

Northwest and Alaska Fisheries Center

National Marine Fisheries Service

U.S. DEPARTMENT OF COMMERCE

NWAFC PROCESSED REPORT 82-12

Ichthyoplankton off Washington, Oregon and Northern California August 1980

August 1982

This report does not constitute a publication and is for information only. All data herein are to be considered provisional.

NOTICE

This document is being made available in .PDF format for the convenience of users; however, the accuracy and correctness of the document can only be certified as was presented in the original hard copy format.

Inaccuracies in the OCR scanning process may influence text searches of the .PDF file. Light or faded ink in the original document may also affect the quality of the scanned document.

Ichthyoplankton off Washington, Oregon, and Northern California

August 1980

Ву

Arthur W. Kendall, Jr., and Jay Clark

Resource Assessment and Conservation Engineering Northwest and Alaska Fisheries Center National Marine Fisheries Service National Oceanic and Atmospheric Administration 2725 Montlake Boulevard East Seattle, Washington 98112

August 1982

Ichthyoplankton off Washington, Oregon, and Northern California

August 1980

By Arthur W. Kendall, Jr., and Jay Clark

INTRODUCTION

This report describes the second in a series of cooperative U.S.-U.S.S.R. ichthyoplankton surveys conducted off the U.S. west coast from 48°-40°N. A similar report, based on the first of these cruises in April-May 1980, has already been produced (Kendall and Clark 1982). These surveys are designed to determine seasonal and spatial distribution of ichthyoplankton as background information for more detailed studies on early life history of fishes of the area. It is planned to conduct two such surveys each year, at different times of the year, so that after several years the complete annual cycle of fish egg and larval occurrence will be documented. These will be the first large-scale ichthyoplankton surveys of the area to sample all seasons. Results from these surveys eventually will be compared to those of the CalCOFI program off California and Baja California to the south, and to several smaller-scale surveys conducted previously off Washington and Oregon. In the meantime, we plan to present a data report such as this for each cruise, as soon as feasible.

METHODS AND MATERIALS

A grid of 91 stations laid out off the Washington, Oregon, and northern California coasts extended from 3 miles (5.6 km) to 200 miles (370 km) from shore (Figure 1). Stations were more closely spaced near shore than off shore. The Soviet research vessel POSEYDON with Dr. Yu. K. Demidenko serving as chief scientist occupied these stations basically from north to south from 1 to 22 August 1980. At each station hydrographic casts at standard depths (0, 10, 20, 30, 50, 75, 100, 150, 200, 250, 300, 400, 500, 600 m) were made as water depth permitted. Temperature, salinity, oxygen, phosphate, and silicate determinations were made aboard ship with these samples. Results of these measurements will be reported elsewhere. Paired neuston tows using 0.3 m high by 0.5 m wide Sameoto samplers (Sameoto and Jaroszynski 1969) with 0.505 mm mesh nets were made at 2.0 knots (1.03 m/sec) for 10 min at each station. A standard MARMAP bongo tow (Smith and Richardson 1977) with 60 cm, 0.505 mm mesh nets was made with a maximum of 300 m of wire out at each station. Flowmeters in the mouths of the nets were used to determine the volume of water filtered by each net. The Soviets retained one of the paired neuston and bongo samples, while the Americans retained the other. The American samples were processed by the Polish Plankton Sorting Center in Szczecin, Poland, where displacement plankton volumes were determined (for bongo samples) and all fish eggs and larvae removed. The fish eggs were counted; the larvae were identified, counted and measured. Fish eggs were later identified and counted by Ann C. Matarese at NWAFC. Identifications were made to the lowest taxonomic level possible, and in some cases "types" of unidentified eggs or larvae were established, in hopes that with further study their identity could be established. Beverly Vinter at NWAFC checked larval identifications. Counts of fish eqgs and larvae in the samples were converted to numbers per 10 m^2 of surface area for the bongo samples and numbers per 1,000 m^3 for the neuston samples. The log of the number of eggs or larvae in the survey area is based on the Sette and Ahlstrom census as used by Richardson (1981).

RESULTS

The station pattern (Figure 1) was occupied as planned (the Soviets added 8 stations south of 40°N which they processed). Data associated with these stations are listed in Table 1. A summary of the catches of fish eggs and larvae are presented in Tables 2 and 3. Totals of 22 taxa of eggs and 42 taxa

of larvae were found. Figures 2-5 illustrate the rank abundances of egg and larval catches in bongo and neuston tows for the cruise using several measures of abundance. Figures 6-23 show the geographic distribution, abundance at each station, and length frequencies of larvae of the more abundant taxa. Results of recurrent group analysis of eggs and larvae from neuston samples are shown in Figure 24, and from bongo samples in Figure 25.

Relative Abundances

The rank order of abundance among the taxa depends on the measure of abundance examined. Four measures of abundance for each net were used: total numbers caught, percent occurrence, log of number in survey area, and mean number per $1,000 \text{ m}^3$ (for neuston) and mean number per 10 m^2 (for bongo).

In the neuston net, egg catches were dominated by Bothidae, with Pleuronectidae, <u>Tactostoma macropus</u>, and <u>Psettichthys melanostictus</u> second in abundance, depending on the measurement used (Figure 2). In the bongo net, eggs of <u>Tactostoma macropus</u> were most abundant according to two measurements, and Bothidae and Trachurus symmetricus according to the other two (Figure 4).

Larval catches in the neuston net were sparce but were dominated by <u>Engraulis mordax</u> according to two measurements, and by <u>Sebastes</u> sp. and <u>Ronquilus jordani</u> based on the others (Figure 3). In the bongo net, <u>Engraulis</u> <u>mordax</u> larvae dominated the catches based on all three measurements, including number of larvae caught (3,043) far more than the second in abundance, <u>Sebastes</u> sp. (567) (Figure 5). According to the other measurement (percent occurrence), Sebastes sp. was dominant.

Distributions

While this is not intended to be a definitive report on these data, certain outstanding features of distribution of the more abundant taxa will be mentioned.

Engraulis mordax (Figures 6-8) - Eggs of the northern anchovy, representing the spawning products of the northern subpopulation, were collected in the neuston net at nine stations in the northern part of the survey area, mainly close to the mouth of the Columbia River. These were probably the last remnants of this spawning which lasts from April through July (Richardson 1981, Kendall and Clark 1982). Larvae of northern anchovy were widely distributed in both neuston and bongo catches mainly north of 93°N. They were caught over the continental shelf and slope, but not at the shorewardmost stations. They were more numerous in bongo catches, but the lengths in the two nets were nearly identical (\overline{x} = 10.18 mm SL, S.D. = 3.54 in neuston, \overline{x} = 10.19 mm SL, S.D. = 3.09 in bongo). According to the simulation of size at age presented by Methot (1981) for larvae of this subpopulation, larvae at about 10 mm SL are about 11 days past yolk absorption, which occurs about 5 days after hatching. Thus, most of the larvae collected on this cruise had been spawned about 18-20 days prior to capture (counting 2 days for egg incubation), i.e. in early July. From the total range in lengths of larvae in both nets (2.6-29.0 mm SL) spawning would have been taking place for at least a 2-mo. period prior to the cruise. We collected northern anchovy eggs on the previous cruise in late April 1980 (Kendall and Clark 1982).

Osmeridae (Figure 9) - Unidentified smelt larvae were collected at six nearshore stations, five in the southern part of the survey area and the other at the northern end of the area. They ranged in length from 8.0-34.5 (\overline{x} = 15.22) mm SL. These larvae probably represent the remnants of the population of smelt larvae that dominates the nearshore and estuarine larval fish community of this area in winter and spring (Richardson and Pearcy 1977).

<u>Tactostoma macropus</u> (Figures 10 and 11) - Eggs of this bathypelagic fish were frequently taken, but in low numbers, in both neuston and bongo catches, throughout the survey area, except at the shorewardmost stations. Often small larvae of this species were caught at the stations where these eggs occurred.

<u>Stenobrachius leucopsarus</u> (Figure 12) - The lanternfish larvae, ranging in length from 3.7-17.0 ($\overline{x} = 7.8$) mm SL, were widely distributed, but in low abundance throughout the survey area. They were not as numerous, and did not dominate the lanternfish fauna to the extent that they do in spring (Waldron 1972, Richardson et al. 1980, Kendall and Clark 1982).

<u>Tarletonbeania crenularis</u> (Figure 13) - Larvae of this lanternfish occurred at nearly as many stations (38) in bongo samples as did <u>Stenobrachius</u> <u>leucopsarus</u> (42). They were widely distributed in low numbers, but were not found at the shorewardmost stations. They ranged in length from 2.7-18.8 $(\bar{x} = 8.2)$ mm SL. This subarctic-transitional species is most frequently caught in summer in the CALCOFI surveys and its greatest abundance occurs in the northern part of that survey area off central and northern California (Moser and Ahlstrom 1970).

<u>Cololabis saira</u> (Figure 14) - A few larvae of sauries, ranging from 5.1-30.0 ($\overline{x} = 17.5$) mm SL, were widely distributed offshore, mainly in the northern part of the survey area in neuston catches. This distribution was further north, and the fish larger than observed in April-May 1980 (Kendall and Clark 1982).

<u>Sebastes</u> sp. (Figures 15 and 16) - Rockfish larvae were widely distributed, mainly in continental shelf waters in both neuston and bongo catches. No attempt was made to identify the species caught. There was quite a disparity in lengths between neuston and bongo catches, with those in the

neuston net larger than those in the bongo net (\overline{x} neuston = 14.5, \overline{x} bongo = 5.2 mm SL). These lengths are quite similar to those found in April-May 1980 (Kendall and Clark 1982).

<u>Scorpaenichthys marmoratus</u> (Figure 17) - Larvae of cabezon were caught in neuston tows, mainly over the continental slope in the northern half of the survey area. Although they were caught in 16 tows, only 37 larvae were found; they ranged from 4.8-31.4 ($\overline{x} = 7.9$) mm SL.

<u>Icichthys lockingtoni</u> (Figure 18) - Eggs of the medusafish were caught widely in the bongo net. They occurred mainly over the outer continental slope in the southern part of the survey area. Eggs were also caught in April-May (Kendall and Clark 1982), indicating a protracted spawning season for this species in this area.

Bothidae (Figures 19 and 20) - Unidentified eggs of lefteye flounders (probably mostly early stage <u>Citharichthys</u> sp. eggs, although some <u>Paralichthys</u> <u>californicus</u> eggs may be present) were collected at nearshore stations in both the neuston and bongo nets.

<u>Citharichthys</u> sp. (Figures 21 and 22) - Eggs (mainly late stages) of sanddabs were found in neuston and bongo catches all along the coast. Their distribution extended further offshore in neuston tows than in bongo tows.

Pleuronectidae (Figure 23) - Unidentified eggs of righteye flounders occurred at scattered stations along the coast. They appeared to be mainly early stage eggs of <u>Psettichthys melanostictus</u>. Most were at one station off northern California where 6,870 eggs/1,000 m³ were found.

Community Structure

Recurrent group analysis at a 0.4 affinity level of neuston catches showed two groups (Figure 24). One was composed of eggs of Bothidae and Citharichthys sp. The other was composed of eggs of Icichthys lockingtoni

and <u>Tactostoma macropus</u>, with larvae of three taxa (<u>Tarletonbeania crenularis</u>, <u>Sebastes</u> sp., and <u>Cololabis</u> <u>saira</u>) as associates. The first group occurred mainly near shore, the other more widely distributed over the continental slope and further offshore.

In bongo catches, two groups with the same basic distribution patterns emerged (Figure 25). One group, composed of eggs of three taxa of flatfishes, was found mainly at nearshore stations. The other group with complex interrelationships was composed of 10 taxa and was more widely distributed, mainly in offshore waters. Five species of myctophids were included in this group.

ACKNOWLEDGMENTS

We wish to thank the Soviet scientists, officers, and crew aboard the Soviet research vessel POSEYDON for their most cooperative help at sea. Also, we wish to thank: Susan Simon and Ralph Honeycutt who served as American scientists aboard the cruise; Jim Peacock and his staff for drafting; Marion Hanson and her staff for word processing; and Ethyl Zweifel and her staff for printing and binding.

LITERATURE CITED

- Kendall, A.W. Jr. and J.R. Clark. 1982. Ichthyoplankton off Washington, Oregon, and Northern California April-May 1980. NWAFC Proc. Rep. 82-11, 44 p.
- Methot, R.D., Jr. 1981. Spatial covariation of daily growth rates of larval northern anchovy, <u>Engraulis mordax</u>, and northern lampfish, <u>Stenobrachius</u> <u>leucopsarus</u>. Rapp. P.-v. Reun. Cons. int. Explor. Mer. 178:424-431.
- Moser, H.G. and E.H. Ahlstrom. 1970. Development of lanternfishes (family Myctophidae) in the California Current. Part 1. Species with narroweyed larvae. Bull. Los Angeles County Mus. Nat. Hist. Sci. 7:145 p. Richardson, S.L. 1981. Spawning biomass and early life of northern anchovy, <u>Engraulis mordax</u>, in the northern subpopulation off Oregon and Washington.

Fish. Bull., U.S. 78:855-876.

- Richardson, S.L., J.L. LaRoche, and M.D. Richardson. 1980. Larval fish assemblages and associations in the northeast Pacific Ocean along the Oregon coast, winter-spring 1972-1975. Estuar. and Coast. Mar. Sci. 11:671-699.
- Richardson, S.L. and W.G. Pearcy. 1977. Coastal and oceanic fish larvae in an area of upwelling off Yaquina Bay, Oregon. Fish. Bull., U.S. 75: 125-145.
- Sameoto, D.D. and L.O. Jaroszynski. 1969. Otter surface sampler: a new neuston net. J. Fish. Res. Board Canada. 25:2240-2244.

Smith, P.E. and S.L. Richardson (editors). 1977. Standard techniques for pelagic fish egg and larva surveys. FAO Fish. Tech. Pap. 175, 100 p. Waldron, K.D. 1972. Fish larvae collected from the Northeastern Pacific Ocean and Puget Sound during April and May 1967. NOAA Tech. Rep. NMFS SSRF 663. 16 p.

List of Tables

- Table 1.--Data associated with bongo and neuston tows during cruise 1PO80, August 1980.
- Table 2.--Fish eggs collected in bongo and neuston tows during cruise 1PO80, August 1980.
- Table 3.--Fish larvae collected in bongo and neuston tows during cruise 1PO80, August 1980.

List of Figures

Figure 1.--Station locations and cruise track for cruise 1PO80, August 1980.

- Figure 2.--Rank abundance of eggs caught in neuston tows during cruise 1PO80, August 1980.
- Figure 3.--Rank abundance of larvae caught in neuston tows during cruise 1PO80, August 1980.
- Figure 4.--Rank abundance of eggs caught in bongo tows during cruise 1P080, August 1980.
- Figure 5.--Rank abundance of larvae caught in bongo tows during cruise 1P080, August 1980.
- Figure 6.--Distribution of eggs of <u>Engraulis mordax</u> from neuston tows during cruise 1PO80, August 1980. Abundance expressed as numbers per 1,000 m³.
- Figure 7.--Distribution and lengths of larvae of <u>Engraulis mordax</u> from neuston tows during cruise 1PO80, August 1980. Abundance expressed as numbers per 1,000 m³.
- Figure 8.--Distribution and lengths of larvae of <u>Engraulis mordax</u> from bongo tows during cruise 1PO80, August 1980. Abundance expressed as numbers per 10 m².
- Figure 9.--Distribution and lengths of larvae of Osmeridae from neuston tows during cruise 1PO80, August 1980. Abundance expressed as numbers per 1,000 m³.
- Figure 10.--Distribution of eggs of <u>Tactostoma</u> <u>macropus</u> from neuston tows during cruise 1PO80, August 1980. Abundance expressed as numbers per 1,000³.
- Figure 11.--Distribution of eggs of <u>Tactostoma macropus</u> from bongo tows during cruise 1PO80, August 1980. Abundance expressed as numbers per 10 m².

- Figure 12.--Distribution and lengths of larvae <u>Stenobrachius leucopsarus</u> from bongo tows during cruise 1PO80, August 1980. Abundance expressed as numbers per 10 m².
- Figure 13.--Distribution and lengths of larvae of <u>Tarletonbeania crenularis</u> from bongo tows during cruise 1PO80, August 1980. Abundance expressed as numbers per 10 m².
- Figure 14.--Distribution and lengths of larvae of <u>Cololabis</u> <u>saira</u> from neuston tows during cruise 1PO80, August 1980. Abundance expressed as numbers per 1,000 m³.
- Figure 15.--Distribution and lengths of larvae of <u>Sebastes</u> sp. from neuston tows during cruise 1PO80, August 1980. Abundance expressed as numbers per 1,000 m³.
- Figure 16.--Distribution and lengths of larvae of <u>Sebastes</u> sp. from bongo tows during cruise 1PO80, August 1980. Abundance expressed as numbers per 10 m².
- Figure 17.--Distribution and lengths of larvae of <u>Scorpaenichthys marmoratus</u> from neuston tows during cruise 1PO80, August 1980. Abundance expressed as numbers per 1,000 m³.
- Figure 18.--Distribution of eggs of <u>Icichthys</u> <u>lockingtoni</u> from bongo tows during cruise 1PO80, August 1980. Abundance expressed as numbers per 10 m².
- Figure 19.--Distribution of eggs of Bothidae from neuston tows during cruise 19080, August 1980. Abundance expressed as numbers per 1,000 m³.
- Figure 20.--Distribution of eggs of Bothidae from bongo tows during cruise 19080, August 1980. Abundance expressed as numbers per 10 m².
- Figure 21.--Distribution of eggs of <u>Citharichthys</u> sp. from neuston tows during cruise 1PO80, August 1980. Abundance expressed as numbers per 1,000 m³.
- Figure 22.--Distribution of eggs of <u>Citharichthys</u> sp. from bongo tows during cruise 1PO80, August 1980. Abundance expressed as numbers per 10 m².

- Figure 23.--Distribution of eggs of Pleuronectidae from neuston tows during cruise 1PO80, August 1980. Abundance expressed as numbers per 1,000 m³.
- Figure 24.--Results of recurrent group analysis on neuston catches (both fish eggs and larvae) from 1PO80, August 1980, at an affinity level of 0.4. Taxa in rectangles are members of recurrent groups. Lines connect taxa with affinities outside their groups. Numbers in parentheses following taxa names are the numbers of occurrences of that taxon.
- Figure 25.--Results of recurrent group analysis on bongo catches (both fish eggs and larvae) from 1PO80, August 1980. Format as for Figure 24.

					BO	NGO STATI	ONS		NEU	STON STAT	IONS		
	POSITIO	N	DATE			STANDARD	HAUL FA	CTORS *		STANDARD	HAUL	FACTORS,	*
STATION	LAT.	LONG.	YYMMDD	AREA	TIME	A	в		TIME	A	в		
	Ν.	W.		KM2	GMT				GMT				
6001A	47 58.9	124 50.3	80 8 1	673.	1812	4.344	10.353		1750	0.030	20.2	20	
6002A	48 0.7	125 3.6	80 8 1	581.	2110	2.035	3.623		2017	0.027	17.7	94	
6003A	47 59.0	125 11.3	80 8 1	448.	2339	2.976	2.104		2324	0.033	21.7	56	
6004A	48 1.5	125 23.6	80 8 2	1101.	230	3.308	2.728		215	0.026	20 6	UB 54	
BUUDA	40 1.5	125 34.8	80 9 2	1991.	400	1.704	2.118		1017	0.030	19.9	62	
6007A	47 39.8	124 56.3	80 8 2	1039.	1330	2.407	4.283		1315	0.040	26.9	55	
6008A	47 40.4	124 34.0	80 8 2	742.	1720	4.408	13.671		1700	0.030	19.0	93	
6009A	47 20.0	124 25.0	80 8 2	704.	1900	3.156	29.760		184/	0.031	33.9	55	
G010A G011A	4/ 19.8	124 46.9	80 8 2	1216.	2137	3.299	2.900		50	0.024	16.2	60	
G012A	47 20.0	125 41.5	80 8 3	2194.	420	3.071	2.673		404	0.024	16.0	74	
G013A	47 29.3	126 25.5	80 8 3	3095.	930	3.505	2.504		910	0.021	14.1	48	
G014A	47 19.5	127 9.0	80 8 3	2081.	1625	3.206	2.621		1612	0.030	19.9	99 90	
0015A 60144	4/ 0.0	124 59.0	80 8 4	1032.	400	3.510	6.697		625	0.025	16.9	78	
G017A	47 1.1	124 17.4	80 8 4	684.	945	5.635	62.625		930	0.022	14.5	48	
6018A	46 40.0	124 16.0	80 8 4	810.	1300	5.624	13.240		1245	0.024	16.1	73	
G019A	46 40.8	124 37.4	80 8 4	952.	1530	4.877	5.289		1510	0.027	18 0	93 77	
6020A 6021A	46 40.0	124 57.0	80 8 4	725	1620	6.602	38.292		19	0.027	18.2	67	
G022A	46 19.0	124 32.0	80 8 5	1126.	231	5.786	4.616		223	0.024	15.84	40	
G023A	46 20.0	124 53.7	80 8 5	1423.	607	4.645	3.475		554	0.026	17.2	12	
6024A	46 0.0	127 31.0	80 8 5	5094.	1850	5.955	3.299		1835	0.035	23.3.	/3	
GO25A	43 37.7	126 35.0	80 8 6	3933.	535	5.187	3.476		520	0.035	23.0	33	
G027A	46 0.0	124 46.0	80 8 6	1802.	1114	6.747	4.469		1104	0.025	16.70	38	
G028A	45 59.0	124 25.0	80 8 6	1126.	1420	4.773	5.794		1405	0.035	23.00	67	
G029A	46 1.0	124 4.0	80 8 6	664.	1640	6.358	22.043		1625	0.036	23.9	// 38	
G031A	45 40.0	124 4.0	8086	1368.	2227	8.230	4.555		2215	0.030	20.0	42	
6032A	45 39.9	124 59.8	80 8 7	1862.	137	4.696	3.904		122	0.026	17.3	74	
G033A	45 21.1	125 6.2	80 8 7	1407.	440	6.026	3.793		430	0.029	19.6	41	
0034A	44 59.6	125 4.5	80 8 7	2115.	830	3.3/5	2.595		815	0.028	10 4	57	
00354	45 20.0	124 33.0	8087	1534.	1615	6.452	2.973		1600	0.039	26.3	10	
6037A	45 20.0	124 7.0	80 9 7	881.	1940	6.573	7.693		1927	0.034	22.6	87	
G038A	45 0.0	124 7.0	80 8 7	812.	2217	5.497	6.002		2203	0.034	22.47	73	
G039A	44 40.0	124 10.0	80 8 8	628.	48	3.801	12.427		272	0.027	1/.9	62	
6040A	44 40.0	124 51.0	80 8 8	2027.	635	7.125	3.602		605	0.037	24.0	01	
0042A	44 40.0	125 57.0	80 8 8	4173.	1315	6.501	3.411		1245	0.031	20.43	72	
G043A	44 40.0	126 52.0	80 8 8	5300.	1850	4.278	2.542		1835	0.039	25.60	33	
0044A	44 40.0	127 49.0	80 8 9	5603.	48	7.407	3.662		400	0.023	15.3	41	
00454	44 40.1	125 40./	80 8 9	1784	2250	4 744	3./00		2225	0.027	10 11		
6047A	44 0.0	125 11.0	80 810	1274.	230	7.566	3.986		213	0.026	17.4	51	
0048A	44 1.2	124 44.0	80 810	1422.	600	6.405	6.790		550	0.030	20.24	44	
G049A	44 20.0	124 42.5	80 810	1448.	915	8.850	9.292		900	0.032	21.10	12	
0050A 0051A	44 19.0	124 14.5	00 910	934.	1305	3-694	10.358		1245	0.025	16.60	52	
6052A	43 39.0	124 14.0	80 810	900.	1845	4.037	17.140		1930	0.028	18.23	25	
G053A	43 40.0	124 45.9	80 810	1415.	2127	2.558	2.552		2112	0.028	18,87	73	
G054A	43 40.0	125 15.4	80 811	1305.	115	6.975	3.151		50	0.021	14.20	59	
6055A	43 20.7	124 57.0	80 811 90 ett	1286.	515	/.869 6 510	3.980		500 700	0.025	16.84	18	
6057A	43 2.0	124 35.8	80 811	718.	1130	7.093	9.247		1115	D.025	16.96	95	
0058A	43 0.0	125 0.0	80 811	1730.	1450	6.301	3.744		1435	0.023	15.65	55	
G059A	42 41.0	124 46.0	80 811	1457.	2020	7.071	4.283		2005	0.027	17.80	57	
G061A	42 37.9 42 38.0	125 13.2	80 812 80 812	1790.	256	7.930	3.779		240	0.020	13.41	5	
6062A	42 20.0	128 4.0	80 812	5004.	1940	6.558	3.916		1825	0.050	33.20	34	
G063A	42 20.7	127 11.2	80 813	5231.	33	B.112	3.850		20	0.031	20.73	36	

Table 1.--Data associated with bongo and neuston tows during cruise 1PO80, August 1980.

					В	ONGO STAT	IONS	NEUS	TON STAT	ONS	
STATION	POSITIO LAT. N.	N Long. W.	DATE YYMMDD	AREA KM2	TIME GMT	STANDARD A	HAUL FACTORS * B	TIME GMT	STANDARD A	HAUL FACTOR B	:s *
G064A G065A G066A G067A G068A G070A G070A G071A G072A G073A G073A G075A G075A G076A G077A G077A	N. 42 22.5 42 12.4 42 20.0 42 20.0 42 0.0 42 0.0 41 40.0 41 40.0 41 40.0 41 42.0 41 18.6 41 22.6 41 20.7 40 58.3 41 0.0 40 59.1 40 60 7	W. 126 17.5 125 24.3 124 58.0 124 32.0 124 23.8 124 50.2 125 16.0 124 15.0 124 15.0 124 50.9 125 10.0 124 45.0 124 48.6 125 11.1 125 4.4 124 38.5 124 38.5 124 37.1	80 813 80 813 80 813 80 813 80 813 80 813 80 813 80 813 80 814 80 816 80 816 80 817 80 817 80 818 80 818 80 818 80 818 80 818 80 818 80 818	KM2 4570. 2011. 1429. 940. 924. 1270. 1002. 1066. 1207. 1135. 1220. 1544. 1359. 638. 1359. 638.	6MT 545 1140 2000 2254 420 1555 2250 1225 1750 245 540 935 1310 1740 30 345	6.163 7.496 6.758 4.363 3.073 4.163 7.088 6.822 6.143 5.627 6.062 5.568 6.406 4.540 6.293 5.352 3.348	3.114 3.670 3.208 6.620 6.509 2.334 3.221 21.450 2.652 2.803 11.948 3.111 3.506 2.849 3.061 15.576 11.615	GMT 445 1120 1545 1940 2241 900 1540 2235 1210 1737 220 540 910 1255 1725 1725 10 330	0.031 0.033 0.031 0.025 0.036 0.036 0.036 0.049 0.037 0.024 0.022 0.024 0.022 0.025 0.025 0.032 0.032 0.044 0.032 0.032 0.034	20.695 22.003 20.360 16.740 23.963 20.877 23.870 36.364 32.854 24.689 16.202 27.708 16.466 21.369 29.267 21.410 21.700	
6080A 6081A 6082A 6083A 6084A 6085A 6086A 6087A 6088A 6087A 6088A 6087A 6087A	40 40.7 40 40.5 40 41.9 40 19.9 40 20.5 40 20.0 40 20.0 40 20.0 40 21.2 40 20.0 40 0.0	124 27.1 124 52.8 125 20.3 124 28.8 124 55.5 125 20.0 126 14.0 127 8.0 128 1.3 128 53.0 124 37.3 124 10.5	80 819 80 819 80 819 80 820 80 820 80 820 80 820 80 820 80 821 80 821 80 822 80 822	955. 1306. 2292. 981. 1752. 3264. 5792. 5721. 5561. 5346. 2245. 836.	345 630 1030 455 750 1155 2030 200 825 1418 1330 1845	5.346 5.909 3.311 5.390 4.653 3.839 5.513 6.405 7.341 5.806 4.556 6.530	3.456 1.988 5.947 3.107 2.123 3.515 3.236 3.474 3.128 2.680 3.077	620 1015 440 750 1140 2015 200 815 1410 1315 1830	0.035 0.035 0.028 0.024 0.024 0.024 0.044 0.025 0.024 0.025 0.024 0.031	23.261 23.495 18.715 16.266 24.354 29.562 16.445 16.211 20.660 22.671 20.857	

 \ast "A" CONVERTS CATCH TO CATCH PER 10M 2, "B" CONVERTS CATCH TO CATCH PER 1000M 3 (see smith and Richardson 1977).

Table 1 (Continued)

EGO	3

200		NEUSTON		BONGO
	OCCUR.	LOG NO.	OCCUR.	LOG NO.
	%	IN AREA	%	IN AREA
SPECIES				
UNIDENTIFIED	3.30	8.7350	9.89	10.5855
DISINTEGRATED	1.10	7.1077	1.10	9.4497
ENGRAULIS MORDAX	9.89	8.9369	4.40	10.3561
ARGENTINIDAE			5.49	9.9564
BATHYLAGIDAE	1.10	6.6308	4.40	10.1437
BATHYLAGUS WESETHI			1.10	9.4919
CHAULIODUS MACOUNI	5.49	7.8210	17.58	10.5794
TACTOSTOMA MACROPUS	30.77	9.2642	25.27	11.3470
COLOLABIS SAIRA	5.49	8.9288		
TRACHYPTERUS ALTIVELIS	4.40	7.5662	2.20	9.5272
TRACHURUS SYMMETRICUS	2.20	7.6641	1.10	10.5636
ICICHTHYS LOCKINGTONI	27.47	8.7785	20.88	10.7847
TETRAGONURUS CUVIERI	2.20	7.7947	1.10	9.4335
BOTHIDAE	34.07	9.7232	24.18	11.1516
CITHARICHTHYS SP.	27.47	9.0725	12.09	10.6951
PLEURONECTIDAE	10.99	9.1193	12.09	10.1149
GLYPTOCEPHALUS ZACHIRUS	5.49	7.2332	4.40	9.5771
ISOPSETTA ISOLEPIS			1.10	9.1164
LYOPSETTA EXILIS			2.20	8,9675
MICROSTOMUS PACIFICUS	2.20	6.8266	5.49	9.5241
PLEURONICHTHYS COENOSUS	4.40	7.1502		
PSETTICHTHYS MELANOSTICTUS	6.59	8.3407	4.40	9.8021

Table 2.--Fish eggs collected in bongo and neuston tows during cruise 1PO80, August 1980.

Ι	A	R	V	A	E
_					

CDECIEC % J.N AKEA % J.P	AKEA
	0064
	1527
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
ENGRAULIS MORDAN 10.00 9.2037 51.07 12 OSMEDIDAE 6.50 7.8813 3.30 0	5308
BATHVIACIIS MILLEDI 1 10 0	. 4335
BATHVIACIIS OCUOTENSIS ///O	4999
ARCYROPELECUS SP. 1.10	4000
CHAILLIODIIS MACOINT 21, 98 10	5734
TACTOSTOMA MACROPIIS 4.40 10	2850
MYCTOPHIDAE 1.10	. 5589
CERATOSCOPELUS TOWNSENDT 1.10 7.1310	• 5505
DIAPHIIS THETA 2.20 7.2472 24.18 11	3449
LAMPANYCTUS REGALTS 1.10 7.1310 16.48 10	6630
LAMPANYCTUS RITTERI 4.40 10	0055
STENOBRACHTUS LEUCOPSARUS 2.20 7.4701 46.15 11	6123
SYMBOLOPHORUS CALTEORNIENSE 1 10	6100
TARLETONBEANTA CRENII ARTS 41.76 11	2158
PROTOMYCTOPHIM CROCKERI 1.10 7.4321 12.09 10	30/8
PROTOMYCTOPHIM THOMPSONT 18 68 10	5036
LESTIDIOPS RINGENS 3 30	8000
BENTHALBELLA DENTATA 1.10	.0120
COLOLARIS SATRA 15.38 8.3034 2.20	. 7230
SCOR PAENIDAE 1,10 7,7804	• / 25 /
SEBASTES SP. 32.97 8.9741 63.74 11	. 5612
SEBASTOLOBUS SP. 6.59 10	1878
ARTEDIUS 1 1.10 6.7081 4.40 0	3854
ARTEDIUS 2 1.10 6.7662 1.10 6	6 6000
ARTEDIUS Z 1.10 0.7045 1.10 C	8154
SCORPAENICHTHYS MARMORATUS 17.58 8.0719 2.20	6817
AGONTDAE A 1.10	. 8700
CYCLOPTERIDAE 5.49	.2109
TRACHURUS SYMMETRICUS 1.10 7.8508 2.20 10	. 9051
RONOUILUS JORDANI 1.10 7.5957 1.10	.4040
STICHAEUS PUNCTATUS 1.10	.8537
ICICHTHYS LOCKINGTONI 1.10 7.1518 4.40 10	.2702
CITHARICHTHYS SP. 1.10	.0851
CITHARICHTHYS SORDIDUS 1.10	.0980
GLYPTOCEPHALUS 3.30	.4691
LYOPSETTA EXILIS 8.79	.8488
MICROSTOMUS PACIFICUS 1.10	.8285
PSETTICHTHYS MELANOSTICTUS 1.10	.6128

Table 3.--Fish larvae collected in bongo and neuston tows during cruise 1PO80, August 1980.

Figure 1.--Station locations and cruise track for cruise 1PO80, August 1980.

Figure 2.--Rank abundance of eggs caught in neuston tows during cruise 1PO80, August 1980.

		CRUISE: 1PG	80 (GEAR BON	IGO STAGE LARVAE				
SPECIES	NUMBER CAUG	4T •10' 160-00 240-0	0 320.00	400.00	SPECIES	PERCENT OCCURRENC	E 50.00	80.00	100.00
ENGRAULIS MORDAX SEBASTES SP. STENDBRACHIUS LEUCOPSARUS TARLETONBEANIA CRENULARIS DIAPHUS THETA LAMPANYCTUS REGALIS TRACHURUS SYMMETRICUS CHAULIDDUS MACOUNI PROTOMYCTOPHUM HOMPSONI PROTOMYCTOPHUM HOMPSONI PROTOMYCTOPHUM CROCKERI TACTOSTOMA MARGPUS LYOPSETTA EXILIS ICICHTHYS LOCKINGTONI SEBASTOLOBUS SP. ROMOULUS JORDANI CYCLOPTERIDAE LAMPANYCTUS RITTERI ARTEDIUS 1 OSMERIDAE GLYPTOCEPHALUS ZACHIRUS COLOLABIS SAIRA BATHYLAGUS OCHOTENIS LESTIDIOPS RINGENS DISINTEGRATED UNIDENTIFIED SCORPAENICHTYS MARMORATUS ARTEDIUS MEANYI SYMBOLOPHORUS CALIFORNIENSE BENTHALBELLA DENTATA CITHARICHTHYS SORDIDUS STICHAENS PUNCTATUS ARGYROPELECUS SP.					SEBASTES SP. STEMOBRACHIUS LEUCOPSÄRUS TARLETONBEANIA CRENULARIS ENGRAULIS MORDAX DIAPHUS THETA CHAULIDUS MACOUNI PROTOMYCTOPHUM THOMPSONI LAMPANYCTUS REGALIS PROTOMYCTOPHUM CRCKERI LYOPSETTA EXILIS SEBASTOLOBUS SP. CYCLOPTERIDAE ARTEDIUS 1 TACTOSTOMA MACROPUS LAMPANYCTUS RITTERI ICICHTHYS LOCKINGTONI BATHYLAGUS OCHOTENSIS LESTIDIOPS RINGENS GLYPIOCEPHALUS ZACHIRUS OSMERIDAE DISINTEGRATED UNIDENTIFIED COLOLABIS SAIRA SCORPAENICHTHYS MARMORATUS STMBOLOPHORUS CALIFORNIENSE ARTEDIUS MEANYI BENTHALBELLA DENTATA CITHARICHTHYS SP. MICROSTOMUS PACIFICUS AGONIDAE A PSETIICHTHYS MELANOSTICTUS ARGYROPELECUS SP. CITHARICHTHYS SORDIDUS BATHYLAGUS MILLERI MYCTOPHIDAE STIONANI A				

Figure 5.--Rank abundance of larvae caught in bongo tows during cruise 1PO80, August 1980.

		CRUISE: 1P080	GE/	AR BONGO	STAGE LARVAE	
SPECIES	MEAN NUMBER	PER 10M2	80.00	100.00	SPECIES	LOG OF NUMBER IN SURVEY AREA
ENGRAULIS MORDAX TRACHURUS SYMMETRICUS RONQUILUS JORDANI STENOBRACHIUS LEUCOPSARUS SEBASTES SP. DIAPHUS THETA TARLETONBEANIA CRENULARIS UNIDENTIFIED PROTOMYCTOPHUM CROCKERI ARTEDIUS MEANYI LAMPANYCTUS REGALIS CITHARICHTHYS SP. LAMPANYCTUS RITTERI ICICHTHYS LOCKINGTONI TACTOSTOMA MACROPUS SEBASTOLOBUS SP. COLOLABIS SAIRA SYMBOLOPHORUS CALIFORNIENSE BENTHALBELLA DENTATA CHAULIDOUS MACOUNI ARTEDIUS 2 DSMERIDAE LYOPSETIA EXILIS BATHYLAGUS MILLERI PROTOMYCTOPHUM HOMPSONI GLYPTOCEPHALUS ZACHIRUS AGROPELECUS SP. LESTIDIOPS RINGENS BATHYLAGUS OCHOTENSIS PSETIALENIS DISINTEGRATED CITHARICHTHYS SORDIDUS MCTOPHIDAE STICHAEUS PUNCTATUS CYCLOPTERIDAE MICROSTOMUS PACIFICUS SCORFAENICATUS					ENGRAULIS MORDAX STENOBRACHIUS LEUCOPSARUS SEBASTES SP. DIAPHUS THETA TARLETONBEANIA CRENULARIS TRACHURUS SYMMETRICUS LAMPANYCTUS REGALIS CHAULIDDUS MACOUNI PROTOMYCTOPHUM CROCKERI TACTOSTOMA MACROPUS ICICHTHYS LOCKINGTONI SEBASTOLOBUS SP. LAMPANYCTUS RITTERI UNIDENTIFIED LYOPSETTA EXILIS LESTIDIOPS RINGENS COLOLABIS SAIRA SYMBOLOPHORUS CALIFORNIENSE OSMERIDAE ARGYROPELECUS SP. BATHYLAGUS OCHOTENSIS GLYPTOCEPHALUS ZACHIRUS BATHYLAGUS JORDANI ARTEDIUS 1 CYCLOPTERIDAE STICHAEUS PUNCTATUS MICROSTOMUS PACIFICUS ARTEDIUS 1 STICHAEUS PUNCTATUS MICROSTOMUS PACIFICUS ARTEDIUS 2 PSETICHTHYS MELANOSTICTUS MYCTOPHUSAE	

Figure 5 (Continued)

Figure 6.--Distribution of eggs of <u>Engraulis mordax</u> from neuston tows during cruise 1PO80, August 1980. Abundance expressed as numbers per 1,000 m³.

Figure 7.--Distribution and lengths of larvae of <u>Engraulis mordax</u> from neuston tows during cruise 1PO80, August 1980. Abundance expressed as numbers per 1,000 m³.

Figure 8.--Distribution and lengths of larvae of <u>Engraulis mordax</u> from bongo tows during cruise 1PO80, August 1980. Abundance expressed as numbers per 10 m².

Figure 9.--Distribution and lengths of larvae of Osmeridae from neuston tows during cruise 1PO80, August 1980. Abundance expressed as numbers per 1,000 m³.

Figure 10.--Distribution of eggs of <u>Tactostoma</u> <u>macropus</u> from neuston tows during cruise 1PO80, August 1980. Abundance expressed as numbers per 1,000³.

Figure ll.--Distribution of eggs of <u>Tactostoma macropus</u> from bongo tows during cruise 1PO80, August 1980. Abundance expressed as numbers per 10 m².

Figure 12.--Distribution and lengths of larvae <u>Stenobrachius leucopsarus</u> from bongo tows during cruise 1PO80, August 1980. Abundance expressed as numbers per 10 m².

Figure 13.--Distribution and lengths of larvae of <u>Tarletonbeania crenularis</u> from bongo tows during cruise 1PO80, August 1980. Abundance expressed as numbers per 10 m².

Figure 14.--Distribution and lengths of larvae of <u>Cololabis saira</u> from neuston tows during cruise 1PO80, August 1980. Abundance expressed as numbers per 1,000 m³.

Figure 15.--Distribution and lengths of larvae of <u>Sebastes</u> sp. from neuston tows during cruise 1PO80, August 1980. Abundance expressed as numbers per 1,000 m³.

Figure 16.--Distribution and lengths of larvae of <u>Sebastes</u> sp. from bongo tows during cruise 1PO80, August 1980. Abundance expressed as numbers per 10 m².

Figure 17.--Distribution and lengths of larvae of <u>Scorpaenichthys marmoratus</u> from neuston tows during cruise 1PO80, August 1980. Abundance expressed as numbers per 1,000 m³.

Figure 18.--Distribution of eggs of <u>Icichthys</u> <u>lockingtoni</u> from bongo tows during cruise 1PO80, August 1980. Abundance expressed as numbers per 10 m².

Figure 19.--Distribution of eggs of Bothidae from neuston tows during cruise 19080, August 1980. Abundance expressed as numbers per 1,000 m³.

Figure 20.--Distribution of eggs of Bothidae from bongo tows during cruise 19080, August 1980. Abundance expressed as numbers per 10 m².

Figure 21.--Distribution of eggs of <u>Citharichthys</u> sp. from neuston tows during cruise 1PO80, August 1980. Abundance expressed as numbers per 1,000 m³.

Figure 22.--Distribution of eggs of <u>Citharichthys</u> sp. from bongo tows during cruise 1PO80, August 1980. Abundance expressed as numbers per 10 m².

Figure 23.--Distribution of eggs of Pleuronectidae from neuston tows during cruise 1PO80, August 1980. Abundance expressed as numbers per 1,000 m³.

Figure 24.--Results of recurrent group analysis on neuston catches (both fish eggs and larvae) from 1PO80, August 1980, at an affinity level of 0.4. Taxa in rectangles are members of recurrent groups. Lines connect taxa with affinities outside their groups. Numbers in parentheses following taxa names are the numbers of occurrences of that taxon.

Figure 25.--Results of recurrent group analysis on bongo catches (both fish eggs and larvae) from 1PO80, August 1980. Format as for Figure 24.