

Northwest and Alaska Fisheries Center

National Marine Fisheries Service

U.S. DEPARTMENT OF COMMERCE

NWAFC PROCESSED REPORT 82-11

Ichthyoplankton off Washington, Oregon and Northern California April–May 1980

June 1982

NOTICE

This document is being made available in .PDF format for the convenience of users; however, the accuracy and correctness of the document can only be certified as was presented in the original hard copy format.

Inaccuracies in the OCR scanning process may influence text searches of the .PDF file. Light or faded ink in the original document may also affect the quality of the scanned document.

Ichthyoplankton off Washington, Oregon, and Northern California

April - May 1980

By

Arthur W. Kendall, Jr., and Jay Clark

Resource Assessment and Conservation Engineering Northwest and Alaska Fisheries Center National Marine Fisheries Service National Oceanic and Atmospheric Administration 2725 Montlake Boulevard East Seattle, Washington 98112

June 1982

Ichthyoplankton off Washington, Oregon, and Northern California

April - May 1980

By Arthur W. Kendall, Jr., and Jay Clark

INTRODUCTION

This report describes the first in a series of cooperative U.S.-U.S.S.R. ichthyoplankton surveys conducted off the U.S. west coast from 48°-40°N. These surveys are designed to determine seasonal and spatial distribution of ichthyoplankton as background information for more detailed studies on early life history of fishes of the area. It is planned to conduct two such surveys each year, at different times of the year, so that after several years the complete annual cycle of fish egg and larval occurrence will be documented. These will be the first large-scale ichthyoplankton surveys of the area to sample all seasons. Results from these surveys eventually will be compared to those of the CalCOFI program off California and Baja California to the south, and to several smaller-scale surveys conducted previously off Washington and Oregon. In the meantime, we plan to present a data report such as this for each cruise, as soon as feasible.

METHODS AND MATERIALS

A grid of 125 stations laid out off the Washington, Oregon, and northern California coasts extended from 3 miles (5.6 km) to 200 miles (370 km) from shore (Figure 1). Stations were more closely spaced near shore than off shore. The Soviet research vessel TIKHOOKAENSKIY with Dr. M. Stepanenko serving as chief scientist occupied these stations basically from north to south from 20 April to 15 May 1980. At each station hydrographic casts at standard depths (0, 10, 20, 30, 50, 75, 100, 150, 200, 250, 300, 400, 500, 600 m) were made as water depth permitted. Temperature, salinity, oxygen, phosphate, and silicate determinations were made aboard ship with these samples. Results of these measurements will be reported elsewhere. Paired neuston tows using 0.3 m high by 0.5 m wide Sameoto samplers (Sameoto and Jaroszynski 1969) with 0.505 mm mesh nets were made at 2.0 knots (1.03 m/sec) for 10 min at each station. A standard MARMAP bongo tow (Smith and Richardson 1977) with 60 cm, 0.505 mm mesh nets was made with a maximum of 300 m of wire out at each station. Flowmeters in the mouths of the nets were used to determine the volume of water filtered by each net. The Soviets retained one of the paired neuston and bongo samples, while the Americans retained the other. The American samples were processed by the Polish Plankton Sorting Center in Szczecin, Poland, where displacement plankton volumes were determined (for bongo samples) and all fish eggs and larvae removed. The fish eggs were counted; the larvae were identified, counted and measured. Fish eggs were later identified and counted by Ann C. Matarese at NWAFC. Identifications were made to the lowest taxonomic level possible, and in some cases "types" of unidentified eggs or larvae were established, in hopes that with further study their identity could be established. Beverly Vinter at NWAFC checked larval identifications. Counts of fish eqgs and larvae in the samples were converted to numbers per 10 m^2 of surface area for the bongo samples and numbers per 1,000 m³ for the neuston samples. The log of the number of eggs or larvae in the survey area is based on the Sette and Ahlstrom census as used by Richardson (1981).

RESULTS

The station pattern (Figure 1) was occupied as planned (the Soviets added 14 stations south of 40°N which they processed). Data associated with these stations are listed in Table 1. A summary of the catches of fish eggs and larvae are presented in Tables 2 and 3. Totals of 26 taxa of eggs and 65 taxa

of larvae were found. Figures 2-5 illustrate the rank abundances of egg and larval catches in bongo and neuston tows for the cruise using several measures of abundance. Figures 6-23 show the geographic distribution, abundance at each station, and length frequencies of larvae of the more abundant taxa. Results of recurrent group analysis of eggs and larvae from neuston samples are shown in Figure 24, and from bongo samples in Figure 25.

Relative Abundances

The rank order of abundance among the taxa depends on the measure of abundance examined. Four measures of abundance for each net were used: total numbers caught, percent occurrence, log of number in survey area, and mean number per 1,000 m³ (for neuston) and mean number per 10 m² (for bongo).

In the neuston net, egg catches were dominated by Bothidae, <u>Engraulis</u> <u>mordax</u>, <u>Microstomus pacificus</u>, and <u>Trachypterus altivelis</u>, depending on the measurement used (Figure 2). In the bongo net, eggs of Myctophidae were most abundant according to two measurements, and Bothidae and <u>Lyopsetta exilis</u> according to the other two (Figure 4).

Larval catches in the neuston net were dominated by <u>Anoplopoma fimbria</u> according to three measurements, and by <u>Hemilepidotus spinosus</u> based on the other (Figure 3). <u>Engraulis mordax</u>, <u>Scorpaenichthys marmoratus</u>, <u>Sebastes</u> sp., and <u>Cololabis saira</u> were also abundant members of the neuston community. In the bongo net, <u>Stenobrachius leucopsarus</u> larvae dominated the catches based on all four measurements (Figure 5). Also abundant were Osmeridae, <u>Bathylagus</u> ochotensis, Diaphus theta, and Sebastes sp. larvae.

Distributions

While this is not intended to be a definitive report on these data, certain outstanding features of distribution of the more abundant taxa will be mentioned.

Engraulis mordax (Figure 6) - Eggs of the northern anchovy, representing the spawning products of the northern subpopulation were collected in neuston tows mainly near the Oregon coast, presumably in waters of the Columbia River Plume. Other studies have analysed data on eggs and larvae of this subpopulation, which were collected in summer to determine spawning biomass (Richardson 1981) and larval growth rates (Methot 1981). We collected these eggs near the end of April, 6 wk before the beginning date of the spawning season used by Richardson (1981). It is not known whether anchovies started spawning earlier than normal in 1980 or what triggers the onset of spawning in this subpopulation.

Osmeridae (Figure 7) - Small unidentified smelt larvae ranging from 4.0-15.2 mm SL were taken in bongo tows near shore mainly in the northern half of the survey area. Osmerid larvae dominated the nearshore assemblage in late spring-early summer off Yaquina Bay, Oregon, as reported by Richardson and Pearcy (1977).

<u>Bathylagus ochotensis</u> (Figure 8) - Larvae of this deep-sea smelt were widely distributed off shore in bongo tows, occurring at 50% of the stations sampled. Their lengths ranged from 4.6-26.7 ($\overline{x} = 9.9$) mm SL.

Myctophidae (Figure 9) - Unidentified eggs of lanternfishes were collected in bongo tows in offshore waters mainly in the southern two-thirds of the survey area. These eggs are small (0.75-0.85 mm diameter) and appear fragile, so many more may have been caught but ruptured or squeezed through the 0.505 mm mesh of the net.

<u>Stenobrachius leucopsarus</u> (Figure 10) - These larvae occurred in bongo catches at 74% of the stations sampled. They were abundant throughout the survey area and ranged in size from 2.5-9.0 ($\overline{x} = 5.8$) mm SL. They also dominated the myctophid larval fauna off Oregon in winter-spring, as reported

by Richardson et al. (1980) and off 51°-42°N in April-May, as reported by Waldron (1972).

<u>Cololabis saira</u> (Figure 11) - Saury larvae occurred off shore in neuston tows in the southern part of the survey area. They had a wide range of lengths from 5.6-56.0 (\overline{x} = 11.7) mm SL. They were also quite abundant in the neuston collections from May 1972 reported by Ahlstrom and Stevens (1977), but their area of abundance was mainly south of that observed in the present study.

<u>Icichthys lockingtoni</u> (Figure 12) - Eggs of medusafish were widely distributed, but in rather low abundance in neuston collections. Young of this species occur widely in the northern two-thirds of the CalCOFI area (Ahlstrom et al. 1976), but have only been reported from off Oregon or Washington by Waldron (1972) as four specimens of questioned identity.

<u>Sebastes</u> sp. (Figures 13 and 14) - Rockfish larvae were abundant in both neuston and bongo catches. No attempt was made to identify the species caught. In neuston tows they were not found as far off shore as in bongo tows. In both nets they occurred throughout the north-south extent of the survey area. In the neuston net they were considerably larger than in the bongo net (\overline{x} neuston = 20.9, \overline{x} bongo = 5.9 mm SL), a result similar to that found by Ahlstrom and Stevens (1977).

<u>Anoplopoma fimbria</u> (Figure 15) - Sablefish larvae were widely distributed in neuston catches. Their pattern of distribution and abundance was quite patchy. They ranged in length from 6.3-37.0 ($\overline{x} = 14.2$) mm SL. Ahlstrom and Stevens (1977) indicated a similar pattern of patchy distribution in their collections.

<u>Hemilepidotus spinosus</u> (Figure 16) - Larvae of the brown Irish lord were collected in the neuston net, mainly just off the continental shelf. They ranged from 3.1-30.6 ($\overline{x} = 15.8$) mm SL.

<u>Scorpaenichthys marmoratus</u> (Figure 17) - Cabezon larvae occurred widely, but rather near shore in neuston collections. They ranged from 4.1-35.0 ($\bar{x} = 8.7$) mm SL.

Bothidae (Figure 18 and 19) - Eggs of unidentified lefteye flounders (probably mainly <u>Citharichthys</u> sp.) were found near shore in the northern half of the survey area in both neuston and bongo catches.

Lyopsetta exilis (Figures 20-22) - Eggs and larvae of slender sole were collected near shore. In the neuston net, eggs were collected mainly in the southern half of the survey area, while in the bongo net they occurred all along the coast. The larvae, in bongo catches, seemed to be concentrated off Oregon, and ranged from 2.9-16.0 ($\bar{x} = 7.0$) mm SL. This pattern of occurrence may indicate that 1) spawning progresses northward with the season and 2) the eggs rise toward the surface as they develop. The larvae were frequently part of the offshore assemblage off Oregon in March-April, as reported by Richardson et al. (1980).

<u>Microstomus pacificus</u> (Figure 23) - Dover sole eggs were collected in neuston tows all along the coast, mainly just off the continental shelf. They were further off shore than slender sole eggs or larvae.

Community Structure

Recurrent group analysis at a 0.4 affinity level of neuston catches showed three independent groups (Figure 24). Each group had complex relations of association among its members. The groups were basically aligned in an offshore-onshore pattern. The offshore group contained the most species and included larvae of <u>Anoplopoma fimbria</u>, <u>Sebastes</u> sp., <u>Hemlepidotus spinosus</u>, and <u>Scorpaenichthys marmoratus</u>. Eggs of Microstomus pacificus, Icichthys

<u>lockingtoni</u>, and <u>Trachypterus altivelis</u> were also part of this group. A nearshore group that was found mainly off Oregon included eggs of a number of flatfish and <u>Engraulis mordax</u>. A group of larvae closely associated with the coast included Ammodytes hexapterus, Ophiodon elongatus, and Parophrys vetulus.

In bongo catches an even more complex pattern emerged (Figure 25). It basically broke down into two groups--an offshore group with many mesopelagic members and a nearshore group that was heavily represented by flatfish eggs and larvae. Within this pattern a variety of species associations exist. In the offshore group <u>Stenobrachius leucopsarus</u> larvae had the greatest number of affinities, and in the nearshore group <u>Psettichthys melanostictus</u> eggs and larvae had the greatest number of affinities.

ACKNOWLEDGMENTS

We wish to thank the Soviet scientists, officers, and crew aboard the Soviet research vessel TIKHOOKAENSKIY for their most cooperative help at sea. Also, we wish to thank: J. R. Dunn, Elizabeth Dunning, and Beverly Brenton who served as American scientists aboard the cruise; Jim Peacock and his staff for drafting; Marion Hanson and her staff for word processing; and Ethyl Zweifel and her staff for printing and binding.

LITERATURE CITED

- Ahlstrom, E.H., J.L. Butler, and B.Y. Sumida. 1976. Pelagic stromateoid fishes (Pisces, Perciformes) of the eastern Pacific: kinds, distributions, and early life histories and observations on five of these from the northwest Atlantic. Bull. Mar. Sci. 26:285-402.
- Ahlstrom, E.H. and E. Stevens. 1977. Report of neuston (surface) collections made on an extended CalCOFI cruise during May 1972. CalCOFI Rep. 18: 167-180.
- Methot, R.D., Jr. 1981. Spatial covariation of daily growth rates of larval northern anchovy, <u>Engraulis mordax</u>, and northern lampfish, <u>Stenobrachius</u> leucopsarus. Rapp. P.-v. Reun. Cons. int. Explor. Mer. 178:424-431.
- Richardson, S.L. 1981. Spawning biomass and early life of northern anchovy, <u>Engraulis mordax</u>, in the northern subpopulation off Oregon and Washington. Fish. Bull., U.S. 78:855-876.
- Richardson, S.L., J.L. LaRoche, and M.D. Richardson. 1980. Larval fish assemblages and associations in the northeast Pacific Ocean along the Oregon coast, winter-spring 1972-1975. Estuar. and Coast. Mar. Sci. 11:671-699.
- Richardson, S.L. and W.G. Pearcy. 1977. Coastal and oceanic fish larvae in an area of upwelling off Yaquina Bay, Oregon. Fish. Bull., U.S. 75: 125-145.
- Sameoto, D.D. and L.O. Jaroszynski. 1969. Otter surface sampler: a new neuston net. J. Fish. Res. Board Canada. 25:2240-2244.

Smith, P.E. and S.L. Richardson (editors). 1977. Standard techniques for pelagic fish egg and larva surveys. FAO Fish. Tech. Pap. 175, 100 p. Waldron, K.D. 1972. Fish larvae collected from the Northeastern Pacific Ocean and Puget Sound during April and May 1967. NOAA Tech. Rep. NMFS SSRF 663.

9

16 p.

List of Tables

- Table 1.--Data associated with bongo and neuston tows during cruise 1TK80, April-May 1980.
- Table 2.--Fish eggs collected in bongo and neuston tows during cruise 1TK80, April-May 1980.
- Table 3.--Fish larvae collected in bongo and neuston tows during cruise 1TK80, April-May 1980.

.

List of Figures

Figure 1.--Station locations and cruise track for cruise 1TK80, April-May 1980.

- Figure 2.--Rank abundance of eggs caught in neuston tows during cruise 1TK80, April-May 1980.
- Figure 3.--Rank abundance of larvae caught in neuston tows during cruise 1TK80, April-May 1980.
- Figure 4.--Rank abundance of eggs caught in bongo tows during cruise 1TK80, April-May 1980.
- Figure 5.--Rank abundance of larvae caught in bongo tows during cruise 1TK80, April-May 1980.
- Figure 6.--Distribution of eggs of Engraulis mordax from neuston tows during cruise 1TK80, April-May 1980. Abundance expressed as numbers per 1,000 m³.
- Figure 7.--Distribution of larvae of Osmeridae from bongo tows during cruise 1TK80, April-May 1980. Abundance expressed as numbers per 10 m².
- Figure 8.--Distribution and lengths of larvae of <u>Bathylagus</u> <u>ochotensis</u> from bongo tows during cruise 1TK80, April-May 1980. Abundance expressed as numbers per 10 m².
- Figure 9.--Distribution of eggs of Myctophidae from bongo tows during cruise 1TK80, April-May 1980. Abundance expressed as numbers per 10 m².
- Figure 10.--Distribution and lengths of larvae <u>Stenobrachius</u> <u>leucopsarus</u> from bongo tows during cruise 1TK80, April-May 1980. Abundance expressed as numbers per 10 m².

- Figure 11.--Distribution and lengths of larvae of <u>Cololabis saira</u> from neuston tows during cruise 1TK80, April-May 1980. Abundance expressed as numbers per 1,000 m³.
- Figure 12.--Distribution of eggs of <u>Icichthys</u> <u>lockingtoni</u> from neuston tows during cruise 1TK80, April-May 1980. Abundance expressed as numbers per 1,000 m³.
- Figure 13.--Distribution and lengths of larvae of <u>Sebastes</u> sp. from neuston tows during cruise 1TK80, April-May 1980. Abundance expressed as numbers per 1,000 m³.
- Figure 14.--Distribution and lengths of larvae of <u>Sebastes</u> sp. from bongo tows during cruise 1TK80, April-May 1980. Abundance expressed as numbers per 10 m².
- Figure 15.--Distribution and lengths of larvae of <u>Anoplopoma fimbria</u> from neuston tows during cruise 1TK80, April-May 1980. Abundance expressed as numbers per 1,000 m³.
- Figure 16.--Distribution and lengths of larvae of <u>Hemilepidotus spinosus</u> from neuston tows during cruise 1TK80, April-May 1980. Abundance expressed as numbers per 1,000 m³.
- Figure 17.--Distribution and lengths of larvae of <u>Scorpaenichthys</u> marmoratus from neuston tows during cruise 1TK80, April-May 1980. Abundance expressed as numbers per 1,000 m³.
- Figure 18.--Distribution of eggs of Bothidae from neuston tows during cruise 1TK80, April-May 1980. Abundance expressed as numbers per 1,000 m³.

Figure 19.--Distribution of eggs of Bothidae from bongo tows during cruise 1TK80, April-May 1980. Abundance expressed as numbers per 10 m².

- Figure 20.--Distribution of eggs of Lyopsetta exilis from neuston tows during cruise 1TK80, April-May 1980. Abundance expressed as numbers per 1,000 m³.
- Figure 21.--Distribution of eggs of Lyopsetta exilis from bongo tows during cruise 1TK80, April-May 1980. Abundance expressed as numbers per 10 m².
- Figure 22.--Distribution and lengths of larvae of Lyopsetta exilis from bongo tows during cruise 1TK80, April-May 1980. Abundance expressed as numbers per 10 m².
- Figure 23.--Distribution of eggs of <u>Microstomus pacificus</u> from neuston tows during cruise 1TK80, April-May 1980. Abundance expressed as numbers per 1,000 m³.
- Figure 24.--Results of recurrent group analysis on neuston catches (both fish eggs and larvae) from 1TK80, April-May 1980, at an affinity level of 0.4. Taxa in rectangles are members of recurrent groups. Lines connect taxa with affinities outside their groups. Numbers in parentheses following taxa names are the numbers of occurrences of that taxon.
- Figure 25.--Results of recurrent group analysis on bongo catches (both fish eggs and larvae) from 1TK80, April-May 1980. Format as for Figure 24.

					B	ONGO STAT	IONS		NEU	STON STAT	IONS
	P051110	N	DATE			STANDARD	HAUL FACTO	0R5 *		STANDARD	HAUL FACTORS*
STATION	LAT.	LONG.	YYMMDD	AREA	TIME	A	B		TIME	A	В
	N.	₩.		KM2	GMT				GNT		
G001A	48 0.0	124 49.2	80 420	761.	1844	4.624	17.986		1821	0.033	21.936
G002A	48 0.0	125 11.2	80 420	967.	2115	5.601	4.198		2115	0.027	18.260
G003A	40 0.0	125 34.0	80 421	1395.	110	5.626	3.610		140	0.026	17,560
6004A	48 0.5	125 55.5	80 421	2153.	655	7.777	3.524		655	0.025	16.945
GOUSA	48 0.0	126 17.5	80 421	3780.	1250	7.147	3.361		1230	0.028	18.942
G0074	47 70 5	125 15.0	00 423	1301.	1745	0.434	3.842		1705	0.024	16.159
60084	47 40 0	124 30.0	80 423	710	2304	5 211	10 022		2250	0.025	16.418
G007A	47 20.0	124 25.0	80 424	738.	140	3.318	23.571		130	0.025	16.401
G010A	47 20.0	124 46.0	80 424	1071.	420	7.064	5.050		400	0.026	17.458
GOLIA	47 20.0	125 13.0	80 424	1463.	730	8.057	3.560		715	0.028	10.468
GUIZA	47 20.0	125 45.2	80 423	3698.	1120	8.777	4.001		1050	0.024	16.110
GUIJA	4/ 20.0	126 43.0	80 423	5622.	540	7.849	3.700		2207	0.030	20.277
60156	47 0.0	124 59 4	80 421	1747	1105	8.408	3.8/2		1045	0.024	17.239
G016A	46 59.8	124 38.0	80 424	924.	1716	7.610	9.692		1700	0.031	20.334
G017A	47 0.5	124 16.1	80 424	650.	1940	5.558	24.380		1921	0.025	16.889
G018A	46 40.0	124 14.0	80 424	790.	2235	7.084	17.474		2220	0.025	16.335
GU19A	46 40.0	124 36.0	80 425	1019.	400	7.722	6.877		340	0.025	16.997
60214	46 40.0	124 07.0	80 423	1/89.	2255	A 293	3.473		2237	0.028	10.023
G022A	46 40.0	126 59.0	80 422	5448.	1730	8.418	3.884		1720	0.025	16.786
G023A	46 40.0	127 49.8	80 422	4987.	1216	9.149	4.187		1125	0.032	21.139
G024A	46 40.3	128 46.0	80 422	4745.	650	7.703	3.619		611	0.027	17.725
G025A	46 20.0	124 52.7	80 425	1974.	1246	8.212	3.605		1241	0.025	16.708
6026A	46 20.0	124 31.0	80 425	985.	1555	8.309	6.621		1070	0.027	18.013
60284	46 0.0	124 9.5	80 425	494	2320	7.459	24./37		2306	0.027	17 304
6029A	46 0.0	124 25.0	80 426	963.	205	7.541	5.758		150	0.026	17.569
6030A	46 0.0	124 46.0	80 426	1930.	500	7.569	3.510		439	0.027	18.047
G031A	46 0.0	125 42.0	80 426	5041.	1355	7.527	3.561		1342	0.027	17.727
G032A	46 0.0	126 39.0	80 426	5394.	1930	8.333	3.868		1909	0.026	17.605
6033A	46 0.0	12/ 35.0	80 427	5204.	30	7.0/1	3.3/2		23	0.025	16.460
G035A	45 40.0	126 31.0	80 427	1660	1215	8.257	3.740		1200	0.027	16.291
G036A	45 40.0	124 22.7	80 428	870.	1435	8.138	5.565		1420	0.027	17.936
G037A	45 40.0	124 1.0	80 428	568.	1648	7.077	13.911		1637	0.030	20.060
G038A	45 19.1	124 5.0	80 429	655.	445	8.578	10.010		430	0.026	17.150
G039A	45 20.0	124 26.0	80 429	1057.	725	7.767	3.613		705	0.029	19.125
6040A	45 20.5	124 47.0	80 429	19/1.	1040	7.812	3.608		1025	0.028	18.66/
G042A	45 20.0	126 39.0	80 428	5360.	110	7.731	3.633		50	0.025	16.424
G043A	45 20.0	127 36.0	80 427	5914.	2028	7.237	3.400		2010	0.025	16.740
G044A	45 18.3	128 50.0	80 427	6226.	1355	8.066	3.860		1340	0.023	15.579
G045A	45 0.0	124 47.8	80 429	1915.	1335	7.500	3.639		1320	0.030	20.064
GU46A	45 0.0	124 26.0	80 429	1008.	1550	7.985	3.764		1535	0.030	20.131
G047A	44 37.8	124 5.2	80 430	636.	1805	6.878	13.597		48	0.030	16.650
6049A	44 40.0	124 31.0	80 430	915	330	7.224	5.420		400	0.024	15.821
6050A	44 40.5	124 52.0	80 430	1772.	850	7.987	3.619		805	0.027	17.765
G051A	44 40.0	125 46.8	80 430	5234.	1435	8.573	3,870		1428	0.024	15.754
G052A	44 40.0	126 43.0	80 430	5509.	2030	8.338	3.778		2015	0.027	18.226
6053A	44 40.0	127 40.0	60 5 1	5277.	0	7.462	3.502		140	0.025	16.859
6055A	44 40.0	120 34.0	80 5 1	3495.	/15	6.036	3.683		2035	0,024	17.234
G056A	44 20.0	124 31.0	80 5 2	2303.	2000	5 527	7 454		200	0.030	20.064
6057A	44 20.0	124 11.0	80 5 3	572.	415	5.530	14.207		400	0.022	14.747
GOSBA	44 0.5	124 13.0	80 5 3	579.	700	7.802	10.990		640	0.024	15.677
6059A	44 0.0	124 32.B	00 5 3	1018.	952	7.846	6.517		940	0.026	17.290
GO60A	43 51.2	124 52.0	80 5 2	1663.	1300	7.875	3.701		1245	0.023	15.376
60614	44 U.U	125 48.0	80 5 2	5248.	/30	7.717	3.611		50	0.028	18,107
6063A	43 56.2	127 40.0	00 5 1	5318.	2030	0.261	3.701		2015	0.025	16.967
			100 C	the second second second			and the second second				

.

Table 1.--Data associated with bongo and neuston tows during cruise 1TK80, April-May 1980.

						BONGO ST	TATIONS	NEUSIC	N STAT	IONS
	POSITIO	N	DATE			STANDARD	HALL FACTORS	51	ANDARD	HALL FACTORS *
STATION	LAT.	LONG.	YYMMDD	AREA	TIME	A	В	TIME	A	
	N.	ω.		KM2	GMT			GAT		
60444	44 0 0	128 75 0	40 5 1	5141	1250	7 636	7 400	1235	0.027	18.034
6065A	43 40.0	124 57.0	80 5 3	1368.	1340	7.301	3.480	1322	0.028	18.927
G066A	43 40.0	124 33.0	80 5 3	915.	1655	7.845	3.607	1640	0.028	18.448
G067A	43 39.0	124 17.0	00 5 3	409.	1922	7.699	8.587	1907	0.026	17.374
GO68A	43 20.0	124 28.0	80 5 4	664.	15	7.151	10.488	2350 **	0.025	16.483
G069A	43 20.0	124 49.0	80 5 4	952.	315	7.780	3.662	200	0.024	16.244
GU/UA	43 20.0	125 9.0	80 5 4	1228.	650	7.824	3.635	1106	0.025	20 724
60724	43 20.0	125 33.0	80 5 4	5084	1430	7 704	3.802	1623	0.029	19.249
G073A	43 20.0	127 34.0	80 5 4	5082.	2230	7.943	3-674	2200	0.027	17.914
8074A	43 20.0	129 38.0	80 5 5	5503.	400	7.906	3.683	330	0.024	15.050
G075A	42 56.0	125 8.0	80 5 6	1324.	440	7.933	3.692	430	0.028	18.867
G076A	43 0.0	124 52.0	80 5 6	926.	715	9.037	3.635	700	0.027	17.896
G077A	43 0.0	124 32.0	80 5 6	546.	1220	7.905	10.235	1927	0.025	16.823
60784	42 37.7	124 33.0	80 5 6	000.	1940	7 017	7.430	740	0.028	18.623
GORDA	42 40.0	125 13.0	80 5 7	1742.	1119	7.966	3.303	1055	0.026	17.298
GOB1A	42 40.0	125 48.0	80 5 6	4451.	110	7.687	3.595	200	0.026	17.201
6092A	42 48.0	126 42.5	80 5 5	4299.	1925	7.440	3.464	1910	0.025	16.492
6003A	42 52.0	127 13.5	80 5 5	4733.	1520	8.410	3.868	1503	0.032	21.633
G084A	42 40.0	128 29.0	80 5 5	6700.	910	8.454	3.789	855	0.032	21.081
GUB5A	42 20.0	125 12.3	80 5 7	1864.	1418	7.110	3.461	1635	0.030	14.790
60868	42 20.0	124 52.0	80 5 7	1029.	1/25	7 220	4.013	2010	0.026	17,110
GOBBA	41 59.8	124 22.0	80 5 8	654	520	5.819	12.543	500	0.016	10.954
G089A	42 0.0	124 42.0	80 5 8	1033.	821	7.994	3.685	810	0.026	17.340
6090A	42 0.0	125 2.0	80 5 8	1794.	1200	7.918	3.712	1145	0.025	16.921
G091A	42 0.0	125 55.0	80 5 8	5255.	1720	8.242	3.731	1705	0.025	16.748
G092A	42 0.0	126 47.0	80 5 8	6691.	2230	8.498	3.030	2215	0.020	13.180
0093A	42 0.0	127 38.0	80 5 9	6044.	340	7.298	3.420	320	0.026	17.299
6094A	42 0.0	128 31.0	80 5 9	4494.	1025	7.700	3.582	1000	0.029	19-064
00934	41 40.0	124 59.0	80 511	1991.	0	7.100	3.357	2340 **	0.025	16.697
60974	41 40.2	124 33.0	80 511	520	230	0.3/9	3.183	210	0.020	18.619
6098A	41 20.0	124 15.0	80 511	769.	915	7.430	9.480	433	0.021	14.323
G099A	41 20.0	124 35.0	80 510	946.	1733	7.697	3.525	1720	0.027	17.837
G100A	41 20.3	124 54.0	80 510	1818.	2045	7.289	3.378	2030	0.030	20.049
G101A	41 20.0	125 48.0	80 510	5169.	735	7.526	3.436	715	0.029	19.317
G102A	41 4.0	126 32.0	80 510	4546.	200	7.347	3.486	145	0.028	18.985
G103A	41 20.0	127 25.0	80 5 9	5425.	2130	7.688	3.484	2115	0.027	10.256
61056	41 20.0	128 15.0	80 5 9	5054.	1010	7.725	3.561	1555	0.029	19.212
G106A	41 0.0	124 32.2	80 511	964.	1458	8.111	3.741	1220	0.030	20.324
G107A	41 0.0	124 15.0	80 511	500.	2220	7.476	10.451	2200	0.029	19.033
0108A	40 40.0	124 23.0	80 512	621.	140	6.773	26.764	140	0.023	15.574
G109A	40 40.0	124 43.0	80 512	984.	450	8.419	3.081	435	0.026	17.285
6110A	40 40.0	125 2.0	80 512	2034.	805	8.478	3.873	740	0.024	15.836
G117A	40 40.0	125 54.7	80 512	4863.	1316	0.144	3.793	1302	0.023	15.605
61134	40 40.0	127 36.0	80 512	5771	1840	7.903	3.043 I 514	1830	0.025	16.380
G114A	40 40.0	128 28.0	80 513	4871.	545	7.477	3.511	575	0.027	17.141
G115A	40 20.0	125 6.0	80 514	2185.	1435	7.658	3.507	1424	0.027	17.777
G116A	40 20.0	124 55.5	80 514	931.	1746	8.127	3.720	1708	0.026	17.306
G117A	40 19.5	124 27.0	80 515	866.	215	6.171	3.197	155	0.022	14.462
G118A	40 0.0	124 11.0	80 515	652.	1338	8.100	3.786	1323	0.026	17.454
G119A	40 0.0	124 29.0	80 515	949.	1045	7.274	3.445	1030	0.027	10.213
G121A	40 0.5	124 48.0	80 515	868.	655	6.765	3.208	635	0.025	16.734
G122A	40 0.0	126 10.2	80 514	5107	475	7 140	3./4/	950	0.028	10.699
G123A	40 0.0	127 1.0	80 513	5045	2030	7.892	3.641	420	0.025	10.3/2
G124A	40 0.0	127 52.0	80 513	5602.	1605	8.386	3.797	1550	0.028	18.495
6125A	40 0.0	128 44.0	80 513	4628.	1120	8.457	3.823	1105	0.032	21.509

* "A" CONVERTS CATCH TO CATCH PER 10M², "B" CONVERTS CATCH JO CATCH PER 1000M³ (SEE SMITH AND RICHARDSON 1977).

** DATE FOR NEUSTON TOW 1 DAY PREVIOUS TO THAT SHOWN.

		NEUSTON		BONGO
	OCCUR.	LOG NO.	OCCUR.	LOG NO.
	%	IN AREA	x	IN AREA
SPECIES				
UNIDENTIF IED	3.20	7.5989	10.40	10.8996
TELEOST TYPE A	5.60	7.9103		
TELEOST TYPE C			0.80	9.1621
DISINTEGRATED	1.60	7.2397	1.60	9.7738
ENGRAULIS MORDAX	6.40	9.0336	10.40	11.2971
ARGENTINIDAE			3.20	10.0635
BATHYLAGIDAE			24.80	11.1776
BATHYLAGUS OCHOTENSIS			12.80	11.2479
CHAULIODUS MACOUNI	8.00	8.1518	16.00	10.9931
MYCTOPHIDAE	0.80	6.4252	20.80	12.8463
COLOLABIS SAIRA	1.60	7.2511	4.00	10.2437
TRACHYPTERUS ALTIVELIS	32.80	8.8982	27.20	11.1032
ICOSTEUS AENIGMATICUS	9.60	8.5173	22.40	11.1104
ICICHTHYS LOCKINGTONI	32.00	9.1080	20.00	11.0585
TETRAGONURUS CUVIERI	1.60	6.7854	2.40	10.1562
BOTHIDAE	22.40	9.3209	20.80	11.4264
CITHARICHTHYS SP.	7.20	7.8843	3.20	9.6984
PLEURONECTIDAE	13.60	8.7211	15.20	11.1703
GLYPTOCEPHALUS ZACHIRUS	16.00	8.6560	20.00	10.5977
HIPPOGLOSSOIDES ELASSODON	1.60	6.9053	1.60	9.2564
ISOPSETTA ISOLEPIS	4.00	7.2399	3.20	10.1933
LYOPSETTA EXILIS	13.60	8.1777	38.40	11.6110
MICROSTOMUS PACIFICUS	25.60	9.4599	23.20	10.8773
PLATICHTHYS STELLATUS	2.40	7.1637	1.60	9.5910
PLEURONICHTHYS COENOSUS	1.60	6.7099	0.80	8.4999
PLEURONICHTHYS DECURRENS	0.80	6.1390		
PSETTICHTHYS MELANOSTICTUS	7.20	7.6005	5.60	9.8201

STAGE: EGG

Table 2.--Fish eggs collected in bongo and neuston tows during cruise 1TK80, April-May 1980.

17

STAGE: LARVAE

		NEUSTON		BONGO
	OCCUR.	LOG NO.	OCCUR.	LOG NO.
	%	IN AREA	%	IN AREA
SPECIES				
UNIDENTIF IED			12.00	10.8719
DISINTEGRATED	2.40	7.3433	11.20	10.5885
ENGRAULIS MORDAX	0.80	6.9470		
OSMERIDAE			8.80	10.8486
NANSENIA CANDIDA	0.80	7.1628	4.80	10.4584
ARGENTINA SIALIS			0.80	9.6366
BATHYLAGUS OCHOTENSIS	1.60	7.2449	49.60	11.8050
BATHYLAGUS PACIFICUS			12.80	10.8505
CYCLOTHONE SP.			0.80	8.7277
ARGYROPELECUS SP.			0.80	9.8402
CHAULIODUS MACOUNI			17.60	10.8795
MYCTOPHIDAE			6.40	11.3501
DIAPHUS THETA			9.60	11.6741
LAMPANYCTUS SP.			5.60	10.5664
LAMPANYCTUS RITTERI			4.00	10.3235
STENOBRACHIUS SP.			0.80	9.6719
STENOBRACHIUS LEUCOPSARUS	3.20	7.7725	74.40	12.5679
SYMBOLOPHORUS CALIFORNIENSE	0.80	7.3261	1.60	9.8986
TARLETONBEANIA CRENULARIS			12.80	10.7618
PROTOMYCTOPHUM CROCKERT			24.00	11.2627
PROTOMYCTOPHUM THOMPSONT	*		9.60	10.8689
NOTOLEPIS RISSOI			0.80	9.5926
LESTIDIOPS RINGENS			4.80	10,5070
GADUS MACROCEPHALUS			0.80	8,6430
MICROGADUS PROXIMUS			8.00	10,2207
THERAGRA CHALCOGRAMMA			0.80	8.7480
COLOLABIS SAIRA	20.80	9.2262		
TRACHYPTERUS ALTIVELIS			0.80	9.6428
MELAMPHAETDAE			5.60	10.5822
SCORPAENTDAE			1.60	8,8674
CERACTEC CD	22.20	0 301/	37 60	11 5381
SEDADIED DIGTODINUC	23.20	5.3014	J7.00	9 6614
SEBASTOLOBUS SP			4.80	10.4420
ANOPLOPOMA FIMBRIA	44.00	9,7089	4:00	1014420
HEXAGRAMMOS DECAGRAMMUS	18.40	8,2576		
HEXAGRAMMOS LAGOCEPHALUS	2.40	7.6311		
OPHIODON FLONCATUS	7 20	8 0326		
COTTIDAE	7.20	0.0320	0.80	8 /000
APTENTUS 1	1 60	6 07/1	3 20	0.6586
ARIEDIUS 1 UEMIIEDIDOTUS UEMIIEDIDOTUS	1.00	0.9/41	5.20	9.0300
HEMILEPIDOTUS HEMILEPIDOTUS	18.40	0.3005	1 60	9 6613
TOFILLER DOTOS SETNOSUS	10.40	3.3303	0.80	8 7996
	0.80	6.1019	0.00	0.7990
RADIII TNIIS SP	0.00	6 2153		
SCORPAENTCHTHYS MARMORATUS	26.40	8.6370	0.80	8-6549
ICELUS SP.	20.40	0.0323	0.80	8,8009
AGONIDAE			0.80	8-8716
AGONIDAE A			1.60	9.3469

Table 3.--Fish larvae collected in bongo and neuston tows during cruise lTK80, April-May 1980.

STAGE: LARVAE

		NEUSTON		BONGO
	OCCUR.	LOG NO.	OCCUR.	LOG NO.
	%	IN AREA	%	IN AREA
SPECIES				
CYCLOPTERIDAE	1.60	6.6247	5.60	9.9826
RONQUILUS JORDANI	5.60	7.6173	3.20	9.5735
CHIROLOPHIS SP.			1.60	9.1712
LYCONECTES ALEUTENSIS	0.80	7.2829		
ICOSTEUS AENIGMATICUS			1.60	9.6722
AMMODYTES HEXAPTERUS	9.60	8.5337	0.80	9.0715
ICICHTHYS LOCKINGTONI	0.80	6.5651	3.20	10.2098
CITHARICHTHYS SP.			1.60	9.4519
CITHARICHTHYS SORDIDUS	0.80	7.0310	0.80	9.1524
CITHARICHTHYS STIGMAEUS	3.20	7.5293	4.00	9.8677
EMBASSICHTHYS BATHYBIUS			1.60	9.9493
EOPSETTA JORDANI	0.80	7.0191		
GLYPTOCEPHALUS ZACHIRUS			5.60	9.8975
ISOPSETTA ISOLEPIS			6.40	9.8929
LYOPSETTA EXILIS			23.20	11.0020
MICROSTOMUS PACIFICUS			2.40	9.7758
PAROPHRYS VETULUS	4.80	7.6584	5.60	9.6517
PLATICHTHYS STELLATUS			6.40	9.5938
PSETTICHTHYS MELANOSTICTUS	0.80	6.5275	9.60	10.0794
			and the second second	

Figure 1.--Station locations and cruise track for cruise 1TK80, April-May 1980.

Figure N -Rank Rank abundance April-May 1980 1980. of eggs caugh. 7 in neuston tows during cruise 1TK80,

21

Figure ω

-Rank

April-May abundance 1980 of larvae caught in neuston tows crui ŝ

during Ð 1TK80,

Figure 4. 1 -Rank April-May abundance 1980. of eggs caught in bongo tows during cruise 1TK80,

ICHTHYOPLANKTON RANK ABUNDANCE

		CRUISE: 1TK80	GE	AR . BONGO	STAGE LARVAE			
SPECIES	MEAN NUMBE	R PER 10M2	80.00	1,00.00	SPECIES	LOG OF NUMBER IN S	URVEY AREA	15.00
	í							
STENOBRACHIUS LEUCOPSARUS					STENUDRACHTOS LEGGOF SAROS			
DIAPHUS THETA					BATHTLAGOS OCHOTENSIS			
OSMERIDAE								
LYOPSETTA EXILIS	<u> </u>				SEBASIES SF.			
SEBASTES SP.	h				HICIDFHIDAL			
BATHYLAGUS OCHOTENSIS					PROTOTICIOFICI CROCKERI			
MYCTOPHIDAE						-	-	
ARTEDIUS 1					CHAULIUDUS HACUUNI		-	
ARGYROPELECUS SP.					UNIDENTIFIED		-	
ICELINUS SP.					PROTOMYCTUPHUH THUHPSUNI		-	
MICROGADUS PROXIMUS	-				BATHYLAGUS PACIFICUS		-	
PSETTICHTHYS MELANOSTICTUS					DSMERIDAE			
LESTIDIOPS RINGENS					TARLETONBEANIA CRENULARIS		7	
PROTOMYCTOPHUM CROCKERI					DISINTEGRATED			
DISINTEGRATED					MELAMPHAEIDAE		-	
GLYPTOCEPHALUS ZACHIRUS					LAMPANYCTUS SP.		7	
PROTOMYCTOPHUM THOMPSONI					LESTIDIOPS RINGENS		4	
ICELUS SP.					NANSENIA CANDIDA		1	
SEBASTOLOBUS SP.					SEBASTOLOBUS SP.	-	ŕ	
ISOPSETTA ISOLEPIS					LAMPANYCTUS RITTERI	-		
RONQUILUS JORDANI					MICROGADUS PROXIMUS			
BATHYLAGUS PACIFICUS					ICICHTHYS LOCKINGTONI			
UNIDENTIFIED					PSETTICHTHYS MELANOSTICTUS			
TARLETONBEANIA CRENULARIS					CYCLOPTERIDAE	<u> </u>		
MICROSTOMUS PACIFICUS					EMBASSICHTHYS BATHYBIUS			
NANSENIA CANDIDA					SYMBOLOPHORUS CALIFORNIENSE			
MELAMPHAEIDAE					GLYPTOCEPHALUS ZACHIRUS			
LAMPANYCTUS SP.					ISOPSETTA ISOLEPIS	-		
CITHARICHTHYS STIGMAEUS					CITHARICHTHYS STIGMAEUS			
PAROPHRYS VETULUS					ARGYROPELECUS SP.			
NOTOLEPIS RISSOI					MICROSTOMUS PACIFICUS			
SEBASTES PAUCISPINUS					ICOSTEUS AENIGMATICUS			
STENOBRACHIUS SP.					STENOBRACHIUS SP.			
CHAULIDDUS MACOUNI					SEBASTES PAUCISPINUS			
TRACHYPTERUS ALTIVELIS					HEMILEPIDOTUS SPINOSUS			
ARGENTINA SIALIS					ARTEDIUS I			
HEMILEPIDOTUS SPINOSUS					PAROPHRYS VETULUS			
AMMODYTES HEXAPTERUS					TRACHYPTERUS ALTIVELIS			
AGONIDAE					ARGENTINA SIALIS			
EMBASSICHTHYS BATHYBIUS					PLATICHTHYS STELLATUS			
CITHARICHTHYS SORDIDUS					NOTOLEPIS RISSOI			
CITHARICHTHYS SP.					RONQUILUS JORDANI			
LAMPANYCTUS RITTERI					CITHARICHTHYS SP.			
SCORPAENICHTHYS MARMORATUS					AGONIDAE A			
SYMBOLOPHORUS CALIFORNIENSE					CHIROLOPHIS SP.			
ICOSTEUS AENIGMATICUS					CITHARICHTHYS SORDIDUS			
CYCLOPTERIDAE					AMMODYTES HEXAPTERUS			
AGONIDAE A					AGONIDAE			
ICICHTHYS DCKINGION!					SCORPAENIDAE			
GADUS MACROCEPHALUS					ICELUS SP.			
CHIROLOPHIS SP.					ICELINUS SP.			
THERAGRA CHAI COGRAMMA					THERAGRA CHALCOGRAMMA			
PLATICHTHYS STELLATUS					CYCLOTHONE SP.			
SCORPAENIOAE					SCORPAENICHTHYS MARMORATUS			
CYCLOTHONE SP.					GADUS MACRDCEPHALUS			
COTTIDAE					COTTIDAE			

Figure 6.--Distribution of eggs of <u>Engraulis mordax</u> from neuston tows during cruise 1TK80, April-May 1980. Abundance expressed as numbers per 1,000 m³.

Figure 7.--Distribution of larvae of Osmeridae from bongo tows during cruise 1TK80, April-May 1980. Abundance expressed as numbers per 10 m².

Figure 8.--Distribution and lengths of larvae of <u>Bathylagus</u> ochotensis from bongo tows during cruise 1TK80, April-May 1980. Abundance expressed as numbers per 10 m².

Figure 9.--Distribution of eggs of Myctophidae from bongo tows during cruise 1TK80, April-May 1980. Abundance expressed as numbers per 10 m².

Figure 10.--Distribution and lengths of larvae <u>Stenobrachius</u> <u>leucopsarus</u> from bongo tows during cruise 1TK80, April-May 1980. Abundance expressed as numbers per 10 m².

Figure 11.--Distribution and lengths of larvae of <u>Cololabis saira</u> from neuston tows during cruise 1TK80, April-May 1980. Abundance expressed as numbers per 1,000 m³.

Figure 12.--Distribution of eggs of Icichthys lockingtoni from neuston tows during cruise 1TK80, April-May 1980. Abundance expressed as numbers per 1,000 m³.

Figure 13.--Distribution and lengths of larvae of <u>Sebastes</u> sp. from neuston tows during cruise 1TK80, April-May 1980. Abundance expressed as numbers per 1,000 m³.

Figure 14.--Distribution and lengths of larvae of <u>Sebastes</u> sp. from bongo tows during cruise 1TK80, April-May 1980. Abundance expressed as numbers per 10 m².

Figure 15.--Distribution and lengths of larvae of <u>Anoplopoma fimbria</u> from neuston tows during cruise 1TK80, April-May 1980. Abundance expressed as numbers per 1,000 m³.

Figure 16.--Distribution and lengths of larvae of <u>Hemilepidotus spinosus</u> from neuston tows during cruise 1TK80, April-May 1980. Abundance expressed as numbers per 1,000 m³.

Figure 17.--Distribution and lengths of larvae of <u>Scorpaenichthys</u> marmoratus from neuston tows during cruise 1TK80, April-May 1980. Abundance expressed as numbers per 1,000 m³.

Figure 18.--Distribution of eggs of Bothidae from neuston tows during cruise 1TK80, April-May 1980. Abundance expressed as numbers per 1,000 m³.

Figure 19.--Distribution of eggs of Bothidae from bongo tows during cruise 1TK80, April-May 1980. Abundance expressed as numbers per 10 m².

Figure 20.--Distribution of eggs of Lyopsetta exilis from neuston tows during cruise 1TK80, April-May 1980. Abundance expressed as numbers per 1,000 m³.

Figure 21.--Distribution of eggs of Lyopsetta exilis from bongo tows during cruise 1TK80, April-May 1980. Abundance expressed as numbers per 10 m².

Figure 22.--Distribution and lengths of larvae of Lyopsetta exilis from bongo tows during cruise 1TK80, April-May 1980. Abundance expressed as numbers per 10 m².

Figure 23.--Distribution of eggs of <u>Microstomus pacificus</u> from neuston tows during cruise 1TK80, April-May 1980. Abundance expressed as numbers per 1,000 m³.

Figure 24.--Results of recurrent group analysis on neuston catches (both fish eggs and larvae) from 1TK80, April-May 1980, at an affinity level of 0.4. Taxa in rectangles are members of recurrent groups. Lines connect taxa with affinities outside their groups. Numbers in parentheses following taxa names are the numbers of occurrences of that taxon.

Figure 25.--Results of recurrent group analysis on bongo catches (both fish eggs and larvae) from 1TK80, April-May 1980. Format as for Figure 24.