NWAFC PROCESSED REPORT 84-19

Estimation
of the
Salmon Carrying Capacity
of the
North Pacific Ocean

December 1984

NOTICE

This document is being made available in .PDF format for the convenience of users; however, the accuracy and correctness of the document can only be certified as was presented in the original hard copy format.

Inaccuracies in the OCR scanning process may influence text searches of the .PDF file. Light or faded ink in the original document may also affect the quality of the scanned document.

ESTIMATION OF THE SALMON CARRYING CAPACITY
OF THE NORTH PACIFIC OCEAN

By

Taina Honkalehto
Compass Systems, Inc. 2400 E. Lynn
Seattle, Washington 98112

Prepared for NMFS, NOAA Contract No. 82-ABC-016

National Oceanic and Atmospheric Administration National Marine Fisheries Service
Northwest and Alaska Fisheries Center Resource Ecology and Fisheries Management Division Resource Ecology and Ecosystem Simulation Task 7600 Sand Point Way N.E. Building 4, BIN C15700
Seattle, Washington 98115

INTRODUCTION

The determinatian of true carrying capacity of an ocean area with respect to a given species must quantitatively account for the species, predatars, competitors and faod availability (Favorite and Laevastu, 1979). Using a simple carrying capacity simulation model and assuming salmon out-compete other potential predators for their preys an estimate was made of the food resaurces available to pink, coho, chum, king and sockeye salmon. Yearly food requirements of each species were computed. These were then compared with the best available prey biomass estimates and the results interpreted in light of the acean's potential ta sustain salman enhancement.

METHODS

Salmon diets

An extensive literature survey was conducted in order to identify the major prey of five species of north pacific salmon (oncorhynchus spp.) during the marine portion of their life cycle. Pacific salmon feeding habit data obtained during the past several decades (Allen and Aron, 1958; Andrievskaya, 1958, 1966; Bailey et.al., 1977; Favorite, 1970; Kanno arid Hamai, 1971; LeBrasseur, 1966, 1972; Livingston and Goiney, 1983; Manzer, 1968; Nishiyama, 1970; Fritchard and Tester, 1944; Reid, 1961) were divided for analysis into offshore and nearshore data sets to coincide with the different zooplankton and nekton productions caused by differing depths and nutrient regimes. The sources and sample sizes for each salmon species are given in Appendix Table I. More data. were available for sockeye salmon than for any other species.

```
    For each data set, the mean percent by weight of total stomach
contents from each food category was calculated. Simple offshore
means were entered into carrying capacity simulation for sockeye,
chum, and king salmon. As coho data included samples with fewer
tham ten stomachs, weighted means were used. Figure 1 shows the
compositions of sockeye salmon (0. nerka) diets from several
```

```
sources. Figures 2, 3, and 4 present data used to estimate an
average diet composition for pink (O. gorbuscha), chum (o. kEta),
and coho (0.kisutch) salmon.
```

Prey standing stack estimation

Larval fish biomass in the upper three hundred meters of the northeast Pacific has been estimated from Bongo net hauls taken across much of the north Pacific during successive years (Bates and Clark, 1983; Clark, 1984; Kendall and Clark, 1982, 1982b; Kendallet. al., 1980; Walline, 1980). From the average of these

```
estimates it was determined that larval fish biomass could be
simulated in the carrying capacity model as ane-terith of the
zooplankton standing crop.
```

The function of squid in marine foad webs has often been qverla口ked, however, their rapid growth rates and piscivaraus habits make them important marine predators. They are alsa impartant as prey af salman, albacare, sablefish, cod, sperm whale, seal, arid birds (Barraclough, 1967; Mercer, 1981). Fisheries bialagists are just row expanding the scope af Pacific cephalopad research (S. Maupin, personal communication) and thus available data are sparse. Squid species knowr to be predators ard prey of Facific salmon are Berryteuthis magister: Loligo opalestens, and Ommastrephes sp. (Barraclough, 1967; Roper and Young: 1975; Bernard, 1980). However, insufficient data ori squid stacks have been reported ta estimate their bigmasses for the carrying capacity model (Laevastug personal communicationg Favorite and Laevastu, 1979).

Carrying capacity simulation

Figure 5 is a flow chart outlining the Pacific salmon carrying capacity simulation madel far thirteen physiagraphic regians using zooplankton biomass estimations from the month of July. A description af this madel has been presented by favarite and Laevastu, 1979. Ensuing paragraphs righlight the assumptions ard

Abstract

principal equations used in the model. Model input parameters are summarized in Appendix Table II.

The sea-land table from the salmon migration simulation models NOPASA (Honkalehto and Rabe, in prep.), with a grid size of 190.5 km was superimposed with salmon abundance data (Figure 6). The biomass at each grid point and the total biomass were computed for each species from the following equation:
$S L(N, M)=(S K(N, M) * P T * W A(2, L Y)) / A R$

where	SL (N,M)		5 biomass in grams/km ${ }^{2}$
	$S K(N, M)$		species abundance at each grid point
	PT		proportion of each year class in the run
	WA (2,LY)		weight of individual fish in each year class (grams)
	AR		area $\left(\mathrm{km} \mathcal{F}^{\mathcal{F}}\right.$ of individual squares
	N		grid rows $1-21$, latitude (north to south)
	M		grid columns 1-52, longitude (west to east)
	LY		year

The assumptions were that zooplankton, larval and juvenile fish, and squid made up 100% of the diet, and that diets differed between species and between year classes. For each salmon species and year class, the amounts of food required during one or more years of their oceanic migration were calculated with the following equation:

Food - faod requirement (grams/km²). Computed total weight of food necessary to maintain the weight sackeye salmon at given NOPASA grid point.
$R \quad$ - individual ration required in proportion of body weight per day

DAYS - number of days year class individual is in ocean

In order to compute the total required food biomass at each grid point, the food needed by each salmon species was multiplied by the percentages of zooplankton, fish ard squid estimated to compose that species' diet. The following equation illustrates the computation of the sockeye salmon zooplankton requirement:
$F E(N, M)=F E(N, M)+(F O O D * E P)$
FE(N,M) - weight of zooplankton consumed at grid point (N, M) by sockeye salmon

EP - proportion of zooplankton in sockeye diet (varies with year class)

Pelagic north Pacific zooplankton biomass was simulated with the assumptions that zooplankton reproduce their biomass twice each year and that half of the zooplankton biomass is utilizable by salmon (Favorite and Laevastu, 1979). Monthly variations in zooplankton biomass were simulated with a cosine function as follows:

```
ZOP(N,M)=H1(I) +H2(I)*COS(PKAF*ALP*TK) +HS (I)*COS(ZKAFF*ALFF*TK)(4)
where ZOP(N,M) - zooplankton biomass (mg/m}\mp@subsup{}{}{3}\mathrm{ )
    H1(I) - mean anrual zooplankton biomass (mg/m}\mp@subsup{}{}{3}\mathrm{ )
    H2(I) - 1/2 amplitude of mean annual biomass peak
    HS(I) - amplitude of tertiary biomass peak
            I - index for 1-13 physiographic regions of
            the NOPASA grid.
                PKAF - latitude effect in radians
                ALP - 30-day periodicity in radians
                ALPP - bo-day periodicity in radians
            TK - month
                    ZKAPP - 160-day periodicity
Examples of the resulting biomass curves are given in Figures 7 and 8 .
Finally, the percentage consumptions of zooplankton, larval and juvenile fish by Facific salmon were computed fram the fallowing equations:
```

```
FO(N,M)=FE(N,M) / ZOF(N,M) * 100
(5)
FI(N,M)=FF(N,M)/FIS(N,M)*100

FE - total accumulated consumption of zooplarikton

FQ - percent of zooplankton stock consumed
FF - total accumulated consumption of fish

FIS - total fish standing stock (mg/m)
FI - percentage of \(f i s h\) standing stock consumed.
```

The distribution of squid biomass was not simulated due to lack of reliable species abundance data. Thus the total computed carrying capacity in this simulation refers to salmon consumption of zooplarikton and fish only. As young squid are an important food source for sockeye, their biomass will be added when data become available.

```

\section*{RESULTS}

Salmon diets


The Carrying Capacity Simulation Model

\begin{abstract}
Initial runs of the carrying capacity model were made using July zooplankton and larval fish biomasses only. The zooplankton biomass generated in the subroutine zoocro (Figure 5) was consistent with the overall biomasses reported by Motoda and Minoda (1974) and Reid (1962). Results indicate that Pacific salmon consume less than \(0.5 \%\) of the available zooplankton biomass and less than 5.0\% of the larval fish biomass. Varying latitude, month and area suggest the following: (1) prey biomass decreases with increasing latitude within any given NOPASA grid area, (2) the Aleutians, Bristol Bay and the Japan Sea are regions of high prey density lareas 2, 10, 11, and 12, respectively, in Figure 6) and (3) the percent of zooplankton biomass consumed does not vary greatly between months of the year.
\end{abstract}

\section*{DISCUSSION}
```

 Most Oncorhymchus spp. stomachs contain a wide variety of food
 items suggesting that salmon in general are very opportunistic;
they make use of available food as long as it falls in the
appropriate size range. Okada and Taniguchi (1971) found that
while juverile chum and pink salmon are fo mm or less they eat

```
```

relatively small prey (primarily'microcopepods: amphipods and
insects). At arquhd bomm (fark length) the salman suddenly
switcr to include much larger. prey such as euphausiids, squid,
adult amphipods and fish larvae as well as the smaller prey iri
trieir diets.
Foqd quality influences salmon diets，as different foロd taxa provide quite different calaric values to salmon．Nishiyama （1970）estimated that adult sockeye salmor consume approximately z\％of their body weight per day．Sockeye salmon prefer high－calorie food items like squid，fish larvae and euphausifds aver relatively Iower calorie prey such as pterapods ard decapod larvae．The availability of these preferred fagd items varies depending an where they are in the aceari．Bristol Bay，for Example，provides a richer fagd erivironmert than the oper waters of the Bering Saa（Motada arid Minoda，1974）．

```

The presence of large runs of orie salmon species may upset normal feeding patterns of a less aggressive species where ranges ロverlap during migration．Andrievskaya（19品）reparted such ari interaction between pink，chum and sackeye salmori in the western Pacific．Pirk and sackeye salmor are more selective feeders trar chum salman（Andrievskaya，196́；Barraclaugh，19á，1967）ard their diets：which are similar，differ from the average chum salman diet．During a large pink salmon run year．pink and sロckeye salmon may out－compete chum for euphausiids，farcing the chum ta rely on less desirable zooplarkton such as pteropads．
```

 Based on the above discussion it may be comcluded that
 individual şlmor species often display betmerf-year diet
differemces that compare in size ta between-species diet
\ifferences withirm a given year. Irithis simulation no allowarnce
for these squrces of variability ras beer made. This limits the
Simulation as it now stands, but doEs soo in a manner consisterit
with the data available. As more relevarit diet data becomes
available expansion af the simulation will be possible.

```

The carryirg capacity simulatior suggests that the standing crop of salmon is not 1 inited by the food supply during the ofean partion of their 1 ifecycle．Twa further adjustments would allow a more realistic representatior of pelagic salmori feedirg dymamics．Firsty to answer the question of what happens when prey biomass fluctuates between seasons（and years）as frast （1984）and Motoda and Minoda（1974）rave docamented，the zaoplanktorn biomass simulation must be modified．Assuming steady ᄃ口nsumptian rates fot salman during the year，the combination of Very low wimter zooplanktari crops and high salmari mumbers may locally struin zaロplanktan faロd supplies．This worki is in progress．Secont，new data on squid abundarices must be incarparated，because orly with the entire salmon diet available ᄃan a successful determination of oceanic carryirig potential for salmon be made．This is more difficult as it may be years befare enough data exist to successfully model squid biamass
distributions end simulate their irteractions with salmon．

\section*{ACKNOWLEDGEMENTS}

\footnotetext{
I thark N. Bax, T. Laevastu, and R. Bauer for their comments and critical review of this manuscript. K. Rabe and N. Fola assisted with the computer work and M. Gregory typed several of the figures. This study was funded by the Northwest and Alaska Fisheries Center, NDAA grant No. 82-ABC-O1G, Dr. T. Laevastu, COTR.
}

\section*{REFERENCES CITED}

Allen, G.H. and W. Aron. 1958. Food af salmonid fishes of the western North Pacific Ocean. US Fish Wildlife Serv. Spec. Rept. Fish. 23르:1-11.

Andrievskaya, L.D.1958. The food of Pacific salmon in the northwestern Pacific Ocean. Fisheries Research Bd. Can. Transl. Ser. No. 182. (Russian)

Andrievskaya, L.D. 1966. Food relationships of the Pacific salmon in the sea. Voprosy Ikhtiologii Vol. 6 No. 1 (38):84-90, in Russian. Preliminary translation by us Jaint Fublications Research Service for Bureau of Commercial Fisheries.

Bailey, J.E., B.L. Wing and C.R. Mattson. 1977. Zooplankton abundance and feeding habits of fry of pink salmon, 6 . gorbuschal and chum salmon, (O. ketal, in Traitors, Cove, AK, with speculations on the carrying capacity of the area. Fish. Bul1. 23(4):846-861.

Barraclough, W.E. 1966. Number, size and food of larval and juvenile fish caught with an Isaacs-Kidd trawl in the surface waters of the Straits of Georgia April 25-29, 1966. Fish. Res. Bd. of Can. Manuscript Rep. Series. No. 92a.

Barraclough, W.E. 1967. Number, size, composition and food of larval and juvenile fish caught with a two boat surface trawl in the Straits of Georgia Jurie 6-8, 19ó. Fish. Res. Bd. Car. MS Rep. 92크: 58p.

Bates, R.D. and J. Clark. 1983. Ichthyoplankton off Kodiak Island and the Alaskan Peninsula during spring 1981. NWAFC Processed Rep. 83-09 NMFS, NOAA, Seattle WA \(105 p\).

Bernard, F.R. 1980. Preliminary report on the potential commercial squid of British Columbia. Can. Tech. Rep. of Fish. and Aquat. Sci. No. 942.

Brinton, E. 1962. Variable factors affecting the apparent range and estimated concentration of euphausiids in the North Pacific. Pacif. Sci.1关(4):374-408.

Clark, J.B. 1984. Ichthyoplankton off Washington, Oregon and northern California, May-June 1981. NWAFC Frocessed Rep. 84-11. NMFS, NOAA, Seattle WA.

Favorite, F. 1970. Fishery oceanography. IV. Ocean food of


Favorite, \(F\), and T. Laevastu. 1979. A study of the ocean migrations of sockeye salmon and estimation of the carryingcapacity of the North Pacific Ocean using a dynamical numerical salmon ecosystem model (NOFASA). NWAFC Proc. Rep.79-16.

Frost, B. 1983, Interannual variation of zooplankton standing stock in the open Gulf of Alaska. In: W. G. Wooster, [ed.] From Year to Year, Wash. Sea Grant, UW, Seattle, pp. 146-157.

Honkalehto, T. and K. Rabe. 1984. Effect of the wind-driven ocean circulation on the ocean migration of sockeye salmon in the north Pacific Ocean using a dynamic salmon ecosystem model (MOPASA). (in press).

Kanno, T. and I. Hamai. 1971. Food of salmonid fish in the Bering Sea in summer of 196́. Hakkaida Daigaku Sapporo Suisangakubu Hakodate Bull. 1970-72. \(2 \underline{2}(2): 107\) (in Japanese).

Kendall, A.W. and J. Clark. 1982. Ichthyoplankton off Washington, Oregon and northern California April-May 1980. NWAFC Processed Rep. 32-11. NMFS NOAA Seattle WA.

Kendall, A.W. Jr. and J. Clark. 1982b. Ichthyoplankton off Washington, Oregon and northern California August 1980. NWAFC Processed Rep. 82-12. NMFS NOAA. Seattle WA.

Kendall, A.W., J.R. Dunn, A.C. Materese, D.E. Rogers and K.J. Garrison. 1980. Taxonomic composition, seasonal distribution and abundance of ichthyoplankton in the nearshore zone of the Kodiak Archipelago: AK, Out. Cont. Shelf Env. Ass. Proj. Final Rep. FRI-UW-8022, Fish. Res. Ins. UW Seattle, WA, 62p.

LeBrasseur, R.J. 1972. Utilization of herbivore zooplankton by maturing salmon. In: A.Y. Takenouti [ed.] Biological Oceanography of the northern North Facific Ocean. Idemitsu Shoten, Tokyo. pp. 581-588.

LeBrasseur, R.J. 1966. Stomach contents of salmon and steelhead trout in the northeastern Pacific Ocean. J.Fish. Res. Bd. Can. 23: 85-100.

Livingston, P.A. and B.J. Goiney, Jr. 1983. Food habits literature of North Pacific marine fishes: a review and selected bibliography. NOAA Technical Memorandum NMFS F/NWC-54. Seattle, WA 81p.

Marizer, J. I. 1968. Food of the Pacific salmon and steelhead trout in the northeastern Pacific Orean. J.Fish.Res.Bd.Can. \(\underline{\text { Es }}\) : 1085-1089.

Mercer, R.W. 1981. Proceedings of the squid workshop. NWAFC Processed Rep. 81-11 NMFS, NOAA. Seattle WA.

Motoda, S. and T. Minoda. 1974. Plankton of the Bering Sea. pp.207-241. In: D.W. Hood and E.J. Kelley [eds.] Oceanography of the Bering Sea with emphasis on renewable resources. Fairbanks: Univ. Alaska, AK. 1974.

Nishiyama, Tsunea. 1970. Tentative estimation of daily ration of sockeye salmon (Oncarhynchus nerka) in Eristol Bay priar to ascending migration. Hokkaido Daigaku Sapporo Suisangakubu Hakodate Bul1. 1968-70. \(\underline{\underline{0}} \mathrm{O}(4): 265\).

Okada, S. and A.Taniguchi. 1971. Size relationship between salmon juveniles in shore waters and their prey animals. Bull. Fac. Fish. Hokkaido Univ. 22:30-36.

Pritchard, A.L. and A.L. Tester. 1944. Food of spring and coho salmon in British Columbia. Bull. Fish. Research Board of Canada 흐: 1-23.

Reid, G.M. 1961. Stomach content analysis of troll-caught king and coho salmon, southeastern Alaska, 1957-1958. US Fish and Wildiife Serv. Spec. Sci. Rept. Fisheries No. 379.

Reid, J.L. 1962. On circulation, phosphate phosphorus content and zooplanktor volumes in the upper part of the Pacific Ocean. Limnol. Oceanogr. 2(3):287-306.

Roper, C.F.E. and R.E. Young. 1975. Vertical distribution of pelagic cephalopads. Smithsonian Contribs. Zool. 209: iv +5lp.

Sanger, G.A. 1972. Fishery potentials and estimated biological productivity of the subarctic Facific region. pp.561-574. In: A. '. Takenouti [ed.] Biolagical Dceanography of the northern North Pacific Ocean. Idemitsu Shoten, Tokyo. 626p.

Walline, Paul. 1981. Distribution of ichthyoplankton in the Eastern Bering Sea during June and July 1979. NWAFC Processed Rep. 81-03. MMFS, NOAA Seattle WA.

Walters, C.J., R. Hilborn, R.M. Peterman and M.J. Stanley. 1978. Model for examining early ocean limitation of Pacific salmon production. J.Fish. Res. Bd. Can. 3 으: 1303-1315.

\section*{LIST OF FIGURES}

Figure 1. Sockeye salmon diet compositions in percent by weight of fish, squid and zooplankton. Numbers along x-axis refer to references listed in Appendix Table I.

Figure 2. Pink salmon diet compositions in percent by weight of fish, squid and zooplankton. Numbers along x-axis refer to references listed in Appendix Table \(I\).

Figure 3. Chum salmon diet compositions in percent by weight of fish, squid and zooplankton. Numbers along x-axis refer to references listed in Appendix Table I.

Figure 4. Coho salmon diet compositions in percent by weight of fish, squid and zooplankton. Numbers along x-axis refer to references \(1 i s t e d\) in Appendix Table \(I\).

Figure 5. Flow diagram for the salmon carrying capacity simulation model.

Figure 6. Sea-Land diagram used in zooplankton biomass simulation (ZOOCRO). Divides the north Pacific Ocean into 13 different physiographic areas. * indicates land. Numbers in parentheses represent July zooplankton biamass (mg/mJ). From NOPASA (Favorite and Laevastu; 1979).

Figure 7. Simulation of average monthly zoaplankton biomass (mg/m3) in Areas \(I\) and \(I I\) of \(F i g u r e\) o.

Figure 8. Simulation of average monthly zooplankton biomass (mg/m3) in Areas \(X\) and \(X I\) of \(F i g u r e\) 6.

Appendix Table I. Salmon diets reference list and sample sizes.

Appendix Table II. Input values for Carrying Capacity simulation.


Figure 1. Sockeye salmon diet compositions in percent by weight of fish, squid and zooplankton. Numbers along x-axis refer to references listed in Appendix Table I.


Figure 2. Pink salmon diet compositions in percent by weight of fish, squid and zooplankton. Numbers along x-axis refer to references listed in Appendix Table I.


Figure 3. Chum salmon diet compositions in percent by weight of \(f i s h\), squid and zooplankton. Numbers along \(x\)-axis refer to references listed in Appendix Table I.


Figure 4. Coho salmon diet compositions in percent by weight of fish, squid and zooplankton. Numbers along \(x\)-axis refer to references listed in Appendix Table \(I\).

SALMON CARRYING CAPACITY SIMULATION MODEL


Figure 5. Flow diagram for the salmon carrying capacity simulation model.



Figure 7. Simulation of average monthly zooplankton biomass (mg/m3) in Areas \(I\) and \(I I\) of \(F i g u r e 6\).


Figure 8. Simulation of average monthly zooplankton biomass (mg/m3) in Areas \(X\) and \(X I\) of Figure 6.

AFPENDIX TABLE I. Salmon Diets Reference List and Sample Sizes

NO. FISH SAMPLED
SOURCE LOCATION SAMPLE DATE

Sockeye Pirk Chum Coho
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \begin{tabular}{l}
Kanno \& \\
Hamai (1971)
\end{tabular} & a. 103 & 107 & 105 & -- & C, W Bering Sea & Summer & 1966 \\
\hline \multirow[t]{3}{*}{} & \multirow{3}{*}{Nishyama
\[
(1970)
\]} & b. 142 & 79 & 123 & - & NE Bering Sea & Summer & 1966 \\
\hline & & a. 115 & -- & -- & -- & W Bering Sea & Summer & 1966 \\
\hline & & b. 58 & -- & -- & -- & " & Summer & 1965 \\
\hline & \[
\begin{aligned}
& \text { Manzer } \\
& (1968)
\end{aligned}
\] & 87 & 24 & -- & 4 & G of Alaska & Winter & 1964 \\
\hline & Allen \& Aron (1958) & 104 & 111 & 88 & -- & W Pacific & Summer & 1955 \\
\hline 5. & Andrievskaya (1958) & 150 & 250 & 250 & -- & W Pacific & August & 1955 \\
\hline 6. & Andrievskaya (1966) & 2200 & 1700 & 3200 & -- & W Pacific & \begin{tabular}{l}
\[
1962
\] \\
a. Summ \\
b. Spri
\end{tabular} & er ng \\
\hline \multirow[t]{2}{*}{7.} & \multirow[t]{2}{*}{LeBrasseur (1966)} & a. 71 & 47 & -- & 7 & G of Alaska & Summer adults & \[
1958
\] \\
\hline & & b. 116 & -- & -- & 28 & \(G\) of Alaska & \begin{tabular}{l}
Summer. \\
immatur
\end{tabular} & \[
1958
\] \\
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{Pritchard \& Tester (1944)} & \begin{tabular}{l}
a. -- \\
b. --
\end{tabular} & - & -- & 45
126 & Varicouver BC
" & 1939
1940 & \\
\hline & & ᄃ. -- & - & -- & 86 & " & 1941 & \\
\hline & Favorite (1970) & 5880 & -- & -- & -- & Subarctic Pacific & Summer & 1960 \\
\hline \multirow[t]{2}{*}{10} & \[
\begin{aligned}
& \quad \text { Reid } \\
& (1961)
\end{aligned}
\] & a. -- & -- & -- & 200 & SE Alaska & Summer & 1957 \\
\hline & & b. -- & -- & -- & 222 & " & Summer & 1958 \\
\hline
\end{tabular}

Appendix Table II. Input values for carrying capacity simulation.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multirow[t]{2}{*}{```
North Pacific salmon
    mean run size +30%
        escapement; Aslan
and N. American runs
```} & \multicolumn{5}{|c|}{Percent of body weight required for consumption to maintain salmon biomass} & \multicolumn{6}{|l|}{Salmon diet composition from stomach content analyses (\% by welght)} & \multirow[t]{2}{*}{No. of days salmon feed in ocean} & \multicolumn{5}{|c|}{Salmon
individual weights
\((\mathrm{kg})\)} \\
\hline & & 1 & 2 & Age & 4 & 5 & & 1 & 2 & Age
3 & 4 & 5 & & 1 & 2 & & 4 & 5 \\
\hline \multirow[t]{3}{*}{Sockeye} & 43,000,000 & 0.029 & 0.022 & 0.022 & 0.22 & 0.022 & Zoopl & 80 & 50 & 50 & 50 & 50 & 365 & & & & & \\
\hline & & & & & & & Squid & 10 & 35 & 35 & 35 & 35 & each of & 0.3 & 0.9 & 1.9 & 2.5 & 3.0 \\
\hline & & & & & & & Fish & 10 & 15 & 15 & 15 & 15 & 5 years & & & & & \\
\hline King & 7,000,000 & & & & & & Zoopl & 80 & 91 & 91 & 91 & 91 & & & & & & \\
\hline Chum & 57,000,000 & & & & & & Squid & 10 & 1 & 1 & 1 & 1 & 365 & 0.4 & 1.0 & 2.0 & 3.2 & 4.0 \\
\hline King \& Chum & 64,000,000 & 0.028 & 0.021 & 0.021 & 0.021 & 0.021 & Fish & 10 & 8 & 8 & 8 & 8 & each year & & & & & \\
\hline \multirow{3}{*}{Pink} & & & & & & & Zoop1 & 60 & 60 & - & - & - & & & & & & \\
\hline & & 0.03 & 0.03 & - & - & - & Squid & 20 & 20 & - & - & - & 550 & 0.8 & 1.5 & - & - & - \\
\hline & 165,000,000 & & & & & & Fish & 20 & 20 & - & - & - & & & & & & \\
\hline \multirow{3}{*}{Coho} & & & & & & & Zoop1 & 25 & 25 & - & - & - & & & & & & \\
\hline & 14,000,000 & 0.03 & 0.03 & - & - & - & Squid & 4 & 4 & - & - & - & 480 & 1.8 & 3.0 & - & - & - \\
\hline & & & , & & & & Fish & 71 & 71 & - & - & - & & & & & & \\
\hline Total & 286,000,000 & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}```

