30,991,417	Doction
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
30 0 1,695,946 1,695,946 0,0003 90 0 251,464 50,824,283 51,075,747 0.0076 110 577,892 0 189,922,578 190,500,470 0.0283 120 264,356 323,643 322,367,912 220,955,911 0.0128 130 744,955 480,423 143,810,377 145,035,755 0.0215 140 1,908,551 1,462,523 110,156,505 113,527,578 0.0169 150 4,134,946 2,592,059 87,232,357 93,959,352 0.0119 160 4,331,426 4,030,207 71,814,220 80,185,853 0.0119 170 6,043,1003 8,857,204 49,851,307 44,751,514 0.0008 180 4,714,145 7,624,778 33,396,309 45,7254 0.0024 220 6,216,028 6,591,401 9,521,504 22,328,933 0.0024 230 6,615,386 11,459,241 50,291 18,124,918 0.0022	.0000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0005
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0021
10577,8920180,922,578190,500,4700.0283120264,336323,643220,367,912220,955,9110.0328130744,955480,423143,810,377145,035,7550.011691401,908,5511,462,523110,156,505113,527,5780.011691504,134,9462,592,05987,232,3579,959,3620.01391604,341,4264,030,20771,814,22080,18530.01191706,043,0038,857,20449,851,30764,751,5140.00961804,714,1457,624,77831,396,30945,735,2330.00681909,844,2749,426,97327,423,73946,664,9850.00262006,216,0286,91,4019,527,150422,328,9330.00332107,785,5145,660,9783,836,97217,283,4630.002422010,666,5015,332,084395,57716,424,1630.00272409,737,1869,345,301145,94119,224,4290.002925016,972,00710,325,805027,297,8120.004126017,909,52613,081,891030,991,4170.004627032,556,54824,842,16825,14557,423,8620.002927037,835118,177,78826,476,332042,501,5150.000330017,625,18324,876,332042,501,5150.0004330017,625,18324,876,332042,509,4710.0	1.0097
120264, 536323, 643220, 367, 912220, 955, 9110.0328130744, 955480, 423143, 810, 377145, 035, 7550.01191401, 908, 5511, 462, 523110, 156, 505113, 527, 5780.01391504, 134, 9462, 592, 05987, 232, 35793, 959, 3620.01391604, 341, 4264, 030, 20771, 814, 22080, 185, 8530.01191706, 043, 0038, 857, 20449, 851, 30764, 751, 5140.00961804, 714, 1457, 624, 77833, 396, 30945, 735, 2330.00681909, 844, 2749, 426, 97327, 423, 73946, 694, 9850.00692006, 216, 0286, 591, 4019, 521, 50422, 228, 9330.002262107, 785, 5145, 660, 9783, 836, 697217, 283, 4630.002272409, 737, 1869, 345, 301145, 94119, 228, 4290.002725016, 972, 00710, 325, 805027, 297, 8120.004126017, 909, 52613, 081, 891030, 991, 4170.004627032, 556, 54824, 876, 332042, 173, 3600.009228037, 191, 81027, 748, 47825, 14564, 653, 4340.009629037, 843, 44124, 329, 928062, 173, 3600.0004531017, 203, 75713, 346, 603030, 550, 3600.004532018, 740, 72313, 849, 748032, 590, 471 <td>0.0380</td>	0.0380
130 $744, 655$ 480, 423143, 810, 377145, 035, 7550.02151401, 908, 5511, 462, 523110, 156, 505113, 527, 5780.01691504, 341, 4264, 030, 20771, 814, 22080, 185, 8530.01191706, 043, 0038, 857, 20449, 851, 30764, 751, 5140.00961804, 714, 1457, 624, 77833, 396, 30945, 735, 2330.00681909, 844, 2749, 428, 97327, 423, 73946, 649, 9860.00262006, 216, 0286, 591, 4019, 521, 50422, 328, 9330.00332107, 785, 5145, 660, 9783, 836, 97217, 283, 4430.002422010, 696, 5015, 332, 084396, 57716, 424, 1630.00242306, 615, 38611, 459, 24150, 29118, 124, 9180.00272409, 737, 1869, 345, 301145, 94119, 228, 4290.0022925016, 972, 00710, 325, 805027, 297, 8120.004126017, 909, 52613, 081, 891030, 991, 4170.004627032, 556, 54824, 826, 16825, 14564, 965, 158, 3240.009228037, 191, 81027, 748, 47825, 14564, 965, 158, 3240.009228037, 813, 246, 748032, 590, 4710.004331017, 203, 75713, 346, 603030, 559, 5460.002535018, 740, 72313, 849, 748032, 590, 471 <t< td=""><td>0.0708</td></t<>	0.0708
1401,908,5511,462,523110,156,505113,527,5780.01691504,134,9422,592,05987,232,35793,959,3620.01391604,341,4264,030,20771,814,22080,185,8530.00191706,043,0038,857,20449,851,30764,751,5140.00961804,714,1457,624,77833,396,30945,735,2330.00681909,844,2749,426,97327,423,73946,69,9850.00262006,216,0286,591,4019,521,50422,328,9330.00262107,785,5145,660,9783,836,97217,283,4630.002622010,696,5015,332,084395,57716,424,1630.00272409,737,1869,345,301145,94119,228,4290.002925016,972,00710,325,805027,297,8120.004126017,905,52613,081,891030,991,4170.004627032,556,54824,842,16825,14557,423,8620.002929037,643,44124,329,928062,173,3690.009230017,625,18324,376,532042,501,5150.004331017,205,75713,546,603030,550,3500.004531017,205,75713,546,603032,590,4710.004833036,178,68320,339,638056,518,210.004833036,178,68320,339,638032,590,4710.0048330<	1.0923
1504, 134, 9462, 592, 05987, 232, 35793, 693, 3620.01391604, 341, 4264, 030, 20771, 814, 22080, 185, 8530.01191706, 043, 0038, 857, 20449, 851, 30764, 751, 5140.00961804, 714, 1457, 624, 77833, 396, 30945, 752, 2330.00681909, 844, 2749, 426, 97327, 423, 73946, 694, 9850.000692006, 216, 0286, 591, 4019, 521, 50422, 328, 4330.00262107, 785, 5145, 660, 9783, 836, 97217, 283, 4630.00242306, 615, 38611, 459, 24150, 29118, 124, 9180.00272409, 737, 1869, 345, 301145, 94119, 228, 4290.002925016, 972, 00710, 325, 805027, 297, 8120.004126017, 909, 52613, 081, 891030, 991, 4170.004627032, 556, 54824, 842, 16825, 14557, 423, 8620.009229037, 843, 44124, 329, 928062, 173, 3690.009230017, 625, 18324, 876, 332062, 173, 3690.004331017, 203, 75713, 846, 748032, 590, 4710.004832018, 740, 72313, 849, 748032, 590, 4710.004833036, 178, 68320, 339, 638056, 518, 5210.004333036, 178, 68320, 339, 638056, 518, 5210.0048 </td <td>1.1092</td>	1.1092
1604, 341, 4264, 030, 20771, 814, 22080, 185, 8530.01191706, 043, 0038, 857, 20449, 851, 30764, 751, 5140.00961804, 714, 1457, 624, 77833, 396, 30945, 735, 2330.00681909, 844, 2749, 426, 97327, 423, 73946, 664, 9850.00262006, 216, 0286, 591, 4019, 521, 50422, 328, 9330.00332107, 785, 5145, 660, 9783, 836, 97217, 283, 4630.00242306, 615, 38611, 459, 24150, 29118, 124, 9180.00272409, 737, 1869, 345, 301145, 94119, 228, 4290.002925016, 972, 00710, 325, 805027, 297, 8120.004126017, 909, 52613, 081, 891030, 991, 4170.004627032, 556, 54824, 842, 16825, 14557, 423, 8620.009228037, 191, 81027, 748, 47825, 14554, 4330.009629037, 191, 81027, 748, 47825, 14556, 188, 3210.004331017, 625, 18324, 876, 332042, 501, 5150.004331017, 625, 18324, 876, 332025, 506, 444, 6360.038833036, 178, 68320, 339, 638056, 518, 3210.008433036, 178, 68320, 339, 638055, 918, 5210.004833036, 178, 68320, 339, 638056, 188, 3210.0084	1.1231
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.1330
1804, 714, 1457, 624, 77833, 396, 30945, 735, 2330.00881909, 844, 2749, 426, 97327, 423, 73946, 694, 9980.00692006, 216, 0286, 591, 4019, 521, 50422, 328, 9330.00332107, 785, 5145, 660, 9783, 836, 97217, 283, 4630.002422010, 696, 5015, 332, 084395, 57716, 424, 1630.00242306, 615, 38611, 459, 24150, 29118, 124, 9180.00272409, 737, 1869, 345, 301145, 94119, 228, 4290.002925016, 972, 00710, 325, 805027, 297, 8120.004126017, 909, 52613, 081, 891030, 991, 4170.004627032, 556, 54824, 842, 16825, 14557, 423, 8620.008528037, 191, 81027, 748, 47825, 14564, 956, 3430.009628037, 191, 81027, 748, 47825, 14564, 956, 3430.009230017, 625, 18324, 876, 332042, 501, 5150.006331017, 203, 75713, 344, 778035, 508, 00300, 550, 36032018, 740, 72313, 849, 778032, 590, 4710.008433036, 178, 68320, 339, 638055, 518, 3210.008434093, 288, 10462, 675, 9630155, 964, 0670.0232350143, 373, 551118, 111, 0850261, 484, 6360.03	J. 1440
190 9,844,274 9,426,973 27,423,739 46,694,985 0.0057 200 6,216,028 6,591,401 9,521,504 22,328,933 0.0033 210 7,785,514 5,660,978 3,836,972 17,283,463 0.0024 220 10,696,501 5,332,084 395,577 16,424,163 0.0027 240 9,737,186 9,345,301 145,941 19,228,429 0.0027 240 9,737,186 9,345,301 145,941 19,228,429 0.0027 250 16,972,007 10,325,805 0 27,297,812 0.0041 260 17,909,526 13,081,891 0 30,991,417 0.0046 270 32,556,548 24,842,168 25,145 57,423,862 0.0085 280 37,191,810 27,748,478 25,145 57,423,862 0.0092 300 17,623,183 24,876,332 0 62,173,359 0.0092 301 17,203,757 13,346,603 0 32,590,471 0.00448 <td>J. 1314</td>	J. 1314
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1504
2107,785,5145,660,9783,836,97217,285,4630.002622010,696,5015,332,084395,57716,424,1630.00272306,615,38611,459,924150,29118,124,9180.00272409,737,1869,345,301145,94119,228,4290.002925016,972,00710,325,805027,297,8120.004126017,909,52613,081,891030,991,4170.004627032,556,54824,642,16825,14557,423,8620.008528037,191,81027,748,47825,14564,965,4340.009629037,843,44124,329,928062,173,3690.004531017,203,75713,346,603030,550,3600.004532018,740,72313,849,748032,590,4710.004833036,178,68320,339,638056,518,3210.0082350143,373,551118,111,0850261,444,6360.0388360173,527,892169,552,6940343,080,5850.0509370158,156,899163,645,2550321,802,1540.0478380133,091,607170,336,7600303,428,3670.045039089,737,53186,195,338086,235,3170.012841048,041,97936,193,338086,572,7450.012944059,153,27332,791,2760172,935,4010.025744059,153,273 <t< td=""><td>0.1017</td></t<>	0.1017
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1642
230 $6,615,386$ 11,459,24150,29118,124,918 0.0027 2409,737,1869,345,301145,94119,228,4290.002925016,972,00710,325,805027,297,8120.004126017,909,52613,081,891030,991,4170.004627032,556,54824,842,16825,14557,423,8620.008528037,191,81027,748,47825,14564,965,4340.009629037,843,44124,329,928062,173,3690.009230017,625,18324,876,332042,501,5150.006331017,203,75713,346,603030,550,3600.004432018,740,72313,849,748032,590,4710.004833036,178,68320,339,638056,518,3210.008434093,288,10462,675,9630155,964,0670.0232370158,156,899163,645,2550321,482,5850.0509370158,156,899163,645,2550321,802,1540.0478380133,091,607170,336,7600324,83670.045039089,737,53118,193,338086,235,3170.012841048,041,97938,193,338086,252,5170.012842050,142,79137,346,6727086,572,7450.012944059,153,27332,791,2760129,033,9040.019244059,153,27332,791,276	0.1607
2409, 737, 1869, 345, 301145, 94119, 228, 42.90, 0029 250 16, 972, 00710, 325, 805027, 297, 8120, 0041 260 17, 909, 52613, 081, 891030, 991, 4170, 0046 270 32, 556, 54824, 842, 16825, 14557, 423, 8620, 0095 280 37, 191, 81027, 748, 47825, 14564, 965, 4340, 0096 290 37, 843, 44124, 329, 928062, 173, 3690, 0092 300 17, 625, 18324, 876, 332042, 501, 5150, 0043 310 17, 203, 75713, 346, 603030, 550, 3600, 0044 320 18, 740, 72313, 849, 748056, 518, 3210, 0044 340 93, 288, 10462, 675, 9630155, 964, 0670, 0232 350 143, 373, 551118, 111, 0850261, 484, 6360, 0388 360 173, 527, 892169, 552, 6940321, 802, 1540, 0478 380 133, 091, 607170, 336, 7600303, 428, 3670, 0450 390 89, 737, 53186, 395, 0010113, 073, 8470, 0168 410 48, 041, 97938, 193, 338086, 235, 3170, 0128 420 50, 142, 79137, 346, 727087, 489, 5180, 0129 440 50, 153, 27332, 791, 276091, 944, 5500, 0136 450 97, 980, 04756, 938, 0790154, 818, 1260, 0223<	0.1074
25016,972,00710,325,8050 $27,297,612$ 0.004126017,909,52613,081,891030,991,4170.004627032,556,54824,842,16825,14557,423,8620.008528037,191,81027,748,47825,14564,965,4340.009629037,843,44124,329,928062,173,3690.009230017,625,18324,876,332042,501,5150.004531017,203,75713,346,603030,550,3600.004532018,740,72313,849,748032,590,4710.004833036,178,68320,339,638056,518,3210.008434093,288,10462,675,9630155,964,0670.0232350143,373,551118,111,0850261,484,6360.0388360173,527,892169,552,6940303,428,3670.0450370158,156,899163,645,2550321,802,1540.0450380133,091,607170,336,7600303,428,3670.045039089,737,53186,395,0010176,132,5330.026140053,833,91359,239,9340113,073,8470.016841048,041,97938,193,338086,235,3170.012842050,142,79137,346,727087,489,5180.013043052,111,81834,660,927086,727,7450.012944059,153,27332,791,276 <td>0.1763</td>	0.1763
260 $17,909,526$ $13,081,891$ 0 $30,991,417$ 0.0045 270 $32,556,548$ $24,842,168$ $25,145$ $57,423,862$ 0.0085 280 $37,191,810$ $27,748,478$ $25,145$ $64,965,434$ 0.0096 290 $37,843,441$ $24,329,928$ 0 $62,173,369$ 0.0092 300 $17,625,183$ $24,876,332$ 0 $42,501,515$ 0.0063 310 $17,203,757$ $13,346,603$ 0 $30,550,360$ 0.0045 320 $18,740,723$ $13,849,748$ 0 $32,590,471$ 0.0084 330 $36,178,683$ $20,339,638$ 0 $56,518,321$ 0.0084 340 $93,288,104$ $62,675,963$ 0 $155,964,067$ 0.0232 350 $143,373,551$ $118,111,085$ 0 $261,484,636$ 0.0388 360 $173,527,892$ $169,552,694$ 0 $343,080,585$ 0.0509 370 $158,156,899$ $163,645,255$ 0 $321,802,154$ 0.0478 380 $133,091,607$ $170,336,760$ 0 $303,428,367$ 0.0450 390 $89,737,531$ $86,395,001$ 0 $176,132,533$ 0.02261 400 $53,833,913$ $59,239,934$ 0 $113,0073,847$ 0.0168 410 $48,041,979$ $38,193,338$ 0 $86,225,317$ 0.0128 420 $50,142,791$ $37,346,727$ 0 $87,449,518$ 0.0130 430 $52,211,818$ $34,609,927$	n 1809
270 $32,556,548$ $24,842,168$ $25,145$ $57,442,682$ 0.0096 280 $37,191,810$ $27,748,478$ $25,145$ $64,965,434$ 0.0096 290 $37,843,441$ $24,329,928$ 0 $62,173,369$ 0.0092 300 $17,625,183$ $24,876,332$ 0 $42,501,515$ 0.0063 310 $17,203,757$ $13,346,603$ 0 $30,550,360$ 0.0045 320 $18,740,723$ $13,849,748$ 0 $32,590,471$ 0.0084 330 $36,178,683$ $20,339,638$ 0 $56,518,321$ 0.00232 350 $143,373,551$ $118,111,085$ 0 $261,484,636$ 0.0388 360 $173,527,892$ $169,552,694$ 0 $343,080,585$ 0.509 370 $158,156,899$ $163,645,255$ 0 $321,802,154$ 0.0478 380 $133,091,607$ $170,336,760$ 0 $303,428,367$ 0.0450 390 $89,737,531$ $86,395,001$ 0 $176,132,533$ 0.0261 400 $53,833,913$ $59,239,934$ 0 $113,073,847$ 0.0188 410 $48,041,979$ $38,193,338$ 0 $86,235,317$ 0.0129 440 $59,153,273$ $32,791,276$ 0 $87,489,518$ 0.0130 450 $79,392,009$ $49,641,896$ $129,033,904$ 0.0129 460 $97,880,047$ $56,938,079$ 0 $154,818,126$ 0.0230 450 $79,392,009$ $49,641,896$ $129,033,904$ 0.0127 </td <td>0.1007</td>	0.1007
280 $37, 191, 810$ $27, 748, 478$ $25, 145$ $64, 905, 434$ 0.0092 290 $37, 643, 441$ $24, 329, 928$ 0 $62, 173, 359$ 0.0063 300 $17, 625, 183$ $24, 876, 332$ 0 $42, 501, 515$ 0.0063 310 $17, 203, 757$ $13, 346, 603$ 0 $30, 550, 360$ 0.0045 320 $18, 740, 723$ $13, 849, 748$ 0 $32, 590, 471$ 0.0084 330 $36, 178, 683$ $20, 339, 638$ 0 $56, 518, 321$ 0.0084 340 $93, 288, 104$ $62, 675, 963$ 0 $155, 964, 067$ 0.0232 350 $143, 373, 551$ $118, 111, 085$ 0 $261, 484, 636$ 0.0388 360 $173, 527, 892$ $169, 552, 694$ 0 $333, 080, 585$ 0.0509 370 $158, 156, 899$ $163, 645, 255$ 0 $321, 802, 154$ 0.0478 380 $133, 091, 607$ $170, 336, 760$ 0 $303, 428, 367$ 0.0450 390 $89, 737, 531$ $86, 395, 001$ 0 $176, 132, 533$ 0.0261 400 $53, 833, 913$ $59, 239, 934$ 0 $113, 073, 847$ 0.0188 410 $48, 041, 979$ $38, 193, 338$ 0 $86, 235, 317$ 0.0128 420 $50, 142, 791$ $37, 346, 727$ 0 $87, 489, 518$ 0.0130 430 $52, 111, 818$ $34, 460, 927$ 0 $86, 572, 745$ 0.0129 440 $59, 153, 273$ $32, 791, 276$ 0	n 1000
290 $37, 843, 441$ $24, 329, 928$ 0 $62, 173, 367$ 0.0063 300 $17, 625, 183$ $24, 876, 332$ 0 $42, 501, 515$ 0.0063 310 $17, 203, 757$ $13, 346, 603$ 0 $30, 550, 360$ 0.0045 320 $18, 740, 723$ $13, 849, 748$ 0 $32, 590, 471$ 0.0048 330 $36, 178, 683$ $20, 339, 638$ 0 $56, 518, 321$ 0.0084 340 $93, 288, 104$ $62, 675, 963$ 0 $155, 964, 067$ 0.0232 350 $143, 373, 551$ $118, 111, 085$ 0 $261, 484, 636$ 0.0388 360 $173, 527, 892$ $169, 552, 694$ 0 $343, 080, 585$ 0.0509 370 $158, 156, 899$ $163, 645, 255$ 0 $321, 802, 154$ 0.0478 380 $133, 091, 607$ $170, 336, 760$ 0 $303, 428, 367$ 0.0450 390 $89, 737, 531$ $86, 395, 001$ 0 $176, 132, 533$ 0.0261 400 $53, 833, 913$ $59, 239, 934$ 0 $113, 073, 847$ 0.0168 410 $48, 041, 979$ $38, 193, 338$ 0 $86, 235, 317$ 0.0128 420 $50, 142, 791$ $37, 346, 727$ 0 $87, 489, 518$ 0.0130 430 $52, 111, 818$ $34, 460, 927$ 0 $86, 572, 745$ 0.0129 440 $59, 153, 273$ $32, 791, 276$ 0 $129, 033, 904$ 0.0192 440 $59, 153, 273$ $32, 791, 276$ 0 $129,$	0.2083
300 17,625,183 24,876,332 0 42,501,513 0.3055 310 17,203,757 13,346,603 0 30,550,360 0.0045 320 18,740,723 13,849,748 0 32,590,471 0.0048 330 36,178,683 20,339,638 0 56,518,321 0.0084 340 93,288,104 62,675,963 0 155,964,067 0.0232 350 143,373,551 118,111,085 0 261,484,636 0.0388 360 175,527,892 169,552,694 0 333,080,585 0.0509 370 158,156,899 163,645,255 0 321,802,154 0.0478 380 133,091,607 170,336,760 0 303,428,367 0.04650 390 89,737,531 86,395,001 0 113,073,847 0.0168 410 48,041,979 38,193,338 0 86,235,317 0.0129 420 50,142,791 37,346,727 0 87,489,518 0.0130 430<	0.2146
310 $17, 203, 757$ $13, 346, 603$ 0 $30, 50, 500$ 00048 320 $18, 740, 723$ $13, 849, 748$ 0 $32, 590, 471$ 0.0048 330 $36, 178, 683$ $20, 339, 638$ 0 $56, 518, 321$ 0.0084 340 $93, 288, 104$ $62, 675, 963$ 0 $155, 964, 067$ 0.0232 350 $143, 373, 551$ $118, 111, 085$ 0 $261, 484, 636$ 0.0388 360 $173, 527, 892$ $169, 552, 694$ 0 $343, 080, 585$ 0.0509 370 $158, 156, 899$ $163, 645, 255$ 0 $321, 802, 154$ 0.0478 380 $133, 091, 607$ $170, 336, 760$ 0 $303, 428, 367$ 0.0450 390 $89, 737, 531$ $86, 395, 001$ 0 $176, 132, 533$ 0.0261 400 $53, 833, 913$ $59, 239, 934$ 0 $113, 073, 847$ 0.0168 410 $48, 041, 979$ $38, 193, 338$ 0 $86, 235, 317$ 0.0128 420 $50, 142, 791$ $37, 346, 727$ 0 $87, 489, 518$ 0.0130 430 $52, 111, 818$ $34, 460, 927$ 0 $86, 572, 745$ 0.0129 440 $59, 153, 273$ $32, 791, 276$ 0 $91, 944, 550$ 0.0136 450 $79, 392, 009$ $49, 641, 896$ 0 $129, 033, 904$ 0.0192 460 $97, 880, 047$ $56, 938, 079$ 0 $154, 818, 126$ 0.0230 470 $116, 204, 999$ $54, 147, 029$ 0 $170,$	0.2191
32018,740,72313,849,7480 $32,39,6471$ 0.0084 330 36,178,683 $20,339,638$ 0 $56,518,321$ 0.0084 340 $93,288,104$ $62,675,963$ 0 $155,964,067$ 0.0232 350 $143,373,551$ $118,111,085$ 0 $261,484,636$ 0.0388 360 $173,527,892$ $169,552,694$ 0 $343,080,585$ 0.0509 370 $158,156,899$ $163,645,255$ 0 $321,802,154$ 0.0478 380 $133,091,607$ $170,336,760$ 0 $303,428,367$ 0.0450 390 $89,737,531$ $86,395,001$ 0 $176,132,533$ 0.0261 400 $53,833,913$ $59,239,934$ 0 $113,073,847$ 0.0168 410 $48,041,979$ $38,193,338$ 0 $86,235,317$ 0.0128 420 $50,142,791$ $37,346,727$ 0 $87,489,518$ 0.0130 420 $50,142,791$ $37,346,727$ 0 $86,572,745$ 0.0129 440 $59,153,273$ $32,791,276$ 0 $91,944,550$ 0.0136 450 $79,392,009$ $49,641,896$ 0 $129,033,904$ 0.0192 460 $97,880,047$ $56,938,079$ 0 $154,818,126$ 0.0230 470 $116,204,999$ $54,147,029$ 0 $170,352,029$ 0.0253 480 $90,709,069$ $82,226,332$ 0 $172,935,401$ 0.0257 480 $90,709,069$ $82,226,332$ 0 $172,935,401$ 0.025	0.2240
330 36, 178, 683 20, 339, 658 0 56, 76, 521 0.0232 340 93, 288, 104 62, 675, 963 0 155, 964, 067 0.0232 350 143, 373, 551 118, 111, 085 0 261, 484, 636 0.0388 360 175, 527, 892 169, 552, 694 0 343, 080, 585 0.0509 370 158, 156, 899 163, 645, 255 0 321, 802, 154 0.0478 380 133, 091, 607 170, 336, 760 0 303, 428, 367 0.0450 390 89, 737, 531 86, 395, 001 0 176, 132, 533 0.0261 400 53, 833, 913 59, 239, 934 0 113, 073, 847 0.0168 410 48, 041, 979 38, 193, 338 0 86, 235, 317 0.0128 420 50, 142, 791 37, 346, 727 0 86, 572, 745 0.0130 430 52, 111, 818 34, 460, 927 0 86, 572, 745 0.0129 440 59, 153, 273 32, 791, 276 0 91, 944, 550 0.0136 450 79, 392, 009 49, 641, 896	0.2323
340 93,288,104 62,675,965 0 13,704,607 0,038 350 143,373,551 118,111,085 0 261,484,636 0.0388 360 173,527,892 169,552,694 0 343,080,585 0.0509 370 158,156,899 163,645,255 0 321,802,154 0.0478 380 133,091,607 170,336,760 0 303,428,367 0.0450 390 89,737,531 86,395,001 0 176,132,533 0.0261 400 53,833,913 59,239,934 0 113,073,847 0.0168 410 48,041,979 38,193,338 0 86,235,317 0.0128 420 50,142,791 37,346,727 0 87,489,518 0.0130 430 52,111,818 34,460,927 0 86,572,745 0.0129 440 59,153,273 32,791,276 0 91,944,550 0.0136 450 79,392,009 49,641,896 129,033,904 0.0192 460 97,880,047 56,938,079 0 154,818,126 0.0230 47	0.2555
350 143,373,551 118,111,085 0 261,407,605 0.0507 360 173,527,892 169,552,694 0 343,080,585 0.0509 370 158,156,899 163,645,255 0 321,802,154 0.0478 380 133,091,607 170,336,760 0 303,428,367 0.0450 390 89,737,531 86,395,001 0 176,132,533 0.0261 400 53,833,913 59,239,934 0 113,073,847 0.0168 410 48,041,979 38,193,338 0 86,235,317 0.0128 420 50,142,791 37,346,727 0 87,489,518 0.0130 430 52,111,818 34,460,927 0 86,572,745 0.0129 440 59,153,273 32,791,276 0 91,944,550 0.0136 450 79,392,009 49,641,896 129,033,904 0.0192 460 97,880,047 56,938,079 0 154,818,126 0.0230 470 116,204,999 54,147,029 0 170,352,029 0.0253 <td< td=""><td>0.2943</td></td<>	0.2943
360 173,527,892 169,552,694 0 33,003,003 0.0478 370 158,156,899 163,645,255 0 321,802,154 0.0478 380 133,091,607 170,336,760 0 303,428,367 0.0450 390 89,737,531 86,395,001 0 176,132,533 0.0261 400 53,833,913 59,239,934 0 113,073,847 0.0168 410 48,041,979 38,193,338 0 86,235,317 0.0128 420 50,142,791 37,346,727 0 87,489,518 0.0130 430 52,111,818 34,460,927 0 86,572,745 0.0129 440 59,153,273 32,791,276 0 91,944,550 0.0136 450 79,392,009 49,641,896 129,033,904 0.0192 460 97,880,047 56,938,079 0 154,818,126 0.0230 470 116,204,999 54,147,029 0 170,352,029 0.0253 480 90,709,069 82,226,332 0 172,935,401 0.0257 48	0.3453
370 158, 156, 899 163, 645, 255 0 303, 428, 367 0.0450 380 133, 091, 607 170, 336, 760 0 303, 428, 367 0.0450 390 89, 737, 531 86, 395, 001 0 176, 132, 533 0.0261 400 53, 833, 913 59, 239, 934 0 113, 073, 847 0.0168 410 48, 041, 979 38, 193, 338 0 86, 235, 317 0.0128 420 50, 142, 791 37, 346, 727 0 87, 489, 518 0.0130 430 52, 111, 818 34, 460, 927 0 86, 572, 745 0.0129 440 59, 153, 273 32, 791, 276 0 91, 944, 550 0.0136 450 79, 392, 009 49, 641, 896 0 129, 033, 904 0.0192 460 97, 880, 047 56, 938, 079 0 154, 818, 126 0.0230 470 116, 204, 999 54, 147, 029 0 170, 352, 029 0.0253 480 90, 709, 069 82, 226, 332 0 172, 935, 401 0.0257 480 90, 709, 069 82, 226, 322	0.3930
380 133,091,607 170,338,760 0 300,425,531 0.0261 390 89,737,531 86,395,001 0 176,132,533 0.0261 400 53,833,913 59,239,934 0 113,073,847 0.0168 410 48,041,979 38,193,338 0 86,235,317 0.0128 420 50,142,791 37,346,727 0 87,489,518 0.0130 430 52,111,818 34,460,927 0 86,572,745 0.0129 440 59,153,273 32,791,276 0 91,944,550 0.0136 450 79,392,009 49,641,896 0 129,033,904 0.0192 460 97,880,047 56,938,079 0 154,818,126 0.0230 470 116,204,999 54,147,029 0 170,352,029 0.0253 480 90,709,069 82,226,332 0 172,935,401 0.0257 480 90,709,069 82,226,332 0 172,935,401 0.0257 480 90,709,069 82,223,970 0 212,234,858 0.0315 <tr< td=""><td>0.4381</td></tr<>	0.4381
390 89, 37, 551 86, 595, 001 0 113, 073, 847 0.0168 400 53, 833, 913 59, 239, 934 0 113, 073, 847 0.0168 410 48, 041, 979 38, 193, 338 0 86, 235, 317 0.0128 420 50, 142, 791 37, 346, 727 0 87, 489, 518 0.0130 430 52, 111, 818 34, 460, 927 0 86, 572, 745 0.0129 440 59, 153, 273 32, 791, 276 0 91, 944, 550 0.0136 450 79, 392, 009 49, 641, 896 0 129, 033, 904 0.0192 460 97, 880, 047 56, 938, 079 0 154, 818, 126 0.0230 470 116, 204, 999 54, 147, 029 0 170, 352, 029 0.0253 480 90, 709, 069 82, 226, 332 0 172, 935, 401 0.0257 480 90, 709, 069 82, 226, 332 0 172, 935, 401 0.0257 490 132, 219, 066 80, 015, 792 0 212, 234, 858 0.0315 500 166, 591, 997 95, 223, 970 <t< td=""><td>0.4642</td></t<>	0.4642
400 55,835,913 59,239,934 0 86,735,317 0.0128 410 48,041,979 38,193,338 0 86,235,317 0.0128 420 50,142,791 37,346,727 0 87,489,518 0.0130 430 52,111,818 34,460,927 0 86,572,745 0.0129 440 59,153,273 32,791,276 0 91,944,550 0.0136 450 79,392,009 49,641,896 0 129,033,904 0.0192 460 97,880,047 56,938,079 0 154,818,126 0.0230 470 116,204,999 54,147,029 0 170,352,029 0.0253 480 90,709,069 82,226,332 0 172,935,401 0.0257 480 90,709,066 80,015,792 0 212,234,858 0.0315 500 166,591,997 95,223,970 0 261,815,967 0.0389 510 160,074,176 118,041,386 0 278,115,562 0.0413 520 146,315,376 121,089,816 0 267,405,192 0.0397 <	0.4810
410 48,041,979 38,193,335 0 87,489,518 0.0130 420 50,142,791 37,346,727 0 87,489,518 0.0129 430 52,111,818 34,460,927 0 86,572,745 0.0129 440 59,153,273 32,791,276 0 91,944,550 0.0136 450 79,392,009 49,641,896 0 129,033,904 0.0192 460 97,880,047 56,938,079 0 154,818,126 0.0230 470 116,204,999 54,147,029 0 170,352,029 0.0253 480 90,709,069 82,226,332 0 172,935,401 0.0257 480 90,709,066 80,015,792 0 212,234,858 0.0315 500 166,591,997 95,223,970 0 261,815,967 0.0389 510 160,074,176 118,041,386 0 278,115,562 0.0413 520 146,315,376 121,089,816 0 267,405,192 0.0397 530 131,435,258 121,583,273 0 253,018,531 0.0376	0.4938
420 50,142,791 57,546,727 0 86,572,745 0.0129 430 52,111,818 34,460,927 0 86,572,745 0.0136 440 59,153,273 32,791,276 0 91,944,550 0.0136 450 79,392,009 49,641,896 0 129,033,904 0.0192 460 97,880,047 56,938,079 0 154,818,126 0.0230 470 116,204,999 54,147,029 0 170,352,029 0.0253 480 90,709,069 82,226,332 0 172,935,401 0.0257 480 90,709,069 82,226,332 0 212,234,858 0.0315 500 166,591,997 95,223,970 0 261,815,967 0.0389 510 160,074,176 118,041,386 0 278,115,562 0.0413 520 146,315,376 121,089,816 0 267,405,192 0.0397 530 131,435,258 121,583,273 0 253,018,531 0.0376	0.5068
430 52,111,818 54,400,927 0 91,944,550 0.0136 440 59,153,273 32,791,276 0 91,944,550 0.0136 450 79,392,009 49,641,896 0 129,033,904 0.0192 460 97,880,047 56,938,079 0 154,818,126 0.0230 470 116,204,999 54,147,029 0 170,352,029 0.0253 480 90,709,069 82,226,332 0 172,935,401 0.0257 490 132,219,066 80,015,792 0 212,234,858 0.0315 500 166,591,997 95,223,970 0 261,815,967 0.0389 510 160,074,176 118,041,386 0 278,115,562 0.0413 520 146,315,376 121,089,816 0 267,405,192 0.0397 530 131,435,258 121,583,273 0 253,018,551 0.0376	0.5196
440 59,153,273 52,791,270 0 129,033,904 0.0192 450 79,392,009 49,641,896 0 129,033,904 0.0192 460 97,880,047 56,938,079 0 154,818,126 0.0230 470 116,204,999 54,147,029 0 170,352,029 0.0253 480 90,709,069 82,226,332 0 172,935,401 0.0257 490 132,219,066 80,015,792 0 212,234,858 0.0315 500 166,591,997 95,223,970 0 261,815,967 0.0389 510 160,074,176 118,041,386 0 278,115,562 0.0413 520 146,315,376 121,089,816 0 267,405,192 0.0397 530 131,435,258 121,583,273 0 253,018,531 0.0376	0.5333
450 79,392,009 49,041,030 0 154,818,126 0.0230 460 97,880,047 56,938,079 0 154,818,126 0.0253 470 116,204,999 54,147,029 0 170,352,029 0.0253 480 90,709,069 82,226,332 0 172,935,401 0.0257 490 132,219,066 80,015,792 0 212,234,858 0.0315 500 166,591,997 95,223,970 0 261,815,967 0.0389 510 160,074,176 118,041,386 0 278,115,562 0.0413 520 146,315,376 121,089,816 0 267,405,192 0.0376 530 131,435,258 121,583,273 0 253,018,551 0.0376	0.5525
460 97,880,047 56,938,07 0 170,352,029 0.0253 470 116,204,999 54,147,029 0 172,935,401 0.0257 480 90,709,069 82,226,332 0 172,935,401 0.0257 490 132,219,066 80,015,792 0 212,234,858 0.0315 500 166,591,997 95,223,970 0 261,815,967 0.0389 510 160,074,176 118,041,386 0 278,115,562 0.0413 520 146,315,376 121,089,816 0 267,405,192 0.0397 530 131,435,258 121,583,273 0 253,018,531 0.0376	0.5754
470 118,24,979 54,214,352 0 172,935,401 0.0257 480 90,709,069 82,226,332 0 212,234,858 0.0315 490 132,219,066 80,015,792 0 212,234,858 0.0315 500 166,591,997 95,223,970 0 261,815,967 0.0389 510 160,074,176 118,041,386 0 278,115,562 0.0413 520 146,315,376 121,089,816 0 267,405,192 0.0397 530 131,435,258 121,583,273 0 253,018,551 0.0376	0.6007
480 90,709,039 02,219,066 80,015,792 0 212,234,858 0.0315 490 132,219,066 80,015,792 0 261,815,967 0.0389 500 166,591,997 95,223,970 0 261,815,967 0.0389 510 160,074,176 118,041,386 0 278,115,562 0.0413 520 146,315,376 121,089,816 0 267,405,192 0.0397 530 131,435,258 121,583,273 0 253,018,551 0.0376	0.6264
490 152,219,000 00,0389 500 166,591,997 95,223,970 0 261,815,967 0.0389 510 160,074,176 118,041,386 0 278,115,562 0.0413 520 146,315,376 121,089,816 0 267,405,192 0.0397 530 131,435,258 121,583,273 0 253,018,531 0.0376	0.6579
500 188,041,386 0 278,115,562 0.0413 510 160,074,176 118,041,386 0 267,405,192 0.0397 520 146,315,376 121,089,816 0 267,405,192 0.0397 530 131,435,258 121,583,273 0 253,018,531 0.0376	0.6968
510 180,014,110 101,089,816 0 267,405,192 0.0397 520 146,315,376 121,089,816 0 253,018,531 0.0376 530 131,435,258 121,583,273 0 253,018,531 0.0376	0.7381
520 131,435,258 121,583,273 0 253,018,531 0.0376	0.7778
	0.8153
540 122 852 608 103 824 831 0 226,6//,439 0.0337	0.8490
550 82 375 802 95 261 970 0 177,637,771 0.0264	0.8753
540 67 966 658 80,996,163 0 148,962,821 0.0221	0.8975
570 60.011.025 65.930.617 0 125,941,642 0.0187	0.9162
580 42,930,990 64,711,666 0 107,642,656 0.0160	0.9521
5on 35,359,289 56,122,352 0 91,481,640 0.0136	0.945
6 00 26 021 127 47,751,926 0 73,773,052 0.0110	0.956
610 17 923 759 31.048,235 0 48,971,994 0.0073	0.965
620 15.773.539 28.525,931 0 44,299,470 0.0066	0.970
630 10,219,972 24,713,631 0 34,933,603 0.0052	0.975
640 10.163.091 19.011,952 0 29,175,044 0.0043	0.980
650 8, 653, 600 23, 150, 683 0 31, 604, 083 0.0047	0.984
660 5,533,012 12,478,397 0 18,011,409 0.0027	0.98/

Table E-1.--Population estimates by sex and size group for walleye pollock from the 1992 eastern Bering Sea bottom trawl survey.

Length						Cumulative
(mm)	Males	Females	Unsexed	Total	Proportion	Proportion
670	5,285,563	10,818,304	0	16,103,867	0.0024	0,9898
680	3,132,648	9,568,469	Ó	12,701,117	0.0019	0.9917
690	3,291,322	10,445,658	Ō	13.736.981	0.0020	0.9937
700	1,702,357	9,788,444	Ō	11,490,801	0.0017	0,9954
710	1,290,611	7.718.973	Ō	9.009.584	0.0013	0.9968
720	990,921	5,256,132	Ō	6.247.054	0.0009	0.9977
730	756,853	3,429,609	Ō	4,186,461	0.0006	0.9983
740	332,699	2,935,625	ା 🗴	3.268.324	0.0005	0.9988
750	296,031	1,853,116	Ŏ	2,149,147	0.0003	0.9991
760	. 0	1,978,503	Ō	1.978.503	0.0003	0.9994
770	0	983,765	Ō	983.765	0.0001	0,9995
780	84.369	751,217	Ō	835.586	0.0001	0.9997
790	0	599.379	Ō	599.379	0.0001	0.9998
800	0	439,679	Ō	439.679	0.0001	0.9998
810	31.758	274,855	Ō	306.613	0.0000	0.9999
820	0	726.215	Ő	726.215	0.0001	1.0000
830	Ō	57,017	Ō	57.017	0.0000	1.0000
840	0	29,537	Ō	29.537	0.0000	1.0000
860	29.775	0	õ	29.775	0.0000	1.0000
900	0	32.333	0	32,333	0.0000	1.0000
TOTAL	3,003,936,376	2,719,050,587	1,013,075,784	6,736,062,747		

Table E-1.--Continued.

.

Length	Males	Females	Unsexed	Total	Proportion	Cumulative Proportion
(1114)	Hates					
100	0	0	44,033	44,033	0.0001	0.0001
110	Ō	54,662	1,012,678	1,067,340	0.0019	0.0020
120	269,268	554,707	4,324,788	5,148,764	0.0091	0.0111
130	189,299	1,780,887	9,235,349	11,205,535	0.0199	0.0509
140	531,994	1,587,435	9,456,874	11,576,303	0.0205	0.0515
150	797,505	493,638	8,471,187	9,762,331	0.0173	0.0000
160	1,543,900	1,589,754	4,364,568	7,498,221	0.0155	0.0020
170	2,437,369	2,396,508	4,541,833	9,375,710	0.0100	0.0907
180	2,898,735	3,712,580	3,364,480	9,975,796	0.01//	0.1103
190	4,528,156	3,667,662	2,797,174	10,992,992	0.0195	0.1556
200	5,071,540	5,623,631	1,479,747	12,174,917	0.0210	0.1374
210	6,296,895	4,403,715	533,663	11,234,275	0.0199	0.1773
220	6,205,751	5,652,228	332,856	12,190,855	0.0210	0.1707
230	3,644,340	2,922,774	68,759	6,635,872	0.0178	0.2734
240	3,308,153	3,888,869	0	7,197,022	0.01/8	0.22.34
250	4,018,942	4,308,053	0	8,326,993	0.0140	0.2581
260	5,739,164	5,542,135	0	11,281,299	0.0200	0 2870
270	7,622,153	8,662,060	0	16,284,213	0.0207	0 3181
280	7,698,801	9,852,353	0	17,001,100	0.0311	0 3515
290	8,815,082	10,055,644	0	18,8/0,720	0.0368	0.3883
300	9,832,060	10,940,393	U	20,772,433	0.0505	0.4286
310	10,917,068	11,822,913	U	22,737,701	0.0369	0.4655
320	11,273,597	9,555,394	U	20,020,990	0.0333	0.4988
330	10,050,867	8,723,588	U	10,114,434	0.0335	0.5305
340	8,859,247	9,024,151	0	1/ 570 //2	0.0258	0.5562
350	8,394,928	6,144,514	0	12 000 311	0.0230	0.5793
360	7,598,929	5,400,382	U	10 726 083	0.0190	0.5983
370	5,067,999	5,658,085	0	0 020 200	0.0160	0.6143
380	4,408,599	4,020,010	0	7 505 536	0.0133	0.6276
390	3,390,624	4,114,712	0	10,812,558	0.0192	0.6467
400	6,082,845	4,729,715	0	8.741.049	0.0155	0.6622
410	4,750,812	5,790,230	0	13.018.540	0.0231	0.6853
420	(,233,023	5 47/ 17/	ů n	11,326,401	0.0201	0.7054
430	3,032,220	7 000 778	ň	13,258,934	0.0235	0.7289
440	0,200,100	7,000,770	ů	14,436,979	0.0256	0.7544
450	(,33),191	5 /52 020	õ	11,455,229	0.0203	0.7747
460	0,002,301	6 250 630	ů.	11.020.687	0.0195	0.7943
470	4,701,040	6,25,057	Ő	9.826.164	0.0174	0.8117
480	7,519,00	4,000,007	Ő	8,654,832	0.0153	0.8270
490	4,300,173	4,524,165	Ő	9,280,106	0.0164	0.8434
500	3 453 570	3 388,245	Ō	7,041,815	0.0125	0.8559
510	770 681	2 922 998	Ō	6,693,679	0.0119	0.8678
520	2 75/ 210	2 488 729	0	5,242,948	0.0093	0.8771
550	2 520 933	2,222,337	0	4,743,270	0.0084	0.8855
540	2,520,555	1.047.334	0	3,482,168	0.0062	0.8916
550	1 725 047	1,858,666	0	3,583,713	0.0063	0.8980
500	1 014 861	789,493	0	1,804,354	0.0032	0.9012
570	1 138 143	1,249,237	0	2,387,380	0.0042	0.9054
500	1 301 245	1.736.486	0	3,037,731	0.0054	0.9108
600	1 808 670	1,319,615	0	3,128,286	0.0055	0.9165
610	3.011.226	949,654	0	3,960,879	0.0070	0.9234
620	1.018.590	1,775,956	0	2,794,546	0.0050	0.9285
620	1 439 055	741.340	0	2,180,395	0.0039	0.9522
640	1.059.014	534,257	0	1,593,271	0.0028	0.9350
640 650	996.605	980,147	0	1,976,752	0.0035	0.9385
020	932.095	974,781	0	1,906,875	0.0034	0.9419
670	2.055.339	816,378	0	2,871,717	0.0051	0.94/0
680	1.087.605	1,073,106	0	2,160,711	0.0058	0.9508
600	930.732	1,013,861	0	1,944,592	0.0054	0.9344
370		• •				

Table E-2.--Population estimates by sex and size group for Pacific cod from the 1992 eastern Bering Sea bottom trawl survey.

Length						Cumulative
(mm)	Males	Females	Unsexed	Total	Proportion	Proportion
700	814.519	672.000	0	1.486.519	0.0026	0,9569
710	505.674	363,795	ŏ	869.469	0.0015	0.9584
720	566,161	701,469	Ō	1.267.630	0.0022	0.9607
730	684,430	713,377	Ó	1,397,807	0.0025	0.9631
740	666,441	582,994	0	1,249,434	0.0022	0.9654
750	451,809	485,702	0	937,511	0.0017	0.9670
760	695,602	787,818	0	1,483,420	0.0026	0.9696
770	322,440	609,739	0	932, 179	0.0017	0.9713
780	355,889	767,305	0	1,123,193	0.0020	0.9733
790	566,487	848,600	0	1,415,087	0.0025	0.9758
800	1,089,707	691,216	0	1,780,923	0.0032	0.9790
810	211,361	691,450	0	902,810	0.0016	0.9806
820	586,248	445,424	0	1,031,672	0.0018	0.9824
830	327,214	586,649	0	913,863	0.0016	0.9840
840	355,168	361,423	0	716,592	0.0013	0.9853
850	165,076	620,734	0	785,810	0.0014	0.9867
860	351,533	547,828	0	899,361	0.0016	0.9883
870	248,281	158,856	0	407,137	0.0007	0.9890
880	252,331	352,844	0	605,175	0.0011	0.9900
890	236,040	234,264	0	470,304	0.0008	0.9909
900	75,020	724,643	0	799,663	0.0014	0.9923
910	112,122	205,329	0	317,451	0.0006	0.9929
920	126,000	311,473	0	437,473	0.0008	0.9936
930	91,250	314,955	0	406,205	0.0007	0.9944
940	104,432	170,644	0	275,076	0.0005	0.9948
9 50	86,737	337,749	0	424,486	0.0008	0.9956
960	76,275	412,206	0	488,481	0.0009	0.9965
970	28,207	149,470	0	177,677	0.0003	0.9968
980	74,407	496,038	0	570,444	0.0010	0.9978
990	0	88,162	0	88,162	0.0002	0.9979
1000	200,182	64,354	0	264,536	0.0005	0.9984
1010	28,946	145,392	0	174,338	0.0003	0.9987
1020	0	170,270	0	170,270	0.0003	0.9990
1030	0	163,371	0	163,371	0.0003	0.9993
1040	28,946	124,825	0	153,770	0.0003	0.9996
1050	0	74,186	0	74,186	0.0001	0.9997
1060	0	32,666	0	32,666	0.0001	0.9998
1070	0	35,760	0	35,760	0.0001	0.9998
1090	0	30,070	0	30,070	0.0001	0.9999
1110	0	27,683	0	27,683	0.0000	0.9999
1170	0	33.693	0	33.693	0.0001	1.0000
TOTAL	259,268,844	255,084,277	50,027,988	564,381,108		

Table E-2.--Continued.

Length (mm)	Males	Females	Unsexed	Total	Proportion	Cumulative Proportion
		120 CASE INCOME IN ST	- and the second s		100- 100-	
80	n	1,182,174	0	1,182,174	0.0001	0.0001
00	2 364 348	2.447.398	0	4,811,746	0.0006	0.0007
100	5 806 830	2,447,398	0	8,254,229	0.0010	0.0017
110	7 725 087	10,236,280	0	17,961,367	0.0022	0.0039
120	17 678 735	27,948,533	0	45,627,268	0.0055	0.0094
130	35 681 652	38.087.972	0	73,769,624	0.0089	0.0184
140	54 163 446	69.390.953	0	123,554,399	0.0150	0.0333
150	76 441 065	95,339,508	0	171,780,573	0.0208	0.0541
160	101 255 293	95,412,205	0	196,667,498	0.0238	0.0779
170	103 227 721	87,806,525	0	191,034,246	0.0231	0.1011
180	102 611 279	113,461,809	0	216,073,089	0.0262	0.1272
100	160 072 324	111,943,247	0	272,015,571	0.0329	0.1602
200	153 676 828	141.842.503	0	295,519,330	0.0358	0.1959
210	174 011 069	138,654,216	0	313,565,285	0.0380	0.2339
220	103 805 201	198,991,777	0	392,797,068	0.0476	0.2815
230	201 602 814	207,802,228	0	409,495,042	0.0496	0.3311
240	246 578 149	212,250,741	0	458,828,890	0.0556	0.3866
250	227 624 870	220.056.134	0	447,681,013	0.0542	0.4408
260	232 801 483	226,861,592	0	459,663,075	0.0557	0.4965
270	245 007 052	230,947,329	0	476,854,381	0.0577	0.5542
280	250 678 834	229,417,802	0	480,096,636	0.0581	0.6123
200	254 423 113	239.841.975	0	494,265,087	0.0598	0.6722
270	253 164 272	251-514-893	0	504,679,166	0.0611	0.7333
310	240 069 056	260,903,153	0	500,972,209	0.0607	0.7940
320	176 145 977	250.326.274	0	426,472,252	0.0516	0.8456
320	118 441 846	259,699,416	0	378, 141, 262	0.0458	0.8914
330	63 002 160	252,796,121	0	315,798,281	0.0382	0.9296
340	38 725 838	186.482.769	0	225,208,607	0.0273	0.9569
350	14 072 976	128,568,151	0	142,641,128	0.0173	0.9742
370	0 300 188	87.074.016	0	96,383,204	0.0117	0.9858
380	2 198 204	62.096.786	0	64,294,990	0.0078	0.9936
200	1 737 065	22,899,363	0	24,636,428	0.0030	0.9966
600	1,131,005	15.878.990	Ō	15,878,990	0.0019	0.9985
400	76 825	9,150,537	Ō	9,227,362	0.0011	0.9996
410	10,025	1,227,801	0	1,227,801	0.0001	0.9998
420	ñ	233,338	Ū	233,338	0.0000	0.9998
4.50	ñ	809,906	Ő	809,906	0.0001	0.9999
450	0	718.365	Q	718,365	0.0001	1.0000
TOTAL	3,766,070,699	4,492,750,181	0	8,258,820,880		

Table E-3.--Population estimates by sex and size group for yellowfin sole from the 1992 eastern Bering Sea bottom trawl survey.

Length						Cumulative
(mm)	Males	Females	Unsexed	Total	Proportion	Proportion
80	321,854	45,389	486.569	853,812	0.0001	0.0001
90	2,922,544	1,312,329	1,975,263	6,210,136	0.0007	0.0008
100	16,490,302	10,932,353	970,269	28,392,924	0.0031	0.0039
110	31,765,840	30,438,193	323,423	62,527,456	0.0069	0.0108
120	40,473,381	44,330,460	. 0	84,803,841	0.0094	0.0202
130	55,117,505	50,009,523	0	105,127,027	0.0116	0.0318
140	125,435,701	107,994,101	0	233,429,802	0.0258	0.0576
150	233,356,101	190,817,452	Ó	424, 173, 553	0.0468	0.1044
160	313,620,159	244,666,698	Ō	558,286,857	0.0616	0.1660
170	400,278,066	292,180,268	Û	692.458.334	0.0764	0.2425
180	436,885,966	388,519,544	Ō	825,405,510	0.0911	0.3336
190	401,760,851	327,313,795	Ō	729.074.647	0.0805	0.4141
200	327,506,297	298,654,718	Ō	626.161.015	0.0691	0.4832
210	281,297,753	279,758,700	Ō	561.056.453	0.0619	0.5452
220	219,444,386	220,602,215	Ó	440.046.600	0.0486	0.5937
230	207,875,754	171,204,563	Ō	379.080.317	0.0419	0.6356
240	193,775,914	154,211,938	Ō	347.987.852	0.0384	0.6740
250	187,256,521	161,872,650	Ō	349, 129, 171	0.0385	0.7126
260	174,386,581	143,169,808	Ō	317.556.389	0.0351	0.7476
270	162,541,647	143,785,158	Ō	306.326.805	0.0338	0.7814
280	169,881,832	118,489,424	Ď	288.371.256	0.0318	0.8133
290	166,695,985	115,188,651	õ	281.884.636	0.0311	0.8444
300	158, 162, 007	114.702.225	Ď	272.864.233	0.0301	0.8745
310	125,516,363	104.392.546	Ō	229,908,910	0.0254	0.8999
320	77,659,982	99.619.855	74,128	177.353.964	0.0196	0.9195
330	43,888,837	95.072.512	74,128	139.035.477	0.0153	0.9348
340	23, 149, 563	89.696.077	74,128	112,919,768	0.0125	0.9473
350	6.047.509	79,608,393	74,128	85.730.031	0.0095	0.9568
360	2.219.917	97.387.852	0	99.607.769	0.0110	0.9678
370	2,602,933	81.852.834	Ő	84.455.767	0.0093	0.9771
380	691.814	53,649,904	74,128	54.415.846	0,0060	0.9831
390	317.823	50.623.529	74,128	51.015.481	0.0056	0.9887
400	393,116	39,270,450		39.663.567	0.0044	0.9931
410	0	26,973,705	74,128	27.047.832	0.0030	0.9961
420	16.484	17,296,281	74,128	17.386.893	0.0019	0.9980
430	0	8,616,241	0	8.616.241	0.0010	0.9990
440	Ő	4,983,994	ů.	4.983.994	0.0006	0.9995
450	Ő	1.826.543	ň	1 826 543	0.0002	0 0007
460	Ő	1,596,453	ň	1.596.453	0.0002	0.0000
470	Ő	206,823	ñ	206.823	0.0000	0.9999
480	ů	748.710	ň	748,710	0.0001	1 0000
490	100,604		Q	131,114	0.0000	1.0000
TOTAL	4,589,857,894	4,463,653,366	4,348,546	9,057,859,806		

ŝ

÷

 Table E-4.--Population estimates by sex and size group for rock sole from the 1992 eastern

 Bering Sea bottom trawl survey.

Longth						Cumulative
(mm)	Males	Females	Unsexed	Total	Proportion	Proportion
60	0	0	76.555	76,555	0.0000	0.0000
90	18.841	Ő	156.234	175,075	0.0001	0.0001
100	847 407	441.594	122,111	1,411,112	0.0005	0.0006
110	2 586 066	3.543.840	2,655,865	8,785,770	0.0032	0.0038
120	14 492 672	11.585.586	11.858.081	37,936,339	0.0139	0.0177
130	30.260 157	19 082 308	20.044.454	69.366.920	0.0254	0.0431
140	38 030 305	29 656 321	13,809,517	81,496,143	0.0298	0.0730
150	36,030,303	25 072 210	2,992,656	64.735.906	0.0237	0.0967
140	26 285 65/	22 529 464	1.018.261	49.833.379	0.0183	0.1149
170	10 //2 /03	10 050 155	967.959	40.360.607	0.0148	0.1297
100	20 050 204	21 220 060	307 469	42,477,743	0.0156	0.1453
100	20,930,204	27 122 678	0	55 401 788	0.0203	0.1656
190	20,219,110	79 054 575	Ő	71 516 744	0.0262	0.1917
200	59,400,100	30,030,373	ň	95.546.858	0.0350	0.2267
210	50,007,040	57,477,010	31 682	110 823 013	0.0406	0.2673
220	J7, JU2, 133	/0 270 251	31 682	120 327 111	0.0441	0.3114
230	/1,000,170	47,230,231 55,424 775	31 682	142 540 560	0.0522	0.3636
240	77 700 177	22,024,112	31,002	140 153 675	0.0513	0.4149
250	(2,209,122	61 270 7/2	31,002	127 015 007	0.0465	0.4614
200	07, (44, 403	57 140 177	100 002	131 647 163	0.0482	0.5097
270	(8,33/,890	22,117,172	790,075	121 800 802	0 0446	0.5543
280	56,555,407	04,094,290	200,100	111 567 300	0 0400	0.5951
290	62,362,986	40,099,174	207,140	105 140 787	0.0385	0.6336
300	59,972,338	45,050,058	100,411	102,100,707	0.0376	0.6713
310	64,279,738	38,241,387	190,093	105 7/1 3/0	0.0387	0 7100
320	66,209,063	39,403,548	120,129	100 945 024	0.0300	0 7498
330	69,332,761	39,248,025	265,140	100,003,720	0.0377	0 7021
340	71,335,628	43,590,840	310,822	115,243,290	0.0422	0.7721
350	67,043,208	40,582,418	255,458	107,879,083	0.0375	0.8510
360	55,713,558	43,458,761	158,411	99,550,751	0.0304	0.00/7
370	33,145,740	41,338,300	63,364	74,547,404	0.0275	0.0972
380	17,946,407	43,798,227	63,364	61,807,999	0.0220	0.9179
390	14,230,000	37,409,681	63,364	51,705,045	0.0109	0.9300
400	3,493,885	36,642,757	31,682	40,168,324	0.0147	0.7515
410	1,725,899	27,065,982	95,047	28,886,927	0.0106	0.9021
420	1,327,509	30,738,016	0	32,065,525	0.0117	0.9/30
430	295,961	21,412,801	0	21,708,761	0.0080	0.9010
440	28,895	15,547,905	0	15,576,800	0.0057	0.9875
450	0	14,821,853	0	14,821,853	0.0054	0.9929
460	23,811	9,064,851	0	9,088,663	0.0033	0.9963
470	0	5,241,247	0	5,241,247	0.0019	0.9982
480	0	2,182,097	0	2,182,097	0.0008	0.9990
490	0	1,651,824	0	1,651,824	0.0006	0.9996
500	Ó	677,990	0	677,990	0.0002	0.9998
510	179,844	151,572	0	331,416	0.0001	1.0000
520	0	132.926	0	132,926	0.0000	1.0000
TOTAL	1,387,397,532	1,286,284,324	56,828,876	2,730,510,732		

Table E-5.--Population estimates by sex and size group for <u>Hippoglossoides</u> spp. from the 1992 eastern Bering Sea bottom trawl survey.

Length						
(mm)	Males	Females	Unsexed	Total	Proportion	Proportion
120	63,655	0	0	63-655	0,0001	0.0001
130	63,655	Ō	ŏ	63,655	0.0001	0.0002
150	33,707	67.413	Ō	101,120	0.0001	0.0003
160	190,895	33,707	131,524	356, 126	0.0005	0.0009
170	459,918	159,484	0	619,402	0.0009	0.0018
180	497,773	760, 188	Ō	1.257.961	0.0018	0.0036
190	1,001,577	654,252	Ó	1,655,829	0.0024	0.0060
200	783,891	893,573	0	1,677,464	0.0024	0.0085
210	1,159,227	1,013,655	0	2,172,882	0.0032	0.0116
220	1,985,726	2,067,251	0	4,052,977	0.0059	0.0175
230	3,449,874	4,333,216	0	7,783,090	0.0114	0.0289
240	5,762,118	3,526,487	0	9,288,605	0.0136	0.0425
250	7,534,835	4,882,359	0	12,417,194	0.0181	0.0606
260	8,062,024	5,701,545	0	13,763,569	0.0201	0.0807
270	8,907,272	6,158,608	0	15,065,880	0.0220	0.1027
280	11,870,977	7,768,290	0	19,639,267	0.0287	0.1313
290	11,755,829	8,798,260	0	20,554,089	0.0300	0.1613
300	14,080,939	7,583,987	0	21,664,926	0.0316	0.1929
310	18,458,741	8,564,789	0	27,023,530	0.0394	0.2324
320	23,283,198	7,599,590	0	30,882,788	0.0451	0.2775
330	27,121,550	8,757,794	0	35,879,344	0.0524	0.3298
340	58,504,641	8,962,629	0	47,267,270	0.0690	0.3988
350	39,143,845	10,541,723	0	49,685,568	0.0725	0.4713
300	37,018,482	10,859,007	0	47,877,489	0.0699	0.5412
370	30,074,083	12,889,893	0	42,963,976	0.0627	0.6039
300	21,027,203 P /01 211	10,490,450	0	37,522,715	0.0548	0.6587
600	6,401,211	10,901,022	U	25,302,832	0.0369	0.6956
400	7 745 750	17,107,200	U	21,292,775	0.0311	0.7267
410	771 594	19,100,309	U	18,4/5,/1/	0.0270	0.7536
420	52/ 051	10,040,132	0	18,//1,/58	0.0274	0.7810
440	1/0 301	22 010 752	U	10,233,403	0.0257	0.8047
450	140,301	22,010,752	0	22,121,023	0.0325	0.85/1
460	40 005	20,050,722	0	22,330,922	0.0307	0.8700
400	26 008	17 581 008	0	17 404 004	0.0293	0.0793
480	216 744	15 883 850	0	16 100 604	0.0257	0.9230
490	24 008	11 257 906	0	11 282 004	0.0235	0.9403
500	0	9 870 456	0	0 970 /54	0.0165	0.9050
510	ň	5 608 505	0	5 608 505	0.0092	0.9794
520	Õ	3,867,914	0	3 867 014	0.0056	0.9070
530	Ŏ	1.381.328	ň	1 381 328	0.0000	0.9952
540	74.010	1.723.314	ň	1 797 324	0.0020	0.9933
550	31.392	875.875	ñ	907 267	0,0013	0.0002
560	0	198.080	ŏ	198.080	0,0003	0.0005
570	0	346.762	0	346.762	0.0005	1.0000
TOTAL	329,766,829	355,265,851	131,524	685,164,204		

Table E-6.--Population estimates by sex and size group for Alaska plaice from the 1992 eastern Bering Sea bottom trawl survey.

Length					20 A.05	Cumulative
(mm)	Males	Females	Unsexed	Total	Proportion	Proportion
110	81 441	50.305	0	131,746	0.0061	0.0061
120	01,441	32,288	59,987	92,275	0.0043	0.0104
120	ň	43 877	0	43.877	0.0020	0.0124
140	29 722	-3,0/1	ŏ	28,722	0.0013	0.0138
140	20,722	18 018	ő	18.018	0.0008	0.0146
150	0	18 018	ň	18,018	0.0008	0.0154
170	40.010	10,010	0	18 018	0.0008	0.0163
180	18,018	170 5/7	0	130 543	0.0061	0.0223
200	U	130,343	0	31 011	0.0014	0.0237
210	U	21,011	0	110 0/1	0.0056	0.0293
220	56,913	05,028	0	/97 929	0.0000	0.0517
230	380,888	102,940	U	403,020	0.0515	0 1033
240	701,957	409,132	U	1,111,000	0.0220	0 1253
250	338,415	136,627	U	472,042	0.0220	0.1662
260	532,971	349,018	U	881,990	0.0409	0.1002
270	523,315	415,514	0	958,829	0.0435	0.2077
280	929,654	526,259	0	1,455,913	0.06/5	0.2772
290	874,673	469,803	0	1,344,476	0.0623	0.3393
300	450, 196	855,736	0	1,305,932	0.0605	0.4001
310	321,442	319,918	0	641,360	0.0297	0.4298
320	1.203.969	691,624	0	1,895,594	0.0879	0.5177
330	330.341	156,920	0	487,261	0.0226	0.5403
340	109.333	261,702	0	371,035	0.0172	0.5575
350	94 372	309,499	0	403,871	0.0187	0.5762
340	335 250	235.420	Ó	570,679	0.0265	0.6027
370	100 360	24.945	Ō	134.304	0.0062	0.6089
310	113 667	76 992	ñ	190,659	0,0088	0.6177
300	02 042	120 143	ñ	213,105	0.0099	0.6276
390	92,702	102 063	ň	275.572	0.0128	0.6404
400	02,007	257 /41	ů l	541,281	0.0251	0.6655
410	207,019	415 59/	ů	206 195	0.0096	0.6751
420	90,012	743 817	0	362 817	0.0168	0.6919
430	10.4/5	15 073	0	94 137	0.0044	0.6962
440	48,165	43,912	0	408 035	0 0189	0.7152
450	120,091	287,944	> U	400,000	0.0082	0.7233
460	59,517	117,024	U	110,041	0.0055	0 7288
470	59,614	58,460	U	50,000	0.0037	0 7316
480	28,972	30,127	U	JY,UYY	0.0027	0.73/2
490	0	58,030	U	58,050	0.0027	0.7572
500	408,703	0	0	408,705	0.0109	0.7550
510	28,972	28,972	0	57,945	0.0027	0.7337
520	178,642	301,707	0	480,349	0.0225	0.7701
530	148,869	239,695	0	388,565	0.0180	0.7902
540	211,486	43,557	0	255,043	0.0118	0.8080
550	28,972	268,668	0	297,640	0.0138	0.8218
560	60,817	0	0	60,817	0.0028	0.8246
570	0	60,817	0	60,817	0.0028	0.8274
580	28,972	245,955	0	274,927	0.0127	0.8402
500	28 972	57.945	0	86,917	0.0040	0.8442
400	30 127	350,482	0	380,609	0.0176	0.8618
610	50,127	60 903	0	60,903	0.0028	0.8647
610	28 072	114 896	Ő	143,869	0.0067	0.8713
620	20,772	128 676	ň	160.521	0.0074	0.8788
630	51,045	20,070	ň	30,459	0.0014	0.8802
640	70 500	30,439	ň	72 529	0.0034	0.8836
650	(2,524	0	ů.	30 450	0.0014	0.8850
660	50,459	U 20 / 20	0	20,429 28 428	0.0013	0.8863
670	0	20,420	0	20,420 97 KND	0 0038	0_8901
690	0	82,609	U	241 0/4	0.0000	0 0023
700	43,557	218,384	U	201,741	0.0121	0 0057
710	43,557	30,979	U	(4,530	0.0033	n 0171
720	0	28,972	U	20,912	0.0013	0.7011
740	0	314,474	0	514,4/4	0.0140	0.9210

Table E-7.--Population estimates by sex and size group for Greenland turbot from the 1992 eastern Bering Sea bottom trawl survey.

Length (mm)	Males	Females	Unsexed	Total	Proportion	Cumulative Proportion
750	0	165 555		145 555	0.0077	0.0207
760	ň	110 358	0	110 759	0.0077	0.9293
770	õ	103 073	0	107,007	0.0055	0.9349
780	ő	130 626	ň	130 424	0.0048	0.9390
790	ő	224 050	0	22/ 050	0.0005	0.9401
800	Õ	87 036	0	87 074	0.0104	0.9303
810	ň	112 735	0	112 725	0.0041	0.9000
820	ő	30 / 50	0	70 / 50	0.0052	0.9070
830	ő	127 421	0	30,439	0.0014	0.9072
840	ő	250 045	0	123,021	0.0057	0.9/29
870	30 450	58 145	0	230,003	0.00/1	0.9845
880	30,439	50,105	0	00,024	0.0041	0.9886
800	ő	30 /50	0	70,431	0.0020	0.9914
000	0	30,439		30,439	0.0014	0.9928
070	0	70,710	U	60,918	0.0028	0.9956
930	0	30,439	U	30,459	0.0014	0.9970
940	0	65.690	0	63.690	0.0030	1.0000
TOTAL	9,841,175	11,667,848	59,987	21,569,010		

						Cumulative
Length (mm)	Males	Females	Unsexed	Total	Proportion	Proportion
		87 606	0	87,696	0.0001	0.0001
90	0 220 779	07,070	891.371	1,120,709	0.0015	0.0017
100	229,330	Ő	575.868	575,868	0.0008	0.0024
110	0	Ő	163,480	163,480	0.0002	0.0027
120	717 615	225.709	163,480	702,803	0.0010	0.0056
150	40/ 552	556,959	326,960	1,578,471	0.0022	0.0058
140	1 00/ 853	2.888.037	1,042,500	5,835,390	0.0080	0.0158
150	2 408 260	4.880.757	1.476.714	9,055,731	0.0124	0.0262
160	2,070,200	6 895,202	1.476.714	11,416,010	0.0157	0.0419
170	3,044,075	5 450 977	163,480	9,255,017	0.0127	0.0546
180	1 192 073	4 765 572	110,785	6,059,329	0.0083	0.0629
190	1,102,775	2 712 792	. 0	3,923,143	0.0054	0.0685
200	0/7 291	5 423 902	0	6,267,184	0.0086	0.0769
210	2 974 812	5 004.390	0	7,841,202	0.0108	0.0876
220	2,030,012	4 473 497	0	6,738,870	0.0092	0.0969
230	2,203,372	5 284 194	0	9,514,048	0.0131	0.1099
240	4,229,000	6 708 708	0	9,534,018	0.0131	0.1230
250	2,023,310	6 133 930	0	9,000,580	0.0123	0.1354
200	/ 749 520	8 717 324	0	13,085,853	0.0180	0.1555
270	4,300,327	9 003 669	0	11,886,576	0.0163	0.1696
280	2,002,907	10 776 926	0	18,094,369	0.0248	0.1945
290	7,317,443 5 320 1/0	13 548 155	Û	18,777,304	0.0258	0.2202
300	9 710 2/0	15,721,236	0	24,031,476	0.0330	0.2532
310	0,310,240	16 329 812	Ō	25,373,221	0.0348	0.2880
320	9,043,407	16 502 381	Ó	25,449,788	0.0349	0.3229
350	0,741,401	18 101 723	Ó	26,654,220	0.0366	0.3595
340	47 0/2 340	15 521 638	0	32,564,997	0.0447	0.4042
350	17 521 1/0	17 974 659	Ó	35,555,808	0.0488	0.4529
300	21 052 607	16 762 449	0	37,815,055	0.0519	0.5048
370	21,032,007	17 412 415	0	39,402,089	0.0541	0.5589
300	12 / 20 / 48	22,962,438	0	35,382,906	0.0485	0.6074
390	13 207 550	24,008,153	0	37,305,712	0.0512	0.6586
400	0 501 688	25,921,873	0	35,513,561	0.0487	0.7075
410	8 388 626	19,221,372	0	27,609,998	0.0379	0.7452
420	6 175 892	18.527.216	0	24,703,107	0.0339	0.7771
430	4 806 282	16,456,542	0	21,262,824	0.0292	0.0003
440	6 208 719	16,800,980	0	23,009,698	0.0316	0.0390
450	4 084 966	12,280,012	0	16,364,978	0.0225	0.0023
400	2 950 980	11.769.786	0	14,720,765	0.0202	0.0023
470	2 809 839	7.884.615	0	10,694,454	0.0147	0.0971
480	1 817 253	6.983.840	0	8,801,093	0.0121	0.9092
470 500	1 414 942	6.612.872	0	8,027,814	0.0110	0.9202
510	1 128,062	7,245,770	0	8,373,833	0.0115	0.9317
520	494 843	7.474.417	0	7,969,260	0.0109	0.9427
530	493,713	7,396,017	0	7,889,730	0.0108	0.9555
540	415.024	5,233,498	0	5,648,521	0.0077	0.9012
550	227, 168	6,183,135	0	6,410,303	0.0000	0.9700
560	213.573	3,519,559	0	3,733,132	0.0001	0.7751
570	179.067	2,271,062	0	2,450,130	0.0034	0.9705
580	110.674	2,512,551	0	2,623,225	0.0036	0.9021
500	0	1,653,501	0	1,653,501	0.0025	0.7044
570 600	Ō	1,952,448	0	1,952,448	0.0027	0.70/1
610	196.134	881,665	0	1,077,799	0.0015	0.9005
£20	0	1,792,964	0	1,792,964	0.0025	0.7710
620	102-899	1,506,868	0	1,609,767	0.0022	0.7732
4/.0	60.278	1,482,616	0	1,542,894	0.0021	0.7733
40	0	1,044,274	0	1,044,274	0.0014	0.0000
440	n n	885,845	0	885,845	0.0012	0.990
470	ñ	451,292	0	451,292	0.0006	0.7700
610	ñ	537, 155	0	537,155	0.000/	0.7772
400	ñ	308,119	0	308,119	0.0004	4 0000
700	õ	184.099	0	184.099	0.0003	1.0000
TOTAL	240 602 806	481,811,261	6,391,351	728,895,509		
IUTAL	240,072,070					

Table E-8.--Population estimates by sex and size group for <u>Atheresthes</u> spp. from the 1992 eastern Bering Sea bottom trawl survey.

Length						Consul at it.	
(mm)	Males	Females	Unsexed	Total	Proportion	Proportion	
190	0	0	60,263	60,263	0.0013	0.0013	
210	0	0	89,301	89,301	0.0020	0.0033	
220	0	0	116,276	116.276	0.0026	0.0058	
230	39,910	0	32,114	72.024	0.0016	0.0074	
240	0	0	151,355	151,355	0.0033	0.0107	
250	0	0	324,955	324,955	0.0071	0.0179	
260	0	0	306,665	306,665	0.0067	0.0246	
270	0	0	219,089	219,089	0.0048	0.0294	
280	39,910	0	446,227	486,137	0.0107	0.0401	
290	0	0	228,616	228,616	0.0050	0.0451	
300	0	0	379,400	379,400	0.0083	0.0534	
310	0	0	279, 165	279, 165	0.0061	0.0595	
320	0	0	314,104	314,104	0.0069	0.0664	
330	0	0	208,593	208,593	0.0046	0.0710	
340	0	0	131,317	131,317	0.0029	0.0739	
350	0	0	299,459	299,459	0.0066	0.0805	
360	0	0	665,630	665,630	0.0146	0.0951	
370	28,264	0	266, 154	294,419	0.0065	0.1015	
380	28,264	0	691,335	719,600	0.0158	0.1173	
390	0	0	605,197	605, 197	0.0133	0.1306	
400	28,264	0	1,051,766	1,080,031	0.0237	0.1543	
410	0	0	1,474,582	1,474,582	0.0324	0.1867	
420	109,368	0	1,017,195	1,126,563	0.0247	0.2114	
430	0	125,987	1,330,520	1,456,507	0.0320	0.2433	
440	28,264	36,586	1,540,237	1,605,087	0.0352	0.2786	
450	34,994	49,799	1,811,316	1,896,110	0.0416	0.3202	
460	74,365	56,245	2,235,665	2,366,275	0.0519	0.3721	
470	129,417	39,910	2,503,457	2,672,785	0.0586	0.4307	
480	36,586	103,374	2,625,689	2,765,649	0.0607	0.4914	
490	146,345	28,264	2,095,790	2,270,398	0.0498	0.5412	
500	27,950	0	2,328,925	2,356,876	0.0517	0.5930	
510	174,503	86,385	1,471,823	1,732,711	0.0380	0.6310	
520	30,202	73,172	1,771,798	1,875,172	0.0411	0.6721	
550	84,794	114,995	1,873,125	2,072,914	0.0455	0.7176	
540	79,820	36,586	1,454,989	1,571,395	0.0345	0.7521	
550	U 7/ 50/	0	1,057,884	1,057,884	0.0232	0.7753	
570	30,380	36,586	815,338	888,510	0.0195	0.7948	
570	20,001	68,174	573,669	669,894	0.0147	0.8095	
500	U	U	240,806	240,806	0.0053	0.8148	
600	0	74 594	584,183	584,183	0.0128	0.8276	
610	0	20,200	576,401	412,987	0.0091	0.8367	
620	0	47,177	(1,455	127,252	0.0028	0.8395	
630	0	0	101,409	181,489	0.0040	0.8434	
640	0	0	200,021	268,021	0.0059	0.8493	
650	0	40 700	194,140	194,146	0.0043	0.8536	
660	0	47,177	JII,793	301,395	0.0079	0.8615	
670	0	0	100,200	188,200	0.0041	0.8656	
680	n	0	241,340	247,340	0.0054	0.8711	
690	0	0	273,003	2/3,083	0.0060	0.8771	
700	ň	0	329,470	529,470	0.0072	0.8843	
710	Ő	0	134 411	100,401	0.0035	0.8878	
720	ň	n	259 /51	134,411	0.0029	0.8908	
730	ň	0 0	182 27/	220,421 193 37/	0.0057	0.8965	
740	ñ	ň	08 052	02,214	0.0040	0.9005	
750	ñ	0	70,772	70,932	0.0022	0.9026	
760	ñ	ň	8/ / 25	8/ /25	0.0035	0.9061	
770	ň	ů l		07 575	0.0019	0.9080	
780	ñ	40 700	05 150	16/ 050	0.0021	0.9101	
790	ñ	-77,177 N	19/ 57/	194,737	0.0052	0.9155	
800	õ	27 050	275 20%	307 154	0.0040	0.91/4	
810	ñ	C,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	116 209	11/ 200	0.000/	0.9240	
	•	v	114,320	114,320	0.0023	0.9265	

Table E-9.--Population estimates by sex and size group for Pacific halibut from the 1992 eastern Bering Sea bottom trawl survey.

						Cumulative
(mm)	Males	Females	Unsexed	Total	Proportion	Proportion
	0	30 010	81.748	121,658	0.0027	0.9292
820	0	39,910	92,238	92,238	0.0020	0.9312
830	0	ő	91,655	91,655	0.0020	0.9332
840	0	0	188 451	188,451	0.0041	0.9374
850	0	Ň	206 093	206.093	0.0045	0.9419
860	0	0	69 716	69.716	0.0015	0.9434
870	U	0	226 266	226.266	0.0050	0.9484
880	0	0	176 076	202,127	0.0044	0.9528
890	28,051	0	184 680	184.680	0.0041	0.9569
900	U	0	168 088	168,988	0.0037	0.9606
910	U	0	128 515	128,515	0.0028	0.9634
920	U	0	77 577	77.577	0.0017	0.9651
930	U	0	151 705	151,705	0.0033	0.9684
940	U	U	100 063	109,063	0.0024	0.9708
9 50	0	70.010	277 206	317 115	0.0070	0.9778
960	0	29,910	40 5/3	60.543	0.0013	0.9791
970	0	U	95 773	113 322	0.0025	0.9816
980	27,950	U	00,012	80 135	0.0020	0.9836
1000	0	U	2/ 0/0	2/ 0/0	0.0005	0.9841
1010	0	U	24,909	101 531	0.0022	0.9863
1020	0	0	101,001	07,033	0.0020	0.9884
1030	0	0	93,033	101 3/5	0 0022	0.9906
1040	0	0	101,345	27 507	0.0006	0.9912
1060	0	0	27,507	50 704	0.0011	0.9923
1070	0	0	50,796	50,790	0.0012	0.9935
1100	0	0	55,940	22,240	0.0006	0.9942
1160	0	0	28,004	20,004	0.0007	0.9949
1180	0	0	32,151	22,131	0.0007	0.9958
1200	0	0	44,132	44,132	0.0010	0 0071
1210	0	0	55,959	30,70	0.0012	n 9977
1220	0	0	29,725	29,725	0.0007	0.0083
1230	0	0	28,232	28,232	0.0006	0.7703
1270	0	0	28,474	28,474	0.0006	0.7770
1280	0	0	27,976	27,976	0.0000	1 0000
1310	Q	<u> </u>	0	19.659	0.0004	1.0000
TOTAL	1,241,859	1,169,478	43,160,925	45,572,261		

Table E-9.--Continued.