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1 INTRODUCTION 

The Getz-Swartzman model is an age structured stochastic 
model which has been applied to four fish stocks, the South 
African anchovy, New England yellowtail flounder, Georges Bank 
haddock (Getz and Swartzman 1981) and the Pacific whiting 
(Francis et al. 1982$ Swartzman et al. 1983). In all of 
these applications, estimates of model parameters have been 
assumed to be known with complete certainty. As is usually the 
situation in simUlation modelling, parameter estimation in 
these applications was based on incomplete and sometimes scanty 
data sets. Little, if any, information was known concerning 
the sampling or underlying biological variability associated 
with the data sets. It is important to note that even though 
the Getz-Swartzman model is a stochastic model and consequently 
predicts expected values of stock and yield and their 
variances, the model predictions do not reflect uncertainty 
associated with the values assumed for parameters. All model 
predictions are based on point estimates of the parameters. 
Particularly in the Pacific whiting application in which model 
results may influence real life management decisions, the 
effect of parameter uncertainty on model behavior must be 
assessed. It has to be established that the model predictions 
are robust and stable and the model will not produce vastly 
different results when parameters are varied. A commonly used 
approach to explore the influence of various inputs on model 
behavior is sensitivity analysis. This paper reports on an 
extensive sensitivity analysis of the Pacific whiting version 
of the Getz-Swartzman model. 

Sensitivity analysis has received widespread useage and 
the term has been loosely applied to practically any modelling 
exercise in which model inputs are varied and their influence 
on model behavior is assessed. This general operational 
definition of sensitivity analysis has resulted in many 
different methodologies being used with little attention paid 
to the dependancy of sensitivity results on the particular 
method chosen. Methods currently in use range in complexity 
from the classical partial derivative proposed by Tomovic 
(1963) to approaches involving parametric and nonparametric 
statistics (Gardner et al . 1981$ Spear and Hornberger 1980) 
and frequency domain analysis (Cukier et al . 1978). 

With the current non-standard use of sensitivity analysis 
in mind, Rose (1982) and Rose and Swartzman (1981) reviewed and 
compared the various methods proposed in the literature. 
Particular attention was paid to how methods would fare when 
applied to large, complex simulation models such as the 
Getz-Swartzman model. 
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Rose (1982) details four problems that arise with the 
sensitivity analysis of large models and which methodologi~s 
must address. These problems are: 

l)The computational requirements of the analysis. The 
computer costs and time of repeated runs of a large model 
can quickly become excessive. 

2) The possibility of important parameter interaction 
effects. Interaction effects occur when the reponse of 
the model to varying values of a parameter depends on the 
values chosen for other parameters. Methods incapable of 
incorporating interaction effects can produce sensitivity 
conclusions for a given parameter that depend on the 
values assumed for other parameters. Figure 1 illustrates 
this using a simple two parameter example. The value of a 
model output variable is observed for two values of PARAM1 
with PARAM2=k and PARAM2=k '. Based on the response of the 
output variable to the changed values of PARAMl for 
PARAM2=k. PARAM1 would be concluded as "unimportant" 
whereas if PARAM1 was changed with PARAM2=k', PARAM1 would 
be inferred as II imp ortant ". 

3) The size and shape of the parameter space for which 
sensitivity conclusions are valid. Many methods only 
explore a small region in the parameter space (size) and 
make unrealistic assumptions about the relative 
variabilities of different parameters (shape). Complex 
models can respond in very different and unpredictable 
(non-linear) ways to variations in parameters dependent on 
the size and shape of the parameter space explored. 

4) The complication of interpreting sensitivity 
conclusions caused by large models offering many potential 
output variables on which to base the sensitivity 
analysis. Additionally, not only will sensitivity 
conclusions vary from output to output variable, but the 
conclusions for a given output variable will vary with 
time in the simulation. 

Using problems (1) (4) as criteria, Rose (1982) 
evaluated the various proposed methods concluding that random 
sampling approaches and fractional factorial designs were the 
best suited for use on large models. Since the two methods can 
generate very different sensitivity conclusions when applied to 
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the same model (Rose 1982), we believe that both must be used 
and sensitivity conclusions compared for corroboration before 
interpretation of the results can proceed. 

This paper is organized as follows. First the random 
sampling and fractional factorial methods of sensitivity 
analysis are briefly described in general terms. This is 
followed by a section which summarizes the structure of the 
Pacific whiting version of the Getz-Swartzman model. Next the 
details involved in applying the sensitivity methods to the 
model are discussed. The final two sections present 
interpretations of the sensitivity analyses of both the 
simulation model and the management algorithm and conclusions 
about the robustness and stability of both. 

2 SUMMARY OF SENSITIVITY ANALYSIS METHODS 

Fractional factorial designs with analysis of variance 
(ANOVA) and a type of random sampling termed Latin Hypercube 
sampling (LHS) with partial rank correlation (PRe), were the 
methods deemed best suited for use on large by Rose (1982). A 
third method, which we call individual parameter perturbation 
(IPP), is a very commonly used method and, as will be 
discussed, is useful in conJunction with the fractional 
factorial design method in establishing the importance of 
parameter interaction effects. The methods are two step 
procedures. The first step is the generation or sampling of 
parameter values to be used in model runs and the second step 
is the statistical analysis of the resulting output which 
provides quantities on which parameters can be ranked by 
importance. 

2.1 Fractional Factorial Designs 

In fa c tor i a Ide s i 9 n s , run s are ma des u c h t hat a I I 'I eve Is' 
of a parameter are combined with all 'levels' of every other 
parameter. The simplest case is having two levels, a nominal 
value and either plus or minus a constant percentage from the 
nominal value, which for d parameters results in 2d runs. A 
fractional factorial design involves running only a fraction ( 
1/2 to some power c) of the total possible factorial runs and 
is commonly denoted as 2d- c (Box et al. 1978). The 
information lost as a result of not making all the runs appears 
as the estimated effects of various parameter combinations on 
the output being aliased or inseparable from the available 
run s. The b est t hat can bed 0 n e i san est i ma teo f the sum 0 f 
the effects of the aliased parameter combinations. Judicious 
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selection of which runs to make enables individual parameter 
effects to be aliased only with high order interaction effects 
and low order interaction effects with interactions of moderate 
order. By assuming that higher order interactions are 
negligible. individual parameter effects may be estimated. All 
low order interaction effects may not be separable in some 
designs but usually their relative importance as a group can be 
determined. Box et al. (1978) define the resolution R of a 
fractional factorial design as one in which no K parameter 
interaction is aliased with any other combinations containing 
R-K parameters. 

2.2 Analysis of the Output from Fractional Factorial Designs 

Steinhorst et al. (1978) apply analysis of variance 
(ANOVA) to the values of the output variable from a fractional 
factorial design and use the F-values to rank parameters. 
Since there is no random component to model output the F-values 
represent empirical quantities, not probability statements. 
Parameters can therefore be equivalently ranked on the 
magnitude of their sum of squares from the ANOVA. 

2.3 Random Sampling 

The most common random sampling procedures assume the 
parameters are uncorrelated. A probability distribution is 
assumed for each parameter and for each run every parameter is 
sampled from its distribution. To gain as much information as 
possible from the fewest runs, parameters which sufficiently 
cover the parameter space must be selected in an efficient 
manner. For a limited number of runs, simple random sampling 
can result in a clustering of parameter values leaving gaps in 
the coverage of the parameter space and a redundancy in the 
information contained in some runs. This redundance may be 
eliminated through the use of some form of stratified sampling. 

Conceptually. stratified sampling ensures good coverage 
with little redundance by dividing the parameter space into 
sections and sampling from each section with certain 
probabilities. McKay et al. (1976$1979) go a step further and 
propose Latin Hypercube sampling (LHS) which divides each 
parameter range into intervals. LHS requires the same number 
of intervals for each parameter as model runs. The intervals 
for each parameter are randomly assigned to model runs (i. e., 
each interval appears only once) and for each run values are 
selected from the intervals. In application, the intervals for 
each parameter are chosen such that every interval contains the 



same amount of area under the assumed 
distribution. This way one can sample from 
assuming a uniform distribution over the interval. 

2.4 Analysis of the Output from Random Sampling 
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probabilility 
an interval 

Mckay et al. (1976) advocate the use of the partial rank 
correlation coefficient (PRe) between the values of the output 
variable and each parameter over runs as a measure of 
sensitivity. The pTemise is that the greater the correlation 
between the output variable and a parameter over runs, the 
greater is the controlling influence of that parameter on model 
behavior. The rationale for using the rank transformed values 
of the output variable and parameters is to lessen the 
influence that a few outlier values can have on the correlation 
coefficients and consequently the sensitivity conclusions. 

2.5 Individual Parameter Perturbation 

Individual parameter perturbation (IPP) is a 
straightforward, intuitive approach to sensitivity analysis. 
First a run in which all parameters are kept at their nominal 
values is made, referred to as the standard run. Parameters 
are then varied one-at-a-time by some percentage from their 
nominal values. The importance of parameters are determined by 
the magnitude of the change of the output variable from each 
run with the corresponding value in the standard run. 

IPP is probably the most commonly used method despite the 
fact that it cannot incorporate parameter interaction effects. 
Unlike fractional factorial designs and LHS, which vary 
parameters simultaneously, IPP singly perturbs parameters which 
prevents obtaining any information on interactions. The IPP 
method is used in this paper to represent the sensitivity 
conclusions obtained if interactions are ignored. Since the 
fractional factorial design with ANOVA explicitly estimates 
interaction effects and IPP ignores them, the degree of 
similarity between the two methods indicates the effect of 
interactions on sensitivity conclusions. 
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3 SUMMARY OF THE GETZ-SWARTZMAN MODEL 

The Getz-Swartzman model is fully documented in Getz and 
Swartzman (1981). The model can be summarized as follows: 

a) The number of individuals in each of n age classes at 
time k in the simulation is characterized by a probability 
vector PiCk), i=I, . .. ,n, where the Jth element piJ(k), 
J=1. . . . , m, represents the probab i 1 i ty that the actual numbers 
of individuals in the ith age class is in the interval: 

[XMAXi<k) * (J-l)/m, XMAXi(k) * Jim J (1) 

The maximum population level, XMAXi(k) for each age class i is 
calculated by accruing natural and fishing mortality via a 
Beverton-Holt type analsis: 

XMAX<i+l>(k) = exp{ -(ALPHi + Gi*V(k)*L)} * XMAXi(k) (2) 

where ALPHi, Gi, V( k), and L are, respectively, the natural 
mortality rate, catchability coefficient, fishing effort, and 
length of the fishing season as a fraction of the total season. 
The maximum recruitment, XMAX1<k), is constant over time (k = 
1,2, ... ) and is determined from spawner-recruit data as 
discussed below in (cL The probability vector Pi<k) is 
carried forward in time as the age group passes into the next 
year class: 

P<i+l>(k+l) = PiCk) i=l, ... , n-2 (3) 

The only exception is the probability vector of the largest 
size class, Pn(k+l), which consists of individuals not only of 
age n-l but also older individuals (see Getz and Swartzman 1981 
for details). 

b) The fecund stock biomass level in the fishery at time 
k, STOCK(k), is characterized by a probability vector PS(k) 
with ms elements. The Jth element represents the probability 
that the actual fecund stock biomass level is in the Jth range: 

( SMAX * (J-l)/ms , SMAX * J/ms ] (4) 



PAGE 7 

The probability vector PS(k) is obtained by preforming a 
convolution on the n age class probability vectors PiCk), 
i=L ... ,n. The elements of each Pi( k) vector are assigned 
midpoints values of the intervals defined in equation (1). In 
a similar manner, the elements of PS(k) are assigned the 
midpoints values of the intervals defined in equation (4). To 
convert from numbers of individuals in the Pi(k) to the units 
of fecund stock biomass in PS(k), the midpoint values of each 
age class i are multiplied by a constant average weight Wi and 
the fraction of individuals which are sexually mature Ci. 

The expected value and variance of STOCK(k) are calculated 
using the expressions: 

E(STOCK(k» = P S J ( k) * {( J -. 5) / m s} * SMA X 

V(STOCK(k» = * SMAX 

Analogous expressions for the expected value and variance of 
YIELD(k) based on the PiCk) are also computed using the amount 
of biomass from each age class which is removed due to fishing 
in equation (2) . 

c) The probability vector Pl(k+l), not obtainable from 
equation (3), characterizing the probability distribution of 
new recruits at time k, is determined from the spawning stock 
using a stock-recruit probability transition matrix approach. 
The elements, tiJ' i=l, ... ,m and J=L ... ,ms, of the probability 
transition matrix (T) represent the probability with which a 
fecund stock level in the Jth biomass range will result in the 
number of recruits falling into the range: 

[ XMAXl * (i-l )/m , XMAXl * (i/m) ] 

Thus, in generaL if newly spawned individuals are 
recruited to the fishery at age r, it follows that: 

Pl(k+l) = T * PS(k+l+r) 

only 

d) Adaptation of the Getz-Swartzman model to the Pacific 
whiting fishery required specifying that recruitment to the 
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fishery take place at age 3 years and that there be n=8 age 
classes, m=6 subdivisions in each age class, and ms=8 stock 
subdivisions. A list of parameters and their values used in 
the simulation are presented in Table 1. Additonally, we have 
interpreted results from Bailey (1981) that the level of 
recruitment entering the whiting population each year is 
correlated with the water temperature on the spawning grounds 
during larval development. To incorporate this information, 
water temperatures on the spawning grounds were categorized as 
either warm or cold . Two spawner-recruit probability 
transition matrices were used corresponding to the levels and 
variablilites of recruitment in 'warm years' (TW) and the 
levels and variabilites in 'cold years' (TC). 

4 APPLICATION OF SENSITIVITY METHODS TO THE MODEL 

The obJectives of the sensitivity analysis are twofold: 
First to determine the effects of parameter variation on model 
behavior and on the results of the management algorithm$ 
Second, to determine what aspects of the model control model 
behavior . The approach taken was to use the methods described 
in the previous section to investigate the behavior of the 
model and then to use the results from the sensitivity analysis 
of the model to investigate aspects of the management 
algorithm. Details and results of the sensitivity analysis of 
the model are presented in the following section (section 5). 
The management algorithm analysis is then presented in section 
6. 

4. 1 Choice of Parameters and Model Runs 

Table 1 presents the 23 parameters, their definitions, and 
nominal and plus and minus 10# values which were used in the 
sensitivity analyses . There are several aspects of the 
parameters listed in Table 1 that deserve further discussion. 
First, two of the parameters, TC and TW, are not the usual 
scalar quantities but rather are matrices. The interpretation 
of these probability transition matrices is based on the 
discretization of stock and recruitment into subdivisions. 
Each element of the matrix (tiJ) gives the probability of 
observing the number of recruits in subdivision i given the 
stock is in subdivision J. There are two transition matrices 
which represent the different recruitment for warm versus cold 
water temperature on the spawning grounds . 

Variation of 
analysis can be 

the 
done 

transition 
in several 

matrices 
ways. 

for 
The 

sensitivity 
most detailed 
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approach would be to vary each element of each matrix. This 
results in 60 individual parameters which is clearly too man4 
for the analysis. Reducing the number of parameters associated 
with the matrices is not only Justified due to the number of 
parameters involved but also based on how the matrices were 
estimated. In the application of the model to the Pacific 
whiting, the matrices were estimated from a single 
spawner-recruit data set implying that both matrices were 
estimated as a single quantity. The estimation procedure used 
was to first examine the spawner-recruit data and specify the 
maximum possible recruitment level, XMAX1, and the maximum 
possible stock level, SMAX. The values of XMAX1 and SMAX 
determine the scale of the ordinate (number of recruits) and 
abscissa (stock biomass level) respectively, for the transition 
matrices. Next the elements of the matrices were estimated 
from the spawner-recruit data on a column by column basis. We 
were able to specify the mean and standard deviation (SO) of 
each column of the warm year matrix (TW) and cold year matrix 
(TeL A column in a transition matrix, tiJ' i=1, ... , n, 
corresponds to the probability vector giving the probabilities 
of observing each of the n subdivisions of recruitment given 
the stock is in the Jth stock subdivision. The elements in 
each column were determined such that they resulted in the 
desired mean and SO of recruitment. One may conclude that 
based on the estimation procedure described above both matrices 
should be treated as a single parameter and only be allowed to 
vary together since both came from the same spawner-recruit 
data set. The problem with this is that the transition 
matrices contain a lot of information and treating them as a 
single parameter severely limits how we can vary them to assess 
model sensitivity. Since the primary obJective here was 
sensitivity analysis and determining model stability, it is not 
necessary that all values chosen for parameters be completely 
realistic. Therefore, we opted for a compromise between 
treating each element of the transition matrices as parameters 
(a total of 60 parameters) and treating both matrices as a 
single parameter. We decided to treat XMAX1, SMAX, Te, and TW 
as four separate parameters. Knowing that independently 
varying the four parameters is not completely realistic, we 
also investigated the effect on model behavior of using a 
different set of values for the transition matrices which could 
have realistically arisen from the original spawner-recruit 
data set. 

The values of the elements in the two parameters, TC and 
TW, were varied in the sensitivity analyses based on the mean 
and SD of each column. Perturbation by +10# from the nominal 
value implies that the probabilities in each column are 
adjusted such that the mean number . of recruits is increased by 
10# keeping the SD unchanged (see Table 1a). There are many 
possible ways to alter the probabilities which would achieve 
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arbitrarily alter 
while satisfying 

the 
tw~ 

1) The 'unimodal pattern' is preserved. This means that 
beginning at the top or bottom the probabilities in a 
column must increase or decrease. For example, the 
probabilities cannot increase, decrease, and then increase 
again forming a 'b imodal pattern'. 

2) In a column, 
altered are 
probabilities. 

the only zero probabilities 
those originally adJacent 

that can be 
to non-zero 

A final notable aspect of the parameters listed in Table 1 
is that the fraction mature of 3 year olds, C3, cannot be 
perturbed upward 10# since the nominal value of 1.0 is an upper 
bound. 

Un I e s sot her w i sen 0 ted, a 11 mod e 1 runs are for 47 y ear s 
using historical water temperatures and fishing efforts as 
driving variables . The dynamics of the model for this 
historical run when all parameters are set to their nominal 
values, referred to as the standard run, are shown in Figures 
2a and b. 

4.2 Selection of Model Ouput Variables 

The behavior of the model is characterized by the 
predicted mean and variance of stock and yield biomasses. 
(Note: In this paper the term 'stock' will refer to fecund 
stock.) A total of eleven output variables were used and are 
defined in Table 2. The output variables of mean stock at 
times 8, 26, and 44 years and mean yield at times 34 and 46 
years are used to investigate the time dependency of 
sensitivity conclusions (problem (4) ) . SDEV and YDEV 
aggregate over time the values of mean stock and yield, summing 
the absolute change in their values from those in the standard 
run. SDEV is based on the sum from times 7 to 47 years which 
eliminates the begining of the simUlation when arbitrary 
initial conditions may influence model behavior. YDEV only 
includes the years 33 to 47 since these were the times a 
fishery operated on the Pacific whiting . Sensitivity 
conclusions based on SDEV and YDEV reflect the behavior of the 
model over the entire run. The remaining four output 
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variables, SVWITH, VVWITH, SVBETW, and VVBETW, attempt to 
characterize the effect parameters have on the variability of 
predicted values of stock and yield. The first two are based 
on the within year variances predicted from the probability 
distributions of stock and yield while the second two are the 
between year variances of stock and year over the entire run. 

4.3 Implementation of the Methods 

A ~3-17 R=4 fractional factorial design requiring 64 
runs was used with parameters perturbed by either plus or minus 
10# as defined in Table 1. Two complete analyses, notated 
SIGN-A and SIGN-B, were done with SIGN-B identical to SIGN-A 
except for the directions of perturbations being reversed (see 
Table 3). This was done to see if the direction of 
perturbation chosen for parameters has an effect on sensitivity 
conclusions . 

The choice of whether to perturb parameters plus or minus 
10# in the SIGN-A and SIGN-B runs was not done randomly but 
rather the directions chosen for some parameters was dictated 
by the directions of other parameters. This was done to 
preserve the pattern of values among certain parameters. 
Specifically the nominal values of the catchabilities, Gi, 
i=1,8, had the pattern of Oi less than 0<i+1> for i=1,6 and G8 
less than 06 and 07. Another pattern among the nominal values 
involved the natural mortalities where ALPHi is greater than 
ALPH<i+1> for i=1,7. Examination of the perturbed values of 
parameters in Tables 1 and 3 for the SIGN-A and SIGN-B runs 
shows that in both these patterns were preserved . 

LHS was implemented assuming uniform distributions for 
each parameter with endpoints of plus and minus 10# of the 
nominal values . Each distribution was divided into 200 equal 
intervals resulting in 200 model runs as recommended by Rose 
(1982) and Iman et al. (1980). Parameters TC and TW were 
generated in a manner consistent with their plus and minus 10# 
values used in the fractional factorial design . Using TWas an 
example, for each run a random number (K) between -1 and +1 was 
obtained. The value of TW used in the run was then calculated 
from the tuned matrix (TWT), +10# matrix (TWU), and -10# matrix 
(TWL) as follows: 

1) for K in the interval (-1, 0): 
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2) for K in the interval (0. +1): 

TW = (l-K)*TWT + (K>*TWU 

IPP was applied to the model for both the SIGN-A and 
SIGN-B sets of directions of perturbation. 

4.4 Measurement of the Similarity Between Methods 

To facilitate the many comparisons of sensitivity 
conclusions generated by the different methods it is necessary 
to define a measure of the degree of similarity between the 
sensitivity conclusions from two methods. The measure of 
similarity we chose was the sum of the absolute deviation in 
ranks (SADR) between the top 10 ranked parameters according to 
either method: 

SADR = L I rankl(Pj) - rank2(Pj) I 
for all 

Pj ranked 
in toplO by 
either method 

where rank1(PJ) and rank2(PJ) are the ranks given PJ by the two 
methods. 

5 RESULTS AND DISCUSSION 

The results from the sensitivity analyses are presented in 
two parts. The first part is a comparison among the various 
methods using the SADR to make certain that they give similar 
sensitivity conclusions. Also included is a discussion of the 
importance of parameter interaction effects. The second part 
is a summary and interpretion of the results from all the 
methods and several additional model runs which provide 
information on what controls model behavior. 

5.1 Consistency Among Methods 

Table 4 presents the SA DR of the top 10 ranked parameters 
comparing the fractional factorial designs and IPP for the 
SIGN-A and SIGN-B runs and LHS. The output variable on which 
sensitivity conclusions in Table 4 are based is SVWITH. The 

... 
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results were similar for all the output variables except SDEV 
and YDEV. It is very encouraging that for 9 out of 11 output 
variables the three methods generate similar sensitivity 
conclusions. This does not necessarily mean that the 
conclusions are the same for the different output variables but 
rather that for a given output variable, the methods agree as 
to which parameters are important. These results are in 
agreement with the evidence that indicates parameter 
interaction effects are not important for these output 
variables. In both the SIGN-A and SIGN-B fractional factorial 
designs there were no aliased two parameter interaction effects 
ranked more important than 4th. Furthermore, even the 
relatively important interaction ranked 4th only accounted for 
5# of the total sum of squares in the ANOVA. Also encouraging 
is the agreement between the SIGN-A and SIGN-B versions of IPP 
and the fractional factorial designs. This indicates that the 
direction of perturbation chosen for parameters has little 
influence on the sensitivity conclusions. 

The results from the remaining output variables of SDEV 
and YDEV are not as easily interpretable. Concentrating on the 
SIGN-B sets of runs, interaction effect 22 (defined in Table 5) 
is ranked first among all parameters for both SDEV and YDEV, 
accounting for approximately 20# of the total sum of squares 
for both variables. Table 6 shows SADR for SDEV and YDEV 
comparing the SIGN-B runs of the fractional factorial design 
and IPP and LHS. Whereas for the nine other output variables 
the three methods generated similar conclusions, this is not 
true for SDEV and YDEV. Given the importance of interaction 
effects as compared to the nine other variables this result is 
perhaps not surprising. What is surprising and completely 
counter-intuitive is that the conclusions from the fractional 
factorial design and IPP agree and both disagree with those 
from LHS. These results are exactly opposite to the 
conclusions reached by Rose (1982). Rose (1982), based on the 
application of these methods to a different model, reasoned 
that when interactions are important, the fractional factorial 
design and IPP would differ siqnificantly, since the fractional 
factorial design explicitly accounts for interaction effects in 
the ANOVA whereas IPP ignores interactions. Furthermore, Rose 
(1982) found that regardless of the importance of interactions, 
LHS and IPP always agreed to the same degree. The results from 
applying the methods to the Getz-Swartzman model show that when 
interactions are not important, LHS and IPP agree but that when 
interactions are important LHS and IPP differ significantly. 

To provide the reader with an idea of how different the 
conclusions from the fractional factorial design, IPP, and LHS 
are, Table 7 compares the rankings given the top 3 parameters 
according to each method for YDEV. For comparison, included 
are the analogous results for YVBETW as the output variable. 
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Clearly for SDEV and YDEV interpretation of which parameters 
are important is dependent on which method is used and 
additional model runs would have to made in order to provide an 
explanation for this behavior. The appropriate procedure would 
be to apply another fractional factorial design to the 
parameters included in the interactions in Table 5 to determine 
which of the interactions are important. Although the 
information obtained from this further analysis would add 
greatly to our understanding of the model, we are limited by 
both time and resources and cannot pursue this any further. 
Therefore only the results from the nine output variables other 
than SDEV and YDEV will be discussed in the next section. 

5.2 Interpretation of Sensitivity Results 

The same five parameters were ranked as the top 5 most 
important parameters for all nine of the output variables. 
These parameters are XMAX1. SMAX, TC, TW, and ALPH1. In terms 
of the percent of the total sum of squares accounted for in the 
fractional factorial design, the magnitude of the PRC 
coefficient in LHS, and the change in the output variable from 
the standard run in IPP, the two top ranked parameters 
generally dominated over the remaining parameters. Also either 
XMAXI or SMAX were usually ranked as the most important. 

The almost complete domination of XMAX1 and SMAX was 
somewhat unexpected. By separating XMAX1, TC, and TW , a 10# 
increase in recruitment could be achieved via a 10# increase in 
XMAXI or by altering the probabilities in each column of the 
transition matrices such that the mean is 10# higher. Table 8 
shows that the effect of singly perturbing XMAXI by 10# is 
equivalent to altering the transition matrices (TC and TW) for 
all the output variables except the four based on the variances 
of stock and yield. Interestingly, for SVWITH, YVWITH, SVBETW, 
and YVBETW, changing TC and TW simultaneously had much less 
effect on the output variables relative to the standard run 
than perturbing XMAXI. The values of the output variables when 
XMAX1 is changed indicate a substantial decrease in the 
variablility of predicted values of stock and yield as compared 
to the run with TC and TW changed and the standard run. This 
occurs despite the fact that by increasing XMAXl the variance 
of each column of the transition matrices is increased as 
opposed to perturbing TC and TW in which the variance is 
maintained unchanged. 

The great importance of XMAX1, SMAX, TC, and TW in 
determining model behavior coupled with the above results has 
important implications in parameter estimation. As di~cussed 
earlier, the transition matrices are typically estimated as 
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single entities, with determination of the probability elements 
dependent on the choice of XMAX1 and SMAX. Yet neither XMAXl 
or SMAX are point estimable, but rather represent values 
thought to be arbitrarily larger than any potentially 
observable values. An equally valid estimate of the matrices 
could have been made from the same spawner-recruit data set 
with XMAX1 and SMAX at different values. To illustrate this we 
went back to the original spawner-recruit data set and using an 
XMAX1 of 10# higher than the nominal value reestimated the 
probabilties in the columns of TC and TW (denoted TC ' and TW ' 
in Table 9>' These estimated matrices differ from the ones 
used in the sensitivity analyses. They are not a variation of 
the nominal values of TC and TW but rather represent equally 
valid alternative estimates of the transition matrices obtained 
in the same manner as the nominal values but with a 10# larger 
XMAX1. The values of the output variables for a run with TC' 
and TW' are included in Table 8 and indicate that both valid 
sets of estimates of the matrices (TC and TW in the standard 
run and TC' and TW') would result in similar, but not 
identical, model predictions. In fact, the predicted variances 
of yield are more similar between the standard run and TC and 
TW perturbed by +10# than between the standard run and the run 
with TC' and TW'. 

Until this point, all discussion concerning parameter 
importance has been in relative terms. How do the actual 
values of stock and yield change when parameters are varied? 
Figures 3a and b show the time traJectories of stock and yield 
for the standard run and for XMAX1 perturbed by -10#, +10#, and 
+50#. The model seems quite stable. Similar patterns of stock 
and yield are evident in all the runs with higher values of 
stock and yield associated with higher values of XMAXI. Also, 
as XMAX1 is increased, the dynamiCS of stock become less and 
less variable. This is due to the higher levels of recruitment 
dictated by increased XMAXI pushing stock into the upper end of 
the transition matrices where the highest levels of recruitment 
are obtained and stock size has no effect. 

Notice that the patterns of stock are similar for the 
entire 47 years, not Just for the years when fishing is 
operative. One explanation for the stability of the model 
during the years of fishing is that there is a feedback between 
stock and yield. The model computes yield from stock using the 
observed fishing efforts as a driving variable. The amount of 
yield removed each year is proportional to the effort 
multiplied by the biomasses of each age class comprising the 
stock. The values of yield in Figure 3b track the pattern of 
stock over time, high levels of stock are decreased by large 
yields and low levels of stock are decreased by small yields. 

The similar patterns of stock for the years prior to 
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fishing must be due to the time trace of temperatures (warm or 
cold) and the differences in recruitment in TC and TW. T~ 

investigate this, 47 year runs without any fishing were made 
for the same runs as in Figure 3 using the historical time 
trace of temperatures (Figure 4) and with warm and cold years 
switched (Figure 5). The controlling influence of temperature 
can clearly be seen as the switching of temperatures causes the 
pattern of stock in Figure 5 to be the 'mirror image' of the 
historical run in Figure 4. 

In summary, the model is well behaved and quite stable 
under conditions of parameter uncertainty. Five parameters, 
XMAX1, SMAX, Te, TW, and ALPH1, are the most import~nt 

parameters according to nine different output variables. 
Estimation of the probability transition matrices must be done 
with caution. The choice of XMAX1 and SMAX is arbitrary and 
different, equally valid estimates of the matrices can cause 
somewhat different model predictions of stock and yield 
variances. The pattern over time exhibited by stock and yield 
is controlled by the values of temperature and fishing efforts. 
The absolute levels of stock and yield are determined by the 
values of XMAX1, SMAX, TC, and TW. 

6 SENSITIVITY ANALYSIS OF THE MANAGEMENT ALGORITHM 

The management algorithm is fully described in Francis et 
al (1982) and Swartzman et al (in review). Conceptually the 
algorithm operates as a five year look-ahead forecasting 
recruitment into the future based on information concerning the 
water temperatures on the spawning grounds. The obJectives of 
the algorithm are to protect the stock when it is in poor 
condition and temperatures do not appear conducive to stock 
improvement in the near future and to be able to utilize strong 
year classes in an efficient manner (Francis et al. 1982). 
These obJectives are achieved by defining upper and lower 
stopping rules based on the biomass of 5+ year olds, termed the 
desireable stock. The lower stopping rule (SRL) is a value 
that desireable stock biomass cannot go below for any of the 
five years in the future. The upper stopping rule (SRU) is the 
optimal level that desireable stock should be equal to at the 
end of the fifth year. Fishing efforts for the five years are 
adJusted until the two stopping rules are satisfied. In 
general, efforts are adJusted to preferentially increase yield 
in the upcoming year at the expense of losing yield in the 
future. 

The inputs of the model and management algorithm which 
were investigated are defined in Table 10. These include the 
five model parameters determined to be important in influencing 
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model behavior, the upper and lower stopping rules of the 
algorithm, and the driving variable of temperature . Based C~ 
the results from the sensitivity analysis of the model, the 
simple IPP approach provides satisfactorily similar conclusions 
to LHS and fractional factorial design and so is used here 
since it requires the least number of model runs. Measurement 
of the performance of the algorithm is done by using the mean 
of yield, effort, and catch-per-unit-effort (CPUE) over a 47 
year run with historical temperatures. All model parameters 
are kept at their nominal values unless otherwise stated. 

The consequences of altering the stopping rules was 
reported in Table 6 in Francis et al. (1982). Portions or 
those results are reproduced in Table 11 as the standard run 
and Figures 6 and 7. The algorithm runs are noted as SRL/SRU 
in 1000 mt. The 293/293 run was concluded by Francis et al. 
(1982) to be the most desireable management run of the fishery. 
This run resulted in an average yield of 200,000 mt and had the 
highest average CPUE. Other runs had slightly higher average 
yields but at the expense of higher average efforts and less 
stable stock dynamics. Figures 6 and 7 compare the time 
traJectories of stock and yield biomass for the 293/293 run and 
a run in which 200,000 mt was removed each year as a constant 
quota. These figures demonstrate the stabilizing influence 
that the management algorithm has on model behavior. By its 
very definition, the algorithm restricts stock to be greater 
than the lower stopping rule and close to the upper stopping 
rule. We have already seen how fishing efforts as a driving 
variable control the dynamics of model behav i or. With the 
management algorithm this control goes a step further in that 
efforts are continually adJusted dependent on the state of the 
stock and the upcoming effects of temperatures . The intensity 
of the stabilizing influence of the algorithm is demonstrated 
in Figure 8 in which two 293/293 runs are shown with the 
temperatures of one run switched (i. e., warm years to cold 
years and vice versa). In Figures 4 and 5 we saw how great the 
influence of switching temperatures was in affecting model 
behavior. Comparison of Figures 4 and 5 with Figure 8 shows 
that the dynamics of stock for both temperature sequences are 
more similar with the algorithm than with the historical runs . 
This indicates that the algorithm does have a very strong 
controlling influence on model behavior in the manner we would 
expect. 

The effects of varying model parameters are presented in 
Table 11. The behavior of the algorithm is very stable. For 
all the parameters varied by plus and minus 10#, the algorithm 
results in average values of yield, effort, and CPUE which are 
nearly symmetric around the values in the standard run. As 
with model behavior, XMAX1 has the greatest effect on the 
management algorithm. Recall from the previous section that 
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varying XMAX(l) versus TC and TW together had similar effects 
on predicted values of stock and yield but different effects an 
the predicted variances of these quantities. Table 11 also 
contains the results of the management algorithm for TC and TW 
simultaneously perturbed by -10#. Since evaluation of the 
algorithm only depends on the predicted values of stock and 
yield and the variability of these over the 47 years and not 
the predicted variances of these quantities, perturbation of 
XMAXl and TC and TW have similar effects. 

All of the results indicate that the algorithm has a great 
stabilizing influence on the model behavior. Also, although 
varying parameter values changed the results from the 
algorithm, in all runs the results changed in smooth, 
predictable ways. The model behavior never deviated very much 
from the standard run, even when the temperatures were 
switched. 

7 CONCLUSIONS 

There are other aspects of the model and management 
algorithm which could be investigated. For instance, in the 
algorithm, the manner by which efforts are incremented and 
decremented over the five year look ahead in the search to 
satisfy the stopping rules. However the purpose of this 
sensitivity analysis is not to alter the conclusions drawn from 
the model application but rather to establish the robustness 
and stabilility of the results. What we have established in 
this paper is that the Getz-Swartzman model as applied to the 
Pacific whiting fishery does not produce vastly different 
predictions as a result of variation in parameter values. The 
sensitivity analyses also showed that significant improvement 
in the accuracy of the predictions of stock and yield can come 
from increased confidence in spawner-recruit data from which 
XMAX1, SMAX, TC and TW are estimated. 

.~ 
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TABLE 1: The definitions. nominal values. and plus and minus 10% 
values of the 23 parameters investigated in the sensitivity 
analysis 

parameter 

SMAX 

TC 

TW 

Q( 1) 

(H2) 

Q(3) 

CH4) 

Q(5) 

G(6) 

Q(7) 

Q(8) 

C (1) 

C(2) 

C(3) 

ALPH(l) 

ALPH(2) 

ALPH(3) 

definition nominal value -10% value +101. value 

maximum stock size 1.5E+09 1. 35E+09 1. 65E+09 

cold year probability ----------- see TABLE 1A ---------
transition matrix 

warm year probability 
transition matrix 

------------ see TABLE fA ---------

catchability coefficient 0.0045 
for 3 year olds 

catchability coefficient 0.0119 
for 4 year aIds 

catchability coefficient 0.0142 
for 5 year olds 

catchability coefficient 0.0307 
for 6 year olds 

cat c h a b iIi t y co e f f i c i en to. 0429 
for 7 year aIds 

catchability coefficient 0.0712 
for 8 year olds 

catchability coefficient 0.0771 
for 9 year olds 

catchability coefficient 0.0700 
for 10+ year aIds 

fraction of 3 year olds O. 50 
sexually mature 

fraction of 4 year aIds 0.75 
sexually mature 

fraction of 5 year aIds 1.00 
sexually mature 

natural mortality of 3 0.270 
year aIds 

natural mortality of 4 0.210 
year aIds 

natural mortality of 5 0.200 
year aIds 

O. 00405 

0.01071 

O. 01278 

0.02763 

O. 03861 

0.06408 

O. 06939 

0.06300 

0 . 45 

O. 675 

O. 90 

0.243 

0.189 

O. 180 

O. 00495 

O. 01309 

0.01562 

O. 03377 

0.04719 

O. 07823 

O. 08481 

O. 07700 

O. 55 

O. 825 

1. 00 

O. 297 

O. 231 

0.220 



TABLE 1 : (continued) 

parameter definition nominal value -lOr-value +10r- value 
-------- ----------- ------------- -------- ----------

ALPH(4) natural mortality of 6 0.257 0.2313 0.2827 
year olds 

ALPH(S) natural mortality of 7 O. 357 0.3213 0.3927 
year aIds 

ALPH(6) natural mortality of 8 O. 457 0.4113 O. 5027 
year aIds 

ALPH(7) natural mortality of 9 O. 557 O. 5013 O. 6127 
year olds 

ALPH(S) natural mortality of 10 O. 657 O. 5913 O. 7227 
year olds 

XMAX(1) maximum number of recruits 2.4E+09 2. 16E+09 2. 64E+09 



TABLE lA: The nominal. -10%. and +10% values of TC and TW showing 

recruitment 
sub-category 

the mean and SO of each column. The midpoint values of 
each recruitment sub-category are: 2.2. 1. 8. 1. 4. 1. O. 
0.6, 0.2 (xE09 individuals) 

TC-nominal (denoted TCT) TW-nominal (denoted TWT) 

6- 0 0 o 
o 
o 
o 

o 
o 
o 
o 

o 
o 
o 
o 

o 
o 
o 
o 

o 
o 
o 
.2 
.6 
.2 

o 
.05 
· 15 
.2 
.45 
· 15 

.5 

.07 
· 15 
.23 
.35 
· 15 

· 1 
5- 0 0 
4- 0 0 
3- 0 0 
2- 0 . 45 
1- 1 . 55 

1 2 

.6 

.4 

3 

.65 

.35 

4 

.68 

.32 

5-8 

. 14 

.86 

1 2 3 4 

· 15 
· 15 
.2 
.25 
· 15 

5-8 
stock level sub-category 

mf'an 
SO 

.2 
o 

recruitment 
sub-category 
6- 0 
5- 0 
4- 0 
3- 0 
2- 0 
1- 1 

1 

desired 
mean .2 

mean .2 
SO 0 

recruitment 
sub-category 
6- 0 
5- 0 
4- 0 
3- 0 
2- .05 
1- .95 

1 

desired 
mean .22 

mean .22 
SO .08 

. 38 . 44 . 46 . 472 . 256 . 6 . 8 . 916 1. 08 

. 199 . 196 . 1908 . 1866 . 1388 .253.429. 535 .627 

TC -10% (denoted TCL) 

o 
o 
o 

.005 

. 335 

.66 

2 

o 
o 
o 

. 01 

.47 

.52 

3 

o 
o 
o 

.001 

.559 

.44 

4 

o 
o 
o 

.003 

.587 

.41 

5-8 

TW -lOY. (denoted TWL) 

o 
o 
o 

.001 

.079 

.92 

1 

o 
o 

.0005 

.159 

.001 

.029 
· 1 
.205 
.465 .57 

.2705 .2 

2 3 

.035 

.065 
· 1 
.23 
.36 
.21 

4 

.056 

.104 

. 145 

.205 

.27 

.225 

5-8 
stock level sub-category 

.342 

.338 

.194 

.396 .414 

.396 .4244 

.2078 . 1993 

.4248 

.437 
.1994 

TC +10Y. (denoted TCU) 

o 
o 
o 

. 005 

. 545 

. 45 

2 

o 
o 
o 

.02 

.67 

.31 

3 

o 
o 
o 

.025 

.715 

.26 

4 

o 
o 
o 

.03 

.75 

.22 

5-8 

.2304 

.2324 

. 1105 

.54 .72 .8244 .972 

.55 .7184 .822 .924 

.259 . 4 . 517 . 591 

TW +101. (denoted TWU) 

o 
o 
o 

.001 

.179 

.82 

1 

o 
o 
.02 
.23 
.59 
. 16 

2 

.001 

.051 
· 163 
.305 
.39 
.09 

3 

.055 

.092 

. 178 

.255 

.32 

. 1 

4 

· 13 
· 16 
· 16 
.21 
.24 
· 1 

5-8 
stock level sub-category 

. 418 .484 

.422 .484 

.2027 . 198 

.506 

.506 

.1917 

.5192 

.5242 

. 185 

.2816 

.2724 

.155 

. 66 . 88 1. 008 1. 188 

.644 .8792 1.003 1.172 

.270 .407 .531 .623 



TABLE 2: Definitions of the eleven output variables used in the 
sensitivity analyses. The summations of stock begin at 
time 7 since from years 1-6 arbitrary initial conditions 
influence model behavior. The summations of yield begin 
at the first year of fishing. 

variable definition 

STOCK(S) 
STOCK(26) 
STOCK(44) 

YIELD(34) 
YIELD(46) 

SDEV 

YDEV 

SVWITH 

YVWITH 

SVBETW 

YVBETW 

biomass of stock at time S years (1941) 
biomass of stock at time 26 years (1959) 
biomass of stock at time 44 years (1977) 

biomass of yield at time 34 years (1967) 
biomass of yield at time 46 years (1979) 

47 
E I (STOCK(t) - STOCK(t)~) / STOCK(t)~ 

t=7 
where STOCK(t) I is the standard run 

4l I (YIELD(t) - YIELD(t)~) / YIELD(t)~ 
t=33 

where YIELD(t)' is the standard run 

average predicted variance of STOCK over the 
47 years 

average predicted variance of YIELD over the 
47 years 

variance of the predicted values of STOCK over 
the 47 years : 

4l(STOCK(t) - STOCK) 2 

SVBETW=t=~--------------------
41 

SToCK(t}/41 

variance of the predicted values of YIELD over 
the 47 years : 

47 

YVBETW= t~3~~~=:~~2~_=_~~=:~~: __ 
15 

----- 47 
where YIELD =t=i3YIELD(t)/15 

" . 



TABLE 3: Directions of peT'turbations for the SIGN-A and SIGN-B 
sets of runs 

parameter SIGN-A SIGN-B 
-------- ------ ------

SMAX + 
TC + 
TW + 
Q( 1) + 
0(2) + 
0(3) + 
0(4) + 
0(5) + 
0(6) + 
(i( 7) + 
(He) + 
C( 1) + 
C(2) + 
C(3) 
ALPH<1 ) + 
ALPH(2) + 
ALPH(3) + 
ALPH(4) + 
ALPH(5) ... 
ALPH(6) + 
ALPH(7) + 
ALPH(e) + 
XMAX(l) + 



TABLE 4: SADR of the top 10 parameters comparing the SIGN-A and 
SIGN-B runs of the fractional factorial design, IPP, 
and LHS. All sensitivity conclusions are based on 
SVWITH as the output variable. 

fractional factorial design 
SIGN-A SIGN-B 

fractional 
SIGN-A 0 15 

factorial 
SIGN-B 0 

design 

SIGN-A 
IPP 

IPP 
SIGN-A SIGN-B 

11. 5 20 

15. S 10 

o 19 

LHS 

15 

10 

11 

SIGN-B o 13 

LHS o 



TAELE 5: The two parameter interactions contained in interaction 
effect tt22 

SMAX x ALPH(7) 
TC x ALPH(l) 
(H 1) x Q(7} 
0(3) x 0(5) 
0(8) x ALPH(5) 
C (1) x XMAX(l) 
C(2) )( ALPH(3) 
ALPH(2) x ALPH(6) 



TABLE 6: SADR of the top 10 parameters compilring the SIGN-B runs 
of the fractional factorial design and IPP, and LHS. 
Results are presented for SDEV and YDEV as output variables. 

OUPUT VARIABLE = SDEV 

fractional factorial design IPP LHS 
SIGN-B SIGN-B 

fractional 
factorial SIGN-B 0 19 124 
design 

IPP SIGN-B 0 105 

LHS 0 

OUPUT VARIABLE = VDEV 

fractional factorial design IPP LHS 
SIGN-B SIGN-B 

fractional 
factorial SIGN-B 0 25 134 
design 

IPP SIGN-B 0 131. 5 

LHS 0 



TABLE 7: Rankings of the top 3 parameters comparing the SIGN-B runs 
of the fractional factorial design and IPP, and LHS. Results 
are presented for YDEV and YVBETW as output 
variab les. 

OUPUT VARIABLE = YDEV 

fractional fractional 
factorial design IPP factorial design LHS IPP LHS 

l'ank SIGN-B SIGN-B SIGN-B SIGN-B 
------ ------ ------ ------

1 XMAXl XMAXl XMAXl ALPH7 XMAXl ALPH7 
2 TW TW TW TW TW TW 
3 ALPHl TC ALPHl ALPH8 TC ALPH8 , , .. . . . . . . . . . . . . . . . . . . . . . . . I •••••••••••••••• 

OUPUT VARIABLE = YVBETW 

fractional fractional 
factorial design IPP factorial design LHS IPP LHS 

rank SIGN-B SIGN-B SIGN-B SIGN-B 
------ ------ - ----- ------

1 TW TW TW XMAXl TW XMAXl 
2 XMAXl XMAXl XMAXl TW XMAXl TW 
3 ALPHl ALPHl ALPHl ALPHl ALPHl ALPHl 



TABLE 8: Values of all the output variables for the standard run, 
for XMAX(l) singly perturbed by +10%. and for TC and TW 
simultaneously perturbed by +10%. 

standard run XMAX(l) +10;' TC and TW +10;' 
------- ----- ------------ --------------

STOCK(8) 1. 240E+09 1. 310E+09 1. 310E+09 
STOCK(26) .989E+09 1.080E+09 1. 100E+09 
STOCK(44) .891E+09 .991E+09 .994E+09 

YIELD(34) .239E+09 .264E+09 .262E+09 
YIELD(46) .174E+09 . 194E+09 . 194E+09 

SDEV O. 0 2. 74 3. 0 
YDEV o. 0 1. 66 1. 62 

SVWITH 42.80E+15 2 . 50E+15 34. 50E+15 
YVWITH 2.90E+15 . 68E+15 2.94E+15 
SVBETW 37.90E+15 9 . 00E+15 29. 50E+15 
YVBETW 7.7BE+15 1. 69E+15 9.32E+15 



TABLE 9: Model parameters, algorithm parameters, and driving 
variables investigated in the sensitivity analysis of 
the management algorithm"" 

' l ,,' 

parameter definition 

MODEL 
SMAX maximum stock size 

XMAX (1) maximum number of recriuts 

TC cold year transition matrix 

TW warm year transition matrix 

ALPH(l) natural mortality of 3 year 

MANAGEMENT ALGORITHM 

SRL lower stopping rule 

SRU upper stopping rule 

DRIVING VARIABLES 

olds 

TEMP temperature on spawing grounds 
(warm or cold) 



TABLE 10; Effects on the management algorithm of varying model 
parameters. 

mean yield 
( x E+09) 

standard 
-10;' run +101. 

------ - --------- --------
XMAX(l) .168 .200 .232 

SMAX .208 .200 .192 
TC .186 .200 .217 
TW .183 .200 .214 

ALPH( 1) .208 .200 .192 
TC and TW .228 

mean effort 

standard 
-101. run +101. 

------- --------- --------
XMAX<l) 9. 95 11. 9 13.61 

SMAX 12. 18 11. 9 11.42 
TC 10. 63 11. 9 13. 27 
TW 11. 21 11.9 12. 31 

ALPH(I) 12.39 11. 9 11. 21 
TC and TW 13.35 

mean CPUE 

standard 
-101. run +101. 

------- ---------- --------
XMAX(I) 16.8 16. 8 16.8 

SMAX 17. 1 16.8 16. 7 
TC 17.3 16.8 16. 4 
TW 16.3 16.8 17.4 

ALPH(l) 16.8 16.8 17.0 
TC and TW 16.8 
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Figure 1. Hypothetical model responses depicting an interaction effect 
between parameters Pl and P2. 
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Figure 2A. Dynamics of STOCK, expected values and ±SD, for the 47 year 
standard run. All parameters are at their nominal values 
(Figure 5 in Francis et al. 1982). 
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Figure 2B. Dynamics of YIELD, expected values and ±SD, for the 47 year 
standard run. All parameters are at their nominal values 
(Figure 6 in Francis et al. 1982). 
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Figure 3A. Expected values of STOCK for the standard run and for XMAX(l) 
perturbed by -10%, +10%, and +50%. 
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Figure 38. Expected values of YIELD for the standard run and for XMAX(l) 
perturbed by -10%, +10%, and +50%. 
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Figure 4. Same as Figure 3A but with no fishing efforts. 



1500 

~ 

"0 
c: 
co 
V) 

:J 
0 
.c • Standard run .t:-
V) 
V) 

co 
XMAX (1) -10% E • .2 1000 

.0 
~ • XMAX (1) +50% u 
0 
~ 
V) 

"0 
ell 
~ 

U 
ell a. 
>< w 

500 
40 45 50 55 

Year 

Figure 5. Expected values of STOCK for the standard run and for XMAX(l) 
perturbed by -10% and +50%. The values of the driving varaible 
of temperature are switched. 
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Figure 6. Expected values of STOCK and YIELD and the values of fishing 
efforts for the 47 year 293/293 management run. (Figure 14 
in Francis et al. 1982). 
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Figure 7. Expected values of STOCK and YIELD and the values of fishing 
efforts for a' constant quota removal of 200,000 t. (Figure 15 
in FRancis et al 1982). 
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Figure 8. Expected values of STOCK for two 293/293 management runs in 
which one run has the temperatures switched. 
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