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ABSTRACT 

We conducted an acoustic-trawl (AT) survey of the eastern Bering Sea during the 2014 Bering 

Arctic Subarctic Integrated Survey (BASIS). Because of the mixed species assemblages in the 

study area, we implemented proportional allocation of backscatter to the multiple species found 

in the trawl catch samples, modeled after the methods used for the 2011-2012 BASIS survey 

analysis. The abundance of age-0 walleye pollock (Gadus chalcogrammus) was estimated by 

combining acoustic measurements, the acoustic scattering properties of the dominant organisms, 

and the relative proportions of animals from trawl samples. Our survey results found that age-0 

pollock dominated the near-surface and midwater fishes by number and we estimate their 

numerical abundance at 6.85 × 1011 fish. This estimate is approximately 9 times higher than what 

was reported in 2011 and 3.5 times higher than what was reported in 2012. Nearly half of the 

overall age-0 abundance was observed in the upper 30 m of the water column. Spatially, the 

highest numerical densities of age-0 pollock were observed where bottom depths were less than 

75 m. Sensitivity analyses indicated that both the method used to assign length and species 

composition from trawl hauls to backscatter (expert assignment versus using the nearest haul) 

had a relatively modest impact on our estimates of age-0 pollock abundance. However, both the 

use of 1) a trawl selectivity function to account for escapement of small fish and 2) an alternative 

pollock target strength-length relationship that included observations of age-0 pollock changed 

abundance estimates by as much as 22%. These findings suggest that more research is needed in 

these areas to obtain more accurate abundance estimates. 
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INTRODUCTION 

Walleye pollock (Gadus chalcogrammus, hereafter referred to as pollock) are an important 

ecological and commercial fish species in the Bering Sea. Pollock are regularly surveyed by the 

Alaska Fisheries Science Center (AFSC) for stock assessment purposes (Ianelli et al. 2017). 

Since 1979, AFSC scientists from the Midwater Assessment and Conservation Engineering 

(MACE) program have conducted acoustic-trawl surveys in June-August to estimate the 

abundance and distribution of the midwater pollock (age-1 and older) along the eastern Bering 

Sea (EBS) shelf (e.g., Honkalehto and McCarthy 2015). Because of their ecological importance 

as a forage fish, and their potential as a leading indicator of pollock recruitment, age-0 pollock 

(e.g., young-of-the-year) have also been surveyed in the EBS using trawl surveys in 2004-2007 

(Moss et al. 2009), and acoustic-trawl (AT) methods in 2006-2010 (Parker-Stetter et al. 2013) 

and in 2011-2012 (De Robertis et al. 2014). Because the underlying assumptions and methods 

differed, the results from the AT surveys conducted in 2006-2010 and the 2011-2012 were not 

strictly comparable. This report presents estimates of the abundance and distribution of age-0 

pollock in the late summer of 2014 using the method of De Robertis et al. (2014), allowing 

comparison between the results from the 2011, 2012, and the 2014 AT surveys. 

METHODS 

An acoustic-trawl (AT) survey was carried out between 17 August and 30 September 2014 

during the Bering Arctic Subarctic Integrated Survey (BASIS) of the eastern Bering Sea, which 

was organized by the AFSC Ecosystem Monitoring and Assessment (EMA) program. The 



  

 

  

  

   

  

 

 

  

 

  

 

 

 

  

      

 

 

    

survey was conducted aboard the NOAA ship Oscar Dyson, a 64-m stern trawler equipped for 

fisheries and oceanographic research. 

Acoustic Equipment, Calibration, and Data Collection 

Acoustic backscatter measurements were collected 24 hours per day using a Simrad EK60 

echosounder (Simrad 2008, Bodholt and Solli 1992) operating five split-beam transducers at 

frequencies of 18, 38, 70, 120, and 200 kHz. All transducers were mounted on the bottom of the 

vessel's retractable centerboard, which extended 7.6 m below the surface during the survey. 

Acoustic data were collected at a nominal ping rate of 2.0 s-1, and a pulse length of 0.512 ms. 

The results presented in this report are based on 38 kHz data with a post-processing Sv 

integration threshold of –70 dB re 1 m-1 applied to ensure comparability with other AFSC 

surveys (e.g., Honkalehto and McCarthy 2015). 

Standard sphere acoustic system calibrations (Foote et al. 1987) were conducted to measure 

acoustic system performance on two occasions during the preceding pollock summer survey 

(Honkalehto and McCarthy 2015). A tungsten carbide sphere (38.1 mm diameter) suspended 

below the centerboard-mounted transducers was used to calibrate the 38-, 70-, 120-, and 

200-kHz systems. The tungsten carbide sphere was then replaced with a 64 mm diameter copper 

sphere to calibrate the 18-kHz system. A two-stage calibration approach was followed for each 

frequency. On-axis sensitivity (i.e., transducer gain and sA correction) was estimated from 

measurements with the sphere placed in the center of the beam following the procedure 

described in Foote et al. (1987). Transducer beam characteristics (i.e., beam angles and angle 

offsets) were estimated by moving the sphere in a horizontal plane through the beam and fitting 
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these data to a second-order polynomial model of the beam pattern using the ER60’s calibration 

utility (Simrad 2008, Jech et al. 2005). The equivalent beam angle is used to characterize the 

volume sampled by the beam but it was not estimated using this calibration approach because the 

absolute position of the sphere was unknown (Demer et al. 2015). Thus, the transducer-specific 

equivalent beam angle measured by the echosounder manufacturer was corrected for the local 

sound speed (see Bodholt, 2002) and used in data processing. The calibrations did not reveal 

substantial differences in echosounder sensitivity, so the results from each calibration were 

averaged in linear units to produce the values of gain and sA correction applied in post-

processing of acoustic data in the present survey. 

Survey Design 

The primary survey design for the 2014 BASIS survey consisted of a grid of sampling stations at 

a separation of 0.5° of latitude and 1° of longitude. Surface trawl samples, oceanographic 

samples, and zooplankton samples were taken at the predetermined stations during daylight 

hours. Similar grid stations were sampled in 2006-2010 (Parker-Stetter et al. 2013) and in 2011-

2012 (De Robertis et al. 2014). The acoustic data were collected opportunistically as the vessel 

transited between stations. Midwater trawl hauls were periodically taken to sample high-intensity 

backscatter observed with the echosounder. 

Trawl Sampling 

Near-surface backscatter was sampled at predetermined locations using a Cantrawl rope trawl 

towed at speeds of ~2 m s-1 for 30 min (Moss et al. 2009). The Cantrawl is 198 m long, has a 
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122 m headrope, and is constructed with ropes at the leading edge of the net followed by meshes 

tapering from 162 to 1.2 cm (stretched mesh measurement) in the codend liner. The trawl was 

equipped with floats to keep the headrope near the surface. Vertical net openings and depths 

during fishing were monitored with a Furuno CN24 acoustic-link netsonde attached to the 

footrope. A trawl vertical opening of 21.6 ± 3.6 m (mean ± standard deviation) during surface 

trawling was observed with the netsounde on 10 trawl hauls. 

Areas of high midwater backscatter were sampled opportunistically either by using the Cantrawl 

without the floats (Parker-Stetter et al. 2013) or by using a smaller, twice-modified Marinovich 

midwater trawl (MM2). The MM2 trawl was configured with a 12 m footrope, 12 m headrope, 

30 m bridle, and mesh sizes ranging from 6.35 cm at the trawl opening to 1.91 cm at the codend 

(stretched mesh measurement) with a 0.3 cm liner. Weight chains were used for the midwater 

trawls, with 250 lbs on each side for the Cantrawl, and 100 lbs on each side for the MM2. 

Vertical net openings and depths during midwater fishing were monitored with either a Simrad 

FS70 third-wire netsounde or a Furuno CN24 acoustic-link netsonde attached to the headrope. 

The vertical opening of the Cantrawl fishing midwater averaged 16.0 ± 3.1 m. The vertical 

opening of the MM2 net while trawling in midwater averaged 5.25 ± 0.7 m.  

Trawl catches were identified to species, enumerated, weighed, and further processed according 

to a species-specific protocol. All lengths were measured to the nearest 1.0 millimeter (mm) 

using an electronic measuring board (Towler and Williams 2010). Standard lengths (SL) were 

measured for smaller forage fish (e.g., age-0 pollock) and fork lengths (FL) were measured for 

the larger fish (e.g., age-1+ pollock). Pollock less than 13 cm were considered age-0, or young-
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of-the-year, whereas pollock 13 cm and larger were considered age-1+ pollock based on length 

ranges measured during the 2014 BASIS survey. Undamaged, individual jellyfish were weighed 

to the nearest 2 grams (g), and the bell diameters were measured. All biological measurements 

and trawl station information were electronically recorded and stored in the Catch Logger for 

Acoustic Midwater Surveys (CLAMS) relational database, developed by MACE Program staff. 

Acoustic Data Processing 

Acoustic backscatter measurements were examined and analyzed using Echoview post-

processing software (v.6.1.59.27435). While backscatter data were continually collected during 

the cruise, data retained for analysis of age-0 abundance were collected 

a) at 38 kHz, from 12.5 m from surface to 0.5 m off bottom or 1,000 m (max 

recording depth); 

b) during daytime only (between local sunrise and sunset), minimizing diel changes 

in target strength and species compositions due to vertical migration of demersal 

species; 

c) while underway and not during station sampling or trawling (vessel speeds greater 

than 7 knots), limiting potential changes in backscatter associated with behavioral 

responses to trawling vessels (De Robertis and Wilson 2006); 

d) from areas with bottom depth > 30 m to avoid near-shore regions that were not 

sampled by trawls; and 

e) from areas with a type of backscatter that had been sampled by trawls and thus 

reliably ground-truthed. 
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Of the total water column backscatter that met criteria a-d, about 17% was excluded in step e) 

because it did not appear similar to or was not near enough to areas where trawl samples were 

taken. This backscatter included unidentified midwater and near-bottom backscatter, deep 

scattering layers, plankton, and surface-turbulence (non-biological backscatter). Most of the 

excluded backscatter was near-bottom and was likely attributed to adult groundfishes, principally 

adult walleye pollock (Honkalehto and McCarthy 2015, Lauffenburger et al. 2017). Backscatter 

that passed criteria a) – e) was echo-integrated into 0.5 nautical mile (nmi) by 5 m depth bins, 

and stored in a relational database for further analysis of age-0 pollock abundance. 

Assigning Biological Data to Backscatter 

As in De Robertis et al. (2014), estimates of the size and species composition of organisms from 

trawl samples and their acoustic scattering properties were used to convert the integrated 

backscatter into age-0 pollock abundance. This process required each acoustic measurement to 

be assigned to a trawl catch sample to be used for scaling. For the near-surface backscatter 

(< 30 m), trawl catch information was automatically assigned from the single nearest surface-

trawl. For the midwater backscatter, single or multiple midwater-trawl catches were manually 

assigned. These midwater assignments depended on the aggregation pattern of the backscatter 

under scrutiny and the proximity and the tow depth of nearby midwater hauls. On two occasions, 

when no midwater trawl samples were available to assign to midwater backscatter, nearby 

surface-trawl catches were used instead. After the trawl catches were assigned to backscatter, the 

species captured were used to scale the backscatter into age-0 pollock abundance. For the 

primary abundance analysis, equal trawl selectivity among all captured species and sizes was 

assumed. A series of target-strength (TS in dB re 1 m2, the echo from an individual animal) to 
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length relationships taken from the literature (Table 1) were used to estimate the acoustic 

scattering from each species or species group captured in the trawls. Some species caught in the 

trawl hauls were excluded from analysis because they were unlikely to be present in the 

backscatter (i.e., salmonids, Emmett et al. 2004, Parker-Stetter et al. 2013), relatively weak 

scatterers (i.e., plankton, isopods), or uncommon species (i.e., salmon shark, Lamna ditropis) 

compared to target fish species. Some species were left out of our analysis because the 

specimens were too damaged for length measurements, which often occurred with some jellyfish 

(e.g., Aequorea spp. and Staurophora mertensi). Generally, these exclusions were confined to 

relatively small fractions of the haul’s catch by weight (e.g., < 1%), but for a few hauls, the 

damaged Aequorea genus represented 14-16% of the haul’s catch by weight. 

Estimating Abundance 

The general approach to analyzing backscatter for age-0 pollock abundance observed in 2014 

was the same as that used by De Robertis et al. (2014), except that computations for the 2014 

data analysis were carried out in a different order to accommodate implementation in a database. 

As previously described in this document, backscatter was assigned trawl catches. The first step 

in the abundance analysis involved computing the proportion of fish (p) of species s and length l 

from one or more trawls as 

𝑛𝑛𝑠𝑠,𝑙𝑙,𝑡𝑡∑𝑡𝑡
𝑝𝑝𝑠𝑠,𝑙𝑙 = ∑𝑠𝑠,𝑙𝑙 𝑛𝑛𝑠𝑠,𝑙𝑙,𝑡𝑡�𝑐𝑐 , (1) 

where n is the number of fish of species s and length l in trawl t, and c is the number of trawls 

used for scaling. The next step was to compute the backscattering cross-section (σbs, m2, TS in 

dB re 1 m2; MacLennan et al. 2002) for each species and length class (length measurement 

rounded to nearest cm) using the TS relationships given in Table 1. For species for which the TS 
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relationship was derived using a different length measurement type than the one used for 

measuring the trawl catch specimens, an appropriate length-length conversion was applied. 

Based on repeated individual pollock measurements (n = 80) collected during other MACE 

Program survey efforts, the following SL-length to FL-length relationship was used for age-0 

pollock: 

FL = 1.091 * SL - 0.078.        (2) 

TS was converted into linear units as 

𝑇𝑇𝑇𝑇𝑠𝑠,𝑙𝑙
𝜎𝜎𝑏𝑏𝑠𝑠𝑠𝑠,𝑙𝑙 = 10 �10. (3) 

The overall mean σbs, or 𝜎𝜎��𝑏𝑏𝑠𝑠�� across all species, lengths, and trawls used for scaling was 

computed as 

𝜎𝜎��𝑏𝑏𝑠𝑠�� = ∑ 𝑝𝑝𝑠𝑠,𝑙𝑙 ∙ 𝜎𝜎𝑏𝑏𝑠𝑠𝑠𝑠,𝑙𝑙. (4) 

The 𝜎𝜎��𝑏𝑏𝑠𝑠�� was then used to scale the measured nautical area backscattering coefficient (sA) for 

each 0.5 nmi × 5 m acoustic data cell within the backscatter analysis regions as 

𝑠𝑠𝐴𝐴𝑁𝑁 = � (5) 4𝜋𝜋𝜎𝜎𝑏𝑏𝑠𝑠𝑡𝑡 

(MacLennan et al. 2002). This yielded the total number of all organisms N for each cell, which 

was proportioned back to species-and length-specific density d in each cell for each species and 

length as 

𝑑𝑑𝑠𝑠,𝑙𝑙 = 𝑁𝑁𝑝𝑝𝑠𝑠,𝑙𝑙. (6) 

The areal density for each 0.5 nmi (individuals nmi-2) within the analysis region was computed 

as by summing the densities (ds,l) across all 5 m thick acoustic data cell layers (MacLennan et al. 

2002).  
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A survey grid was used to extrapolate the densities of each species and size observed along the 

trackline to the total surveyed area. The survey area was divided into a 0.5° latitude and 1° 

longitude grid, where each grid-cell was centered on the predetermined BASIS sampling grid 

stations. The area of each grid cell was computed in square nautical miles (nmi2). Shallow areas 

around land masses (< 30 m) were excluded from the grid’s total area. Geographic cells 

containing less than 10 nmi of trackline were excluded from the analysis to avoid error 

introduced by high levels of extrapolation in sparsely sampled grid cells. The survey-wide 

abundance-at-length for each species was computed by averaging the areal density along the 

trackline within each grid cell, multiplying by the area of the grid cell, and then summing across 

all grid cells. Although survey-wide abundances were estimated for all species, only estimates 

for walleye pollock (Gadus chalcogrammus) are presented in this report. Biomass-at-length 

estimates for pollock were computed by multiplying the numbers-at-length by the mean weight-

at-length. Weight at a given length class (cm) was estimated from a linear regression of the 

natural logarithms of the length and weight data (De Robertis and Williams 2008). Length-

weight regression parameters for age-1+ pollock (Table 2.) were based on individual fish data 

collected during the AFSC EBS pollock survey (Honkalehto and McCarthy 2015), and the age-0 

parameters were taken from Buchheister et al. (2006) and were based on specimens taken at a 

similar time of year in the Gulf of Alaska. 

To derive the relative acoustic contribution for each species caught in a single trawl, the 

proportion of backscatter (PB) from a given species s was computed from the number (n) of 

individuals of that species and length l captured in a trawl t as 
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Multi-year Age-0 Pollock Abundance Comparison 

Age-0 pollock abundance estimates were compared between 2011, 2012, and 2014. To make this 

comparison, adjustments for two small methodological differences were required: 

a) Shallowest depth of integration: In the 2014 survey, the acoustic measurements began at 

12.5 m, whereas in the 2011-2012 surveys, acoustic measurements were reported starting 

at 15 m from the surface. For the multi-year comparisons, the 2014 abundance estimate 

excludes the estimates between 12.5 and 15 m so that abundance estimates starting 15 m 

from the surface were compared. 

b)  Survey coverage: The 2014 analysis was recalculated using the 1° latitude  by 1° 

longitude survey  grid used in 2011 and 2012. Based on this grid, the 2014 survey covered 

a larger area (8  × 104 nmi2) than the 2011 survey (6.5 × 104  nmi2) but  smaller than the 

2012 survey (10 × 104  nmi2). For the multi-year comparison, only grid cells with an age-0 

pollock abundance estimate from all three years were used.  

Sensitivity Analysis 

The abundance of age-0 pollock was recalculated under three scenarios to determine the 

sensitivity of survey estimates to analytical methodology and assumptions. The first consisted of 

making a correction to trawl catch samples using recent experimental estimates of length-

dependent escape of fish from the trawl (selectivity). Estimates of selectivity were based on field 

experiments conducted using the Cantrawl and a modified-Marinovich (MM1) midwater trawl 

during a survey of the Chukchi Sea in 2013 (De Robertis et al. 2016). While the Cantrawl was 
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the same net used in the 2014 survey, the MM1 was slightly different and possibly more 

selective with a shorter intermediate section and larger meshes in the aft section than the MM2 

used in this survey. Additionally, the De Robertis et al. (2017) study estimated the trawl 

selectivity for several small fishes in the Chukchi Sea (e.g., Arctic cod, sand lance), which were 

primarily less than 12 cm, but it did not estimate selectivity of age-0 pollock, and therefore may 

not be representative of pollock escapement and herding behavior. Rather than applying a 

selectivity curve from an individual species studied in the Chukchi Sea, a combined-species 

length selection curve was derived for each gear type. The resulting curves are shown in Figure 1 

and represent proportion of fish in each centimeter (cm) length class entering the trawl (all 

species caught) that were retained in the codend. To determine the influence of selectivity on 

survey abundance estimates, the number of fish caught n at each length class l for each species 

was divided by the proportion retained p as 

𝑛𝑛�𝑙𝑙 = 𝑛𝑛𝑙𝑙�𝑝𝑝𝑙𝑙, (8) 

yielding an estimate of the number that was likely to have entered the trawl (𝑛𝑛�), and therefore to 

have been present in the population targeted by the trawl. The rest of this analysis was identical 

to the original, primary analysis, except that 𝑛𝑛� is substituted for 𝑛𝑛 to derive species and size 

composition. 

A second sensitivity analysis was made by using a separate TS - length model for age-0 pollock, 

in contrast with the standard pollock model used for all ages in the original analysis. For the 

original analysis, TS was modeled as a log-linear function of length using the expression 

𝑇𝑇𝑇𝑇𝐿𝐿 = 20 log10 𝐿𝐿 − 66, (9) 
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where L is fish fork length (cm) (Table 1; Traynor 1996). An alternative age-0 model was derived 

by fitting only the intercept parameter to in situ acoustic observations of TS coupled with trawl 

catches performed on age-0 pollock in the Gulf of Alaska in May 1990 (Brodeur & Wilson, 1996). 

From several TS collection events reported in that study, two were selected by examining the catch 

composition and TS distribution (Fig. 2) using in situ TS measurement criteria discussed in 

Traynor (1996). The new intercept value i was derived by minimizing the Sum-of-Squared 

10(𝑇𝑇𝑇𝑇
���� 

differences (SS) between the observed mean backscattering cross section (𝜎𝜎�𝑏𝑏𝑠𝑠 = 10)) as 

determined by averaging the in situ TS detections from Brodeur & Wilson (1996), and the expected 

mean backscattering cross section (𝜎𝜎��𝑏𝑏𝑠𝑠) as computed using a TS model of the form in Equation 10 

with intercept i, transformed to linear units as 

�20∗log10 𝐿𝐿𝑗𝑗−𝑖𝑖�
𝜎𝜎�𝑏𝑏𝑠𝑠𝑗𝑗 =10 �

10  (10) 

and 

∑ �𝜎𝜎𝑗𝑗 �𝑏𝑏𝑠𝑠𝑗𝑗� 
= ,𝜎𝜎��𝑏𝑏𝑠𝑠 𝑛𝑛 

(11) 

where L is the fork length (cm) of the j-th fish caught and n is the total number of fish caught. 

The resulting intercept value for the alternative age-0 pollock model was -64.8 dB re 1 m2. The 

rest of this analysis was identical to the original, primary analysis, except that -64.8 is substituted 

for the intercept -66 in Equation 10. 

The final sensitivity analysis investigated the effect of scaling all backscatter regions using the 

single nearest haul’s trawl catch instead of assigning one or more trawl catches to backscatter 

regions based on visual inspection of the echogram and analyst experience. This alternative 

approach analyzed the backscatter from the midwater layer in the same manner as analysis of the 
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surface layer, as described in the acoustic analysis section. The rest of this analysis was identical 

to the original, primary analysis. 

RESULTS 

Catch and Size Composition 

The 2014 BASIS acoustic trawl survey encompassed 7.56 × 104 nmi2 represented by 78 0.5° 

latitude and 1° longitude grid cells and 1,612 nmi of valid acoustic trackline (Fig. 3). During the 

survey, 79 surface trawls and 35 midwater trawl hauls (19 using the Cantrawl and 16 using the 

MM2 trawl) were conducted. Age-0 walleye pollock dominated the aggregate trawl catches by 

number (Table 3), accounting for 87% for the midwater Cantrawl samples, 94% for the MM2 

samples, and 87% for the surface Cantrawl samples. By weight, age-1+ pollock accounted for 

62% of the total weight for the midwater Cantrawl samples, whereas the jellyfish, Chrysaora 

melanaster, accounted for 88% of the total weight for the MM2 samples and 80% for the surface 

Cantrawl samples. 

Catch composition varied over the survey region. By number, age-0 pollock dominated the 

majority of inshore catches, where seafloor depths were shallower than 100 m, whereas Atka 

mackerel and jellyfish were proportionally more abundant in the offshore catches where seafloor 

depths were greater than 150 m (Fig. 4). Chrysaora melanaster and age-1+ gadids (pollock and 

Pacific cod) comprised most of the total weight of inshore catches, whereas Atka mackerel and 

jellyfish outranked other species in the offshore hauls (Fig. 5). When the proportion of catch was 

expressed in terms of acoustic backscatter (relative contribution to backscatter, Equation 7) 
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(Fig. 6), most of the survey’s “catch-backscatter” was due to pollock (age-0 and age-1+). 

However, in one localized area along the 50 m isobaths, over half of the catch-backscatter was 

due to adult Pacific cod. Offshore catch-backscatter, near the 200 m isobath, was mostly due to 

Atka mackerel and other species (e.g., sablefish, prowfish, and juvenile rockfish).  

Age-0 pollock ranged in fork length from 2.9 to 12.2 cm with an overall mean length of 6.62 cm. 

Length samples from the surface and midwater trawls were similar, with a single mode observed 

at 6.5 cm. Age-0 pollock length measurements from midwater MM2 trawl samples ranged 

slightly lower (3.2 – 10.3 cm) than midwater Cantrawl samples (3.8 – 12.2 cm). Generally, 

average lengths at each trawl location were 6 cm or larger across the survey area (Fig. 7). 

Slightly smaller age-0 pollock, averaging 5 cm, were mostly located in an area southeast of the 

Pribilof Islands. 

Abundance Estimates 

Acoustic backscatter observed along the trackline was highest inshore, where bottom depths 

were < 100 m (Fig. 8). Near-bottom and unidentified backscatter (excluded from abundance 

estimates) was substantial in the more easterly region of the survey between the 50 m and 70 m 

isobaths. In general, the highest backscatter that was attributed to species occurred in areas where 

age-0 pollock or age-1+ pollock dominated the trawl catches (compare Figs. 6 and 8). 

The overall abundance estimate for age-0 pollock was 6.85 × 1011 fish, comprising a biomass of 

2.1 million metric tons (t), with an estimated mean length of 6.61 cm FL (Fig.9). Age-0 pollock 

accounted for 92.4% of the total abundance among all species analyzed. Chrysaora melanaster 
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represented the second highest abundance at 3.5%, followed by other jellyfish (non-C. 

melanaster) at 1.2%, and age-1+ pollock at 1.2%. The highest age-0 pollock densities were in 

regions where the mean bottom depth was < 75 m, whereas the highest age-1+ pollock densities 

were mostly found in areas where bottom depths were > 60 m (Fig. 10). 

In 2014, age-0 pollock were the most abundant species in the analyzed portion of the water 

column, particularly in the upper 30 m, where nearly half (47%) of the estimated abundance was 

observed (Fig. 11A). Although some larger pollock were also in the upper 30 m (31% by 

number, 20% by biomass), most of them were deeper (Fig. 11B). For the backscatter analyzed in 

the survey area, the abundance-weighted mean depth was 37 m for age-0 pollock and 52 m for 

age-1+ pollock. 

Sensitivity Analyses 

Relative to the primary analysis results, the sensitivity analyses exhibited negative and positive 

effects on the age-0 biomass and abundance estimates, and entirely negative effects on age-1+ 

pollock biomass and abundance estimates (Table 4; Fig. 12A,B). The largest negative effect on 

age-0 pollock occurred after applying an alternate TS-model for age-0 pollock, which resulted in 

a 22% decrease in the biomass and abundance. The largest positive effect occurred by adjusting 

the estimates for trawl selectivity, which resulted in an 11% increase in biomass and a 22% 

increase in abundance for age-0 pollock, shifting the modal length of age-0 pollock from 7 cm to 

6 cm (Fig. 12B). For the larger, age-1 + pollock, trawl selectivity decreased the biomass by 52% 

and abundance by 45%. This effect is due to the shift in relative proportion of age-0 and larger 

pollock, which means following the selectivity correction, less of the backscatter can be 
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attributed to larger pollock thereby reducing their abundance. Finally, using the nearest haul for 

scaling all of the backscatter yielded a relatively minor (< 10%), negative effect on the biomass 

and abundance for age-0 and age-1+ pollock (Table 4). 

Multi-year Grid-cell Comparison of Age-0 Pollock Abundance 

Age-0 pollock abundance from 2011 to 2012, and 2014 was compared using 28 common grid 

cells among the three survey years (Fig. 13A), representing 5.36 × 104 nmi2 of surveyed area. In 

this area, the age-0 pollock abundance estimate was 5.4 × 1011 fish for 2014, which was about 

3.6 times higher than in 2012, and 8.7 times higher than in 2011. A comparison of the south – 

north gradient in abundance across survey years (e.g., A-7, B-7, C-7, and D-7) shows that the 

population observed in 2014 was distributed farther north in shallower waters as compared to 

2011-2012 (Fig. 13B). 

DISCUSSION 

This report documents the findings from the 2014 acoustic-survey for age-0 pollock in the 

Bering Sea, which was the third acoustic-trawl survey conducted by the AFSC MACE Program 

in collaboration with the EMA Program. In comparison to the previous surveys conducted in 

2011-2012 (De Robertis et al. 2014), the overall age-0 pollock abundance estimate for 2014 was 

the highest (3.5 times higher than in 2012, and 9 times higher than 2011). Yet while recruitment 

of the 2014 year class in the Bering Sea pollock stock has been unremarkable, the 2012 year 

class appears to be one of the largest observed (Ianelli et al. 2017) indicating that the age-0 

abundance estimates reported here were not predictive of year-class strength. Heintz et al. (2013) 
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found a positive correlation between the average-energy-content (AEC: kJ/fish) of age-0 pollock 

and age-1 recruits-per-spawner, but this relationship also did not forecast the large 2012 year-

class (Heintz et al. 2017). 

This report documents the findings from the 2014 acoustic-survey for age-0 pollock in the 

Bering Sea, which was the third acoustic-trawl survey conducted by the AFSC MACE Program 

in collaboration with the EMA Program. In comparison to the previous surveys conducted in 

2011-2012 (De Robertis et al. 2014), the overall age-0 pollock abundance estimate for 2014 was 

the highest observed (3.5 times higher than in 2012, and 9 times higher than 2011). Yet 

recruitment of the 2014 year class in the Bering Sea pollock stock has been unremarkable, while 

the 2012 year class appears to be one of the largest observed (Ianelli et al. 2017). Although the 

estimated abundance of age-0 pollock presented in this paper did not forecast age-1 pollock 

recruitment, Heintz et al. (2013) found a positive correlation between the average-energy-content 

(AEC: kJ/fish) of age-0 pollock and age-1 recruits-per-spawner. However, due to the relatively 

low AEC in 2012, the large 2012 year class was not forecast (Heintz et al. 2017). 

Annual Changes in Abundance and Species Dominance 

In 2014, age-0 pollock were the most abundant species caught in the midwater and surface tows 

(Table 3). This contrasts with previous surveys in 2011 and 2012 where the dominant catch 

species were different, particularly in the surface tows. In the 2011 surface trawls, age-0 cod was 

the most abundant species, and in 2012, capelin was the most abundant species (De Robertis 
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et al. 2014), yet neither of these species were abundant in 2014 (< 0.1% of the aggregate catch by 

number in midwater and surface tows). These findings suggest that substantial inter-annual 

differences in composition of forage fish may be expected. 

Uncertainty in Backscatter Classification 

About half of the trawl hauls that caught age-0 pollock also caught larger pollock, indicating that 

different-sized pollock were often present in the same region of the water column during the 

2014 survey. These cases presented challenges in interpreting the backscatter, specifically in 

delineating the different pollock size classes. Where it was possible, fish schools were separated 

to the different-sized fish based on the backscatter appearance. For example, the larger pollock 

often formed discrete high backscatter aggregations often termed “cherry-balls” for their 

appearance on the echograms. In contrast, age-0 pollock had diverse backscatter patterns in 

2014, which included instances of “cherry-ball” aggregation types, making it possible that some 

fish schools were misinterpreted. The presence of the larger pollock distributed throughout the 

2014 survey area was expected given the findings of the MACE EBS survey of age-1+ pollock in 

June-August 2014 (Honkalehto and McCarthy 2015). The effect of classification uncertainty on 

2014 age-0 pollock estimates given here is difficult to quantify directly and represents a potential 

limitation in applying an acoustic survey approach for age-0 pollock in years when the spatial 

overlap with larger pollock (or other strong acoustic scatterers) is substantial. Although 

multifrequency methods indicate that discriminating between schools of age-0 pollock and adult 

pollock is unlikely (De Robertis et al. 2010), broadband acoustic methods might discriminate 

between individuals or schools of small and large swimbladdered fish. This improved 
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discriminatory ability would be derived from using wider bandwidth signals to identify resonant 

or near-resonant scattering from young-of-the-year fish. For example, Bassett et al. (2017) 

(Fig. 7), which used wideband scattering techniques, observed scattering at and near resonance in 

a relatively narrow bandwidth around 18 kHz that was consistent with the size and swimbladder 

geometries reported for young-of-the year pollock (Coyle and Pinchuck 2002 and Dougherty et 

al. 2007). 

Improvements to Surveys of Age-0 Pollock 

The report on the 2011 and 2012 surveys (De Robertis et al. 2014) set out a series of 

recommendations for future surveys on age-0 pollock in the Bering Sea. This survey 

incorporated several of these recommendations, which included using a smaller trawl to sample 

backscatter. The MM2 trawl provided a sampling option in poor weather conditions when the 

much larger CanTrawl could not be operated. While the retention properties of the MM2 with 

respect to age-0 pollock were not directly evaluated in this survey, the modifications to the 

original Marinovich trawl were specifically designed with the intent to improve retention of 

similarly-sized young-of-the-year fishes in the Chukchi Sea surveys (De Robertis, per. comm.). 

Another recommendation was to increase the number of targeted midwater trawl samples. 

During the 2014 survey, the number of targeted midwater trawl samples increased 1.6 times from 

the 2012 survey, improving backscatter identification. Several of the sensitivity analyses from 

the previous report were repeated, which provided insight into the influence of certain analysis 

approaches and assumptions, and provided contrast with previous surveys (Table 4). 
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Target Strength of Age-0 Pollock 

Applying a standard pollock TS-length function (Traynor 1996) to age-0 pollock assumes that 

the backscatter properties derived by analyzing in situ observations of primarily adult pollock 

can be extrapolated to lengths corresponding to age-0 pollock. This assumption may not be valid, 

as substantial external morphological differences between these size groups are apparent. These 

differences may result in a different relationship between fish length and swim bladder shape 

(the primary sound scattering organ) that departs from the log-linear relationship between length 

and TS observed in age-1+ pollock (Bassett, pers. comm., 3 April 2018). Fewer in situ 

observations of age-0 pollock have been made in which individual fish targets can be 

distinguished and other acoustically visible organisms are not present. The data points used for 

this analysis were collected in 1990, and out of many TS collections during that cruise, only two 

were found to be suitable for TS model fitting. Using an age-0 specific TS relationship results in 

a substantial reduction in age-0 abundance (22 %), as the higher intercept value for the TS length 

function (-64.8 dB re 1 m2) implied greater individual reflectivity per individual, and therefore 

fewer individual age-0 pollock per unit backscatter. Continued use of the standard pollock TS 

relationship maintains comparability with previous BASIS efforts but is probably not as accurate 

as using a TS relationship that has been demonstrated to be appropriate for age-0 pollock. 

Implementing an alternative TS model would require more TS observations on age-0 pollock to 

improve confidence in the parameter estimates. 

Trawl Selectivity 

Trawl selectivity has been shown to have strong effects on some pollock surveys (Williams 

2013) and likely impacted the abundance estimates of age-0 pollock during this survey. When 
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trawl selectivity models from De Robertis et al. (2017) were applied, the estimated abundance of 

age-0 pollock increased by 22% and abundance-at-length was shifted toward smaller fish 

(Fig. 12 B) relative to the original, primary analysis.  

The results validated the expectation that the MM2 trawl would better retain fish in the size 

range of age-0 pollock than the Cantrawl (used in 2011 and 2012), reducing the overall survey-

level effects from the combined trawl samples. However, since trawl selectivity models from 

De Robertis et al. (2017) were based on a different species, they may not correctly represent 

pollock escapement and herding behavior. Hence, this trawl selectivity correction was not 

included in the original, primary abundance assessment.  

Assignment of Trawl Catch to Classified Backscatter 

Considerable analysis effort was spent deciding which trawl catches to use for scaling specific 

backscatter regions. A sensitivity analysis was used to contrast analyst assignments with direct 

spatial-based assignment of trawl-catch to backscatter, removing the manual review of trawl-

catch, length-composition, and backscatter pattern. The results show that the effects on overall 

age-0 pollock abundance were relatively minor (4% decrease), but a larger effect was observed 

on larger pollock biomass (9% decrease). These results were similar to the sensitivity analyses 

carried out for the 2011 and 2012 data by De Robertis et al. (2014), where the nearest haul 

approach was evaluated. As the objectives of this survey are to derive a best estimate of age-0 

pollock abundance, direct assignment of the nearest trawl catch to backscatter may be an 

acceptable approach, when analyst time is limited. 
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In conclusion, the results of this survey form a short, but informative abundance time series of an 

important component of the Bering Sea ecosystem, and demonstrate the process of making 

improvements in survey methodology that will hopefully continue as future monitoring efforts 

are undertaken. 
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Table 1.-- Target strength to size relationships from the literature used to allocate 38 kHz acoustic 
      backscatter to species in this study.  The symbols in the equations are as follows: a is the  
      bell radius (m), L is length (cm), Z is depth (m).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Herring TS formula requires an input for depth; for this analysis, the depth was fixed at 10 m.  

Species or group TS  (dB re 1 m2) TS derived for 
which species 

Reference 

 
Gadids 

 
TS = 20 log10L - 66 

 
Gadus 
chalcogrammus 
Gadus morhua 
 

 
Traynor 1996, 
Rose and Porter 1996 

Capelin TS = 20 log10L -70.3 Mallotus villosus Guttormsen and 
Wilson 2009 
 

Jellyfish TS = 10 log10(πa2) - 46.8 Chrysaora 
melanaster 

De Robertis and 
Taylor 2014 
 

Sand lance TS = 56.5 log10L - 125.1 Ammodytes 
personatus 
 

Yasuma et al. 2009 

Smelts TS = 20 log10L - 65.9 Osmerus eperlanus Peltonen et al. 2006 
 

Squid TS = 20 log10L - 75.4 Todarodes pacificus Kang et al. 2005 
 

Herring TS = 20 log10L - 67.4  
- 2.3 log10(1 + z/10)* 

Clupea harengus Ona et al. 2003 
 
 

Atka mackerel TS = 18.5 log10L - 81 Pleurogrammus 
monopterygius 

Gauthier and Horne 
2004 
 

Other fishes TS = 20 log10L - 67.4 physoclists Foote 1987 
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Table 2. -- Least-squares linear regression parameters of loge transformed organism length (L; 
cm) and loge transformed whole-body wet weight (W; g) used to estimate biomass for 
pollock observed during the 2014 BASIS survey. 

loge (W) = b loge (L) - a 

Organism 
Reference 

or 
data source 

L a b 

Pollock (age-0) 

Pollock (age-1+) 

Buchheister et. al. 2006 

Honkalehto and McCarthy 
2015 

standard length 

fork length 

11.485 

11.594 

2.958 

2.935 
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Table 3. -- Catch by species from 79 near surface Cantrawl hauls (A), 19 midwater Cantrawl 
hauls (B), and 16 midwater Marinovich hauls (C) during the 2014 survey. Less 
abundant species were pooled into the 'other' category. Immature and juvenile 
salmon were grouped. 

A. Cantrawl - surface 
Weight 

Common name Scientific name Number (%) (kg) (%) 

walleye pollock (age-0) Gadus chalcogrammus  668,001 87.0  1,504.5 3.8 
walleye pollock (age-1+) Gadus chalcogrammus 39,638 5.2 2,347.6 5.9 
sea nettle Chrysaora melanaster 28,298 3.7 31,612.1 79.9 
Atka mackerel Pleurogrammus monopterygius 10,211 1.3 828.1 2.1 
sablefish Anoplopoma fimbria 6,762 0.9 294.1 0.7 
sockeye salmon Oncorhynchus nerka 4,167 0.5 766.9 1.9 
hydromedusa Aequorea sp. 2,132 0.3 430.1 1.1 
Pacific herring Clupea pallasi 1,561 0.2 210.8 0.5 
Pacific cod (0-age) Gadus macrocephalus 1,261 0.2 4.9 < 0.1 
rockfish (0-age) Sebastes sp. 1,143 0.1 1.0 < 0.1 
chum salmon Oncorhynchus keta 573 0.1 535.9 1.4 
jellyfish Cyanea sp. 572 0.1 176.4 0.4 
capelin (age-0) Mallotus villosus 518 0.1 0.3 < 0.1 
lion's mane Cyanea capillata 500 0.1 95.4 0.2 
greenling Hexagrammidae (family) 469 0.1 2.1 < 0.1 
capelin Mallotus villosus 436 0.1 1.8 < 0.1 
Pacific sandfish Trichodon trichodon 299 < 0.1 25.7 0.1 
whitecross jellyfish Staurophora mertensii 249 < 0.1 101.3 0.3 
prowfish Zaprora silenus 206 < 0.1 5.5 < 0.1 
sand lance Ammodytidae (family) 146 < 0.1 1.4 < 0.1 
yellowfin sole Limanda aspera 118 < 0.1 58.8 0.1 
squid Teuthida (order) 106 < 0.1 0.2 < 0.1 
Chinook salmon Oncorhynchus tshawytscha 102 < 0.1 167.7 0.4 
other 354 < 0.1 369.5 0.9 
Totals 767,822 39,542.0 
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Table 3. -- Continued. 

B. Cantrawl - midwater 

Common name Scientific name Number (%) 
Weight 

(kg) (%) 

walleye pollock (age-0) Gadus chalcogrammus  468,331 87.3 1,217.2 10.6 
walleye pollock (age-1+) Gadus chalcogrammus 64,755 12.1 7,072.3 61.6 
sea nettle Chrysaora melanaster 2,444 0.5 2,776.6 24.2 
Pacific cod Gadus macrocephalus 226 < 0.1 300.4 2.6 
jellyfish (unidentified) 221 < 0.1 1.7 < 0.1 
capelin Mallotus villosus 182 < 0.1 0.7 < 0.1 
Pacific cod (age-0) Gadus macrocephalus 124 < 0.1 0.7 < 0.1 
other 366 0.1 115.6 1.0 
Totals 536,649 11,485.2 

C. Marinovich - midwater 

Common name Scientific name Number (%) 
Weight 

(kg) (%) 

walleye pollock (age-0) Gadus chalcogrammus 124,829 93.9 228.0 5.6 
sea nettle Chrysaora melanaster 5,554 4.2 3,563.7 87.7 
walleye pollock (age-1+) Gadus chalcogrammus 882 0.7 188.1 4.6 
Pacific cod (age-0) Gadus macrocephalus 590 0.4 1.8 0.0 
hydromedusa Aequorea sp. 544 0.4 2.8 0.1 
lion's mane Cyanea capillata 170 0.1 35.1 0.9 
capelin (age-0) Mallotus villosus 154 0.1 0.1 < 0.1 
other 285 0.2 44.6 1.1 
Totals 133,008 4,064.1 
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Table 4. -- Effect of changing post-processing parameters on estimated pollock abundance 
and biomass observed during the 2014 BASIS survey. 

% Change relative to the primary analysis 

Alternative 
analysis considered 

Age-0 
Abundance Biomass 

Age-1+ 
Abundance Biomass 

Apply alternative target 
strength model to age-0 pollock 

- 22 -22 - 8 - 6 

Add trawl selectivity + 22 +11 - 45 -52 

Assign nearest midwater haul to 
midwater zone 

- 4 - 3 - 2 - 9 
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Figure 1.-- Size-dependent logistic selectivity function applied to the Marinovich 
and Cantrawl nets as part of the alternate scenarios considered. The 
length-at-50% retention (L50) was set to 15.65 cm and 29.92 cm for 
the Marinovich and Cantrawl, respectively. The selection range (SR; 
length (cm) between 25% and 75% retention) was set to 9.67 and 
11.61 cm for the Marinovich and Cantrawl, respectively. These data 
were based on De Robertis et al. (2015). 

3636



     

  
 

 

       
  

      
                      

      
                      

   

Figure 2.--Target-strength (dB) as a function of fork length (cm) for walleye pollock < 20 cm
                   in length illustrated using the Traynor (1996) model (red-dash line) and the age-0 
                   only model (blue-line). The age-0 only model was derived using in situ target-

strength (TS) measurements for age-0 pollock observed during hauls 91 and 100 
                   (Brodeur and Wilson 1996). The length and TS averages for the in situ TS 

measurements are illustrated on the histogram plots as vertical red-dash 
                   lines, and presented on the TS-length model plot as triangles. 
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Figure 3.--The grid used in data analysis and a map of survey effort during the 2014 BASIS survey. 
  The acoustic data in each 1 degree longitude by 30 minute latitude grid cell 
 (pictured as blue grid) was extrapolated over the grid cell area if > 10 nmi of 
 acoustic trackline were available in the cell. Acoustic tracklines (black lines),
 locations of surface trawls (red cirles), and targeted midwater trawls (blue triangles) 
 are indicated. 
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Figure 4.-- Catch composition expressed as proportion of catch by individuals caught
during the BASIS survey in 2014. The larger pie graphs represent midwater
trawl hauls and the smaller ones represent surface trawls. 
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Figure 5.-- Catch composition expressed as proportion of catch by weight caught
during the BASIS survey in 2014. The larger pie graphs represent midwater
trawl hauls and the smaller ones represent surface trawls. 

4040



 
                
                 
                   
                 

 

La
titu
de
 

100 

50 m 

70 m 
200 

164°W168°W172°W 

60°N 

58°N 

56°N 

54°N 

m 

m
Age-0 pollock 
Pollock (age-1+)
Age-0 Pacific cod 
Pacific cod (age-1+)
C. melanaster 
Atka mackerel
Other species 

Longitude 
Figure 6.-- Estimated proportion of backscatter attributable to key species derived by 

  combining estimates of species composition from trawl catches and estimates
of target strength listed in Table 1 for the BASIS survey in 2014.  The larger
  pie graphs represent estimates for midwater trawl hauls and the smaller ones
  represent surface trawls. 
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Figure 7.-- Age-0 pollock average fork length (cm) at locations sampled by 

midwater (squares) and surface trawls (circle). 
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Figure 9.--Estimated pollock population numbers (millions) and biomass (thousand t) 
at length (cm) observed during the 2014 BASIS survey. 

4444



200

70 

 m 

m 

50 m

¯58°N 

La
titu
de 56°N 

54°N 

168°W 166°W 164°W 162°W 160°W 

Age-0 Age-1+ 

480 490
(t/nmi2 ) 

45

Longitude 

Figure 10.-- Age-0 pollock (red) and age-1+ pollock (black) density estimates
(biomass, t/nmi 2) along tracklines during the 2014 BASIS survey.
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Figure 12.-- Midwater pollock population biomass (thousand t) (A) and numbers (millions) (B) at 
length from the primary analysis compared to the sensitity analysis (selectivity, age-0 
target strength (TS) model, nearest midwater hauls). Pollock biomass comparisons are 
illustrated for fish < 40 cm (A), and pollock abundance comparisons are illustrated for 
fish < 15 cm (B)). 
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Figure 13.--Reference grid-cells for comparing the estimated abundance of age-0 pollock
  during the 2011, 2012, and 2014 BASIS surveys (A), where the shaded cells 

are common among all three surveys. Histogram of estimated age-0 pollock
  abundance for the shaded cells (B). 
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