SH 11 * A2N65 # 94-03

Alaska Fisheries Science Center

National Marine Fisheries Service

U.S DEPARTMENT OF COMMERCE

AFSC PROCESSED REPORT 94-03

49

Preliminary Report on the Genetic Diversity of Sockeye Salmon Populations from Southeast Alaska and Northern British Columbia

July 1994

CCT 1 2 604 Auko Bay Lab

Library U.S. Department of Commerce-NOAA Auke Eav Ficherios Laboratory 11305 Glacier Hwy Juneau, AK 99801

This report does not constitute a publication and is for information only. All data herein are to be considered provisional.

ERRATA NOTICE

This document is being made available in .PDF format for the convenience of users; however, the accuracy and correctness of the document can only be certified as was presented in the original hard copy format.

Inaccuracies in the OCR scanning process may influence text searches of the .PDF file. Light or faded ink in the original document may also affect the quality of the scanned document.

PRELIMINARY REPORT ON THE GENETIC DIVERSITY OF SOCKEYE SALMON POPULATIONS FROM SOUTHEAST ALASKA AND NORTHERN BRITISH COLUMBIA

by

C.M. Guthrie III¹, J.H. Helle¹, P. Aebersold², G.A. Winans², and A.J. Gharrett^{1,3}

¹Auke Bay Laboratory Alaska Fisheries Science Center National Marine Fisheries Service National Oceanographic and Atmospheric Administration 11305 Glacier Highway, Juneau, Alaska 99801–8626

²Northwest Fisheries Science Center National Marine Fisheries Service National Oceanographic and Atmospheric Administration 2725 Montlake Boulevard East, Seattle, Washington 98112

> ³School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 11120 Glacier Highway, Juneau, Alaska 99801

July 1994

Dispariment of Commerce-NOAA
 Stational Laboratory
 Stational Leboratory
 Stational Leboratory
 Stational Leboratory
 Stational Leboratory

Genetic data were collected and prepared with the use of protein electrophoresis from 52 spawning locations in southeastern Alaska and northern British Columbia. Genetic relationships were examined from principal components analysis and unrooted trees constructed from genetic distances between collections. These descriptive analyses suggest a geographic basis to genetic divergence among populations. This geographic basis was confirmed using log-likelihood-ratio analysis and analyses of variance. Three groups of populations were observed: one from systems that drain into the inside waters of northern and central southeast Alaska; another from the far southeastern islands (including Prince of Wales Island); and the third in systems of the southern inside waters. Although the geographic structure was a statistically significant component of the overall genetic structure, gene diversity analysis indicates that only about 4.7% of the total genetic variability was attributable to genetic differences among those regions, whereas about 8.4% of the total was due to differences among populations within each region. The other 87.0% of the variation occurred, on average, within each collection.

ためためために大力である

CONTENTS

INTRODUCTION	1
METHODS AND MATERIALS	
	2
RESULTS	3
Genetic Description of the Collections	3
Pooling Adult Collections for Analyses	3
Taku River Juvenile Sockeye	4
Descriptive Analysis	5
Analysis of Geographic Structure	6
	7
Effect of Rearing Habitat on Genetic Structure	8
	8
DISCUSSION	9
RECOMMENDATIONS 1	11
ACKNOWLEDGMENTS 1	[1
CITATIONS 1	13
TABLES 1	5
FIGURES 29	:9
APPENDICES 39	9

TABLES

Table 1.—Group designation (letters correspond to spawning areas listed in Figs. 1, 3–6 and appendices 1–3), location, collection date, and number of sockeye salmon (N), used for electrophoretic analysis. Districts are Alaska Department of Fish and Game statistical areas.	17
Table 2.—Group designation (letters correspond to rearing areas listed in Fig. 2 and in Appendices 4-6), location, date of collection, and number of Taku River juvenile sockeye salmon (N) used for electrophoretic analysis.	22
Table 3.—Buffer systems used for electrophoresis of Southeast Alaska and northern British Columbia sockeye salmon samples.	23
Table 4.—Enzymes screened, their International Union of Biochemistry (IUBNC 1984) enzyme commission (EC) numbers and abbreviations. Peptidases are designated according to their substrate specificity.	24
Table 5.—Protein-coding loci (Shaklee et. al. 1990) for enzymes resolved in this study and the tissues and buffer in which they were resolved. Peptidase loci are designated according to their substrate specificity. The buffers are designated by the acronyms in Table 4. $L =$ liver, $H =$ heart, $M =$ muscle, $E =$ eye	25
Table 6.—Hierarchical gene diversity analysis (Chakraborty and Leimar 1987) of Southeast Alaska sockeye populations. One analysis used data from 31 loci and included 25 collections, the other used 8 loci and included 47 collections. The additional collections in the latter analysis enabled use of an additional level of hierarchy, among collections taken at a sample site.	28
Table 7.—Hierarchical gene diversity analysis (Chakraborty and Leimar 1987) of Taku River sockeye populations. One analysis used data from 31 loci and the other used 8 loci. Additional collections in the latter analysis enabled use of an additional level of hierarchy, among collections taken at a sample site.	28

FIGURES

Figure 1.—Alaska Department of Fish and Game statistical fishery districts, designated by three-digit code.	31
Figure 2.—Sampling sites for sockeye salmon in Southeast Alaska and northern British Columbia. Letters correspond to collection sites listed in Table 1, Figs. 4–7, and Appendices 1–3. Sites with multiple collections are designated by a single letter	32
Figure 3.—Sampling sites for juvenile sockeye salmon on the Taku River drainage in Southeast Alaska and northern British Columbia. Letters correspond to collection sites listed in Table 2 and Appendix 4.	33
Figure 4.—Principal component analysis of Southeast Alaska and northern British Columbia sockeye salmon for allelic frequency of 21-locus data set. Letters correspond to collection sites listed in Table 1, Figs. 2, 5-7, and Appendices 1-3. Circled letters within aggregations indicate collections not geographically associated with the aggregation. NSE = northern Southeast; SSE = southern Southeast	34
Figure 5.—Principal component analysis of Southeast Alaska and northern British Columbia sockeye salmon for the most common allele in a 6-locus data set. Letters correspond to collection sites listed in Table 1, Figs. 2, 5-7, and Appendices 1-3. Circled letters within aggregations indicate collections not geographically associated with the aggregation.	35
Figure 6.—Neighbor-joining tree (Saitou and Nei 1987) using genetic distances (Cavalli-Sforza and Edwards 1967) estimated from allelic frequencies at 31 loci	36
Figure 7.—Neighbor-joining tree (Saitou and Nei 1987) using genetic distances (Cavalli-Sforza and Edwards 1967) estimated from allelic frequencies at 8 loci. Circled letters within aggregations indicate collections not geographically associated with the aggregation.	37

, š

ų

APPENDIX

1. N. W. M. ...

Appendix 1.—Allozyme variation in collections of sockeye salmon from Southeast Alaska and northern British Columbia. Allelic frequencies and collection sizes (N) are designated as in Table 1. Alleles are designated by their mobility relative to the most common allele (*100) and as described in Shaklee et. al. (1990). Collections are pooled in accordance with Appendix 3.	
Appendix 2.—Sample sizes of monomorphic loci.	95
Appendix 3.—Log-likelihood ratio analysis comparisons of collections from the same site but at different times. Where subdivision of samples at a site are made for subsequent analyses, both the total heterogeneity at the site and the heterogeneity within the subdivision are presented. The total includes the heterogeneity within and among collections at that site. A blank at a site (with a value for "between") indicates one collection only.	99
Appendix 4.—Allozyme variation in collections of juvenile sockeye salmon from the Taku River in Southeast Alaska and northern British Columbia. Allelic frequencies and collection sizes (N) are designated as in Table 2. Alleles are designated by their mobility relative to the most common allele (*100) and as described in Shaklee et. al. (1990).	101
Appendix 5.—Log-likelihood ratio analysis (G-test) of the genetic heterogeneity between adult and juvenile sockeye salmon from the Taku River drainage	104
Appendix 6a.—Log-likelihood ratio comparisons of adult and juvenile (age-0 rearing) sockeye salmon from sites on the main-stem Taku River in Southeast Alaska and northern British Columbia.	105
Appendix 6b.—Log-likelihood ratio comparisons of adult and juvenile (age-0 rearing) sockeye salmon from sites on lower tributaries of the Taku River in Southeast Alaska.	1 05
Appendix 7.—Log-likelihood ratio analysis (G-test) of genetic structure among collections of Southeast Alaska and northern British Columbia sockeye salmon based on Alaska Department of Fish and Game statistical districts.	106
Appendix 8.—Log-likelihood ratio analysis (G-test) of genetic structure of Southeast Alaska and northern British Columbia sockeye salmon based on migratory route of returning adults.	107
Appendix 9.—Log-likelihood ratio analysis (G-test) of genetic structure of Southeast Alaska and northern British Columbia sockeye salmon based on surface area of rearing lake.	109

INTRODUCTION

Because anadromous sockeye salmon (*Oncorhynchus nerka*) home precisely, populations are isolated sufficiently to allow them to diverge genetically (Quinn et al. 1987). As a result, local populations may differ substantially. Although such differences may be useful for fine-scale stock identification, most stock-separation applications involve larger assemblages of stocks. For application of genetic methods to identify stocks in aggregations farther from the terminal areas, a geographic basis for the genetic variation is useful.

Until recently, data for only a few variable loci were routinely gathered in baseline surveys (Grant et al. 1980; Utter et al. 1984; Wilmot and Burger 1985; Quinn et al. 1987; Wood et al. 1987) and, with the exception of a study of sockeye salmon in major Cook Inlet drainages (Grant et al. 1980), population genetic analyses were not made with data sets that included sockeye salmon populations collected over a relatively wide geographic range. As a result, scale pattern analysis and parasite incidence are the primary stock separation tools for sockeye salmon populations of Southeast Alaska and British Columbia (Marshall et al. 1987; Wood et al. 1989). Although these markers are quite useful, they rely on the environmental differences of juvenile sockeye rearing habitat rather than heritable, geographically based characters. In many situations the environmental basis suffices because some environmentally based differences follow geographic differences. For example, scale-pattern analysis adequately separates sockeye salmon of various habitats of the large inland lake systems in northern British Columbia from those of small coastal lake systems which are primarily in Southeast Alaska. However, heritable characters that have some geographic basis might allow a finer discrimination than is possible with the environmental characters presently in use.

In this paper we report results and analysis of baseline genetic data for sockeye salmon collections from much of Southeast Alaska, and from the transboundary Stikine and Taku Rivers. By obtaining data from more allozyme loci than have been reported previously and by broadly sampling populations over Southeast Alaska, our data could be examined for geographically based genetic differences.

METHODS AND MATERIALS

Samples

Between 1982 and 1990, 95 collections of tissue samples were taken from sockeye salmon at 52 spawning locations in Southeast Alaska and northern British Columbia (Table 1; Figs. 1,2). We collected samples in more than one year at many locations. Samples were collected between mid-July and mid-October from weirs on outlet streams, in inlet stream spawning areas, at beach spawning areas, and in spawning areas of upwelling groundwater. In 1986, age-0 (rearing) juveniles were also collected from 23 sites on the Taku River drainage (Table 2; Fig. 3) between late July and late September, primarily with beach seines. Each juvenile collection was sampled at three stations 50 m apart, with at least three seine passes at each station as described in Murphy et al. (1989).

Whole eyes and samples of liver, skeletal muscle, and heart from a single adult fish were packaged in Whirl-pak¹ bags and put in coolers containing frozen gel-ice. The samples were frozen at -20° C shortly after they were collected, and shipped to the Auke Bay Laboratory where they were stored at -85° C until analyzed. Juvenile fish were frozen whole in resealable plastic bags and handled in the same manner as the adult samples. We dissected the tissues from

¹Reference to trade names does not imply endorsement by the National Marine Fisheries Service.

the juveniles shortly before analysis. Heart and liver tissues were macerated in the same tube and analyzed together because those tissues were too small to be separated.

Protein electrophoresis was conducted as described by Aebersold et al. (1987). Buffer systems used are described in Table 3. Specific enzyme activities (Table 4) were stained according to Harris and Hopkinson (1976) or Aebersold et al. (1987). Specific (putative) loci for which data were obtained, the tissues in which they were expressed, and the buffer systems with which they were resolved are listed in Table 5. We started this investigation analyzing a suite of variable loci. During the course of this investigation we discovered variability at additional loci. As a result, we do not have data for all loci for all collections.

Analysis

Departure from Hardy-Weinberg expectations (Hardy 1908) was examined with chi-square goodness-of-fit tests. This analysis was applied only when the least prevalent genotype had an expectation of at least four individuals. When this minimum expectation was not met, the conformance to Hardy-Weinberg frequencies was tested by generating nonparametrically a distribution of X²-statistics for each test using a Monte Carlo process. The distribution of X^2 -statistics for each Hardy-Weinberg test was made by 1) reconstructing each set of genotypes by randomly drawing from the observed allelic frequencies (with replacement) the number of individuals originally observed in each collection, and 2) calculating a \tilde{X}^2 goodness-of-fit statistic. The process was repeated 2000 times to generate a distribution. The proportion of X^2 -statistics generated by the resampling process that exceeded the observed X^2 -statistic was inferred as the significance of the test on the observed data. For most loci, the genotype can be inferred from the banding pattern of the phenotype observed. Genetic variation at PGM-1*, however, involves a **null* allele which, unlike a normal allele, does not produce a gene product that has enzymatic activity (i.e. can be stained). Consequently, only four phenotypes (banding patterns) are detectable for the six possible $PGM-1^*$ genotypes that can result from the three alleles we Therefore, tests to confirm Hardy-Weinberg expectations were not possible at observed. PGM-1*, and in log-likelihood ratio analyses (G-tests) comparing data at PGM-1* we used phenotypic frequencies rather than allelic frequencies.

Homogeneity of allelic frequencies was examined using the G-test (Sokal and Rohlf 1981). Pooling allelic frequencies eliminated classes with expected values < 4.

Variation at co-migrating, duplicated loci (termed isoloci, Allendorf and Thorgaard 1984) was treated as if all the variability appeared at one locus and the other was monomorphic. This is a conservative treatment for isoloci with relatively low allelic variability (Gharrett and Thomason 1987). No Hardy-Weinberg tests were conducted on isoloci.

Relationships among collections were descriptively examined in two ways: 1) principal component analysis of allelic frequencies (arcsine-square root transformed using SYSTAT [Wilkinson 1990]), and 2) neighbor-joining trees (Saitou and Nei 1987) estimated from the chord distances of Cavalli-Sforza and Edwards (1967) determined between each pair of populations.

We used log-likelihood ratio analysis (Sokal and Rohlf 1981) to test for heterogeneity 1) among collections from the same locations, 2) among collections at various spatial and temporal levels, 3) between collections of adults and juveniles from the same or nearby location, and 4) among collections of juveniles. Adult collections from the same location were pooled when the G-test did not indicate heterogeneity. Gene diversity analysis (Chakraborty and Leimar 1987) was used to hierarchically partition genetic variability.

のなが、たちのないのである

We used two methods to examine factors underlying the genetic structure among collections that might be related to geographic proximity or freshwater habitat. In addition to the G-test, we used one-way analysis of variance (ANOVA) or one-way multiple variate analysis of variance (MANOVA) of arcsine-square root-transformed allelic frequencies or average unbiased estimates of heterozygosity (Nei 1978) of collections. Wilks' λ was used to infer significance in the MANOVAs. Loci which showed variation in only one collection or pooled collection, and other loci which produced singular matrices were omitted from this analysis.

We were concerned that the low levels of variation at some loci might produce spurious results in the one-way ANOVAs, so we also determined significance levels by generating nonparametrically a distribution of F-statistics for each test. Since the hypothesis we tested was that all the groups of collections have the same allelic frequencies, the Monte Carlo process iteratively resampled from a pool of alleles whose frequencies are the weighted average of all the collections. The distribution of F-statistics for each locus was made by 1) reconstructing each collection by randomly drawing from the pool for that locus (with replacement) the number of alleles originally observed in each collection, and 2) conducting one-way ANOVA to calculate the F-statistics generated by the resampling process that exceeded the observed F-statistic generally was quite similar to the probability obtained from the F-distribution.

We used gene diversity analysis (Chakraborty and Leimar 1987) to partition genetic diversity into components attributable to the average variation observed at a site $[H_s/H_T]$, differences among collections taken from the same site at different times $[G_{IS} = (H_s - H_I)/H_T]$, differences among collections within a region $[H_{SR} = (H_R - H_S)/H_T]$, and differences among regions $[G_{RT} = (H_T - H_R)/H_T]$. H_I is the average expected heterozygosity of each collection, H_S is the average expected heterozygosity of each sample site, H_R is the average expected heterozygosity within each region, and H_T is the overall average expected heterozygosity. Average allelic frequencies are calculated from unweighted averages of component collections.

RESULTS

Genetic Description of the Collections

We used 23 enzyme-specific stains to obtain data from adult sockeye salmon for 42 protein coding loci. At 14 loci and 2 isoloci, the most abundant allele had a frequency of ≤ 0.95 in at least one collection. The loci were PGM-1*, PGM-2*, LDH-B2*, PEPC*, ALAT*, sAAT-3*, mAAT-1*, ADA-1*, LDH-B1*, EST-D*, mIDHP-2*, FBALD-3*, sAH*, sIDHP-2*, sMDH-B1,2*, and sAAT-1,2*. The frequency of the most abundant allele was between 0.95 and 0.99 in at least one collection at 10 loci and 2 isoloci: G3PDH-1*, PEPLT*, GPI-A*, PEPD2*, mAH-3*, mAH-4*, LDH-C*, sSOD*, PMI*, mMEP-1*, GPI-B1,2*, and sMDH-A1,2*. At FDHG* and mIDHP-1*, the most abundant allele had a frequency < 0.99 in at least one collection (Appendix 1). The loci PEPA*, sIDHP-1*, ADA-2*, mMEP-2*, PGDH*, and aMAN* were monomorphic (Appendix 2).

Pooling Adult Collections for Analyses

Tissues were collected from spawning populations in nearly every fishing district in Southeast Alaska. Southern Southeast Alaska (Districts 101, 102, and 103) and the Taku River and Juneau area (District 111) were especially well represented. Out of 361 tests possible for the collections, 10 did not conform to Hardy-Weinberg expectations (P > 0.05), which is less than the number of departure one would expect for that many tests.

In some locations, collections were taken in several years, or at several times in the same year. Collections from the same location that were not heterogeneous (G-test) were pooled for subsequent analyses. Pooling was possible for most locations; the exceptions were McDonald Lake [D and E], Karta River [H and I], Salmon Bay [U and V], the Chilkat drainage [t and u], and Yehring Creek [p, q, and r] (Appendix 3). The small heterogeneities observed at single loci for Naha River [F], Upper Sarkar Lake [O], Hugh Smith Lake [A], Kegan Lake [J], Alecks Lake [c], and Shustahini Slough on the lower Taku River [k] are not significant when multiple testing is taken into account (Appendix 3).

Differences in allelic frequencies at $ALAT^*$ are primarily responsible for the heterogeneity observed among McDonald Lake collections (G = 15.24, 2 df; P = 0.004) and among Karta River collections (G = 16.63, 2 df; P < 0.001). Allelic frequency differences at $mAAT-1^*$ also contributed to the heterogeneity among McDonald Lake collections (G = 6.15; 1 df; P = 0.013). Allelic frequencies of $PEPC^*$ differed among Salmon Bay collections (G = 11.52, 2 df; P =0.003). For the Yehring Creek collections, allele frequencies at $PGM-1^*$ (G = 17.40, 2 df; P << 0.001) and $PEPC^*$ (G = 9.33, 2 df; P = 0.009) differed; these differences may reflect temporal structure within the creek. Differences among the Chilkat Lake and Chilkat River collections were attributable mostly to $PEPC^*$ (G = 12.68, 3 df; P = 0.005), $LDH-B2^*$ (G = 23.11, 3 df; P << 0.001), and $ALAT^*$ (G = 19.2, 6 df, P = 0.004). Although there was heterogeneity between the Chilkat Lake collections mostly from $PEPC^*$ allele frequency differences, we pooled Chilkat Lake collections for subsequent analyses.

The three collections of sockeye salmon from the Taku River lower main stem [j (1)-(2)] were pooled as were the 12 collections from the upper main stem [k (3)-(10)]. After taking multiple testing into account, there was no heterogeneity at sites sampled more than once or among collections included within either of the Taku River main-stem groupings [j or k].

Taku River Juvenile Sockeye

Between July and September 1986, 20 collections of rearing juvenile sockeye salmon were taken from 15 sites on the Taku River system (Table 2; Fig. 3): Tatsemenie Lake, 11 lower main-stem sites, and 3 lower main-stem tributaries. Because many of the collections sampled from the main stem were quite small, we pooled them into a single group. The adult main-stem collections were also quite similar to each other. Allozyme data were obtained for $PGM-1^*$, $PGM-2^*$, $LDH-B2^*$, $sIDHP-2^*$, $PEPC^*$, $ALAT^*$, $sAAT-3^*$, $sAAT-1,2^*$, $mAAT-1^*$, $sIDHP-1^*$, and $PEPA^*$ (Appendix 4).

Three collections of juveniles came from sites at which adult fish had also been sampled. The log-likelihood ratio comparison between allelic frequencies observed for small collections of juveniles and adults from Fish Creek showed no heterogeneity (P = 0.32). However, there was heterogeneity between the juvenile and adult collections from Tatsemenie Lake (P = 0.010) which was attributable primarily to $ALAT^*$ (P < 0.001). The differences observed indicate that there is further genetic structure within Tatsemenie Lake (Appendix 5).

Comparisons among the Yehring Creek adult and juvenile collections also indicated heterogeneity (P = 0.012); the heterogeneity was primarily attributable to the adult Yehring Creek collections (Appendix 3). Pairwise comparisons between the juvenile samples and each of the three adult run segments showed no heterogeneity; and, taking multiple testing into consideration, no single locus shows heterogeneity. This kind of result might be expected if the collection of juveniles were composed of offspring from all three segments.

To determine whether the juveniles collected in the lower Taku River originated from lower river populations or were aggregations of many populations, we examined the heterogeneity among main-stem collections [BB] and between these collections and the adult main-stem collections [j and k]. We also tested for heterogeneity among collections from tributaries to the lower Taku River (Appendix 6). In contrast to the adult collections, the juvenile collections from the lower main stem were heterogeneous (G = 105.95, 64 df; P < 0.001). Surprisingly, there was no overall significant difference between the adults and juveniles (G = 10.03, 7 df; P = 0.187). There was no heterogeneity between the collections of juveniles from tributaries to the lower Taku, or between juveniles and adults from the tributaries. Because heterogeneity was observed among the juvenile collections from the lower river but no heterogeneity was observed among adult samples from the same area, the origin of the juvenile collections is in doubt. Therefore, the data from juveniles were not used in any other analysis.

Descriptive Analysis

The first examination of these genetic data involves descriptive procedures, specifically, principal component analysis and construction of unrooted trees (or clustering) of collections using genetic distance estimations. Subsequently, we subjected the data to statistical analyses, which included the G-test and ANOVA, to elicit commonalities of genetically similar collections.

Principal component analysis and estimation of genetic distances require data from every collection for every locus used. Because the number of loci for which we obtained data varies among collections, we performed the analyses twice, once maximizing the geographic range of sampling and once maximizing the number of loci used. In maximizing the number of loci, we used 31 loci for which data were available in 25 collections or collection pools; 21 were variable and used in the principal component analysis. To maximize the geographic representation, we used data from 47 collections (or collection pools) that had data for 8 loci; the 6 variable loci were used in the principal component analysis (Appendix 1).

The level of resolution appears to be higher when more loci are used. In plots of the first two principal components from the analysis that used transformed frequencies of the common alleles of 21 variable loci, the collections from Prince of Wales Island are distinct from two other southern Southeast Alaska collections and from collections from northern Southeast Alaska and the Taku River drainage (Fig. 4). Other areas are not well represented in this analysis. The first two components account for 19.2% and 13.0% of the total variation; but most of the separation is along the axis of the first principal component to which $ALAT^*$, $LDH-B2^*$, and $sAAT-3^*$ are the largest contributors. $GPI-A^*$ and $MDH-B1^*$ are the largest contributors to the second principal component, which separates the Hugh Smith Lake [A] and McDonald Lake [E] collections from the rest.

Geographically defined groups are not as easily distinguishable using a smaller number of loci. From plots using the first and second principal components of the transformed allelic frequencies of alleles, it appears that northern mainland collections extending from the Chilkat River to the Stikine River are reasonably distinct from most other Southeast Alaska collections (Fig. 5). Two southern Southeast Alaska groups, collections from the southwestern islands (including Kuiu and Prince of Wales Islands) and other collections from southern Southeast Alaska (including Revillagigedo Island) are evident, but they overlap to some degree. As with the previous analysis, these separations are primarily along the axis of the first principal component. The heaviest weightings for the first component are alleles LDH-B2*1100, LDH-B2*115, ALAT*100, PGM-2*100, ALAT*95, and PGM-1*100; the loci LDH-B2* and ALAT* were important factors in the previous analysis. The PGM-2* and PGM-1* alleles had the heaviest weightings for the second component; however, the second component contributed

little to resolution among the groups. Three northern mainland collections that differ from other northern collections are Turner Lake [0], Steep Creek [i], and Auke Creek [e]. These three systems are small and may have been affected by random drift. Turner Lake is landlocked (kokanee) and does not cluster near other northern collections in any of the analyses.

Unrooted trees constructed by neighbor-joining (Saitou and Nei 1987) had topologies that also suggested a geographic basis for the genetic structure of Southeast Alaska sockeye populations. In the tree constructed using 31 loci, collections from northern Southeast Alaska are generally separated from collections from Prince of Wales Island; but the Hugh Smith Lake [A] and McDonald Lake [E] collections from southern Southeast Alaska, the Chilkat Lake collection [u] from northern Southeast Alaska, and Upper Sarkar Lake on Prince of Wales Island [O] are not clearly separated (Fig. 6). The three inland collections on the transmountain rivers (Little Trapper Lake [n] and Tatsemenie Lake [m] of the Taku drainage and Tahltan Lake [a] of the Stikine drainage) cluster on the same branch.

The unrooted neighbor-joining tree constructed using eight loci generally shows the same groupings as the principal component analysis: northern Southeast Alaska [a-u and W-Z], Prince of Wales Island [G-V], and other southern Southeast Alaska collections [A-F] (Fig. 7). However, separation of these groups using data from eight loci is imperfect. One similarity between this tree and the principal component analysis (Fig. 5) is the divergence from the other northern Southeast Alaska group of the four Juneau-area collections (Auke Creek [e], Steep Creek [i], Windfall Lake [h], and Turner Lake [o]). As in the 31-loci tree (Fig. 6), the interior collections (Little Trapper Lake [n], Tatsemenie Lake [m], and Tahltan Lake [a]) clustered on one branch.

Analysis of Geographic Structure

Both principal component analysis and neighbor-joining trees suggest a geographic basis for some of the genetic variation observed among Southeast Alaska sockeye collections. We used log-likelihood ratio (G-test) analysis and analysis of variance to partition the variation observed within and among collections and among aggregations of collections to test for the significance of geographic structure. The first geographic grouping of collections we examined was defined by Alaska Department of Fish and Game statistical districts. Our collections included 11 of 15 geographically defined districts in Southeast Alaska and two districts near Yakutat (Figs. 1,2; Table 1), although data for some variable loci were not available for some districts. Comparison of heterogeneity (G-value) among collections within districts to the heterogeneity among districts showed significant heterogeneity both within and among districts (Appendix 7) at all five testable loci. Approximate F-statistics

$$(G_{\text{among}}/\text{df}_{\text{among}})/(G_{\text{within}}/\text{df}_{\text{within}})$$

indicate relatively more heterogeneity among districts than within at four of five loci examined and for the totals ($F_{69,175} = 2.177$; P << 0.001). This analysis divides the collections into a relatively large number of groups; only 8 of the 13 districts had two or more collections from which to obtain within-district variation. As a result, the among-district variation is influenced by the overall divergence among collections.

The MANOVA (Wilkinson 1990) of arcsine-square root-transformed allelic frequencies within and among districts also showed a significant effect of district. We conducted the analysis on the set of 46 anadromous collections (13 districts) using 6 variable loci and on the set of 24 anadromous collections (10 districts) for 12 loci and 2 isoloci. Omitted from the latter analysis were *sIDHP-2**, *ADA-1**, *FDHG**, *PEPLT**, *MDH-A1,2**, *mMEP-1**, and *GPI-B1,2**, because they were not variable in more than one system or because they produced singularities. In the

analysis, which maximizes collections, there was a significant multivariate effect of district (Wilks' $\lambda = 0.028$, $F_{72,158} = 2.035$; P << 0.001). Univariate F-tests for three of the six loci (PGM-1*, PGM-2*, and ALAT*) were significant (P < 0.05).

The 24-collection set included 10 of the districts. The MANOVA for these data was also significant (Wilks' $\lambda = 0.0000$, $F_{12522} = 1.961$; P = 0.035). Of the 14 loci, 8 had significant (based on the resampling analysis) univariate F-tests: $PGM-1^*$, $PGM-2^*$, $sAAT-3^*$, $GPI-A^*$, and $ESTD^*$ (P < 0.05) and $ALAT^*$, $MDH-B1,2^*$, and $LDH-B1^*$ (P < 0.01).

The descriptive analyses suggested a geographic division among the southwestern island collections, the southern inside waters collections, and the northern mainland collections. We grouped collections on this basis for MANOVA; the Petersburg [W] and Thoms [X] lakes collections were included with the southern islands, the single Chichagof Island collection [s] was retained as a fourth group, and the Yakutat collections [w and x] as a fifth group. We excluded the nonanadromous Turner Lake collection [o]. The analysis of the 46-collection data set was significant, (Wilks' $\lambda = 0.243$, $F_{24,126} = 2.66$; P < 0.001), and four of the six loci had significant univariate F-tests (P < 0.01 for $PGM-1^*$, $PGM-2^*$, and $LDH-B2^*$ and P < 0.05 for $ALAT^*$). The MANOVA of 24 collections using 20 loci ($sIDHP-2^*$, $ADA-1^*$, $FDHG^*$, and $MEP-1^*$ were omitted) was highly significant (Wilks' $\lambda = 0.000001$, $F_{68,14} = 7.011$; P = 0.0001). Eight of the loci had significant univariate F-tests (P < 0.001 for $PGM-1^*$, $nAAT-1^*$, and $MDH-B1,2^*$. The MANOVA of 24 collections using 20 loci ($sIDHP-2^*$, $ADA-1^*$, $FDHG^*$, and $MEP-1^*$ were omitted) was highly significant (Wilks' $\lambda = 0.000001$, $F_{68,14} = 7.011$; P = 0.0001). Eight of the loci had significant univariate F-tests (P < 0.05 for $PGM-1^*$, $mAAT-1^*$, and $MDH-A1,2^*$). The Monte Carlo analysis confirmed that those loci were significant except for $PGM-1^*$ (P = 0.062).

Entry Route

Because it seems more likely that fish will stray into systems along their migration routes than into other systems, we considered the entrance corridor through which migrating salmon return to their natal streams as a factor affecting genetic structure.

The major spawning corridors are through Cross Sound, northern Chatham Strait and Sumner Strait, and Dixon Entrance. Also, some of the fish return directly to the Yakutat area and to western Prince of Wales Island. We used G-tests to partition the genetic variation at five variable loci into the variation among collections that use a particular corridor and the variation that occurs among the corridors (Appendix 8). The kokanee collection (Turner Lake) was not used in the analysis. Substantial heterogeneity was observed at nearly every level for all loci included. The total heterogeneity observed among collections within a grouping was highly significant (G = 4546.46, 208 df; P << 0.001) as was the total among entries (G = 1064.58, 36 df; P << 0.001). However, approximate F-statistics comparing the heterogeneity within and among entry routes was not significant for any locus used (P > 0.05) nor was it significant for the totals ($F_{362} = 1.35$; P = 0.10).

In contrast, the MANOVA of the data set that maximized the number of collections and maximized the number of loci was significant (P < 0.05), indicating that the entry route may have a significant influence on the allelic frequencies. Only $PGM-1^*$ was significant in the analysis that maximized collections ($F_{4.41} = 3.748$; P = 0.011); whereas in the analysis that maximized loci (*sIDHP-2**, *ADA-1**, *FDHG**, and *mMEP-1** were omitted from the analysis), the significant one-way ANOVAs were for *MDH-A1,2**, *GPI-A**, and *EST-D**. These loci were also significant in the tests for geographic structure.

Effect of Rearing Habitat on Genetic Structure

Ecological factors may also contribute to similarities among different populations. For sockeye salmon, freshwater habitat is a factor of interest because it affects selection or population size. We tested for the effect of freshwater habitat on the genetic composition of populations by comparing collections sampled from small lakes (less than 250 hectares), medium lakes (300-500 hectares), large lakes (more than 650 hectares), and rivers. The MANOVA of the maximum number of collections was not significant (Wilks' $\lambda = 0.552$, $F_{18,105} = 1.36$; P = 0.165), and only the univariate test for $PGM-2^*$ was significant ($F_{3,42}$ 5.087; P = 0.004). A planned pairwise comparison for $PGM-2^*$ indicated that the group of collections from medium-sized lakes differed from the other groups and had a mean allelic frequency of 0.87 as compared to 0.70, 0.79, and 0.81 for the small-lake, the large-lake, and river collections, respectively.

The MANOVA for the test that maximized loci (*sIDHP-2**, *FDHG**, and *mMEP-1** were omitted) was not significant (Wilks' $\lambda = 0.006526$, $F_{549} = 0.897$; P = 0.717), and univariate *F*-tests were not significant (P < 0.10) for this smaller number of collections. The *G*-test produced similar results (Appendix 9).

We further examined the effect of freshwater rearing habitat on the genetic structure of populations by testing the effect of habitat type on the average unbiased heterozygosity (Nei 1978) of a collection. ANOVA did not indicate an effect of size in either the data set that maximized collections ($F_{3,42} = 0.52$; P = 0.70) or the set that maximized loci ($F_{3,20} = 0.50$; P = 0.69).

In contrast, geographic structure had significant effects on average heterozygosity in both the 8-locus ($F_{4,11} = 4.41$; P = 0.005) and the 31-locus ($F_{4,19} = 3.67$; P = 0.22) data sets. Tests involving entry corridor were not significant (P > 0.30). Analysis of heterozygosities and arcsine-square root-transformed heterozygosities had similar results.

Gene Diversity Analysis

We performed gene diversity analyses that included the anadromous collections and that included only the Taku River collections. We did two analyses for each, one that used the sets of data that maximized the number of collections and one that used the sets of data that maximized the number of loci. We used the five geographic areas observed from the principal component analysis to estimate the proportion of variation attributable to three levels of hierarchy: within collections (H_s/H_T), among collections within regions (G_{SR}), and among regions (G_{RT}). In the analyses that involved the larger number of collections, we were able to add a level of hierarchy (G_{IS}) that estimated the amount of variability among collections at a site.

In the 31-locus analysis of the Southeast Alaska anadromous collections, 87.0% of the variation was found on the average within each collection, 8.4% was found among collections within a region, and 4.7% was attributable to differences among regions (Table 6). In the 8-locus analysis, 88.1% of the variation was due to within-collection variation, 8.3% to differences among collections within a region, and 2.5% to average regional differences. Variability among collections at a sample site accounted for 1.2% of the total. The results of the two analyses were similar, in part because the six variable loci used in the analysis that maximized the number of collections accounted for a large portion of the variability observed.

For the analysis of collections from the Taku River system, we made the highest level of hierarchy the separation of lower river main-stem and upper river lake populations. We estimated the average proportion of variability that occurs within each collection site, among populations in the lower and upper river areas, and between the river areas. In the 31-locus analysis, 95.7% of the variation is found on the average within each collection. The average divergence among collections within the upper and lower areas accounted for 2.7% of the variability, and the differences between the upper and lower collections accounted for 1.6%. These results are similar to those from the 8-locus analysis, from which we also estimated that the variation among collections at a sample site accounted for 1.5% of the total variation (Table 7).

DISCUSSION

We observed substantial divergence among collections from Southeast Alaska sockeye salmon populations, which is consistent with the accurate homing of sockeye salmon observed by Quinn et al. (1987). Gene diversity analysis shows that approximately 8.3% of the variation is attributable to differences among populations within a geographically defined region. This level of divergence corresponds (from Wright's (1943) island model for gene flow) to an exchange between populations of approximately 2-3 individuals (N_{em}) per generation. One thousand fish would be a conservative estimate of average effective population sizes (N_{e}), even for the small lake systems in Southeast Alaska if a generation time > 4 years is taken into account (Waples 1989). An estimate of migration rate (m) from these values is less than 0.003 and comparable to the rates estimated for some sockeye salmon populations of British Columbia (Quinn et al. 1987).

We also observed geographic structure superimposed on the genetic divergence at the population level. Only 2.5-4.7% of the total variability was attributable to regional differences as compared to approximately 8.3% which was observed on the average among populations within regions. However, every analysis we conducted supported an underlying geographic basis for the genetic variability we observed among Southeast Alaska sockeye salmon populations. Moreover, tests for the effect of rearing habitat type were not significant, as was also demonstrated for sockeye populations of the Stikine River (Wood et al. 1987). Divergence among local populations with an underlying geographic structure also occurs among sockeye salmon populations in the major drainages of Cook Inlet, Alaska (Grant et al. 1980).

The major regions we identified were 1) the northern mainland, 2) the southern mainland and inside waters, and 3) the southern and central islands, notably Prince of Wales Islands. The boundaries of the regions are not sharp. Two other regions, 4) northern coastal and 5) northern island, were designated tentatively because they are represented by only three collections. More extensive sampling and resolution of more variable loci will be necessary to clarify these relationships.

Collection sites in the northern region include the Taku and Stikine Rivers, which are large transmountain river systems that cut through the coastal mountains. Sockeye populations we sampled in the three lake systems near the origins of these rivers have $sAAT-3^*$ variation, which was not seen elsewhere in this study. We also observed substantial variation at $LDH-B2^*$; variation at this locus was seen only rarely elsewhere. Because the upper reaches of these rivers lie fairly close to each other, it is conceivable that similarities among the three lake systems on the upper reaches of these rivers (Figs. 6,7) resulted from exchange between them, possibly as a result of headwater capture or a blockage of the Taku River by glacial action. Gharrett et al. (1987) suggested a similar exchange between the Taku River and Yukon River as a result of glacial activity such as that reported by Kerr (1948).

Collections from the main stem of the lower Taku River are similar. This area of the river is braided and may change substantially from year to year. As a result, it is likely that the progeny from sockeye that spawn there are often prevented from homing to their natal grounds. The similarity among collections suggests that this lower area may in effect be one large population. In contrast, we observed heterogeneity among collections from Yehring Creek, a tributary to the lower Taku River. Such heterogeneity would be expected if Yehring Creek fish were not part of the lower main-stem population and there was strong temporal structure in their spawning timing.

Three small populations in the northern mainland group did not cluster well with other northern mainland collections in either the principal components analysis or the neighbor-joining trees. These populations-Steep Creek (a tributary to the Mendenhall River), Windfall Lake, and Auke Creek-are near Juneau, close to the mouth of the Taku River. Between 1919 and 1923, a controversial hatchery superintendent for the Territorial Fish Commission, A. J. Sprague, planted sockeye salmon eggs from Afognak Lake (near Kodiak) in Auke Lake tributaries and in the lower tidal area of the Mendenhall River (Roppel 1982). Although Sprague made numerous transplants during those years, the success of many are doubtful. Moreover, he kept limited records, so it is not possible to determine the effect of his efforts on these stocks. Another one-time transplant was made in 1951 in which the Alaska Department of Fisheries planted eyed sockeye salmon eggs from Lake Creek (an Auke Lake tributary) to streams in the Mendenhall River system (Roppel 1982). Although these transplants may have influenced the genetic compositions of sockeye salmon in Auke Creek and Steep Creek, in particular, there is some question about the immediate survival of the transplanted fish (Roppel 1982). Other recorded transplants in northern Southeast Alaska include movements of eggs from Chilkat Lake to Chilkoot Lake. Our samples from these two lakes (near Haines) were heterogeneous.

As we observed for the transboundary collections, several rare alleles characterized the southern mainland collections. Variation at $GPI-A^*$ and $MDH-B1,2^*$ were seen in several populations of this region, but only occasionally in other locations. In addition to the more variable loci, these loci and $sAAT-3^*$ and $LDH-B2^*$ received heavy weightings in the principal component analysis. The one-way ANOVAs that tested for geographic structure were significant for all these loci. These and other relatively rare alleles should not be overlooked for stock identification purposes. Although they may be relatively infrequent, if they are found in many or all populations of a region, they may prove useful as regional markers.

The collections of juveniles from the lower Taku River were heterogeneous. Although the collections sampled from tributaries resembled the adult collections from the same tributaries, the juveniles sampled from the main stem differed from adult collections in the same area. These kinds of differences could arise as a result of natural selection acting differentially on different life-history stages, but it is more likely that the differences we observed reflect either mixing of genetically divergent spawning populations or unrepresentative sampling of families of juveniles. Regardless, a more thorough sampling effort of juveniles in this area is impractical.

In addition, the collection of juveniles taken from Tatsemenie Lake differed from adults sampled from that lake. This difference suggests additional population structure in that system, which is consistent with the observation that approximately 90% of the adults spawn in the inlet to little Tatsemenie Lake and presumably rear in Little Tatsemenie Lake; and the other 10% pass through Little Tatsemenie Lake to Tatsemenie Lake, where they spawn and rear. Samples of adults and juveniles do not unequivocally represent either of these possible groups. We also observed some heterogeneity between collections of (presumably) the same population that were sampled in different years. Although some variation may be expected between years, especially in small populations (Waples 1989), it is more likely that there is additional population structure in the systems that show such heterogeneity. It is imperative that sampling be done using full knowledge of the existing population structure, especially for sockeye salmon which exhibit genetic divergence even between geographically proximal populations. In many cases in Alaska this will require that field studies supplement genetic sampling. In some instances (e.g. Little Tatsemenie Lake) neither the adult nor the juvenile data may reflect the population structure

because sampling was not done using the available knowledge of run structure. Therefore, caution must be exercised when juvenile data are included as baseline data, especially for complex systems in which rearing juveniles may represent a number of genetically isolated spawning populations. Sampling over both time and space should be more extensive for McDonald Lake, Karta River, Salmon Bay Lake, Yehring Creek, Tatsemenie Lake, and Chilkat Lake and River. Lake systems that have multiple inlets or multiple lakes or both lake and stream spawners may support multiple populations (Raleigh 1967; Brannon 1972). If adults are sampled on the spawning grounds, they clearly represent a spawning population; however, much more knowledge must be obtained about the population structure of a drainage before it can be presumed that a sample of juveniles represents a spawning population.

The geographic structure we observed may be explained in a number of ways. The most obvious explanation is that straying occurs more often among geographically proximal populations. A related explanation involves the colonization of the entire region. If the colonization of systems in the region happened about the same time, it is reasonable to expect that it occurred from the same source. Otherwise, the colonizers of a particular system probably came from nearby populations. Another explanation is that the populations evolved in parallel as a result of similar selection regimes. The local climates of these regions are noticeably different. The winters are harsher to the northeast and milder to the southwest. The topography also differs among those regions.

RECOMMENDATIONS

- 1. Perform a broad-based screen of electrophoretically detectable loci and buffers which resolve variability; sockeye salmon populations from all major geographic regions would be sampled. Although it may not be possible to screen a large enough number of samples to observe all the variation present, it should be possible to detect regional variation.
- 2. Many of the systems sampled may have multiple, genetically isolated populations. It is essential for baseline purposes to sample those drainage systems more thoroughly. In order to assess the usefulness of genetic differences among populations for stock-identification applications, it is imperative to know the extent of local (within-drainage) divergence.
- 3. Exercise caution in using juvenile sockeye salmon for developing baseline information. Even within a drainage there may be genetically isolated populations. This means that in a complex system, the sample of juveniles may be an admixture of stocks. This is not the quality of data required for stock-separation applications.

ACKNOWLEDGMENTS

We would like to thank the following individuals (and their agencies) who assisted in the sample collection, laboratory preparation, or manuscript development: Nick Cassara, Margaret Cartwright, Kent Crabtree, Chiska Derr, Elizabeth Enge, Jan Highfield, Robb Hill, Lane Johnson, Doug Jones, Kip Kermoian, Patricia Kermoian, Jerry Koerner, Kurt Kondzela, Dennis Lemond, Andy MacGregor, Tom McKenna, Glen Oliver, Keith Pahlke, Cathy Robinson, Ben Van Alen, Chris Vanderford, and Jan Wellar of the Alaska Department of Fish and Game; Bruce Baker, Robert Bradshaw, Robert Brown, John Eiler, Jim Greiner, Sharon Hawkins, Jon Heifetz, Scott Johnson, Chris Kondzela, Mitch Lorenz, Michele Masuda, James Olsen, Carrita Morris, Don Mortensen, Mike Murphy, Bonita Nelson, Hang Nguyen, Hangvan Nguyen, Joe Orsi, Jerome Pella, Charles Russell, Bob Stone, John Thedinga, and Richard Wilmot of National Marine Fisheries Service Auke Bay Laboratory; George Milner, Carol Ranck, David Teel, and Fred Utter of National Marine Fisheries Service Northwest Science Center; Pete Etherton, Sandy Johnston, and Pat Milligan of the Canadian Department of Fisheries and Oceans.

CITATIONS

- Aebersold, P. B., G. A. Winans, D. J. Teel, G. B. Milner, and F. M. Utter. 1987. Manual for starch gel electrophoresis: a method for the detection of genetic variation. U. S. Dep. Commer., NOAA Tech. Rep. NMFS 61, 19 p.
- Allendorf, F. W., and G. A. Thorgaard. 1984. Tetraploidy and the evolution of salmonid fishes. In B. J. Turner (editor) Evolutionary genetics of fishes, p. 1-53. Plenum Press, New York.
- Brannon, E. L. 1972. Mechanisms controlling migration of sockeye salmon fry. Int. Pac. Salmon Fish. Comm. Can. Bull. 21, 86 p.
- Cavalli-Sforza, L. L., and A. W. F. Edwards. 1967. Phylogenetic analysis: models and estimation procedures. Evolution 21:550-570.
- Chakraborty, R., and O. Leimar. 1987. Genetic variation within a subdivided population. In N. Ryman and F. Utter (editors), Population genetics and fishery management, p. 89-120. Univ. Washington Press, Seattle.
- Clayton, J. W., and D. N. Tretiak. 1972. Amine-citrate buffers for pH control in starch gel electrophoresis. J. Fish. Res. Board Can. 29:1169-1172.
- Gharrett, A. J., and M. A. Thomason. 1987. Genetic changes in pink salmon (Oncorhynchus gorbuscha) following their introduction into the Great Lakes. Can. J. Fish. Aquat. Sci. 44:787-792.
- Gharrett, A. J., S. M. Shirley, and G. R. Tromble. 1987. Genetic relationships among populations of Alaskan chinook salmon (*Oncorhynchus tshawytscha*). Can. J. Fish. Aquat. Sci. 44:765-774.
- Grant, W. S., G. B. Milner, P. Krasnowski, and F. M. Utter. 1980. Use of biochemical genetic variants for identification of sockeye salmon (*Oncorhynchus nerka*) stocks in Cook Inlet, Alaska. Can. J. Fish. Aquat. Sci. 37:1236-1247.
- Hardy, G. H. 1908. Mendelian proportions in a mixed population. Science 28:49-50.
- Harris, H., and D. A. Hopkinson. 1976. Handbook of enzyme electrophoresis in human genetics. American Elsevier, New York, var. pag.
- IUBNC (International Union of Biochemistry, Nomenclature Committee). 1984. Enzyme nomenclature 1984. Academic Press, Orlando, FL, 646 p.
- Kerr, F. A. 1948. Taku River map-area, British Columbia. Can. Dep. Mines and Resour., Geological Survey Memoir 248, 84 p.
- Markert, C. L. and I. Faulhauber. 1965. Lactate dehydrogenase isozyme patterns of fish. J. Exp. Zool. 159:319-332.
- Marshall, S., D. Bernard, R. Conrad, B. Cross, D. McBride, A. McGregor, S. McPherson, G. Oliver, S. Sharr, and B. Van Alen. 1987. Application of scale patterns analysis to the management of Alaska's sockeye salmon (*Oncorhynchus nerka*) fisheries. Can. Spec. Publ. Fish. Aquat. Sci. 96:307-326.
- Murphy, M. L., J. Heifetz, J. F. Thedinga, S. W. Johnson, and K V. Koski. 1989. Habitat utilization by juvenile Pacific salmon (*Oncorhynchus*) in the glacial Taku River, southeast Alaska. Can. J. Fish. Aquat. Sci. 46:1677-1685.
- Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583-590.

- Quinn, T. P., C. C. Wood, L. Margolis, B. E. Riddell, and K. D. Hyatt. 1987. Homing in wild sockeye salmon (*Oncorhynchus nerka*) populations as inferred from differences in parasite prevalance [sic] and allozyme allele frequencies. Can. J. Fish. Aquat. Sci. 44:1963-1971.
- Raleigh, R. F. 1967. Genetic control in the lakeward migrations of sockeye salmon (*Oncorhynchus nerka*) fry. J. Fish. Res. Board Can. 24:2613-2622.
- Ridgway, G. J., S. W. Sherburne, and R. D. Lewis. 1970. Polymorphisms in the serum esterases of Atlantic herring. Trans. Am. Fish. Soc. 99:147-151.
- Roppel, P. 1982. Alaska's salmon hatcheries, 1891–1959. Alaska Historical Commission Studies in History, No. 20. Natl. Mar. Fish. Serv., Portland, OR, 299 p.
- Saitou, N., and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
- Schaal, B. A., and W. W. Anderson. 1974. An outline of techniques for starch gel electrophoresis of enzymes from the American oyster Crassostrea virginica Gmelin. Georgia Mar. Sci. Cent. Tech. Rep. 74-3.
- Shaklee, J. B., F. W. Allendorf, D. C. Morizot, and G. S. Whitt. 1990. Gene nomenclature for protein-coding loci in fish. Trans. Am. Fish. Soc. 119:2-15.
- Sokal, R. R., and F. J. Rohlf. 1981. Biometry, second edition, W. H. Freeman Co., San Francisco, 859 p.
- Utter, F., P. Aebersold, J. Helle, and G. Winans. 1984. Genetic characterization of populations in the southeastern range of sockeye salmon. *In* J. M. Walton and D. B. Houston (editors), Proceedings of the Olympic wild fish conference, p. 17-32. Available Dr. J. M. Walton, Fish Tech. Program, Peninsula College, 1502 E. Laurisden Blvd., Port Angeles, WA 98362.
- Waples, R. S. 1989. Temporal variation in allele frequencies: testing the right hypothesis. Evol. 43:1236-1251.
- Wilkinson, L. 1990. SYSTAT: The system for statistics. SYSTAT, Inc., Evanston, IL, 677 p.
- Wilmot, R. L., and C. V. Burger. 1985. Genetic differences among populations of Alaskan sockeye salmon. Trans. Am. Fish. Soc. 114:236-243.
- Wood, C. C., B. E. Riddell, D. T. Rutherford, and K. L. Rutherford. 1987. Variation in biological characters among sockeye salmon populations of the Stikine River with potential application for stock identification in mixed-stock fisheries. Can. Tech. Rep. Fish. Aquat. Sci. 1535, 61 p.
- Wood, C. C., D. T. Rutherford, and S. McKinnell. 1989. Identification of sockeye salmon (Oncorhynchus nerka) stocks in mixed-stock fisheries in British Columbia and Southeast Alaska using biological markers. Can. J. Fish. Aquat. Sci. 46:2108-2120.

Wright, S. 1943. Isolation by distance. Genetics 28:114-138.

TABLES

のでいるというないたいであるの

and a state of any sale of any of the second second states

Group			(Froup
desig	. Location	Date	N	N
	Distr	<u>ict 101</u>		
]	<u>Boca de Quadra</u>			
Α.	Hugh Smith Lake (pooled)		206
	Hugh Smith Lake	1982	50ª	
	Hugh Smith Lake	7/28-8/19/83	96ª	
		7/11/86	10	
	Hugh Smith Lake	9/14/88	50	
<u>(</u>	George Inlet			
в.	Leask Lake	7/18/86	25 ^b	25
Ē	Vestern Behm Canal			
с.	Helm Lake (pooled)			100
	Helm Lake	1983	50ª	
	Helm Lake	9/23/86 ·	10	
	Helm Lake	9/23/86	40ª	
).	McDonald Lake (i) (poole	ed)		156
	McDonald Lake	1982	50°	
	McDonald Lake	8/21,22,30/87	106	
Ξ.	McDonald Lake (ii) (pool			152
	McDonald Lake	1983	100 ^a	
	McDonald Lake	9/88	52	
`•	Naha River (pooled)			284
	Naha River	7/24-8/10/83	104ª	
	Naha River, early	1984	50°	
	Naha River, late	8/30/84	50ª	
	Naha River	6/29-8/09/86	40	
	Naha River	7/05-8/18/86	40ª	
Ea	<u>Distri</u> astern Prince of Wales Is			
	Johnson Lake		703	70
•		8/13/83	79ª	79
•	Karta River (i) (pooled)			150
	Karta River	7/21/82	50ª	
	Karta River	7/23-31/83	100ª	
•	Karta River (ii)	8/23/88	52	52

Table 1.—Group designation (letters correspond to spawning areas listed in Figs. 1, 3–6 and appendices 1–3), location, collection date, and number of sockeye salmon (N), used for electrophoretic analysis. Districts are Alaska Department of Fish and Game statistical areas.

Table 1.-Continued.

Grou des	ig. Location	Location Date		Group	
			N	N	
J.	Kegan Lake (pooled)			287	
	Kegan Lake	7/22-24/82	100ª	207	
	Kegan Lake	7/23-24/83	100ª		
	Kegan Lake	9/29/86	37		
	Kegan Lake	9/20/88	50		
	<u>Dis</u> Western Prince of Wales	trict 103 Island			
P					
Χ.	Chuck Lake	0 / 1 <i>0</i> / 1 0 0		132	
	Chuck Lake	8/16/83	100ª		
	Chuck Lake	9/22/86	32		
	Hetta Lake	9/09/86	49	49	
1.	Klakas Lake			159	
	Klakas Lake	8/04/83	99°		
,	Klakas Lake	9/22/88	60		
۰.	Klawock Lake			148	
	Klawock Lake	9/18/86	48		
	Klawock Lake	9/87	50		
	Klawock Lake	9/25/88	50		
•	Upper Sarkar Lake (poo	oled)		121	
		9/24/86	36		
	Upper Sarkar Lake	9/15/87	42		
	Upper Sarkar Lake		43		
		<u>rict 105</u>			
	Northern Prince of Wales	Island			
•	Shipley Creek	10/05/83	50ª	50	
•	Sutter Creek	9/14/86	19 ^b	19	
		<u>rict 106</u>			
	Northeastern Prince of W	ales Island			
•	Galea Lake	9/11/88	54	54	
• .	Luck Lake (pooled)			214	
	Luck Lake	9/03/83	50ª		
	Luck Lake	8/31/86	10		
	Luck Lake	9/17/86	40ª		
	Luck Lake	9/87	50		
		· · · ·	~~		

「注意などの情報であったのでいい

Table 1.—Continued.

· .				Group
J. Location	Date		N	N
Red Bay Lake (pooled)				123
	9/03/83		70 ^a	
Red Bay Lake	8/27/86		13	
Red Bay Lake	8/27/86		40 ^a	
Salmon Bay Lake	7/26-27/82		69 ª	69
			•	127
Salmon Bay Lake	9/8,26/86		51	
Kupreanoff Island				
Petersburg Lake	8/21/86		50	50
	<u>rict 107</u>			
Thoms Lake (pooled)				185
	1983			
	• . •			
			60	
	<u>rict 108</u>			
Chutine Lake	9/86		64	64
Chutine River	9/86		50	50
Tahltan Lake	9/24/90		100	100
Stikine River	9/86		50	50
	<u>ict 109</u>			
Kulu Island				
Alecks Lake (pooled)				104
Alecks Lake	9/03/86		50	
Alecks Lake	9/01/87		54	
Kutlaku Lake	9/05/86		50	50
	<u>ict 111</u>	: ·		
North of Juneau		· . ·		
Auke Creek (pooled)	· · ·			126
Auke Creek	9/86		12	
Auke Creek	8/10/88		114	
	Red Bay Lake (pooled) Red Bay Lake Red Bay Lake Red Bay Lake Salmon Bay Lake (poole Salmon Bay Lake (poole Salmon Bay Lake (poole Salmon Bay Lake Salmon Bay Lake Salmon Bay Lake Salmon Bay Lake Salmon Bay Lake Salmon Bay Lake Salmon Bay Lake (pooled) Thoms Lake (pooled) Thoms Lake Chutine Lake Chutine River Tahltan Lake Stikine River Distr Kuiu Island Alecks Lake (pooled) Alecks Lake Kutlaku Lake Kutlaku Lake Distr Yorth of Juneau Auke Creek (pooled)	Red Bay Lake (pooled) Red Bay Lake 9/03/83 Red Bay Lake 8/27/86 Red Bay Lake 8/27/86 Salmon Bay Lake 7/26-27/82 Salmon Bay Lake (pooled) Salmon Bay Lake Salmon Bay Lake (pooled) Salmon Bay Lake Salmon Bay Lake (pooled) Salmon Bay Lake Sumon Bay Lake 8/09/83 Salmon Bay Lake 9/8,26/86 Kupreanoff Island Petersburg Lake Petersburg Lake 8/21/86 District 107 Western Wrangell Island Thoms Lake (pooled) Thoms Lake 1983 Thoms Lake (pooled) Thoms Lake 9/08/86 Thoms Lake 9/08/86 Thoms Lake 9/10/87 District 108 Stikine River drainage Chutine Lake 9/86 Chutine River 9/86 Tahltan Lake 9/24/90 Stikine River 9/86 District 109 Muiu Island Alecks Lake (pooled) Alecks Lake 9/03/86 Alecks Lake (pooled) Alecks Lake 9/05/86 District 111 District 111 Vorth of Juneau Auke Creek (pooled)	Red Bay Lake (pooled) Red Bay Lake 9/03/83 Red Bay Lake 8/27/86 Red Bay Lake 8/27/86 Salmon Bay Lake 8/27/86 Sumon Bay Lake 9/83 Salmon Bay Lake 9/8,26/86 Kupreanoff Island District 107 Western Wrangell Island Thoms Lake Thoms Lake (pooled) 1983 Thoms Lake (pooled) District 108 Stikine River drainage District 108 Chutine Lake 9/86 Chutine River 9/86 Tahltan Lake 9/24/90 Stikine River 9/86 District 109 District 109 Kuiu Island Alecks Lake (pooled) Alecks Lake (pooled) Alecks Lake 9/03/86 Alecks Lake 9/05/86 District 111 North of Juneau Auke Creek (pooled) Alecke Creek (pooled)	Red Bay Lake (pooled) Red Bay Lake 9/03/8370°Red Bay Lake 8/27/8613Red Bay Lake 8/27/8640°Salmon Bay Lake 8/27/8640°Salmon Bay Lake 7/26-27/8269°Salmon Bay Lake (pooled) Salmon Bay Lake 9/8,26/8676°Salmon Bay Lake 9/8,26/8651Kupreanoff Island76°Petersburg Lake 8/21/8650District 107908/86Western Wrangell Island75°Thoms Lake (pooled) Thoms Lake 9/08/8650Thoms Lake 9/08/8650Chutine River drainage60Chutine River 9/8650Chutine River 9/8650Stikine River 9/8650District 109100Stikine River 9/8650Lake 9/03/8650District 109100Kuiu Island100Alecks Lake (pooled) Alecks Lake 9/03/8650Alecks Lake 9/05/8650District 111North of Juneau Auke Creek (pooled)50

Table 1.—Continued.

Group	0			roup
	g. Location	Date	N	N
	Eastern Stephens Passage	e-Port Snettisham		
f.	Crescent Lake	7/28/83	100ª	100
g.	Speel Lake	7/29/83	100ª	100
	<u>Herbert River drainage</u>			
h.	Windfall Lake	8/18/89	73	73
	Mendenhall River drainac	<u>1e</u>		
i.	Steep Creek (pooled)			81
•	Steep Creek	8/15/86	18	
	Steep Creek	8/23/88	53	
	Steep Creek	8/02/89	10	
	<u>Taku River drainage</u>			
j.	Lower main stem (poole		• • •	80
	Fish Creek	9/30/86	20	
	South Fork Slough		40ª	
	South Fork Slough	9/27/89	20	
k.	Upper main stem (poole		10	421
	Chuunk Mountain Slou		10	
	Coffee Slough	9/24/86	37	
	Coffee Slough	10/01/87	33	
	Honakta Slough	9/17,20/86	40ª	
	Nakina River	7/20/86	51	
	Shustahini Creek	9/18/86	40ª	
	Shustahini Creek	9/24/87	60	
	Shustahini Creek	9/25/86	35	
	Takwahoni Slough	9/19/86	20	
	Tuskwa Slough	9/24/86	40ª	
	Tuskwa Slough	9/24/87	37	
	Yonakina Slough	1989	18	
m .	Little Tatsemenie Lake	9/21/90	67	67
n.	Little Trapper Lake	9/21/90	100	100
0.	Turner L. (kokanee)	1988	89	89
p.	Yehring Creek, early (pooled)		108
•	Yehring Creek	8/29,9/15/86	22	
	Yehring Creek	9/11,9/13/86	49	
	Yehring Creek	1987	7	
	Yehring Creek	9/18/89	30	

Table 1.—Continued.

Sec. State .

¢

Group	·			Group
desig.	Location	Date	N	N
व.	Yehring Creek, middle	(pooled)		50
-	Yehring Creek	9/30,10/1/86	40	
	Yehring Creek	10/01/89	10	
r.	Yehring Creek, late	10/13/89	60	60
		rict 113		
<u>Sc</u>	outhern Chichagof Island	1		
5.	Sitkoh Lake (pooled)			197
	Sitkoh Lake	9/11/84	97ª	
	Sitkoh Lake	9/26/87	100	
_		rict 115		
<u>Ch</u>	<u>ilkat River drainage</u>			
	Chilkat River	10/23/83	100ª	100
L.	Chilkat Lake (pooled)			245
	Chilkat Lake, early		100ª	
	Chilkat Lake, late		100*	
	Chilkat Lake, late	9/21,22/90	45	
<u>Ch</u>	<u>ilkoot River drainage</u>			
•	Chilkoot River (pooled)			136
	Chilkoot River	7/29/83	96*	
	Chilkoot River	8/25/90	40	
-		<u>ict 181</u>		
<u>A1</u>	<u>sek River drainage</u>			
. Ea	st Alsek River	10/14/87	50	50
<u>Si</u>	<u>tuk River drainage</u>			
•	Situk River	1984	98ª	98

and the state of the

^aSamples analyzed at NMFS, NWFSC, CZES genetics lab in Seattle, WA. ^bCollections not used in any analysis.

	sookeye sumer (iv) and its interpreter		
Group desig.	Location	Date	N
AA.	Little Tatsemenie Lake	1986	88
BB.	<pre>Taku River, main stem (1) Backwater, early (2) Backwater, late (3) Braided flow (4) Canyon Island, braided flow (5) Channel edge (6) Moose Creek Slough (7) Side slough, early (8) Side slough, late (9) Tributary mouth (10) Upper main channel (11) Yellow Bluff Total</pre>	08/05/86 09/04/86 09/02/86 08/28/86 08/08,06,27/86 08/07/86 07/21,31,8/04/86 09/09/86 08/28/86 09/25/86 09/25/86	38 29 36 38 53 53 68 53 51 33 52 504
cc.	Fish Creek, beaver ponds	08/27/86	46
DD.	Sockeye Creek, beaver pond	07/29,8/13/86	40
EE.	Yehring Creek	09/18/86	50

Table 2.—Group designation (letters correspond to rearing areas listed in Fig. 2 and in Appendices 4-6), location, date of collection, and number of Taku River juvenile sockeye salmon (N) used for electrophoretic analysis.

23

Table	3.—Buffer	systems	used	for	electrophoresis	of	Southeast	Alaska	and	northern	British
	Colum	ibia sock	eye sa	lmo	on samples.						

R gel buffer pH 8.5 0.030 M tris(hydroxymethyl)amino methane (TRIS) 0.005 M citric acid electrode buffer pH 8.1 0.060 M lithium hydroxide 0.300 M boric acid Gels are made with a dilution of 10% gel buffer and 1% electrode buffer. (Ridgway et al. 1970). electrode buffer pH 6.1, 6.5, or 7.0 CA6.1, 0.040 M citric acid CA6.5, and adjusted to desired pH with N-(3-aminopropyl)-morpholine. Gels are made CA7 from a dilution of 5% electrode buffer. (Clayton and Tretiak 1972). **CAME7.2** (Modified from CA7 buffer) electrode buffer pH 7.2 0.040 M citric acid 0.010 M disodium ethylenediaminetetraacetate (EDTA) adjusted to desired pH with N-(3-aminopropyl)-morpholine. Gels are made from a dilution of 5% electrode buffer. (Aebersold et. al. 1987). MF stock solution pH 8.7 0.450 M tris(hydroxymethyl)amino methane (TRIS) 0.250 M boric acid 0.010 M disodium ethylenediaminetetraacetate (EDTA) Gels are made from a dilution that is 10% of stock. Electrode buffer is a dilution that is 40% of stock. (Markert and Faulhaber 1965). TC-4 electrode buffer pH 5.8 0.223 M tris(hydroxymethyl)amino methane (TRIS) 0.086 M citric acid titrate with 10 M sodium hydroxide. Gels are made from a dilution that is 3.64% of electrode buffer. (buffer "a" of Schaal and Anderson 1974).

「「「「「「「「「「「「」」」」」」

Table 4.—Enzymes screened, their International Union of Biochemistry (IUBNC 1984) enzyme commission (EC) numbers and abbreviations. Peptidases are designated according to their substrate specificity.

Enzyme	EC Number	Abbreviation
Aconitate hydratase	4.2.1.3	АН
Adenosine deaminase	3.5.4.4	ADA
Alanine aminotransferase	2.6.1.2	ALAT
Aspartate aminotransferase	2.6.1.1	AAT
Diaphorase	1.8.1.4	DIA
Esterase-D	3.1.1.*	ESTD
Fructose-biphosphate aldolase	4.1.1.13	FBALD
Glucosephosphate isomerase	1.1.1.8	GPI
α-Glucosidase	3.2.1.20	αGLU
Glycerol-3-phosphate dehydrogenase	1.1.1.8	G3PDH
Formaldehyde dehydrogenase	1.2.1.1	FDHG
(glutathione)	1.1.1.42	IDH
Isocitrate dehydrogenase	1.1.1.27	LDH
Lactate dehydrogenase	1.1.1.37	MDH
Malate dehydrogenase	1.1.1.40	ME
Malic Enzyme	5.3.1.8	MPI
Mannose-6-phosphate isomerase	3.2.1.24	aMAN
α-Mannosidase	3.4.*.*	CEPTERIN
Peptidase	J•4•~•~	PEP(A,C)
glycyl-leucine activity		PEP(LT)
leucyl-tyrosine activity		PEP(D)
phenylalanyl-proline activity	5.4.2.2	PEP(D) PGM
Phosphoglucomutase		PGM
6-Phosphogluconate dehydrogenase	1.1.1.44	
Superoxide dismutase	1.15.1.1	SOD

Table 5.—Protein-coding loci (Shaklee et. al. 1990) for enzymes resolved in this study and the tissues and buffer in which they were resolved. Peptidase loci are designated according to their substrate specificity. The buffers are designated by the acronyms in Table 4. L = liver, H = heart, M = muscle, E = eye.

Contraction of the second of t

Enzyme	Locus	Tissue	Buffer	Level of variability*
Aconitate hydratase	<i>mAH-1</i> *	М,Н	TC-4, CAME7.2	1,5
	mAH-2*	М,Н	TC-4, CAME7.2	1,5
	mAH-3*	М,Н	TC-4, CAME7.2	4
	mAH-4*	М,Н	TC-4, CAME7.2	4
	sAH*	Ľ	TC-4, CAME7.2	5
Adenosine deaminase	ADA-1* ^b	М,Н	CA6.1, CA6.5	5
	ADA-2* ^b	М,Н	CA6.1, CA6.5	2
Alanine aminotransferase	ALAT* ^{bc}	М,Н	MF	5
Aspartate aminotransferase	mAAT-1* ^b	М,Н	CAME7.2, CA6.5	5
	sAAT-1,2* ^b	М,Н	CAME7.2, CA6.5	
	SAAT-3* ^b	E	CAME7.2, CA7,	
Diaphorase	DIA*	E	R, CAME7.2	1,5
Esterase-D	$ESTD-D^{*b}$	М,Н	MF, TC-4	5
Fructose-biphosphate aldolase	FBALD-3*	E	CAME7.2	5
Glucosephosphate isomerase	<i>GPI-B1,2*</i> ^b	M,H	R	
	GPI-A* ^b	M,H,E	R	4 4
α-Glucosidase	αGLU★	L	D 017	• -
Glycerol-3-phosphate dehydrogenase	G3PDH-1* ^b		R, CA7	1,5
	COLDIN T.	М,Н	TC-4	4

Table 5.—Continued.

Enzyme	Locus	Tissue	Buffer	Level of variability*
Formaldehyde dehydrogenase (glutathione)	FDHG* ^b	Н	CAME7.2	3
Isocitrate dehydrogenase	mIDHP-1,2*	M,H	CAME7.2	3
	sIDHP-1,2* ^{bc}	L,E	CA7, CAME7.2	4
Lactate dehydrogenase	LDH-A1,2*	M	R	1,5
	LDH-B1* ^b	M,H,E	R	5
	LDH-B2* ^{bc}	M,H,L,E	R	5
	LDH-C*	E	R	4
Malate dehydrogenase	sMDH-A1,2* ^b	M,H	CA6.5, MF	4
	sMDH-B1,2* ^b	H,M,L	CA7, CAME7.2	5
Malic enzyme	тМЕР-1* ^ь	М,Н	TC-4	3
	тМЕР-2* ^ь	М,Н	TC-4	2
Mannose-6-phosphate isomerase	MPI* ^b	Н	CAME7.2	3
α-Mannosidase	aMAN*	M,H,L,E	R, MF	2
Peptidase	PEPA* ^{bc}	E	MF	3
glycyl-leucine activity	PEPC* ^{bc}	E	MF	5
leucyl-tyrosine activity	PEPLT* ^b	M,H	R, CA6.1	4
phenylalanyl-proline activity	PEPP2* ^b	M,H,E	MF, CA6.5	4
Phosphoglucomutase	PGM-1* ^{bc} PGM-2* ^{bc}	Н М,Н	CA6.5, CAME7 CA6.5, CAME7	

26

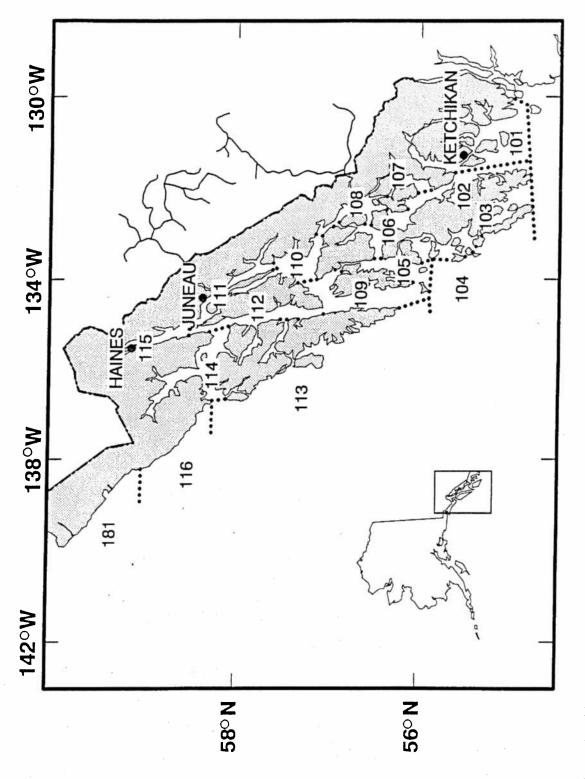
Table 5.-Continued.

瀫

ł

Enzyme	Locus	Tissue	Buffer	Level of variabilityª
6-Phosphogluconate dehydrogenase	PGDH* ^b	М,Н	CA6.5, CAME7.2	E7.2 2
Superoxide dismutase	sSOD*	Н, Г	MF, TC-4, CA 6.5	CA 5
 ^a 1 poor resolution 2 monomorphic 3 rarely variable; most abundant allele > 0.99 4 variable; 0.95 ≤ most abundant allele < 0.99 5 highly variable; most abundant allele < 0.95 ^b locus used in 31-loci data set analysis ^c locus used in 8-loci data set analysis 				

۰,


Table 6.—Hierarchical gene diversity analysis (Chakraborty and Leimar 1987) of Southeast Alaska sockeye populations. One analysis used data from 31 loci and included 25 collections, the other used 8 loci and included 47 collections. The additional collections in the latter analysis enabled use of an additional level of hierarchy, among collections taken at a sample site. がないないとうないたとい

		Rela	at:	ive gene	differe	ent	iation
<u>Source</u>		8	10	oci		31	loci
Average	within collections	H_{I}/H_{T}	-	0.8814	H_{S}/H_{T}	=	0.8696
Average	among collections at a sample site	G _{IS}	=	0.0126			
Average	among sample sites within a region	G _{SR}	=	0.0826	G _{SR}	=	0.0838
Average	among regions	G _{RT}	=	0.0247	G_{RT}	=	0.0467

Table 7.—Hierarchical gene diversity analysis (Chakraborty and Leimar 1987) of Taku River sockeye populations. One analysis used data from 31 loci and the other used 8 loci. Additional collections in the latter analysis enabled use of an additional level of hierarchy, among collections taken at a sample site.

		Relative gene differentiation				
Source		<u> </u>		31 loci		
Average	within collections	H_{I}/H_{T}	=	0.9674	H_{s}/H_{T}	= 0.9568
Average	among collections at a sample site	G _{IS}	=	0.0154		
Average	among sample sites within a region	G _{SR}		0.0244	G _{SR}	= 0.0273
Average	among regions	G _{RT}	=	0.0082	G _{RT}	= 0.0164

FIGURES

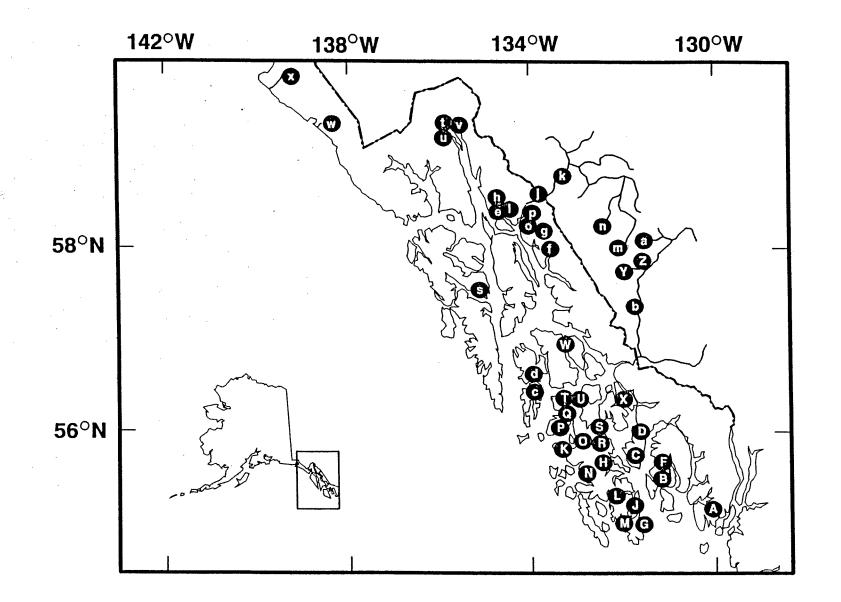
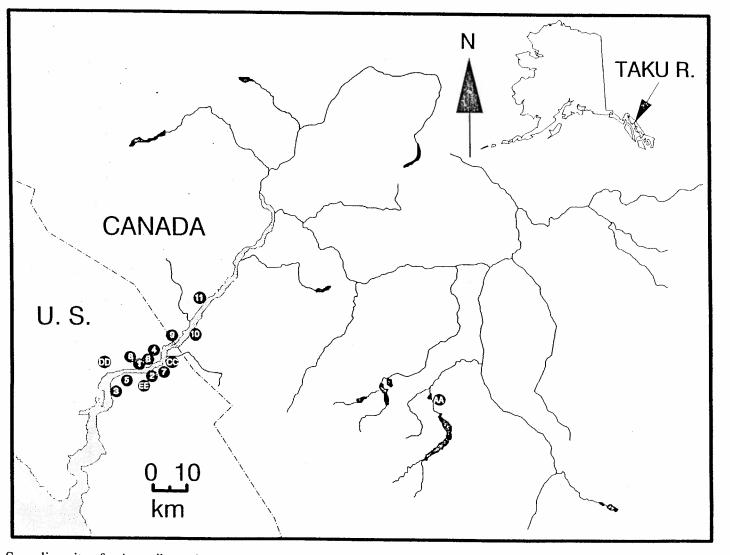
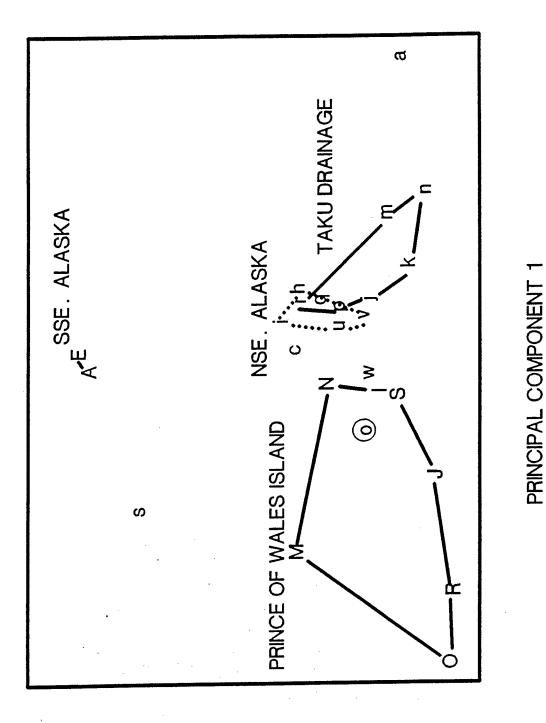
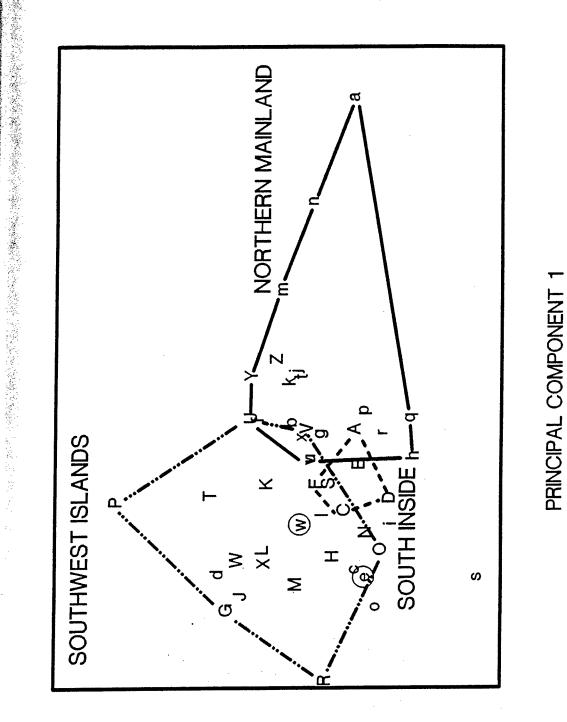


Figure 2.—Sampling sites for sockeye salmon in Southeast Alaska and northern British Columbia. Letters correspond to collection sites listed in Table 1, Figs. 4–7, and Appendices 1–3. Sites with multiple collections are designated by a single letter.

ω 2


Figure 3.—Sampling sites for juvenile sockeye salmon on the Taku River drainage in Southeast Alaska and northern British Columbia. Letters correspond to collection sites listed in Table 2 and Appendix 4.

ω

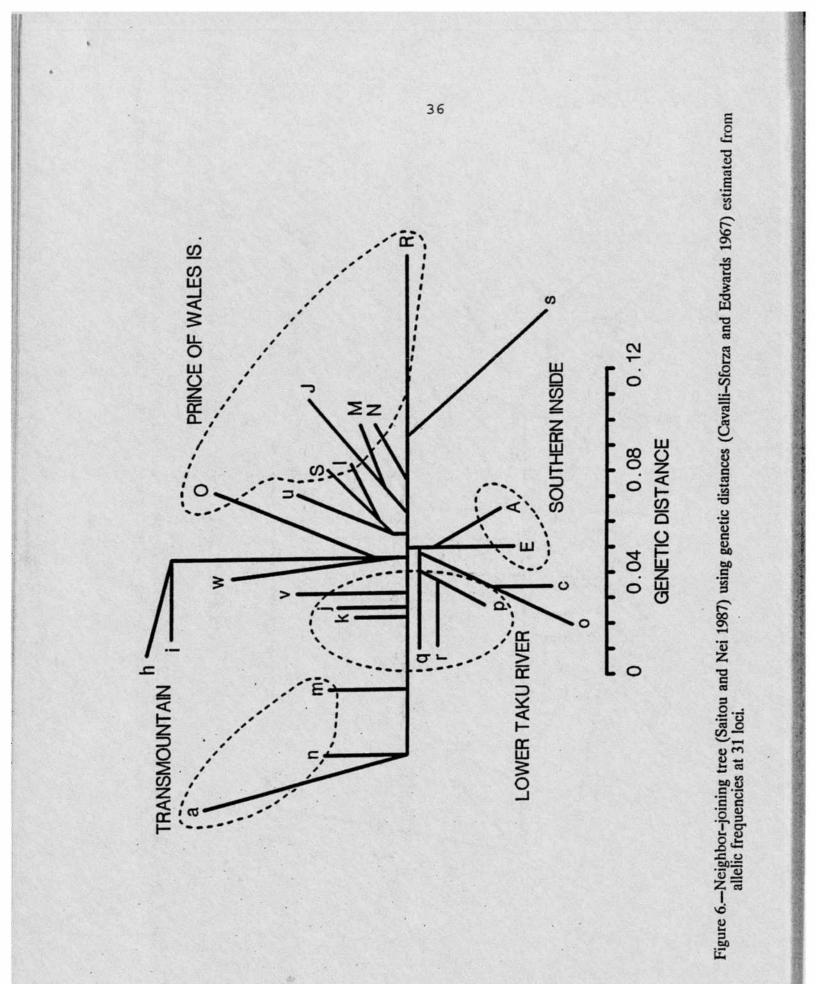

PRINCIPAL COMPONENT 2

Figure 4.—Principal component analysis of Southeast Alaska and northern British Columbia sockeye salmon for allelic frequency of 21-locus data set. Letters correspond to collection sites listed in Table 1, Figs. 2, 5-7, and Appendices 1-3. Circled letters within aggregations indicate collections not geographically associated with the aggregation. NSE = northern Southcast; SSE = southern Southeast.

PRINCIPAL COMPONENT 2

Figure 5.—Principal component analysis of Southeast Alaska and northern British Columbia sockeye salmon for the most common allele in a 6-locus data set. Letters correspond to collection sites listed in Table 1, Figs. 2, 5-7, and Appendices 1-3. Circled letters within aggregations indicate collections not geographically associated with the aggregation.

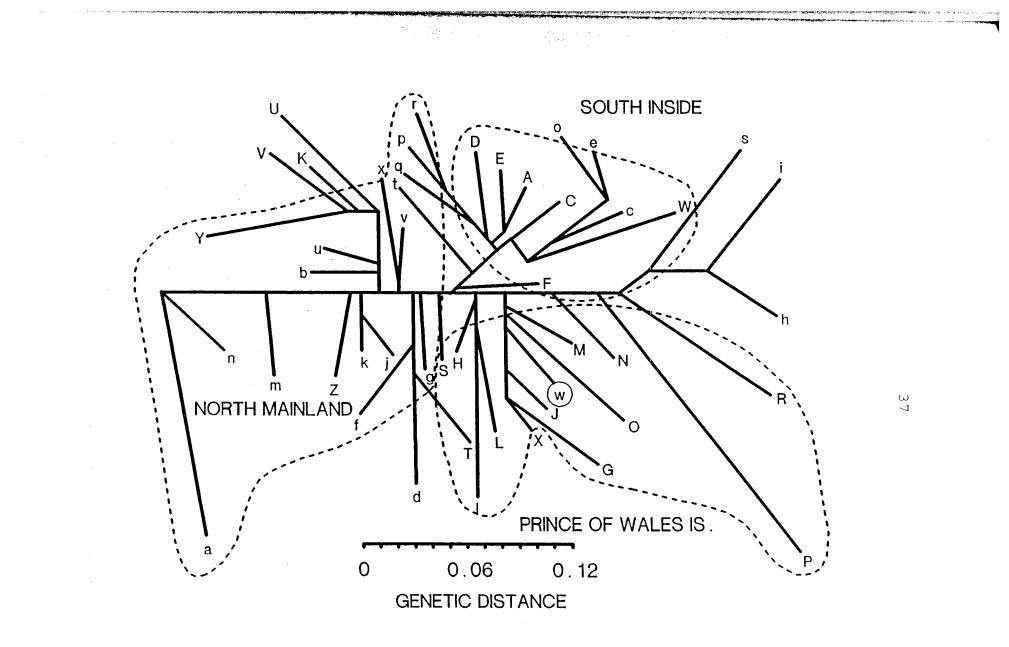


Figure 7.—Neighbor-joining tree (Saitou and Nei 1987) using genetic distances (Cavalli-Sforza and Edwards 1967) estimated from allelic frequencies at 8 loci. Circled letters within aggregations indicate collections not geographically associated with the aggregation.

APPENDICES

Appendix 1.—Allozyme variation in collections of sockeye salmon from Southeast Alaska and northern British Columbia. Allelic frequencies and collection sizes (N) are designated as in Table 1. Alleles are designated by their mobility relative to the most common allele (*100) and as described in Shaklee et. al. (1990). Collections are pooled in accordance with Appendix 3.

Togetien/ducing and			PGM					PGM-2*		
Location/drainage stream	Year	N	*-100	*Null	*-88	N	*-100	*-77	*-20	*-9
District 101					<u></u>			<u> </u>		
Boca de Quadra										
A. Hugh Smith Lake	1982	50	0.10							
	1982	96	0.19	0.81	0	50	0.85	0.13	0.02	0
	1985		0.17	0.83	0	95	0.88	0.12	0	0
· · · · · · · · · · · · · · · · · · ·	1988	10	0.11	0.89	0	10	0.90	0.10	0	0
	Total	50	$\frac{0.18}{0.18}$	0.82		<u>_50</u>	<u>0.85</u>	<u>0.15</u>	0	0
George Inlet	IOLAI	206	0.17	0.83	0	205	0.866	0.129	0.005	0
B. Leask Lake	1986	25	0 51		_					
	1900	25	0.51	0.49	0	25	0.38	0.62	0	0
Western Behm Canal										
C. Helm Lake	1983	50	0.12	0 00	•					
	1986	8	0.12	0.88 0.87	0	50	0.76	0.24	0	0
	1986	39	0.13		0	9	0.83	0.17	0	0
	Total	97		0.95	0	39	0.73	0.27	0	0
	IUCAI	57	0.09	0.91	0	98	0.76	0.24	0	0
D. McDonald Lake (i)	1982	50	0.08	0.92	0	50	0.05			
	1987	106	0.12		0	50	0.86	0.13	0.01	0
	Total	$\frac{100}{156}$	$\frac{0.12}{0.11}$	<u>0.88</u> 0.89	0	$\frac{106}{156}$	0.87	0.13		0
	10041	100	0.11	0.89	0	156	0.869	0.128	0.003	0
E. McDonald Lake (ii)	1983	93	0.13	0.87	0	0.0	0.05		-	
	1988	<u>52</u>	0.10	<u>0.90</u>	0	99	0.85	0.15	0	0
	Total	$\frac{32}{145}$	$\frac{0.10}{0.12}$	0.88	-0-	$\frac{52}{151}$	0.83	0.17		0
			0.12	0.00	0	151	0.84	0.16	0	0
F. Naha River	1983	104	0.12	0.88	0	104	0.75	0.05	•	
Early	1984	50	0.15	0.85	ŏ	50	0.75	0.25	0	0
Late	1984	50	0.14	0.86	Ö	50	0.84	0.36	0	0
	1986	40	0.38	0.62	ŏ	40	0.78	0.20	0.02	0
	1986	30	0.14	0.86	0			0.36	0	0
	Total	$\frac{1}{274}$	$\frac{0.14}{0.15}$	0.85		35	0.80	0.20	0	0
			0.13	0.05	U	279	0.724	0.272	0.004	0
District 102										
Eastern Prince of Wales Island										
G. Johnson Lake	1983	78	0.53	0.47	0	78	0 55	0.45	•	-
			0.00	0.41/	0	18	0.55	0.45	0	0
H. Karta River (i)	1982	50	0.20	0.80	0	50	0.76	0.04	~	-
	1983	100	0.18	0.80	0	50	0.76	0.24	0	0
	Total	$\frac{100}{150}$	$\frac{0.10}{0.18}$	0.82		<u>99</u>	$\frac{0.72}{0.72}$	0.28		0
		200	0.10	0.02	U	149	0.73	0.27	0	0

•
T I
ă
ă
ž
Ļ,
E.
8
υ
T
٠
-
×
σ
ב
۵
D
ġ.
~
~

			PGM-	7				PGM-2*			
Location/drainage stream	Year	N	*-100	IInN*	*-88	N	*-100	*-77	*-20	*-93	•
I. Karta River (ii)	1988	52	0.24	0.76	0	52	0.75	0.25	0	0	
J. Kegan Lake	1982	100	ო	9.	0	100	•	0.450	0.005	0	
	1985 1986 Total	37 37 287	0.34 0.34 0.35 0.35	0.66 0.66 0.65	0000	100 37 287	0.540 0.58 0.57 0.552	0.455 0.42 0.43 0.444	<u>ိ</u> ့္	0000	
District 103 Western Prince of Wales Island K. Chuck Lake	1983 1986 Total	100 132 132	0.27 0.27 0.27	0.73 0.73 0.73	000	100 <u>31</u> 131	0.76 0.85 0.78	0.24 0.15 0.22	000	000	
L. Hetta Lake	1986	46	0.17	0.83	0	46	0.66	0.34	0	0	•1
M. Klakas Lake	1983 1988 Total	97 59 156	0.24 0.24 0.24	0.76 0.76 0.76	000	97 58 155	0.64 0.64 0.64	0.36 0.36 0.36	000	000	
N. Klawock Lake	1986 1987 1988 Total	48 50 146	0.13 0.14 0.07 0.11	0.87 0.86 0.93 0.89	0000	48 50 142	0.79 0.71 0.80 0.76	0.21 0.29 0.24	0000	0000	
0. Upper Sarkar Lake	1986 1987 1988 Total	35 42 120	0.52 0.40 0.44	0.48 0.60 0.56	0000	35 42 120	0.93 0.85 0.95 0.91	0.07 0.15 0.05 0.09	0000	0000	
District 105 Northern Prince of Wales Island P. Shipley Creek	1983	50	0.19	0.81	0	50	0.35	0.55	0.10	o	
Q. Sutter Creek	1986	19	0.31	0.69	0	19	0.92	0.08	0	0	
<u>District 106</u> Northwestern Prince of Wales Island R. Galea Lake	1988	52	0.25	0.75	o	54	0.62	0.38	o	o	

いたい たんてい かんち

Location/drainage stream			PGM			· · · · · · · · · · · · · · · · · · ·		PGM-2*		
	Year	N	*-100	*Null	*-88	N	*-100	-77*	*-20	*-93
S. Luck Lake	1983	50	0.11	0.89	0					
· ·	· 1986	9	0.12	0.89	0 0	50	0.79	0.21	0	0
	1986	36	0.13	0.87	0	9	0.89	0.11	0	0
	1987	49	0.12	0.87	-	37	0.69	0.31	0	0
	1988	_62	0.09		0	49	0.69	0.29	0	0.02
	Tótal	206	$\frac{0.09}{0.11}$	$\frac{0.91}{0.91}$		62	0.74	0.26	0	0
	IOCAL	200	0.11	0.89	0	207	0.739	0.256	0	0.005
T. Red Bay Lake	1983	69	0.16	0.84	•					
•	1986	13	0.18		0	57	0.43	0.57	0	0
	1986			0.92	0	13	0.58	0.42	0	0
	Total	$\frac{40}{122}$	$\frac{0.24}{0.10}$	0.76		_39	<u>0.58</u>	0.42		0
	IUCAL	122	0.18	0.82	0	109	0.50	0.50	0	0
U. Salmon Bay Lake (i)	1982	69	0.23	0.77	0	69	0.84	0.15	0.01	0
V. Salmon Bay Lake (ii)									0.01	Ŭ
V. Salmon Bay Lake (11)	1983	. 75	0.23	0.77	0	75	0.83	0.17	0	0
	1986	<u>_51</u>	0.22	0.78	0	<u>51</u>		0.13	0	ŏ
	Total	125	0.40	0.60	0	126	<u>0.87</u> 0.85	0.15	0	0
Kupreanof Island									•	•
W. Petersburg Lake										
". receisburg Lake	1986	49	0.12	0.88	0	49	0.50	0.50	0	0
District 107							*			
Western Wrangell Island										
X. Thoms Lake	1000		- ·							
A. THOMS DAKE	1983	73	0.40	0.60	0	75	0.64	0.36	0	0
	1986	49	0.30	0.70	0	49	0.59	0.41	ō	ō
	1987	<u> </u>	0.32	<u>0.68</u>	0	58	0.71	0.29	0	0
	Total	182	0.35	0.65	0	182	0.65	0.35	0	
District 108									-	0
Stikine River drainage										
Y. Chutine Lake										
I. Chucine Lake	1986	64	0.43	0.57	0	64	0.82	0.17	0.01	0
Z. Chutine River										0
a. Chullie River	1986	50	0.13	0.87	0	50	0.80	0.17	0.01	0.02
a. Tahltan Lake										0.02
a. Tahltan Lake	1990	100	0.14	0.82	0.04	55	0.95	0.05	0	0
b. Stikine River						· ·			J	U
b. Stikine River	1986	50	0.19	0.81	0	50	0.75	0.24	0	0.01
					-		0.75	0.24	U	0.01

£3

Contractory of the second second

New York Street and

			PGM	-1*		·····		PGM-2*		
Location/drainage stream	Year	N	*-100	*Null	*-88	N	*-100	*-77*	*-20	*-93
District 109										
Kuiu Island	*									
c. Alecks Lake	1986	48	0.06	0.94	0	48	0.79	0.21	0	0
	1987	<u>54</u>	0.14	<u>0.86</u>	0	_54	0.72	0.28	ō	0
$(A_{i}, A_{i}) = (A_{i}, A_{i}) + (A_{$	Total	102	0.10	0.90	0	102	0.75	0.25	0	0
d. Kutlaku Lake	1986	49	0.19	0.81	0	49	0.57	0.43	0	0
<u>District 111</u> North of Juneau					,					
	1000		-							
e. Auke Creek	1986	12	0	1.00	0	12	0.83	0.17	0	0
	1988	$\frac{114}{126}$		$\tfrac{1.00}{1.00}$		<u>114</u>	0.69	<u>0.31</u>		0
	Total	126	0	1.00	0	126	0.70	0.30	0	0
Eastern Stephens Passage-Port Snett:										
f. Crescent Lake	1983	100	0.13	0.87	0	98	0.68	0.30	0.02	0
g. Speel Lake	1983	100	0.18	0.82	0	97	0.83	0.15	0.02	0
Herbert River drainage										
h. Windfall Lake	1989	73	0.12	0.88	0	73	0.95	0.05	0	O
Mendenhall River drainage										
i. Steep Creek	1986	18	0.15	0.85	0	18	0.83	0.17	0	C
	1988	53	0.28	0.72	õ	53	0.90	0.10	ŏ	
	1989	_10	0.16	0.79	0.05	<u>_10</u>		0.10 0.10	0	C
·	Total	81	0.15	0.84	$\frac{0.03}{0.01}$	81	<u>0.90</u> 0.89	$\frac{0.10}{0.11}$		<u> </u>
Taku River drainage				0.01	0.01	01	0.09	0.11	U	Ľ
j. Lower main stem										
(1) Fish Creek	1986	20	0.23	0.77	0	20	0.78	0.20	0.02	C
(2) South Fork Slough	1986	38	0.22	0.78	ŏ	40	0.84	0.16	0.02	
	1989	_20	0.16	0.84	Ŏ	_20		0.18 0.23	-	(
	Total	78	$\frac{0.110}{0.21}$	$\frac{0.04}{0.79}$	0	78	<u>0.75</u> 0.80	$\frac{0.23}{0.19}$	$\frac{0.02}{0.01}$	
k. Upper main stem										
(3) Chuunk Mountain Slough	1989	8	0.39	0.61	Ö	~	0 70	0 00	~	
(4) Coffee Slough	1986	36	0.39	0.81	0	9	0.78	0.22	0	(
(-)	1987	33	0.27	0.73	-	37	0.84	0.16	0	(
(5) Honakta Slough	1987	40			0	32	0.75	0.22	0.02	0.0
(6) Nakina River	1986	40 51	0.15 0.33	0.85	0	38	0.82	0.18	0	(
(o) Munimu Mirel	1300	21	0.33	0.67	0	51	0.79	0.20	0.01	(

S. LANSEL N.S.

and also seen. Inches

and the second second

			-PGM-	-1*				+0 200		
Location/drainage stream	Year	N	*-100	*Null	*-88	N	*-100	*-77	*-20	*-93
(7) Shustahini Creek	1986 1986	40 60			00	40 60	0.88 0.78	0.12	0.01	00
(8) Takwahoni Slough (9) Tuskwa Slough	1987 1986 1986	30 30 30 30 30 30	100	• •	000	30 30 30	0.84	0.14	0.01	000
(10) Yonakina Slough	1987 1989 Total	37 415	0.23	0.74	0000	37 37 415	0.74 0.86 0.805	0.16 0.14 0.187	0.006	00.002
m. Little Tatsemenie Lake	1990	67	0.14	0.86	o	67	0.82	0.13	0.04	0.01
n. Little Trapper Lake	1990	66	0.11	0.89	0	100	0.85	0.10	0.02	0.03
o. Turner Lake (kokanee)	1988	89	0.02	0.98	0	88	0.74	0.26	0	0
p. Yehring Creek, early	1986 (1) ^a 1986 (2) ^b 1987 1989 (1) ^c Total	22 48 7 107	0.20 0.20 0.16 0.07 0.16	0.80 0.80 0.84 0.93 0.84	00000	22 48 30 107	0.86 0.83 0.71 0.90 0.850	0.14 0.16 0.29 0.10 0.145	00000	0 0.01 0.005
q. Yehring Creek, middle	1986 (3) ^d 1989 (2) ^e Total	40 50	0.04 0.04 0.04	0.96 0.90 0.95	0 0.06 0.01	40 50	0.83 0.90 0.84	0.16 0.10 0.15	000	0.01 0.01
r. Yehring Creek, late	1989 (3) ^f	59	0.08	0.92	0.01	60	0.91	0.09	0	o
District 113 Southern Chichagof Island s. Sitkoh Lake	1984 1987	97 100	0.08	0.92 0.95	00	97 100	0.96 0.93	0.04 0.06	00	0.01
District 115 Chilkat River drainage t. Chilkat River	TOTAL 1983	197	0.07	0.93 0.86	0 0	197 100	0.944 0.79	0.053	0.06	0.003
u. Chilkat Lake Early Late	1983 1983 1990 Total	100 100 245 245	0.15 0.09 0.14 0.12	0.85 0.91 0.86 0.88	0000	100 100 245 245	0.80 0.76 0.77 0.77	0.20 0.24 0.23 0.22	0000	0000

45

ş

,

			PGM	-1*				PGM-2*		
Location/drainage stream	Year	N	*-100	*Null	*-88	N	*-100	*-77	*-20	*-93
Chilkoot River drainage	•							. , <u>,</u>		
v. Chilkoot River	1983 1990 Total	96 <u>40</u> 136	0.23 <u>0.19</u> 0.22	0.77 <u>0.81</u> 0.78	0 0 0	96 <u>40</u> 136	0.78 <u>0.78</u> 0.78	0.22 <u>0.22</u> 0.22	0 0	0 0 0
<u>District 181</u> Alsek River drainage w. East Alsek River	1987	50	0.37	0.63	0	50	0.71	0.29	0	0
Situk River drainage x. Situk River	1984	98 .	0.39	0.61	0	92	0.79	0.21	O	0

Appendix 1.-Extended.

			LDH-	- <u>B2</u> *			sIDHP-2*	r		PEPC*	
Location	Year	N	*100	*115	*85	N	*100	*125	N	*100	*105
District 10		•									
Boca de Qu	adra										
Α.	1982	5 0	0.91	0.09	0	50	1.00	0	50	0.96	0.04
	1983	96	0.98	0.02	õ	96	1.00	ŏ	96		
	1986	10	0.90	0.10	õ	10	1.00	0		0.97	0.03
	1988	_50	0.95	0.05	<u>0</u>	50	1.00	0	10	1.00	0
	Total	206	0.95	0.05	0	206	$\frac{1.00}{1.00}$	0	<u>50</u> 206	<u>0.94</u> 0.96	<u>0.06</u> 0.04
George Inl											
в.	1986	25	0.92	0.08	0	25	0.94	0.06	25	0.86	0.14
Western Be											
с.	1983	50	0.96	0.04	0	50	1.00	0	50	0.99	0.01
	1986	10	0.90	0.10	0	10	1.00	ō	10	1.00	0
	1986	_40	0.96	0.04	0	_40	1.00	0	40	1.00	_ õ
	Total	100	0.96	0.04	0	100	1.00	0	$\frac{10}{100}$	0.99	$\overline{0.01}$
D.	1982	50	0.98	0.02	0	50	1.00	0	50	0.92	0.08
	1987	<u>106</u>	0.96	0.04	0	106	1.00	Ō	103	0.95	0.0
	Total	156	0.96	0.04	0	156	1.00	0	153	0.94	0.06
Ε.	1983	100	0.96	0.03	0.01	100	1.00	0	100	0.93	0.03
	1988	<u>_51</u>	<u>0.98</u>	0.02	0	<u> 52</u>	1.00	0		0.94	0.06
	Total	151	0.970	0.026	0.003	152	1.00	0	$\frac{52}{152}$	0.93	0.07
F.	1983	104	0.92	0.08	0	104	1.00	0	101	0.98	0.02
Early	1984	50	0.84	0.16	0	50	1.00	0	50	0.96	0.04
Late	1984	50	0.87	0.13	0	50	1.00	0	50	0.98	0.02
	1986	40	0.90	0.10	0	40	1.00	0	37	0.97	0.0
	1986	_40	0.84	0.16	0	39	0.99	0.01	40	1.00	0
	Total	284	0.88	0.12	0	283	0.998	0.002	278	0.98	0.02
District 10											
	ince of Wa										
G.	1983	79	1.00	0	0	79	1.00	0	78	0.90	0.10
н.	1982	50	0.95	0.05	0	50	1.00	0	50	0.97	0.03
	1983	<u>100</u>	<u>0.99</u>	0.01	0	100	1.00	0	_99	0.99	0.0
	Total	150	0.98	0.02	0	150	$\frac{1.00}{1.00}$	<u> </u>	$\frac{3}{149}$	$\frac{0.99}{0.99}$	0.0
								Ŭ	147	0.55	0.0.

	<u>N *100 *115</u>	*85	<u>15 N</u>	sIDHP-2* *100 *	*125		PEPC*	+105
						2	001*	*105
100 0.99 100 1 00	0.01			00.			0.96	0.04
	0.01			00			1.00	0,07
<u>50</u> <u>1.00</u> 286 <u>0.997</u>	0.003	00	287 1	1.00	00	181	0.95	0.05
Wales Island								
100 132 132	000	000	100 <u>32</u> 132 0	00 986 996	0 0.02 0.004 12	100 27 127 0	1.00 0.83 0.96	0 0.17 0.04
49 0.97	0.03	o	48 Ö	.96	.04 4	47 0	0.93	0.07
99 0.99 60 0.98 159 0.99	0.01 0.02 0.01	000	99 158 158	1.00 1.00	0 00	0 0 0	- 0.92 0.92	0.08 0.08
48 0.96 50 0.94 <u>49</u> 0.94 147 0.95	0.04 0.06 0.05 0.05	0000	1 48 1 48 1 48 1 48	8888	0000	91 0 0 0 0 0 0 0 0 0 0 0 0		_ 0.25 0.25 0.25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0000	0000	32 42 117 117	1.00 1.00 1.00	0 0 0 0 0 4 4 m	0 0 0 0 0 0 0 0	- 0.90 0.85 0.86	- 0.10 0.17 0.17
	50.0	Ð	20	0 66.	0.01 4	49	0.35	0.65
19 0.84	0.16	0	19 1	• 00	0	19 (0.74	0.26
<u>istrict 106</u> Northwestern Prince of Wales Island R. 1988 54 1.00	o	o	54 1	1.00	0	23	0.59	0.41

æ

48

ALC: NOT THE REAL PROPERTY OF

2
2
1
.=
nti
5
-2
Ŷ
1
1
×
2
5
ž
<.

and the second state of the second state

			LDH-B2*	B2 *			stnyp_3	2*		+0030	
Location	Year	N	+100	*115	*85	N	*100		N	*100	*105
s.	1983	50	0.95	0.05	0	50	•	0	50	1.00	0
	1980		0.85	0.15	0	თ	٠	0	7	1.00	0
*	1001	9 i	0.91	60.0	0	40	•	0	39	1.00	0
	1000	ີລູເ	0.97	0.03	0	50	٠	0	50	0.98	0.02
	Total	213	0.94	0.05	00	<u>64</u> 213	1.00	00	<u>64</u> 210	0.96	$0.04 \\ 0.02$
т.	1983	68	0.95	0.05	0	70	1.00	0	70	1.00	o
	1986 Total	121 121	0.98 0.98 0.95	0.12 0.02 0.05	0 0 0	1 1 1 1 1 1 1 1 1	1.00	ه مام	13	1.00	000
u .	1982	69	0.99	0.01	0	6 6 1 1		, co c	C 7 T		
)))		40.0	20	•	11.0
۷.	1983 1986 Total	76 50 126	0.99 1.00 0.997	0.01 0 0.003	000	76 50 123	1.00 1.00	0 0 0	76 49 125	0.98 0.96 0.97	0.02 0.04 0.03
Kupreanof W.	Island 1986	50	0.99	0.01	o	49	1.00	0	48	0.99	0.01
District 107	7									•	+) •)
West Wrangell X. 1	ell Island 1983 1986	75 50	1.00	00	00	75 50	1.00	00	75 47	თთ	0.03
	1987 Total	<u>60</u> 185	1.00	00	00	<u>60</u> 185	1.00	00	<u>57</u> 179	0.95	0.05
	<u>108</u> River drainage										
ч.	1986	64	0.97	0.03	0	64	1.00	ο	57	0.98	0.02
2.	1986	48	0.86	0.14	0	48	0.98	0.02	47	0.95	0.05
a.	1990	98	0.43	0.57	0	06	1.00	0	66	1.00	0
р.	1986	50	0.93	0.07	0	50	1.00	0	50	0.98	0.02

49

*

×			LDH-1	82*			sIDHP-2	?*		PEPC	r
Location	Year	N	*100	*115	*85	N	*100	*125	N	*100	*105
District 10											
Kuiu Islan											
с.	1986	50	1.00	0	0	50	1.00	0	50	0.96	0.04
	1987	54	0.99	0.01	ŏ	54	1.00	ŏ	53	0.96	0.04
•	Total	104	0.995	0.005	0	104	$\frac{1.00}{1.00}$	0	$\frac{33}{103}$	0.96	0.04
d.	1986	49	1.00	0	0	50	0.99	0.01	49	1.00	0
District 11	. 1										
North of J	Juneau										
е.	1986	12	0.96	0.04	0	12	1.00	0	12	0.96	0.04
	1988	114	1.00			<u>113</u>	1.00	0	<u>112</u>	1.00	0,
	Total	126	0.996	0.004	0	125	$\tfrac{1.00}{1.00}$	0	124	0.996	0.00
	ephens Pass	age-Port		am							
f.	1983	100	0.90	0.10	0	100	1.00	0	99	1.00	0
g.	1983	100	0.95	0.05	0	100	1.00	0	97	0.97	0.03
	Lver drainag										
h.	1989	73	1.00	0	0	73	1.00	0	71	0.52	0.48
Mendenhall	l River drai	nage			۰.						
i.	1986	18	1.00	0	0	18	1.00	0	18	0.36	0.64
•	1988	53	1.00	0	0	53	1.00	0	52	0.41	0.59
	1989	_10	1.00	0	0	10	1.00	0	_10	0.25	0.75
	Total	81	1.00	0	0	81	1.00	0	81	0.38	0.62
Taku River	r drainage										
j. (1)	1986	20	0.80	0.20	0	20	1.00	0	19	0.89	0.1
	1986	38	0.92	0.08	0	40	1.00	0	31	0.97	0.0
(2)	1989	_20	0.95	0.05	0	_20	1.00	0	18	0.86	0.1
	Total	78	0.90	0.10	0	80	1.00	0	69	0.92	0.0
k. (3)	1989	10	0.85	0.15	0	10	1.00	0	9	0.94	0.0
(4)	1986	34	0.94	0.06	0	37	1.00	Ō	36	0.99	0.0
	1987	33	0.86	0.14	0	33	1.00	ō	33	0.94	0.0
(5)	1986	40	0.92	0.08	0	40	1.00	0	40	1.00	0
(6)	1986	49	0.89	0.11	0	51	1.00	Ō	49	0.94	0.0

Appendix 1.—Continued.

50

State.

	1					_			~			_			~	ი - ი	~	0 0 0 0
	*105	1	0.11	•	0	•	0.06	0	0.10	2		•	0.23	0.06 0.05	0.18	0.410	0.02	0.02 0.02 0.10 0.04
*2030	*100	0.0	8	6.	0	6.	$0.94 \\ 0.96$	0	06.0			•	$\frac{0.77}{0.86}$	$0.94 \\ 1.00 \\ 0.95$	0.82	0.55 0.59 0.57	0.98	0.98 0.98 0.90 0.96
	N	40 57	31	20	24	37	<u> 18</u> 394	66	98 6	an	22 45	9	<u>30</u> 103	40 50	60	95 193	66	100 95 240
*		0 010	0.01	0	0	0	0 0.002	0	00	5	00	0	00	000	0	000	0	0000
sIDHP-2	*100		•	•	•	•	1.00 0.998	•	1.00	٠	1.00	1.00	1.00	1.00 1.00 1.00	1.00	1.00 1.00	1.00	1.00 1.00
	N	40 60	35	20	40	37	<u>18</u> 421	67	86 86 8	0	22 48	7	<u>30</u> 107	40 50	60	97 <u>100</u> 197	100	100 100 245 245
	*85	00	0	0	0	0	00	0	00	þ	00	0	00	000	0	000	o	0000
B2 *	*115	0.05 0.18	٠	•	•	•	• •		4 C	>	0.18 0.07	•	• •	0.09 0.15 0.11	0.11	000	0.10	0.01 0.02 0.03 0.02
LDH-B2	*100	0.95 0.82		٠	•	٠	• •	•	0.55	•	0.82 0.93	σ.	ωœ	0.91 0.85 0.89	0.89	1.00 1.00 1.00	06.0	0.99 0.98 0.97 0.98
	N	40 58	35	19	29	37	402	67	100 88)	22 46	۱	<u> 103</u>	37 47	60	Island 97 <u>197</u>	age 100	100 100 245 245
	Year	1986 1986	1987	1986	1986	1987	Total	1990	1990 1988		1986 1986	1987	1989 Total	1986 1989 Total	1989	ichagof 1984 1987 Total	<u>115</u> River drainage 1983	1983 1983 1990 Total
	Locatión	(7)		(8)	(7)		(01)	m.	ч.		p. Early			q. Middle	r. Late	District 113 Southern Ch s.	<u>District 115</u> Chilkat Rivo t.	u. Early Late

۰,

51

.

11日本には、11日本は「「「「「「「「「「「「」」」」」」

EPC*	*100 *105			0.99 0.01 0.98 0.02		0.91 0.09	0.995 0.005
đ	I* N			<u>40</u> 132 0.		49 0.	95 0.
	*125		0	00		0	o
sIDHP-2*	+ 001+			1.00		1.00	1.00
	N		95	135		50	96 8
1	*85			0.004		0	o
-82 *	*115		0.037	0.05		0.06	0.09
LDH-B2 *	*100		0.958	0.955		0.94	10.91
	N			135		50	98
	Year	ver drainao	1983	1990 Total	drainage	1987	drainage 1984
	Location	Chilkoot Biver drainage	V.		<u>District 181</u> Alsek River drainage	м.	Situk River drainage x. 1984

52

教室内に行いて

Appendix 1.-Extended.

Location	Year	N	+100	ALAT*					SAAT	3*		SAAT	r-1,2*	
	Iear	. N	*100	*95	*91	*108	*86	N	*100	*117	N	*100	*77	*64
District 10	01										<u> </u>			
Boca de Qu	ladra													
Α.	1982	44	0.58	0.03	0.35	0.03	0	•			-			
	1983	0	-	-	-	0.03	0	0	-		0		-	-
	1986	7	0.57	0.21	0.21	0		0	-		0	-		-
	1988	_50	0.50	0.11	<u>0.37</u>		0	10	1.00	0	0			-
	Total	101	0.54	0.08	$\frac{0.37}{0.35}$	<u>0.02</u> 0.02	0	<u>50</u> 60	$\tfrac{1.00}{1.00}$	<u> 0 </u>	$\frac{47}{47}$	$\frac{1.00}{1.00}$	0	0 0
George In	let											1000	Ũ	0
в.	1986	1	1.00	. 0	0	0	0	25	1.00	0	0	_	_	
Western Be	ehm Canal													
с.	1983	49	0.62	0.02	0.36	0	0	•			-			
	1986	6	0.75	0.08	0.17	0	ŏ	0 10	1.00	_	0			
	1986	_25	0.66	0.08	0.26	<u>0</u>	0			0	0			
	Total	80	0.64	0.04	$\frac{0.20}{0.31}$	0	0	$\frac{0}{10}$	$\frac{-}{1.00}$		<u>0</u>			
D.	1982	45	0.71	0.04	0.24	0	0	0						
	1987	_10	0.80	0.05	0.15	0	0	<u>106</u>	1 00	_	0		_	_
	Total	55	0.73	0.05	0.23	0	<u> </u>	$\frac{108}{106}$	$\frac{1.00}{1.00}$	<u> </u>	<u>95</u> 95	$\tfrac{1.00}{1.00}$	0	 0
Ε.	1983	76	0.53	0.07	0.40	0	0	0	_					
	1988	_52	0.44	0.09	0.45	0.02	ŏ	52	1.00		0	1 00	_	0
	Total	128	0.50	0.08	0.42	$\frac{0.01}{0.01}$	0	<u> 52</u> 52	$\frac{1.00}{1.00}$		<u>52</u> 52	$\tfrac{1.00}{1.00}$	 0	0
F.	1983	0	_			_		0	_		0			-
Early	1984	48	0.73	0.08	0.19	0	0	ŏ	_	_	0			-
Late	1984	44	0.72	0.08	0.19	0.01	ŏ	ŏ			0			****
	1986	31	0.82	0.08	0.10	0	ō	40	1.00	0	0	_		
	1986	0	<u> </u>			-		0			0			
	Total	123	0.748	0.081	$\frac{-}{0.167}$	0.004		40	1.00		0			
)istrict 10	<u>)2</u>													
Eastern Pi	rince of Wa		ind											
G.	1983	79	0.49	0.04	0.46	0	0	0		_	0	-	_	
н.	1982	44	0.72	0.27	0.01	0	0	0	_	_				
	1983	0				_			_	_	0			
	Total	44	0.72	0.27	$\frac{-}{0.01}$	0		<u> 0</u>			<u> </u>			
I.	1988	48	0.65	0.19	0.17	0	0	52	1 00	0		0.05	• • • •	
						5	0	54	1.00	0	52	0.98	0.02	0

1Continued.
Appendix

۰,

NE 114 138

ŧ

٥

Location	Year	2	*100	ALAT* *95	16*	*108	*86	2	sAAT-3	* * 1 1 7		SAAT-	-1,2*	
								5	007-	/ 1 1	N	001*	//*	4 O 4
•	1982 1983 1986	94 970 070	0.63 0.72 0.72	0.07 0.08 0.0	0.30	000	000	0 0 9 7 0	1.00	110	000	111	111	
	Total	<u> 182</u>	0.46	0.07	0.31	00	00	<u>48</u> 85	1.00	00	4 <u>3</u> 43	1.00	00	00
District 103 Western Pri K.	nce of 1983 1986 Total	Wales Isl 25 25 25	Island 25 0.24 26 0.24 25 0.24	0.54 0.54	0.22 0.22	000	000	32 32 0	- 1.00	100	000	1 1 1	1 1 1	1 1
	1986	43	0.73	0.12	0.12	0.03	0	48	0.99	0.01	0	I	I	I
·	1983 1988 Total	0 90 90	<u>с. 69</u> 0.69		- 0.22 0.22	100	100	20 20 20 20	1.00	100	56 56	1.00 1.00	1 00	54 1 00
	1986 1987 1988 Total	46 50 140	0.75 0.77 0.73 0.73	0.08 0.04 0.06 0.06	$\begin{array}{c} 0.17 \\ 0.19 \\ 0.27 \\ 0.21 \\ 0.21 \end{array}$	0000	0000	47 50 146	1.00 1.00 1.00	0000	20000	1.00 1.00	1100	1100
	1986 1987 1988 Total	34 41 117	0.65 0.73 0.68 0.69	0.09 0.06 0.05 0.05	0.26 0.21 0.25 0.25	0000	0000	29 42 113	1.00 1.00	0000	43 43	0.93	- - 0.07	1100
<u>District 105</u> Northern Prince P. 198	<u>)5</u> rince of 1983	Wales	i Island 50 0.28	0.15	0.57	o	o	0	I	I	0	1		I
	1986	19	0.58	0	0.39	0.03	ο	19	1.00	0	ο	I	i	I
District 106 Northwester R.	<u>istrict 106</u> Northwestern Prince R. 1988	e of Wales 54	s Island 0.86	0.09	0.05	o	o	54	1.00	o	54	0.86	0.14	o

1Continued.	
Appendix	

I	4		!.		55	I	1 1 1 1	1	1	0	1
	*9	111100		I		·		·	•	-	•
1	*	0.02		I	1 1 1	1		I	I	0	1
SAAT-	*100	0.98 0.98	111	I	1 1	I	1 1 1 1	ł	I	1.00	Ι
	N	00000 80 80 80 80 80 80 80 80 80 80 80 8	0000	0	000	0	0000	0	0	100	0
*	*117	101000	1010	I	100	o	1000	0.02	0	0.10	0.01
SAAT-3	*100	1.00 1.00 1.00	1.00	I	1.00	1.00	1.00 1.00	0.98	1.00	06.0	66.0
	N	0 0 0 1 1 1 3 3 0 0 0 0 0 0 0 0 0 0 0 0	13 13 13	0	0 46 46	49	0 50 110	61	47	98	48
	*86	0 0 0 0 0 0 0 0 0 0 0	0010	0	000	0	0000	0	0	0	0
	*108	0.02 0 0 0.01 0.03	0010	0	0.01 0.01	0	0 0.01 0.01 0.01	o	0.03	0	0
	+91	0.21 0.28 0.23 0.23 0.218	0.30 0.36 0.31	0.32	0.36 0.45 0.40	0.62	0.57 0.50 0.41 0.50	0.74	0.42	0.46	0.48
ALAT*	*95	0.09 0.44 0.20 0.22 0.178	0.34 0.36 0.34	0.48	0.40 0.36 0.38	0.01	0.04 0.05 0.05	0.16	0.15	0.49	0.21
	*100	0.68 0.28 0.58 0.59 0.60	0.37 0.27 0.35	0.20	$0.24 \\ 0.18 \\ 0.21$	0.37	0.39 0.44 0.52 0.45	0.11	0.40	0.05	0.31
	N	45 9 49 197	52 11 63	45	49 48 97	50	100 47 177	je 19	43	96	48
			Ч		Ч		Island	drainage 986		~	
	Year	1983 1986 1986 1987 1988 Tota	1983 1986 1986 Total	1982	1983 1986 Tota	of Island 1986	<u>107</u> Wrangell 1986 1986 1987 Total	108 River 19	1986	1990	1986
	Location	ν	н	. .	۷.	Kupreanof W.	District Western X.	District Stikine Y.	г.	a.	•q

Ņ

e

€

n de la servicie de s La servicie de la serv

Appendix 1.—Continued.

ć

location	Year	N	+100	ALAT*					SAAT-			SAAT	-1,2*	
	Iear	. N	*100	*95	*91	*108	*86	N	*100	*117	N	*100	*77	*64
(7)	1986	35	0.41	0.23	0.36	0	0	0			_			
	1986	60	0.45	0.15	0.40	ŏ	0	0 60	~ ~		0	-	-	
	1987	34	0.35	0.21	0.44	0	0 0		0.99	0.01	0		-	•
(8)	1986	17	0.41	0.21	0.32	0.06	õ	34	1.00	0	0	-		
(9)	1986	37	0.45	0.10	0.45	0.00	0	20	0.95	0.05	0	_		
	1987	35	0.36	0.17	0.46	0.01	ŏ	0 37	1 00	-	0	-		
(10)	1989	18	0.36	0.28	0.36	0		<u>_18</u>	1.00	0	31	1.00	0	0
	Total	389	0.39	0.17	$\frac{0.30}{0.43}$	0.01	0	300	<u>1.00</u> 0.99	$\frac{0}{0.01}$	<u>18</u> 98	<u>1.00</u> 0.99	<u>0</u>	$\frac{0}{0.01}$
m.	1990	66	0.29	. 0.35	0.36	0	0	67	0.98	0.02	67	1.00	0	0
n	1990	100	0.18	0.20	0.62	0	0	99	0.95	0.05	98	0.95	0	0.0
0.	1988	88	0.76	0.01	0.24	0	0	89	1.00	0	89	1.00	0	0
p. Early	1986	21	0.38	0	0.57	0.05	0	22	1.00	0	•			
	1986	47	0.41	0.04	0.53	0.05	0.01	0	1.00	0	0			
	1987	7	0.64	0.14	0.21	ŏ	0.01	7	1.00	0	0			
	1989	_ 30	0.57	0.07	0.37	ŏ	_ 0		1.00 1.00		0	-	_	_
	Total	105	0.467	0.048	0.471	0.010	0.005	59	$\frac{1.00}{1.00}$	0	<u>30</u> 30	$\frac{1.00}{1.00}$	<u> 0 </u>	0
q. Middle		39	0.59	0.09	0.32	0	0	0	_		0			
	1989	_10	0.50	<u>0.05</u>	0.45	0_	0	10	1.00	0	_10	1.00	0	0
	Total	49	0.57	0.08	0.35	0	0	10	1.00	0	10	1.00	0	0
r. Late	1989	59	0.53	0.04	0.43	0	0	60	1.00	0	59	1.00	0	0
istrict 11														
Southern C	1984		0.00											
8.	1984	96	0.88	0.02	0.10	0	0	0			0			
	Total	<u>99</u> 195	0.83	0.07	<u>0.10</u>			<u>100</u>	1.00	0	<u>99</u> 99	1.00	0	0
	IOLAL	192	0.85	0.05	0.10	0	0	100	1.00	0	99	1.00	0	0 0
District 11 Chilkat Ri	<u>.5</u>													
t.	1983	ige 92	0.52	0.09	0.38	0.02	0	ο		_	0	_		
u. Early	1983	0	_	_	_						_			
Late	1983	ŏ		_	_		-	0	-		0			
	1990	<u>43</u>		0.24	0 42	0	0	0	1 00		0			
	Total	43	$\frac{0.34}{0.34}$	$\frac{0.24}{0.24}$	<u>0.42</u> 0.42	-0-		44	$\frac{1.00}{1.00}$	_0_	45	1.00	0	0
				V. 6 T	0.72	U	0	44	1.00	0	45	1.00	0	C

				ALAT*	1				SAAT-	3*		SAAI	-1,2*	
Location	Year	N	* *100	*95	*91	*108	*86	N	*100	*117	N	*100	*77	*64
Chilkoot R	iver drainad	т о .	•	-					<u> </u>					
v.	1983	0:		— ,	_	_		0			0			
	1990	40	0.45	0.24	0.31	0	0	_40	1 00	0		1 00	_	_
	Total	40	0.45	<u>0.24</u> 0.24	$\frac{0.31}{0.31}$	0	0	40	$\tfrac{1.00}{1.00}$	0	<u>40</u> 40	$\frac{1.00}{1.00}$	0	0
District 18	1													
	r drainage													
w.	1987	48	0.63	0.03	0.34	0	0	50	1.00	0	45	1.00	0	0
Situk Rive	er drainage		,											
x.	1984	93	0.49	0.34	0	0	0.17	0			0			

Location Year	<u>District 101</u> Boca de Quadra A. 1982 1983 1986	1988 Tota George Inlet B.	stern Behm	1986 Total D. 1982	Total E. 1983 1988 Total	F. 1983 1984 1984 1986 1986 Total	District 102 Eastern Prince of Wales I G. 1983	H
N	000	4			1 $\frac{92}{52}$ 1 52	000000	Wales Island 0	1
mAAT- *-100	. 11	0.96	1 1 1		0.96 0.88 0.88		ן ו	
-1*	111	0.04	1 1		0.04 0.12 0.12	1 1 1 1 1	I	1 1 1
N	25 20 20	20 75	0 00	37 87 25	25 50 101	50 50 190 190	50	25 50 75
<u>ADA-1</u> *100	1.00	<u>1.00</u> 1.00	1.00	 1.00 1.00	1.00 1.00	1.00 1.00 1.00 1.00	1.00	1.00 1.00
* 107	00	1 00	1 0	1000		000100	o	000
N	000	48 48	0 0		21 51 51	000000	0	20 20 20
G3PDH-1* *-100 *-		<u>1.00</u> 1.00	1 1	1 1 1	0.95		I	0.98
- <u>1</u> * *-240	1 1	100	1 1	11/1 1	0.05		1	0.02
	00	44 44	0 0	0000	74 50 52 22	00000	0 0	000
FDHG* *100		1.00		1 1 1	1.00		1 1	1 1
*	11	100					ł ł	

			mAAT-1	*		ADA-1			G3PDH-	1*		<u>FD</u> HG	*
Location	Year	N	*100	*-82	N	*100	*107	N	*-100	*-240	N	*100	*10
J.	1982	0	_	¹	25 50	1.00	0	0	-	-	0	-	-
	1983 1986	0	_	_	50 0		<u> </u>	0	_	_	ŏ	_	
	1988	43	1.00	0			0	45	1.00	0	42	1.00	
	Total	43	1.00	0	86	$\frac{1.00}{1.00}$	0	45	1.00	0	42	1.00	0
District 1	.03												
	rince of Wal 1983	les Islan O	nd _	_	50	1.00	0	0		_	0	-	_
К.	1985	0	-					ŏ			0		
	Total	0	·		<u>0</u> 50	1.00	0	0	_	_	0		-
L.	1986	0	- .	-	0	-	-	0		-	0	-	
м.	1983	0	_		50	1.00	0	0		-	0		
	1988	59	<u>0.99</u>	<u>0.01</u> 0.01	_ 59	<u>0.94</u> 0.97	<u>0.06</u> 0.03	<u>53</u> 53	$\frac{1.00}{1.00}$	0	<u>51</u> 51	<u>0.99</u> 0.99	$\frac{0.01}{0.01}$
	Total	59	0.99	0.01	109	0.97	0.03	53	1.00	0	51	0.99	0.01
N.	1986	0			0	-	_	0	-		0 0		
	1987 1988	0	0 00	0 01	0	1 00	_ 0	0 <u>50</u>	1.00	0	_ <u>50</u>	1.00	0
	Total	<u>50</u> 50	<u>0.99</u> 0.99	$\frac{0.01}{0.01}$	<u>50</u> 50	$\frac{1.00}{1.00}$	0	50	$\frac{1.00}{1.00}$	0	50	1.00	0
0.	1986	0	-		0			0	-	_	0	-	
	1987	0		-	0	-	-	0	-	-	0	1 00	0
	1988	43	<u>0.92</u> 0.92	<u>0.08</u> 0.08	$\frac{44}{44}$	<u>0.98</u> 0.98	<u>0.02</u> 0.02	$\frac{44}{44}$	$\tfrac{1.00}{1.00}$	<u> 0 </u>	$\frac{41}{41}$	$\frac{1.00}{1.00}$	
	Total	43	0.92	0.08	44	0.98	0.02	44	1.00	0	41	1.00	U
District	<u>105</u>	alas Tsl	and										
Northern P.	Prince of W 1983	ales Isi O	.and _		50	1.00	0	0		_	0		_
r.	1903					1.00	-				-		
Q.	1986	0	-	_	0	_	-	0		-	0	_	
District	<u>106</u>		Talaad										
Northwes R.	tern Prince 1988	of Wales	1.00 1.00	0	54	1.00	0	52	1.00	0	52	1.00	0
r	1900	54	1.00	0		2000	*						

and the second second

01*				1 .		.	,		-	
			1		I		I	I	0	
*100 *100			I		I		I	I	1.00	
×	0000	0000	0	000	0	0000	0	0	100	
1* *-240	111100	1100	1	1 1	I	1 1 1 1	I	i	o	
<u>G3PDH-1</u> *-100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>1.00</u> 1.00	I	1 1 1	ł		I	I	1.00	
N	0000 80 80 80 80 80 80 80 80 80 80 80 80	4000 4000	0	0 0 0	o	0000	0	0	100	
*	010100	0100	0	0 10	I	0110	o	J	0	
<u>ADA-1*</u> *100 *	1.00 1.00	1.00 1.00 1.00	1.00	1.00	I	1.00	1.00	I	1.00	
N	50 38 151	50 90 90	50	50 100	o	20002	18	0	100	
*-82	0.05 0.05	1 1 1 1	I	1 1 1	l	111	60.0	I	0.21	
001-*	0.95 0.95		Р .	1 1 1	ł		0.91	ł	0.79	
N	64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000	0	000	0		je 41	0	66	c
Year	1983 1986 1986 1987 1988 Total	1983 1986 1986 Total	1982	1983 1986 Total	: Island 1986	<u>.07</u> Trangell Island 1983 1986 1987 Total	<u>108</u> River drainage 1986	1986	1990	1006
Location	Ś	H	U.	۰.	Kupreanof W.	District 107 Western Wrangell I X. 1983 1986 1987 Total	District 108 Stikine Riv Y.	д.	N	£

61

,

,

				02					
*10	10	0		I	I	0	1100	1100	01110
<i>FDHG</i> *	1.00 1	1.00			1	1.00	1.000 1.000	1.00	1.00
×	4 o	40 0	0 0 0 0	0	0	73	0000	50 0 0 50 0 0	8000 4
*-240	0.01	0.01	1 4 1	I	1	o	1000	1000	0 0
<u>G3PDH-1*</u> *-100	- 0	- 0		I	1	1.00	1.00 1.00	1.00 1.00	1.00
N	22 0	52 0	000	0	0	73	51 51 61	60 0 4 0 60	40000 4
*107	1 0	5 I	1 1 1	0.02	o	0	1000	1000	01100
<u>ADA-1*</u> *100	1.00			0.98	1.00	1.00	1.00 1.00	1.00 1.00	1.00 1.00 1.00
N	40 0 40 0	0 7	000	100	100	73	53 63 63	40 20 60	8 0 0 0 8 4 3
* *-82	0.18		1 1	lsham -	I	0.66	0.50 0.51	0.18 0.18	0.12 0.14
mAAT-1* *-100	0 82 0 82	1	1 1 1	tt Snettisham 	ł	0.34	0.50 0.45 0.49	- - 0.82	0.88 1 1 0.86
N	0 10	0	000	Passage-Port 0	0	je 73	drainage 0 53 63	5000 5000	400008
Year	9 d 1986 1987 Total	1986	<u>11</u> Juneau 1986 1988 Total		1983	Herbert River drainage h. 1989	River 1986 1988 1989 1989 Total	drainage 1986 1986 1989 1989 Total	1989 1986 1987 1986 1986
Location	<u>District 109</u> Kuiu Island c.	ۍ. ۲	District 11 North of Ju e.	Eastern Stephens f. 1983	g.	Herbert Ri h.	Mendenhall i.	Taku River j. (1) (2)	k. (3) (4) (5) (6)

ang ministration

.			mAAT-1		<u></u>	ADA-1			G3PDH-1	*		FDHG*	
Location	Year	N	*-100	*-82	N	*100	*107	N	*-100	*-240	N	*100	*10
(7)	1986	° O	·		30	1.00			·····				
(•)	1986	Ŭ.		_	0	1.00	0	0	-		0	_	_
	1987	õ	<u> </u>		0			0	····· .		0		-
(8)	1986	0			0			0	-	-	0	-	-
(9)	1986	ŏ		_	40	1.00	0	0			0		-
· · /	1987	33	0.83	0.17	32	1.00	0	0 29	1.00		0	· -	_
(10)	1989	18	0.81	<u>0.19</u>	_18	1.00 1.00	0	18		-	31	1.00	0
. ,	Total	99	0.84	$\frac{0.15}{0.16}$	198	$\frac{1.00}{1.00}$	0	96	$\frac{1.00}{1.00}$	0	$\frac{17}{96}$	$\frac{1.00}{1.00}$	
						1.00	Ū	50	1.00	0	90	1.00	0
m.	1990	67	0.86	0.14	67	1.00	0	66	1.00	0	67	1.00	0
n.	1990	99	0.94	0.06	93	1.00	0	99	1.00	0	99	1.00	0
ο.	1988	88	0.89	0.11	86	1.00	0	87	1.00	0	89	1.00	0
p. Early	1986	· 0			0		_	0	_		0	_	_
	1986	0		-	40	1.00	0	40	1.00	0	ŏ		_
	1987	0		· ••••	0	-	_	0		<u> </u>	ŏ	_	_
	1989	<u>_30</u>	<u>0.87</u>	$\frac{0.13}{0.13}$	30	1.00	0_	30		0_	<u>_30</u>	1.00	
	Total	30	0.87	0.13	70	1.00	0	70	$\tfrac{1.00}{1.00}$	0	30	$\frac{1.00}{1.00}$	0
q. Middle		0	_	-	40	1.00	0	39	1.00	0	0	_	_
	1989	_10	<u>0.90</u>	0.10	10	1.00	0	10		<u>0</u>	10	1.00	0
	Total	10	0.90	0.10	50	1.00	0	49	$\tfrac{1.00}{1.00}$	0	10	1.00	0
r. Late	1989	60	0.89	0.11	59	1.00	0	60	1.00	0	59	1.00	0
District 11	13												
Southern C	Chichagof I	sland											
5.	1984	0	-		97	1.00	0	0	_	_	0		_
	1987	_99	$\frac{1.00}{1.00}$	0	$\frac{96}{193}$	0.99	0.01	98	1.00	0	<u> </u>	1.00	0
	Total	99	1.00	0	193	<u>0.99</u> 0.997	0.003	98	$\frac{1.00}{1.00}$	<u> 0 </u>	90	$\frac{1.00}{1.00}$	
District 11	15												
	iver draina	пе											
t.	1983	0		-	50	1.00	0	0		_	0		_
u. Early	1983	0	_		50	1 00	•						
Late	1983	0	_	_	100	1.00	0	0	-	-	0	-	_
Duce	1990		0 99	0 01	45	1.00	0	0	_	_	0	-	
	Total	<u>45</u> 45	<u>0.99</u> 0.99	$\frac{0.01}{0.01}$	$\frac{45}{195}$	$\frac{1.00}{1.00}$		_45	$\frac{1.00}{1.00}$		45	1.00	0
		75	0.77	0.01	122	1.00	0	45	1.00	0	45	1.00	0

キャント あんかかん シー・コート しいたい たませいかねい いたいな

¥

			mAAT-1*			ADA-1*			1 - AUA22	+		+2200	
Location	Year	N	001-*	*-82	N	*100	+107	Z	*-100 *-240	*-240	N	*100	*10
Chilkoot R v.	Chilkoot River drainage v. 1983 1990 Total	e 400	0.68 0.68	0.32 0.32	50 90	1.00 1.00	000	0 0 4 0	1.00 1.00	1 0 0	40 40	1.00 1.00	100
<u>District 181</u> Alsek River drainage w. 1987	<u>11</u> er drainage 1987	45	0.91	60.0	33	1.00	o	45	1.00	o	40	1.00	0
Situk Rive x.	Situk River drainage x. 1984	0	· I	. 1	06	1.00	o	0	1	I	0	I	I

Appendix 1.-Extended.

* i - !	••		PEPLT*			sMDH				sMDH-B1,	2*		mMEP-	1 *
location	Year	. N	*100	*92	N	*100	*64	*46	N	*100	*65	N	*100	*125
istrict 10	01													
Boca de Qu	uadra													
Α.	1982	50	1.00	0	50	0.98	0.02	0	50	1.00	0	0		_
	1983	96	1.00	Ō	96	0.990	0.005		96	0.99	0.01	0		-
	1986	Ő	_		0	_	-	-	0	-	-	0		-
	1988	50	1.00	0	_50	0.98	0.02	0	50	0.99	0.01	50	1.00	0
	Total	196	1.00	0	196	0.984	$\frac{0.02}{0.013}$	0.002	$\frac{50}{196}$	0.99	$\frac{0.01}{0.01}$	50	1.00	0
George In	let													
в.	1986	0	_	. 	0				0			0		
Western B	ehm Canal													
с.	1983	50	1.00	0	50	1.00	0	0	50	1.00	0	0		
	1986	0	_		Ő		-	-	0	1.00	-	ŏ		_
•	1986	40	1.00	0	_40	1.00	0	0		1.00	0	ŏ	_	
	Total	90	1.00	0	90	1.00	0	0	<u>33</u> 83	$\frac{1.00}{1.00}$	0	ŏ	_	
.D •	1982	50	1.00	0	50	0.99	0.01	0	50	1.00	0	ο		_
	1987	0			<u>98</u>	0.99	0.01	ō	99	0.99	0.01	ŏ		_
	Total	50	1.00	0	148	0.99	0.01	0	149	0.997	0.003	õ		_
Ε.	1983	97	1.00	0	100	0.99	0.01	0	100	1.00	0	0		_
	1988	_52	1.00	0	<u>52</u> 152	1.00		0	<u>52</u>	0.98	0.02	52	1.00	0
	Total	149	1.00	0	152	0.997	0.003	0	152	<u>0.98</u> 0.99	0.01	52	1.00	õ
F.	1983	104	1.00	0	104	1.00	0	0	104	1.00	0	0	_	_
Early	1984	47	1.00	0	50	1.00	0	0	50	1.00	0	Ō		_
Late	1984	49	1.00	0	50	1.00	0	0	50	1.00	0	0		
	1986	0	_		0		-		0	· _		0	_	
	1986	35	1.00	0	<u> </u>	1.00	0	0_	<u> </u>	<u>1.00</u>	0_	0		-
	Total	235	1.00	0	241	1.00	0	0	239	1.00	0	0		
District 1														
	ince of Wal													
G.	1983	79	1.00	0	79	0.99	0.01	0	79	1.00	0	0		-
н.	1982	50	1.00	0	50	1.00	0	0	50	1.00	0	0	_	
	1983	<u>100</u>	$\tfrac{1.00}{1.00}$	0	<u>100</u>	1.00	0	0	100	1.00	ŏ		_	
	Total	150	1.00	0	150	1.00	0	0	150	1.00	0	0 0		
I.	1988	48	1.00	0	52	1.00	0	0	52	1.00	0	50	1.00	0
							-	-	J • •		-		****	0

			PEPLT*	·	• • • • • • • • • • • • • • • • • • •	sMDH-1	41,2*			sMDH-B1,	2*		mMEP-1	[*
Location	Year	N	*100	*92	N	*100	*64	*46	N	*100	*65	N	*100	*125
J.	1982 1983	100 100	1.00	0	100 100	1.00	0	0	100 100	1.00	0	0		-
	1986	0	_	<u></u>	0	-	Ľ.	-	0	-	_	õ		
· · ·	1988 Total	$\frac{17}{217}$	$\frac{1.00}{1.00}$	<u>0</u>	$\frac{43}{243}$	$\frac{1.00}{1.00}$	<u>0</u> 0	<u> 0 </u>	$\frac{43}{243}$	$\frac{1.00}{1.00}$	<u> 0 </u>	42 42	1.00 1.00	0 0
District 1														
	rince of Wa													
κ.	1983 1986 Total	$\frac{100}{\underline{0}}$	$\frac{1.00}{-1.00}$	<u> </u>	$\frac{100}{0}$	$\frac{1.00}{-}$	<u> </u>	0 	$\begin{array}{r}100\\ \underline{0}\\100\end{array}$	$\frac{1.00}{-1.00}$	0 	0 0 0		
L.	1986	0		_	0	_	.—	·	0	_	_	0	_	
Μ.	1983 1988 Total	99 <u>56</u> 155	1.00 1.00 1.00	0 0 0	99 <u>59</u> 158	$1.00 \\ 1.00 \\ 1.00$	0 0	0 0	99 <u>59</u> 158	1.00 <u>1.00</u> 1.00	0 0	0 <u>54</u> 54	$\frac{1.00}{1.00}$	
N.	1986 1987 1988 Total	0 0 <u>44</u> 44	_ _ <u>1.00</u> 1.00	 	0 0 <u>50</u> 50	 <u>1.00</u> 1.00	 	 	0 0 <u>50</u> 50	 <u>1.00</u> 1.00	 	0 0 <u>49</u> 49	 <u>1.00</u> 1.00	
0.	1986 1987 1988 Total	0 0 <u>44</u> 44	 0.99 0.99	<u>-</u> <u>0.01</u> 0.01	0 0 <u>43</u> 43	 <u>1.00</u> 1.00	 	 	0 0 <u>43</u> 43	_ <u>1.00</u> 1.00	 	0 0 43 43	_ 1.00 1.00	 0 0
District 1			_											
Northern P.	Prince of W 1983	Vales Isl 50	land 1.00	0	50	1.00	0	0	50	1.00	0	0		_
Q.	1986	0		_	0	_	_	_	0			0		_
District 1														
Northwest R.	ern Prince 1988	of Wales 50	s Island 0.99	0.01	54	1.00	0	0	54	1.00	0	54	1.00	0

-	
2	
2	-
	-
	-
-	
2	-
Ĩ	-
r	~
5	۲
	ŧ
	٩,
-	-
	۰.
2	5
-	-
2	1
-1	
- 9	2
<u>د</u>	2

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Location	Year	N	PEPLT*	* 9.7	2	SMDH-AI	A1,2* *64	774	8	<u>sMDH-B1,2</u>	,2* +65		<u>mMEP-1</u>	+
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$:				001	* >	5	5	007	00	5	007-	77.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	s.	1983	50	1.00	C	50	00.1	с	c	50		c	c	I	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1986	0	1)	0		>	>	ço		>	c	1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1986	38	1.00	0	39	1.00	0	0	40	1.00	0	0	I	Í
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1987	οę	((o	1	1	1	0	1	ľ	o.		I
		1988 Total	150		0 0	152 152	1.00	00	00	<u>153</u>	1.00	00	62 62	1.00	00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1983	20	1.00	c	02	1.00	с	С	02	00	c	c	I	I
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1986	0	1	• 1 •	0		• 1	> 1	0			00	I	I
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1986 Total	40	1.00	00	<u>37</u>	1.00		00	40	1.00	0	00	ł	I
1982 69 1.00 0 69 0.01 0 69 1.00 0 0 1 0 <th0< th=""> <th0< th=""> <th0< th=""></th0<></th0<></th0<>		TOCAL	011	T • 00	2	101	лл.т	5	D	011	00 · T	c	þ	I	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	U .	1982	69	1.00	0	69	66.0	0.01	0	69	1.00	0	. 0	I	I
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	v.	1983	76	1.00	0	76	1.00	0	0	76	1.00	0	0	I	I
of Island 1986 0 0 0 0 0 0 0 - 0 0 - 0		Total	<u> </u>	1.00	10	<u>76</u>	1.00	10	10	<u>76</u>	1.00	10	00	8	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Nupreauor W.		0	I	ł	0	1	I	1	0	ł	I	0	1	I
Wrangell Island Total 75 1:00 0 74 1:00 0 74 1:00 0 0 1 1:00 0 0 1 1:00 0 0 1 1:00 0 0 1 0 1:00 0 0 1 0 1:00 0 0 1 0 1:00 0 0 1:00 0 0 1:00 0 0 1:00 0 0 0 1:00 0 0 1:00 1 0 1		07													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				- -	c	t	(((Ċ	c	t		¢	Ċ		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1986	ίO	00.I	> I	4 0	00 I)	5 I	4 (7	1.00)	00	11	1
108 River drainage 0 - - - 0 100 1 0 100 1 0 100 1 0 100 1<		1987 Total	75	100	۱c	0			1	0				1	1
River drainage 0 - - 61 1.00 100 10 100 10 100 <th100< th=""> <th100< th=""></th100<></th100<>			•)))	•) • •)	>		•••	þ	b	I	I
1986 0 - - 61 1.00 10 10 10 10 10 10 1 100 1 100 1 100 1 10 1 0 10 1 0 10 1 1 0 1 1 0 1 1 0 1 0 1 0 1 0 <td></td> <td>ы С</td> <td></td>		ы С													
1986 0 - - 0 - 0 0 0 0 0 10 0 100<	Υ.	1986		ł	I	61	1.00	0	0	61	1.00	0	0	I	1
1990 97 0.99 0.01 97 1.00 0 0 9 1.00 0 10 10 10 10 10 10 10 10 10 10 10 10	.2	1986	0	I	I	0	I	I	I	0	I	I	0	I	I
	a.	1990	97	0.99	0.01	67	1.00	0	0	66	1.00	0	100	1.00	0
	, d	1986	0	1	ł	0	I	I	I	С	I	1	c	I	1

i	
Jue	
.in	
ont	
Ğ	
<u> </u>	
<u>ک</u>	
ipu	
ppendi	
٩p	•
~	1

					68					
	+125	100	1	1 1 1	1	1	0	0.01	1100	01110
mMEP-1*	*100	<u>1.00</u>	I		I	I	1.00	- 0.99 0.99	<u>1.00</u>	1.00° 1.00°
	N	25 25 25	0	000	o	0	73	20 0 10 0 90	0 19 19	∞0000 0
,2*	*65	1 00	1	1 1	o	0	0.01	1000	1000	0.05
sMDH-B1,.	*100	<u>1.00</u>	1	11	1.00	1.00	66.0	1.00 1.00	1.00 1.00	0.95 - 1.00 1.00
	Z	25 52 52	0	000	100	100	73	51 61	40 60	10 400 400
	*46	100	ł	1 1 1	o	0	o	1000	1000	01100
	¥64	100	I	1 1	0.04	0.02	0	1000	1000	0 00
SMDH-A1	*100	1.00 1.00	I	1 1 1	0.96	0.98	1.00	1.00 1.00	1.00 1.00	1.00 1.00 1.00
	N	52 52 52	0	000	66	100	73	51 61	20 4 0 600	10 4000 4000
	*92	100	I		sham O	0.01	Ō	1000	1000	01100
PEPLT*	*100	1.00	I		t Snettigham 1.00 0	0.99	1.00	1.00 1.00	1.00 1.00	1.00
	2	0 52 52	Ó	000	Passage-Port 100	100	je 73	drainage 0 51 61	31 31 51	4 4 0 0 0 0 8
	Year	109 and 1986 1987 Total	1986	<u>11</u> Juneau 1986 1988 Total	Stephens Pass 1983	1983	Herbert River drainage h.	River 1986 1988 1989 Total	r drainage 1986 1986 1989 Total	1989 1986 1986 1986 1986
1	Location	1 IB1	d.	District 11 North of J e.	Eastern St f.	·b	Herbert R: h.	Mendenhall i.	Taku River j. (1) (2)	k. (3) (4) (5) (6)

ued.
ontinu
Ŭ I
pendix
5

al Nul

C. Baurs Character attants damatic farmer

Support of the second second

	*125	1	1	ł	1	1000	0	0	0	69 11100	100	0	100	I	1100
	* 1						0				1	00		i	ļ
	#MEP- *100		ł	1	1	1.00 1.00	1.00	1.00	1.00	<u>1.00</u>	1.00 1.00	1.00	<u>1.00</u>	I	<u>1.00</u>
	X	0	0	0	0 c	29 18 95	67	100	89	29 29 29	10 0	59	92 92	0	45 45
	*65	0	ł	ł	⊂	0.003	0	0	0	11100	100	0.02	000	0	0000
	<u>sMDH-B1,2</u> + *100	1.00	I	I		1.00 1.00 0.997	1.00	1.00	1.00	<u>1.00</u> 1.00	<u>1.00</u> 1.00	0.98	1.00 1.00	1.00	$1.00 \\ $
	2	40	0	0	400	33 18 221	65	100	89		10	60	97 196	100	100 99 244
	*46	0	I	1	10	000	0	0	0	11100	000	0	000	o	0000
	A1,2* *64	0	I	1	10	000	0	0	0	11100	000	0	000	0	0000
	sMDH-A1 *100	1.00	I	1	1.00	1.00	1.00	1.00	1.00	$\frac{1}{1.00}$	1.00	1.00	1.00 1.00	1.00	1.00 1.00 1.00
	N	40	0	0 0	400	33 <u>18</u> 221	66	100	89	000000	39 10 49	60	97 <u>99</u> 196	100	100 100 245 245
	*92	0	1	1	10	000	0	0	0.01	11100	100	0	000	o	0000
	PEPLT* *100	1.00	1	ť I	1.00	1.00 1.00 1.00	1.00	1.00	0.99	<u>1.00</u> 1.00	1.00 1.00	1.00	1.00 1.00	1.00	1.00 1.00 1.00
	N	29	5 0		30	32 <u>18</u> 197	66	66	68	0000000	10 10	59	Island 93 <u>98</u> 191	lage 100	100 100 244 244
Continued.	Year	1986	1000 1000	19861	1986	1987 1989 Total	1990	1990	1988	1986 1986 1987 1989 Total	1986 1989 Total	1989	<u>3</u> hichagof 1984 1987 Total	<u>115</u> River drainage 1983	1983 1983 1990 Total
Appendix 1Continued.	Location	(7)		(8)	(6)	(10)	E	n.	•	p. Early	q. Middle	r. Late	District 113 Southern Chichagof s. 1984 1987 Total	<u>District 115</u> Chilkat Rive t.	u. Early Late

1Continued.
Appendix

.1*	*125	. IC	0		0	I	
MEP-	* 100		1.00		1.00	I	
	Z	0 0	39	:	40	0	
2*	*65	00	0		60.0	o	
SMDH-B1	*100	1.00	1.00		16.U	1.00	
	N	97 40	137		44	86	
	*46	00	0	c	5	0	
41,2*	•100 +64	00	0	c	5	0	
SMDH-1	001*	1.00 1.00	1.00		00.1	1.00	
	N	97 40	137		t t	96	
	*92	00	0	c	þ	0	
PEPLT*	001*	1.00 1.00	1.00	00		1.00	
	N	3e 50	06	Ч	ר ד	96	
	Year	Chilkoot River drainage v. 1983 1990	Total	l c drainage 1987		r drainage 1984	
	Location	Chilkoot Ri v.		District 181 Alsek River drainage w 1987		SITUK KIVEY GRAINAGE X. 1984	

ないたとれた

Appendix 1.-Extended.

÷

Toostion	¥			GPI-B1,2				GP	I-A*			MPI*	
Location	Year	N	*100	*132	*143	*61	N	*100	*88	*Fast	N	*100	*107
District 10	01									***			
Boca de Qu	adra	,											
Α.	1982	50	· 1.00	0	0	0	50	0.97	0.03	•			
	1983	96	1.00	Ō	ŏ	ŏ	96	1.00	0.03	0	0		
	1986	0	-	-	_	<u> </u>	0	-	-	-	0		-
	1988	_48	1.00	0	0	0	_50	0.98		0 0	0	-	_
	Total	194	1.00	0	0	0	$\frac{30}{196}$	0.99	<u>0.02</u> 0.01	0	<u>49</u> 49	$\frac{1.00}{1.00}$	0
George Inl	let	•											-
в.	1986	0	<u> </u>	-	-	-	0			_	0		
Western Be	ehm Canal												
с.	1983	50	1.00	0	0	0	50	1.00	0	•	-		
	1986	0		-	<u> </u>	-	0	-	0	0	0	· —	
	1986	_36	1.00	0	0	0_	_34	1.00	0	0	0 0	-	
	Total	86	1.00	0	0	0	84	$\frac{1.00}{1.00}$	0	0	0		
D.	1982	50	1.00	0	0	0	50	0.99	0.01	0	0		
	1987	0	<u></u>								<u>97</u>	0 00	0 01
	Total	50	1.00	0	0	<u> </u>	$\frac{87}{137}$	<u>0.99</u> 0.99	$\frac{0.01}{0.01}$	0	97	<u>0.99</u> 0.99	$\tfrac{0.01}{0.01}$
Е.	1983	100	1.00	0	0	O	100	1.00	0	0	0		
	1988	<u> 52</u>	1.00		0	0		0.98	0.02	Ŏ	_50	1.00	
	Total	152	1.00	0	0	0	<u>52</u> 152	0.99	$\frac{0.01}{0.01}$	0	50	$\frac{1.00}{1.00}$	
F.	1983	104	0.99	0.01	0	0	104	1.00	0	o	0		
Early	1984	50	1.00	0	0	. 0	50	1.00	õ	ŏ	ŏ	_	
Late	1984	50	1.00	0	0	0	50	1.00	Õ	ō	õ		_
•	1986	0	-		-		0				õ		
	1986 Total	38	$\frac{1.00}{0.000}$	0			<u>_38</u>	1.00	0	0			
	IOCAL	242	0.998	0.002	0	0	242	1.00	0	0	<u> 0</u> 0		
District 10	<u>)2</u>	_	_										
Eastern Pri G.	ince of Wale			-									
G.	1983	79	1.00	0	0	0	79	1.00	0	0	0	_	
н.	1982	0	_	-			50	1.00	0	0	0	_	
	1983	<u>100</u>	1.00	0		0	100	1.00	Ŏ	ŏ	ŏ		
	Total	100	1.00	0	0	0	150	1.00	0	0	0		

		·····		<u> 991-81,2</u>					-A*			MPI*	
Location	Year	· N	*100	*132	*143	*61	N	*100	*88	*Fast	N	*100	*10
J.	1982	100	1.00	0	0	0	100	1.00	0	` 0	0		
	1983	100	1.00	0	0	0	100	1.00	õ	ŏ	ŏ	-	_
	1986	0	<u> </u>	<u> </u>	-	-	0		_	-	ō	-	
	1988	45	$\frac{1.00}{1.00}$		0		$\frac{45}{245}$	$\frac{1.00}{1.00}$	0	0		1.00	0
,	Total	245	1.00	0	0	0	245	1.00	0	0	<u>46</u> 46	1.00	0
istrict 1			•										
	rince of Wa	les Isla											
К.	1983	100	1.00	0	0	0	100	1.00	0	0	0	. —	-
	1986 Tabal	$\frac{0}{100}$	1.00				$\frac{0}{100}$				0		
	Total	100	1.00	0	0	0	100	1.00	0	0	0		-
L.	1986	0	_	— `	*****	-	0	· <u></u>	-		0	-	-
м.	1983	99	1.00	0	0	0	99	1.00	0	0	0		
	1988	_54	0.99		ō	ō	54	0.99	ŏ	. –		1 00	0
	Total	153	0.997	<u>0.01</u> 0.003	0	0	<u>54</u> 153	<u>0.99</u> 0.997	0	<u>0.01</u> 0.003	<u>58</u> 58	$\tfrac{1.00}{1.00}$	0
Ν.	1986	0	_	_	-	_	0		_	_	0		
	1987	0		-		_	0				ō		
	1988	<u>50</u> 50	$\frac{1.00}{1.00}$			0	<u>50</u> 50	$\frac{1.00}{1.00}$	0	0_		1.00	c
	Total	50	1.00	0	0	0	50	1.00	0	0	<u> 50</u> 50	$\tfrac{1.00}{1.00}$	
ο.	1986	0		_		_	0		_		о		
•	1987	0			-		0	-			ō	_	-
r	1988	43	$\frac{1.00}{1.00}$	0			<u>43</u> 43	$\frac{1.00}{1.00}$	0	0	43	<u>1.00</u>	C
	Total	43	1.00	0	0	0	43	1.00	0	0	43	1.00	C
District 1	05	_	_										
	Prince of W												
Ρ.	1983	50	1.00	0	0	0	50	1.00	0	0	0	-	
Q.	1986	0		-	-	-	0	-	-	-	0	_	-
District 1		• • •											
Northwest R.	ern Prince 1988	of Wales 48		0	0					_			
41.4	1200	40	1.00	0	0	0	54	1.00	0	0	51	1.00	(

Appendix 1.—Continued.

101*	111100	1 1 1 1	I	1 1 1	I		o	I	0	I
* 001*		 	I	1	ł	1 1 1	0	ł	00	I
NI *	<u>1.00</u>		ł		·		1.00	•	1.00	·
N	0000449	0000	0	000	0	0000	18	0	100	0
*Fast	010100	0100	ο	0 10	1	0 10	I	I	0	I
<i>GPI-A*</i> *88	010100	0100	0	0 10	I	0110	I	I	0	I
*100	1.00 1.00 1.00	1.00 1.00 1.00	1.00	1.00	1	1.00	I	ł	1.00	I
N	50 39 152	70 0 102	69	76 76	0	75 0 75	0	0	100	0
*61	010100	0 1 00	0	0 10	1	0110	I	I	0	0
2* *143	010100	0100	0	0 10	I	0110	l	I	0	0
<u>GPI-B1,2</u> *132	010100	0100	0	0.01	i	0110	I	1	0	0
*100	1.00 1.00 1.00	1.00 1.00 1.00	1.00	0.99 	1	1.00	I	I	1.00	0
2	50 40 153 153	70 0 110	. 69	76 76	0	nd 74 0 74	e e	0	100	0
Year	1983 1986 1986 1987 1988 Total	1983 1986 1986 Total	1982	1983 1986 Total	of Island 1986	<u>listrict 107</u> Western Wrangell Island X. 1983 1986 1987 Total	<u>108</u> River drainage 1986	1986	1990	1986
Location	ю.	е.	u .		Kupreanof W	<u>District 107</u> Western Wra X.	District 108 Stikine Riv Y.	2.	a.	þ.

۰,

73

ı

Appendix 1	-Continued.
------------	-------------

Ś

See Sec. 1

				GPI-B1,				Gl	PI-A*			MPI*	
Location	Year	N	*100	*132	*143	*61	N	*100	*88	*Fast	N	*100	*107
District 10	9		•							in inclusion of a second provided drawn			
Kuiu Islar	d												
с.	1986	0	<u> </u>			_	0	-			0		
	1987	52	1.00		0	0	<u> 52</u> 52	1.00	0	0		1.00	0
	Total	52	1.00	. 0	0	0	52	$\frac{1.00}{1.00}$	0	0	<u>45</u> 45	$\tfrac{1.00}{1.00}$	0
d.	1986	0	-	_			0				0		 .
District 11 North of 3	1												
e.	1986	Ö					•						
с.	1988	· 0		. –		. –	0	-		-	0	-	-
	Total						0	·			0		
4 4							Ū				U		-
Eastern St	ephens Pass			isham									
f.	1983	100	1.00	0	0	0	50	1.00	0	0	0		
g.	1983	100	1.00	0	0	0	50	1.00	ο	0	0		
					Ŭ	Ŭ		1.00	U	0	U	-	
	ver drainag	je											
h.	1989	73	1.00	0	0	0	73	1.00	0	0	73	1.00	0
Mendenhall	. River drai	nage											
i.	1986	0					0		_	_	0		
	1988	51	1.00	0	0	0	51	1.00	0	0	0		_
	1989	10	1.00	0	0	<u>0</u>	10	1.00	ŏ	ŏ		1.00	0
	Total	61	1.00	0	0	0	$\frac{10}{61}$	$\tfrac{1.00}{1.00}$	0	0	$\frac{10}{10}$	$\frac{1.00}{1.00}$	-0
Taku River	drainage												
j. (1)	1986	0		_	_		0				•		
(2)	1986	33	1.00	0	0	0	33	1.00	- 0	0	0		
(-)	1989	20	1.00	0	ŏ	0	<u>_20</u>		0		0	1 00	
	Total	53	$\frac{1.00}{1.00}$	0	<u> </u>	0	53	$\frac{1.00}{1.00}$			<u>_20</u> 20	$\frac{1.00}{1.00}$	0
			2.00	v	v	U	55	1.00	U	U	20	1.00	0
k. (3)	1989	10	1.00	0	0	0	10	1.00	0	0	8	1.00	0
(4)	1986	0		-		_	ō		_	Ě	ŏ		- -
	1987	0		-		_	ō	-			ŏ		_
(5) (6)	1986 1986	40 40	$1.00 \\ 1.00$	0	0	0	40	1.00	0	0	-0		

1Continued.	
Appendix	

State of the second sec

the second second

	*107		I	ł	1	1	0 0 0	0	0	0		11	100	000	о с		5 I	1100
	*100		I	I	I	1	1.00	1.00	1.00	1.00		11	1.00 1.00	1.00				
	N	0	0	0	0	0	32 220	67	98	84	ł	00	၀ ၀၀၀	39 49	5	000		0 45 45
	*Fast	0	I	I	I	00	000	0	0	0		10	1 00	0 00	o	000	0 0	0000
7_34	88* (0	1		I	00		0	0	0		10	1 00	000	0	0.01	0	0000
	*100	1.00	1	1	1		1.00	1.00	1.00	1.00	1	1.00	1.00 1.00	1.00 1.00	1.00	0.99 1.00 0.995	1.00	1.00 1.00 1.00
	N	40	0	0	0	40 0 6	18 220	67	100	86	c	40 0	30 0	40 50	60	96 195	100	100 100 145
	19*	0	.1	ł	1 0	- c	000	0	0	0	I	0	1 00	000	0	000	0	0000
2*	*143	0	I	ł	1 <	00	00	o	0	0	I	0	100	000	0	000	o	0000
	*132	0	1	1	c	00	00	0	0	0	I	0	1 00	0 00	0	000	o	0000
	*100	1.00	I	1 1	00	1.00	1.00 1.00	1.00	1.00	1.00	1	1.00	1.00	1.00 1.00	1.00	1.00 1.00	1.00	1.00 1.00 1.00 1.00
	N	40		. c	40	32	<u>18</u> 220	67	100	86	0	4 0 C	30	38 10 48	60	Island 50 <u>149</u>	je 100	100 100 45 145
	Year	1986 1986			1986	1987	1989 Total	1990	1990	1988	1986	1986 1987	1989 Total	1986 1989 Total	1989	ichagof 1984 1987 Total	<u>115</u> River drainage 1983	1983 1983 1990 Total
	Location	((8)	(6)	•	(10)		n.	°,	p. Early	•	·	q. Middle	r. Late	<u>District 113</u> Southern Ch s.	<u>District 115</u> Chilkat Riv t.	u. Early Late

Appendix 1.-Continued.

Location	V			<u>GPI-B1,2</u>				GF	I-A*		·•	MPI	*
	Year	N	*100	*132	*143	*61	N	*100	*88	*Fast	N	*100	*107
Chilkoot R	iver drainad	Je											
v.	1983	97	0.99	0.01	0.01	0	97	1.00	Ö	٥	0		
	1990	$\frac{40}{137}$	<u>0.96</u>		0	0.04		1.00	0	0	0	. –	
	Total	137	0.978	0.007	0.004	$\frac{0.01}{0.011}$	$\frac{40}{137}$	$\frac{1.00}{1.00}$	0		<u>40</u> 40	$\frac{1.00}{1.00}$	
District 18	1								•	Ū	-0	1.00	U
Alsek Rive													
w.	1987	43	1 00		•	_							
	1707	4.3	1.00	0	0	0	45	1.00	0	0	45	1.00	0
Situk Rive	r drainage												
х.	1984	96	0.98	0.02	0	•							
		20	0.90	0.02	0	0	96	1.00	0	0	0		

Appendix 1.-Extended.

÷

Location	Year	N	<u>PEPD*</u>		······		H-B1*				ESTD*			mAh-3	1 *
		. ~	*100	*121	N .	*100	*123	*80	N	*100	*120	*slow	N	*100	*75
istrict 10	01													·····	
Boca de Qu		,													
A. ~	1982	0	<u> </u>		50	0.99	0.01	~	•						
	1983	ŏ			96	1.00		0	0		-		0	_	
	1986	ŏ		_			0	0	0	-	-		0	_	
	1988	_50	1.00	0	0		-	_	0		-		0		
	Total	50	$\frac{1.00}{1.00}$		50	0.99	0.01		<u>50</u> 50	<u>1.00</u>	0	0	_50	1.00	0
	IUCAI	50	1.00	0	196	0.99	0.01	0	50	1.00	0	0	50	1.00	0
George Inl	et .														
B.	1986	0													
5.	1900	U		- .	0	-	_	-	0				0		
Western Be	hm Canal														
C.	1983	0													
~ •	1986	0 0	-	. —	50	0.99	0.01	0	0				0	_	
	1986				0		<u> </u>	-	0				0		
	Total	<u>0</u>			40	<u>1.00</u>		0	0				0	-	
	IOCAL	U j			90	0.99	0.01	0	0				0		
D .	1982	0													
<i>D</i> .	1987	0	· - ·		50	0.99	0.01	0	0		_		0		
	Total				<u>0</u> 50	$\frac{-}{0.99}$	$\frac{-}{0.01}$		<u>0</u>				<u>99</u> 99	0.99	0.01
	IOCAI	U	-		50	0.99	0.01	0	0				99	<u>0.99</u> 0.99	$\frac{0.01}{0.01}$
Е.	1983	0		_	100	0.98	0.02	•	•						
	1988	<u>51</u>	1.00	0	51	<u>1.00</u>		0	0	-			0		-
	Total	51	$\frac{1.00}{1.00}$		<u>51</u> 151	$\frac{1.00}{0.99}$	$\frac{0}{0.01}$	<u> 0 </u>	<u>52</u> 52	$\frac{1.00}{1.00}$			<u>52</u> 52	1.00	0_
			1.00	U	101	0.99	0.01	0	52	1.00	0	0	52	1.00	0
F.	1983	0			103	0.98	0.02	0	0						
	1984	Ō			49	1.00	0.02	0	0	-	-		0		-
	1984	Ō		_	50	1.00	0	0	0		-		0		-
	1986	õ		_	0	-	U	0	0	-	—		0		
	1986	ŏ			_40	1.00	0	-	0				0		-
	Total	<u> </u>			$\frac{40}{242}$	$\frac{1.00}{0.994}$							0		
*	10041	Ŭ		_	242	0.994	0.006	0	0				0		
istrict 10)2														
astern Pri	nce of Wa	les Is	sland												
G.	1983	0	_	_	79	1.00	0	0	^				_		
		-			, ,	1.00	U	U	0				0		
н.	1982	0	-	_	0	-		_	^				-		
	1983	0	_		<u>100</u>	1.00	0	-	0				0		
	Total	0			$\frac{100}{100}$	$\frac{1.00}{1.00}$		0					0		
		•			100	1.00	U	U	0		-		0	-	-
-	1988	48	1.00	0	52	1.00									
I.	1300	48	1 1111	0	E 73	1 00	0	0	52	1.00	0	0	52	1.00	

1	15	1 1	1		/0	I	_	1	1	~
	* *75	11100		1		1100	1100	1	1	0
	*100 *100	1.00 1.00	1 1 1	I	1.00 1.00	 1.00	1.00 1.00	I	I	1.00
	N	42 42 000	000	0	2 2 2 0 2 2 0	40 40 40	42 42 0 0	0	0	54
	*slow	0.04 0.04	1 1 1	I	100	1100	1100	ł	I	o
+ 480	*120	11100	1 1 1	I	100	1100	1100	I	ł	o
	*100	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1	.1	- 1.00	- - 1.00	 1.00	I	I	1.00
	N	11000	000	0	0 57	20 0 0	4 4 0 0	0	0	54
	*80	00100	0 10	1	000	1100	1100	ο	1	o
T.DH_B1 +	*123	00100	0 10	I	000	1100	- - 0.05	o	I	0
T.DH.	*100	1.00 1.00 1.00 1.00	1.00	ł	1.00 1.00	1.00	- - 0.95	1.00	I	1.00
	N	100 100 0 117	100 100	0	99 158	20000	0 0 6 8 36 8	50	0	54
	*121	11100		I	100	1100	0.05	1	1	and 0
PEPD*	+100	<u>1.00</u> 1.00	Island 	I	<u>1.00</u> 1.00	$\frac{1.00}{1.00}$	- - 0.95	Island -	1	of Wales Island 51 1.00
	R	000 0 4 8 000	Wales I 0 0	0	0 57 57	0 49 49	44 44 44	Wales 0	0	
	Year	1982 1983 1986 1988 Total	nce of 1983 1986 Total	1986	1983 1988 Total	1986 1987 1988 Total	1986 1987 1988 Total	5 rince of 1983	1986	<u>6</u> rn Princ 1988
	Location	.	<u>District 103</u> Western Pri K.	г.	M	. и	ō	<u>District 105</u> Northern Prince P. 198	ō.	<u>District 106</u> Northwestern Prince R. 1988

Appendix 1.-Continued.

Appendix 1	0* *121 N	*121 N		*	*100	<u>LDH-B1*</u> 0 *123	*80	N	×100	ESTD* *120	*slow	2	<u>mAh-3*</u> *100	*75
	1		1	20	1.00	0	0	0				. 0		
1986 0 1986 0 1987 0 1988 <u>63</u> 1.00 70+81 63		. '	11110	64 64 64 64	1.00	11010	11010	0000	1.00	0	1 0	20000 20000	1.00 1.1	1110
		i		70 0 110	1.00 1.00 1.00		0 0 0 0	0000	1.00	o III	0 1 1 1	0000	1.00	o III
1982 0 -	ł	,	1	69	0.92	0.08	0	0	I	1	ł	0	I	I
1983 0	· 1		1 1 1	75 75 75	0.90 0.90	0.10	010	000	1 1 1	1	1 1	000		'9
Island 1986 0		I		0	I	I	I	0	I	ł	I	0	I	I
<u>107</u> Wrangell Island 1983 0 - 1986 0 - 1987 <u>0</u> - Total 0 -	1		.	74 0 74	- 0.99 - 0.99	0.01	0110	0000	1 1 1 1			0000	1 1 1 1	
<u>108</u> River drainage 1986 0		ļ		0	ſ	I	I	0	1	I	1	0	1	i
1986 0		I	I	0	1	I	I	0	I	I	1	0	I	1
1990 100 1.00			0	100	1.00	0	0	66	1.00	o	0	100	1.00	o
1986 0 -	I		1	0	I	ł	1	0	i	1	I	0	I	ł

on the second

- Franking and the state

A LONG LAND

Appendix 1.-Continued.

Appendix 1.—Continued.

			PEPD*			LDH	I-B1*				ESTD*		·		
ocation	Year	N	*100	*121	N	*100	*123	*80	N	*100	*120	*slow	N	<u>mAh-3*</u> *100	*75
<u></u>	×		,											<u> </u>	
istrict 10	<u>)9</u>			•											
Kuiu Islar															
с.	1986 1987	0	-	_	0	-	-	-	0		-		0	_	
	Total	<u>52</u> 52	$\frac{1.00}{1.00}$		<u>52</u> 52	$\frac{1.00}{1.00}$		<u> 0 </u>	<u>52</u> 52	$\frac{1.00}{1.00}$	0_	0	<u>52</u> 52	1.00	0
	IOCAL	. 52	1.00	0	52	1.00	0	0	52	1.00	0	0	52	1.00	0
d. 🍖	1986	0			. 0			-	0			_	0	-	-
istrict 1	1			•	•										
North of J	Juneau		÷												
е.	1986	0	·	_	0	_			0						
	1988	0			_ O			-	0	-	-		0		
	Total	Ō	· ····		0								0		
n - 1											-	-	U	-	-
Eastern St	epnens Pa		-Port Sn	ettisham											
L •	1983	0	. —	 .	99	1.00	0	0	0	-			0		
g.	1983	0			47	0.99	0.01	0	0		_	-	0	_	
Herbert R:	war drai.												Ŭ		
herbert R.	1989	nage 73	1.00	0			-	_							
	1909	/3	1.00	0	73	1.00	0	0	73	0.99	0.01	0	73	1.00	0
Mendenhal	l River di	cainage	9												
i.	1986	0	_	_	0		_		0				_		
	1988	47	1.00	0	47	1.00	0	0	0 47	1.00	_	_	0		
	1989	_10	1.00	0	10		0		10	1.00	0	0	43	1.00	0
	Total	57	1.00	0	<u>10</u> 57	$\tfrac{1.00}{1.00}$	0	0	<u>10</u> 57	$\frac{1.00}{1.00}$			$\frac{10}{10}$	$\frac{1.00}{1.00}$	0
											Ū	U	10	1.00	0
Taku River j. Lower n	c drainage	3													
(1)	1986				-										
(2)	1986	0 0	-		0	. –	_		0		-		0		
(2)	1989		1 00	_	40	1.00	0	0	0	-	-	-	0		
	Total	<u>20</u> 20	$\frac{1.00}{1.00}$	<u> 0 </u>	<u>20</u> 60	$\frac{1.00}{1.00}$			<u>20</u> 20	<u>0.98</u> 0.98	$\frac{0.02}{0.02}$	<u> 0 </u>	<u>18</u> 18	$\frac{1.00}{1.00}$	0
	~~~~	20	1.00	0	00	1.00	0	0	20	0.98	0.02	0	18	1.00	0
k. Upper n	nain stem														
(3)	1989	. 9	1.00	0	10	1.00	0	0	9	1.00	•	•	•		-
(4)	1986	Ó		_	Õ	-	ž	-	0	1.00	0	0	8	1.00	0
	1987	0		_	Ō	_	_	·	Ö	_	_		0		_
(5)	1986	0		_	40	1.00	0	0	Ö	_	_		-		
(6)	1986	40	1.00	0	40	1.00	ŏ	õ	40	1.00	0	0	0 40	1.00	_
							-	•		1.00	0	v	40	1.00	0

Appendix 1.-Continued.

Į

											8	31						•
	*75		I	1	1	I	1 0	000	0	0	0		0	1 00	000	, с		11100
464	*100 ×		1			I		1.00	1.00	1.00	1.00	i	1.00	1.00 1.00	1.00	1.00	1.00	<u>11.00</u>
	N		0 0	5 0		00		98 98	67	100	89	c	40	30 70	40 100 20	60	0 8 8 6 8 6	4 4 0 0 0 0
	*slow				1	1	C		0	0	0	1	I	100		0	100	11100
ESTD*	*120		11			I	0	00	0	0	0	I	I	100	100	0	100	11100
	*100		1	I	I	1	1.00	1.00	1.00	1.00	1.00	I	1	1.00 1.00	1.00 1.00	1.00	<u>1.00</u> 1.00	1 1 1 00 1 000
	z	c	) C	• c	00	0	31	<u>18</u> 98	67	100	89	Ó	0	၀ ရှုစ္စ	10 0	60	0 66	4 4 5 0 0 0 0 0 0 0 0
	*80	6	>	ł	1	0	0	00	0	0	0	1	I	100	000	0	0.05 0.09 0.07	0000
LDH-B1*	*123	c	> I	I	I	0	0	00	0	0	o	I	ļ	100	000	0	0.07 0.10	0000
LD	001*	1.00		I	1	1.00	1.00	1.00	1.00	1.00	1.00	ł	1	<u>1.00</u> 1.00	1.00 1.00	1.00	0.89 0.81 0.85	$\frac{1.00}{1.00}$
	N	40	0	0	0	40	- 28	<u>18</u> 216	67	100	86	0	00	300	40 50	60	96 <u>98</u> 194	100 99 244 244
	*121	1	۱	ł	1	I	0	00	0	0	0.01	I	1		000	o	100	11100
PEPD*	*100	1	1	I	1	I.	1.00	1.00	1.00	1.00	0.99		1 .	1.00	1.00	1.00	1.00 1.00	<u>1.00</u>
	N	0	0	0	0	Ó	27	94	67	66	85	0	00	900	39 10 49	60	IBland 0 94	nage 0 0 45 45
	Year	1986	1986	1987	1986	1986	1987	1989 Total	1990	1990	1988	1986	1985	1989 Total	1986 1989 Total	1989	a lichagof 1984 1987 Total	E rer drainage 1983 1983 1990 Total 4
1	LOCATION	(7)			(8)	(6)		(01)	E	n.	•	P. Early			q. Middle	r. Late	District 113 Southern Chichagof s. 1984 1987 Total	District 115 Chilkat River t. Early 1 Late 1 T

Appendix 1.—Continued.

			PEPD*			LD	H-B1*				ESTD*			mAh-3*	r
Location	Year	N	*100	*121	N	*100	*123	*80	N	*100	*120	*slow	N	*100	*75
Chilkoot I	River drain	age	•	•											
v.	1983	Ū	-		97	1.00	0.	0	0	_		<u>.</u>	0	_	
	1990	<u>40</u>	1.00	0	40	1.00	Ō	Ō	40	1.00	0	0	_40	1.00	
- 	Total	40	1.00	0	$\frac{40}{137}$	1.00	0	0	<u>40</u> 40	1.00	<u>    0   </u>	0	40	$\frac{1.00}{1.00}$	0
District 10	31 ·														
	er drainage	•													
Ψ.	1987	45	1.00	0	45	1.00	0	0	45	0.90	0.10	0	45	1.00	0
Situk Rive	er drainage	2													
<b>x.</b>	1984	0	_		97	1.00	0	0	0	-			0		

Appendix 1.-Extended.

•		<del></del> ,		AH-4*			sAH*			mIDHP-1	*		mIDHP-	2*
Location	Year	. N	*100	*87	*Fast	N	*100	*117	N	*100	*33	N	*100	*64
istrict_1	01												<u> </u>	
Boca de Qu														
A. ~	1982	0	_·		_	50	1.00	0	50	1 00	•			
	1983	õ	_	_	_	79	1.00	0	50	1.00	0	50	1.00	0
	1986	Ő	-		-	0		0	96	1.00	0	96	1.00	0
	1988	49	1.00	0	0	0		-	0	. –	-	0	_	-
	Total	49	1.00	0	0	129	$\frac{-}{1.00}$	0	$\frac{49}{195}$	$\frac{1.00}{1.00}$	0	$\frac{49}{195}$	$\frac{1.00}{1.00}$	<u> </u>
George In	let													Ŭ
в.	1986	0	-	. —		0			0	-	_	0		_
Western B														
с.	1983	0	-	_	_	50	1.00	0	50	1.00	0	50	0.93	0.07
	1986	0	<del></del> .	_	_	Õ		_	0	-	_	0	0.93	0.07
	1986	0	<u> </u>			40	1.00	0	_33	1.00	0	33	1.00	0
	Total	0	-	-		90	1.00	0	83	1.00	0	83	$\frac{1.00}{0.96}$	0.04
D.	1982	0	-			50	1.00	0	50	1.00	0	50	0.98	0.02
	1987	<u>    95</u>	1.00	0	0	0		_	35	1.00	õ	96	1.00	0.02
	Total	95	1.00	0	0	50	1.00	0	85	1.00	0	146	$\frac{1.00}{0.99}$	$\frac{0}{0.01}$
Ε.	1983	0	-	. —	-	100	1.00	0	100	1.00	0	100	1.00	0
	1988	52	<u>1.00</u>	0_		0				1.00	ō	42	1.00	0
	Total	52	1.00	0	0	100	1.00	0	$\frac{42}{142}$	1.00	0	142	1.00	0
F	1983	0		_	-	104	0.995	0.005	103	1.00	0	104	0,995	0.005
Early		0				50	1.00	0	43	1.00	0	43	1.00	0
Late	1984 1986	0	—	_	-	50	1.00	0	50	1.00	0	50	1.00	0
	1986	0	_	_		0	-		0		-	0	_	-
	Total					40	1.00	0_	<u>_32</u>	<u>1.00</u>	0	32	1.00	0
	IOCAL	U		_	-	244	0.998	0.002	228	1.00	0	229	0.997	0.003
istrict 1														
	rince of W		and											
G.	1983	0	-			79	0.99	0.01	79	1.00	0	79	1.00	о
н.	1982	0	-	_	_	50	0.98	0.02	49	1.00	0	49	1.00	0
	1983	0				100	0.99	0.01	100	1.00	ŏ	100	1.00 1.00	0
	Total	0		_		150	0.99	0.01	149	$\frac{1100}{1.00}$	0	149	$\frac{1.00}{1.00}$	<u> </u>
I.	1988	52	1.00	0	0	0	_	_	52	1.00	0	52	1.00	0
									~ <b>u</b>	2.00	•	54	T.00	U

+64	0.0	0 10	1	84 000	1100	1100		I	
mIDHP-2* *100	0.98 1.00 <u>1.00</u> 0.99	1.00	1	1.00 1.00	1.00 1.00	1.00 1.00	1.00	I	
2	100 100 243 243	100 100	0	97 53 150	20 0 0	43 43	50	0	
*33	00100	010	I	000	1100	1100	0	1	
*100	1.00 1.00 1.00 000	1.00 1.00	I	1.00 1.00	1.00 1.00	1.00 1.00	1.00	I	
N N	100 100 243 243	100 100	Ō	97 53 150	2000	43 0 0 43	50	0	
*117	0.03	0 10	ł	0.07 0.07		111	o	I	
sAH* *100	0.97 1.00 - 0.99	1.00 1.00	I	0.93 - 0.93	111		1.00	ł	
N	200 200 200 200	100 100	0	66 66	0000	0000	50	0	
*Fast	11100	1 1 1	1	- 0.01 0.01	1100	1100	I	ł	
mAH-4* *87	11100		ł	100	1100	1100	1	I	
*100	1.00 1.00			- 0.99	<u>1.00</u> 1.00	1.00	۱	I	Island
N	41 0000 141	ss Island 0 0	0	53 0 53	4000	45 0 0 42 0 0	les Island 0	0	: Wales
Year	1982 1983 1986 1988 Total	<u>103</u> Prince of Wales 1986 Total	1986	1983 1988 Total	1986 1987 1988 Total	1986 1987 1988 Total	15 Tince of Wales 1983	1986	<u>istrict 106</u> Northwestern Prince of
Location	'n	<u>District 103</u> Western Pri K.	г.	ж.	• Z	ō	District 105 Northern Prince P. 198	б.	District 106 Northwester

Appendix 1.-Continued.

	*64	010100	0100	0	85 o 1 0	I	0.02 - 0.02	I	i	0	
m T D V D_ 0 *	+100	1.00 1.00 1.00	1.00 1.00 1.00	1.00	1.00	i	0.98 - - - - - - -	I	I	1.00	
	N	50 40 153	70 0 110	69	75 75	0	74 0 74	0	0	100	I
-1*		010100	0100	0	0  0	I	111	1	ł	0	
mTDHP-1	001*	1.00 1.00 1.00	1.00 1.00 1.00	1.00	1.00 1.00	I		I	I	1.00	
	z	50 40 153 153	70 0 110	69	75 75	0	0000	0	0	100	c
	*117	0.08	0.007 - 5 0.0045	0.01	0 10	i	0.02 1 - 0.02	I	I	0	
sAH*	*100	0.92 1.00 <u>-</u> 0.96	0.993 1.00 0.9955	0.99	1.00	I	0.98 10.98	I	ł	1.00	1
	N	90000000000000000000000000000000000000	70 0 110	69	76 76	0	75 0 75	0	0	100	c
	*Fast	111100	111	I	1 1 1	1	111	I	1	0	I
mAH-4 *	*87	111100		I	1 1	<b> </b>		I	I	0	1
	*100	<u>1.00</u> 1.00		l		1	1 1 1	I	I	1.00	1
	N	200000 200000 200000	0000	0	000	0	Island 0 0	lage 0	0	100	0
	Year	1983 1986 1986 1988 Total	1983 1986 1986 Total	1982	1983 1986 Total	Kupreanof Island W. 1986	<u>107</u> Wrangell 1983 1986 1987 Total	<u>108</u> River drainage 1986	1986	1990	1986
	Location	ώ	H	<b>.</b>	۰.	Kuprean W.	<u>District</u> Western X.	District 108 Stikine Riv Y.	Ζ.	ď	ь.

٠

,

Appendix 1.-Continued.

								86	)									
	40x		100					c		, c	I	1000		1000		o	11	00
#IDHP-2*	001*		1.00				1 1 1		1.00	1,00		1.00		1.00 1.00		1.00	11	1.00
	2		52 52	ļc	•	Ċ	000	0 2	6 <b>7</b>	73		10 21 0		20 4 0 60 0		ω (	00	40 40
*	?		100	• 1		I		c	0	0		1000		1000		0	11	00
#IDHP-1*	001.		1.00 1.00	1		I	1	1,00	1.00	1.00		1.00 1.00		1.00 1.00		1.00	11	1.00
			52 52 52	0		c	00	95	94	73	ſ	51 0 10 61		40 60 60		ω ς	00	40 40
+117			1 1 1	I		I	1	. 0	0	o		1100		1010		0	I	00
sAH* *100		-	1 1 1	I		I	1	1.00	1.00	1.00		1.00 1.00		1.00		1.00	I	1.00
2	:		0 0 0	0		0	00	100	100	73	c	1000		40 40 40		10	00	40 40
* 52.51			100	ł		I	1	1	I	0				1100		01	I	10
mAH-4* *87			100	t		1	1	sham _	I	o	1	000		1100		0 I	1.	10
*100			- 1.00	ł		ļ	I   I	t Snettisham 		1.00	I	1.00 1.00		 1.00 1.00		1.00	ł	1.00
~			52 52 52	O	•	0		Passage-Port 0	Ο	je 73	drainage O	43 53		18 18 18		010	0 0	400
Year	60		1986 1987 Total	1986	<u>.11</u> Juneau	1986	<b>1988</b> Total		1983	Herbert River drainage h.	River 1986	1988 1989 Total	er drainage		main stem	1989 1986	1987	1986 1986
Location	District 109	Kuiu Islar	U	<b>d</b> . ,	District 111 North of Ju	1	•	Eastern Stephens f. 1983	• 5	Herbert R. h.	Mendenhall i.		ku Rive Tour	. (1) (2)	k. Upper n	(e) (4)		(9)

Appendix 1.-Continued.

• ,

ł

.

Continued.	
Appendix 1	

Location	Veav	M	E COLT	mAH-4 *			sAH*			* I -dHDIm			mIDHP-2	*
	1691	8	0014	18*	*Fast	N	*100	*117	N	001*	*33	N	*100	*64
	1986	c	i											
	1986	00	<b>   </b>	11	1	04 04 0	1.00	0	40	1.00	0	40	1.00	0
	1987	0	I	I			1	I	0 0	1	ł	0	ł	1
	1986	0	1	1	I	• c		<b>I</b> 1	5 0	I	1	0	ł	I
	1986	0	I	I	I	06		0	ç		1 0	٥ ç	1	1
	1987	ΞΞ	1.00	0	0	0	)   	> I	2 C	00.1	- c	4 C 0 C	1.00	00
	1989 Total	101	1.00	00	00	<u>18</u> 178	<u>1.00</u> 1.00	00	217	1.00		22 217 217	000.1	000
	1990	67	1.00	0	0	67	1.00	0	67	1.00	0	67	1.00	0
	1990	100	1.00	0	o	100	1.00	0	67	1.00	0	16	1.00	0
	1988	89	0.99	0.01	0	0	ļ	I	76	1.00	0	76	1.00	0
Early	1986 1986 1983	0.040	1.00	10	ΙQ	00		1 1	00	11	11	00	11	87 I I
•	1987 1989 Total	30	1.00	100	1 00	9 99 0	1.00 1.00	100	0 000	<u>1.00</u> 1.00	100	30 0	1.00	1 00
Middle	1986 1989 Total	40 10	1.00 1.00	000	000	10	1.00 1.00	၊ ၀၀	10 10	 1.00	1 00	10 0	1.00	100
	1989	09	1.00	0	0	60	1.00	0	59	1.00	0	59	1.00	0
District 113 Southern Chi s.	<u>istrict 113</u> Southern Chichagof Is 1984 1987 Total	Island 0 98 98	- 0 - 99 - 0	- 0.01	100	97 97	1.00 1.00	010	46 90 136	1.00 1.00	000	46 <u>90</u> 136	1.00 1.00	0 0 0
<u>115</u> River 19	er drainage 1983	0 Je	I	I	1	100	1.00	o	100	1.00	o	100	1.00	o
Early Late	1983 1983 1990 Total	4 0 4 5	1.00	1100	1100	100 100 245 245	1.00 1.00 1.00	0000	99 97 245	1.00 1.00 1.00	0000	100 97 245	1.00 1.00 1.00	。 。 。 。 。

	#IDHP-1* *100 *33	1.00 1.00 0 0	1.00 0	0.99 0.01			
	N	94 135	44	89			
	4117	000	0	0.01			
	<u>sah*</u> *100	1.00 1.00	1.00	66.0			
	N	95 135	45	96	•		
	*Fast	1 00	0	I			
	mAH-4* *87	100	0	I.			
-	m +100	1.00 1.00	1.00	1			
	N	ge 40 40	45	Ο	an An tha an an tha		
Appendix 1.—Continuea.	Location Year	Chilkoot River drainage v. 1983 1990 Total	<u>District 181</u> Alsek River drainage w. 1987	Situk River drainage x. 1984			

Appendix 1.-Continued.

¥

Appendix 1.-Extended.

	*48	11100	1	1 1 1 1	1 1 1	100		t		
sSOD *	*150	11100	I		1   1	100				
ι Δ	+100	1.00 1.00 1.00	i		1 1 1	1.00	11111	I		
	N	000000	0	0000	0 0 0	0 52 52	000000	0	000	
-3*	*Fast	11100	I				1 1 1 1 1	i	1 1 1	
FBALD-3*	*100	$\frac{1}{1.00}$	I		1	1		I	1 1	
	N	<u>00000</u>	0	0000	000	000	000000	0	000	
	*109	00100	I	0100	0 10	0 10	0.00 0.00 0.004	o	100	
LDH-C*	*100	$1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ $	I	1.00 1.00 1.00	1.00	1.00 1.00	$\begin{array}{c} 1.00\\ 1.00\\ 0.98\\ -\\ 0.996\\ 0.996\end{array}$	nd 1.00	1.00	
	X	50 94 164	0	50 90 90	2002	66 66	99 50 2 <u>39</u> 239	Wales Island 76 1.	100 100	
:	Year	<u>101</u> Quadra 1982 1986 1988 Total	let 1986	ehm Canal 1983 1986 1986 Total	1982 1987 Total	1983 1988 Total	1983 1984 1984 1986 1986 Total	nce of 1983	1982 1983 Total	
-	Location	<u>District 101</u> Boca de Qua A.	George Inlet B.	Western Behm Canal C. 1983 1986 1986 1986 Total	D.	Э	F. Early Late	<u>District 102</u> Eastern Prince G. 198	н.	

89

é

¥

-
0
_
.=
_
_
0
<b>T</b> )
$\mathbf{\nabla}$
<b>-T</b>
6
. <u> </u>
-
· 🔾
=
J D
ő
سلسك
-

Š

	*48	0.04		ł	100	111	1 1 1 1	I	ł	
a.c.D.+	*150	11100		I	100	1		I	. 1	
0	*100	0 - 96 0.96		I	1.00		1 1 1	1	1	
	N	40 00 47 47	000	0	52 52 52	0000	0000	o	0	
-3*	*Fast		1 1 1	ł			0.05 0.05	I	1	
FBALD	** 001*		1 1			1 1 1 1	0,95 0,95	I	I	
	N	00000	000	0	000	0000	0 0 8 38 38 38 38 38 38 38 38 38 38 38 38 38	0	0	
	<i>601</i> *	00110	010	ł	0 10		1100	O	I	c
LDH-C*	*100	1.00 1.00	1.00	ľ	$\frac{1.00}{1.00}$	111	 1.00	and 1.00	I	Island
	N	100 100 100	Wales Island 100 1 <u>100 1</u>	O	66 66	0000	0 0 <del>6 E</del>	Wales Island 48 1.0	ο	of Wales
	Year	1982 1983 1986 1988 Total	nce of 1983 1986 Total	1986	1983 1988 Total	1986 1987 1988 Total	1986 1987 1988 Total	ince of 1983	1986	<u>Vistrict 106</u> Northwestern Prince R. 1988
	Location	ъ.	<u>District 103</u> Western Pri K.	г.	M		ò	District 105 Northern Prince P. 198	õ.	District 106 Northwester R.

Appendix 1.—Continued.

			LDH-C*			FBALD-				SOD*	
Location	Year	N	*100	*109	N	*100	*Fast	N	*100	*150	*48
s.	1983 1986 1986 1987 1988 Total	50 .0 40 0 _0 90	1.00 - - - 1.00	0   0	0 0 0 0 0			0 0 0 0 0			
Τ.	1983 1986 1986 Total	70 0 <u>40</u> 110	1.00 <u>-</u> <u>1.00</u> 1.00	0 	0 0 0		- - 	0 0 0 0			
U.	1982	69	1.00	0	0	-		0	-		_
v.	1983 1986 Total	75 0 75	1.00 	<u> </u>	0 0 0			0 0 0			
Kupreanof W.	Island 1986	0	_	_	0	-	-	o	-	_	
District 1 Western V X.	107 Vrangell Isl 1983 1986 1987 Total	and 75 0 <u>0</u> 75	1.00  1.00	0  	0 0 0			0 0 			
District 1 Stikine H Y.	<u>108</u> River draina 1986	age 0	_	_	0	_	_	0	_	_	_
Ζ.	1986	0	_	-	0	_		0		_	
a.	1990	100	1.00	0	100	1.00	0	100	1.00	0	0
b.	1986	0		_	0	-	-	0	_	_	

ىلى مىڭ <del>بىلىك</del>ارىكى بىرىمىر، جىرۇڭ <u>كە</u>كتارىكى ئەرىكى مەرىكىكى بەرىيەت

Appendix 1.—Continued.

			LDH-C			FBALD-	3*		S	SOD*	
Location	Year	N	*100	*109	N	*100	*Fast	N	*100	*150	*48
District 10	9										
Kuiu Islar						,					
с.	1986	0		_	0						
, ,	1987	õ	¹		0	_		0 50	1 00	_	_
	Total	Ō			—ŏ			<u>52</u> 52	$\tfrac{1.00}{1.00}$	0	
		-			Ŭ		-	52	1.00	U	0
d.	1986	0		_	0	—		0	_	-	-
District 11	11										
North of J											
e.	1986	0			0	-		0	-		
	1988	0			0			<u> </u>			
	Total	0	<del>-</del>		0	-		0	_		
Eastern St	ephens Pass	age-Po	rt Snett								
f.	1983	99	1.00	0	0	-		0	-		
g.	1983	99	1.00	0	0	-	-	· 0	-		-
Herbert Ri	Lver drainad										
h.	1989	73	1.00	0	73	1.00	0	73	1.00	0	0
Mendenhall	l River drai										
i.	1986	0			0			0		-	
	1988	26	1.00	0	25	1.00	0	45	1.00	0	0
	1989	<u>   10</u>	1.00	0	_10	1.00	O	10	1.00	ō	ō
	Total	10	1.00	0	10	1.00	0	10	1.00	0	Ō
Taku River	r drainage										
j. Lower r		_									
(1)	1986	0	-	-	0		-	0	-		
(2)	1986	40	1.00	0	0		-	0			_
	1989	<u>20</u> 60	$\frac{1.00}{1.00}$		<u>_20</u> 20	$\frac{1.00}{1.00}$		_20	$\tfrac{1.00}{1.00}$	0	0
	Total	60	1.00	0	20	1.00	0	20	1.00	0	0
k. Upper n	nain stem										
· (ĴĴ	1989	10	1.00	0	10	0.95	0.05	9	1.00	0	0
(4)	1986	Ō		-	0	-	· · · · ·	9	1.00	_	U
- *	1987	Õ	_		ŏ	_		0	_	_	
(5)	1986	40	1.00	0	õ		_	0 0			

a a star a s

Appendix 1.-Continued.

			LDH-C			FBALD	-3*		S	50D*	
Location	Year	N	*100	*109	N	*100	*Fast	N	*100	*150	*48
(7)	1986	40	1.00	0	0	_		0			
	1986	0		_	ŏ	-		ŏ			_
	1987	- 0	-	-	Õ	_	_	ŏ			
(8)	1986	0	_	-	0	_	-	Õ	_		
(9)	1986	40	1.00	0	0		_	Ō			
	1987	0	<u> </u>	-	0	-	-	0		_	
(10)	1989	<u>18</u>	1.00		<u>18</u>	1.00	0	_18	1.00	0	0
	Total	148	1.00	0	28	1.00	0	27	1.00	0	0
m.	1990	67	1.00	0	67	1.00	0	67	1.00	ο	0
n.	1990	100	1.00	0	100	1.00	0	100	1.00	0	0
ο.	1988	0	_		0	_		88	0.99	0.01	0
p. Early	1986	. 0	-		0	_		0			_
	1986	0	-		0		· <u></u>	0			_
	1987	0			0			0	_	—	-
	1989	30	1.00	0	29	$\frac{1.00}{1.00}$	0	_30	$\frac{1.00}{1.00}$		0
	Total	30	1.00	0	29	1.00	0	30	1.00	0	0
q. Midd]		39	1.00	0	· 0	_		0	_	-	
	1989	_10	1.00	0	<u>   10</u>	$\tfrac{1.00}{1.00}$	0_	_10	1.00	0	0
	Total	49	1.00	0	10	1.00	0	10	$\tfrac{1.00}{1.00}$	0	0
r. Late	1989	60	1.00	0	60	1.00	0	60	1.00	0	0
District 1	13										
	Chichagof I				_						
8.	1984 1987	97	0.98	0.02	0	_		0	_		
	1987 Total	<u>96</u> 193	0.99	$\frac{0.01}{0.01}$	96	$\frac{1.00}{1.00}$	00	<u>81</u> 81	$\frac{1.00}{1.00}$		0
		193	0.99	0.01	96	1.00	0	81	1.00	. 0	0
District 1	<u>l15</u> River draina										
t.	1983	100 IQE	1.00	0	0	-	-	0			_
u.	1983	100	1.00	0	0			0			
	1983	98	1.00	Ō	õ			ŏ			
	1990	_45	1.00	O	45	1.00	0	45	1.00	0	0
		243	1.00								

The States The States of States and Street States of Sta

~~
0
÷.
فستر
~
_
E
$\overline{\mathbf{O}}$
<b>7</b> \
$\sim$
1
•••
×
a inni
<u> </u>
U.
<u> </u>
-
-
$\triangleleft$

			LDH-C*			FBALD-	3*		0	s:500 +	
Location	Year	N	*100	*109	N	* 001*	*Fast	N.	*100	*150	*48
Chilkoot Ri	Chilkoot River drainage .	e									
••	1983	97	1.00	0	0	I	I	0	I	I	ļ
	Total	137	1.00	00	40	1.00	00	40	1.00	00	00
<u>District 181</u> Alsek River drainage	L drainage										
	1987	0	T	I.	0	I	I	45	1.00	0	0
Situk River drainage x. 1984	r drainage 1984	67	1.00	0	0	I	I	c	I	ł	I
								>			
	1000 11	•									

đ

^aYchring Creek carly 1986 (1) samples were collected on 8/29/86 & 9/15/86. ^bYchring Creek carly 1986 (2) samples were collected on 9/11/86 & 9/13/86. ^cYchring Creek carly 1989 (1) samples were collected on 9/18/89. ^dYchring Creek middle 1986 (3) samples were collected on 9/30/86 & 10/01/86. ^eYchring Creek middle 1989 (2) samples were collected on 9/28/89. ^fYchring Creek late 1989 (3) samples were collected on 9/28/89.

95
----

Appendix 2.-Sample sizes of monomorphic loci.

		sIDHP-1*	PEPA*				
Location	Year	N	N	N	N	N	N
District 101							
Boca de Quadra						_	_
A. Hugh Smith Lake	1982	50	50	50	0	0	0
	1983	96	96	95	0	0	0
	1986	10	10	0	0	0	0
	1988 Total	<u>50</u> 206	<u>50</u> 206	<u>50</u> 195	<u>    50</u> 50	<u>50</u> 50	<u> </u>
	IOCUI	200	200	170		••	•
George Inlet	1000		05	•	0	~	0
B. Leask Lake	1986	25	25	0	0	0	0
Western Behm Canal						•	•
C. Helm Lake	1983	50	50	50	0	0	0
	1986	10	10	0	0	0	0
	1986	$\frac{40}{100}$	$\frac{40}{100}$	$\frac{40}{100}$	0	0	<u> </u>
	Total	100	100	100	U	0	U
D. McDonald Lake (i)	1982	50	50	50	0	0	0
	1987	<u>106</u>	<u>103</u>	0	0	0	0
	Total	156	153	50	0	0	0
E. McDonald Lake (ii)	1983	100	100	ο	0	ο	0
	1988	<u>    52</u>	<u>52</u>	<u>_52</u>	<u>    52</u>	_52	_52
	Total	152	152	52	52	52	52
F. Naha River	1983	104	101	50	0	0	0
Early	1984	50	50	0	0	0	0
Late	1984	50	50	0	0	0	0
	1986	40	37	0	0	0	0
	1986	39	40	40			
	Total	283	278	90	0	0	0
istrict 102							
Eastern Prince of Wales Is				50	•	•	•
G. Johnson Lake	1983	79	76	50	0	0	0
H. Karta River (i)	.1982	50	50	50	0	0	0
	1983	<u>100</u>	100	99			
•	Total	150	150	149	0	0	0
I. Karta River (ii)	1988	52	48	48	52	48	0
J. Kegan Lake	1982	100	100	100	0	0	0
	1983	100	100	100	ō	Ō	ō
	1986	37	37	0	0	0	0
	1988	_50	46	<u>4</u>	<u>43</u>	45	0
	Total	287	283	204	43	45	0
strict 103							
estern Prince of Wales Isl	and						
K. Chuck Lake	1983	100	100	100	0	0	0
	1986	32	_27	0	0	0	0
	Total	132	127	100	0	0	0
. Hetta Lake	1986	48	47	0	Ò	ο	0
. Hella Hake	1900	, 70		<b>v</b>	U		0

Appendix 2.—Continued.

			sIDHP-1*	PEPA*	ADA-2*	mMEP-2*	PGDH*	aMAN*
Loca	ition	Year	N	N	N	N	N	N
м.	Klakas Lake	1983	99	99	56	0	0	0
		1988	_59	<u>59</u>	<u> </u>	_59	<u>    54</u>	0
		Total	158	158	117	59	54	0
N.	Klawock Lake	1986	48	47	0	0	0	0
		1987	50	50	0	0 _ <u>50</u>	0 _ <u>50</u>	0
		1988 Total	<u>    50</u> 148	$\frac{47}{144}$	<u>   50</u> 50	50	50	0
ο.	Upper Sarkar Lake	1986	32	29	ο	ο	0	ο
		1987	42	40	0	0	0	0
		1988	43	40	44	44	43	38
Dist	<u>rict 105</u>	Total	117	109	44	44	43	38
	thern Prince of Wales Is	Land						
Ρ.	Shipley Creek	1983	50	50	50	0	0	0
Q.	Sutter Creek	1986	19	1	0	0	0	0
	<u>rict 106</u>	_	_					
	thwestern Prince of Wales			E /	E /	41	46	54
R.	Galea Lake	1988	54	54	54	41	40	24
s.	Luck Lake	1983	50	50	50	0	0	0
		1986	9	7	0	0	0	0
		1986 1987	40 50	39 50	38 0	0 0	0	0 0
		1988	64	64	63	_64	_63	0
		Total	213		151	64	63	0
т.	Red Bay Lake	1983	70	70	50	0	0	0
		1986	13	13	0	0	0	0
		1986 Total	$\frac{40}{123}$	$\frac{40}{123}$	<u>40</u> 90	<u> </u>	<u> </u>	<u>0</u> 0
υ.	Salmon Bay Lake	1982	69	69	50	0	0	0
v.	Salmon Bay Lake	1983	76	74	48	0	0	0
		1986	50	49	0	0	0	0
	•	Total	126	123	48	0	0	0
Kupr	eanof Island						•	
₩.	Petersburg Lake	1986	49	48	0	0	0	0
	<u>ict 107</u>							
	ern Wrangell Island		·. ·			•	•	•
x.	Thoms Lake	1983 1986	75	75 47	75 0	0	0 0	0 0
	•	1986	50 60	<u>4</u> / <u>57</u>	0	0	0	0
		Total	185	179	75	<u> </u>	<u> </u>	0
istr	<u>ict 108</u>							
Stik	ine River drainage				•		•	
Y.	Chutine Lake	1986	64	57	0	0	0	0
Ζ.	Chutine River	1986	48	47	0	0	0	0
	•							

## Appendix 2.—Continued.

Location	Year	sIDHP-1* N	PEPA* N	ADA-2* N	mMEP-2* N	PGDH* N	aMAN* N
a. Tahltan Lake	1990	100	100	100	100	98	100
b. Stikine River	1986	50	50	0	0	0	0
<u>District 109</u> Kuiu Island							
c. Alecks Lake	1986	50	50	0	0	0	0
	1987	54	53	<u>    51    </u>	_52	<u>    52</u>	0
	Total		103	51	52	52	0
d. Kutlaku Lake	1986	49	49	0	0	0	0
District 111							
North of Juneau	1986	12	12	0	0	0	0
e. Auke Creek	1986	113	113	0	0	0	0
	Total		$\frac{115}{115}$	0	<u> </u>	<u> </u>	0
Eastern Stephens Passage	-Port Snet	tisham					
f. Crescent Lake	1983	100	99	99	0	0	0
g. Speel Lake	1983	100	100	98	0	0	0
Herbert River drainage					77	73	73
h. Windfall Lake	1989	73	72	72	73	73	13
Mendenhall River drainag		18	18	0	0	0	ο
i. Steep Creek	1986 1988	18 53	18 52	51	42	51	45
	1988	10	_10	10	10	10	10
	Total		80	61	52	61	55
Taku River drainage							
j. Lower main stem						-	_
Fish Creek	1986	20	20	0	0	0	0
South Fork Slough	1986	40	34	29	0	0	0
	1989 Total	<u>20</u> 80	<u>_20</u> 74	<u>20</u> 49	<u>_19</u> 19	<u>_20</u> 20	<u>_20</u> 20
	TOCAT		1 1	••			
k. Upper main stem Chuunk Mountain Slo	ugh 1989	10	10	8	8	10	10
Coffee Slough	1986	37	37	õ	0	0	0
	1987	33	33	0	0	0	0
Honakta Slough	1986	40	40	30	0	0	0
Nakina River	1986	51	49	40	40	40	0
Shustahini Creek	1986	40	37	24	0	0	0
	1986	60	57	0	0	0	0
	1987	35	31	0	0	0	0
Takwahoni Slough	1986	20	20	0	0 0	0 0	0 0
Tuskwa Slough	1986	40	39 37	40 32	29	32	0
Vonaliza Claush	1987 1989	37 <u>18</u>	18	18	18	<u>_18</u>	18
Yonakina Slough	Total		408	$\frac{10}{192}$	87	$\frac{10}{100}$	28
m. Little Tatsemenie La	ke 1990	67	67	67	67	67	67
n. Little Trapper Lake	1990	98	100	100	96	100	99

Appendix 2.-Continued.

	· · · · · · · · · · · · · · · · · · ·		sIDHP-	1* PEPA*	ADA-2*	mMEP-2*	PGDH*	aMAN*
Loca	ation	Year	N	N	N	N	N	N
٥.	Turner Lake	1988	89	85	86	89	84	89
p.	Yehring Creek, early	1986(1	1) ^a 22	22	0	0	ο	0
		1986(2	2) ^b 48	45	40	0	0	ο
		1987	7	6	0	0	0	0
		1989(1		<u>_30</u>	_30	<u>    30</u>	<u>    30</u>	<u>_30</u>
		Total	107	103	70	30	30	30
q٠	Yehring Creek, middle	1986(3	3) ^d 40	40	40	0	19	0
		1989(2	?)• <u>10</u>	_10	_10	9	_10	10
		Total	50	50	50	9	29	10
r.	Yehring Creek, late	1989(3	) ^f 60	60	59	59	59	60
<u>ist</u> Sou s.	<u>rict 113</u> th Chichagof Island Sitkoh Lake	1984 1987 Total	97 <u>100</u> 197	97 <u>98</u> 195	0 <u>97</u> 97	0 _ <u>98</u> 98	0  73	0 99 99
	<u>rict 115</u> lkat River drainage Chilkat River	1983	100	100	50	0	0	0
1.	Chilkat Lake, early	1983	100	100	90	ο	ο	•
	late	1983	100	97	98	õ	ŏ	0 0
		1990	45	45	45	45	45	45
		Total	245		233	45	45	45
hil	koot River drainage							
•	Chilkoot River	1983	95	97	62	0	0	0
		1990	40	40	40	40	40	40
		Total	135	137	102	40	40	40
	<u>ict 181</u> k River drainage							
	East Alsek River	1987	50	49	41	40	45	0
itu	k River drainage Situk River	1984	98	00	0.0	0		
•	OTCAY VIVEL	1984	98	98	98	0	0	0

^aYehring Creek early 1986(1) samples were collected on 8/29/86 & 9/15/86.

^bYehring Creek early 1986(2) samples were collected on 9/11/86 & 9/13/86. ^cYehring Creek early 1989(1) samples were collected on 9/18/89. ^dYehring Creek middle 1986(3) samples were collected on 9/30/86 & 10/01/86.

Yehring Creek middle 1989(2) samples were collected on 9/28/89.

¹Yehring Creek late 1989(3) samples were collected on 10/13/89.

Appendix 3.—Log-likelihood ratio analysis comparisons of collections from the same site but at different times. Where subdivision of samples at a site are made for subsequent analyses, both the total heterogeneity at the site and the heterogeneity within the subdivision are presented. The total includes the heterogeneity within and among collections at that site. A blank at a site (with a value for "between") indicates one collection only.

		<u>M-1*</u>		M-2*		- <u>B2*</u>		PC*	_	AT*		<u>T-1*</u>		- <u>B1*</u>		Total
Collection	df	<u> </u>	df	G	df	G	df	G	df	G	df	G	df	G	df	G
A. Hugh Smith Lake	2	0.21	2	0.56	2	7.21*			3	6.18					9	14.15
C. Helm Lake	1	1.45	1	0.03	1	0.11			2	4.97					5	6.56
. McDonald Lake (i)	1	0.95	1	0.09	1	1.12	1	1.15	1	0.68					5	3.99
. McDonald Lake (ii)	1	0.58	1	0.22	1	0.62	1	0.17	2	2.32					6	3.91
Between D & E	1	0.23	· 1	0.97	1	0.16	1	0.13	1	12.24**	1	6.15*			6	19.88*
F. Naha River	- 4	2.98	4	10.45*	4	7.10			4	3.41					16	23.94
H. Karta River (i)	1	0.24	1	0.50											2	0.74
I. Karta River (ii) Between H & I	1	1.33	1	0.09	1	1.18	1	5.91	2.	16.63**	*				6	25.14**
J. Kegan Lake	3	0.22	3	0.54					2	7.17					8	7.93
K. Chuck Lake	1	0.01	1	2.67											2	2.68
M. Klakas Lake	1	0.00	1	0.00											2	0.00
N. Klawock Lake	2	2.91	2	2.46	2	0.47	1	0.01	4	4.11					11	9.96
0. Upper Sarkar Lake	2	1.84	2	6.30*			1	1.92	4	2.23					9	12.29
S. Luck Lake	3	0.81	3	2.47	3	4.78			6	8.88					15	16.94
T. Red Bay Lake	2	4.11	2	4.72											4	8.83
U. Salmon Bay (i)	1	0.01	1	0.75			1	1.01	2	1.88					4	3.65
V. Salmon Bay (ii) Between U & V	1	0.01	1	0.05			2	10.51**	· 2	2.51			1	0.35	6	13.43
X. Thoms Lake	2	2.19	2	3.19			2	3.98	4	7.46					10	16.82
c. Alecks Lake	1	2.99	1	1.34					1	4.19*					3	8.52*
e. Auke Creek	1	1.20							1	0.31					2	1.51

# Appendix 3.—Continued.

~		_	<u>SM-1*</u>		M-2*		<u>H-B2*</u>		EPC*	A	LAT*	mAA	T-1*	LDF	I-B1*		Total
	Collection	df	G	df	G	df	G	df	G	df	G	df	G	df	G	df	G
i.	Steep Creek	2	0.02					2	2.07	2	4.29	1	0.17			7	6.55
j۰	Lower main-stem Tak Fish Creek																
	South Fork Slough	1	0.52	1	1.27					2	2.29						
	Between	1	0.09		0.20	1	4.92			2						4 5	4.08 5.29
k.	Upper main-stem Tak Chuunk Slough	u P	liver													Ū	
	Coffee Slough Honakta Slough Nakina River	1	0.01	1	1.63	1	2.35	1	2.27	·2	4.90					6	11.16
·	Shustahini Slough 1986 1986 1987																
	Among Takwahoni Slough	2	0.07	2	3.59	2	9.06*			4	3.31					10	16.03
	Tuskwa Slough Yonakina Slough	1	0.04	1	1.16	1	0.11			2	2.18					5	3.49
	Among	9	14.52	9	5.96	9	14.60			18	18.70	3	0.74			48	54.52
	Yehring Creek																
p.	Early	3	5.63	3	3.25					3	9.74					-	
q٠	Middle	1	0.73	1	0.47					1	0.52					9	18.62
r.	Late									-	0.52					3	1.73
	Among p, q, & r	2	17.40***	2	4.00	2	0.33	2	9.33**	4	5.41	2	0.29			14	36.76***
8.	Sitkoh Lake	1	1.33	1	1.60			1	0.48	2	5.79			2	4.89	7	14.09
t.	Chilkat River																
u.	Chilkat Lake	2	3.38	2	0.76			2	10.45**							_	
	Between t & u	3	3.76	3		3	23.11***			6	19.20**					6 18	14.59* 59.68***
v.	Chilkoot Lake	1	0.38	1	0.01	1	0.01									3	0.40

* P < 0.05, ** P < 0.01, *** P < 0.001

 $\sim 10^{-10}$ 

Appendix 4.—Allozyme variation in collections of juvenile sockeye salmon from the Taku River in Southeast Alaska and northern British Columbia. Allelic frequencies and collection sizes (N) are designated as in Table 2. Alleles are designated by their mobility relative to the most common allele (*100) and as described in Shaklee et. al. (1990).

			PGM-1	*			PGM-2*				LDH-B	2*
	Location	N	*-100	*Null	N	*-100	*-77	*-20	*-93	N	*100	*115
AA.	Little Tatsemenie Lake	87	0.14	0.86	84	0.81	0.16	0.03	0.00	81	0.76	0.24
BB.	Taku River, lower main stem											
	Backwater, early	38	0.16	0.84	36	0.71	0.28	0.01	0.00	37	0.96	0.04
	Backwater, late	29	0.11	0.89	28	0.80	0.20	0.00	0.00	29	0.90	0.10
	Braided flow	35	0.11	0.89	36	0.86	0.14	0.00	0.00	34	0.85	0.15
	Canyon Island, braided flow	38	0.22	0.78	37	0.84	0.16	0.00	0.00	38	0.89	0.11
	Channel edge	53	0.12	0.88	52	0.75	0.25	0.00	0.00	51	0.86	0.14
	Moose Creek Slough	52	0.24	0.76	53	0.74	0.25	0.01	0.00	52	0.91	0.09
	Side slough, early	66	0.23	0.77	67	0.84	0.15	0.01	0.01	67	0.92	0.08
	Side slough, late	51	0.23	0.77	52	0.80	0.20	0.00	0.00	47	0.90	0.10
	Tributary mouth	50	0.16	0.84	50	0.85	0.14	0.01	0.00	50	0.88	0.12
	Upper main channel	33	0.16	0.84	33	0.88	0.12	0.00	0.00	33	0.83	0.17
	Yellow Bluff	<u>52</u> 497	<u>0.10</u>	<u>0.90</u> 0.69	<u>51</u> 495	0.82	0.18	0.00	0.00	<u>    52</u>	0.80	<u>0.20</u>
	Total	497	0.31	0.69	495	0.806	0.189	0.004	0.001	490	0.88	0.12
cc.	Fish Creek, beaver ponds	45	0.16	0.84	46	0.79	0.20	0.01	0.00	46	0.84	0.16
DD.	Sockeye Creek, beaver ponds	37	0.13	0.87	38	0.86	0.14	0.00	0.00	37	0.92	0.08
EE.	Yehring Creek	50	0.16	0.84	50	0.88	0.11	0.01	0.00	50	0.86	0.14

ended.
4Exto
ppendix

Tocation		*Z-dHDIS			PEPC*				81.844						
FOCALION	2	•100	*125	N	*100	*105	Z	*100	*95	16*	*108	N	SAAT- *100	3* 117*	
AA.	88	1.00	0.00	78	0.98	0.02	54	0.42	11.0	76					
BB	72	· 1					1		•	*	T0.0	73	0.99	0.01	
•	- a - a		0.00	24	0.98	•		•	- <b>-</b>			t			
	4 m			24		•	18	•		•	•	5			
	28			970		•		•	0	• •	•	20			
	) ( 	•		ר. בי		٠		•	5	•	•	5			
		•	00.00	43		•		• •	• •	•	•	75			
\$	10	66.0	0.01	50	-	•		•	1 c	•	•	23			
	0 1	•	0.00	63		- 1		•	۰.	•	•	53			
		٠	0.00	44				•	- (	٠	•	68			
	48	٠	00.0	18				٠	Ņ		•	51			
	С С С	•	0.00	53		•	0 + 7 (	٠	Ņ	•	•	50			
	52	1.00	0.00	4 1			15		4	•		50			
Total	491	666.0	0.001	393	0.94	0.06	<u>44</u> 439	0.49	0.09	0.42	0.00	52	0.99	0.01	
	4 F							I		•	•	4 7 7		01	-
	) -		•	43	0.92	0.08	45	0.38	0.12	0.50		46		LO:	
DD.	37	1.00	0,00	36	0					•	•	0	T.UU	2 00.0	2
			)	5	00	0.04	38	0.46	0.12	0.41	0.01	37	1,00		
EE.	50	1.00	0.00	46	0.92	0,08	2	•				1	) ) 1		
						•	0	0.40	60.0	0.45	0.00	50	1.00	0.00	
	•														

Appendix 4.-Extended.

The second state of the second s

10 . ...

		SAAT-1	,2*			mAAT-1*		sIDHP-1	p−1 *	P	PEPA*
Location	N	*100	*77	*64	N	+-100	*-82	N	+100	N	*100
		, ,									
AA.	19	0.99	0.01	0.01	82	0.89	0.11	88	1.00	78	1.00
BB.	33	1.00	0.00	0.00	38	0.89	0.11	37	1.00	24	1.00
	28	1.00	00.00	0.00	22	0.89	0.11	28	1.00	24	1.00
	36	1.00	00.00	0.00	33	0.85	0.15	35	1.00	26	1.00
	36	1.00	00.00	0.00	37	0.86	0.14	37	1.00	24	1.00
	53	1.00	00.00	0.00	51	0.88	0.12	53	1.00	43	1.00
	51	1.00	0.00	0.00	52	0.84	0.16	51	1.00	50	1.00
•	68	1.00	00.00	00.00	66	0.88	0.12	66	1.00	63	1.00
	51	1.00	0.00	0.00	52	0.86	0.14	51	1.00	44	1.00
	51	1.00	0.00	0.00	44	0.92	0.08	48	1.00	18	1.00
	33	1.00	0.00	0.00	93 9	0.86	0.14	<b>E</b> E	1.00	33	1.00
Total	52 492	1.00	00.00	0.00	<mark>52</mark> 480	0.81	0.19 0.13	<u>52</u> 491	1.00 1.00	<u>45</u> 393	<u>1.00</u> 1.00
رز	46	00 1			VV	0 80	9 F (	A F		EV	1
•	) r			•••	r r	10.0		7		7 F	
DD.	38 9	1.00	0.00	0.00	38	0.92	0.08	37	1.00	36	1.00
EE.	50	1.00	0.00	0.00	50	0.88	0.12	50	1.00	46	1.00

۰,

Population	<u>PGM-1*</u> df G	<u>PGM-2*</u> df G	<u>LDH-B2*</u> df G	<u>PEPA*</u> df G	<u>ALAT*</u> <u>SAAT-</u> df G df G		<u> </u>
Fish Creek	1 0.77	1 0.06	1 0.26		2 4.77		5 5.86
Tatsemenie Lake	1 0.00	2 1.29	1 0.42		2 17.29*** 1 0.3	30 1 0.69	8 19.99*
Yehring Creek "Early, middle, & lat	ce 3 10.36*	3 4.13	3 1.29	3 11.55**	6 6.78		18 34.11*
Early	1 0.02	1 0.51	1 0.50	1 2.70	2 0.80	1 0.06	7 4.59
Middle	1 6.15*	1 0.67	1 0.51	1 0.56	2 2.56		6 10.45
Late	1 2.61	1 0.81	1 1.26	1 4.68*	2 2.42	1 0.07	7 11.85

Appendix 5.—Log-likelihood ratio analysis (G-test) of the genetic heterogeneity between adult and juvenile sockeye salmon from the Taku River drainage.

* P < 0.05, ** P < 0.01, *** P < 0.001

	PG	M-1*	PG	M-2*	LD	H-B2*	P	EPC*	A	LAT*	mA	AT-1*	I	'otal
Collection	df	G	df	G	df	G	df	G	df	G	df	G	df	G
Adults	9	13.36	9	5.89	9	16.81	4	1.82	18	20.60	3	0.69	52	59.17
Juveniles	10	18.69	10	15.86	10	17.35	4	6.43	20	40.11**	10	7.50	64	105.95***
Between adults & juv.	_1		_1	0.00	_1	0.26	_1	0.11	_2	0.90	_1	1.12	7	10.03
Total	20	39.69**	20	21.75	20	34.42*	9	8.36	40	61.61*	14	9.31	123	175.15

Appendix 6a.—Log-likelihood ratio comparisons of adult and juvenile (age-0 rearing) sockeye salmon from sites on the main-stem Taku River in Southeast Alaska and northern British Columbia.

Appendix 6b.—Log-likelihood ratio comparisons of adult and juvenile (age-0 rearing) sockeye salmon from sites on lower tributaries of the Taku River in Southeast Alaska.

	<u> </u>	<u>M-1*</u>	PG	<u>M-2*</u>	LDI	H-B2*	P	EPC*	Å	LAT*	mA	AT-1*	T	otal
Collection	df	G	df	G	df	G	df	G	df	G	df	G	df	G
Adults	3	11.92**	3	6.23	3	3.15	3	9.52	6	16.57*	2	0.29	20	47.68***
Juveniles	2	0.37	2	2.78	2	2.68	2	1.23	4	2.52	2	3.98	14	13.56
Between adults & juv.	_1	1.19	_1	0.32	_1	0.54	_1	<u>    6.37</u> *	_2	4.28	_1	0.20	_7	12.90
Total	6	13.48*	6	9.33	6	6.37	6	17.12**	12	23.37*	5	4.47	41	74.14**

* P < 0.05, ** P < 0.01, *** P < 0.001

pendix 7.—Log-likelihood ratio analysis (G-test) of genetic structure among collections of Southeast Alaska and northern I Columbia sockeye salmon based on Alaska Department of Fish and Game statistical districts.	
Appe	

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	lstrict	1- <u>u</u> 5	<u>PGM-2*</u> df G	PEPC*	ALAT *	<u>mAAT-1*</u> df G	Tot	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	101	4 10.32*	4 46.29***					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	102		3 39.49***		•			42.40**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	103	4 64.50***	4 63 70+++			1 6.14*		14.04**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	105		*** 67 * 60 -					47.83***
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	1	1	1 1	1 1	1	I	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	106					1 8.75**		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107	1	1	1	1			***TO*co
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	108		3 32.17***			1		I
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	109	1 3.93*	1 10 25444			l 6.57*		69.77***
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				L 6.33*		1		14.87***
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	TU 100.46***						80.29***
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	113	T I	1	. 1		:		
- $                                                                                                        -$	115							1
ithin $\frac{-}{32}$ $\frac{-}{352.91**}$ $\frac{-}{32}$ $\frac{-}{384.04**}$ $\frac{-}{32}$ $\frac{-}{856.72***}$ $\frac{-}{64}$ $\frac{-}{1101.18***}$ $\frac{-}{15}$ $\frac{-}{324.70***}$ $\frac{-}{17}$ mong $\frac{12}{12}$ $\frac{319.86}{319.86}***$ $\frac{12}{12}$ $\frac{431.20}{44}**$ $\frac{12}{12}$ $\frac{791.66}{21.66}***$ $\frac{24}{24}$ $\frac{790.26}{790.26}***$ $\frac{9}{258.57}***$ $\frac{6}{6}$ otal 44 $672.77***$ 44 $815.24***$ 44 $1648.38***$ 88 $1891.44***$ 24 $583.27***$ 24 $\frac{6}{12,32}$ $\frac{1}{(12,32)}$ $\frac{12}{(12,32)}$ $1$	181	<b>1</b>	1	• • •	-			67.34***
- $                                                                                                                                                                       -$	00			<b>;</b>	1	1	1	I
n 32 352.91*** 32 384.04*** 32 856.72*** 64 1101.18*** 15 324.70*** 17 12 319.86*** $12 431.20$ *** $12 791.66$ *** $24 790.26$ *** $9 258.57$ *** $644 672.77*** 44 815.24*** 44 1648.38*** 88 1891.44*** 24 583.27*** 242.42$ 2.99 2.46 1.91 1.33 (12,32) $(12,32)$ $(12,32)$ $(0.0208$ 0.0208 0.0006 0.0208 0.0007 0.9,15) (9,15)	COT					1	I	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Within							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Among			-				14•55***
2.42 2.99 2.46 1.91 1.33 (12,32) (12,32) (12,32) (24,64) (9,15) ( 0.0236 0.0066 0.0208 0.027 (9,15) (	Total				-	-		<u>91 - 56</u> * * *
	F (df) P	2.42 (12,32) 0.0236	2.99 (12,32) 0.0066	2.46 (12,32) 0.0208	1.91 (24,64) 0.0207		<u> </u>	.18 .18 .175)

	Ъ	PGM-1*	b	PGM-2*		PEPC*	A	AT.AT.*	E	m 4 4 7 - 1 *		Total
Entry route	đf	B	df	B	df	G	df	B	df	B	đf	G
Northern outside	ч	.0.07	-	2.43	Ч	14.43	2	14.16	I		ى س	31.09
Cross Sound sittch Tate	· · ·	I	· , I	ł	· I		1					
Southern Lynn Canal Southern Lynn Canal	2 2	11.15** 52.62***	00	0.18 49.48***	0 0	3.15 254.63***	44	15.91** 67.13***	-1 -	36.95*** 6.26*	111	67.33*** 430.12***
	4	34.06***	4	9.46	4	48.89**	• ∞	124.80***	ধ পা	9.18	24	226.39***
Port Snettisham Stephens Passage,	-	1.99	-1	11.13	-	8 • 56	~	4.02	1	8	5	25.70""
within Starbard Parada	ம	36.05***	. U	20.59***	ъ	57.44***	10	128.82***	4	9.18	29	252.10***
stephenber between	-1	1.17	-	10.77***	1	23.07***	2	<u>68.00</u> ***	Ч	1	2	103.03***
scepnens rassage, total	9	37.22***	9	31.36***	9	80.52***	12	196.82***	4	9.18	34	355.22***
	10	100.99***	10	81.02***	10	338,30***	20	279.86***	9	52.39***	56	852.67***
Сговв Sound, among areaв Croвв Sound, total	13	63.28 ^{***} 164.27 ^{***}	13	<u>64.48</u> *** 145.50***	13 3	<u>556.99</u> *** 895.29***	<u>6</u> 26	<u>315.01</u> *** 594.87***	mo	<u>319.56</u> *** 371.95***	<u>18</u> 74	<u>1319.33</u> *** 2171.88***
Northern Chatham Strait	5	5.60	8	11.36**	7	6.46*	4	115.64***	I	I	10	139.06***
	βM	19.33*** 29.28***	6 M	9.89 [*] 22.59 ^{***}	n n	115.60 ^{**} 6.96 [*]	64	186.24*** 80.33***		7.25** 6.57*	16 11	338.31*** 145.73***
	4	19.21***	4	102.78***	4	37.70***	ω	185.04***	1	1	20	344.73
areas	6	67.82***	6	135.26***	6	160.26***	18	451.61***	7	13.82***	47	828.77***
summer strait, among areas Summer Strait, total	11	<u>27.03***</u> 94.85***	11	<u>66.82</u> *** 202.08***	11	<u>42.94</u> *** 203.20***	22	<u>211.50</u> *** 663.11***	24	<u>35.68</u> *** 49.50***	<u>12</u> 59	<u>383.97</u> *** 1212.74
Turner Take	I	I	1	1	1		ĺ					

and the family was doned

こうで、これで、たち、ない、、「「「「「」」、「「」」、「「」、「」、「」、

States - South

*****7

# Appendix 8.—Continued.

	<u>P</u>	<u>GM-1 *</u>	P	GM-2*		PEPC*		ALAT*	m	AAT-1*		Total
Entry route	df	G	df	G	df	G	df	G	df	G	df	G
Outside Prince of Wale	8	•										
Island	- 3	63.16***	3	111.38***	3	162.50***	6	98.81***	1	6.26*	16	442.11***
Dixon Entrance Dixon Entrance,												
outside Dixon Entrance,	3	39.91***	3	9.33*	3	5.04	6	42.70***	1	1.10	16	98.08***
Dixon Entrance,	_4	10.32*	_4	46.29***	_4	_22.58***	_8	<u>    56.25</u> ***	_2	6.96*	22	142.39***
within areas Dixon Entrance,	7	50.23***	7	55.62***	7	27.62***	14	98.95***	3	8.06*	38	240.48***
among areas	<u>_1</u> 8	<u>121.48</u> *** 171.71***	_1	<u>164.19</u> *** 219.81***	<u>1</u> 8	<u>9.54</u> ** 37.16***	$\frac{2}{16}$	<u>0.03</u> 98.98***	_1	<u>13.80</u> *** 21.86***	_6	309.02***
Dixon Entrance, total	8	171.71"""	8	219.81***	8	37.16***	16	98.98***	4	21.86***	44	549.52***
Total within entry	•											
routes	38	499.66***	38	692.56***	38	1319.04***	76	1585.57***	18	449.57***	208	4546.40***
Among entry routes	_6	<u>173.13</u> ***	_6	122.56***	_6	329.35***	<u>12</u>	<u>   305 . 85</u> ***	_6	133.69***	_36	<u>1064.58</u> ***
Total	44	672.79***	44	815.12***	44	1648.39***	88	1891.42***	24	583.26***	244	5610.98***
F (df) P		2.19 (6,38) 0.0647		1.12 (6,38) 0.369		1.58 (6,38) 0.1797		1.22 (12,76) 0.2841		0.89 (6,18) 0.5213		1.35 (38,208) 0.0997

*P < 0.05 **P < 0.01 ***P < 0.001

Appendix 9.-Log-likelihood ratio analysis (G-test) of genetic structure of Southeast Alaska and northern British Columbia sockeye salmon based on surface area of rearing lake.

OitatdfGdflakes24 $406.03^{***}$ 24nlakes7 $86.71^{***}$ 7lakes4129.98^{***}4s6 $44.99^{***}$ 6nsizes41 $67.71^{***}$ 41sizes3 $5.04$ 3	G	2 T	<b>DUN-B2</b>	4	PEPC*	~~	ALAT*	ШA	mAAT-1 *		Total
24 406.03*** 24 7 86.71*** 7 4 129.98*** 4 6 44.99*** 6 41 667.71*** 41 3 5.04 3		đf	9	đf	ც	df	B	đf	B	đf	B
7 86.71*** 7 4 129.98*** 4 <u>6 44.99</u> *** 6 41 667.71*** 41 <u>3 5.04</u> 3	536.20***	24	625.00 ^{***}	24	1111.05***	48	1032.32	10	10 383_27***	154	4093 A7***
4 129.98*** 4 6 44.99*** 6 41 667.71*** 41 3 5.04 3	40.53***	7	478.17***		350.08***	14	423.66***	ы П	122.57***	47	1501.72***
6 44.99*** 6 41 667.71*** 41 3 5.04 3	3.05	4	32.01***	4	112.35***	ß	140.46***	i m	20.20***		438.05***
41 667.71*** 41 <u>3 5.04 3</u>	18,55**	و	5.74	9	46.74"**	12	84.27***	n	3.73		204.02***
sizes <u>3 5.04</u> <u>3</u>	598.33***		1140.92***		1620.22***	82	1680.71***	21	529.77***		6237.66***
	216.83***	ε	94.56***	n	28.16**	9	210.73***	ო	53.49***	21	608.81 <b>**</b> *
77	815.16***		1235.48***	44	1648.38***	88	1891.44***	24	583.26***		6846.47***
F 0.10 4.9 (df) (3,41) (3,4	4.95 (3,41)		1.13 (3,41)		0.24 (3.41)		1.71 (6.82)		0.70		1.241
0.9578	0.005023		0.3471		<b>ò.</b> 8697		<b>0.128</b> 2		0.5587		0.2166

۰,

* P < 0.05, " P < 0.01 ", P < 0.001