Northwest and<br>Alaska<br>Fisheries Center<br>National Marine<br>Fisheries Service<br>U.S. DEPARTMENT OF COMMERCE

# NWAFC PROCESSED REPORT 82-05 

## Biochemical Genetics of Sablefish

March 1982

## NOTICE

This document is being made available in .PDF format for the convenience of users; however, the accuracy and correctness of the document can only be certified as was presented in the original hard copy format.

Inaccuracies in the OCR scanning process may influence text searches of the .PDF file. Light or faded ink in the original document may also affect the quality of the scanned document.

# BIOCHEMICAL GENETICS OF SABLEFISH-/ 

by
A. J. Gharrett ${ }^{2 /}$, Margery A. Thomason 2/, and Lisa N. Wishard클

Resource Assessment and Conservation Engineering Division Northwest and Alaska Fisheries Center<br>National Marine Fisheries Service<br>National Oceanic and Atmospheric Administration<br>2725 Montlake Boulevard East Seattle, Washington 98112

March 1982

1/ Final report of a contract study financed under Sea Grant Program (04-9-AAl-00038) by the Resource Assessment and Conservation Division of the Northwest and Alaska Fisheries Center. It is made available to interested constituents for information purposes and represents the work of the authors.
2/ University of Alaska-Juneau, 11120 Glacier Highway, Juneau, AK 99801.

3/ University of Washington, Seattle, WA 98195

## ABSTRACT

Between the summer of 1978 and the summer of 1981, 37 collections of tissue samples of sablefish (Anoplopoma fimbria) were collected for biochemical genetic (electrophoretic) analysis. The collections included geographical locations from southern California to the end of the Aleutian Chain. An enormous amount of polymorphism was observed both with respect to the number of variants and to the frequency of variant alleles. Log-likelihood ratio analyses indicated significant genetic heterogeneity within regional groupings of collections and even more heterogeneity among regions. In addition, more heterogeneity was observed within geographical regions in the center of the range sampled than at the extremes of the range. The data indicated that the collections were probably taken from admixtures of various stocks, mixtures created by movements of the fish. The tremendous amount of genetic variation and the genetic heterogeneity are also consistent with the existence of a number of somewhat discrete populations between which some gene flow exists.

Sablefish (Anoplopoma fimbria) are distributed along the offshore waters of the eastern Pacific Ocean and Gulf of Alaska from Baja California through the Aleutian Islands as well as in the Bering Sea and along the western Pacific Ocean along the Kamchatka Peninsula through Japan. Effective management of a commercially valuable species such as the sablefish requires information regarding the stock structure in order to maximize potential production. Such information is not presently available, but it is difficult to believe that a species distributed over such a vast geographical range would not have some substructure.

One traditional means for obtaining information on stock structures is the analysis of tag and recovery data. Such data may eventually be sufficient for describing the stock structure of sablefish, but at this time these data appear adequate only for examining some migration patterns (Bracken, 1982). Another technique that may be used to examine stock structure depends on genetic differences that are often observed among genetically isolated populations as a result of genetic drift. One category of genetically determined traits that are useful for this kind of approach is enzymatic activities which display genetic variability that can be resolved through the technique of starch gel electrophoresis. Such biochemical genetic data has often
been shown to be useful for stock identification and separation problems involving fish. (See e.g., Grant et al. 1980; Milner et al. 1981).

In this report an attempt is made to examine the structure of eastern Pacific Ocean sablefish stocks by using biochemical genetic data obtained from specimens collected throughout the North American range. Because most of the collections of specimens were not made from spawning populations, it is quite possible that many collections may actually represent admixtures of several stocks. This possibility is especially important to consider when examining the results.

## MATERIALS AND METHODS

Between the summer of 1978 and the fall of 1980 thirtyfive collections of sablefish samples were made at geographical locations along the continental shelf from southern California to near the western end of the Aleutian Chain, from five seamounts in the Gulf of Alaska, and from the Bering Sea. In addition, two collections were made from the inside waters of southeastern Alaska by The Northwest and Alaska Fisheries Center (NWAFC) and by the investigators during the summer of 1981 (Figure 1 and Table 1).

Two different laboratories, those of Gharrett and of Wishard, have been involved in examining the biochemical genetic composition of these collections. Standard techniques


Approximate Locations and Times of Collection

|  | Lat. | Long. | Date | Site G | Grouping Designation |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1. | $45^{\circ} 18^{\prime} \mathrm{N}$ | $124^{\circ} 33^{\prime} \mathrm{W}$ | summer 1979 | Cape Lookout | Pacific Northwest |
| 2. | $45^{\circ} 20^{\prime} \mathrm{N}$ | $124^{\circ} 46^{\prime} \mathrm{W}$ | summer 1979 | Cape Lookout | " |
| 3. | $45^{\circ} 20^{\prime} \mathrm{N}$ | $124^{\circ} 46^{\prime} \mathrm{W}$ | s ummer 1979 | " " | " |
| 4. | $46^{\circ} 46^{\prime} \mathrm{N}$ | $124^{\circ} 54^{\prime} \mathrm{W}$ | summer 1979 | Willapa Bay | " " |
|  | $46^{\circ} 45^{\prime} \mathrm{N}$ | $124^{\circ} 57^{\prime}$ W | s ummer 1979 | " " | " " |
| 6. | $46^{\circ} 46^{\prime} \mathrm{N}$ | $124^{\circ} 54^{\prime} \mathrm{W}$ | summer 1979 | " " | " " |
| *7. | $47^{\circ} 17^{\prime} \mathrm{N}$ | $124^{\circ} 49^{\prime} \mathrm{W}$ | spring 1979 | Point Grenville | " |
| *8. | $48^{\circ} 13^{\prime} \mathrm{N}$ | $125^{\circ} 01^{\prime} \mathrm{W}$ | spring 1979 | Cape Flattery | " " |
| *9. | $54^{\circ} 31{ }^{\prime} N$ | $133^{\circ} 57{ }^{\prime} \mathrm{W}$ | summer 1978 | Dixon Entrance | S.E. Alaska |
| 10. | $57^{\circ} 46^{\prime} \mathrm{N}$ | $136^{\circ} 57^{\prime} \mathrm{W}$ | s ummer 1978 | Cross Sound | S.E. Alas |
| *11. | $57^{\circ} 14^{\prime} \mathrm{N}$ | $136^{\circ} 15^{\prime} \mathrm{W}$ | summer 1978 | Kruzof Island | " |
| *12. | $57^{\circ} 14^{\prime} \mathrm{N}$ | $136^{\circ} 16^{\prime} \mathrm{W}$ | summer 1978 | " " | " |
| *13. | $57^{\circ} 55^{\prime} \mathrm{N}$ | $136^{\circ} 54^{\prime} \mathrm{W}$ | summer 1978 | Cross Sound | " 1 |
| *14. | $59^{\circ} 15^{\prime} \mathrm{N}$ | $141^{\circ} 54 \prime W$ | s ummer 1978 | Yakutat Bay | " |
| *15. | $59^{\circ} 28^{\prime} N$ | $140^{\circ} 27^{\prime} \mathrm{W}$ | summer 1978 | " " | 11 |
| *16. | $57^{\circ} 48^{\prime} \mathrm{N}$ | $149^{\circ} 37{ }^{\prime} \mathrm{W}$ | summer 1978 | Afognath Island | Alaska Penninsula |
| 17. | $57^{\circ} 35^{\prime} \mathrm{N}$ | $149^{\circ} 55^{\prime} W$ | summer 1980 | "1 " | " " " |
| *18. | $57^{\circ} 02 \cdot \mathrm{~N}$ | $152^{\circ} 17^{\prime} \mathrm{W}$ | s ummer 1978 | Kodiak Island | " 1 |
| *19. | $55^{\circ} 59$ 'N | $154^{\circ} 53{ }^{\prime} \mathrm{W}$ | s ummer 1978 | Chirikof Island | " |
| *20. | $54^{\circ} 29^{\prime} \mathrm{N}$ | $158^{\circ} 43^{\prime} \mathrm{W}$ | s ummer 1978 | Shumagin Islands | $\text { Is } \quad 1$ |
| *21. | $53^{\circ} 28^{\prime} N$ | $165^{\circ} 57^{\prime} \mathrm{W}$ | s ummer 1978 | Unalaska Island | Aleutian Islands |
| 22. | $52^{\circ} 58^{\prime} \mathrm{N}$ | $168^{\circ} 00^{\prime} \mathrm{W}$ | summer 1980 | Umnak Island | " |
| 23. | $52^{\circ} 30^{\prime} \mathrm{N}$ | $169^{\circ} 30^{\prime} \mathrm{W}$ | s summer 1980 | Unak Island | " " |
| 24. | $51^{\circ} 46^{\prime} N$ | $177^{\circ} 05^{\prime} \mathrm{E}$ | s ummer 1980 | Kiska Island | " " |
| 25. | $56^{\circ} 03^{\prime} N$ | $170^{\circ} 19^{\prime} \mathrm{W}$ | summer 1980 | St. George Islan | nd Bering Sea |
| 26. | $54^{\circ} 33^{\prime} \mathrm{N}$ | $136^{\circ} 55^{\prime} \mathrm{W}$ | summer 1979 | Dickins Seamount | $t$ Seamounts |
| 27. | $55^{\circ} 07^{\prime} \mathrm{N}$ | $140^{\circ} 20^{\prime} \mathrm{W}$ | summer 1979 | Walker Semount | " |
| 28. | $56^{\circ} 04^{\prime} \mathrm{N}$ | $144^{\circ} 40$ W | s ummer 1979 | Surveyor Seamoun | nt |
| 29. | $56^{\circ} 17{ }^{\prime} \mathrm{N}$ | $145^{\circ} 13^{\prime} \mathrm{W}$ | s ummer 1979 | Quinn Seamount | , |
| 30. | $54^{\circ} 38^{\prime} \mathrm{N}$ | $150^{\circ} 32^{\prime} \mathrm{W}$ | summer 1979 | Patton Seamount | " |
| 31. | $55^{\circ} 25^{\prime} \mathrm{N}$ | $135^{\circ} 00 \mathrm{~W}$ | s ummer 1978 | Dixon Entrance A | Addt'l S.E. Alaska |
| 32. | $56^{\circ} 05^{\prime} \mathrm{N}$ | $135^{\circ} 36^{\prime} \mathrm{W}$ | summer 1978 | Cape Ommaney | " "i Alask |
| 33. | $59^{\circ} 35^{\prime} \mathrm{N}$ | $142^{\circ} 50$ W | summer 1978 | Yakutat | " " " |
| 34. | $38^{\circ} 11^{\prime} \mathrm{N}$ | $123^{\circ} 31^{\prime}$ W | fall 1980 | Bodega Head California |  |
| 35. | $32^{\circ} 43^{\prime} \mathrm{N}$ | $119^{\circ} 38^{\prime} \mathrm{W}$ | fall 1980 | Patton Escarpment California |  |
| 36. | $58^{\circ} 24^{\prime} \mathrm{N}$ | $134^{\circ} 38^{\prime} \mathrm{W}$ | summer 1981 | Auke Bay S.E. Alaska |  |
| 37. | $58^{\circ} 17{ }^{\prime} \mathrm{N}$ | $134^{\circ} 55^{\prime} \mathrm{W}$ | summer 1981 | Funter Bay S.E. Alaska |  |

* Data from Wishard's Laboratory. All other from Gharrett's Laboratory.
for starch gel electrophoresis were employed (see e.g., May 1980). The enzymatic activities were stained according to Harris and Hopkinson (1976). Banding patterns, which represent gene products, were designated by their relative mobilities. The most common form (allele) is usually expressed as 100. The mobilities of other alleles at a locus are expressed relative to this value. When more than one locus expressed a particular enzymatic activity, the loci were designated consecutively by Arabic numbers starting with the least anodal (Allendorf and Utter 1979). Because it was not possible to obtain breeding data to confirm our genetic interpretations of banding patterns, we adopted the following guidelines for accepting a banding system as one useful for our analysis: 1) The banding patterns of a particular enzymatic activity must be consistent with a molecular model observed for other species of fish; 2) A particular activity observed in more than one tissue of an individual must display the variants of the same mobility; 3) Data for a particular activity must not consistently show a surplus of heterozygous types in excess of Hardy Weinberg equilibrium expectations.

The data were expressed as allelic frequencies and analyzed using log-likelihood ratio analysis. Sokal and Rohlf (1969) recommend that expected frequencies less than 5 be avoided for this analysis; therefore, only loci whose most common allele was present at frequencies less than 0.95
were used in the analysis. In addition frequencies of less common alleles were pooled to avoid expected frequencies less than 5. When such pooling was done, an effort was made to maximize the number of classes for each locus.

## RESULTS

Genetic Variability

Of the enzymatic activities examined, thirteen proved reliable and are considered in this report. Other activities were not included l) because interpretation or resolution of banding patterns was not possible, 2) because too little enzymatic activity was present, or 3) because the samples from which data was obtained were too few.

An extraordinary amount of polymorphism was observed (see Appendix). Eighteen different loci were resolved from the thirteen enzymatic activities and all loci displayed some degree of polymorphism. For only two loci were as few as two alleles observed while five loci had five or more alleles. The polymorphism was also reflected in the allelic frequencies. At eleven of the eighteen loci, the less common alleles comprised at least five percent of the total observed. This means that eleven loci could be analyzed statistically (Table 2).

The large number of alleles observed made interpretation

Electrophoretic Loci Examined
Loci in which little detectable variability (allelic frequency of common allele $\geqslant .95$ ) exists.

| Enzyme | E.C. number | Designation | buffer* system | Tissue |
| :---: | :---: | :---: | :---: | :---: |
| Alphaglycerophosphate dehydrogenase | 1.1 .1 .8 | AGP(L) | 2 | liver |
| Isocitrate dehydrogenase | 1.1.1.42 | IDH-2 | 4 | muscle |
| Lactate dehydrogenase | 1.1.1.27 | LDH | 1 | muscle |
| Malate dehydrogenase | 1.1.1.37 | MDH-1 | 2 | muscle |
| Malate dehydrogenase | 1.1.1.37 | MDH-2 | 2 | muscle |
| Phosphoglucose isomerase | 5.3.1.9 | PGI-1 | 1 | muscle |
| Superoxide dismutase | 1.15.1.1 | SOD (M) | 1 | muscle |

Loci in which variability (allelic frequency of common allele s.95) exists.

| Adenosine deaminase | 3.5 .4 .4 | ADA | 4 | muscle |
| :--- | :--- | :--- | :--- | :--- |
| Alcohol dehydrogenase | 1.1 .1 .1 | ADH | 2 | liver |
| Creatine kinase | 2.7 .3 .2 | CK | 3 | muscle |
| Glutamate Oxaloacetate | 2.6 .1 .1 | GOT-2 | 5 | liver |
| transaminase | 2.6 .1 .2 | GPT-2 | 3 | liver |
| Glutamate Pyruvate transaminase | 2.3 .1 .9 | PHI-2 | 2 | muscle |
| Phosphoglucose Isomerase | 2.7 .5 .1 | PGM-1 | 1 | muscle |
| Phosphoglucomutase | 1.1 .1 .44 | $6 P G-2$ | both 2 \& 4 muscle |  |
| 6-Phosphogluconate dehydrogenase | PMI | 3 | muscle |  |
| Phosphomannose isomerase | 3.2 .1 .24 | PDH | 1 | liver |
| Sorbitol dehydrogenase | 1.1 .1 .14 | SOD(L) | 2 | liver |
| Superoxide dismutase | 1.15 .1 .1 |  |  |  |

* 1. Ridgway et al. (1970)

2. Clayton and Tretiak (1972)
3. Markert and Faulhaber (1965)
4. Shaw and Prasad (1970) ( pH 7.0 tris-citrate)
5. Clayton and Tretiak (1972) adjusted to pH 6.7
of banding patterns, enumeration and identification of particular alleles, and subsequent comparisons of results obtained by the two laboratories somewhat difficult. Samples were exchanged between our laboratories to standardize scoring practices. In addition, when frequencies of less common alleles were pooled to avoid expected frequencies less than five, an effort was made to pool frequencies of alleles possessing similar mobilities while still maximizing the number of classes at each locus (Table 3 ). This practice should nullify many scoring errors that may have resulted from difficulties in resolving alleles possessing slightly different mobilities as well as those that resulted from different scoring practices. An examination of heterogeneity between data observed at each of the two laboratories was made on a locus by locus basis. No significant ( $\mathrm{P}>.10$ ) differences were observed at ten of the eleven loci. PMI-2 showed a significant difference ( $\mathrm{P}<.01$ ). Because the two laboratories examined different collections not necessarily representing the same geographical locations, it was not necessary that the data be homogeneous. That they were homogeneous, however, suggests that the two laboratories were indeed interpreting the data in a uniform way.

Subsequent analyses were performed both with and without the PMI-2 data as well as for each laboratory independently.

TABLE 3: Description of pooling of alleles at each locus used for log-likelihood ratio test. Acronyms for loci are described in Table 2, numbers represent the relative mobilities of alleles.

|  | Pool 1 | Pool 2 | Pool 3 | Pool 4 |
| :---: | :---: | :---: | :---: | :---: |
| ADA | 100 | 75 | $\begin{aligned} & 90,60,50, \\ & 150,115,105 \end{aligned}$ | - |
| ADH | 100, 105, 120 | 50 | 30, 20, 10, 0 | - |
| CK | 100 | 85 | - | - |
| GOT | 100 | 115, 80, 70 | - | - |
| GPT-2 | 100 | 80, 60 | - | - |
| PGI-2 | 100 | 110, 95, 80 | - | - |
| PGM | 100 | 125, 140, 160 | - | - |
| PMI-2 | 100 | 120, 90, 80 | - | - - |
| 6PG-2 | 100 | $\begin{gathered} 140,120,110 \\ 85,70 \end{gathered}$ | - | - |
| SDH | 100 | 75 | 150, 120, 30 | - |
| SOD(L) | 100 | 130 | 140, 150 | 90 |

None of these different treatments of the data produced substantially different results; therefore, results presented below include all data from both laboratories and data from the PMI-2 locus.

Analysis of Genetic Variation

The collections were grouped and designated according to the geographical region from which they were taken. The groupings are California, the Pacific Northwest, Dixon Entrance, Southeast Alaska, the Alaskan Peninsula, Aleutian Islands, Bering Sea, and five seamounts in the middle of the Gulf of Alaska. The Dixon Entrance collections were kept separate because preliminary data analyses on incomplete data sets indicated the possibility of differences between northern and southern collections and the Dixon Entrance collections were geographically between the groups.

The Southeast Alaska data included two collections from inside waters. One of these collections was made up of adults, the other of young fish (approximately 10 inches long) which were presumably the same year class and possibly of the same brood. These collections were made to examine the possibility that stocks found in the inside waters of Southeast Alaska were genetically discrete from outside stocks. When these two collections were removed from the analysis of Southeast Alaska collections, the amount of heterogeneity among collections was decreased somewhat, but
statistically significant heterogeneity did still remain. These results indicate that the collections from the inside waters are no more "unique" than is each collection from the outside waters in the region. This suggests that the genetic structure of Southeast Alaska stocks is not so simple as an "inside" and "outside" stock model.

Comparisons of the Bering Sea collection to those collected from the Aleutian Islands reveal no significant heterogeneity between those two regions. There is, therefore, no basis for assuming that more than one genetically identifiable stock exists in these regions.

Log-likelihood ratio analyses were made one locus at a time,first within regions and then among regions. Table 4 shows the total heterogeneity both within regions ( $\mathrm{G}_{\mathrm{w}}$ ) and among regions ( $G_{A}$ ) across all loci used. The total heterogeneity $\left(\mathrm{G}_{\mathrm{T}}\right)$ is significant $(\mathrm{P}<.001)$ as is the heterogeneity existing both within regions ( $\mathrm{P}<.001$ ) and among the regions ( $\mathrm{P}<.001$ ) It is interesting to note that the more polymorphic loci (SOD(L), ADH and SDH) contributed most substantially to the heterogeneity (Table 5). F tests indicate that there is more heterogeneity among regions than there is on the average within regions (P<.O12). Partitioning the data into even larger geographical regions did not successfully account for this relatively larger heterogeneity. For example there does not appear to be a systematic difference between collections

TABLE 4
Summary for log-likelthood ratio tests for all geographical areas
All data
Degrees of freedom are in parentheses
California
Pacific NW
Dixon Entrance

$$
118.727 *(89)
$$

S.E. Alaska

$$
3.329(2)
$$

Sea mounts
Ak Peninsula
Aleutians
Bering Sea

| $G_{W}$ | $467.745 * * *(345)$ |
| ---: | ---: | ---: |
| $G_{A}$ | $200.602 * * *(105)$ |
| $G_{T}$ | $668.346 * * *(450)$ |
| $F_{A, W}=1.409(105,345)$ | $P<.012$ |

$$
7.651(15)
$$

$138.486 * *(94)$
$74.654 *(54)$
85.138** (49)
39.760(42)

| - |
| :--- |

$\begin{array}{cc}G_{W} & 467.745^{* * *}(345) \\ G_{A} & 200.602^{* * *}(105) \\ G_{T} & 668.346^{* * *}(450)\end{array}$
$F_{A, W}=1.409(105,345) \quad P<.012$
$\begin{array}{rl}* & P<.05 \\ * * & P<.01 \\ * * * & P<.001\end{array}$

TABLE 5
Table of log-liklihood ratio tests for all loci possessing a common allele with an average frequency less than 0.95. Other alleles were pooled to create classes with frequencies greater than or equal to 0.05 . Degrees of freedom are in parentheses.

|  | PGI-2 |  | CK |  | 6PG-2 |  | PGM |  | ADA |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | N | $\mathrm{G}_{\mathrm{W}}$ | N | $\mathrm{G}_{\text {W }}$ | N | $\mathrm{G}_{\mathrm{W}}$ | N | $\mathrm{G}_{\mathrm{W}}$ | N | $\mathrm{G}_{\mathrm{W}}$ |
| California | 203 | .009(1) | 203 | .063(1) | 203 | .068(1) | 203 | 1.507(1) | 203 | $1.009(2)$ |
| Pacific NW | 248 | 12.191 (7) | 248 | 9.601 (7) | 226 | 10.898(7) | 248 | $3.008(7)$ | 199 | 5.445(10) |
| Dixon Entrance | 59 | - | 59 | - | 102 | .017(1) | 163 | $3.312(1)$ | - | - |
| S.E. Alaska | 521 | 3.804 (7) | 516 | 11.941 (7) | 483 | 14.668(9) | 662 | 14.756(9) | 281 | 1.919(4) |
| Sea mounts | 241 | 3.476 (4) | 217 | 1.211(4) | 83 | . 346 (1) | 241 | 10.562*(4) | 241 | 5.629(8) |
| Ak Peninsula | 254 | .266(4) | 254 | 5.871 (4) | 251 | . 768 (4) | 254 | 5.007(4) | 100 | 5.629(8) |
| Aleutians | 268 | 2.429(3) | 268 | . 481 (3) | 268 | . $910(3)$ | 268 | 8.582* (3) | 208 | 2.876(4) |
| Bering Sea | 102 | ( | 103 | - | 103 | - | 100 | 8.582 (3) | 103 | ( |
|  | 1896 |  | $\overline{18} \overline{6} 8$ |  | 1719 |  | 2139 |  | 1335 |  |
|  | $\mathrm{G}_{\mathrm{W}}=22.175(26$ |  | $\mathrm{G}_{\mathrm{W}}=29.168(26$ |  | $\mathrm{G}_{\mathrm{W}}=27.675(26)$ |  | $\mathrm{G}_{\mathrm{W}}=46.734 *(29)$ |  | $\mathrm{G}_{\mathrm{W}}=16.877(28)$ |  |
|  | $\mathrm{G}_{\mathrm{A}}=10.500(7)$ |  | $\mathrm{G}_{\mathrm{A}}=12.097(7)$ |  | $G_{A}=14.053(7)$ |  | $\mathrm{G}_{\mathrm{A}}=14.303 *(7)$ |  | $\mathrm{G}_{\mathrm{A}}=19.719(12)$ |  |
|  | $\mathrm{G}_{\mathrm{T}}=32.675(33)$ |  | $G_{T}=41.265(33)$ |  | $\mathrm{G}_{\mathrm{T}}=41.728(33)$ |  | $\mathrm{G}_{\mathrm{T}}=61.037 * *(36)$ |  | $\mathrm{G}_{\mathrm{T}}=36.596(40)$ |  |
|  | SOD(L) |  | SDH |  | ADH |  | GOT |  | GPT |  |
|  | N | $\mathrm{G}_{\mathrm{W}}$ | N | $\mathrm{G}_{\text {W }}$ | $N$ | $G_{\text {W }}$ | N | G ${ }_{\text {w }}$ | N | $\mathrm{G}_{\mathrm{W}}$ |
| California | 202 | $2.938(3)$ | 202 | 1.933(2) | 203 | .035(2) | 203 | . 044 (1) | - | - |
| Pacific N.W. | 248 | 26.403(21) | 241 | 23.923*(14) | 245 | 25.773*(4) | 49 | . 775 (1) | - | - |
| Dixon Entrance | 59 | - - | -. 59 | - | 59 | - | - | - | - | - |
| S.E. Alaska | 519 | 28.466(21) | 476 | 16.189(12) | 491 | 24.538* (14) | 176 | 7.609*(2) | 144 | .460(2) |
| Sea mounts | 239 | 19.723 (12) | 240 | 11.537(8) | 234 | $13.469(8)$ | - | - | 44 | 3.934*(1) |
| Ak Peninsula | 254 | $24.066(12)$ | 238 | 13.803*(6) | 254 | 13.748 (8) | 100 | - 221 $^{\text {(2) }}$ | 154 | $5.570(3)$ |
| Aleutians | 268 | 6.963(9) | 267 | 7.503(6) | 268 | 6.332 (6) | 203 | 2.321 (2) | 60 | - |
| Bering Sea | 103 | ( | 103 | ( | 103 | 6.332( | 103 | - | 40 | - |
|  | 1892 |  | 1826 |  | 1857 |  | 834 |  | 442 |  |
|  | $\begin{aligned} \mathrm{G}_{\mathrm{W}} & =108.559 *(78) \\ \mathrm{G}_{\mathrm{A}} & =45.685 * *(21) \\ \mathrm{G}_{\mathrm{T}} & =154.244 * *(99) \end{aligned}$ |  | $\begin{aligned} & \mathrm{G}_{\mathrm{W}}=74.888^{* *}(48) \\ & \mathrm{G}_{\mathrm{A}}=26.785^{*}(14) \\ & \mathrm{G}_{\mathrm{T}}=101.673^{* *}(62) \end{aligned}$ |  | $\begin{aligned} & G_{W}=83.895^{* *}(52) \\ & G_{A}=35.336^{* *}(14) \\ & G_{T}=119.231 * *(66) \end{aligned}$ |  | $\begin{aligned} G_{W} & =10.749(6) \\ G_{A} & =9.599(5) \\ G_{T} & =20.348^{\star}(11) \end{aligned}$ |  | $\begin{aligned} G_{W} & =9.964(6) \\ G_{A} & =3.020(4) \\ G_{T} & =12.984(10) \end{aligned}$ |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

TABLE 5 continued
PMI-2

|  | $N$ | $\mathrm{G}_{\text {W }}$ |
| :---: | :---: | :---: |
| California | 203 | . 045 (1) |
| Pacific NW | 49 | . 710 (1) |
| Dixon Entrance | - | - |
| S.E. Alaska | 520 | 14.136*(7) |
| Sea mounts | 241 | $4.767(4)$ |
| Ak Peninsula | 254 | 16.039**(4) |
| Aleutians | 268 | 1.363(3) |
| Bering Sea | 103 | - |
|  | 1697 |  |

$\mathrm{G}_{\mathrm{W}}=37.060^{*}$ (20)
$G_{A}=9.505(7)$
$\mathrm{G}_{\mathrm{T}}=46.565(27)$

* $P<.05$
** $P<.01$
** $P$ <. 001
made north of Dixon Entrance and collections made south of Dixon Entrance.

It is important to realize that none of the collections were made on spawning populations. The heterogeneity observed within geographical regions is consistent with the idea that collections represent mixtures of various genetically distinct populations. Observations of more heterogeneity among geographical regions than within suggests some degree of regional integrity. Also supporting this interpretation is the observation that toward the ends of the geographical range sampled, less heterogeneity exists within each region than in the middle of the range. This kind of pattern would be expected if southern California at one end and the Aleutian Islands/Bering Sea areas at the other end were the limits of eastern Pacific stocks and the fish were relatively mobile. In this kind of model, the collections from the center of the range, i.e., Southeast Alaska and the Alaskan Peninsula, would more likely represent mixtures of a wider variety of stocks and, therefore, demonstrate more within-region heterogeneity.

The data analyzed are consistent with a model in which somewhat discrete breeding stocks of sablefish exist throughout the range from southern California to the Aleutian Islands. This model is supported by the observation that more heterogeneity exists among different geographical regions throughout this range than within these regions. Because breeding populations were not sampled, observations of greater heterogeneity toward the center of the sampled range than at the ends suggest that the collections from the center of the range represent admixtures of more breeding stocks than do collections near the ends of the range sampled. The relative similarity of allelic frequencies and the large amount of genetic variation suggests enormous effective population sizes and/or some degree of gene flow.

It is not possible in the absence of data on spawning populations to determine the numbers of stocks involved or the relative discreteness of stocks. To establish that Aleutian samples do represent one of the ends of the range, it would be necessary to examine sablefish from the Western Pacific.

## REFERENCES

Allendorf, F.W., and F.M. Utter. 1979. Population Genetics. pp. 407-454. In: Fish Physiology, Vol. 8, Hoar, Randall, and Brett, eds.

Bracken, B.E. 1982. Evidence of extensive directional movement of sablefish (Anopolopoma fimbria) in the Gulf of Alaska. Draft report distributed by North Pacific Fishery Management Council, Anchorage, AK.

Clayton, J.W., and Tretiak. 1972. Aminocitrate buffer for pH control in starch gel electrophoresis. J. Fish. Res. Bd. Can. 29:1169-1172.

Grant, W.S., G.B. Milner, P. Krasnowski, and F.M. Utter. 1980. Use of biochemical genetic variants for identification of sockeye salmon (Oncorhynchus nerka) stocks in Cook Inlet Alaska. Can. J. Fish. Aquat. Sci. 37:1236-1247.

Harris, H., and D.A. Hopkinson. 1976. Handbook of Enzyme Electrophoresis in Human Genetics. American Elsevier Publishing Co., Inc., New York.

Markert, C.L., and I. Faulhaber. 1965. Lactate dehydrogenase isozyme patterns of fish. J. Exp. Zool. 159:319-333.

May, B. 1980. The salmonid genome: Evolutionary restructuring following a tetraploid event. Ph.D. Thesis. The Pennsylvania State University . 199pp. University Park, Pennsylvania.

Milner, G.B., D.J. Teal, F.M. Utter, and C.L. Burley. 1981. Columbia River stock identification study: validation of genetic method. Final report, NOAA, NWAFC, Seattle, WA 98112.

Ridgway, G.J., S.U. Sherburne, and R.D. Lewis. 1970, Polymorphisms in esterases of Atlantic herring, Trans. Amer. Fish. Soc. 99:142-151.

Shaw, C.R., and R. Prasad. 1970. Starch gel electrophoresis of enzymes: A compilation of recipes. Biochem. Genet. 4:297-320.

Sokal, R.R., and F.J. Rohlf. 1969. Biometrics. W.H. Freeman and Co., San Francisco, CA. p. 568.

|  | SOD (M) |  |  |  | PHI-1 |  |  |  |  | MDH-2 |  |  |  | MDH-1 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | N |  | 1.00 | 1.500 | N | 1.00 | $1 \cdot 80$ | 80 | 20 | M | 1.00 | 1-15 | . 90 | N | 1. 00 | $1 \cdot 10$ | . 90 |
| 1 |  | 22 | . 977 | .023 | 22 | . 955 | . 045 | 0 | 0 | 22 | .977 | 0 | .023 | 22 | . 955 | 0 | . 045 |
| 2 |  | 46 | 1.00 | 0 | 46 | 1.00 | 0 | 0 | 0 | 4.6 | 1.00 | 0 | 0 | 46 | .978 | 0 | . 022 |
| 3 |  | 31 | 1. 00 | 0 | 31 | .984 | 0 | . 016 | 0 | 31 | .984 | 0 | .016 | 31 | 1.00 | 0 | 0 |
| 4 |  | 4 | 1.00 | 0 | 44 | 1.00 | 0 | 0 | 0 | 44 | 1.00 | 0 | 0 | 44 | 1.00 | 0 | 0 |
| 5 |  | 26 | .981 | .019 | 26 | 1.00 | 0 | 0 | 0 | 26 | 1.00 | 0 | 0 | 26 | 1.00 | 0 | 0 |
| 6 |  | 30 | 1.00 | 0 | 30 | 1.00 | 0 | 0 | 0 | 30 | 1.00 | 0 | 0 | 30 | 1.00 | 0 | 0 |
| 7 |  | 31 | 1.00 | 0 | 31 | 1.00 | 0 | 0 | 0 | 31. | .1.0.0 | 0 | 0 | 31 | .983 | 0 | .017 |
| 8 |  | 18 | 1.00 | 0 | 18 | 1.00 | 0 | 0 | 0 | 18 | 1.00 | 0 | 0 | 18 | 1.00 | 0 | 0 |
| 9 |  | 59 | 1.00 | 0 | 59 | .991 | .008 | 0 | 0 | 59 | 1.00 | 0 | 0 | 59 | 1.00 | 0 | 0 |
| 10 |  | 152 | 1.00 | 0 | 152 | . 997 | 0 | .003 | 0 | 152 | .997 | .003 | 0 | 152 | .993 | .007 | 0 |
| 11 |  | 4 | 1.00 | 0 | 49 | .989 | .010 | 0 | 0 | 49 | .979 | 0 | .021 | 49 | 1.00 | 0 | 0 |
| 12 |  | 50 | .990 | .010 | 50 | 1.00 | 0 | 0 | 0 | 50 | 1.00 | 0 | 0 | 50 | 1.00 | 0 | 0 |
| 13 |  | 8 | 1.00 | 0 | 48 | .980 | .010 | .010 | 0 | 48 | 1.00 | 0 | 0 | 48 | 1.00 | 0 | 0 |
| 14 |  | 50 | .990 | .010 | 50 | 1.00 | 0 | 0 | 0 | 50 | . 990 | 0 | . 010 | 50 | 1.00 | 0 | 0 |
| 15 |  | 5 | 1.00 | 0 | 45 | 1.00 | 0 | 0 | 0 | 45 | . 988 | 0 | . 012 | 45 | 1.00 | 0 | 0 |
| 16 |  | 0 | .991 | .009 | 60 | 1.00 | 0 | 0 | 0 | 60 | .991 | 0 | . 009 | 60 | 1.00 | 0 | 0 |
| 17 |  | 00 | 1.00 | 0 | 100 | .995 | .005 | 0 | 0 | 100 | 1.00 | 0 | 0 | 100 | .995 | 0 | .005 |
| 18 |  | 6 | 1.00 | 0 | 16 | 1.00 | 0 | 0 | 0 | 16 | 1.00 | 0 | 0 | 16 | 1.00 | 0 | 0 |
| 19 |  | 0 | 1.00 | 0 | 50 | 1.00 | 0 | 0 | 0 | 50 | . 980 | 0 | . 020 | 50 | 1.00 | 0 | 0 |
| 20 |  | 8 | 1.00 | 0 | 28 | 1.00 | 0 | 0 | 0 | 28 | . 982 | 0 | .018 | 28 | 1.00 | 0 | 0 |
| 21 |  | 0 | 1.00 | 0 | 60 | .966 | .008 | .016 | . 008 | 60 | .975 | 0 | . 025 | 60 | 1.00 | 0 | 0 |
| 22 |  | 0 | .988 | .012 | 40 | .975 | .025 | 0 | 0 | 40 | .988 | 0 | . 012 | 40 | 1.00 | 0 | 0 |
| 23 |  | 1 | 1.00 | 0 | 71 | . 979 | .007 | .007 | .007 | 71 | . 979 | .014 | . 007 | 71 | 1.00 | 0 | 0 |
| 24 |  | 7 | .995 | .005 | 97 | . 990 | .010 | 0 | 0 | 97 | . 995 | .005 | 0 | 97 | 1.00 | 0 | 0 |
| 25 |  | 03 | 1.00 | 0 | 103 | .985 | .010 | .005 | 0 | 102 | . 995 | 0 | .005 | 102 | . 995 | 0 | .005 |
| 26 |  | 4 | .989 | .011 | 44 | 1.00 | 0 | 0 | 0 | 44 | 1. 00 | 0 | 0 | 44 | 1.00 | 0 | 0 |
| 27 |  | 9 | 1.00 | 0 | 29 | 1.00 | 0 | 0 | 0 | 29 | 1.00 | 0 | 0 | 29 | 1.00 | 0 | 0 |
| 28 |  | 7 | 1.00 | 0 | 67 | .993 | 0 | .007 | 0 | 67 | .993 | .007 | 0 | 67 | 1.00 | 0 | 0 |
| 29 |  | 7 | .993 | . 007 | 67 | $1.00^{\circ}$ | 0 | 0 | 0 | 67 | 1.00 | 0 | 0 | 67 | 1.00 | 0 | 0 |
| 30 |  | 4 | 1.00 | 0 | $3: 4$ | .985 | .015 | 0 | 0 | 33 | 1.00 | 0 | 0 | 34 | 1.00 | 0 | 0 |
| 31 |  | 0 | - | - | 0 | - | - | - | - | 0 | - | - | - | 0. | - | - | - |
| 32 |  | 0 | - | - | 0 | - | - | - | - | 0 | - | - | - | 0 | - | - | - |
| 33 |  | 0 | - | - | 0 | - | - | - | - | 0 | - | - | - | 0 | - | - | - |
| 34 |  | 7 | .995 | .005 | 97 | . 995 | 0 | 0 | .005 | 97 | .990 | 0 | .010 | 97 | .995 | 0 | .005 |
| 35 | 1 | 06 | 1.00 | 0 | 106 | .9 81 | .014 | 0 | .047 | 106 | .991 | 0 | .009 | 106 | .981 | .009 | .009 |
| 36 |  | 78 | 1.00 | 0 | 78 | 1.00 | 0 | 0 | 0 | 78 | 1.00 | 0 | 0 | 78 | . 994 | 0 | .006 |
| 37 |  | 50 | 1. 00 | 0 | 50 | 1.00 | 0 | 0 | 0 | 50 | 1.00 | 0 | 0 | 50 | 1:00 | 0 | 0 |


|  | IDH-2 |  |  |  |  | LDH |  |  |  | AGP (L) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | N | 1.00 | . 95 | 1. 2 | . 50 | N | 1.00 | 1.20 | . 9 |  | 1.00. |  | 1.1 |
| 1 | 22 | 1.00 | 0 | 0 | 0 | 22 | 1.00 | 0 | 0 | 22 | 1.00 | 0 | 0 |
| 2 | 46 | 1.00 | 0 | 0 | 0 | 46 | .989 | 0 | .011 | 46 | .989 | .011 | 0 |
| 3 | 31 | 1.00 | 0 | 0 | 0 | 31 | 1.00 | 0 | 0 | 31 | 1.00 | 0 | 0 |
| 4 | 44 | .989 | 0 | .011 | 0 | 44 | .989 | .011 | 0 | 44 | 1.00 | 0 | 0 |
| 5 | 26 | 1.00 | 0 | 0 | 0 | 26 | 1.00 | 0 | 0 | 26 | 1.00 | 0 | 0 |
| 6 | 30 | 1.00 | 0 | 0 | 0 | 30 | 1.00 | 0 | 0 | 30 | $1 \cdot 00$ | 0 | 0 |
| 7 | 31 | 1.00 | 0 | 0 | 0 | 31 | 1.00 | 0 | 0 | 31 | $1 \cdot 00$ | 0 | 0 |
| 8 | 18 | . 972 | 0 | . 027 | 0 | 18 | 1.00 | 0 | 0 | 18 | 1.00 | 0 | 0 |
| 9 | 59 | .991 | 0 | 0 | .009 | 59 | 1.00 | 0 | 0 | 59 | 1.00 | 0 | 0 |
| 10 | 0 | - | - | - | - | 152 | 1.00 | 0 | 0 | 78 | 1.00 | 0 | 0 |
| 11 | 49 | 1.00 | 0 | 0 | 0 | 49 | .979 | .021 | 0 | 49 | 1.00 | 0 | 0 |
| 12 | 50 | .990 | 0 | .010 | 0 | 50 | 1.00 | 0 | 0 | 50 | .990 | .010 | 0 |
| 13 | 48 | 1.00 | 0 | 0 | 0 | 48 | 1. 00 | 0 | 0 | 48 | 1.00 | 0 | 0 |
| 14 | 50 | .990 | . 010 | 0 | 0 | 50 | 1.00 | 0 | 0 | 50 | . 990 | .010 | 0 |
| 15 | 45 | . 988 | . 012 | 0 | 0 | 45 | 1.00 | 0 | 0 | 45 | 1.00 | 0 | 0 |
| 1 G | 60 | .983 | .010 | 0 | 0 | 60 | 1.00 | 0 | 0 | 60 | . 911 | .009 | 0 |
| 17 | 100 | .995 | . 005 | 0 | 0 | 100 | 1.00 | 0 | 0 | 100 | 0.995 | . 005 | 0 |
| 18 | 16 | 1.00 | 0 | 0 | 0 | 16 | 1.00 | 0 | 0 | 16 | 1.00 | 0 | 0 |
| 13 | 50 | .980 | . 020 | 0 | 0 | 50 | 1.00 | 0 | 0 | 50 | 1.00 | 0 | 0 |
| 20 | 28 | 1.00 | 0 | 0 | 0 | 28 | 1.00 | 0 | 0 | 28 | 1.00 | 0 | 0 |
| 21 | 60 | .975 | .008 | .016 | 0 | 60 | 1.00 | 0 | 0 | 60 | 1.00 | 0 | 0 |
| 22 | 40 | 1.00 | 0 | 0 | 0 | 40 | 1.00 | 0 | 0 | 40 | 1.00 | 0 | 0 |
| 23 | 71 | 1.00 | 0 | 0 | 0 | 71 | 1.00 | 0 | 0 | 71 | .993 | - 0 | . 007 |
| 24 | 97 | 1.00 | 0 | 0 | 0 | 97 | 1.00 | 0 | 0 | 97 | 1.00 | 0 | 0 |
| 25 | 102 | 1. 00 | 0 | 0 | 0 | 103 | 1.00 | 0 | 0 | 103 | 3.990 | . 010 | 0 |
| 26 | 44 | .989 | 0 | .011 | 0 | 44 | 1.00 | 0 | 0 | 44 | 1.00 | 0 | 0 |
| 27 | 27 | 1.00 | 0 | 0 | 0 | 29 | 1.00 | 0 | 0 | 29 | 1.00 | 0 | 0 |
| 28 | 67 | .992 | . 008 | 0 | 0 | 50 | 1.00 | 0 | 0 | 50 | 1.00 | 0 | 0 |
| 29 | 67 | 1.00 | 0 | 0 | 0 | 67 | 1.00 | 0 | 0 | 67 | 1.00 | 0 | 0 |
| 30 | 34 | 1. 00 | 0 | 0 | 0 | 33 | 1.00 | 0 | 0 | 34 | . 970 | . 015 | . 015 |
| 31 | 0 | - | - | - | - | 0 | - | - | - | 0 | - | - | - |
| 32 | 0 | - | - | - | - | 0 | - | - | - | 0 | - | - | - |
| 33 | 0 | - | - | - | - | 0 | - | - | - | 0 | - | - | - |
| 34 | 97 | 1. 00 | 0 | 0 | 0 | 97 | 1. 00 | 0 | 0 | 97 | 1.00 | 0 | 0 |
| 35 | 106 | 1.00 | 0 | 0 | 0 | 106 | . 995 | 0 | .005 | 106 | 6.986 | . 005 | .009 |
| 36 | 78 | 1.00 | 0 | 0 | 0 | 75 | 1. 00 | 0 | 0 | 78 | 1.00 | 0 | 0 |
| 37 | 50 | 1. 00 | 0 | 0 | 0 | 50 | 1. 00 | 0 | 0 | 50 | 1. 00 | 0 | 0 |



|  | SDH |  |  |  |  |  | ADA |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | N | 1.00 | . 75 | . 30 | 1.50 | 1.20 | N | 1.00 | . 75 | . 90 | . 60 | 50 | 1.0 | 5 |  | 15 |  | 1.5 |
| 1 | 22 | .705 | . 137 | . 068 |  | . 091 | 22 | . 682 | 227 | . 045 | . 023 | 0 |  | 0 |  |  | . 023 |  |
| 2 | 42 | . 452 | $\bigcirc 297$ | . 095 |  | . 155 | 46 | . 620 | 272 | . 033 | . 043 | 0 |  | 0 |  |  | . 033 |  |
| 3 | 30 | . 583 | . 233 | . 067 |  | .117 | 31 | . 613 | 290 | . 048 | . 032 | 0 |  | 0 |  |  | . 016 |  |
| 4 | 44 | . 580 | 27.3 | . 091 |  | . 057 | 44 | . 614 | . 318 | . 011 | . 034 | 0 |  | 0 |  |  | . 023 |  |
| 5 | 26 | . 577 | . 288 | . 077 |  | . 058 | 26 | . 731 | . 192 | . 019 | . 058 | 0 |  | 0 | 0 |  |  | 0 |
| 6 | 28 | . 750 | .179 | . 018 |  | . 054 | 30 | . 617 | 250 | . 067 | . 033 | 0 |  | 0 |  |  | . 033 |  |
| 7 | 31 | . 620 | . 310 | . 034 | 0 | . 034 | 0 | - | - | - | - | - |  | - | - |  |  | - |
| 8 | 18 | . 625 | 218 | . 125 | 0 | . 034 | 0 | - | - | - | - | - |  | - | - |  |  | - |
| 9 | 59 | . 628 | 280 | . 012 | 0 | . 024 | 0 | - | - | - | - | - |  | - | - |  |  | - |
| 10 | 155 | . 581 | 284 | .090 |  | 045 | 153 | . 575 | . 327 | . 023 | . 046 | 0 |  | 0 |  | . 023 |  | . 007 |
| 11 | 49 | . 675 | 225 | . 025 | 0 | . 075 | 0 | - | - | - | - | - |  | - | - | - |  | - |
| 12 | 50 | . 555 | . 311 | . 077 | 0 | . 055 | 0 | - | - | - | - | - |  | - | - |  |  | - |
| 13 | 0 | - | - | - | - | - | 0 | - | - | - | - | - |  | - | - |  |  | - |
| 14 | 50 | .622 | 244 | .088 | 0 | . 044 | 0 | - | - | - | - | - |  | - | - |  |  | - |
| 15 | 45 | . 639 | . 314 | . 023 | . 011 | . 011 | 0 | - | - | - | - | - |  | - | - |  |  | - |
| 16 | 60 | . 648 | 287 | . 021 | 0 | . 042 | 0 | - | - | - | - | - |  | - | - |  |  | - |
| 17 | $100$ | .615 | . $3^{1 \prime} 00$ | .080 |  | . 005 | .100 | . 650 | .305 | . 015 | . 020 | 0 |  | 0 |  |  | . 010 |  |
| 18 |  | - |  | - | - | - |  | - | - | - | - | - |  | - | - |  |  | - |
| 19 | 50 | . 563 | . 276 | . 106 | . 010 | . 042 | 0 | - | - | - | - | - |  | - | - |  |  | - |
| 20 | 28 | . 795 | .159 | 0 | . 022 | . 022 | 0 | - | - | - | - | - |  | - | - |  |  | - |
| 21 | 60 | . 654 | .181 | 200 | 0 | 0 | 0 | - | - | - | - | - |  | - | - |  |  | - |
| 22 | 40 | . 650 | . 250 | .062 | . 031 | . 055 | 40 | . 600 | .338 | . 050 | . 012 | 0 |  | 0 |  | 0 |  | 0 |
| 23 | 71 | . 641 | . 239 | . 063 | . 049 | . 007 | 71 | . 549 | . 338 | . 056 | . 035 | 0 |  | 0 |  | . 021 |  | 0 |
| 24 | 96 | . 656 | 266 | 042 | . 037 | 0 | 97 | . 572 | . 361 | . 036 | . 010 | . 005 |  | 0 |  |  | . 016 |  |
| 25 | 103 | . 616 | . 311 | . 048 | . 015 | . 010 | 103 | . 558 | . 311 | 029 | 078 | 0 |  | 0 |  | . 015 |  | . 010 |
| 26 | 56 | . 545 | . 304 | . 071 | . 018 | . 062 | 44 | . 523 | . 398 | . 023 | . 034 | 0 |  | 0 |  |  | . 023 |  |
| 27 | 25 | . 520 | . 340 | . 040 | 0 | .100 | 29 | . 672 | 276 | . 034 | . 017 | 0 |  | 0 |  | 0 |  | 0 |
| 28 | 62 | . 653 | . 258 | . 016 | . 016 | . 056 | 67 | . 560 | . 328 | . 052 | . 045 | 0 |  | 0 |  |  | . 015 |  |
| 29 | 66 | . 568 | . 258 | . 061 | . 030 | . 083 | 67 | . 575 | . 343 | . 052 | . 015 | . 007 |  | 0 |  |  | . 007 |  |
| 30 | 31 | . 710 | . 226 | . 016 | 0 | . 048 | 34 | . 618 | . 294 | . 029 | . 044 | 0 |  | 0 |  |  | . 015 |  |
| 311 | 0 | - | - | - | - | - | 0 | - | - | - | - | = |  | - | - |  |  | - |
| 32 | 0 | - | - | - | - | - | 0 | - | - | - | - | - |  | - | - |  |  | - |
| 33 | 0 | - | - | - | - | - | 0 | - | - | - | - | - |  | - | - |  |  | - |
| 34 | 97 | . 550 | . 289 | . 057 |  | . 005 | 97 | .619 | . 34 | . 041 | .016 | . 005 |  | 0 |  |  | 005 |  |
| 35 | 105 | 552 | - 252 | . 057 |  | .038 | 106 | . 627 | .283 | - 038 | .038 | 0 |  | 0 |  |  | 014 |  |
| 36 | 77 | . 552 | . 279 | ¢ 91 | .013 | .065 | 78 | .583 | . 353 | . 019 | 013 | 0 |  | 0 |  | 0 |  | 0 |
| 37 | 50 | .560 | . 350 | ค 70 | . 010 | . 010 | 50 | . 500 | . 310 | .040 | .030 | 0 |  | 010 | 0 | . 010 |  | 0 |

APPENDIX. Continued

|  | GPT-2 |  |  |  | GOT |  |  |  |  |  | SOD(L) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $N$ | 1.00 | . 80 | . 60 | N | 1.00 | . 80 |  | . 70 | 1.15 | N | 1.00 | 1.30 | 1. 40 | 1. 50 | . 90 |
| 1 | 0 | - | - | - | 0 | - | - |  | - | - | 22 | . 545 | . 114 | . 250 | 0 | . 091 |
| 2 | 0 | - | - | - | 0 | - | - - |  | - | - | 46 | .543 | . 152 | . 196 | 0 | -109 |
| 3 | 0 | - | - | - | 0 | - | - |  | - | - | 31 | 629 | . 161 | .129 | 0 | . 081 |
| 4 | 0 | - | - | _ | 0 | - | - |  | - | - | 44 | .705 | -159 | . 080 | 0 | . 057 |
| 5 | 0 | - | - | - | 0 | - | - |  | - | - | 26 | . 808 | . 058 | . 077 | 0 | . 058 |
| 6 | 0 | - | - | - | 0 | - | - |  | - | - | 30 | . 650 | . 067 | . 150 | 0 | .13 3 |
| 7 | 0 | - | - | - | 31 | . 800 |  | . 133 |  | . 066 | 31 | . 596 | . 112 | . 193 | 0 | . 096 |
| 8 | 0 | - | - | - | 18 | . 722 |  | . 194 |  | . 083 | 18 | . 611 | . 111 | . 194 | . 027 | . 055 |
| 9 | 0 | - | - | - | 0 | - | - |  | - | - | 59 | .6 01 | .033 | 237 | 0 | . 127 |
| 10 | 0 | - | - - | - | 0 | - | - |  | - | - | 149 | . 617 | . 070 | 245 | 0 | . 067 |
| 11 | 49 | . 612 | . 338 | 0 | 49 | .898 |  | . 102 |  | $\therefore 0$ | 49 | . 660 | . 110 | . 140 | 0 | . 090 |
| 12 | 50 | . 607 | . 393 | 0 | 0 | - | - |  | - | - | 50 | . 570 | .120 | 210 | 0 | .100 |
| 13 | 0 | - | - | - | 0 | - | - |  | - | - | 48 | $\underset{\sim}{ } \times 4$ | . 117 | 212 | 0 | .095 |
| 14 | 0 | - - | - | - | 0 | - | - |  | - | - | 50 | . 590 | . 050 | . 190 | 0 | .170 |
| 15 | 45 | . 619 | . 381 | 0 | 0 | - | - |  | - | - | 45 | . 704 | . 079 | . 170 | 0 | . 045 |
| 16 | 60 | . 724 | 276 | 0 | 0 | - | - |  | - | - | 60 | . 569 | .137 | . 198 | 0 | . 094 |
| 17 | 0 | - | - | - | 100 | . 820 | . 090 |  | . 005 | . 085 | 100 | . 640 | . 065 | . 260 | 0 | . 035 |
| 18 | 16 | . 533 | . 467 | 0 | 0 | - | - |  | - | - | 16 | . 468 | .125 | . 343 | 0 | . 062 |
| 19 | 50 | . 616 | . 384 | 0 | 0 | - | - |  | - | - | 50 | . 590 | . 060 | 260 | . 010 | . 080 |
| 0 | 28 | . 620 | . 380 | 0 | 0 | - | - |  | - | - | 28 | . 785 | . 071 | .107 | 0 | . 035 |
| 21 | 60 | 650 | 350 | 0 | 0 | - | - |  | - | - | 60 | 616 | 108 | 200 | 0 | D 75 |
| 2 | 0 | - | - | - | 36 | .750 | . 20.8 |  | . 014 | . 028 | 40 | . 538 | . 088 | . 275 | . 012 | . 087 |
| 23 | 0 | - | - | - | 71 | . 817 | .162 |  | . 021 | 0 | 71 | . 578 | .106 | . 246 | 0 | . 070 |
| 4 | 0 | - | - | - | 96 | - 8 ¢ з | . 109 |  | . 010 | . 047 | 97 | . 650 | . 057 | . 227 | . 005 | . 062 |
| 25 | 40 | . 550 | .440 | . 050 | 103 | . 864 | . 092 |  | . 019. | . 024 | 103 | . 655 | .078 | . 199 | 0 | . 068 |
| 26 | 0 | - | - | - | 0 | - | - |  | - | - | 44 | . 682 | . 159 | . 102 | . 071 | . 045 |
| 27 | 0 | - | - | - | 0 | - | - |  | - | - | 28 | . 607 | .232 | .107 | 0 | .054 |
| 28 | 20 | . 525 | .475 | 0 | 0 | - | - |  | - | - | 66 | . 621 | . 114 | . 174 | 0 | . 091 |
| 29 | 24 | . 729 | .271 | 0 | 0 | - | - |  | - | - | 67 | . 515 | . 142 | .239 | 0 | - 104 |
| 30 | 0 | - | - | - | 0 | - | - |  | - | - | 34 | 662 | . 074 | . 162 | 0 | . 103 |
| 31 | 0 | - | - | - | 0 | - | - |  | - | - | 0 | - |  |  |  |  |
| 32 | 0 | - | - | - | 0 | - | - | . | - | - | 0 | - | - | $-$ | - | - |
| 3 | 0 | - | - | - | 0 | - |  |  |  | - | 0 | - | - | - |  | - |
| 34 | 0 | - | - | - | 97 | .866 |  | .093 |  | . 041 | 97 | .629 | . 098 | 216 | $.005$ |  |
| 35 | 0 |  |  |  | 106 | .873 |  | . 080 |  | . 047 | 105 |  |  |  |  |  |
| 36 | 0 | - | - | - | 78 | . 769 | 1 67 |  | .019 | . 045 | 78 | 557 .583 |  | $.238$ |  | $.081$ |
| 7 | 0 | - | - | - | 49 | .847 | 102 |  | .020 | . 031 | 50 | . 590 | .096 +40 | .256 .200 | 0 | .064 .070 |

APPENDIX. Continued.

|  | PGI-2 |  |  |  |  | PMI-2 |  |  |  |  | 6 PG-2 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | N | 1.00 | . 95 | . 80 | 1.10 | N | 1.00 | . 90 | 1.20 | . 80 | $N$ | 1.00 | 1.10 | 1.20 | . 85 | . 70 | 1.40 |
| 1 | 22 | . 477 | . 523 | 0 | 0 | 0 | - | - | - | - | 22 | . 818 | . 159 | 0 | . 023 | 0 | 0 |
| 2 | 46 | . 500 | . 500 | 0 | 0 | 0 | - | - | - | - | 46 | . 935 | . 022 | . 022 | . 022 | 0 | 0 |
| 3 | 31 | . 548 | . 452 | 0 | 0 | 0 | - | - | - | - | 31 | \& 87 | . 081 | 0 | . 032 | 0 | 0 |
| 4 | 44 | . 602 | . 398 | 0 | 0 | 0 | - | - | - | - | 44 | . 898 | . 080 | . 011 | . 011 | 0 | 0 |
| 5 | 26 | .442 | . 558 | 0 | 0 | 0 | - | - | - | - | 23 | . 848 | . 065 | . 044 | . 044 | 0 | 0 |
| 6 | 30 | .600 | . 400 | 0 | 0 | 0 | - | - | - | - | 11 | 1. 00 | 0 | 0 | 0 | 0 | 0 |
| 7 | 31 | . 518 | . 482 | 0 | 0 | 31 | . 883 | . 117 | 0 | 0 | 31 | . 854 | . 096 | . 016 | . 016 | . 016 | 0 |
| 8 | 18 | . 312 | . 625 | . 062 | 0 | 18 | . 821 | . 179 | 0 | 0 | 18 | . 882 | . 058 | . 029 | . 029 | 0 | 0 |
| 9 | 59 | . 465 | . 535 | 0 | 0 | 59 | . 833 | . 156 | 0 | . 009 | 59 | . 949 | 0 | . 033 | . 016 | 0 | 0 |
| 10 | 151 | . 460 | . 536 | . 003 | 0 | 151 | . 917 | . 056 | . 026 | 0 | 50 | .900 | . 060 | 0 | . 030 | .010 | 0 |
| 11 | 49 | . 449 | . 541 | . 010 | 0 | 49 | .937 | . 063 | 0 | 0 | 49 | . 887 | 0 | . 102 | . 010 | 0 | 0 |
| 12 | 50 | .410 | . 580 | . 010 | 0 | 50 | . 850 | .150 | 0 | 0 | 50 | . 950 | 0 | . 020 | . 020 | 0 | 0110 |
| 13 | 48 | . 521 | . 468 | .011 | 0 | 48 | . 893 | . 095 | . 010 | 0 | 48 | . 925 | 0 | . 042 | . 031 | 0 | 0 |
| 14 | 50 | . 440 | . 560 | 0 | 0 | 50 | . 898 | .102 | 0 | 0 | 50 | . 898 | . 010 | . 051 | . 010 | 0 | 0 |
| 15 | 45 | . 444 | . 556 | 0 | 0 | 45 | .811 | .189 | 0 | 0 | 45 | . 922 | 0 | . 066 | . 011 | 0 | 0 |
| 16 | 60 | . 508 | . 492 | 0 | 0 | 60 | . 810 | .190 | 0 | 0 | 60 | . 941 | 0 | . 050 | . 008 | 0 | 0 |
| 17 | 100 | . 500 | . 490 | . 010 | 0 | 100 | . 930 | . 050 | 0 | . 020 | 97 | . 948 | . 036 | . 016 | 0 | 0 | 0 |
| 18 | 16 | .469 | . 531 | 0 | 0 | 16 | .968 | . 032 | 0 | 0 | 16 | . 968 | 0 | . 031 | 0 | 0 | 0 |
| 19 | 50 | . 510 | . 480 | 0 | . 010 | 50 | . 890 | .100 | . 010 | 0 | 50 | . 940 | 0 | . 050 | . 010 | 0 | 0 |
| 20 | 28 | . 482 | . 518 | 0 | 0 | 28 | . 780 | 200 | 0 | . 020 | 28 | . $928^{\circ}$ | 0 | . 035 | . 035 | 0 | 0 |
| 21 | 60 | . 458 | . 542 | 0 | 0 | 60 | . 886 | . 114 | 0 | 0 | 60 | . 891 | 0 | . 091 | . 016 | 0 | 0 |
| 22 | 40 | . 525 | . 475 | 0 | 0 | 40 | . 912 | . 088 | 0 | 0 | 40 | . 925 | . 050 | . 012 | . 012 | 0 | 0 |
| 23 | 71 | . 465 | . 528 | . 007 | 0 | 71 | . 887 | . 092 | . 021 | 0 | 71 | . 916 | . 049 | . 035 | 0 | 0 | 0 |
| 24 | 97 | .423 | . 572 | .005 | 0 | 97 | . 918 | . 072 | . 005 | . 005 | 97 | . 918 | . 062 | . 021 | 0 | 0 | 0 |
| 25 | 102 | . 481 | . 515 | . 005 | 0 | 103 | . 908 | . 068 | . 010 | . 015 | 103 | . 918 | . 063 | . 019 | 0 | 0 | 0 |
| 26 | 44 | . 364 | . 613 | .023 | 0 | 44 | .909 | . 080 | . 011 | 0 | 0 | - | - | - | - | - | - |
| 27 | 29 | .483 | . 517 | 0 | 0 | 29 | . 879 | . 121 | 0 | 0 | 0 | - | - | - | - | - | - |
| 28 | 67 | 470 | . 515 | . 015 | 0 | 67 | . 851 | . 060 | . 090 | 0 | 51 | . 931 | . 049 | 0 | . 020 | 0 | 0 |
| 29 | 67 | . 448 | . 545 | . 007 | 0 | 67 | -9. 10 | .082 | .007 | 0 | 32 | 953 | D 47 | 0 | 0 | 0 | 0 |
| 30 | 34 | H 85 | 515 | 0 |  | 34 | 824 | 162 | 015 | 0 | 0 | - | - | - | - | - | - |
| 31 | 0 | - | - | - | - | 0 | - | - | - | - | 43 | . 953 | . 035 | 0 | . 012 | 0 | 0 |
| 32 | 0 | - | - | - | - | 0 | - | - | - | - | 36 | . 931 | . 028 | 0 | . 042 | 0 | 0 |
| 33 | 0 | - | - | - | - | 0 | - | - | - | - | 27 | 1.00 | 0 | 0 | 0 | 0 | 0 |
| 34 | 97 | . 443 | .552 | .005 | 0 | 97 | .907 | .088 | .005 | 0 | 97 | .918 | . 031 | . 041 | .010 | 0 | 0 |
| 35 | 106 | 439 | . 561 | 0 | 0 | 106 | .901 | .094 | . 005 | 0 | 106 | .924 | - 57 | .019 | 0 | 0 | 0 |
| 36 | 78 | .455 | .538 | .007 | 0 | 77 | .935 | . 052 | .006 | . 006 | 78 | . 81 | .083 | 0 | .019 | .006 | 0 |
| 37 | 50 | .400 | .600 | 0 | 0 | 50 | .910 | .082 | .010 | 0 | 50 | .930 | .070 | 0 | 0 | 0 | 0 |
| 38 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

