
'. Northwest and {"4 I·· il Alaska Fisheries 
". Center ~",.,... 

National Marine 
Fisheries Service 

u.s. DEPARTMENT OF COMMERCE 

NWAFC PROCESSED REPORT 88-21 

A Review and Comparison 
of Age-Structured 
Stock Assessment Models 
from Theoretical and Applied 
Points of View 

September 1988 

This report does not constitute a publication and is for information 
only . All data herein are to be considered provisional. 



NOTICE 

This document is being made available in .PDF format for the convenience of users; however, 
the accuracy and correctness of the document can only be certified as was presented in the 
original hard copy format.  

Inaccuracies in the OCR scanning process may influence text searches of the .PDF file. Light or 
faded ink in the original document may also affect the quality of the scanned document. 





A REVIEW AND COMPARISON OF AGE-STRUCTURED 

STOCK ASSESSMENT MODELS FROM 

THEORETICAL AND APPLIED POINTS OF VIEW 

by 

Bernard A. Megrey 

U.S. Department of Commerce 
National Oceanic and Atmospheric Administration 

National Marine Fisheries Service 
Northwest and Alaska Fisheries Center 

7600 Sand Point Way HE 
Seattle, WA 98115-0070 

September 1988 



PREFACE 

This report is an updated and extensively revised version of 
"Review and Comparison of Three Methods of Cohort Analysis" a 
1983 NWAFC Processed Report, Number 83-12 . 

i 



ABSTRACT 

The development of age-structured stock assessment methodol­

ogy (commonly referred to as cohort analysis or VPA) is reviewed. 

A comprehensive review of the literature on age-structured stock 

assessment methods is presented in an attempt to place the 

development of the methodology in a historical perspective. The 

review describes reasons why stock assessment models play an 

important role in fisheries management and traces the historical 

origins of the different mathematical models, their chronological 

development, and various levels of complexity. 

Both catch and catch-per-unit-effort models are examined 

with special emphasis being placed on models incorporating the 

separability assumption. Specifically the methods of Derzhavin 

(1922), Fry (1949, 1957), Gulland (1965), Murphy (1965), Pope 

(1972), Doubleday (1976), Paloheimo (1961, 1980), Pope and 

Shepherd (1982), "Fournier and Archibald (1982), Dupont (1983) and 

Deriso et ale (1985) are compared paying particular attention to 

similarities, differences, strengths, weaknesses, data require­

ments, underlying assumptions, sources of error, what parameters 

they estimate, mathematical formulation, and parameter estimation 

techniques. Useful extensions to the basic stock assessment 

procedures are also discussed. 

1.0 INTRODUCTION 

stock assessment methods for age-structured animal popula­

tions were developed over sixty years ago to facilitate the 

analysis and interpretation of commercial catch statistics. Age-
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structured stock assessment methods are ideally suited to the 

rational management of fisheries resources because application of 

these powerful analytic techniques permit reconstruction of the 

population dynamics of exploited fish stocks and provide es­

timates of vital mortality rates and absolute population abun­

dance. Today these population assessment methods serve as the 

primary basis for providing management advice in many world 

fisheries. 

The main advantage of age-structured stock assessment models 

over more traditional approaches such as stock production (Graham 

1935, 1939; Schaefer 1954, 1957) or dynamic pool (Beverton and 

Holt 1957) models are that they can be applied without knowledge 

of effective fishing effort, catchability or gear selectivity. 

Thus they do not suffer from many of the problems associated with 

using CPUE as an index of population abundance. Early success 

with these methods after their appearance in the early 1960's and 

the greater availability of aged catch data led to their wide­

spread application. A heightened awareness of the utility of 

stock assessment models has, in the past few years, resulted in a 

dramatic proliferation of new methodology. As researchers 

embraced the methodology they naturally improved upon the 

original idea and in several cases parallel development has taken 

place. Figure 1 shows how the level of research activity in the 

area of age-structured stock assessment methods has increased 

over the decades since it was introduced. Today age-structured 

stock assessment methods constitute one of the principal research 

2 



tools used by fisheries scientists to evaluate the status of 

exploited fish stocks. 

In addition to widespread application, a number of important 

new developments have been proposed in the past few years. This 

has prompted Beamish (1986) to suggest that perhaps it was time 

for a review paper on the assumptions that go into age-structured 

stock assessment models and the consequences of not meeting those 

assumptions. In view of the profusion of new methods, especially 

since the newer techniques have been introduced only recently and 

in relatively quick succession, it seemed desirable to review old 

and new stock assessment methods and compare them to historic 

paradigms. Thus, the objective of this paper is to review and 

compare current and historic stock assessment methods. Because 

this paper is focused on review and comparison, it does not 

present any new theory. 

At the foundation of each stock assessment method is one or 

more mathematical equations that symbolize a hypothesis about the 

way we believe dynamic changes in an exploited population take 

place. In subsequent discussion these mathematical expressions 

will be referred to as the model. Even though all age-structured 

stock assessment methods share the same theoretical underpinn­

ings, the numerous methods proposed throughout the past sixty 

years are quite different with respect to mathematical formula­

tion, which parameters they estimate, and solution techniques. 

Because of these differences, each model has its own strengths 

and weaknesses and different methods contain different sources of 
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error. Moreover, application of more than one method to a common 

data set may not give identical results. Since few comparative 

studies have been carried out, it is not clear which method is 

best to use under a given set of circumstances. 

In order to better state the model's assumptions and 

consequences each model is described in a standard format which 

includes a statement of the model using a consistent notation, 

the objective function, parameter estimation procedure, assump­

tions, advantages, and disadvantages. In particular, each model 

is described with respect to data requirements, underlying 

biological and technical assumptions (both implicit and ex­

plicit), sources of error, what parameters they estimate, 

mathematical formulation, and parameter estimation techniques. 

Also strengths, weaknesses, advantages, disadvantages, similari­

ties, and differences of each method will be compared. The 

symbols and notation used to describe the models are defined in 

Table 3. Underlying each model are assumptions regarding the 

specific mathematical model, the input data required by the 

model, and any solution methods or statistical procedures used to 

estimate the parameters of the model. Assumptions, advantages, 

and disadvantages underlying each model are summarized in Tables 

4, 5, and 6 respectively. A summary of the mathematical models, 

error models, parameter estimation methods, and parameter 

estimation sequence underlying each model are summarized in Table 

7. 

The methods reviewed in this paper include those of Derzha-
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vin (1922), Fry (1949, 1957), Gulland (1965), Murphy (1965), Pope 

(1972), Doubleday (1976), Paloheimo (1961, 1980), Pope and 

Shepherd (1982), Fournier and Archibald (1982), Dupont (1983) and 

Deriso et ale (1985). Two methods not included in the review are 

those of Doubleday (1981) and Collie and Sissenwine (1983). 

1.1 Historical Development 

The historical roots of fisheries stock assessment methods 

can be traced back to the U.S.S.R. in the beginning of the 19th 

century (Ricker 1971). A. N. Derzhavin (1922) was perhaps the 

first to conceive of the idea of applying data describing the age 

structure of a population to catch statistics in order to 

calculate the contribution of each cohort to each years total 

catch. The theoretical basis for Derzhavin's approach was 

developed several years earlier by F. I. Baranov in his classic 

1918 paper on the theory of the exploitation of fish stocks 

(Baranov 1918). Baranov did not contribute directly to 

Derzhavin's work although Ricker (1971, 1975) reports that 

Derzhavin's application to the Kura River stellate sturgeon 

(Acipenser fulvescens Rafinesque) builds upon an earlier work by 

Tereshchenko (1917) in which Baranov's assistance is acknowledg­

ed. Ricker (1971) also points out that a computation similar to 

Derzhavin's appears in Baranov (1918, p. 100). 

The idea behind Derzhavin's method is conceptually very 

simple. In an age-structured population, the population size of a 

cohort at the time it enters the exploitable phase can be 

approximated by simply summing the catches removed from that 
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cohort during the years it contributes to the fishery. Thus 

summing the catches provides an estimate of the population that 

must have been alive in order to generate the catches we observe. 

As input data Derzhavin used estimates of mean age composition 

and catch data from many years. with his approach, and an 

assumption of negligible natural mortality and no long term trend 

in age composition, Derzhavin could estimate the absolute 

abundance of any age group in any year and a separate exploita­

tion rate for each age group. Derzhavin's analysis provided only 

a minimum estimate of the total population present at any given 

time. Ricker (1971, 1975), refers to this quantity as the 

utilized stock after Voevodin (1938) since it does not include 

fish that die naturally. The ratio of fish caught to the utilized 

stock present at the start of the year is referred to by Ricker 

(1971, 1975) as the biostatistical rate of exploitation. As a 

consequence of the utilized stock being a minimum estimate, the 

biostatistical rate of exploitation is always greater than the 

true rate of exploitation, provided fishing and natural mortality 

are constant with age. 

For many years Derzhavin's method went largely unknown 

outside of Russia. The first reference to Derzhavin's method in 

western fisheries literature was in a paper by Bajkov (1932) 

(often cited as Bajkov 1933) in which Derzhavin's method was 

applied to populations of whitefish (Coregonus clupeaformis) in 

three Manitoban lakes systems. Using notation first proposed by 

DeLury (1947) to state his assumptions, Fry (1949) refined 
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Derzhavin's method by sampling the age structure of the popula-

tion annually rather than using averages, but retained the 

assumption of no natural mortality. Use of annual age composition 

estimates made possible a more accurate determination of the 
r 

minimum population abundance. Fry (1949) applied his method to 

statistics from a sport fishery for lake trout (Salvelinus 

namaycush) in Lake Opeongo. Ricker (1975, p. 184) points out 

that, in addition to Fry, several Russian scientists (Boiko 1934; 

Monastyrsky 1935; Chugunov 1935) independently applied the same 

modification to Derzhavin's method. Fry called the minimum 

population estimate calculated by his method the virtual popula­

tion. He defined the virtual population as lithe sum of the fish, 

belonging to a given year class, present in the water at any 

given time that are destined to be captured in the fishery in 

that year and all subsequent years" (Fry 1957). 

Soon after the appearance of Fry's paper, Beverton (1954) 

and later Beverton and Holt (1957) and Paloheimo (1958) proposed 

age-structured models that emphasized estimation of mortality 

rates given catch and effort data. The significant feature of 

these newer models over Derzhavin and Fry's method was that in 

addition to estimating fishing mortality rates as a product of 

fishing effort and catchability they also allowed an explicit 

provision for a nonzero natural mortality rate. 

Taking his lead from Beverton and Holt, Murphy (1965) 

proposed a nonlinear catch ratio model also based on the Baranov 

catch equation (Baranov 1918). In Murphy's nonlinear sequential 
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model fishing mortality is represented as a fraction of catch to 

the total stock rather than the product of fishing effort and the 

catchability coefficient. His method estimates fishing mortality 

rates and absolute population abundance given catch-at-age data, 

a known or assumed rate of natural mortality and one starting 

value of fishing mortality for the youngest fully exploited age 

group. Because of the nonlinear nature of the equations making up 

Murphy's model no simple algebraic expression for determining 

population size or fishing mortality rate could be derived. 

Rather a sequential computational scheme was used to link 

successive age groups within a cohort. At each step an iterative 

procedure was required to solve the equations. In contrast to 

Derzhavin and Fry, Murphy explicitly incorporated natural 

mortality in his procedure similar to the Beverton-Holt equa­

tions. Also in 1965 Gulland described a slightly different model 

(Gulland 1965) in which the Baranov catch equation is combined 

with Fry's concept of virtual population. Gulland used a solution 

method similar to Murphy's to estimate the parameters of his 

model, however Gulland used a backward solution to link succes­

sive age groups. The procedure was started by providing a 

starting guess of the fishing mortality rate for the oldest age 

of a cohort. Gulland called this value the terminal fishing 

mortality or "terminal F". Sequential computations are usually 

made at one year intervals but the method is flexible enough to 

accommodate shorter intervals which is useful for short-lived 

fishes. Burd and Valdivia (1970) use a monthly interval in their 
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application of the nonlinear sequential model to a series of 

cohorts of Peruvian anchovies (Engraulis ringens). 

Gulland and Murphy were not the first to use the nonlinear 

sequential model, however they were primarily responsible for 

popularizing the method. Other earlier papers describe solutions 

similar to Murphy and Gulland but these are based on different 

initial assumptions. In an often cited but not widely available 

report, Ricker (1948) described the mechanics of sequential 

computation in an application to stocks of halibut. Also Jones 

(1964) published an application of the nonlinear sequential model 

to North Sea whiting. Because Gulland and Murphy popularized 

their methods of stock assessment their papers are cited often. 

This is especially true of Gulland's 1965 paper which is a 

mimeographed appendix to an ICES working group report. A descrip­

tion of Gulland's method did not make its way into the formal 

fisheries literature until it appeared in an appendix to Garrod 

(1967). Alternative methods to estimate population parameters 

from catch-at-age and effort data were also proposed at about the 

same time by Allen (1966, 1969). 

During this period convergence properties of the nonlinear 

sequential model were being investigated. The equations for any 

cohort could be solved forward in time (from the youngest age to 

the oldest) after Murphy or backward in time (from the oldest age 

to the youngest) after Gulland. Jones (1961) was the first to 

demonstrate the convergence/divergence properties of fishing 

mortality estimates derived from foreword or backward solutions. 
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He found that when the sequential procedure began with the oldest 

age and worked back progressively toward the youngest age, 

estimates of fishing mortality converged asymptotically to their 

true values. If the procedure started with the youngest age, 

fishing mortality estimates for older ages diverged unless the 

terminal F was very close to the true value. Tomlinson (1970) 

also confirmed the superiority of "backward" solution. Bishop 

(1959) and Ricker (1971) investigated other aspects of the 

parameters of the nonlinear sequential model. 

In addition to the sensitivity of the results to the choice 

of terminal F values, there was one other problem with the 

backward solution. The method did not give a clear objective 

picture of the situation in the most recent (current) fishing 

year. Unfortunately this was exactly the information needed most 

urgently by the fisheries manager. Since the oldest age in each 

cohort represents the most recent catch observation, estimates of 

population size in the current year are only as good as the 

estimate or guess of the terminal fishing mortality. 

The nonlinear sequential model was indisputably helpful and 

a definite improvement over Derzhavin's or Fry's method in terms 

of providing a more accurate estimate of absolute popUlation 

abundance and vital population rates. Accuracy did not come 

without a cost. The complicated equations of the nonlinear 

sequential model required a computationally intensive iterative 

procedure to solve the equations. In the era before computer 

resources were widely available, solutions were carried out 
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manually by constructing complicated work tables (Schumacher 

1970) requiring numerous and tedious hand calculations. without a 

computer program to deal with the complicated bookkeeping the 

procedure proved to be time-consuming and prone to miscalculation 

error, especially when there were long series of ages. Also the 

procedure would usually be repeated several times using a range 

of parameter values. Researchers, even until recently, are 

exploring which iterative method most efficiently solves the 

nonlinear equations (Abramson 1971; Doubleday 1975a; Gray 1977, 

1979; Miller 1977; Mesnil 1978; Sims 1982a) 

Pope (1972) resolved this problem by proposing a less 

complicated model which greatly simplified the computations 

needed to calculate a solution to the nonlinear sequential model. 

Pope's model is based on an approximation to the nonlinear 

sequential model in which the curve describing exponential 

decrease in population numbers with time is replaced with a step 

function. The approximation is based on the assumption that all 

fish caught in any age group are taken exactly half-way through 

the year. with Pope's approximation population abundance es­

timates and vital population rates could be calculated directly 

from catch data without any need for an iterative procedure, a 

computer, or reference to virtual populations. As in Gulland's 

model, Pope's model exhibited the "self correcting" property with 

respect to fishing mortality estimates. That is, a backward 

solution causes progressively smaller errors on estimates of 

fishing mortality and population abundance as the analysis works 

11 



back along a cohort. As with the models of Gulland and Murphy, 

the results of cohort analysis are very sensitive to the choice 

of the terminal fishing mortality and the estimate of natural 

mortality. Investigations into the effects of systematic and 

random errors in the sequential computations became easier and 

much work was done in this area in the years after Pope intro­

duced his method (Agger et al. 1973; Ulltang 1977; Rivard and 

Doubleday 1979: Sims 1982b, 1984; Rivard 1983; Sampson 1988). 

Furthermore, the simplicity of Pope's model made the nonlinear 

sequential model accessible to a wider audience of practicing 

fisheries biologists. One major problem with the sequential 

models was that final parameter values were critically dependent 

on the (often arbitrary) choice of the terminal fishing mortality 

value. There was no unique solution. In fact there are an 

infinite number of possible solutions. Pope (1977, table 1) shows 

how several solutions will satisfy the catch data equally well. 

The stock assessment methods described up to this point were 

completely deterministic. Since the parameters estimated by the 

models predicted exactly the observed catch data, the models 

provide no measure of how well the parameters were estimated. In 

addition cohorts were not linked. That is, catch-at-age data was 

analyzed one cohort at a time. Parameter values estimated from 

one cohort were in no way related to other cohorts in the 

population. This situation changed with the introduction of the 

separability assumption. In contrast to the nonlinear sequential 

model where fishing mortality is represented as a fraction of 
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catch to the total stock, the more restrictive separable model 

represents fishing mortality as the product of an age-specific 

and a year-specific coefficient. This is similar to Beverton­

Holt's representation of fishing mortality except that the 

meaning behind the coefficients in the separable formulation are 

somewhat more general. 

The idea behind the separability assumption is that in any 

one year fishing mortality can be described by two factors, a 

full-recruitment fishing mortality or exploitation pattern and a 

factor to account for the differential effect of the annual 

exploitation pattern on various age groups in the stock. The 

origin of the separability assumption is difficult to pin down. 

Doubleday (1976) is usually credited with introducing this 

concept however evidence of earlier thinking on this topic can be 

demonstrated. On closer examination we find that Doubleday 

references an earlier unpublished manuscript by Pope (1974) in 

which the separability assumption is first proposed. Pope's 

manuscript, which appeared in the literature a year after 

Doubleday's paper (Pope 1977), refers to an even earlier manu­

script by Agger et ale (1971) and credits these researchers as 

the first to cast the stock assessment model into an optimization 

framework based on a separable fishing mortality assumption. 

casting the stock assessment model into a framework of minimizing 

the squared difference between observed and predicted catch 

observations (Agger et ale 1971) dramatically reduced the number 

of parameters in the model, provided a means by which all model 
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parameters could be statistically estimated in a simultaneous 

manner rather than sequentially, and provided a means of simul­

taneously linking data from several cohorts. Introduction of the 

separable formulation of fishing mortality was an important 

conceptual advance because it moved the study of stock assessment 

methodology into the realm of more generalized mathematical 

models and went a long way towards promoting statistical analysis 

of catch-at-age data. 

Since Doubleday's paper, the separability assumption has 

become almost a standard feature of newer models (Paloheimo 1980; 

Pope and Shepherd 1982; Fournier and Archibald 1982; Dupont 1983; 

Deriso et al. 1985). Despite the advantages of the separability 

assumption, one problem that carried over from sequential models 

was the unfortunate fact that catch-at-age data alone do not 

contain enough information to estimate fishing mortality in the 

most recent fishing year with acceptable precision (Doubleday 

1976; Pope 1977; Pope and Shepherd 1982). Also solutions to a 

separable model using catch-at-age data alone are not unique 

because stock abundance and fishing mortality parameters are 

highly negatively correlated. In order to overcome the difficul­

ties associated with trying to simultaneously estimate stock size 

and fishing mortality from catch-at-age data, recent efforts have 

concentrated on developing methods to "calibrate" results from 

stock assessment models with effort data or some other fishery­

independent data (Doubleday 1981; Collie and Sissenwine 1982; 

Laurec and Shepherd 1983; Mohn 1983; Pope and Shepherd 1984; Lewy 
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1985; Pope and Shepherd 1985). This approach is often referred to 

as "tuning VPAs" or sometimes as "integrated analysis". Pope and 

Shepherd (1985) present a comparison of the performance of ten 

different tuning methods. Fournier and Archibald (1982) and more 

recently Deriso et ale (1985) have proposed very generalized 

mathematical models using the separability assumption that allow 

incorporation of fishery-independent data directly into the 

simultaneous parameter estimation procedure. These later two 

methods will be described and compared in later sections. 

1.2 Etymology and Naming Conventions 

Up to this point in the discussion, reference to any 

particular method of stock assessment by commonly used names 

(i.e. VPA, cohort analysis etc.) has deliberately been avoided. 

The reason for this tactic stems from a lack of established 

conventions for associating a name or label with a particular 

method of stock assessment. In fact the quick proliferation of 

methods in recent years has served to exacerbate an already high 

level of confusion regarding the naming convention, which method 

is which, and how one method relates to another. This is unfor­

tunate, especially if one is trying to determine exactly which 

method was used to generate results presented in a scientific 

report. Even though the various methods share many similarities, 

each is distinct with respect to the mathematical model, underly­

ing assumptions, solution algorithm and what parameters the model 

estimates. In order to effectively discuss each method a means of 

referring to them in an unambiguous manner is needed. This 
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section lays out the origins of the various naming conventions 

and proposes, at least for the purposes of this paper, an 

operational scheme for referring to each method. 

Derzhavin did not name his method although Ricker (1971) has 

called it "Derzhavin's Biostatistical Method". Ricker's use of 

the term biostatistical method is based on the original use of 

this term to describe an analysis which combines catch statistics 

with other biological information such as age or size composi­

tion. 

Fry called his method "virtual Population Analysis" (VPA). 

Fry's choice of the title was based on the analogy with the 

virtual image of the physicist - " .•. although it is not the real 

population it is the only one that is seen." (Fry 1957). In 

physics, "virtual" quantities were used frequently in the 

analysis of physical systems and while unmeasurable themselves, 

they were tools that could predict the behavior of real objects. 

Murphy did not give his model a name but it sometimes has 

been referred to as "Murphy's Equation" (Tomlinson 1970). I will 

retain this naming convention. 

Gulland also did not name his model but it is often incor­

rectly referred to as VPA and/or cohort analysis. In order to 

distinguish between Gulland's model and these other two ap­

proaches I will refer to Gulland's model as the "Sequential 

Population Assessment" or "Sequential Population Analysis" (SPA) 

model. 

In this country the name VPA has commonly been used as more 
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of a generic descriptive title rather than a reference to one 

specific method of stock assessment. This is especially true for 

the SPA model, apparently because Gulland (1965) demonstrated 

that his formulation could be based on a table of virtual 

populations in the sense of Fry (1949) (i.e. the sum of the fish 

present in the population that would ultimately appear in the 

catch). Gulland recognized the confusion over the naming conven-

tion. In an attempt to clarify the distinction between his method 

and Fry's Gulland (1977, p. 87) wrote 

"This method of cohort analysis -- often misleadingly 
referred to as 'virtual population analysis' in North 
American studies, from the original derivation of 
Gulland, although the method is quite distinct from 
Fry's usage of virtual population -- is widely used in 
the North Atlantic". 

Pope called his approximation to the SPA model "Cohort 

Analysis" (CA). Ricker (1975, p. 194) claims that the name 

cohort analysis had earlier been applied to SPA models but does 

not provide any references. 

In recent history the two names VPA and cohort analysis 

are used more or less interchangeably in the fisheries litera-

ture even though the two names may refer to anyone of three 

different but similar methods of stock assessment; VPA, SPA, 

and CA. The claim that confusion exists in the naming conven-

tion can best be demonstrated by examining how the two names 

are used in the fisheries literature. Often both names are used 

at the same time, apparently to avoid confusion (Ulltang 1977; 

Sims 1982b, 1984). Other times one name is preferred over the 

other (Aldenberg 1975; Garrod 1976), or the names are inten-
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tionally avoided altogether (Ricker 1971). 

Because this paper deals with several stock assessment 

methods the following naming conventions will be adhered to in 

subsequent discussion. Age-structured stock assessment or age­

structured stock analysis (ASA) techniques will be used as a 

generic name to refer to any analytic tool used by fisheries 

managers to estimate fishing mortality rates and absolute 

population abundance of commercially exploited fish stocks 

given catch-at-age data and possibly data independent of the 

commercial fishery. Naming conventions for a particular method 

of ASA will be as follows: as originally proposed by Ricker 

(1971, 1975) "Derzhavin's Biostatistical Method" (DBM) refers 

to the method of Derzhavin (1922); "VPA" (VPA) refers to Fry's 

modification of Derzhavin's method (Fry 1949, 1957); "Murphy's 

Equation" (ME) refers to the catch ratio model using a forward 

solution (Murphy 1965); "Sequential Population Assessment" 

(SPA) model refers to Gulland's model using a backward solution 

(Gulland 1965; Garrod 1967); "Cohort Analysis" (CA) refers to 

Pope's approximation to SPA (Pope 1972); "Doubleday's Model" 

(DO) refers to the separable model of Doubleday (1976); 

"Paloheimo's Model" (PLO) refers to the separable log CPUE 

model of Paloheimo (1980); "Pope and Shepherd's Model" (PS) 

refers to the separable model of Pope and Shepherd (1982); 

"Fournier and Archibald's Model" (FA) refers to the separable 

model of Fournier and Archibald (1982); "Dupont's Model" (DU) 

refers to the separable model of Dupont (1983); and "CAGEAN" 
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(CAGEAN) refers to the "separable Catch-AGE-ANalysis" model of 

Deriso et ale (1985). 

1.3 The Need for ASA MeL~ods 

Early fisheries management relied primarily on theoretical 

advances made in the 1940's and 1950's by Ricker and Beverton 

and Holt. Management regulations developed from these advances 

in fishery science were based on the assumption that catch per 

unit of effort (CPUE) could be used as an index of relative 

abundance in the assessment of total mortality. Management 

policies such as mesh size regulations worked well during the 

era when fishing fleets were relatively unchanging with respect 

to their design, fishing patterns and efficiency. However, 

rapid changes in fishing technology, increases in fishing 

effort in the late 1960's and 1970's and declines in the 

production of numerous stocks caused the validity of an assumed 

relationship between CPUE and stock abundance to be questioned. 

In mUltispecies fisheries it was even more difficult to 

maintain a time series of consistent CPUE estimates because of 

the inability to separate directed effort from total effort or 

interannual changes in the availability of the target species. 

As a result of these problems, concern began to be 

expressed as to the effectiveness of the regulatory mechanisms 

mentioned earlier. Because of shifts toward quota management 

the need developed to describe stock numbers in absolute 

numbers rather than by a relative index which had variable 

calibration between stock areas. Furthermore, in fisheries 
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where partially recruited age classes contributed a significant 

part to the overall catch, estimates of fishing mortality on 

these groups critically needed to be included in management 

regulations. 

In summary, problems associated with CPUE-based fisheries 

management models directly contributed to the development and 

application of theory to estima~e fishing mortality and 

population abundance without reliance on CPUE. 

2.0 BACKGROUND 

2.1 Data Sources 

In describing characteristics of fisheries data typically 

submitted to age-structured stock assessment methods, a 

hypothetical example will be used so that concrete examples can 

be presented. 

In most situations catch-at-age data are not directly 

collected from the fishery. Rather these data are generated by 

combining some aggregate measure of total commercial catch with 

information derived from biological sampling. Total catch is 

usually tabulated in terms of either total biomass or total 

numbers. Biological information is collected by sampling a 

small portion of the overall catch. Data usually consists of 

length and weight measurements. Also a scale, otolith or fin 

ray is collected in the biological sample. These structures are 

used to determine an age composition estimate. 

The usual data collection process proceeds as follows. In 

each year, an estimate of the total catch of fish taken by the 
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fishery, O(y), is tabulated. Part of the total catch is 

randomly sampled and aged. From the random sample, a fraction 

of the catch sample, H(a,y), is observed to be of age a in year 

y. Let C(y) be the true catch in year y and G(a,y) be the true 

age composition. The true catch-at-age can be calculated from 

the product [C(y) G(a,y)] but since C(y) and G(a,y) are unknown 

we can only estimate the catch-at-age by C(a,y)=O(y) H(a,y) if 

catch is recorded in numbers, or C(a,y)=[O(y) H(a,y)]/W(a) if 

the catch is recorded in biomass. 

Information other than catch-at-age data can be incor­

porated into an age-structured stock assessment model. Probably 

the most common additional information available from the 

fishery is annual effort data. One value is collected each year 

and represents cumulative effort expended over the fishing 

season. sometimes effort data can be stratified by gear types 

or vessel classes. If differences in gear/vessel efficiency 

exist, effort standardization will be required to convert 

nominal effort to effective effort. Other data sources indepen­

dent of the commercial fishery that may provide information on 

stock dynamics include 1) estimates of population abundance 

such as CPUE indicies, 2) population biomass estimates from 

acoustic or research surveys and 3) information from biological 

sampling such as fecundity-at-age data and weight-at-age data. 

2.1.1 Description of Catch-at-age Data. Table 1 shows a 

catch-at-age data set from a hypothetical fishery which 

operated for years 1977 through 1981. Shown in the borders of 
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Table 1 are absolute age (left) and year (top) and relative age 

(right) and year (bottom) indicies. Each entry in the catch-at­

age matrix, C(a,y), represents the catch of one age group (a) 

in one year (y). Each row in the matrix represents the con­

tribution of one age group from different cohorts to the annual 

catch over a series of years. The first exploited age (r) is 

age two and the oldest exploited age (s) is age nine. The total 

number of age groups vulnerable to the fishery (A) is eight 

(A=s-r+1). Each column in the matrix represents the aged catch 

from one fishing year. The number of years the fishery was 

prosecuted (Y) is five (Y=ly-fy+1). The total number of catch 

observations (n) collected over the 1977-19S1 interval is forty 

(n=A*Y) . 

Several cohorts are represented in the catch-at-age 

matrix. Cohorts consist of individuals in the population that 

share the same birth year. Each diagonal in the catch-at-age 

matrix, moving from upper left to lower right, represents one 

cohort or year class. For example, the catch observations 

C(2,7S), C(3,79), C(4,SO) and C(S,Sl) are all from the 1976 

year-class. The total number of cohorts in the matrix (K) is 

twelve (K=A+Y-1) representing year-classes 1965 through 1979. 

Each column in the catch-at-age matrix represents members of 

the population that share the same death year. Table 2 shows 

the hypothetical catch-at-age data organized by cohort. Note 

that each member of the population can be assigned to anyone 

of k distinct cohorts. Also, each cohort consists of a dif-
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ferent number of catch observations. For example, two cohorts 

consist of only one catch observation; the catch of nine year­

olds in 1977 is the only catch observation from the 1968 year 

class and the catch of two year-olds in 1981 is the only catch 

observation from the 1979 year-class. Also the 1972 through 

1975 year-classes each are made up of five catch observations. 

Note also that each cohort also has a unique combination of 

starting/ending age and year indicies. 

The cohorts making up the catch-at-age matrix can be 

further classified as to whether they are completely fished out 

or not. A completely fished out cohort means that, relative to 

the current fishing year, no individual from that cohort will 

contribute to the catch in the next fishing year. For example, 

the 1970 year-class contributed to the fishery as seven year­

olds in 1977, eight year-olds in 1978, and nine year-olds in 

1979. In 1980 the 1970 year-class ceased to contribute to the 

catch, thus it was completely fished out in 1979. Of the eight 

cohorts contributing to the catch in 1981, the 1972 can be 

considered completely fished out while individuals from year­

classes 1973 through 1979 will appear in the 1982 catch. 

2.2 Basic Governing Equations of Age-structured Populations 

In age-structured models events at the population level 

are studied by analyzing the fate of individual fish or similar 

age groups. This is in contrast to stock production models 

(Graham 1935, 1939; Schaefer 1954, 1957) where the stock is 

treated as a single entity. Age-structured models explicitly 
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consider the separate biological processes that alter fish 

population abundance. These include mechanisms to describe the 

processes of reproduction, mortality losses due to natural 

causes and from man's fishing activity. Usually each process is 

monitored independently for each age group by treating each 

process as a stand-alone submodel. 

ASA models do not provide an explicit means of modeling 

the birth rate although there are some exceptions which will 

discussed later. Most ASA models estimate the size of a year 

class at the time when members of the cohort first appear in 

the catch. This is often referred to as recruitment to the 

fishery. Using this approach avoids problems associated with 

estimating birth and juvenile mortality rates. 

When describing the significant mortality factors impact­

ing fish populations, the usual convention is to assume the 

total mortality rate (Z) is the sum of a natural mortality rate 

(M) and a rate due to fishing (F) 

Z = F + M [lJ 

The natural mortality component of total mortality is the 

most difficult to quantify. Usually this mortality component is 

a "catch-all" mortality that includes all sources of mortality 

not related to directed fishing activity. Uncertainty regarding 

the exact relationship of natural mortality to an animals age, 

nutritional status, size etc. is usually dealt with by simply 

assuming that death from natural causes is constant for all 

individuals in the population. When fishing mortality is 
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considered in the aggregate, it does not include any random 

components and does not vary by age or year. 

These assumptions are clearly not biologically reasonable 

since from an intuitive standpoint mortality should vary with 

age because of age-specific variations in predation pressures, 

disease, and iter/intra-specific competition. Unfortunately 

data are rarely available to further refine the natural 

mortality assumption and as a first approximation a constant 

value is usually employed. The so-called separability assump­

tion (Agger et ale 1971; Doubleday 1976; Pope 1977) permits a 

more realistic formulation of fishing mortality by providing an 

explicit accounting of factors that may cause F to vary by age 

and/or year. Fournier and Archibald (1982) provide a insightful 

justification for the separable fishing mortality formulation. 

They suggest that the level of fishing mortality depends on an 

interplay between fishermen and fish. No matter how many fish 

there are, the fishing mortality will be zero if fishermen do 

not fish. If fish are unavailable to the fishery or abundance 

is low, fishing mortality will also be zero regardless of what 

the fishermen do. 

The separability assumption is usually written as 

F(a,y) = sea) fey) [2] 

which expresses fishing mortality as a product of two quan­

tities, one representing an age-specific factor and one a year­

specific factor. Equation [2] can also be written in a loga­

rithmic form as 
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1 

In[F(a,y)] = In[s(a)] + In[f(y)] 

= v(a) + e(y) [3] 

which expresses fishing mortality as a sum of two quantities 

rather than as a product. A nonlinear equation for fishing 

mortality can then be written as 

F(a,y) = exp[v(a) + e(y)] [ 4 ] 

= eXP[ln[S(a)] + In[f(Y)]] [5] 

The separability formulation has an inherent problem. 

There is an indeterminacy in the model since sea) and fey) 

affect the predicted catches through their sum (v(a) + e(y». 

For example veal could increase and e(y) decrease by a constant 

without changing the value of In[F(a,y)]. This will be dis-

cussed later. 

The age-specific factor in the separability formulation is 

referred to as availability (Doubleday 1976), partial recruit-

ment (Pope 1977), exploitation pattern (Pope and Shepherd 

1982), relative level of fishing vulnerability (Fournier and 

Archibald 1982) or the selectivity coefficient (Deriso et ale 

1985). The year-specific factor is referred to as the effective 

effort multiplier (Doubleday 1976), fully recruited fishing 

mortality (Pope 1977; Deriso et ale 1985) or fully exploited 

fishing mortality (Pope and Shepherd 1982). 

In comparison to [1] a more realistic representation of 

total mortality would include a separable fishing mortality and 

a constant natural mortality rate factor. Total mortality can 
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then be written 

Z(a,y) = F(a,y) + M [6] 

2.2.1 Exponential Survival Model. The exponential survival 

model has a distinguished pedigree, dating back to the mid 17th 

century. Indeed one of the first references to this equation 

was in a very early paper by Euler in 1740. Much of the 

mathematical theory on contemporary age-structured survival 

models was developed by A. J. Lotka (1925). Lotka's original 

formulation was a continuous-time model developed for applica­

tion to human populations. In fisheries applications, however, 

the discrete-time version of the model is used since in fish 

populations generations are separate and the aging process is 

usually considered to take place in discrete steps of one year. 

The tracking of the population in discrete age intervals 

precludes the need to account for growth if average weight-at­

age data is known. 

The exponential survival model describes the change in 

numbers that take place in the population due to natural and 

fishing mortality factors. The theory behind the model (see 

Ricker 1975) results in the familiar recursive relationship 

N(a+l,y+l) = N(a,y) exp[-F(a,y)-M] [7] 

which describes survival for two successive ages in a cohort. 

Equation [7] can be generalized to follow anyone cohort over 

all years it is vulnerable to the fishery by explicitly 

providing indexes for age (a), year (y), and past age groups 

(if any) over which the cohort was exploited (i). Also it is 
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assumed that fish recruit to the fishery at a fixed age (r). 

This is often referred to as "knife-edged" recruitment (Deriso 

1980). The relationship between the time indicies indicate that 

an age a fish, alive in year y, was born in year y-a and 

recruited to the fishery at age r in year y-a+r. If R repre-

sents the original number of individuals making up a cohort 

when the cohort first entered the exploitable phase (i.e. a ~ 

r) then equation [7] can be written 

N(a,y) = R(r,y-a+r) exp [ _~~l[F(i,y-a+i)+M] ] [8] 
1=r 

The total number of individuals in the population in any year 

is the sum of all age groups 

s 
N(y) = ~ N(a,y) [9] 

a=r 

and the total biomass of the population is 

s 
B(y) = ~ N(a,y) Weal [10] 

a=r 

2.2.2 Catch Equation. The catch equation of Baranov (1918) 

is basic in most approaches to solving fish population dynamics 

problems. The equation describes the relationship between the 

rate at which fish are caught and the numbers alive in the 

catchable population. The catch equation combines a differen-

tial equation model of the catch process and the exponential 

survival model. Once again the theory behind the catch equation 

is described in many population dynamics texts (Ricker 1975; 

Gulland 1977; Seber 1982). The model is usually written 
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C(a,y) = F(a,y) N(a,y) [l-eXP [-F(a,y)-M]] 
F(a,Y)+M [11] 

The total catch in any year is the sum of the catch for all age 

groups in the population 

s 
C(y) = ~ C(a,y) [12] 

a=r 

and the total catch biomass is given by 

s 
CB(y) = ~ C(a,y) W(a) [13] 

a=r 

2.2.3 Availability. The term availability, first intro-

duced by Widrig (1954), refers to the accessibility of the fish 

in the population to the fishing gear. In the fisheries 

literature availability is often confused or used interchan-

geably with the terms selectivity and/or catchability. Some-

times the term vulnerability is used instead of catchability. 

These terms represent three important concepts in fisheries 

science. Because the availability concept is being applied in 

some newer models they will be explained here. 

Fournier and Doonan (1987) define availability as the 

proportion of individuals in an age group with a positive 

probability of being caught. Availability can alternatively be 

defined as that proportion of the unit stock present on the 

fishing grounds. Normally we assume that all fish are equally 

available to capture (i.e. availability=l). Conceivably a 

situation could arise where a cohort could consist of two 

components, one segment that was available to the fishery and a 
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second segment that was unavailable. This separation could 

arise because of migratory behavior or because part of the 

cohort resides in habitats not reached by the fishing gear. The 

concept of selectivity refers to idea that separate age groups 

experience differential mortality once they come within the 

influence of the fishing gear. Selectivity differences arise 

because of age/size related behavioral characteristics of the 

exploited stock. They are a result of partial recruitment of a 

year class into the fishery and selectivity of the gear. The 

concept of catchability (vulnerability) relates to the probabi-

lity that, once available, a fish will be caught by one unit of 

effort. 

Equation [7] can easily be modified to incorporate an 

availability feature if this is appropriate to the fishery 

being analyzed. If we assume a separable fishing mortality and 

we let P represent the availability (assume P is constant for 

all age groups) then [7] can be modified to 

N(a+l,y+l) = 

[N(a,y) P eXP[-F(a,y)-M]] + [N(a,y) (I-P) eXP(-M)] [14] 

The first term on the right hand side represents the fished 

segment and the second term the unfished segment. Further, [11] 

can also be modified to give 

C(a,y) = 
P F(a,y) 
F(a,y)+M Nea,y) {1-exp[-F(a,y)-M]} [15] 

Most ASA models assume that the fished stock is homogene-

ous (i.e. availability for all age groups is assumed to be 1), 
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however there are exceptions. Murphy (1965) was perhaps one of 

the first researchers to propose an ASA model that incorporated 

an availability feature. More recently, MacCal1 (1986) uses 

[14] and [15] as a starting point from which to derive a useful 

approximation similar to Pope's cohort analysis. Also Fournier 

and Doonan (1987) propose a model that incorporates age­

dependent selectivity, age-dependent availability and catcha­

bility. 

2.2.5 ASA structural Models. structural models refer to 

the exact mathematical expressions that result from combining 

equations [7] and [11] in various ways. The structural models 

used in the various ASA methods are the SPA model, log catch 

model, catch ratio model, log catch ratio model, and the log 

CPUE model. Each structural model will be discussed in more 

detail as the ASA methods described later. A summary of which 

model underlies each ASA model is provided in Table 7. 

3.0 DESCRIPTION OF ASA METHODS - NO EFFORT DATA REQUIRED 

3.1 Derzhavin's Biostatistical Method 

The model of Derzhavin (1922) uses annual catch values and 

average age composition values to estimate the maximum ex­

ploitation rate and also the minimum population abundance. 

3.1.1 The Model. Derzhavin's model describes the popula­

tion at the start of a reference year as the sum of the catch 

in the reference year plus the catch in the following year 

diminished by the number of fish that were not in the popula­

tion in the reference year. The summation proceeds until either 
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the end of the catch time series is reached or the maximum 

number of age groups are accounted for. Derzhavin's model 

assumes that natural mortality is insignificant (i.e. M=O). If 

this assumption is true, then the catch must estimate the total 

population. If in reality M>O but we assume that M=O, then we 

have a minimum population estimate. The expression for the 

minimum population at the start of any reference year (cf. 

Derzhavin, p. 15) is 

N(y) = [l-H(O,y)] O(y) + [l-H(0,y)-H(1,y)] O(Y+1) + 

[l-H(0,y)-H(1,y)-H(2,y)] O(y+2) + 

[l-H(0,y)-H(1,y)-H(2,y)- ... -H(s-1,y)] O(y+s-1) [16] 

where H(a,y) is the fraction of age a fish in the catch of year 

y (i.e. the estimated age composition) and O(y) is the total 

estimated catch (numbers) in year y. These values are assumed 

to be constant for each age from year to year so that 

H(a,y)=H(a,y+1)=H(a,y+2) etc. Also H(O,y), the percentage of 

young of the year in the catch, is assumed to be equal to O. An 

expression similar to [16] can be found in Baranov (1918, p. 

100) . 

3.1.2 Objective Function. This method does not have an 

objective function. 

3.1.3 Parameter Estimation Procedure. Minimum population 

estimates are calculated directly from [16]. The rate of 

fishing mortality, called the biostatistical rate of exploita­

tion (Ricker 1971, 1975), is calculated as the ratio of the 

catch of fish of a given age in a given year to the utilized 

stock of that age at the start of the year. This can be 
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calculated for the whole stock or for individual ages separate-

lye since the population estimate is a minimum, the calculated 

biostatistical rate of exploitation will always be greater than 

the "true" rate of exploitation. 

Over one unit of time, [11] can be rearranged (ignoring 

indexes) to get 

C - = 1 - exp(-F) N [17] 

since all mortality is attributed to fishing (i.e. M=O). From 

[17] the maximum rate of fishing mortality can be estimated 

from 

C 
F = In[1 - -] N 

3.2 virtual Population Analysis 

[18J 

The VPA model (Fry 1949, 1957) uses annual catch values 

and annual age composition values to estimate the maximum 

exploitation rate and the minimum absolute population abun-

dance. 

3.2.1 The Model. Fry's VPA model is almost identical to 

Derzhavin's. The only difference is that instead using one 

average age composition estimate for all years, the VPA model 

uses a separate age composition estimate for each year. The 

catch-at-age in any year is given by C(a,y)=O(y)H(a,y), where 

H(a,y) is not equal to H(a,y+l). The virtual population for any 

age and year is calculated as (cf. Fry 1949, equation 1 in 

appendix, p. 66) is 

min(A,Y) 
V(a,y) = ~ C(a+i-l,y+i-1) 

i=1 
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3.2.2 Objective Function. This method does not have an 

objective function. 

3.2.3 Parameter Estimation Procedure. Estimates of the 

virtual population and the maximum rate of exploitation proceed 

as described in Section 3.1.3. 

3.3 Gulland's SPA Model 

Input data required by the model of Gulland (1965) (also 

see Garrod 1967) and estimated parameters are summarized in 

Table 8. Gulland used a backward solution to the nonlinear 

sequential equations (tabulating parameter estimates from the 

oldest age group back in time to the youngest recruiting age 

group in the cohort). Also the SPA model can be expressed in 

terms of the virtual population. 

3.3.1 The Model. In the SPA model the catch equation of 

Baranov (1918) [11] and the exponential survival model [7] are 

combined together without reference to virtual populations to 

give 

N(a+1,y+1) _ 
C(a,y) -

[F(a,y)+M] exp[-F(a,y)-M] 
F(a,y) {l-exp[-F(a,y)-M]} [20] 

For any cohort, Gulland's SPA model expresses the ratio of 

population abundance to catch as a nonlinear function of 

fishing mortality. There is an important relationship in time 

between C(a,y) and N(a+1,y+l) in that the ratio of these two 

quantities references the same point in time. C(a,y) represents 

those fish, age a, caught up until the end of the year y while 

the stock of fish of age a+l, N(a+l,y+l), represents the 
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population exploited from the beginning of the year y+l. Note 

that this is the same population left from the end of previous 

year. Gulland (1965) defines this ratio as the catch during the 

year expressed as a proportion of the population at the end of 

year. 

For each cohort, the total number of ages for which catch 

data are available, A, yields A equations similar to [20J that 

contain A+2 unknown parameters. As stated, the model has too 

many parameters. Gulland's solution to this problem was to 

provide an estimate of M and a terminal fishing mortality 

value. Providing values for two parameters allows explicit but 

non-unique solutions to the linked system of equations to be 

calculated. 

3.3.2 Objective Function. Because equation [20J is 

nonlinear in F(a,y) an iterative procedure is required to solve 

the system of linked equations. First sUbstitute 

Z(a,y)=[F(a,y)+MJ and let S(a,y)=exp[-Z(a,y)J. Then in Gul-

land's model, the objective function to be minimized at each 

age step in the iterative procedure can be written 

_ Z(a,y) S(a,y) _ N(a+l,y+l) [21J 
[[F(a,y)J - F(a,y) [l-S(a,Y)J C(a,y) = 0 

3.3.3 Parameter Estimation Procedure. The Newton-Raphson 

method is one of several methods that can be used to solve [21J 

(Doubleday 1975a; Miller 1977; Mesnil 1978; Sims 1982a). By 

iteratively correcting a trial value of F(a,y), the Newton-

Raphson method can provide an value of F(a,y) that causes 

[[F(a,y)J=O. In the first iteration, the procedure usually 
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starts out with a trial value of fishing mortality F(a,y) (1) . 

The derivative of equation [21] with respect to F(a,y) is 

d f[F(a,y)] = f'[F(a,y)] = 
d F(a,y) 

S(a,y) [Z(a,y) 
F (a, y) [ 1-S (a, y) ] 1 - F (a, y) - . Z (a, y) -

Z(a,y) S(a,y) ] [22] 
[l-S(a,y)] 

Equation [22] is evaluated at F(a,y)=F(a,y) (1) and estimates 

of F(a,y) are updated for the next iteration using the equation 

F(a,y) (i+1)= F(a,y) (i) -
f[F(a,y)] (i) 

f' [F(a,y)] (i) 

Iterations continue until IF(a,y) (i+1) - F(a,y) (i) I ~ some 

stopping criteria. 

[23] 

If C(a,y), F(a,y), and M are known, then [7] and [11] can 

be manipulated together (iterated) in a backwards or hindcast 

mode to yield estimates of N(a,y) and ~(a,y) for all past years 

of life of the cohort. Parameters are estimated separately at 

each stage of the procedure by applying a root finding al­

gorithm to equation [21]. The procedure begins by supplying an 

estimate of terminal fishing mortality for the oldest age in a 

cohort, F(amax,y), and observed catch for the oldest age in the 

cohort, C(amax,y). Then [11] is used to solve for the terminal 

population, N(amax,y). since C(amax-1,y-1), N(amax-1,y-1) and M 

are known, [20] is used to solve for F(amax-1,y-1). Finally [7] 

can be used to estimate N(amax-1,y-1) and the procedure is 

repeated for the next youngest age group until the youngest age 

in the cohort is done. A key point to remember about the 

solution procedure to this model is that final parameter values 
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derived from the system of linked equations are not unique. If 

one starts with a different terminal fishing mortality value, 

one can obtain a totally different solution. 

The mechanics of sequential computation of these two 

equations was described by Ricker (1948) and the method was 

popularized by Murphy (1965) and Gulland (1965). When estimat-

ing the terminal population, equation [11] can take two forms 

depending on whether the cohort is completely fished out or 

not. If the cohort is not completely fished out (i.e. there are 

survivors from the cohort that will show up in the catch one 

year older in the following year) then [11] holds. If the 

cohort is completely fished out (i.e. there are no survivors or 

the fish has passed beyond the exploited phase), then [11] is 

modified to 

C(a,y) = F(a,y) N(a,y) 
F(a,y)+M [24] 

In the procedure described above, calculations are carried 

out without reference to Fry's virtual population. However in 

Gulland's original description of his method (Gulland 1965; 

Garrod 1967) he showed that the solution to equation [20] (cf. 

Garrod 1967, appendix B, equation A) could be related to the 

virtual population. Gulland showed that the ratio of the 

population at the end of the year to the catch during the year 

(N(a+1,y+1)jC(a,y» could be expressed as a fraction of the 

apparent survival during the year (as estimated from virtual 

populations) and the exploitation rate applicable to the fish 

alive at the end of the year. In addition to the above referen-
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ces, Gulland's correction to the VPA is described in Cushing 

(1975, pg. 149-150). 

Much work has been done on the behavior of this method 

under failure of the assumptions: 1) Results of the analysis 

are insensitive to errors in the estimated or assumed value of 

terminal F, but only when fishing accounts for about 50% or 

more of the total deaths (i.e. the ratio F/Z is in the range 

0.5-1.0) (Jones 1981) or cumulative F over the life of a cohort 

is greater than Z (Pope 1972); 2) Errors in the estimates of 

N(a,y) and F(a,y) caused by random fluctuations in M (when M 

assumed constant) are likely to be small (6%) when M fluctuates 

moderately (Ulltang 1977; Pope 1979b), although this would tend 

to be more severe on older animals since they occur in rela­

tively smaller numbers. Agger et ale (1973) considered the 

effect of uncertainty in the value of a presumed constant 

natural mortality rate. They estimated that the bias in F would 

be 25% if M is known with a mean error of 0.1; 3) Results are 

relatively insensitive to seasonal trends in M and F (Ulltang 

1977); and 4) Effects of unevenly distributed catches (i.e. the 

intra-year frequency distribution of catches is not constant) 

on the relative error in estimates of N(a,y) are not severe « 

10%) unless the majority of the catch is taken at the beginning 

or end of the year and M is large (0.6) and/or F is high (0.6) 

and (Sims 1982b). These results also apply to Murphy's Equation 

and Pope's Cohort Analysis which are described below. 

3.4 Murphy's Equation 
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Murphy's Equation (Murphy 1965) is similar to Gulland's 

SPA model. Input data required by the model and estimated 

parameters are summarized in Table 8. Murphy used a foreword 

solution to the nonlinear equations (tabulating parameter 

estimates from the youngest age group foreword in time to the 

oldest recruiting age group in the cohort). 

3.4.1 The Model. Murphy's catch-ratio model consists of 

taking equation [11] and creating a ratio of catches from the 

same cohort in two successive seasons. The catch ratio model is 

density-independent thus it is only a function of mortalities. 

since the model represents a ratio of catches, the ratio of 

original population abundances in succeeding years can be 

written 

exp [ 
a'-l ] R(r,y'-a'+r) - ~ [F(i,y'-a'+i)+M] 

N(a',y') i=r 
= N(a,y) 

exp [ 
a-l ] R(r,y-a+r) - ~ [F(i,y-a+i)+M] 
i=r 

[25] 

= exp[-Z(a,y)] 

where y'=y+1 and a'=a+l. 

If we define (for ease of exposition) 

U = exp[-F(a,y)-M] = exp[-Z(a,y)] and 

V = exp[-F(a+1,y+1)-M] = exp[-Z(a+l,y+1)] 

then Murphy's equation (cf. Murphy 1965, equation 5) can be 

completely expressed as a function of the mortalities in year y 

and year y+1. It is written 
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C(a+1,y+1) 
C(a,y) 

= U F(a+1,y+1) Z(a,y) (l-V) 
F(a,y) Z(a+1,y+1) (l-U) [26] 

Note that the catch ratio can also by calculated from the ratio 

C(a,y)/C(a+1,y+1) . 

For each cohort, the total number of ages for which catch 

data are available, A, yields A-1 equations similar to [26] 

that contain A+1 unknown parameters. Explicit solutions to the 

linked system of equations can be derived given the catch 

ratio, an estimate of the natural mortality rate, and an 

estimate of a terminal F. Once these values are provided, 

estimates of F(a+1,y+1) can be calculated by an iterative 

method. 

3.4.2 Objective Function. Since equation [26] is nonlinear 

in F, an iterative procedure is required to solve the system of 

linked equations. The objective function to be minimized at 

each age step can be written 

f[F(a,+1,y+1)] = 
U F(a+1,y+1) Z(a,y) (l-V) _ C(a+1,y+1) = 0 [27] 

F(a,y) Z(a+1,y+1) (l-U) C(a,y) 

3.4.3 Parameter Estimation Procedure. The parameter 

estimation procedure employed in Murphy's method is essentially 

the same as that used in Gulland's model except for slight 

differences in the manipulative procedures used to reach a 

solution. Where Gulland assumes M is known and guesses 

F(amax,y), Murphy assumes M is known and guesses F(amin,y). 

Once the first terminal F is provided, each method proceeds to 

estimate the remaining F's and then the population size in a 

similar manner. At each age, values of F are corrected by an 
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iterative procedure until the objective function is equal to 

zero. Gulland's model uses a backward solution (working from 

the oldest age in the cohort towards the youngest age) while 

Murphy uses a forward solution (working from the youngest age 

to the oldest). 

The derivative of equation [27] with respect to F(a+1,y+1) 

(substituting Z=F+M) is 

d f[F(a+1,y+1)] = f'[F(a+1,y+1)] = 
d F(a+1,y+1) 

U Z (a,y) (I-V) [ 
Z(a+l,y+1) F(a,y) (I-V) 1 - F(a+1,y+1) 

V - F(a+1,y+1)] [28] 
Z (a+1,y+1) 

As in Gulland's SPA model, equation [11] can take two forms 

depending on if the oldest age in the cohort is completely 

fished out or not. See equation [24] in Section 3.3.3. 

3.5 Cohort Analysis 

The cohort analysis model (Pope 1972) is similar to 

Murphy's Equation and Gulland's SPA model except that Pope 

introduced an approximation for the exponential survival model. 

Input data required by the model and estimated parameters are 

summarized in Table 8. 

3.5.1 The Model. Pope (1972) simplified the SPA model by 

introducing a discrete approximation to the continuous exponen-

tial survival model [7] 

exp(M/2) = [F(a,y)+Ml {l-eXp[-F(a,y)]l 
F(a,y) {l-exp[-F(a,y)-M]} 

Agger et al. (1973) point out that Pope (1971) based 

cohort analysis on the approximation 
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sinh [F/2] ~ F 
sinh [(F+M)/2] F+M [30] 

Pope's approximation assumes that the entire catch is taken 

exactly midway through the year. Pope (1972) shows the ap-

proximation is usable at least up to values of M=0.3 and F=1.2. 

As pointed out by Jones (1981), these mortality limits actually 

relate to Mdt and Fdt, where dt is the length of the time 

interval used. Normally dt is one year. If M and F are larger 

than the limits specified by Pope, cohort analysis is still 

usable if the catch-at-age data is divided into intervals of 

less than one year. 

Recently MacCal1 (1986) shows that 

M [31] 1-exp(-M) 

is a slightly better approximation compared to exp(M/2). 

MacCall's new approximation becomes better as M get larger, 

thus extending the range of mortality rates under which the 

approximation proves useful. MacCall's approximation is also 

better when the assumption that all the catch is taken half way 

through the year (i.e. there is seasonality in the fisheries) 

is not valid. 

Siddeek (1982) identified an error in equation 2.4 of 

Pope's 1972 paper and presents a correction. The error, 

acknowledged in Pope (1982), deals with the expression describ-

ing the error introduced into cohort analysis due to an 

incorrect choice of terminal fishing mortality. 

3.5.2 Objective Function. This method does not have an 
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objective function. 

3.5.3 Parameter Estimation Procedure. with Pope's cohort 

analysis catch data are literally transformed into population 

abundance estimates. Using a backward solution, the terminal F 

and catch for the oldest age in the terminal year are used to 

calculate the terminal population using [11] or [24] depending 

on if the oldest age in the cohort is completely fished out or 

not. Then the remaining catches from the cohort and the 

equation (cf. Pope 1972, equation 1.2) 

N(a,y) = N(a+1,y+1) exp(M) + C(a,y) exp(M/2) [32] 

are used to calculate the remaining abundance levels for the 

cohort. Abundance estimates from [32] are used to calculate 

estimates of fishing mortality directly from the expression 

(cf. Pope 1972, equation 1.8) 

F(a,y) = In[ N(a,y) ] - M 
N(a+1,y+1) 

Parameters are estimated similarly to Murphy's equation and 

Gulland's SPA model. The only difference is that population 

abundance and fishing mortality estimates are calculated in 

[33] 

reverse order compared to Murphy's equation or Gulland's SPA 

model. 

3.6 Doubleday's Model 

Input data required by the model and estimated parameters 

are summarized in Table 8. Age-specific selectivities are 

estimated for all ages but the oldest, and effective effort 

parameters are estimated for all years but the last. 
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3.6.1 The Model. The model of Doubleday (1976) is based on 

the log catch model and the log catch ratio model. Both 

incorporate a separable fishing mortality formulation. Random 

variation is added to the catch equation by assuming that the 

observed catch is distributed lognormally. The stochastic 

counterpart to [11] is 

C(a,y) exp[€c(a,y)] = N(a,y) F(a,y) {l-exp[-F(a y)-M]} [34] 
F(a,y)+M ' 

where €c(a,y) is random variable distributed N(O,ac
2

) with 

constant variance and exp[€c(a,y)] is a lognormally distributed 

random variable. 

The model is derived by substituting [8] for N(a,y) into 

[11] to provide an equation that relates catch for any age and 

year to its earlier recruitment and an exploitation history. 

_ F(a,y) 
C(a,y) exp[€c(a,y)] - F(a,y}+M {l-exp[-F(a,y}-M]} 

R(r,y-a+r) exp [ _~~l[F(i,y-a+i)+M] ] [35] 
1=r 

When the stochastic catch equation is combined with the 

exponential survival model, the resulting equation is usually 

linearized by taking the natural log transform. On the log 

scale the errors are additive and are distributed normally. 

Taking logs of both sides of [35] gives 

In[C(a,y}] = In[R(r,y-a+r}] - (a-r}M + In[F(a,y)] -

~~1[ F(i,y-a+i} ] _ In[F(a,y)+M] + 
1=r 
In[l-exp(-F(a,y)-M)] + €c(a,y) [36] 

In the first of Doubleday's models, equations [3] and [4] 
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are substituted for F(a,y) in [36] to give (cf. Doubleday 1976, 

equation 7) 

In[C(a,y)] = In[R(r,y-a+r)] - (a-r)M + [v(a)+e(y)] -

a-1[ ] .~ exp[v(i)+e(y-a+i)] 
1=r 

- In[eXp[v(a)+e(y)]+M] + 

where €c(a,y) is defined earlier. Equation [37] is nearly 

linear in the range 0.01 ~ F(a,y) ~ 2.72. 

A second equation, the log catch ratio model, is also 

[37] 

used. Parameter values estimated from the log catch ratio model 

are used to supply starting values required by the iterative 

procedure when parameters from the log catch model are being 

estimated. A catch ratio model is constructed from [35] similar 

to [26]. Equations [3] and [4] are substituted for F(a,y) in 

[35] and the natural log is taken to give (cf. Doubleday 1976, 

p. 73, no equation number given) 

In[c(;l~:~ll)J = [v(a)+e(y)] - In[eXp[v(a)+e(y)]+M] + 

In[1-exp[-exp[v(a1+e(Yll-M]] + [exp[v(a1+e(Yll+M] -

[v(a+1)+e(y+1)] + In[eXp [V(a+1)+e(Y+1)]+M] -

In[1-exp[-exp[V(a+l1+e(Y+111-M]] + 'c(a,Yl [38] 

3.6.2 Objective Function. The objective function is the 

sum of squared differences between the observed log catch-at-

age data and the log catch-at-age data predicted by [37]. The 
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parameter estimation procedure seeks to minimize 

Y A [ ] 2 
~ ~ pred In[C(a,y)] - obs In[C(a,y)] 

y=l a=l 
[39] 

3.6.3 Parameter Estimation Procedure. Doubleday uses a 

process of iterative linear approximation and estimation 

(linearization) to obtain least squares estimates of the 

parameters. This is a rather crude form of more recent non-

linear regression least squares algorithms. The linearization 

method along with other more recent nonlinear regression 

methods are described by Bard (1974, p. 96) and Draper and 

smith (1981, p. 462-468). 

The value of the separability assumption is especially 

evident during parameter estimation. The number of fishing 

mortality parameters that need to be estimated in a non-

separable model is AY. In the separable model this is reduced 

to A+Y. The separability assumption also permits statistical 

estimation of the parameters of interest and simultaneous 

analysis of data from all cohorts. Also an objective measure of 

how well the values predicted by the model correspond to the 

observed data set (i.e. the residual sums of squares) is 

available. 

One problem associated with estimating parameters using 

[37] is that parameters are estimated on the logarithmic scale 

which introduces some bias in the estimates. We are more 

interested in these values on the arithmetic scale and 

logarithmic means and variances can be converted. Generally if 
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Y=ln(X) , where Y is a normally distributed random variable with 

mean ~(Y) and variance aZ(y), then ~(X)=exp{~(Y)+[aZ(Y)/2]) and 

aZ(X)=[exp{aZ(Y)+2~(Y)}(exp{aZ(y) }-1)] (Brownlee 1965). If 

parameters on the natural log scale are transformed back to the 

arithmetic scale by simply taking the antilog then they would 

be biased by the factor exp(a Z (Y)/2). Bias could be especially 

significant in the case of population biomass estimates which 

are not estimated directly from the model. Computation of 

population biomass involves a sum of several abundance para-

meters, each of which may be biased. For instance if the model 

provides estimates of In[N(a,y)] then population biomass 

(uncorrected for bias) is given by 

s 
B(y) = ~ exp{ln[N(a,y)]} W(a) [40J 

a=r 

Clearly B(y) will be biased downward if there are a large 

number of ages or the variance for each In[N(a,y)] are large. 

If abundance parameter variances are small then any bias 

introduced by taking the logarithmic transform will be small. 

Beauchamp and Olson (1973) describe other methods of correcting 

for bias. 

One other very serious problem with the separable model 

recognized by Doubleday (1976) and then later Pope (1977) is 

that catch-at-age information alone are not sufficient to 

reliably estimate stock abundance because fishing mortality and 

stock size are highly negatively correlated. Additional data 

are required to resolve the multicolinearity between population 
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abundance and mortality parameters. This problem is discussed 

in detail by Shepherd and Nicholson (1986). 

3.7 Pope and Shepherd's Model 

Input data required by the log catch ratio model of Pope 

and Shepherd (1982) and estimated parameters are summarized in 

Table 8. In the following description age and year indicies are 

reported on a relative scale. 

3.7.1 The Model. The model of Pope and Shepherd (1982) is 

based on the nonlinear log catch ratio model that incorporates 

the separability assumption and a random error term. It is 

derived by taking the natural log of the catch ratio model 

[26], substituting the separability assumption [2] for F(a,y) 

and taking logarithms. It is written 

In[ 
C(a+1,y+1) ] = 

C(a,y) 

In[s(a+1)] + In[f(y+1)] + In[s(a)f(y)+M] -

s(a)f(y) - M + In[1-exp{-[S(a+1)f(Y+1)]-M}] 

In[s(a)J - In[f(y)] - In[s(a+1)f(y+1)+M] -

In[1-eXp {-[S(a)f(Y)J-M}] + €c(a,y) [41] 

where € (a,y) is a random variable distributed N(0,2a 2) with c c 

constant variance. Note that terms in [41J have opposite signs 

when compared to [38J since the catch ratio is reversed. 

Equation [41] is augmented by an additional equation 

s(al) = 1.0 [42] 

where a l is an intermediate reference age, usually the age of 

full recruitment. Equation [42] assures that all sea) ~ 1.0. 

3.7.2 Parameter Estimation Procedure. Pope and Shepherd 
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use a sequential two stage least squares algorithm as their 

parameter estimation procedure. The first stage uses an 

iteratively re-weighted solution algorithm, somewhat analogous 

to a two-way analysis of variance, to estimate mortality 

parameters. The second stage estimates population numbers at 

age. Each stage utilizes a separate objective function. 

3.7.2.1 stage One Objective Function. The stage one 

objective function consists of two equations representing 

marginal totals; one for each year, summed over all age-classes 

within a year giving Y-l annual residuals and one for each age-

class, summed over all years within an age-class giving A-I 

age-class residuals. Pope and Shepherd point out the similarity 

of this approach to a two-way analysis of variance. The two 

equations to be minimized, 

R ( ) = [A::;1 d I [c C a + 1 r y+ 1 ) ] e y ~ pre n C(a y) 
a=l ' 

A~10bS In[Cca+l rY+l)]] [43J 
a=l C(a,y) 

(for y=l, ..• ,Y-l) and 

Re(a) = [ Y~lpred In[CC a +l rY+l)] - Y~10bS In[Cca+l rY+l)]] [44J 
y=l C(a,y) y=l C(a,y) 

(for a=l, •.. ,A-l), calculate the sum of differences between the 

observed log catch ratio and the log catch ratio predicted by 

[41J summed over the appropriate index (cf. Pope and Shepherd 

1982, equations 5 and 6). 

3.7.2.2 Stage One Parameter Estimation Procedure. Parame-

ter estimates are determined by minimizing equations [43J and 
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. 1 

[44] with the following procedure. First, all sea) are initial­

ized to be equal to 1.0 for a=1, ... ,A-1 and fey) are initial­

ized to be equal to feY) for y=1, .•• ,Y-1. Next equation [41] is 

evaluated and the residuals Re(a) and Re(y) are calculated via 

the objective functions [43] and [44], where Re(a) is the 

residual for age summed over all years and Re(y) is the 

residual for year summed over all ages. At each iteration, 

updated parameter estimates are calculated by multiplying the 

old parameter estimate by the empirical weighting factors We(a) 

and We(y), where We(a) = eXp[Re(a)jY] and We(y) = exp[Re(y)jA]. 

The term Re(a)jY can be considered an average (over Y years) 

residual for age a. Similarly, Re(y)jA can be considered the 

average (over A ages) residual for year y. The sea) parameters 

are renormalized relative to the reference age (a') and the 

procedure is repeated again until the solution converges. 

Weighting factors are determined by considering the change 

in the parameter required to eliminate the residual. The actual 

functional form is a result of three approximations and one 

assumption (see Pope and Shepherd 1982, Appendix 1). 

3.7.2.3 stage Two objective Function. The parameter 

estimation algorithm of stage one cannot directly estimate 

population at age. Because the log catch ratio model is 

density-independent population abundance parameters are not 

involved. Estimates of the abundance of the youngest age in 

each cohort, R(l,y) and R(a,l), are derived by minimizing a 

second objective function. Note, however, that these abundance 
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estimates are conditional upon the values of s(a) and f(y) 

obtained from evaluating the first objective function. Once the 

population numbers of the youngest age of each cohort are 

estimated then any N(a,y) can be estimated from the recurrence 

relationship [7]. 

Two separate objective functions are used in the stage two 

parameter estimation procedure. First define 

E(a,y+a-l) = F(a,y+a-l) [1 - exp[-Z (a,y+a-l)]] 
Z(a,y+a-l) 

[ 
a-I ] 

exp -,L Z(i,y+i-l) 
].=1 

(cf. Pope and Shepherd 1982, equation 11). Then the first 

equation to be minimized is 

amax [ 
,L In[C(i,y+i-l)] 
].=1 

- In[R(1'YllE(i'Y+i-l l]2 

[45] 

[46 J 

where i is the i th age in the cohort and amax is the oldest 

age in the cohort. The second equation to be minimized is 

~ax [In[C(a+m-l,m)] _ In[R(a,I)]E(a+m-l,m)]2 [47J 
m=1 

where m is the m th year in the cohort and ymax is the last 

year that the cohort is in the catch-at-age data matrix. 

Equations [46] and [47] have closed analytical solutions. 

3.7.2.4 Stage Two Parameter Estimation Procedure. The 

objective functions [46J and [47] are minimized when the 

partial derivative of the function with respect to the para-
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meters R(l,y) and R(a,l) are zero. These are closed solutions 

which can be expressed as 

In[R(l,y)] =_1_ 
amax ~~ax [In[C(i,Y+i-l)] _ In[E(i,Y+i-l)]] [48J 

~=1 

(cf. Pope and Shepherd 1982, equation 12) and 

In[R(a,l)] 
= ___ 1_ 

ymax 
ymax [ ] ~ In[C(y+m-1,m)] - In[E(y+m-1,m)] 
m=l 

Estimates of N(a,y) for all succeeding ages and years are 

obtained with the recurrence relationship [7]. 

4.0 DESCRIPTION OF ASA METHODS - EFFORT DATA REQUIRED 

[49] 

All methods described up to now have not required effort 

as input data. The introduction of effort data into the ASA 

procedures creates entirely new problems. In contrast to 

previous methods where fishing mortality was expressed as a 

fraction of catch to the total stock, effort/catchability 

formulations assume that fishing mortality is proportional to 

effort or the fishing intensity exerted by the fishing gear 

(Beverton and Holt 1957). The constant of proportionality is 

often referred to as the catchability coefficient or the degree 

to which the fish are vulnerable to the gear. If catchability 

is considered a constant or average the fishing mortality model 

is written 

F = q f [50] 

Equation [50] is similar to the separable fishing mortality 

formulation except that the meaning behind the coefficients are 
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different. 

Fishing mortality is seldom constant from year to year and 

often within anyone year there is a significant age effect. To 

accommodate these features further structure can be added to 

[50] by considering the catchability and effort parameters as 

separate submodels. The level of complexity depends on what 

contingencies are appropriate to the fishery being analyzed. A 

fully developed fishing mortality model might have to account 

for an age effect such as age-specific selectivity of the gear, 

an age and/or year effect such as changes in catchability with 

age and/or time, a population density effect such as a density-

dependent catchability coefficient (Fox 1974; Schaaf 1975; 

MacCall 1976; Ulltang 1976; Garrod 1977; Peterman and Steer 

1981; Bannerot and Austin 1983) or a gear saturation effect 

(Bannerot and Austin 1983). To accommodate all of these 

features sUbstitute 

q = q(y) sea) N(a,y)ef(y)~ [51] 

into [50] which gives the generalized fishing mortality model 

e 1+~ F(a,y) = q(y) sea) N(a,y) fey) [52] 

Equation [52] is indeed a complex fishing mortality model. 

Values of F could be easily computed if estimates of all 

parameters were at hand. In practice, lack of data necessitates 

a number of simplifying assumptions. Equation [52] can be 

reduced to a less complicated form if we are willing to hold 

constant the value of one or more parameters. For instance 

consider the following assumptions: all age groups in the 

53 



fishery are fully recruited to the gear (all s(a)=1.0), there 

are no temporal trends in catchability (q is constant), and 

there are no significant density-dependent effects (9=0) or 

gear saturation effects (~=O). Equation [52] then would 

simplify to [50]. If we assume that 9=0, ~=O and catchability 

exhibits no temporal trends (q is constant and equal to 1.0 ) 

but there exists a significant age effect then [52] simplifies 

to [2]. Finally we could assume that catchability does not 

exhibit any temporal, density-dependent, or gear saturation 

effects but there are some partially recruited age-classes in 

the fishery. In this case fishing mortality can be expressed as 

F(a,y) = q sea) fey) [53J 

Even though equation [52] is highly nonlinear, it is useful 

because it represents a very general expression from which 

numerous different expression of fishing mortality can result. 

Unfortunately it is extremely difficult to predict what effect 

these nonlinearities will have on the total estimation process. 

Paloheimo and Dickie (1964) and more recently Cooke (1985) 

provide a good discussion of the problems introduced by 

nonlinearities in the catch effort relationship. 

4.1 Paloheimo's Model 

The catch-per-unit effort model of Paloheimo (Paloheimo 

1980) uses catch-at-age in numbers and annual effective effort 

data as input data. Paloheimo's model can take two forms. 

Paloheimo calls these the constant catchability model (hereaf­

ter referred to as the linear model) and the variable catchabi-
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lity model (hereafter referred to as the nonlinear model). The 

parameters estimated by these are summarized in Table 8. 

4.1.1 The model. The log CPUE model relates the decline in CPUE 

of a cohort to age and cumulative effort. The model is based on 

the catch equation [11] and uses the separability assumption 

[53] to describe fishing mortality. Random variation is added 

to the catch equation by assuming that the observed catch is 

distributed lognormally. The model is written after taking the 

natural log of both sides 

In [c(a,y) ] - In[qR(r,y-a+r)] - In[qs(a)f(y)+M] + s(a)f(y) -

In[1-exp{-qs(a)f(y)-M}] -
a-1 

q ~ [s(i)f(y-a+i)] - (a-r)M + €c(a,y) [54J 
i=r 

where €c(a,y) is random variable distributed N(O,Oc 2
) with 

constant variance. Equation [54J can be simplified by using 

Paloheimo's approximation 

1-exp(-x) 
~ exp(-xj2) x 

which is valid for small values of x (Paloheimo 1961). The 

[55J 

approximation (55] can be substituted for the second and third 

terms on the RHS of equation [54J by letting x=[-qs(a)f(Y)-MJ. 

The result is the log CPUE equation 

In [s~~~f1t)J = In[qR(r,y-a+r)J - [2(a-r)-lJ ~ 

q [~ [s(a)f(Y)J +~~1[S(i)f(y-a+i)J 1 + €c(a,y) 
l=r 

[56J 

which is valid for a > r. If a=r then the summation term in 
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[56] is not evaluated. €c(a,y) is as described earlier. 

4.1.1.1 Linear Model. If the assumption that all ages are 

fully recruited (i.e. all s(a)=1.0) is valid, then [50] can be 

sUbstituted for F(a,y) in [54] instead of using the separable 

formulation. Equation [54] then reduces to an equation that is 

linear in all the parameters. It can be written (cf. Paloheimo 

1980, equation 5) 

In [ 
C(a,v) 

fey) ] = 
M In[qR(r,y-a+r)] - [2(a-r)-1] 2 

[ 
a-1 ] 

q ~ fey) +.~ f(y-a-i) + €c(a,y) 
1=r 

[57] 

4.1.1.2 Nonlinear Model. The nonlinear model relaxes the 

assumption of average constant catchability for all ages. 

Paloheimo expresses age-specific catchability as deviations 

from an average 

q(a) = q + deal [58J 

where deal is an age-dependent correction term that can be 

positive or negative. In order to assure that the parameters 

are estimable one of the deal 's must be zero or alternatively 

~ deal = o. The nonlinear model is created by substituting [58] 

for q into [57] to give (cf. Paloheimo 1980, equation 6) 

In [ C(a,v} ] = In[qR(r,y-a+r)] - [2(a-r)-1] M + 
f (y) 2 

[ In[q+~(a) 1 ] - ~ [q+d(a)] fey) -

a-I 
~ [q+d(a-i)] f(y-a-i) + €c(a,y) [59] 

i=r 

4.1.2 Objective function. The objective function is the 
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sum of squared differences between the observed log catch-per-

unit-effort and the log catch-per-unit-effort predicted by 

either [57] or [59]. The parameter estimation procedure seeks 

to minimize 

~ ~ [pred In[c(a rY)] - obs In[C(a ry )]]2 
y=1 a=1 fey) fCY) 

[60] 

4.1.3 Parameter Estimation Procedure. Since equation [57] 

is linear in all parameters it can solved directly with 

standard multiple regression statistical techniques. Paloheimo 

estimates the parameters in the nonlinear equation by the 

linearization technique described in section 3.6.3. 

4.2 Fournier and Archibald's Model 

The two goals behind the model of Fournier and Archibald 

(1982) are 1) to provide a flexible mathematical formulation 

and 2) to recognize that the processes the model is trying to 

describe and the information submitted to the model are subject 

to error. The model provides a systematic way to deal with the 

fact that different sources of data contain different types of 

error. 

Data submitted and parameters estimated from the model are 

summarized in Table 8. The catchability submodel can include 

time-independent (constant), density-dependent or time-depen­

dent catchability similar to equation [51] in Section 4.0. The 

reader can refer to Fournier and Archibald (1982) and Archibald 

et ale (1983a) for specifics. 

Because this model is generalized it is very flexible with 
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respect to the number of parameters it can estimate. The 

following description will only cover the main concepts of the 

model. 

4.2.1 The model. The model is a combination of a stochas-

tic model describing the catch data and a model describing the 

exploitation process. The stochastic model acknowledges that 

there are errors in estimating total catch and age composition 

percentages. 

Given O(y) and H(a,y) and the assumptions 1) H(a,y) and 

O(y) are independent, 2) O(y)=C(y)exp[€c(y)] where the €c(y) 

are independent random variables distributed N(O,crc
Z

) with 

constant variance, and 3) there are no aging errors, then the 

likelihood function for the parameters C(y), G(a,y), and crc is 

given by (cf. Fournier and Archibald 1982, equation 1.0) 

A Y Y [ 2] ~ ~ G(a y)H(a,y) ~ 1 exp _ l[lnrO(Y)l-lnrC(Y)'] 
, j21Tcr

c 
2 cr

c a=l y=l y=l 

[ 61 ] 

The exploitation process is described by a log catch ratio 

model where catch-at-age is expressed as a product of the total 

catch times the age composition estimate 

C(a,y) = C(y) G(a,y) [62] 

substituting [62] for C(a,y) in [26] (note that the ratio of 

catches is reversed relative to catch-ratio models discussed 

earlier) and taking logs of both sides gives 

In [ 
C(a,y) G(a,y) ] _ 

C(a+1,y+1) G(a+1,y+1) -

= In[G(a,y)] + In[C(y)] In[G(a+1,y+1)] - In[C(y+l)] 
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= In(F(a,y)] - In[F(a,y)+M] + In[F(a+1,y+1)+M] 

- In[F(a+1,y+1)] + In[l-exp{-F(a,y)-M}] 

- In[1-exp{-F(a+1,y+1)-M}] 

A separable fishing mortality formulation is used. The 

[63] 

age-dependent component is represented with a function rather 

than a fixed number of parameters. Representing age-specific 

selectivities with a curve requires a smaller number of 

parameters than the number of age groups. Fournier and Ar-

chibald (1982) use a nonlinear scaling of the age index which 

they call the VB parameterization. This is written (cf. 

Fournier and Archibald 1982, equation 2.2) 

a-1 -1 + 2 (1 - w ) a(w) = 
(1 - WA- 1 ) 

[64] 

for 0 < w < 1. The relationship between fishing mortality and 

fishing effort is (cf. Fournier and Archibald 1982, equation 

3.1) 

In[F(a,y)] = b(w) + In[q(y)] + In[f(y)] + Ef(Y) 

where b(w) = b 1 a(w) + b 2 a(w)2 

Expressed in terms of the deviation between observed and 

predicted fishing mortality [65] is written 

[65] 

'fCY) ~[[ln[FCa,Y)]] - [heW) + In[qCY)] + In[f(Y)]]] [66] 

where cf(y) is the annual deviation between the predicted level 

of fishing mortality and the observed level. Assume that cf(y) 

is a random variable distributed N(O,of2) with constant 

variance. 
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With fecundity-at-age data further structure can be added 

to the model by incorporating a spawner-recruit relationship. 

Recruitment is modeled by a Ricker spawner-recruit function 

with log-normal errors 

R(r,y+r) = a SP(y) exp[-~SP(y)] exp[€sr(y)] 

Expressed in terms of the deviation between observed and 

predicted recruitment [67] can be written 

[67] 

EsrCY) = [[In[RCr,y+r)]] - [Inca) + In[SPCY)] - ~ SPCY)]] [68] 

where SP(y) is the reproductive potential of the population in 

year y and €sr(Y) are random variables distributed N(O,crsr %) 

with constant variance. Relative reproductive potential is 

given by (cf. Fournier and Archibald 1982, equation 5.1) 

s 
SP(y) = ~ fec(a) N(a,y) [69] 

a=r 

where fec(a) is the fecundity of age group a. 

Aging error information can be incorporated into the model 

with a minimum of difficulty. Let p(a,i) be the probability 

that a fish from age class i is judged during age determination 

to be age a. Then the probability that a fish picked at random 

in year y will be classified as age a is given by (cf. Fournier 

and Archibald 1982, equation 6.1) 

A 
~ p(a,i)G(i,y) 

i=l 
[70] 

4.2.2 Objective Function. The objective function to be 

minimized is obtained by taking the natural log of the likeli-
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hood function [61] which gives (cf. Fournier and Archibald 

1982, equation 1.1) the log likelihood equation (ignoring the 

constant) 

~ ~ H(a,y) In[G(a,y)] - ~ t [In[O(Y)~-ln[C(Y)JJ2 
a=l y=1 y=1 c 

- Y In[O'c] [71 ] 

If we define 

~(a y) = In[G(a,y) C(y)] 
, O(y) [72] 

then 

and 

[74 ] 

By substituting [72] and [74] into [71] the log likelihood 

function is given by (cf. Fournier and Archibald 1982, equation 

1. 9) 

[75] 

where m is the greatest integer less than or equal to s/2 and 

L = 1/0' 2. Lc is considered a penalty weight that determines c c 

the penalty for deviating from the observed catch relationship. 

When additional information is added to the model the 

objective function is augmented by additional terms. If effort 

61 



data is available then the following term is added to [75] (cf. 

Fournier and Archibald 1982, equation 4.1) 

where Lf = 1/crf
2

• As before, Lf is the penalty weight for 

deviating from the observed effort-fishing mortality 

relationship. 

If spawner-recruit information is available then the 

[76] 

objective function is augmented by the term (cf. Fournier and 

Archibald 1982, equation 5.3) 

[77] 

where Lsr= 1/crsr
2 is the penalty weight for deviating from the 

spawner-recruit relationship. 

If aging error information is included in the model then 

just the first term in [75] is changed (cf. Fournier and 

Archibald 1982, equation 6.3). The objective function for a 

full model that included catch-at-age, effort, fecundity-at-age 

and aging error data would be 

Y 
~ 

y=l 

A A [eXE[~[i'Yll ] ~ H(a/y) In i~1p(a/i) ~ exp[~(m/y)] 
a=l m=l 

Y 1 In[ a~lexp[~(a'Y)lJ2 - L ~ c i=1 2 

Y 1 €fCy)2 
Y-r 1 2 - L ~ 2 - L ~ 2 €sr(Y) [78] f y=1 sr y=1 

4.2.3 Parameter Estimation Procedure. A maximum likelihood 
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solution algorithm is used to solve for the parameters of the 

model. Seber (1982, p. 4), Bard (1974, p. 61-71) and Norden 

(1972, 1973) provide a helpful review and discussion of this 

parameter estimation method. Briefly, a likelihood function is 

an expression that describes the joint probability distribution 

of the observations viewed as a function of the parameters. The 

maximum likelihood estimate of a parameter, r say, is that 

value of r for which the likelihood function attains its 

maximum value. The log likelihood function is frequently used 

because it is less complicated. Note that maximizing a 

likelihood function is the same as minimizing the negative of 

the log likelihood function. The normal equations for finding 

the maximum likelihood estimates are obtained by taking partial 

derivatives of the log-likelihood function with respect to the 

unknown parameters and setting the results to zero. These 

equations usually do not allow a simple solution so iterative 

computer algorithms must be used. 

To initiate the parameter estimation procedure, a guess or 

estimate of each parameter in the model must be supplied to the 

maximum likelihood solution algorithm. These values are used as 

a starting point by the minimization procedure in its search 

for the final set of parameter values that minimize the 

objective function. 

In Fournier and Archibald's implementation of this method, 

models of increasing complexity are solved in a stagewise 

fashion by exploiting this feature of the minimization proced-
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ure coupled with the flexible mathematical model. At each step 

the parameters are estimated simultaneously. For instance a 

simple model could be fit using just catch and effort data. 

Once final parameter values are obtained, these can then be 

used as starting estimates for another run where a more 

complicated model, say one that includes a spawner-recruit 

relationship and time-dependent catchability, is fit. By 

gradually adding data to the model, refining hypotheses, and 

relaxing assumptions a stagewise minimization can be carried 

out. Bard (1974, p. 72) calls the process of making use of 

prior information in a likelihood function Bayesian estimation. 

Applications of this method are presented in Archibald et al. 

(1983b) and Fournier and Archibald (1982). 

4.3 Dupont's Model 

Data requirements for the model of Dupont (1983) and 

estimated parameters are summarized in Table 8. The goal of 

Dupont's model is to relax as much as possible what he con­

siders strong assumptions about natural mortality and the 

nature of the birth/death/capture process used in most other 

models. The notation used in describing the model generally 

follows Dupont (1983). 

4.3.1 The model. The model assumes a competing risk model 

similar to the hazard regression models of Cox (1972) where the 

stochastic mortality processes include natural and fishing 

mortality. This approach is similar to Chapman (1961) who 

described a death mechanism using a simple Poisson stochastic 
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process. Chapman (1961) provides definitions of distribution 

functions and a derivation of this approach. From the input 

data each member of the population can be assigned to one of k 

distinct cohorts. We assume that catch from cohort k, Dkj , is 

known for consecutive time intervals (tj ,t j +1 ) j=1, ... ,Y-1. Let 

~k(t) be the hazard function due to fishing and ¢k(t) be the 

hazard function for all other causes of death not associated 

with directed fishing effort. Finally define (t j (k),t j (k)+l) to 

be the earliest time interval that members of the k th cohort 

are caught; Nk be the size of the k th cohort at time tj(k); 

Nk be the size of the k th cohort at time t; N(t) be the 

total population size at time t; Dk = (Dk,j(k) , ... ,Dk ,Y-1) be 

the catch vector from the k th cohort; D = (Dk, •.. ,DK) be the 

total catch vector; d, dk and dkj are realizations of the 

random variables D, Dk and Dkj ; and Idkl is the total catch 

from the k th cohort. Each fish from the k th cohort alive at 

time t > tj(k) is subject to competing hazard functions. With 

these definitions the probability that a member of cohort k is 

alive at time t is given by 

[79] 

then the probability that a fish from cohort k is caught in the 

j th catch interval is given by 

t j +1 

Pkj = f ~k(t) rk(t) dt 
t. 

J 
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the probability that a fish from cohort k is caught in any 

interval is 

Y-1 
Pk = :E Pk' 

j=j (k) J 
[81] 

and the probability that a fish from cohort k is never caught 

is 1-Pk. 

Given the competing risk model, the likelihood equation 

for the deaths in each catch interval, from each cohort, is 

given (cf. Dupont 1983, equation 2) 

K 

IT 
k=1 

Y-1 
(Nk-Idkl)! ~ d , 

I I kj· 
j=j (k) 

Y-1 
(1-Pk) (Nk-Idkl) IT Pkj(dkj ) 

j=j (k) 

The mortality functions are quite flexible. In the most 

traditional fisheries application let 

and 
¢k(t) = M 

'lTk(t) = F(y) 

[82] 

[83] 

[84] 

A separable formulation is also possible. This can be expressed 

(cf. Dupont 1983, Model I, p. 1026) with 

and 
¢k(t) = M 

'lTk(t) = 'IT sea) fey) 

[85] 

[86] 

The following two models relax the separability assumption 

somewhat by allowing the shape of the selectivity and effort 

curves to be fit to the data. In the first, selectivity is 

stratified by groups depending on a chosen annual partitioning 

of the data. This approach would be appropriate if the selec-
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tivity characteristics of the fishery changed over time. Let g 

index the number of groups (assume there are two), z(a,g) be an 

dummy variable, v(a,g)=ln[s(a,g)], and y(x) be the calendar 

year in which the selectivities changed. Then (cf. Dupont 1983, 

Selectivity Model, p. 1027) 

and 
¢k (t) = M [87] 

exp [ 
A G 

v(a,g)] 1Tk (t) = 1T fey) ~ ~ z(a,g) [88] 
a=1 g=1 

where 

[1 if age = a, g = 1 and y < y(x) 
z(a,g) = 1 if age = a, g = 2 and y ~ y(x) 

o otherwise 

The final mortality model assumes that selectivity values 

are know. If e(y)=ln[f(y)] then this can be written (cf. Dupont 

1983, Effort Model, p. 1028) 

and 

where 

1Tk (t) = 1T s(a,g) exp [ ~ z(y) e(y)] 
y=1 

z( ) = [1 if cur~ent year = y 
y 0 otherwlse 

[89] 

[90] 

using the competing risk model, Dupont derives an expression 

for the estimated size of the k th cohort at time tj (cf.Dupont 

1983, equation 3). This is given as the number of fish known to 

be alive at that time plus the expected number of survivors who 

will not be caught. This can also be expressed as the expected 

number of fish alive at time tj minus the expected catch after 

time tj plus the actual catch after this time. Dupont also 
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derives variance formulas for the parameters and an expression 

for the prediction of future catches. 

4.3.2 Objective Function. The objective function to be 

minimized is 

Y-1 
+ ~ 

j=j(k) 

Y-1 
- ~ d .! 
j=j(k)kJ 

[ dkj In(Pkjl J] [91] 

Dupont (1983) gives a full derivation of the maximum likelihood 

equation in an appendix. 

4.3.3 Parameter Estimation Procedure. Parameters of the 

model are estimated by maximum likelihood estimation. Initial 

starting values for the mortality parameters are supplied by 

applying regression methods to the data (Seber 1982, p. 329). 

4.4 The CAGEAN Model 

Data requirements for the Catch-Age Analysis (CAGEAN) 

model of Deriso et ale (1985) and estimated parameters are 

summarized in Table 8. Deriso et ale (1987) discuss extensions 

to the CAGEAN model that permit the incorporation of fishery 

independent data into the analysis and other nonstandard 

extensions. 

4.4.1 The model. The CAGEAN model is based on the log 

catch equation that incorporates the separability assumption 

and the assumption that observed catch-at-age data differ from 

predicted values by a log-normal random variable after Double-

day (1976) (see equation [37] in Section 3.6.1). 
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As in the model of Fournier and Archibald (1982), the 

CAGEAN model can also incorporate additional information into 

an analysis. If effort data is available but we believe effort 

is measured with error then the relationship between fishing 

mortality and effort is not exact. The difference can be 

described by a log-normal error. This relationship is written 

predicted fey) = [ q observed [fey)] exp[Ef(Y)] ] [92] 

where Ef(Y) is a random variable distributed N(O,a f
Z

) with 

constant variance. Expressed in terms of the difference between 

observed and predicted effort [92] is written 

€f (y) = [[predicted 1n( f (y) ] ] - [In (q) +observed 1n (f (y) ] J] (93] 

If fecundity-at-age data is available then a spawner 

recruit relationship can be added to the model. Let recruitment 

be given by a Ricker spawner recruit relationship with a log-

normal error as in equation [67]. In the CAGEAN model spawner­

recruit data is brought into the analysis in terms of the 

difference between observed and predicted recruitment as in 

equation [68]. Recruitment, In[R(r,y+r)], is estimated from 

equation [37], SP(y) the number of eggs produced by the 

spawning stock is estimated from equation [69] in year y, and 

E (y) is a random variable distributed N(O,a 2) with sr sr 

constant variance. 

The CAGEAN implementation of the Doubleday model is 

extremely flexible with respect to which parameters can be 

69 



estimated and the age and year intervals over which the 

parameters can be estimated. Because the CAGEAN model general-

izes the model of Doubleday (1976) (see section 3.6.1) it can 

accommodate the log CPUE model of Paloheimo (1980) as a special 

case. If effort data is available and it is assumed effort is 

measured without error then the log catch model can be rear-

ranged to give [54] where [53] is substituted for F(a,y) . 

One other benefit of generalizing Doubleday's model is the 

ability to carry out analyses that account for systematic 

changes in the selectivity with a minimum of difficulty. Deriso 

et ale (1987) refer to this as stratified catch-age analysis. 

They also discuss other useful extensions to their basic model. 

4.4.2 Objective Function. The objective function to be 

minimized (for the CAGEAN model without any auxiliary informa-

tion) is the sum of squared differences between the observed 

log catch-at-age data and the log catch-at-age data predicted 

by [37] (cf. Deriso et ale 1985, equation 8) 

Y A [ ] 2 SSQ(catch) = ~ ~ pred In[C(a,y)] - obs In[C(a,y)] 
y=l a=l 

[94] 

If effort data is available but we believe that the 

relationship between effort and fishing mortality is not exact 

then [94] is modified by adding the term (cf. Deriso et al. 

1985, p. 817) 

SSQ(effort) = Lf ~ [E f (y)]2 [95] 

where Lf is the ratio of the variance of the observed log 

catch from that predicted by [37] divided by the variance of 
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observed log effort, of2. 

If fecundity-at-age data is available then more structure 

can be added to the model. The objective function may be 

modified further by adding the term (cf. Deriso et ale 1985, p. 

817) 

2 
SSQ(spawn) = Lsr ~ [€sr(y)] [96] 

where Lsr is the ratio of the variance of observed log catch 

from that predicted in [37] divided by the variance of the 

stock-recruitment relationship, 0 2. sr 

If catch, effort and fecundity data are available, then 

the objective function to be minimized for the full CAGEAN 

model is (cf. Deriso et ale 1985, equation 9) 

minimize [sSQ(Catch) + SSQ(effort) + SSQ(spawn)] [97] 

The penalty weights determine the influence the auxiliary 

terms have on the parameter estimates calculated from the 

objective function. The penalty weight for the SSQ(catch) term 

is assumed to be equal to 1.0. Deriso et ale (1985) also 

provide two alternative objective function formulations. 

4.4.3 Parameter Estimation Procedure. A non-linear least 

squares regression algorithm (Marquardt 1963) is used to 

estimate the unknown parameters of the CAGEAN model by minimiz­

ing the sum of squares. Also see Conway et ale (1970) for 

details on the algorithm. When auxiliary information is 

available the CAGEAN model can carry out Bayesian estimation 

(see section 4.2.3) 
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To initiate the parameter estimation procedure, a guess or 

estimate of each parameter in the model must be supplied to the 

nonlinear least squares solution algorithm. Once a minimum sum 

of squares solution is achieved variances can be calculated for 

all parameters of the model. 

To deal with the problem of multicolinearity between 

population abundance and mortality parameters (see section 

3.6.3) and the approximate nature of the variance estimates 

resulting from the solution algorithm the CAGEAN model calcu­

lates parameter estimates and their standard deviations by the 

Monte Carlo simulation method known as the bootstrap technique 

(Efron 1982). Briefly, the bootstrap procedure involves 

stochastically generating a number of different catch-at-age 

data sets from one minimum sum of squares solution generated by 

the Marquardt non-linear least squares regression algorithm. A 

solution produces a set of estimates for the unknown parameters 

of equation [37], a vector of predicted catch-at-age values, 

and a residual vector. The residuals measure the agreement 

between observed catches and catches predicted by equation 

[37]. Elements of the residual vector are sampled with replace­

ment and randomly added to the predicted catch-at-age data 

matrix. The advantage of this approach is that the new data 

matrix has the same statistical properties as the original. 

These different catch-at-age data matrices are then resubmitted 

to the solution algorithm to obtain bootstrap replications of 

the parameter estimates. If the solution has converged to the 
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global minimum and the fit is good (i.e. the residuals are 

small) then the bootstrap estimates will have small standard 

deviations and they will be close in value to the minimum sum 

of squares parameter estimates. Means and variances of the 

bootstrap estimates are calculated in the usual way. Differen­

ces between the minimum sum of squares estimates and the 

bootstrap means is a measure of bias. This feature of bootstrap 

estimates is useful when calculating aggregate measures of 

population abundance such as population biomass since correc­

tions for bias are not required (see section 3.6.3). Bootstrap 

means and standard deviations for the fishing mortality 

parameters require bias correction if variances are large since 

they are calculated on the logarithmic scale (see Section 

3.6.3) 

Note that recruitment parameters from the log catch model 

and recruitment parameters from the spawner-recruit model are 

estimated simultaneously if the spawner-recruit relationship is 

included. Deriso et al. (1985) caution that because spawners 

nor recruits are not observed directly (i.e. they are not data) 

[95] is technically not the correct contribution to the 

objective function. In this situation they believe that 

theoretically a marginal likelihood function would be more 

appropriate but solving a marginal likelihood equation would 

not be computationally practical. 

By incorporating effort into the analysis as data, a 

reduction in the number of parameters is achieved. When effort 
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data is not available, the model estimates Y effective effort 

parameters. When effort is available as data the model es­

timates one catchability, reducing the total number of paramet­

ers by Y-1. 

5.0 COMPARISON OF METHODS 

This section will compare the methods described in earlier 

sections. The abbreviations used to refer to each model are 

explained in Section 1.2. In particular, attention will be 

placed on data requirements, what a priori parameters are 

required, what parameters are estimated and their variances, 

the mathematical models, assumptions about errors, and para­

meter estimation methods. Topics described in this section are 

summarized in Tables 7 and 8. 

5.1 Data Requirements 

In all cases raw data consists of catch-at-age data. This 

information can be put into a matrix consisting of A rows 

(ages) and Y columns (years) (see Table 1). Thus the catch-at­

age matrix includes AY catch observations. The DBM, VPA, SPA, 

CA, FA, and DU methods use the matrix directly, DO and CAGEAN 

use the natural log of the catch matrix, ME uses the catch 

ratio matrix, and the PS model uses the natural log of a catch 

ratio matrix. In both ME and PS methods two catch observations, 

C(a,y) and C(a+1,y+1), are required to make one catch ratio 

observation, thus the catch ratio data matrix consists of (A-1) 

rows and (Y-1) columns, and has (A-1) (Y-1) observations. The 

PLO model uses the catch-at-age matrix and effort data. The 

74 



models of FA, DU also use effort data. The CAGEAN model may 

optionally use effort data. The FA and CAGEAN models may also 

use fishery independent data if it is available. 

5.2 A priori/Initial Parameter Estimates 

The DBM and VPA models do not require any initial parame­

ter estimates. In the SPA, CA, and ME models the number of a 

priori parameters required for each cohort is one terminal 

fishing mortality for each cohort and an estimate of the 

natural mortality. To analyze the entire catch-at-age matrix 

two terminal fishing mortality vectors are required, one for 

the oldest age in each cohort for all but the last year, F(A,y) 

y=l, ... ,Y-I and one for all ages in the last year, F(a,Y) 

a=l, ... ,A. So to analyze the entire data matrix, A+Y-I terminal 

F's and one M are required. The DO and CAGEAN models analyze 

data from the catch-at-age matrix all at once. These methods 

require an initial guess for all parameters estimated by the 

solution algorithm. In the DO model these are supplied from the 

log catch ratio model. The number of initial parameter required 

are A-I veal 's (selectivity), Y-I e(y) 's (effective effort), 

and one M for a total of A+Y-I. The CAGEAN model is similar in 

that it needs A-I veal IS, Y e(y) IS, and one M for a total of 

A+Y. Also the age at which fish are fully recruited must be 

supplied in the DO and CAGEAN models. The PS model analyzes the 

catch ratio matrix however the number of required a priori 

parameters is reduced from (Y-I) fey) IS, (A-I) sea) IS, and one 

M (= Y+A-I) to only three, f(Y), seal), and one M. If the 
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linear PLO model is being fit no initial parameter estimates 

are required. If the nonlinear PLO model is being fit, guesses 

for the age-specific catchabilities are required. The FA model 

requires a guess of an averages F experienced by a fully 

recruited fish and an estimate of M for a total of two. The DU 

model requires values for the hazard parameters ~ and ¢, and 

one M for a total of three. 

5.3 Parameter Estimates 

5.3.1 Number of Parameters Estimated. In the DBM and VPA 

methods an F(a,y) is estimated for each age/year entry in the 

catch-at-age matrix except for the last year. Over the entire 

catch-at-age data matrix there are Y+A-3 cohorts with more than 

two observations giving (YA)-(Y+A-1) F(a,y) IS. In the SPA and 

CA models there are the same number of F(a,y) 's estimated. In 

addition, these two models estimate A-l N(a,l) and (Y-2) N(l,y) 

cohort abundances, for cohorts with more than two observations. 

The ME model is density-independent so it estimates (YA) (Y+A-l) 

F(a,y) IS. In the DO method all cohorts are analyzed so (A-l) 

sea) IS, (Y-l) e(y) IS, and Y+A-l cohort abundance parameters are 

estimated. In the PS model all cohorts are analyzed so the 

parameters estimated are (A-2) sea) IS, (Y-2) fey) IS, and 

(Y-l)+(A-l)-l (= Y+A-3) cohort abundance parameters. In the 

linear PLO model the estimated parameters are one M, one q, and 

(Y+A-3) cohort abundances (for cohorts with more than two 

observations). In the nonlinear PLO model, parameters from the 

linear model are supplemented by the number of age-specific 
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catchabilities estimated from the data. In the FA model 

(assuming only catch and effort are submitted to the model) the 

estimated parameters are 3 parameters for the VB curve (bl, b2, 

and w), (Y+A-l) cohort abundance parameters (all cohorts are 

analyzed), one catchability, and Y annual deviations of F from 

effort. The DU model (Model I) estimates A sea) IS, one ~, one 

¢, and (Y+A-l) cohort abundance parameters (all cohorts are 

analyzed). The CAGEAN model estimates (A-l) v(a) 's (assuming 

one age group is fully recruited), Y e(y) IS, and (Y+A-l) cohort 

abundances (all cohorts are analyzed). 

In the separable models a more restrictive assumption 

about fishing mortality reduces the number of parameters that 

need to be estimated from AY to A+Y. This results in a sUbstan­

tial increase in the observation-to-parameter ratio and permits 

a meaningful goodness-of-fit measure to be calculated. Further 

reductions in the number of parameters could be realized by 

reparameterizing mortalities. For example Fournier and 

Archibald use a three parameter functional relationship to 

describe the selectivity trend rather than estimate a selec­

tivity parameter for each age. 

Because of the flexibility of the FA and CAGEAN models, 

one needs to keep in mind the serious question as to whether 

the model has been over-parameterized relative to the informa­

tion content of the data. Often the parameter estimation 

algorithm for a highly parameterized model will not converge 

properly or, because the model is so loosely specified, the 
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model will converge on absurd parameter values. For example, 

Fournier and Archibald (1982) in their application, attempted 

to parameterize selectivity similar to Doubleday (i.e. one 

selectivity parameter for each age). They could not get stable 

parameter estimates with this approach. When they used their VB 

parameterization for selectivity, the reduction in parameters 

was sufficient to allow the parameter estimation procedure to 

successfully converge. Schnute (1985) provides some astute 

observations on the topic of model identification. 

5.3.2 Bias. To obtain unbiased estimates of parameters 

from a given mathematical relationship requires knowledge of 

the variability and sources of error inherent in the data. It 

is difficult to evaluate if parameter estimates from various 

methods are biased since the degree of bias will be dependent 

on the model, the data, and the degree to which the underlying 

assumptions are violated. Given adequate data (i.e. a long time 

series of catch-at-age data) it is safe to say that if paramet-

ers are assumed to be constant and free from measurement error 

when in fact they are random variables subject to measurement 

error, then resulting estimates will be biased. It would seem 

that methods based on assumptions of constant parameter values 

over year and/or age are more likely to produce biased es­

timates. The SPA method has received the most thorough treat­

ment in this regard. Bias could also be due to model misspeci-

fication (see below) . 

One final point regarding bias is that models fitted to 
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logarithmically transformed variables are fitted to the 

geometric rather than the arithmetic mean and are biased 

towards low expected values (i.e. exp[~(ln(X»] < ~(X». In the 

DO and CAGEAN models the estimate of population at age is 

really an estimate of the natural log of the population. Since 

estimates of population size could range over an order of 

magnitude, this source of bias could be significant in some 

applications. This is especially true when computing variables 

such as total biomass which involve summing a series of age­

specific exponential transformations (see Section 3.6.3). 

5.3.3 Variances. Interpretation of parameter estimates not 

accompanied by variances is extremely difficult. Without 

variances there is no way of knowing the reliability of the 

parameters. For example, if the confidence limits of a parame­

ter are plus or minus 100% of the actual estimate, then the 

parameter estimates should be viewed with a great deal of 

caution. It might be more desirable to accept a parameter 

estimate known to be slightly biased but accompanied by a 

reasonable variance estimate than an unbiased estimate with a 

coefficient of variation greater than one. McDonald and 

Butler's (1982) suggestion of using a biased estimation 

procedure such as ridge regression techniques to estimate the 

parameters of Paloheimo's CPUE model is particularly relevant 

(also see Paloheimo 1982). Using a biased parameter estimation 

procedure will give slightly biased parameter estimates however 

the precision of parameter estimates will be improved. 
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The DBM, VPA, SPA, ME and CA methods do not allow direct 

computation of variances in Nand F resulting from sampling 

errors in the catch. Empirical relative variance estimates can 

be calculated but variances are highly sensitive to estimates 

of terminal fishing mortality. other approximate variance 

estimators for the sequential methods have been proposed 

(Prager and MacCall 1988: Sampson 1987). The DO, FA, DU, and 

CAGEAN methods allow calculation of variance estimates since an 

approximate variance/covariance matrix is available from the 

nonlinear parameter estimation procedure. In the PLO method 

variance estimates are available directly from the least 

squares techniques. In the PS method no variances can be 

calculated from the procedure directly. However, the ratio of 

catches will have a higher sampling variance than the catches 

themselves. Thus even if variance estimates were available, 

they would probably be larger when compared with variance 

estimates from the DO or CAGEAN methods. 

An key advantage of a separable ASA model is that the user 

has the opportunity to calculate parameter variances to get 

some idea of the variability in the results. The variances, 

however, do not reflect errors in age determination or catch 

estimates. These types of effects are studied more effectively 

with a sensitivity analysis or bootstrap procedure (see section 

4.4.3) . 

5.3.4 Correlation. Correlation tends to underestimate the 

error structure and overestimate parameter variance. Parameter 
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variances are large since the variance expressions contain 

significant covariance terms (note: corr(X,Y) 

=cov(X,Y)jsqrt[cr 2 (X)cr 2 (y)]). Doubleday (1976) found that when 

he analyzed the log catch-at-age matrix fishing mortality and 

population estimates were negatively correlated (i.e. as F 

increased N decreased). The problem of correlation between 

parameters is especially pronounced in the PS method. In this 

case the raw data matrix is a matrix of log catch ratios, thus 

successive catch ratios of the same year-class are correlated 

by year and age in addition to the correlation mentioned 

earlier. In the DO and PS methods all population numbers at 

age, N(a,y), can be expressed in terms of the cohorts abundance 

parameters (i.e. those N(a,y) that occupy the first row and 

first column of the catch-at-age matrix). Also as the number of 

parameters in a model increases so does the probability of 

spurious correlations. For example, if there are 5 ages and 10 

years of data, the DO method would estimate 27 parameters. If 

the probability is 5% that two variables are correlated due to 

chance alone, then we could expect one random spurious correla­

tion to occur from this data set. 

5.4. Goodness-af-fit Measures 

When the number of parameters are fewer than the number of 

observations a useful measure of the goodness-of-fit can be 

calculated. This measure is available in the separable ASA 

methods and can be used to describe the amount of the variation 

in the data explained by the model. In the non-separable 
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methods each parameter estimate is supported by one observation 

so the observed catches are predicted exactly. The goodness-of­

fit measure could be calculated for these methods, but it would 

be equal to 1.0 (i.e. 100% of the variation in the data is 

explained by the model) and not very meaningful. 

5.5 Mathematical Models 

The mathematical model for all methods compared are 

essentially based on the catch equation and exponential 

survival model (see Table 7). The major difference between the 

DBM, VPA, SPA, ME, and CA methods and the DO, PLO, PS, FA, DU, 

and CAGEAN methods are that the latter six use the more 

restrictive separability assumption to describe fishing 

mortality. Even though the DO, PLO, PS, FA, DU, and CAGEAN 

models use the separable fishing mortality they express this 

assumption differently. The DO and CAGEAN models express 

fishing mortality as F(a,y) = exp[v(a)+e(y)]. This can be shown 

to be equivalent to F(a,y) = s(a)f(y), which is identical to 

the PS, PLO, and FA expression. In either case the expressions 

can be made linear by taking logs. The model in the FA and DU 

methods are probability statements expressed as likelihood 

functions. 

The more general mathematical models of the FA and CAGEAN 

methods provide a means of investigating model validity. 

Generality in the mathematical model allows the analyst a great 

deal of choice in the selection of the model. Dupont (1983) 

shows how an incorrectly specified model can have dramatic 
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effects on estimation of population abundance. Schnute (1985) 

provides a lucid discussion on this topic. The generality of 

the FA, DU, and CAGEAN models also provides the analyst with 

the capability to iterate toward the "best" model; considering 

the unique contingencies of the fishery being analyzed, sources 

of data, and sources of error. At each iteration, the candidate 

model can be judged against some other model using the value of 

the objective function as a measure of how well the proposed 

model fits the data. If the objective function has been 

reduced, a likelihood ratio test can be performed to determine 

if the reduction is statistically significant (Schnute 1983). 

A small value of the objective function should not be used 

as the only criteria to judge model validity. For example, 

sometimes a model will converge on absurd parameter estimates 

and still report a low objective function value indicating a 

good fit to the data. A reduction in the objective function 

should be viewed relative to realistic parameter estimates. 

The flexibility of the mathematical model in the CA and FA 

methods allows a more integrated approach to analyzing catch 

and effort data. utilizing more than one data source directly 

addressed the major deficiency of the separable model -- that 

catch-at-age data alone are not adequate to reliably estimate 

stock abundance. 

5.6 Consideration of Errors 

Table 7 summarizes how the different models incorporate 

error. The FA, DU, and CAGEAN models are the most generalized 
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with respect to addressing various sources of error. In their 

comparative study Deriso et al. (1985) considered several 

different error models and concluded that the CAGEAN model 

performed similarly despite differences in the model assump­

tions regarding the source of stochasticity in the data. It 

seems more important to have the model recognize that there is 

stochastic error in the data than to know the precise magnitude 

or source of the error. 

5.7 Parameter Estimation Methods 

Table 7 summarizes parameter estimation methods used by 

each method. Generally the early methods used simple approaches 

and the more recent methods require more complicated techni­

ques. In the methods of DBM, VPA, CA, SPA, and CA the equations 

are solved sequentially, linking successive age groups. The PLO 

method uses multiple regression least squares techniques to 

simultaneously estimate parameters while the DO and nonlinear 

PLO methods use linearization and multiple regression to simul­

taneously estimate parameters. The PS method was developed in 

response to computational problems encountered when trying to 

use the DB method. The PS method uses both a simultaneous and 

serial approach to solving for the parameters. Mortality 

parameters are estimated simultaneously. Cohort abundance 

estimates are estimated serially and they are conditional on 

mortality estimates. The CAGEAN method uses nonlinear regres­

sion methods to simultaneously estimate parameters. Both FA and 

DU methods use maximum likelihood methods to simultaneously 
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estimate parameters. The FA model uses a serial estimation 

approach to fit models of increasing complexity. 

The main difference between maximum likelihood and 

nonlinear regression parameter estimation procedures is that in 

the former the model is fit to the data and in the later the 

data are fit to the model. When errors are normally distributed 

these two procedures are equivalent since maximizing the 

likelihood objective function is identical to minimizing the 

sum of squares (least squares) objective function. Maximum 

likelihood estimates are desirable because under very general 

conditions they are consistent (converge in probability to the 

correct value), asymptotically normal, and asymptotically 

attain the smallest possible variance. The key consideration 

should be that the parameter estimation procedure should 

provide a goodness-of-fit statistic and residuals so that the 

relative merits of various models can be compared and evalu­

ated. Through examining a variety of models the analyst may 

achieve a greater understanding of the of the important factors 

that affect the population dynamics of the stock under study. 

Finally, it should be emphasized that " ... no single method has 

emerged which is the best for the solution of all nonlinear 

programming problems" (Bard 1974, p. 84). 

5.8 Extensions 

All models discussed up to this point analyze data from 

one species only. stock assessment methods have been extended 

to work with multispecies data sets. In this type of approach 
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(called Legion Analysis by Pope and Woolner 1981) the natural 

mortality rate, normally considered a constant in single 

species ASA models, is partitioned into mortality components 

associated with inter/intra specific species interactions. 

These may include predation mortality, starvation mortality, or 

mortality arising because of competition for limited resources. 

The data requirements for these mutispecies ASA models (Helgas­

son and Gislason 1979; Pope 1979a; Majkowski 1981; Pope and 

Woolner 1981; Lleonart et ale 1985) are especially demanding 

and include food habits data as well as the usual catch-at-age 

data. Some theoretical work has been done on multispecies ASA 

models (Dekker 1982). 

ASA methods have also been extended to work with length 

data instead of catch-at-age data. Jones (1981) shows how 

standard ASA methods can be adapted to use number-at-Iength as 

input data. Pope (1980) extended Jones' length-based analysis 

to the multispecies situation and called it Phalanx Analysis. 

Very recently Fournier and Doonan (1987) and Schnute (1987) 

proposed very flexible length-based population dynamics models. 

Work in other areas has also been taking place. Zhang and 

Sullivan (1987) and Zhang (1988) have proposed a biomass-based 

version of Pope's Cohort Analysis. Shepherd (1983) recently 

proposed two measures of overall fishing mortality that remove 

age class effects. Also time series methods are being applied 

to ASA models (Kettunen and Hilden 1983; Gudmundsson 1986, 

1987; Fournier and Doonan 1987). 
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6.0 CONCLUSIONS 

The early catch-at-age models were quite simple, required 

several restrictive assumptions and were solved sequentially in 

a completely deterministic fashion. Newer models, operate on 

fewer assumptions, permit much more flexibility in the way the 

models can be formulated and constrained, estimate more 

parameters and on the whole require far more complex statisti­

cal and mathematical procedures than did their predecessors. 

Undoubtedly many of the newer techniques will supplant 

and/or augment older methods since the newer methods offer 

important advantages. The question still remains as to which 

method may be the best one to use. This is a difficult question 

to answer. The analyst needs to 1) carefully consider what data 

is available, 2) evaluate the sources of error contained in the 

data and which of these are tractable, 3) consider what 

fishery-specific contingencies might be relevant towards trying 

to describe the population dynamics of the exploited stock, and 

4) select mathematical models and parameter estimation methods 

that permit maximum extraction of information from the data. 

There should be about ten years of data before attempting to 

use a separable method, although this figure is somewhat 

arbitrary. If the fishery has undergone a transition a longer 

time series might be needed so that a time series of adequate 

length is available over each unique period in the fisheries 

history. If the fishery has been fairly static a separable 

method may be usable with less than ten years of data. Whenever 
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possible, diagnostic methods (i.e. residual analysis etc.) 

should be employed to the fullest extent possible. When 

selecting a model, follow the rule of parsimonYi try not to 

overparameterize the model relative to the available data. 

The widespread availability of high-speed computing 

resources, especially powerful desktop microcomputers, has 

drastically changed stock assessment research. In earlier 

times, simple models and crude approximations were absolutely 

essential when attempting to derive tractable solutions to 

complex sets of nonlinear equations. In earlier eras much 

effort was required to solve the equations. The situation is 

altogether different in todays research environment. Currently 

our ability to propose and solve complex systems of nonlinear 

equations via complicated statistical methods and sophisticated 

numerical algorithms exceed our biological knowledge base or 

our data gathering ability. Nonetheless, use of these software 

tools should be encouraged because it allows the analyst to 

devote their energies to critical analysis rather than tedious 

arithmetic. 

Several highly specialized computer programs are available 

to carry out several of the stock assessment analyses described 

in this paper (Doubleday 1975bi Rivard and Doubleday 1979i 

Rivard 1982; Archibald et ale 1983ai Megrey and Lynde 1986i 

Megrey 1987). Also Dupont (1983) and Deriso et ale (1985) 

report the availability of computer software to implement their 

models. 
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Table 1. Catch-at-age matrix from a hypothetical fishery. 

A 
B 
S A 
o G 
L E 
U 
T 
E 

2 
3 
4 
5 
6 
7 
8 
9 

A B S 0 L U T 
Y E A R 

1977 1978 1979 1980 

C(2,77) C(2,78) C(2,79) C(2,80) 
C(3,77) C(3,78) C(3,79) C(3,80) 
C(4,77) C(4,78) C(4,79) C(4,80) 
C(5,77) C(5,78) C(5,79) C(5,80) 
C(6,77) C(6,78) C(6,79) C(6,80) 
C(7,77) C(7,78) C(7,79) C(7,80) 
C(8,77) C(8,78) C(8,79) C(8,80) 
C(9,77) C(9,78) C(9,79) C(9,80) 

1 2 3 4 

R E L A T I V 
Y E A R 
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E 

1981 

C(2,81) 
C(3,81) 
C(4,81) 
C(5,81) 
C(6,81) 
C(7,81) 
C(8,81) 
C(9,81) 

5 

E 

1 
2 
3 
4 
5 
6 
7 
8 

R 
E 
L A 
A G 
T E 
I 
V 
E 



Table 2. Catch-at-age matrix from a hypothetical fishery 
arranged by cohorts. 

YEA R C lAS S 

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 

C(9,77) C(8,77) C(7,77) C(6,77) C(S,77) C(4,77) C(3,77) C(2,77) C(2,78) C(2,79) Ce2,80) Ce2,81) 
C(9,78) Ce8,78) C(7,78) Ce6,78) C(S,78) C(4,78) C(3,78) C(3,79) C(3,80) Ce3,81) 

Ce9,79) C(8,79) C(7,79) C(6,79) C(S,79) C(4,79) C(4,aO) C(4,81) 
C(9,aO) c(a,ao) C(7,aO) C(6,80) C(S,ao) C(S,81> 

C(9,81) C(8,81> C(7,81) C(6,a1) 
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Table 3. Definition of symbols, indicies and notation. 

symbol 

Indicies: 

a 

a' 

amax 

amin 

A 

fy 

g 

G 

j 

j(k) 

k 

K 

ly 

n 

r 

s 

y 

ymax 

Definition 

age-class index 
(a=l, ..• ,A) for a relative index scheme 
(a=r, •.. ,s) for an absolute index scheme 

arbitrary reference age 

the oldest age in a cohort 

the youngest age in a cohort 

total number of age-classes in the catch-at-age 
matrix (A=s-r+l) 

first year of fisheries data 

parameter group or strata index (g=l, ... ,G) 

total number of groups or strata 

time interval (j=l, ... ,Y-l) 

time interval relative to cohort k 

cohort index (k=l, •.• ,K) 

total number of cohorts in the catch-at-age matrix 
(K=A+Y-l) 

last (most recent) year of fisheries data 

total number of catch observations in the catch-at­
age matrix (n=AY) 

the age at which an age-class first recruits to 
the fishery; the youngest exploited age-class 

the oldest exploited age-class 

time (years) 

time that individuals from cohort k are first 
caught 

calendar year index 
(y=l, ... ,Y) for a relative index scheme 
(y=fy, ... ,ly) for an absolute index scheme 

the last (most recent) year of catch data in a cohort 
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Table 3 (con't). Definition of symbols, indicies and notation. 

Symbol 

Indicies: 

ymin 

Y 

Definition 

the first year of catch data in a cohort 

total number of years of fisheries data in the 
catch-at-age matrix (Y=ly-fy+1) 

Parameters, Observations, and Symbols: 

a(w) 

C(a,y) 

C(y) 

CB(y) 

d(a) 

d 

e(y) 

exp 

E(a,y) 

f( ) 

VB parameterization of the selectivity trend with 
age relationship 

parameters of the selectivity trend with age function 

selectivity trend with age curve 

total population biomass in year y 

catch of fish from age-class a in year y 

catch of all ages in year y 

catch biomass (all ages) in year y 

age-specific deviation from average catchability 

realization of the random variable D 

realization of the random variable Dk 

realization of the random variable Dkj 

total catch from cohort k 

catch from cohort k in time interval j 

catch vector from cohort k 

total catch vector 

log (base e) of fey) 

exponential function 

exploitation fraction on age a fish in year y 
(=F(a,y)jZ(a,y) (l-exp[-Z(a,y)]» 

functional relationship 
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Table 3 (con't). Definition of symbols, indicies and notation. 

Symbol Definition 

Parameters, Observations, and ~ols: 

fey) 

fec(a) 

F(a,y) 

G(a,y) 

H(a,y) 

In [ ] 

N(a,y) 

N(y) 

Nk 

N (t) 
k 

O(y) 

p(a,i) 

p 

full recruitment fishing mortality or effective 
effort coefficient in year y 

fecundity of age group a 

annual instantaneous fishing mortality for fish 
in age-class a in year y 

true age composition of age a fish in year y 

estimated age composition; percent of the total 
catch observed to be of age a in year y from a 
random sample of the catch 

natural log function 

penalty weight for catch data 

penalty weight for effort data 

penalty weight for spawner-recruit data 

annual instantaneous rate of natural mortality 
(assumed constant for all a and y) 

abundance (number) of age-class a at the beginning 
of year y 

total population abundance (numbers) at the 
beginning of year y 

size of cohort k at time tj(k) 

size of cohort k at time t 

estimate of the total number of fish taken in year y 

probability that a fish from age class i is judged 
during the aging determination to be age a 

probability that a fish from cohort k is caught in 
the j th time interval 

probability that a fish from cohort k is caught in 
any time interval 

availability of the exploited stock to the fishery 
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Table 3 (can't). Definition of symbols, indicies and notation. 

Symbol Definition 

Parameters, Observations, and ~ols: 

R(r,y) 

Re(a) 

Re(y) 

sea) 

s(a,g) 

S(a,y) 

SP(y) 

v(a) 

v(a,g) 

V(a,y) 

w 

W(a) 

We(a) 

We(y) 

z(a,g) 

z(y) 

Z(a,y) 

average catchability coefficient 

catchability (time-dependent) in year y 

probability that a member of cohort k is alive at 
time t 

number of individuals in age-class r newly recruited 
the fishery at the beginning of year y 

residual for age summed over years 

residual for year summed over ages 

selectivity coefficient for age-class a 

selectivity coefficient for group g age-class a 

survival rate for age a fish in year y 
(S(a,y)=exp[-Z(a,y]) 

number of eggs produced by the mature spawning 
stock in year y 

log (base e) of sea) 

log (base e) of s(a,g) 

virtual population of age a fish in year y 

parameter in nonlinear scaling of the age index in 
the VB parameterization 

average weight of an individual in age-class a 

empirical weighting factor for age 

empirical weighting factor for year 

dummy variable for stratified selectivity 
parameterization 

dummy variable for stratified effort parameterization 

annual instantaneous rate of total mortality for 
fish in age-class a in year y [Z(a,y)=F(a,y)+M] 
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Table 3 (con't). Definition of symbols, indicies and notation. 

Symbol Definition 

Parameters, Observations, and Symbols: 

a 2 
C 

a 2 
f 

2 asr 

a 

a 

random variable for catch distributed N(O,ac
2

) 

with constant variance. 

random variable for fishing effort in year y 
distributed N(O,af

2
) with constant variance. 

random variable for recruitment in year y distributed 
N(O,asr

2
) with constant variance. 

variance of the catch random variable 

variance of the effort random variable 

variance of the spawner-recruit random variable 

fishing mortality hazard parameter for cohort k 

natural mortality hazard parameter for cohort k 

density-independent Ricker spawner recruit parameter 

density-dependent Ricker spawner recruit parameter 

population density parameter of catchability submodel 

gear saturation parameter of catchability submodel 
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Table 4. Summary of the assumptions underlying each of eleven ASA methods. 

ASSUMPTIONS DBM VPA SPA ME CA DO PS PLO FA DU CAGEAN 

I. DATA SI1IlC6: 

1) The age composition of the stock is not constant from 
year to year. The H(a,Y) are obtained by aging a random 
sample of the total catch. The random variables H(a,Y) 
and O(y) are independent. • • • • • • • • • • •• •• 

2) There are errors associated with estimating age composition 
percentages. Errors in estimating percentage at age have 
unequal variances and are correlated •••••••••• 

3) There are errors associated with estimating total catch 
4) A long series of well sampled catches are required. 

II. DETERMINISTIC MORTALITY MOOELS: 

1) All significant mortality components are accounted for 
in F and/or M ••••••••••••••••••••• 

2) Natural mortality does not vary with respect to age, year 
and size of the stock. It represents all mortality components 
not associated with a directed fishery (i.e. predatory 

N 

N 

N 

Y 

• Y 

y 

N 

N 

Y 

y 

mortality, starvation mortality, incidental catch mortality). NA NA 

3) Fishing mortality does not vary with respect to size of stock Y Y 
4) There are no random components in F and/or M. • •• ••• Y Y 
5) Fishing and natural mortality operate concurrently and are 

independent of one another (Type II fishery, Ricker 
(1975, p. 11» ••••••••••••••••••••••••• NA NA 

6) Natural mortality is not a significant mortality component; 
all removals from the population are accounted for in the 
catch (i.e. 14=0).. •••••••••• ••••••• Y 

7) Natural mortality is known or can be estimated independently •• NA 

III. SEPARABLE FISHING MORTALITY MOOEL: 

1) The fishing mortality rate can vary between years and within 
anyone year it can vary with age •••••••••• 

2) The variation in F can be represented as a product of an age 
and year factor.. • • • • • • • 

3) Age·specific selectivity factors are constant for each age 
group over all years.. • • • • •• • 

4) Year·specific exploitation pattern can change between years 
but within anyone year it is constant. • 

IV. EFFORT/CATCHABILITY FISHING MORTALITY MOOELS: 

1) The catchability of the gear is constant and does not vary by 

age and year. That is, one unit of fishing effort catches the 
same percentage of the stock. This assumption holds regardless 

N 

N 

N 

N 

y 

NA 

N 

N 

N 

N 

y 

N 

N 

Y 

Y 

Y 

Y 

Y 

Y 

N 

Y 

y 

N 

N 

N 

Y 

N 

N 

Y 

y 

Y 

Y 

Y 

y 

N 

Y 

Y 

N 

N 

N 

y 

N 

N 

Y 

y 

Y 

Y 

Y 

Y 

N 

Y 

Y 

N 

N 

N 

Y 

N 

Y 

Y 

y 

y 

y 

y 

y 

N 

Y 

Y 

Y 

Y 

Y 

y 

N 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

N 

Y 

y 

y 

y 

Y 

of when and where the effort is appLied • • NA NA NA NA NA NA NA 

Y - Yes; N - No; o . Optional; NA Not AppLicabLe 
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N 

Y 

Y 

Y 

y 

Y 

Y 

y 

N 

NA 

Y 

y 

Y 

Y 

Y 

Y 

y 

y 

y 

y 

Y 

Y 

N 

y 

N 

Y 

Y 

Y 

Y 

Y 

o 

y 

N 

N 

Y 

Y 

Y 

Y 

N 

Y 

N 

Y 

y 

y 
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y 

Y 

y 

N 

Y 

Y 

Y 

Y 

Y 

o 

Y 

N 

Y 

Y 

y 
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Table 4 (con't). Summary of the assumptions underlying each of eleven ASA methods. 

ASSUMPTIONS OBM VPA SPA ME CA DO PS PLO FA OU CAGEAN 

IV. EFFCJlT/CATCHABILlTY FISHING MORTALITY MOOELS: 

2) Units of effort are independent of how much effort there 
already is or of effort on other fish stocks (i.e there is no 
gear interference or saturation (Rothschild 1977) • • • • •• NA NA NA NA NA NA NA 

3) There has been no change in gear or vessel efficiency (fishing 
power) over the period that fisheries data are available •••• NA NA NA NA NA NA NA 

4) The relationship between fishing effort and fishing mortality 
is independent of stock size •••••••••••••••••• NA NA NA NA NA NA NA 

V. CATCH EClJATION MOOEL: 

1) The population is closed to immigration and emigration •• 
2) The fishery is operating on a single unit stock over its 

entire geographic range •••••••••••••••• 
3) The main hunan influence on the abundance of a group of 

recruits is the amount of fishing ••••••••••• 
4) All removals from the population are accounted for in the 

catch (resulting from directed effort), except for losses 
due to natural mortality ••••••••••••••••• 

5) The entire catch is taken exactly half way through the year 

VI. STIXHASTIC MORTALITY MOOEL: 

Y 

Y 

Y 

Y 

N 

Y 

Y 

Y 

Y 

N 

Y 

Y 

Y 

Y 

N 

Y 

Y 

Y 

Y 

N 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

N 

Y 

Y 

Y 

Y 

N 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

N 

Y 

Y 

o 

Y 

Y 

Y 

Y 

N 

1) The probability that a fish dies from fishing (i.e. is 
caught) in the interval (t,t+dt) is ~k(t)+O(dt) •• • • NA NA NA NA NA NA NA NA NA 

2) The probability that a fish dies from natural causes in the 
interval (t,t+dt) is ;k(t)+o(dt). • • • • • • • •••••• NA NA NA NA NA NA NA NA NA 

3) The probability that two or more fish dies in the interval 
(t,t+dt) is o(dt) •••••••••••••••• NA NA NA NA NA NA NA NA NA 

4) The catch hazard is proportional to the product of effort 
and selectivity. NA NA NA NA NA NA NA NA NA 

VII. MISCELLANEOUS: 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

N 

Y 

Y 

Y 

Y 

1) Values for the penalty weights are fixed. • •• • •• NA NA NA NA NA NA NA NA Y NA 
2) Recruitment is described by a Ricker spawner·recruit 

function multiplied by a log·normal random error term • 

Y . Yes: N . No: o . Optional: NA • Not Applicable 

NA NA NA NA NA NA NA NA Y NA 
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Table 5. Summary of the advantages for each of eleven ASA methods. 

ADVANTAGES DBM VPA SPA ME CA DO PS PLO FA DU CAGEAN 

I. THE IQ)EL: 

- Information submitted to the model are subject to error ••• 

The mathematical model is generalized and extremely flexible 

- The separability assumption results in a substantial reduction 
in the nurtler of parameters that need to be estimated. 

Data from different cohorts are linked •••• 

Rather than assuming that natural mortality is known, the 
catch/effort model allows this parameter to be estimated 

No assumptions are required regarding catchability ••• 

The log transform makes the equation more nearly linear; Also 

N N 

N N 

N N 

N N 

N N 

y y 

heteroscedasticity in the catch error variance is removed. •• N N 

Arbitrary choice of the tenninal fishing mortality is removed. NA NA 

- Capable of predicting future catches with error bounds • N N 

Using a competing risk approach to modeling mortalities 
provides greater flexibility in representing each mortality 
factor as a stochastic process ••••••••••••••• 

Ability to integrate many sources of data into a simuLtaneous 
parameter estimati on scheme.. •••• • •••••••• 

Ability to incorporate fishery-independent data simultaneously 
into the estimation procedure precLudes the need for ad hoc 
tuning methods • • • •• •• •••••• • •• 

Ability to stratify data by gear type or vesseL type increases 
the number of observations submitted to the analysis 

II. PAIWETER ESTIMATlCJI tETHOO/SOlUfICJI AUDUTIM: 

A measure of the variation explained by the model is available 

Variance estimates of the parameters are available so a 
determination as to their reLiabiLity can be made •• 

The variance/covariance matrix is available to examine 
correLation between the independent and dependent variables. 

Y - Yes; N - No; o - OptionaL; NA - Not AppLicabLe 
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Table 5 (con't). Summary of the advantages for each of eleven ASA methods. 

ADVANTAGES DBN VPA SPA ME CA DO PS PLO fA DU CAGEAN 

I I. PARNETER ESTIMATUJI IETIICI)/SOlUTUJI ALIDUT"': 

• Use of statistical methods permits use of many diagnostic 
methods to better evaluate the assumptions of the model •• 

• ALL parameters in the model are estimated simultaneously. 

· An efficient flexible parameter estimation algorithm is used 

• The maximum likelihood parameter estimation algorithm Is 

N 

N 

N 

powerful and generalizes easily. • • • • • • • • • • • • • • •• N 

• Use of the bootstrap variance estimation method permits 
evaluation of statistical bias and statistical uncertainty in 
the parameter estimates. 

I II. GaIERAl.: 

• N 

• The method is extremely easy to carry out. • • • y 

• The analysis provides a minimum estimate of population 
abundance and rates of exploitation with a minimum of data 

• The concept of estimating a population by summing the catches 

• Y 

is intuitively attractive. • • • • • • • • • • • • • • • •• • V 

• The method is independent of errors associated with measures 
of CPUE. • • • • • • • • • • • • • • • • • • • • •• ••••• y 

• It is very valuable in understanding a fishery in a historic 
sense, for explaining its population dynamics, and is 
potentially of great value in showing up large, and possible 
detrimental, changes in fishing mortaLity soon after they 
have happened.. ••••• ••• • • ••• • y 

· Estimates of F can be used to test more effectively the 
proportionality of F to effort (i.e. F=qf) and the validity 
of CPUE data (Garrod 1976; Hayman et al. 1980) • • • • • • Y 

The method is fairly robust to vioLations of underlying 
assLllptions. Y 

• All parameters in the model are estimated simultaneously. N 

Y . Yes; N • No; o . Optional; NA . Not Applicable 
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Table 6. Summary of the disadvantages for each of eleven ASA methods. 

DISADVANTAGES DBM VPA SPA ME CA DO PLO PS FA DU CAGEAN 

I. DATA: 

Errors in the data are not considered (i.e. the method is 
not stochastic). •• ••••••••••• •••• • • • Y Y Y Y Y 

The assumption of constant interannual age composition is 
strong. ••• Y N N N N 

A long series of catch-at-age observations are needed __ • • • • Y Y Y Y Y 

II. THE IU)EL: 

No provision is made for natural mortality. • • • Y Y N N N 

- The assumption of constant natural mortality is extremely 
strong. • •• •••• • ••• •• NA NA Y Y Y 

- The assumption that separability at age does not change with 
time may often not be valid ••• _ •••• NA NA NA NA NA 

Catch-at-age data are analyzed one cohort at a time. ••••• Y 

Catch-at-age information alone are not sufficient to reliably 
estimate stock abundance because fishing mortality and stock 
size are highly negatively correlated (Doubleday 1976; 

Y 

Pope 1977) (i_e. solutions are not unique) ••• _ •• • • NA NA 

The natural mortality and catchability parameters are strongly 
negatively correlated. • •• N 

The model is sensitive to trends in catchability with effort 
or time •••••• _ •••• •• N 

If data from just one cohort is being analyzed the linear 
model will not do well at estimating the year class abundance 
parameters since this parameter is highly correlated with the 
catchability parameter (Butler and McDonald 1979)_ _ ••• 

III. PARAMETER ESTIMATHJoI METHCO/SOlUTHJoI AUDUTHM: 

Because the number of parameters equals the number of data 
points, there is no measure of the variability about the 
parameter estimates nor a measure of the amount of variation 
in the data explained by the model 

Y - Yes; N - No; o - Optional; NA Not Applicable 
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Table 6 (con't). Summary of the disadvantages for each of eleven ASA methods. 

DISADVANTAGES DBM VPA SPA ME CA DO PLO PS FA DU CAGEAN 

III. PARAMETER ESTIMATI(Jf tETHCD/SOWTI(Jf ALGCRITIIt= 

• Even when catches are explained well (as measured by a low 
residual sum of squares or a high R·squared value), parameter 
estimates have large variances and wide confidence intervals • N 

- The variance of the random variable, predicted catch, is assumed 
approximately independent of the actual magnitude of catch. N 

• Variance estimates of sea) and fey) are difficult because of the 
parameter estimation algorithm. Variance estimates of population 

N N N N 

N N N N 

at age are conditional on estimates of sea) and fey) •••••• NA NA NA NA NA 

The linearization solution algorithm often does not 
monotonically converge ••••••••••••••• • • • • NA NA NA NA NA 

- There is no guarantee of a global minimum and different 
starting values may produce different solutions ••••••••• NA NA NA NA NA 

- Maximum likelihood estimates do not possess any optimal 
properties for small s~les •••••••••••••• 

IV. ~ERAL= 

• Population estimates are minimum estimates since natural 
mortality is not accounted for. •• ••• • •••• 

Estimates of F for the most recent year are the least accurate 

- Relative strength of strong and weak cohorts will be biased 

N N 

y Y 

Y Y 

if M varies with cohort strength (Ulltang 1977) ••••••••• NA NA 

If trends exist in natural mortality (say decreasing with age) 
bias in parameter estimates results since actual increases in 
natural mortality (when M was erroneously assumed to be 

constant) would show up as increasing fishing mortality 
CUll tang 1977) • • • • • • • •••••• _ •••• •• NA NA 

The limited accuracy of Pope's approximation would preclude 
application of cohort analysis to stocks that are exploited 
heavily (F > 1.2) or those with high levels of natural 
mortality (M > 0.3), but only if catch data are available in 
yearly intervals. ••••••••• •• 

The complexity of the model essentially requires a computer 
program to carry out the analysis. 

Y . Yes; N • No: o . Optional: NA Not Applicable 

114 

•• NA NA 

N N 

N N N 

N N N 

y Y y 

y y y 

Y y Y 

NA NA Y 

N N N 

y y y y y y 

y y y y y y 

N N y N N N 

y Y NA NA NA NA 

Y y N y y y 

N N N y y N 

N N N N N N 

y Y y y Y y 

y y y y y y 

Y Y Y Y Y Y 

NA NA NA NA NA NA 

y y Y Y Y Y 



Table 7. Summary of the mathematical models, error models, parameter estimation method, and parameter estimation sequence 
underlying each of eleven ASA methods. 

ITEM DBM VPA SPA ME CA DO PS PLO FA DU CAGEAN 

I. MATHEMATICAL MmELS: 

1) Variation on Catch Equation and Exponential Survival Model. Y Y N N Y N N N N N N 
2) SPA Model • • • • • • N N Y N N N N N N N N 

3) Catch Ratio Model • • N N N Y N N N N N N N 
4) Log Catch Ratio Model N N N N N N Y N Y N N 
5) Log Catch Model ••• N N N N N Y N N N N Y 
6) Log CPUE Model •••• N N N N N N N Y N N N 
7) Specialized Stochastic Model. N N N N N N N N Y Y N 

II. ERROR MmEL: 

1) Measurement of Catch Error. . . . . . N N N N N Y Y Y Y N Y 
2) Measurement of Effort Error ...... N N N N N N N N Y N Y 
3) Measurement of Spawner·recruit Error. N N N N N N N N 0 N 0 

4) Stochastic Mortality •••••• N N N N N N N N N Y N 

I I I. PAIWETER ESTIMATION 1ET1I(J): 

1) Simple Data Transformations • . .. . . . .. .. . . . Y Y N N Y N Y N N N N 
2) Root Finding (Newton'Raphson) Iterative Approach. N N Y Y N N Y N N N N 
3) Linearization •••••••• .. .. . .. .. .. N N N N N Y N Y N N N 

4) Multiple Linear Least Squares Regression. N N N N N Y N Y N N N 
5) Nonlinear Least Squares Regression. N N N N N Y N Y N N Y 
6) Maximum Likelihood. N N N N N N N N Y Y N 
7) Bayesian Estimation •••••• N N N N N N N N 0 N 0 

IV. PAIWETER ESTIMATI(J( SfCUENCf: 

1) Sequent iat. • Y Y Y Y Y N N N N N N 

2) SilllJltaneous. N N N N N Y Y Y Y Y Y 
3) Serial. N N N N N N Y N Y N N 

Y • Yes; N • No; o • Optional 
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Table 8. Data requirements, parameters estimated, and required initial starting values for each of eleven ASA methods. 

I. DATA REWIRED: 

• Catch by age and year 
- Total catch by year 
- Effort by year. _ 
- Fecundity by age. _ 
- Aging error • • • • 
- Catch estimate error. 

II. PARAMETERS ESTIMATED: 

- Fishing mortality by age and year, F(a,Y) 
- Catchability, q •••••• 
- Catchability by age, q(a) ••••• 
- Catchability by year, q(y) ••••• 
- Density-dependent catchability, e . 
- Effort by year, fey) •••••••• 
- Population abundance by age and year, N(a,Y). 
- Abundance of recruits, R(r,y) and R(a,fy) • 
- Natural mortality, M •••• 
- Selectivity by age, s(a)_ • 
- Selectivity trend with age •• 
- Spawner-recruit, a and p •• 
- Hazard mortality, w and, • 
- Annual deviations of F from effort. 

III. INDEPEJI)ENT INITIAL 

ESTIMATES REQUIRED: 

- Natural mortality •• 
- Terminal F, each cohort ••• 
- Selectivity at reference age. 
- Catchability estimates for other ages 
• Effort for last year. • •••• 

Y • Yes; N • No; o - Optional 
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