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ABSTRACT 
 
This protocol was developed in an effort to standardize methods of collection, 
processing, identification and analysis of food habit studies using fecal sampling 
techniques to characterize the diet of pinnipeds and to facilitate comparisons among 
studies. Advantages of fecal sample analysis and inherent biases and limitations of 
these data are identified. Fecal sample collection protocols are described qualitatively 
and quantitatively and new processing techniques are detailed. A recent approach to 
prey identification utilizes all structures recovered from fecal samples. This technique 
is particularly important for identification of species with low rates of bone and 
otolith recovery (e.g., salmonids). Lists are provided of the most frequently used 
skeletal structures for identification of families of fishes found in studies along the 
west coast of the U.S. and prey identification options depending on level of expertise, 
time, finances and specific research goals. Current research using molecular genetic 
techniques to identify Pacific salmon (Oncorhynchus spp.) to species using bone 
recovered from fecal samples and genetic fecal analysis used to identify the 
individual harbor seal associated with each fecal sample provide essential information 
regarding collection and analysis biases. In most cases, fecal sample analysis provides 
a qualitative summary of species composition and a general inference of the 
frequency of prey consumption by pinnipeds. Advantages and disadvantages of 
indices used to analyze food habits data and diet reconstruction models are presented. 
Through ongoing research with captive animals, molecular genetic techniques, and 
the refinement and development of new biomass reconstruction models, we strive to 
advance our understanding of pinniped foraging ecology using fecal sample analysis. 
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INTRODUCTION 

Investigating pinniped diet is important, not only to determine the role of pinnipeds in 
marine ecosystems, but also to quantify pinniped-fishery interactions, which may 
have economic and ecological significance (Pierce and Boyle 1991). Dietary studies 
of pinnipeds have been based on the analysis of stomach contents of sacrificed or 
recently dead individuals and stomach lavage, or fecal (scat) samples. Each method 
has inherent problems. 
 
Collecting stomachs of sacrificed animals is time consuming, sample sizes are usually 
small, and now is unlawful in the United States because pinnipeds are protected under 
the Marine Mammal Protection Act of 1972. Also, several investigators have reported 
that cephalopod beaks accumulate in the stomach and may lead to an overestimation 
of the consumption rate of cephalopods (Pitcher 1980, Bigg and Fawcett 1985). 
Analyzing contents of stomachs collected from recently dead animals may be biased 
because animals might not have been eating or they may have consumed prey that 
they normally do not (e.g., during El Niño events), which may have directly or 
indirectly caused their death. Employing stomach lavage requires animals to be 
immobilized using drugs, therefore, sample sizes are usually small and there is a 
possibility of mortality (Antonelis et al. 1987). Also, large whole prey items, as well 
as small items that are entrapped in stomach rugae might not pass in the lavage tube 
resulting in their misrepresentation.  
 
Fecal samples are biased because some prey remains (predominantly otoliths) may be 
partially or completely digested in the gastrointestinal tract (da Silva and Neilson 
1985, Murie and Lavigne 1986, Jobling 1987, Dellinger and Trillmich 1988, Harvey 
1989, Cottrell et al. 1996, Tollit et al. 1997, Marcus et al. 1998, Bowen 2000). Also, 
they might only represent prey most recently consumed before an animal comes 
ashore from a feeding trip. Despite these shortcomings, fecal samples are now 
routinely collected because they are readily available, there is little or no impact on 
animals, and many can be collected in a relatively short period of time.  
 
In the past, only teleost fish sagittal otoliths and cephalopod beaks collected from 
fecal samples were used to describe what prey species were consumed. In an effort to 
account for prey with completely digested otoliths or those not represented by otoliths 
(e.g., cartilaginous fishes), some investigators recently have used all structures 
recovered in fecal samples to identify consumed prey (e.g., Olesiuk et al. 1990, 
Cottrell et al.1996, Riemer and Brown 1997, Laake et al. 20011). There are 
constraints to using all remains including: (1) time and effort necessary to set up a 
reference collection, (2) time needed to adequately train personnel to identify 
structures, and/or (3) costs required for outside assistance identifying samples 
(Cottrell et al. 1996). Accounting for these constraints, the following protocol is 
intended to standardize data collection, fecal sample processing and reporting of the  
 

 
1 Laake, J.L., P. Browne, R.L. DeLong and H.R. Huber. Natl. Marine Mammal Laboratory. 7600 Sand Point Way 
NE, Seattle WA. 98115. unpub. manuscript.  Pinniped diet composition: a comparison of models. 34 p. 
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diet of pinnipeds inhabiting the waters of California, Oregon, Washington, British 
Columbia and Alaska. It is not our intent to dictate or replace methods that 
investigators are currently using. It should be stressed that this is a work in progress 
and part or all of the following procedures may be modified or removed and others 
may be included as we gain further insight from new or revised techniques. This 
protocol should serve as an example of techniques used for sample collection, 
processing, identification and analysis. Techniques can be used in combination 
depending on the goals of the study in question. Also, it is recognized that there may 
be limited time or resources available for a project, therefore only certain sections of 
the protocol may be pertinent (Appendix 1).  
 
We hope that this protocol will help standardize the reporting of data on pinniped diet 
in general, as well as to assess the impact that pinnipeds may have on a particular 
prey species (e.g., salmonids). It is not our intent to include all biases, methods, or 
statistical analyses that have been presented elsewhere; we encourage researchers to 
be aware of the literature on these issues.  
 
FECAL SAMPLE COLLECTION  
 
Pinnipeds are marine mammals, but they require suitable substrate to rest, molt, mate 
(in some species), give birth and nurse their young. Pinniped fecal samples can be 
found and collected from pinniped haul-out sites along coastal areas or oceanic 
islands.  
 
Fecal samples are collected using hand-trowels, spoons, tweezers, and spray bottles 
and are placed in plastic (e.g., Zip-lock or Whirl-pak) bags. Bags are labeled with 
data on pinniped species, date and location, and then frozen and stored for later 
analysis. Effort should be made to collect the entire fecal sample including all prey 
hard parts, and only recently deposited samples should be collected. How recently the 
fecal sample was deposited is of particular importance if the collection site is not 
washed over by the tide on a regular basis. Recently deposited fecal samples are 
defined as those samples that contain prey hard parts that have not been broken down 
as a result of decomposition and exposure to the elements. The time required to 
degrade hard parts exposed to the elements varies depending on temperature, 
precipitation, humidity, wind, and wave and tidal exposure.  

 
Frequency of fecal collections and the number of fecal samples collected (sample 
size) depend on the focus of the investigation and the spatial and temporal scales at 
which parameters will be estimated. A sample size (n) is chosen to achieve a certain 
level of precision for a parameter to be estimated (e.g., frequency of occurrence (FO) 
in a sample of salmonids). In some pinniped food habit studies, we are interested in 
testing hypotheses such as whether the diet of pinnipeds varies by season, year, 
location, sex, age group, etc.  In hypothesis testing it is always useful to consider the 
power for the test before data collection. Power will depend on precision and thus on 
sample size. We will focus here on some examples of sample size estimation and will 
ignore the question of power, but refer the reader to the following papers on power 
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analysis: Hayes and Steidl 1997, Reed and Blaustein 1997, and Thomas 1997 (but see 
Gerard et al. 1998 and Hoenig and Heisey 2001).  
 
Scope of Inference 
 
The first step is defining what parameters will be estimated and the scope of 
inference. The biological population of interest and the spatial and temporal scales 
of interest define the scope of inference. More specifically, it is useful to define 
both the target population and the sampled population. The target population is 
the population about which one would like to make an inference and the sampled 
population is the population actually sampled from. Ideally they would be the 
same but the latter is usually a subset of the former. Defining the sampled 
population means constructing a list of sampling units (i.e., ‘frame’), which is 
often the most difficult aspect of sampling. To be in the sampled population, each 
individual sampling unit and each pair of sampling units must have nonzero 
probabilities of being selected (required in order to obtain unbiased estimates of 
parameters and their variance). For example, in pinniped-salmonid studies, we 
might decide that we want to estimate annual salmonid FO in the diet of harbor 
seals in the Columbia River. This is a fairly specific question, but leaves a lot of 
room for interpretation. Will we also want to estimate FO by salmonid species or 
by season? If the population of pinnipeds varies seasonally how do we define an 
annual FO? It is not possible to address all of these questions here and we only do 
so to point out the importance of clearly defining the target parameter. In most 
cases, we may be interested in estimating several parameters or the same 
parameter at various scales. In most cases, it will not be possible to choose a 
sample size that is optimal (i.e., provides desired precision at least cost) for each 
estimate. However, a series of requisite sample sizes can be computed and the 
largest used to ensure the target or “better” precision is achieved. 
 
Sample Size Formulae 
 
Precise descriptions of the diet are necessary to make comparisons between or 
among the parameters of interest. Target precision can be specified as either a 
margin of error or a coefficient of variation (CV). The margin of error is an 
absolute value, which is the difference between the upper limit of a symmetric 
confidence interval (typically 95% interval) and the estimate. The CV is a relative 
measure of precision [(standard error)/estimate] that expresses the precision as a 
proportion or percentage of the estimate. Consider that a 10% CV on proportion 
data represents a margin of error of 0.02 if the proportion is 0.10 and it represents 
a margin of error of 0.16 if the proportion is 0.80. As an example, consider 
estimating FO of salmonids from 100 fecal samples. Assuming a randomly 
chosen sample, if 20 fecal samples contained salmonids, the estimate is p = 
20/100 = 0.20.  The variance of p is p(1-p)/n which in this case is 0.2 x 0.8/100 = 
0.0016 and the standard error (square root of the variance) is 0.04. A t-value with 
99 degrees of freedom (df) is roughly 2, so the confidence interval for p is 0.20 + 
2 x 0.04 = (0.12,0.28). The margin of error is 0.08. If we wanted the margin of 
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error to be 0.05, we could compute the necessary sample size by finding n such 
that the calculation gives a value of 0.05. This can be done algebraically and the 
solution is 
 

2

)1(4
d

ppn −
= , 

 
where d is the desired margin of error and 4 in the numerator is the square of the 
t-value which is 2. Technically, the t-value depends on n (df = n-1) but as long as 
n > 25, a value of 2 is reasonable to use. For the example, we posed n = 4 x 
0.16/0.0025 = 256) the sample size would have to be increased from 100 to 256 to 
achieve a margin of error of 0.05. If we chose to specify a target CV of 10%, this 
is equivalent to a specification that pnpppCV //)1()(10.0 −== . 
By solving for n we get the following equation: 
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which for our example would yield n = 0.8/(0.2 x 0.01) = 400 and an expected margin 
of error of 0.04. The above formulae have been stated specifically for proportions but 
the process is the same for any parameter estimate. For example, for a mean ( x ) the 
formulae are 
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where s2 is the variance of the data and d is the desired margin of error. In the case of 
binomial data (proportions),  
s2 = p(1-p) and 2x  = p2. 
 
The proper formulae for computing the sample size depends on the sampling design. 
The above formulae have all assumed a simple random sample of the population. If 
the sampling effort and the samples collected span the time frame of interest, then it is 
a random sample of the population. For example, if weekly fecal collections are 
conducted at a site that is not washed over by the tides regularly, and randomly 
selected fecal samples or all fecal samples are collected that are relatively fresh, 
approximately 1 to 7 days old, then the fecal samples represent the entire time frame 
of interest. Oftentimes, however, fecal samples are not collected as a simple random 
sample of all fecal samples that were deposited during a particular time frame of 
interest. The most likely scenario is collection of some or all fecal samples on a set of 
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dates on which the tide is sufficiently low to grant access to fecal samples. This is a 
form of cluster sampling. The first stage of sampling is the collection date and the 
second stage is fecal samples within date. Because diet is likely to be affected by the 
prey that is available, the fecal samples collected on a particular day will be more 
similar than fecal samples collected on different days. Thus, it is not reasonable to 
pool the entire sample of fecal samples and treat it as a random sample using the 
formulae above. It may be reasonable to treat each collection date as a random sample 
of dates, and the collection of fecal samples for each date as a random sample of 
those that could have been deposited (i.e., they are representative of the seal diet at 
that time). For cluster sampling, the appropriate variance contains two components, 
one for each stage of sampling. If there are m fecal samples collected on each of n 
dates out of a possible N dates, the variance for an average proportion (average FO) is 
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In the second term, the finite correction factor is ignored because there is no way to 
enumerate the set of potential fecal samples from which the sample is derived. If n is 
small relative to N, the second term can be ignored and the variance simplifies to the 
standard variance formula of the observed proportions for the sample of n dates; 
however, m, the number of fecal samples collected on each date, does affect the 
variance because it introduces variability into pi.. Thompson (1992) and Cochran 
(1977) and many other texts on sampling provide formulae for the optimal m given 
estimates of variability and cost of sampling at each stage and an adequate text or 
statistician should be consulted. If n is fixed by the availability of tides the standard 
formulae have to be adapted because they may predict an optimal n and m, which are 
not feasible. In that case, n should be fixed and a new m computed to achieve the 
desired precision. In most instances, it will not be possible to sample a fixed m 
because of the fluctuations in the availability of fecal samples. However, planning 
will be easiest by assuming a fixed target m. 
 
All sample size calculations require an initial estimate of the parameter and its 
variance. The accuracy of the sample size prediction will hinge on the quality of the 
initial estimates. It is best if the estimates are derived from data that were obtained 
from the same or like system. Often it is necessary to use published values or best 
guesses. If a proportion p (as opposed to a mean or total) is estimated, and no estimate 
of p is available, a “worst case” value of p = 0.5 can be used in determining sample 
size. The quantity p(1-p), and hence the value of n required by the formula, assumes 
its maximum value when p is one-half. If there are no published information or pilot 
data available, collect all available fecal samples on each sampling date. Sampling 
dates can be initially set every 2 weeks during low tidal cycles. Frequency of 
sampling may be modified depending on the number of fecal samples available. 
Process the fecal samples by choosing some initial value of m and analyzing m 
randomly chosen fecal samples from each collection date. Use this initial sample to 
estimate the sample size and then analyze the additional samples if more are needed. 
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Species composition can be plotted against cumulative number of fecal samples to 
determine when a sufficient number of samples have been analyzed (see cumulative 
species curve below). Fecal samples are typically relatively inexpensive to collect and 
expensive to analyze; therefore, if you haven’t collected enough fecal samples there is 
no way to go back in time and collect them. While collecting fecal samples is 
inexpensive in terms of equipment and time, there is a ‘cost’ involved in the possible 
disturbance of pinnipeds. In determining required sample sizes and sampling 
frequency for a study, investigators must consider how many disturbances of 
pinnipeds are justified and tolerable. Pinnipeds may abandon a haul-out location if the 
frequency of disturbance becomes intolerable. Because the Marine Mammal 
Protection Act of 1972 protects all pinniped species from harassment and disturbance, 
permits must be obtained from the National Marine Fisheries Service to disturb 
pinnipeds for the purpose of fecal collection.  
 
If no published information or pilot information is available on the sample size or 
frequency of fecal collections in a specific system, collecting 50 fecal samples every 
2 weeks may be an appropriate goal. Fecal samples should be randomly processed 
and analyzed, as described above, and prey species should be plotted using a 
cumulative frequency curve or other method to determine if the number of fecal 
samples collected is adequate to address the question(s). Estimates of sample size 
should be reviewed seasonally to ensure that adequate numbers of samples are 
collected, especially in light of changing environmental conditions.  
 
Empirical Methods 
 
So far, we have described how to estimate sample size using formulae. An alternate 
empirical method is to resample a set of pilot data using different sample sizes. For 
example, a cumulative prey species curve can be used to determine whether a 
sufficient number of fecal samples have been collected to precisely describe the diet. 
The curve represents the cumulative number of new prey species against the 
cumulative number of randomly chosen fecal samples (Fig. 1). When all prey species 
are adequately represented in fecal samples for a given period of time the curve will 
reach its asymptote.  At this point, an adequate number of samples has been reached. 
Numerous random samples can be selected, or resampled, for each consecutive fecal 
sample plotted creating a mean and an estimate of variability for each sample. 
 



 7 

 
Figure 1. Cumulative prey species curve. The cumulative mean number of new prey 
species is plotted against the number of randomly chosen fecal samples. Error bars 
indicate one standard deviation. 
 
To determine if an adequate number of fecal samples have been collected to assess 
the importance of one specific prey species several possible estimates exist. First, plot 
the frequency of occurrence (FO) of a target prey species for a cumulative number of 
randomly chosen fecal samples (Fig. 2). The graph will start with great fluctuations in 
the FO with a low number of samples, then level off when the number of fecal 
samples analyzed adequately describes a target prey species in the diet of pinnipeds.  

 
 
Figure 2. Frequency occurrence of target prey species plotted against randomly 
chosen fecal samples. 
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A second empirical approach is to plot the average number of a target species per 
fecal sample and 95% confidence intervals for every x number of randomly selected 
fecal samples (Fig. 3). Continue to collect and analyze additional samples until the 
average number of a target prey species per fecal sample becomes stable, and the 
confidence interval is judged to be sufficiently small. Another version of this second 
approach is to use resampling statistics to plot the average number of a target species 
per fecal sample for every x number randomly selected fecal samples, with the 
variability shown using error bars. Again, continue to collect and analyze additional 
samples until the average number of a target prey species per fecal sample becomes 
stable, and the variability is judged to be sufficiently small. 
 
 

 
 
Figure 3. Average number of a target prey species per fecal sample plotted against the 
number of randomly chosen fecal samples. Error bars indicate one standard deviation. 
 
FECAL SAMPLE PROCESSING 
 
Fecal samples can be processed immediately or frozen until a later date. If the 
samples are frozen they should be thawed before processing. Fecal samples are 
processed by partially dissolving the sample in water, with or without detergent. The 
sample should be rinsed with running water through a series of nested sieves (e.g., 2 
mm, 1mm, 0.5mm) or an elutriator (Bigg and Olesiuk 1990). All prey hard parts (i.e., 
fish bones, otoliths, cartilaginous parts, lenses, teeth and cephalopod beaks, lenses, 
and pens), should be recovered from the sieves, placed in vials, and labeled for 
storage and identification. Cephalopod beaks, lenses, and pens should be stored in a 
50% isopropyl alcohol solution to prevent distortion. Fish remains should be stored 
dried. Samples may also be processed using an elutriator with a set of screens 
(minimum 0.5 mm) at the outflow to catch any prey remains that may have floated 
out of the sample.  
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Currently, the National Marine Mammal Laboratory (NMML) in Seattle is 
conducting a pilot study to process fecal samples in < 0.5 mm mesh bags using a 
washing machine. After data have been analyzed, information will be available 
indicating whether or not a washing machine may be a useful (alternative) method to 
process fecal samples. The value of collecting fecal volume data is being determined 
by examining a subsample of fecal samples collected by Washington Department of 
Fish and Wildlife (WDFW). Researchers at University of British Columbia (UBC) 
are currently developing a relationship between fecal sample volume and prey 
biomass. A volume (biomass)-weighted split sample frequency of occurrence model 
is being developed and is outlined in the workshop report (Olesiuk in Riemer and 
Lance 2001)  
 
DATA COLLECTION FOR FOOD HABIT ANALYSIS 
 
Comparative Collection 
 
A comparative collection is essential for accurate bone and otolith identification. The 
collection should contain the prey taxon (species) most likely to be encountered in 
fecal samples. Ideally, the collection should contain several sizes of each species 
because the same structure can appear very different with size variations. Verified 
diagnostic structures from other fecal samples can be used as reference material in 
place of a comparative collection when known specimens are not available. Published 
otolith, bone, and cephalopod keys (e.g., Morrow 1979, Wolff 1982, Clarke 1986, 
Cannon 1987, Harvey et al. 2000) can also be useful tools to supplement a 
comparative collection. 
 
When gathering specimens for a comparative collection, the species and age groups 
(length) should be considered. Ideally, a comparative collection contains a minimum 
of three fish per species (small, average and large). If possible, the fish should be 
collected from the area where the study is being conducted. In some cases, there are 
large numbers of species within a given family (e.g., sculpins) and collecting three of 
each species would be nearly impossible and very time consuming. In this example, 
the skeletal structures within the sculpin family are quite similar to one another and 
distinguishing among species within a genus can be difficult. When confronted with a 
situation like this, collecting a member from each genus found in the study area and 
reporting identifications to the genus or family level is the best option. If, however, 
the species in question is the target of the study, then a collection of as many species 
of these fish as possible should be made and identifications should be taken to the 
lowest possible taxonomic level using the skeletal structures or possibly even genetic 
analysis depending on the study objectives. 
 
Fish collected for a skeletal comparative collection should be processed fresh or kept 
frozen in a sealed plastic bag until processing. Do not place the fish in formalin or 
alcohol because this will cause the flesh to adhere to the bones. The flesh can be 
removed in a number of ways including: Dermestid beetles (Dermestes maculatus), 
boiling in water, or using trypsin. Museums and larger institutions that process 
numerous samples typically maintain beetle boxes, but may or may not be accessible 
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for use. Cooking or boiling fish for a comparative collection simply requires slowly 
boiling a sample until the flesh can be easily removed or floats off of the bone. This 
technique is easy and chemical-free but does require frequent monitoring and often 
doesn’t completely clean the bones. Trypsin is a stomach enzyme that dissolves the 
flesh while allowing the skeleton to remain in good condition. Concentrations of 
trypsin vary and should be considered when purchasing the product. The standard 
“recipe” for purified trypsin powder 1:100 (activity level) is: 2 cups warm water, ½ 
tsp. trypsin and 1 tsp. baking soda. This method works best when the fish is thawed 
and the above trypsin mixture is placed in a glass jar in a warm location or sunny 
window, which keeps the solution warm (below 90° F) and the enzyme active. 
 
Prior to processing a specimen the following information should be collected: 

. genus and species, common name 

. fork length (tip of snout to fork in tail) 

. standard length (tip of snout to caudal peduncle) 

. total length (tip of snout to end of tail) 

. weight (may not be accurate with frozen fish) 

. sex and reproductive condition 

. collection information, (location, date, collector, etc.) 
 
After processing, the bones should be dried and separated by type for ease of use 
when identifying samples. Samples can be stored in plastic bags, jars or other 
containers that will ensure that the bones will not become wet and begin to degrade. 
 
Otolith Enumeration 
 
Separate left-, right-, and unknown sided otoliths of each species. Effort should be 
taken to determine the side of otoliths because this will affect the minimum number 
of individuals (MNI). The greatest number of left or right otoliths will be the 
minimum number as determined by these prey parts (this does not include skeletal 
elements). For otoliths of a given species where the side cannot be determined, add 
the unknown otoliths to the known side with the fewest otoliths until both sides are 
equal. If there are more unknown otoliths, divide their number by two and add the 
quotient to either known side. The result will be your MNI. 
 
Example 1: a sample has 18 Pacific whiting (Merluccius productus) otoliths – 10 
right otoliths (ROT), 5 left otoliths (LOT), and 3 unknown side otoliths (UOT) 
 
ROT = 10 (ROT) = 10 
LOT = 5 (LOT) + 3 (UOT) = 8 
Minimum number = 10 (derived from ROT, which had the greatest number) 
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Example 2: a sample has 35 Pacific herring (Clupea pallasii) otoliths - 5 right otoliths 
(ROT), 10 left otoliths (LOT), and 20 unknown side otoliths (UOT) 
 
5 (ROT) + 5 (UOT) + 15/2 (UOT) = 18 
10 (LOT) + 15/2 (UOT) = 18 
Minimum number = 18  
 
Otolith Grading 
 
Otoliths are graded so that species-specific correction factors can be applied to 
otoliths to improve estimates of prey size needed for consumption estimates. If an 
estimate of prey length and weight is not a part of the study, then otoliths do not need 
to be graded. 
 
Otolith grading for these predation studies are consistent with those developed by 
Tollit et al. 1997 and are described below for Pacific whiting. Morphological features 
are listed in order of importance. Please see Tollit et al. 1997 for grading descriptions 
and photographs of additional prey species. 

 
 Grade   Distinctive external morphological features for each grade 

(degree of digestion) 
 

 1 (low)   Clear lobation on outside ventral and dorsal margins. 
         Characteristic arrowhead shape with parallel margins. 
         Square rostrum and lobate on outside. 
         Sulcus distinct. 
 

 2 (medium)  Lobes less pronounced on margins. 
         Posterior end less strongly pointed. 
         Rostrum rounded or angled with no lobes evident. 
         Sulcus indistinct. 
 

 3 (high)             No lobes evident, with margins smooth and/or jagged. 
No parallel margins, larger specimens lack arrowhead shape. 

         Acutely angled rostrum, especially in larger specimens. 
         No sulcus. 
 
Otolith Measurements 
 
Otoliths are measured so that their lengths and/or widths can be applied to species- 
specific regression equations, which can be used to estimate prey lengths and weights 
needed for consumption estimates.  Otolith length and width measurements are 
recorded for only Grade 1 and Grade 2 condition (see “Otolith grading” section). 
Otoliths in Grade 3 condition are usually too worn and result in wide confidence 
intervals around prey length and weight (Tollit et al. 1997).  If an estimate of prey 
length and weight is not part of the study, then otoliths do not need to be measured. 
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Otolith length regression equations exist for certain prey species (Harvey et al. 2000); 
however, regression equations for otolith width are still being refined.  
 
Otolith length and width (if time allows) are recorded for the side (either left or right) 
that gave the highest MNI. If two size classes of a particular species are present in the 
sample, then measurements should represent both of those size classes. For example, 
if a sample contains two left and three right “large” hake otoliths and five left and 
three right “small” hake otoliths, then measurements would be recorded for three 
right “large” hake otoliths and five left “small” hake otoliths. The two different size 
classes (small and large) can be treated as two different “species” with respect to 
measuring criteria. Measure otolith length to at least the nearest 0.1 mm parallel to the 
sulcus from the anterior tip of the rostrum to the posterior edge using hand-held 
calipers, an image analysis system, or an ocular micrometer on a dissecting 
microscope (Fig. 4). Measure otolith width to at least the nearest 0.1 mm 
perpendicular to the sulcus at the widest point of the otolith (Fig. 4). Ocular 
micrometers should be calibrated for the magnification used to measure otoliths. Do 
not record otolith length if it is broken (unmeasurable). If the otolith is broken or 
chipped, then only measure the otolith width if intact.  
 

 
 
Figure 4. Right sagittal otolith from a teleost fish. Lengths should be measured 
parallel to the sulcus from the anterior tip of the rostrum to the posterior edge. Widths 
should be measured perpendicular to the sulcus at the widest point of the otolith.  
 
There are instances when a sample might contain a large (>100) number of otoliths or 
beaks of a prey species. In such circumstances, one might consider measuring a 
subsample of the structures. Though we do not advocate subsampling, we realize that 
it might be appropriate due to time and resources that are available. If subsamples are 
used, then otoliths or beaks should be divided into different size classes (if necessary) 
and selected structures should be chosen randomly within each size class. Subsample 
size can be determined several different ways (should be determined by principal 
investigator or statistician), but for a rough estimate, one can readily plot a 
cumulative otolith size versus randomly selected otoliths curve similar to the 
cumulative prey species curve (see “Fecal Sample Collection” section; Fig. 1).  
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After lengths and/or widths have been determined, they can be used in indices such as 
index of relative importance or to calculate biomass. To account for degradation of 
otoliths during digestion, species-specific correction factors should be applied to 
otolith lengths (Harvey 1989) and widths when they are finalized. 
 
Correction factors for otolith number in addition to otolith length are available for 
select species based on captive feeding trials (Harvey 1989). Use of these correction 
factors for otolith number for current studies warrants further discussion and will 
likely be refined with additional captive feeding studies in 2001-02 that will be 
conducted at UBC using Steller sea lions (Eumetopias jubatus) and at Moss Landing 
Marine Laboratory using harbor seals (Phoca vitulina). 
 
Cephalopod Beak Enumeration 
 
Cephalopod beak enumeration and MNI calculations should be consistent with otolith 
enumeration using upper and lower beaks. Some prey identifiers use statoliths for 
enumeration of cephalopods; however, differentiation between squid and octopus 
using statoliths is not possible so these data should be recorded as “cephalopod 
species”. Pens may be used for presence or absence of cephalopods, but should not be 
used for enumeration because they may break and split during digestion and thus 
artificially inflate the MNI.  
 
Cephalopod Beak Measurements  
 
Measure the rostral length of a beak to at least the nearest 0.1 mm using hand-held 
calipers or an ocular micrometer on a dissecting microscope (Fig. 5). It has been 
suggested that for market squid (Loligo opalescens) rostral width may yield a more 
accurate regression (Mark Lowry, NMFS pers. comm.). Rostral width of a beak is 
measured from the jaw angle on the left side to the jaw angle on the right side to at 
least the nearest 0.1 mm using hand-held calipers, an ocular micrometer on a 
dissecting microscope, or an image analysis system (Fig. 5). The size of beaks does 
not significantly reduce during digestion, so correction factors are not needed (Harvey 
1989). Subsampling protocols for measuring beaks should be consistent with otolith 
subsampling described above. Regression equations for cephalopod beak lengths are 
available for select species (Kashiwada et al. 1979,Wolff 1982, Clarke 1986). 
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Figure 5. Upper and lower cephalopod beaks. The rostral lengths should be measured 
from the tip of the rostrum to the jaw angle of upper (preferred) or lower beaks. 
Rostral width measurements are useful for some cephalopod species.  
 
Bone Identification and Enumeration  
 
Previous pinniped food habit studies have relied solely on recovery of sagittal otoliths 
for species identification and only recently has it been documented that additional 
information can be obtained by using other diagnostic bones in addition to otoliths to 
identify prey (Olesiuk et al. 1990, Pierce and Boyle 1991, Cottrell et al. 1996). As a 
result, the “all structures” method was developed for fecal and gut analysis and 
incorporates both bone and otolith identification. Although the all structures method 
may increase detection of certain species for which otoliths are not commonly 
recovered, such as salmonids, this method can be time consuming and requires a 
significant amount of training. Otolith identification is still considered a useful 
method for determining the prey of pinnipeds in some instances, but if choosing to 
identify only otoliths, all structures should be recovered to allow for future analysis.  
 
Samples collected in the Columbia River in the early 1980s by Beach et al. (1985) 
were originally identified using only otoliths. These samples were reexamined by 
Oregon Department of Fish and Wildlife (ODFW) for salmonids using the all 
structures method and although the results varied, FO of salmonids in most cases 
increased. For example, reexamination of one collection in August of 1980 resulted in 
a three-fold increase in the FO of salmonids from 13.8% (9 of 65) when only otoliths 
were used for identification to 50.8% (33 of 65) when all structures were used 
(Riemer and Brown 1996).  
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If personnel trained in bone identification are not available in-house, samples should 
be sent to an experienced outside source for identification (e.g., Pacific Identifications 
Inc., Victoria, B.C.). If identification is done in-house, we recommend a random sub-
sample (minimum 10% of total samples) be identified and all of those samples be sent 
to experienced identifiers early in the identification process for an evaluation of 
identification techniques. Cross-checks throughout the learning process are useful for 
identifying errors. The all structures method is an ongoing learning process and thus 
cross-checks can also be a useful tool for experienced identifiers particularly when 
encountering “new” prey species or unfamiliar prey structures, or when there is a 
change in pinniped species or collection location. The identification method chosen 
should be explicitly stated to ensure comparability among studies.  
 
When using the all structures method, prey should be enumerated by removing from 
the sample multiple diagnostic structures for each species (see Appendix 2 for 
commonly recovered structures for each family). Diagnostic bones (just as was 
described for otoliths above) should be identified by side (left or right) and 
enumerated to determine the structure that yields the highest MNI. When using 
vertebrae (or other numerous non-paired structures) for enumeration the vertebrae 
recovered in the sample should be counted or estimated using a subsample and then 
compared with the actual number of vertebrae recorded for the prey in question.  For 
example if a species is reported to have 65-72 vertebrae and 135 vertebrae are 
counted or estimated for the sample then an MNI of 2 would be reported.  We were 
unable to find a single reference that reported numbers of vertebrae for multiple 
species so we would suggest checking field guides and web sites (e.g., 
www.fishbase.com) dealing specifically with the prey in question to acquire this 
information. We recommend that all diagnostic bones that have been removed from 
the sample be placed in gel caps and labeled for future analysis.  
 
Ongoing captive feeding studies at UBC are evaluating bone retention and levels of 
bone erosion from fecal samples to determine if certain bones (other than otoliths) 
can be used for species-specific regression equations. These equations could then be 
used to estimate the prey number (MNI), fish length and weight for consumption 
estimates. 
 
Size Determination Using Bone 
 
Determining prey size within a sample is necessary to calculate MNI (e.g., a large 
hake vertebrae and a very small hake basioccipital would represent two fish). Some 
species, such as salmonids, that are not commonly identified using otoliths have to be 
separated by bone size. In the majority of cases, juvenile salmonids can be separated 
from adults just by the size or type of structure recovered (e.g., vertebrae of smolts 
are much smaller than adult salmonids and teeth and gill rakers commonly recovered 
from adult fish are much too large to be smolts). While there is some information on 
using bone to determine the size of fish found in archaeological sites, using bone to 
determine fish size has not been undertaken in fecal analysis until recently. The 
NMML and Pacific Identifications Inc. have begun to investigate using bone size 
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versus length and weight to estimate size of walleye pollock (Theragra 
chalcogramma), Pacific cod (Gadus macrocephalus) and Atka mackerel 
(Pleurogrammos monopterygius) as well as Sebastes spp. and Hexagrammos spp. 
with bones recovered from Steller sea lion samples (Orchard 2001). We will continue 
to gather information on this topic and will try to come to some conclusions on 
whether these techniques can be used for fecal samples. Size determination may not 
be necessary for prey species that do not vary greatly in size (e.g., herring and smelt); 
however, for species such as, salmon, hake, flatfish and rockfish where juveniles and 
adults are both prey of pinnipeds, the determination of prey size consumed requires 
further attention. Addressing questions regarding bone size would require collecting 
fish samples of all sizes to investigate differences in the skeletal structures based on 
the size of the fish. The number of fish necessary is not known at this time and there 
is a possibility that for salmon there could be differences among river systems, which 
complicates this matter. In the mean time, identifiers should note the prey size-class 
when possible.  
 
In addition to using bone size to estimate fish size, captive feeding studies are 
underway to develop regression equations for species-specific diagnostic structures 
that will correct for erosion occurring during the digestive process. Regression 
equations will be developed from captive feeding experiments and bone-measuring 
protocols will be developed to determine size of prey. Appendix 2 contains a list of 
the most commonly occurring diagnostic skeletal structures for each family of fish 
species recovered from harbor seal and sea lion fecal samples collected in California, 
Oregon, Washington, Alaska and British Columbia pinniped diet projects. These 
structures can be used to determine prey composition within the samples and to 
calculate MNI. This list was developed to assist captive feeding researchers in 
selecting structures to develop regression equations and also to serve as a guide or 
starting point for new prey identifiers. The structures listed for each family are not 
exhaustive and additional structures may be added.   
 
Level of Identification 
 
Prey remains should be identified to the lowest taxonomic level possible. Researchers 
should work together to maintain accurate and consistent identification. 
Identifications to the lowest taxonomic level depend on the prey consumed, level of 
identification experience, completeness of the comparative collection and structure 
and erosion of the bone/otolith in question. In most cases, common prey can be 
identified with some practice. In some cases, the lowest taxonomic level possible may 
be only to family or order level. Identifiers must be confident in their identification 
regardless of the taxonomic level. Again, sending a sample early in the learning 
process to experienced identifiers is imperative for an evaluation of identification 
techniques and accuracy. 
 
Level of identification may also depend on the objectives of the study, the analyses 
used, or the amount of time or funding allocated for prey identification. For example, 
if the focus of the study is to determine the importance of one particular prey taxon 
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(e.g., salmonids) in the diet of pinnipeds, then it may only be necessary to determine 
the identification of other prey taxa (e.g., flatfish and rockfish) to the family rather 
than species level when using some indices (e.g., reconstructed biomass proportion; 
see “Reporting Results”). However, if a given family or order is found to be a 
frequently occurring prey item regardless of the focus of the study, then an attempt to 
identify these prey to the genus or species level may also be required. 
 
Molecular Genetic Techniques 
 
The potential impacts of predation by U.S. West Coast pinniped species on various 
salmonid populations of concern in Washington, Oregon and California are the main 
drivers of these food habit studies; thus, identification of salmon to the species level 
is critical. Species identification is possible using salmon otoliths; however, very few 
salmon otoliths are recovered from fecal samples and species identification in most 
cases is not possible using current bone identification techniques. Development of 
molecular genetic techniques to identify Pacific salmon to species using bone 
recovered from fecal samples is an important tool for identifying salmon species. The 
NMML and the Conservation Biology Molecular Genetics Laboratory at Northwest 
Fisheries Science Center have used direct sequencing and restriction fragment length 
polymorphism to identify salmonid species and are working on techniques to identify 
salmonid stocks using microsatellites. The protocols for collecting these data (e.g., 
photographing bones before they are ground for genetic analysis and choosing 
specific bones) are in development. An update on these techniques may be found 
within the workshop proceedings (Huber et al. 2000 in Riemer and Lance 2001). 
 
Genetic fecal analysis can be used to identify the individual harbor seal associated 
with each fecal sample collected.  This provides crucial information about biases 
associated with fecal sample collection, namely whether the fecal sample collected is 
a random and representative sample of the population. The combination of genetic 
and prey hard part analysis can provide information on the number and genetic 
identity of seals involved in salmonid predation. This combination of analysis 
techniques allows determination of individual variation in overall prey selection and 
an insight into the foraging ecology and behavior of pinnipeds. WDFW is currently 
conducting genetic fecal analysis in Hood Canal. Genetic material is removed prior to 
fecal processing for food habits by dissolving the entire fecal sample in a buffer 
solution and removing four, one-milliliter aliquots, which contain sloughed epithelial 
cells (London 2000 in Riemer and Lance 2001).   
 
Scales and Ageing Otoliths  
 
Scales and ageing otoliths have been used in other disciplines to identify stocks of 
fish, age structure of commercially caught fish and age-length relationships, and may 
be useful for pinniped diet analysis studies.  
 
Scales have been collected from spawning salmon and used to determine species and 
hatchery or wild stock based on growth rings evident on the surface of the scale (Lisa 
Borgerson, ODFW, pers. comm.). When dealing with target species, such as 
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salmonids, reading scales could prove to be a useful tool if a determination could be 
made to the species level and/or whether the fish were from a hatchery or wild stock. 
Bilton et al. (1964) describe scale differences among the five salmonid species and 
provide pictures of the scales. Unfortunately, due to the deterioration of most scales 
found in fecal samples the usefulness of this structure may be limited. Scales should 
be recovered from fecal samples and stored dry with other structures unless there is a 
chance they will be broken.  
 
Ageing otoliths can provide information on prey consumed by pinnipeds and possibly 
give some length-age information on certain long-lived species such as rockfish. 
Ageing techniques differ depending on the fish species in question. A detailed manual 
developed by the Pacific Coast Groundfish Ageing Technicians documents the 
various ageing techniques, otolith storage and a summary of ongoing ageing studies 
and techniques. This document is a work in progress as techniques are changed or 
added and is an excellent source for information on otolith ageing 
(www.psmfc.org/care).  Currently otoliths collected from fecal samples are not being 
aged. 
 
REPORTING RESULTS  
 
In order to ensure comparability of data, sample size reporting must be consistent. 
The total number of fecal samples collected is composed of samples with no prey 
remains (empty), samples with identifiable prey remains, and samples with prey 
remains that were “unidentifiable” (hard parts too eroded for identification) and 
“unidentified” (hard parts in good shape and could be identified if reference materials 
or expertise were available). Inclusion of “unidentifiable” and “unidentified” samples 
in calculations such as percent frequency of occurrence (FO) has varied in the past. 
Presenting these data in the form of a table will allow for comparisons among studies. 
 
After prey remains have been identified to the lowest taxonomic level possible, and 
otolith/beak lengths have been measured, the information can be used in indices to 
determine the food habits of pinnipeds. A review of dietary, food habit, and food 
consumption studies of fish and other marine vertebrates reveals a lack of consistent 
methodological approaches and application of statistical tests (Cortes 1997). The 
relative importance of prey items in marine vertebrate diets can be evaluated in a 
variety of ways. The most common indices or measures used for quantitative 
description and evaluation of diet are percentage composition by number (%N), 
percentage composition by weight (%W), and percentage frequency of occurrence 
(%FO; Tirasin and Jorgensen 1999). Detailed discussions of the advantages and 
disadvantages of the various measures of diet were presented in Berg (1979), Hyslop 
(1980), and Bowen (1996). Until recently, little attention has been paid to evaluating 
the uncertainty associated with these measures (Ferry and Cailliet 1996, Tirasin and 
Jorgensen 1999). Discussions of estimating precision in dietary studies can be found 
in Ferry and Cailliet 1996, Cortes 1997, and Tirasin and Jorgensen 1999. 
 
The following indices have been used in numerous studies to indicate the importance 
of prey collected in fecal samples of pinnipeds. This is a partial list of indices.  The 
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appropriate index is determined depending on the question to be answered.  Each 
index has its strengths and weaknesses, as well as what data are required to use them. 
In the following indices, we denote ‘s’ as the total number of fecal samples that 
contained prey; however, this is not absolute (see previous discussion). Also, there is 
a bias associated with using minimum (MNI) rather than the actual number of 
individuals (usually an underestimation in counts). Using MNI is usually the best 
approximation that we have of actual counts; however, one should be aware of its 
potential shortcomings. 

 
• Frequency of Occurrence (FOi): 
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 where  Oi = 0 if taxon i is absent in fecal k 
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where i = 1…,s fecal samples and k = 1…,n prey types (i.e., n times the 
mean number of prey items per fecal sample). This has no effect on the 
relative values of the index, rather it makes it sum to 100% so that it is 
directly comparable to other indices. 

 
Frequency of occurrence is an index of presence or absence that indicates the 
proportion of time a certain taxon is consumed but not the number taken. It can also 
be expressed as a percentage allowing for statistical comparisons of diet composition 
among seasons and/or years. This index is useful if one wants to determine if a 
particular prey taxon is frequently or rarely consumed by a pinniped; however, it does 
not provide insight on the quantity of that prey that was consumed (i.e., presence = 1 
to ∞). A major advantage of this index is that all structures do not have to be 
recovered from a sample and otoliths or beaks do not need to be measured. This index 
is similar to the average numerical importance index (3). Data necessary for this 
calculation include how often a prey item occurred in the samples and how many 
samples were collected with prey remains. Sample size does not include “empty” 
fecal samples that contain no prey hard parts and may or may not include samples 
that contain prey that is heavily eroded and cannot be identified (“unidentifiable”). 
Sample size should be explicitly defined in methods and results sections of reports. 
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• Relative Abundance (RAi): 
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 where nik = (minimum) number of individuals of taxon i in fecal k 
  nk = (minimum) number of individuals of all taxa in fecal k 
  s = total number of fecal samples that contained prey. 
 

Relative abundance is an index that expresses the numerical proportion of a prey 
taxon with respect to the other taxa without considering the number of times it 
appears in a sample (i.e., its frequency). It can also be expressed as a percentage, 
which allows for statistical comparisons of prey abundance among seasons and/or 
years. All structures do have to be recovered to determine MNI, but otoliths or beaks 
do not need to be measured to use this index. If all prey remains weighed the same, 
then relative abundance and biomass proportion indices would be equal. Data 
necessary for this calculation include the number and type of prey items in each 
sample (MNI) and the total number of prey items in the samples being analyzed. 
 

• Average numerical importance ( NIi ): 
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 where nik = (minimum) number of individuals of prey taxon i in fecal k 
  s = total number of fecal samples that contained prey. 
 

Average numerical importance is similar to frequency of occurrence, but numerical 
importance considers the minimum number of individuals of a prey taxon in a fecal 
sample rather than just its presence or absence. It is also directly correlated (however, 
not redundant) with relative abundance, but the average number of a prey taxon per 
fecal sample is determined rather than its abundance relative to total abundance of 
prey. All structures have to be recovered to determine MNI; however, otoliths or 
beaks do not need to be measured to use this index. Data necessary for this 
calculation include the number of a given taxon in each sample and how many 
samples were collected with remains. 
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• Index of relative importance (IRI): 
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 where nik = (minimum) number of individuals of prey taxon i in fecal k 
  nk = (minimum) number of all prey taxa in fecal k 
  mik = mass of prey taxon i in fecal k 
  mk = total mass of prey taxa in fecal k 
  s = total number of fecal samples that contained prey. 
 

The IRI was originally expressed as (% number + % volume) x %FO. Pinkas et al. 
(1971) originated the IRI using percent volume, but it was replaced with percent mass 
by Hyslop (1980). Index of relative importance takes into consideration not only the 
abundance and occurrence of prey, but also prey size. This is important because 
larger prey, which may occur less often in the diet, may provide as much energy or be 
as important as more frequently consumed smaller prey. All structures need to be 
recovered to determine MNI, and otoliths and beaks need to be measured to use this 
index. It can also be expressed as a percentage. Data needed for calculating this index 
include the frequency of occurrence, minimum number of individuals of each prey 
taxon in the sample, and their mass, which is estimated from using species-specific 
regressions of otolith or beak rostral length to prey length and prey length to prey 
mass. IRI values cannot be compared among seasons or years, or among food types. 
Cortes (1997) suggested that IRI values be expressed on a percentage basis as a 
standardized measure in dietary analysis, so that comparisons among prey species 
within season, and among season and years are possible.  
 
Percentage IRI (%IRI) for a specific prey species i (IRIi) becomes: 
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where n is the total number of prey species.  
 
The following two indices are used to calculate the proportion of a prey species in the 
diet of a particular pinniped species at a location over a period of time. These 
proportions can then be used to estimate the biomass of a prey species consumed by a 
pinniped species during a specific time frame of interest. Other factors that need to be 
evaluated to estimate biomass of prey species consumed by a pinniped species are the 
number of pinnipeds per age group present during a time frame of interest, age-group 
specific daily energetic requirements of pinniped species, proportion of the pinniped 
species at sea during surveys, number of days in the time frame of interest, and the 
energetic value of the prey species. There are biases associated with each index. For 
further discussion see Riemer and Lance 2001. 
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• Split-sample frequency of occurrence (SSFO; Olesiuk et al. 1990): 
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 where Oik = 0 if taxon i is absent in fecal k 
  1 if taxon i is present in fecal k 
  Ok = total number of all taxa present in fecal k  
  s = total number of fecal samples that contained prey; 
 

 thus, if one prey taxon occurred in a fecal sample it is scored as 1, if two taxa 
occurred each are scored as 0.5, and so on. 

 
When using SSFO, it is assumed that prey identified in fecal samples represent all 
prey consumed in the most recent meal, and all prey taxa comprising a meal (fecal 
sample) are consumed in equal volumes. The split frequency of occurrence is similar 
to frequency of occurrence because only the presence or absence of a prey taxon is 
required. All structures do not need to be recovered and otoliths or beaks do not need 
to be measured to use this index. Potential biases associated with SSFO are the 
proportion of small size prey may be overestimated and the proportion of large prey 
might be underestimated. Data necessary for this calculation include how often a prey 
item occurred in the samples and how many samples were collected with prey 
remains.  
 

• Reconstructed biomass proportion  ( iπ ; Harvey 1988; Hammond and 
Rothery 1996): 
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 where bik = biomass of prey taxon i in fecal k 
  bk = biomass of all prey taxa in fecal k 
  s = total number of fecal samples that contained prey. 
 

For some sample of fecal samples, iπ is the biomass of prey taxon i divided by the 
biomass of all prey taxa. This index is similar to relative abundance. All structures 
need to be recovered and otoliths and beaks need to be measured to use this index. 
This index would be ideal if actual (rather than minimum) prey consumed could be 
determined but this is usually not the case. One potential bias is that the proportion of 
large prey might be overestimated and the proportion of smaller size prey may be 
underestimated.  
 
Estimates of pinniped consumption on commercially important fish species have been 
conducted for years using similar variations on the models described above. We do 
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not intend to imply that the SSFO and BR models are the only approaches to 
estimating pinniped consumption. For discussions on other models of pinniped 
consumption estimates please refer to Antonelis and Perez 1984, Mohn and Bowen 
1996 and several papers with varied approaches that were presented at a Symposium 
for the Northwest Atlantic Fisheries Organization in September 1995 titled “The role 
of marine mammals in the ecosystem” include Hammill et al. 1997, Shelton et al. 
1997, Stenson et al. 1997 and Warren et al. 1997. 
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APPENDIX 1. Prey Identification Options 
 

When designing a study to determine the diet of pinnipeds, time frame, focus of the 
study, financial constraints, prey identification expertise and availability of 
comparative collections all need to be considered. We developed the following list as 
a guide. Steps can be done in or out of sequence depending on the study design; 
however, we recommend each step be undertaken with other steps in mind. We 
strongly suggest that data are collected and samples are stored with the possibility of 
reanalysis. Although many of the steps below list analyses similar to one another, the 
level of identification will ultimately drive the analyses. For example, split sample 
frequency of occurrence analysis using only otoliths as suggested in Step 1 is quite 
different than this same analysis completed after Step 4 when all bone is identified for 
presence or absence within the samples. 
 
Currently, Steps 1, 3 and 7 are the most common levels of identification carried out 
by the authors. In some cases, Step 8 has also been undertaken when more 
information is needed on a target prey species, such as the case of salmonids in the 
Columbia River. 
 
1.  Identify and enumerate teleost fish sagittal otoliths, cephalopod beaks and 
cartilaginous fish structures (e.g., mouthparts), identify cephalopod pens and 
statoliths, record presence or absence of fish lenses and grade otoliths. This step 
identifies and enumerates teleost fish using the otolith identification method and 
identifies and enumerates cephalopods and cartilaginous fishes. Grading the otoliths 
will allow for measurement to determine prey size, and the presence of fish lenses 
will indicate consumption of teleost fish when only cephalopod or cartilaginous fishes 
are present in the sample. Analysis at this level includes Frequency of Occurrence, 
Relative Abundance, Average Numerical Importance and Split-Frequency of 
Occurrence for otoliths only. 
 
2.  Identify the study’s focus prey species, if any, using the “all structures” 
identification method. Combined with Step 1, this step will provide a more complete 
picture of the target species by using all structures and also include information on the 
other prey recovered in the sample using otoliths/beaks. In particular, this step should 
be considered in cases where the target species is not commonly identified using only 
otoliths (e.g., salmonids). This allows analysis similar to Step 1, but would include 
otoliths and all structures for the target species only. 
 
3.  Measure lengths of fish otoliths and cephalopod beaks. This step combined with 
Step 1 will prepare samples for Index of Relative Importance and Reconstruction 
Biomass proportion analysis using only otoliths and beaks. This step can also be 
combined with Steps 4, 5, 6, 7 or 8 for a look at the prey species using a combination 
of otolith and bone identification techniques.  
 
4.  Use the all structures identification method and record presence or absence of prey 
species. This step could be combined with Step 1 for a more detailed analysis of the 
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samples using all structures; however, numbers of prey within the samples (MNI) 
would not be available based on bone enumeration. Analysis would be the same as 
for Step 1 
 
5.  Enumerate “key” diagnostic structures to determine MNI for those prey species 
that commonly occur (>10% FO) in the samples. This step would use Appendix 2, 
which lists “key” diagnostic structures identified from fecal samples, other structures 
recovered but not listed in Appendix 2 would also be included. This MNI 
determination includes classifying bone by size. This will provide information on 
numbers of prey occurring in 10% or greater within a given sample based on the all 
structures method. Combining this data with Step 3 will prepare the data for use in 
Reconstruction Biomass proportion and Index of Relative Importance analyses.  
 
6.  Enumerate “key” diagnostic structures (Appendix 2) to determine MNI for all prey 
species regardless of their occurrence within the samples. This step is the same as 
Step 5 but includes all prey recovered in the samples not just the most frequently 
occurring species; analysis would also be the same if combined with Step 3. 
 
7.  Enumerate the most numerous paired diagnostic structures for MNI calculations 
within each sample (consistent with Step 5) and also determine MNI based on an 
estimate of non-diagnostic numerous structures such as vertebrae. This step is similar 
to Step 6, but also includes the enumeration of the most numerous diagnostic 
structures, which in most cases is not attempted due to time constraints. Analysis 
would be the same as Step 5.  
 
8.  Conduct genetic analysis on bone recovered from target prey species. This step 
involves grinding bones for genetic analysis. It is suggested that these bones be 
photographed and measured prior to analysis. Genetic analysis can provide more 
information on target prey types such as species or stock information or even 
identification of individuals. This analysis can be expensive and should be used only 
when other forms of identification are not feasible. 
 
9.  Grade the level of erosion of “key” diagnostic structures recovered in samples. 
Grading techniques for “key” diagnostic structures are still being developed. It has 
not been determined if these structures (which do not include otoliths) can be used in 
regression equations. Ongoing captive feeding studies are addressing this issue.  
  
10.  Measure “key” diagnostic structures. The techniques for this step are being 
evaluated in captive feeding trials and will be developed in conjunction with Step 9. 
One concern with this technique is the potential for bone shrinkage during the drying 
process.  
 
11.  Age otoliths using techniques described by the Committee of Age Reading 
Experts (CARE). Ageing otoliths provides more information on the prey consumed 
by pinnipeds. Age and length relationships do exist for certain species. Ageing 
otoliths collected from fecal samples has not been attempted at this time and the 
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effect erosion may have on determining the age of the fish has not been evaluated. 
This may be a step to consider only for target prey species since it can be cost and 
time prohibitive. 
 
12.  Enumerate fish lenses. Currently this protocol suggests recording only presence 
or absence of fish lenses. Enumerating fish lenses may help with determining MNI of 
prey within the fecal sample, however fish lenses cannot be identified to any lower 
taxonomic level.  
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APPENDIX 2. Most frequently occurring diagnostic structures used for prey 
identification from harbor seal and sea lion fecal samples for families of fishes 
recovered from samples collected in California, Oregon, Washington, Alaska and 
British Columbia. Otoliths are used for identification of all families and species. 
Bolded structures are commonly used for identification and enumeration.  

 
Acipenseridae (sturgeons) – scute 
 
Agonidae (poachers) – vertebrae, scute 
 
Ammodytidae (sandlances) – basioccipital, dentary, quadrate, palatine, 
hyomandibular, epihyal, ceratohyal, pharyngeal, posttemporal, vertebrae, atlas, 
ultimate vertebra, hypural 
 
Anarhichadidae (wolf-eels) – teeth, vertebrae  
 
Atherinidae (silversides) – vertebrae 
 
Aulorhynchidae (tube snouts) – vertebrae 
 
Bathylagidae (deep sea smelts) – vertebrae, preopercle, ceratohyal 
 
Bathymasteridae (ronquils) – quadrate, ceratohyal 
 
Batrachoididae (midshipman) – vomer, basioccipital, premaxilla, maxilla, teeth, 
dentary, quadrate, hyomandibular, epihyal, vertebrae 
 
Carangidae (jackmackerels) – gill raker, quadrate, epihyal, pharyngeal plate, 
vertebrae, ultimate vertebrae, scute, branchials  
 
Cephalopoda (squids/octopus)  – beak, lenses (statoliths) 
 
Chimaeridae (ratfish) – teeth, interhaemal spine 
 
Clupeidae (herrings) – vomer, parasphenoid, basioccipital, prootic/pterotic, maxilla, 
preopercle, opercle, suboperculum, articular, gill raker, quadrate, hyomandibular, 
epihyal, ceratohyal, hypohyal, branchial, urohyal, scapula, radial, vertebrae, atlas, 
axis, caudal vertebrae, ultimate vertebrae, hypural 
 
Cottidae (sculpins) – vomer, basioccipital, premaxilla, maxilla, dentary, articular, 
angular, operculum, preopercle, quadrate, hyomandibular, ceratohyal, epihyal, 
hypohyal, basihyal, gill raker, basibranchial, radial, vertebrae, atlas, ultimate 
vertebrae, hypural, scute, scale 
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Cyclopteridae (lumpfishes and snailfishes) – scute, palatine, premaxilla, quadrate, 
pharyngeal element, vertebrae, frontal, dentary, articular, hyomandibular, ceratohyal, 
pharyngobranchial 
 
Cyprinidae (minnows) – branchial, vertebrae, atlas, hypural, secondary otolith 
 
Embiotocidae (surfperches) – vomer, parasphenoid, basioccipital, premaxilla, 
maxilla, teeth, dentary, gill raker, quadrate, pharyngeal plate, branchial, urohyal, 
scapula, cleithrum, vertebrae, atlas, axis, ultimate vertebrae, hypural 
 
Engraulidae (anchovies) – basioccipital, prootic, angular, opercle, quadrate, 
hyomandibular, ceratohyal, cleithrum, vertebrae, atlas, axis, thoracic vertebrae, 
caudal vertebrae, ultimate vertebrae, hypural 
 
Gadidae and Merlucciidae (codfishes/whiting) – vomer, ethmoid, parasphenoid, 
suborbital, basioccipital, premaxilla, maxilla, teeth, dentary, angular, articular, 
opercle, interopercle, gill raker, palatine, quadrate, hyomandibular, interhyal, 
epihyal, ceratohyal, hypohyal, pharyngeal plate, pharyngobranchial, epibranchial, 
hypobranchial, posttemporal, cleithrum, supracleithrum, postcleithrum, radial, 
vertebrae, atlas, axis, caudal vertebrae, ultimate vertebrae, hypural 
 
Gasterosteidae (sticklebacks) – vertebrae, ultimate vertebrae, spine, spine holding 
plate, scute 
 
Gobiesocidae (Clingfishes) – quadrate, vertebrae  
 
Hexagrammidae (greenlings) – vomer, premaxilla, maxilla, teeth, dentary, angular, 
articular, branchiostegal ray, gill raker, palatine, quadrate, pterygoid, epibranchial, 
hypobranchial, pharyngobranchial, radial, vertebrae, atlas, hypural, basihyal, 
epihyal, interhyal, ceratohyal, ultimate vertebrae 
 
Myctophidae (lanternfish) - vertebrae 
 
Myxinidae (hagfishes) - teeth 
 
Ophidiidae (cusk-eels) – vomer, basioccipital, premaxilla, angular, quadrate, 
hypohyal, branchials, vertebrae, atlas 
 
Osmeridae (smelts) – basioccipital, premaxilla, maxilla, lingual plate, dentary, 
articular, opercle, hyomandibular, glossohyal, ceratohyal, vertebrae, atlas, thoracic 
vertebrae, ultimate vertebrae, hypural 
 
Paralichthyidae (large-tooth flounders) – vomer, basioccipital, premaxilla, maxilla, 
lingual plate, dentary, angular, gill raker, palatine, epihyal, ceratohyal, hypohyal, 
branchials, urohyal, posttemporal, supracleithrum, cleithrum, vertebrae, atlas, 
axis, ultimate vertebrae, hypural 
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Petromzontidae (lampreys) – circumoral teeth, teeth, tongue plate 
 
Pholidae (gunnels) – parasphenoid, premaxilla, dentary, articular, hyomandibular, 
vertebrae 
 
Pleuronectidae (right-eyed flounders) - vomer, basioccipital, premaxilla, maxilla, 
lingual plate, dentary, angular, gill raker, palatine, quadrate, pterygoid, epihyal, 
ceratohyal, hypohyal, basihyal, pharyngobranchial, hypobranchial, urohyal, interhyal 
pharyngeal, posttemporal, supracleithrum, cleithrum, hypercoracoid, vertebrae, 
atlas, axis, ultimate vertebrae, hypural, teeth, scales, interhaemal spine, scute  
 
Rajidae (skates) – teeth, vertebrae, scute, denticle 
 
Salmonidae (salmon - adult) – vomer, basioccipital, teeth, angular, suprapreopercle, 
branchiostegal ray, gill raker, palatine, quadrate, symplectic, interhyal, epihyal, 
ceratohyal, hypohyal (lower), branchial, urohyal, supracleithrum, scapula, 
postcleithrum, hypercoracoid, radial, basipterygium, vertebrae, atlas, thoracic 
vertebrae, ultimate vertebrae, hypural, scales, pectoral fin ray 
 
Salmonidae (salmon - juvenile) – parasphenoid, basioccipital, teeth, lingual plate, 
dentary, gill raker, quadrate, interhyal, epihyal, ceratohyal, branchial, radial, 
basipterygium, vertebrae, atlas, thoracic vertebrae, ultimate vertebrae, hypural 
 
Sciaenidae (croakers) – angular, gill raker, quadrate, vertebrae  
 
Scomberesocidae (sauries) – vomer, basioccipital, maxilla, dentary, gill raker, 
palatine, branchials, vertebrae, atlas, hypural 
 
Scombridae (mackerels and tunas) – vomer, basioccipital, premaxilla, maxilla, 
dentary, gill raker, palatine, branchial, vertebrae, atlas, spine, hypural, scute, scale 
 
Squalidae (dogfishes) – teeth, interhaemal spine, vertebrae  
 
Stichaeidae (pricklebacks) - vertebrae 
 
Trichodontidae (sandfishes) – basioccipital, preopercle, premaxilla, 
pharyngobranchial, epihyal, vertebrae 
 
Sebastidae (rockfishes) – vomer, basioccipital, premaxilla, maxilla, teeth, dentary, 
angular, articular, preopercle, branchiostegal ray, spacer, gill raker, palatine, 
quadrate, hyomandibular, symplectic, interhyal, epihyal, ceratohyal, hypohyal, 
basihyal, pharyngeal plate, pharyngobranchial, epibranchial, hypobranchial, urohyal, 
posttemporal, hypercoracoid, cleithrum, radial, interhaemal spine, vertebrae, atlas, 
axis, caudal vertebrae, hypural, scale, pterygiophores  
 
Zoarcidae (eelpouts) – basioccipital, quadrate, vertebrae 



APPENDIX 3. Sample prey identification data sheet   
 

PREY IDENTIFICATION FORM 
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