

Genetic Stock Composition Analysis of Chinook Salmon Bycatch Samples from the Rockfish and Arrowtooth Flounder 2013 Gulf of Alaska Trawl Fisheries and the Gulf of Alaska Salmon Excluder Device Test

by

J.R. Guyon, Hv. T. Nguyen, C.M. Guthrie III, J. Bonney, K. McGauley, K. Hansen, and J. Gauvin

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center

January 2015

NOAA Technical Memorandum NMFS

The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature.

The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-NWFSC series is currently used by the Northwest Fisheries Science Center.

This document should be cited as follows:

Guyon, J. R., Hv. T. Nguyen, C.M. Guthrie, III, J. Bonney, K. McGauley, K. Hansen, and J. Gauvin. 2015. Genetic stock composition analysis of Chinook salmon bycatch samples from the rockfish and arrowtooth flounder 2013 Gulf of Alaska trawl fisheries and the Gulf of Alaska salmon excluder device test. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-289, 19 p. doi:10.7289/V5R78C4Q.

Document available: http://www.afsc.noaa.gov/Publications/AFSC-TM/NOAA-TM-AFSC-289.pdf

Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA.

NOAA Technical Memorandum NMFS-AFSC-289 doi:10.7289/V5R78C4Q

Genetic Stock Composition Analysis of Chinook Salmon Bycatch Samples from the Rockfish and Arrowtooth Flounder 2013 Gulf of Alaska Trawl Fisheries and the Gulf of Alaska Salmon Excluder Device Test

by J.R. Guyon¹, Hv. T. Nguyen¹, C.M. Guthrie III¹, J. Bonney², K. McGauley², K. Hansen², and J. Gauvin³

> ¹Auke Bay Laboratories Genetics Program Alaska Fisheries Science Center 17109 Pt. Lena Loop Road Juneau, AK 99801

> > ²Alaska Groundfish Data Bank 363 Curlew Way Kodiak, AK 99615

³Alaska Seafood Cooperative 4241 21st Avenue W., Suite 302 Seattle, WA 98199

www.afsc.noaa.gov

U.S. DEPARTMENT OF COMMERCE

Penny S. Pritzker, Secretary **National Oceanic and Atmospheric Administration** Kathryn D. Sullivan, Under Secretary and Administrator **National Marine Fisheries Service** Eileen Sobeck, Assistant Administrator for Fisheries

January 2015

This document is available to the public through:

National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161

www.ntis.gov

ABSTRACT

A genetic analysis of samples from the Chinook salmon (Oncorhynchus tshawytscha) bycatch of the 2013 Gulf of Alaska (GOA) trawl fisheries for Pacific rockfish (*Sebastes* spp.) and arrowtooth (Atheresthes stomias) flounder was undertaken to determine the stock composition of the sample sets. Samples were genotyped for 43 single nucleotide polymorphism (SNP) DNA markers and results were estimated using the Alaska Department of Fish and Game (ADF&G) SNP baseline. In 2013, genetic samples from the bycatch of the GOA rockfish fishery were collected by the fishing industry using a census sampling protocol where every Chinook salmon encountered was sampled. Based on the analysis of 2,029 Chinook salmon bycatch samples collected throughout the 2013 GOA rockfish trawl fishery, West Coast U.S. stocks (WA/OR/CA) represented the largest stock grouping (60%) with smaller contributions from British Columbia (31%), Coastal Southeast Alaska (6%), and Northwest GOA (2%) stocks. Genetic samples were also collected from Chinook salmon taken in the bycatch of the 2013 GOA arrowtooth flounder trawl fisheries. Those samples were collected opportunistically from a single vessel; consequently, the resulting stock composition estimates should be considered as stock compositions of the sample set rather than a representative composition of the overall bycatch. Based on the analysis of 279 Chinook salmon bycatch samples, West Coast U.S. (43%), British Columbia (39%), Coastal Southeast Alaska (14%), and Northwest GOA (3%) stocks comprised the largest stock groups. We also produced a stock composition estimate of Chinook salmon from a single test haul of the salmon excluder device performed in April 2013 in an area near Kodiak Island in Shelikof Strait. Stock composition results showed that the majority of those 95 Chinook salmon originated from West Coast U.S. (79%), British Columbia (17%), and Coastal Southeast Alaska (3%) stocks.

CONTENTS

ABSTRACT	iii
CONTENTS	
INTRODUCTION	
SAMPLE DISTRIBUTION	1
Gulf of Alaska Rockfish Fishery	1
Gulf of Alaska Arrowtooth Flounder Fishery	3
Excluder Samples	4
GENETIC STOCK COMPOSITION	5
Genotyping	
Stock Composition Methods	7
Stock Composition Results – 2013 Gulf of Alaska Rockfish Trawl Bycatch	7
Stock Composition Results – 2013 Gulf of Alaska Arrowtooth Flounder Trawl Bycatch	8
Stock Composition Results – 2013 GOA Excluder Test	10
ESTIMATE COMPARISONS	10
SUMMARY	11
ACKNOWLEDGMENTS	13
CITATIONS	15
APPENDIX	17

INTRODUCTION

The Bering Sea and the Gulf of Alaska (GOA) are known feeding habitats for multiple brood years of Chinook salmon (*Oncorhynchus tshawytscha*) originating from many different localities in North America and Asia. Determining the geographic origin and stock composition of salmon caught in federally managed fisheries is essential to understanding whether fisheries management could address conservation concerns. This report provides genetic stock identification results for Chinook salmon bycatch samples collected 1) in the GOA from the rockfish (*Sebastes* spp.) and arrowtooth flounder (*Atheresthes stomias*) trawl fisheries and 2) from a Gulf of Alaska salmon excluder device test.

The goal of this report is to present stock composition estimates for the samples collected from the bycatch of the trawl fisheries and salmon excluder device test. The analysis uses a single nucleotide polymorphism (SNP) baseline provided by the Alaska Department of Fish and Game (ADF&G) (Templin et al. 2011). This baseline was used previously to estimate stock composition of samples from the 2005-2012 Chinook salmon bycatch (NMFS 2009; Guyon et al. 2010a and b; Guthrie et al. 2012, 2013, 2014; Larson et al. 2013). For additional information regarding background and methodology, refer to the Chinook salmon bycatch report prepared previously for the 2008 Bering Sea trawl fishery (Guyon et al. 2010a).

SAMPLE DISTRIBUTION

Gulf of Alaska Rockfish Fishery

Samples were collected from the Chinook salmon bycatch of the federally managed 2013 Alaska GOA rockfish trawl fishery by the Alaska Groundfish Data Bank (AGDB) for analysis at the Alaska Fisheries Science Center's Auke Bay Laboratories (ABL). Although there was no requirement for sample collection, the AGDB implemented a census approach in 2013 whereby genetic samples (axillary processes) and biological information were collected from every Chinook salmon encountered in the bycatch. Axillary process tissues were stored in coin envelopes which were labeled, frozen, and shipped to the ABL. Between 1 May and 15 November 2013 (week numbers 18-46), genetic samples were collected from 2,079 Chinook salmon. Because samples were taken from the overall bycatch, the sample distribution is considered to be the bycatch distribution. The sample collection area is approximated in Figure 1 and the bycatch enumeration is shown in Figure 2.

Figure 1. -- Relative location of Chinook salmon bycatch samples collected by the Alaska Groundfish Data Bank in the 2013 Gulf of Alaska rockfish trawl fishery.

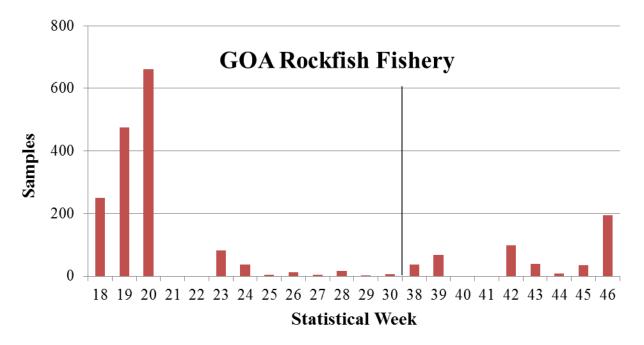
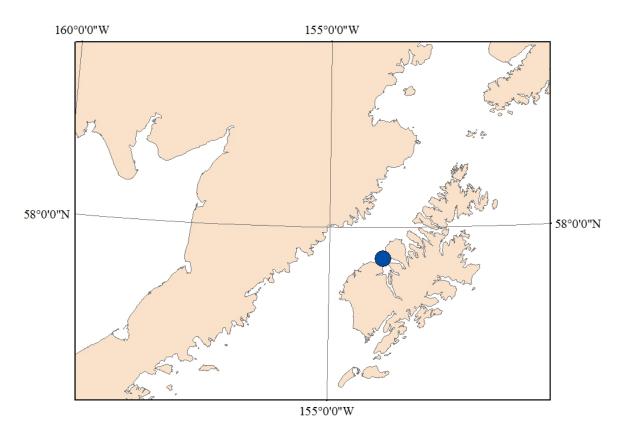


Figure 2. -- Genetic samples collected by the Alaska Groundfish Data Bank from the census of the Chinook salmon bycatch in the 2013 Gulf of Alaska rockfish trawl fishery plotted by statistical week. The line shows the demarcation between weeks 30 and 38 for which no Chinook salmon bycatch was encountered.

Gulf of Alaska Arrowtooth Flounder Fishery

Samples were collected from the Chinook salmon bycatch of the federally managed 2013 Alaska GOA arrowtooth flounder trawl fishery by the Alaska Seafood Cooperative for analysis at the ABL. Although there was no requirement for sample collection, the Alaska Seafood Cooperative implemented an opportunistic sampling approach in 2013 to collect genetic samples (axillary processes) and biological information from Chinook salmon encountered in the bycatch. Axillary process tissues were stored in coin envelopes which were labeled, frozen, and shipped to the ABL. From 66 tows, 302 Chinook salmon (7.5% of the overall bycatch) were sampled between 28 April and 18 May 2013. Because samples were taken opportunistically from a single vessel, the sample distribution is not considered representative of the entire bycatch but is used to



indicate presence/absence of particular Chinook salmon stocks. The sample collection area is approximated in Figure 3.

Figure 3. -- Approximate location of Chinook salmon bycatch samples collected by the Alaska Seafood Cooperative in the 2013 Gulf of Alaska arrowtooth flounder trawl fishery.

Excluder Samples

Chinook salmon from excluder tests were genetically sampled in test hauls that had greater than 50 Chinook salmon samples, which in the Spring of 2013, occurred in a single haul aboard the FV *Caravelle*. This unique sample set of 105 samples from a single haul provided an opportunity to continue testing whether Chinook salmon stocks could be aggregated at sea. The location of the sample collection is shown in Figure 4.

Figure 4. -- Location of samples collected in the 2013 salmon excluder device test. Plotted is the position of the single haul from the FV *Caravelle* where 105 Chinook salmon genetic samples were collected.

GENETIC STOCK COMPOSITION

Genotyping

DNA was extracted from axillary process tissue and matrix-assisted laser desorption/ionization - time of flight (MALDI-TOF) genotyping was performed as described previously (Guyon et al. 2010a) using a Sequenom MassARRAY iPLEX platform (Gabriel et al. 2009) to genotype 43 SNP DNA markers represented in the Chinook salmon baseline (Templin et al. 2011). The SNP baseline contains genetic information for 172 populations of Chinook salmon grouped into 11 geographic regions. This baseline was used previously for the genetic analysis of the 2005-2012 Chinook bycatch (NMFS 2009; Guyon et al. 2010a, b; Guthrie et al. 2012, 2013, and 2014). In addition to internal MALDI-TOF chip controls, 10 previously genotyped samples were included on each chip during the analyses and resulting genotypes were compared to those from ADF&G, which used TaqMan chemistries (Life Technologies, Inc.). Concordance rates of 99.8% between the two chemistries for the 2013 controls confirmed the utility and compatibility of both genotyping methods.

From the Chinook salmon bycatch of the 2013 GOA rockfish trawl fishery, a total of 2,070 samples were analyzed of which 2,030 samples were successfully genotyped for 35 or more of the 43 SNP loci, a success rate of 98%. These genotypes were analyzed using C++ programs written by the ABL's Genetics Program to check for duplicate samples and one was found and subsequently removed for a final sample set of 2,029. Those remaining samples had genetic information for an average of 42.3 of 43 markers.

From the Chinook salmon bycatch of the 2013 GOA arrowtooth trawl fishery, a total of 302 samples were analyzed of which 279 samples were successfully genotyped for 35 or more of the 43 SNP loci, a success rate of 92%. These genotypes were analyzed to check for duplicate samples and none were found. The 279 samples had genetic information for an average of 41.5 of 43 markers.

From the Chinook salmon sampled in the GOA from the 2013 salmon excluder device test, a total of 105 samples were analyzed of which 95 samples were successfully genotyped for 35 or more of the 43 SNP loci, a success rate of 90%. These genotypes were analyzed to check for duplicate samples and none were found. The 95 samples had genetic information for an average of 40.4 of 43 markers.

6

Stock Composition Methods

Stock composition estimates were derived using both BAYES (Bayesian analysis) and SPAM Ver. 3.7 (maximum likelihood analysis) software (Tables 1-3). BAYES software uses a Bayesian algorithm to produce stock composition estimates and can account for missing alleles in the baseline (Pella and Masuda 2001). In contrast, SPAM uses a conditional maximum likelihood approach in which the mixture genotypes are compared directly with the baseline although an option was used within SPAM to allow Bayesian modeling of baseline allele frequencies (ADF&G 2003). Convergence of the SPAM estimates was monitored with the "Percent of Maximum" value and all exceeded the 90% guaranteed percent achievement of the maximal likelihood. For each BAYES analysis, 11 Monte Carlo chains starting at disparate values of stock proportions were configured such that 95% of the stocks came from one designated region with weights equally distributed among the stocks of that region. The remaining 5% was equally distributed among remaining stocks from all other regions. For all estimates, a flat prior of 0.005814 (calculated as 1/172) was used for all 172 baseline populations. The analyses were completed for a chain length of 10,000 with the first 5,000 deleted during the burn-in phase when determining overall stock compositions. Convergence of the chains to posterior distributions of stock proportions was determined with Gelman and Rubin shrink statistics, which were 1.17 or less for all the estimates, conveying strong convergence to a single posterior distribution (Pella and Masuda 2001).

Stock Composition Results – 2013 Gulf of Alaska Rockfish Trawl Bycatch

The BAYES results estimate that almost all of the 2,029 Chinook salmon samples from the bycatch of the 2013 GOA rockfish trawl fishery originated from GOA/Pacific coastal

7

regions, with the West Coast U.S. (WA/OR/CA) contributing the most (60%), followed by British Columbia (BC, 31%), Coastal Southeast Alaska (Coast SE AK, 6%), and Northwest GOA (NW GOA, 2%) (Table 1).

Stock Composition Results – 2013 Gulf of Alaska Arrowtooth Flounder Trawl Bycatch

The BAYES results estimate that almost all of the 279 Chinook salmon samples from the

bycatch of the 2013 GOA arrowtooth flounder trawl fishery originated from GOA/Pacific coastal

regions, with the West Coast U.S. contributing the most (43%), followed by British Columbia

(39%), Coastal Southeast Alaska (14%), and Northwest GOA (3%) (Table 2).

Table 1. -- Regional BAYES and SPAM Ver. 3.7 stock composition estimates for the 2,029
Chinook salmon samples from the bycatch of the 2013 Gulf of Alaska rockfish trawl fishery. The BAYES mean estimates are also provided with standard deviations (SD), 95% credible intervals, and the median estimate. Standard deviations for the SPAM estimates were determined by the analysis of 1,000 bootstrap resamplings of the mixture.

Region	BAYES	<u>SD</u>	<u>2.5%</u>	Median	<u>97.5%</u>	SPAM	<u>SD</u>
Russia	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Coast W AK	0.000	0.001	0.000	0.000	0.002	0.000	0.001
Mid-Yukon	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Up Yukon	0.000	0.000	0.000	0.000	0.001	0.000	0.000
N AK Penn	0.000	0.000	0.000	0.000	0.000	0.000	0.000
NW GOA	0.022	0.004	0.016	0.022	0.030	0.021	0.004
Copper	0.003	0.001	0.001	0.002	0.006	0.003	0.001
NE GOA	0.000	0.001	0.000	0.000	0.003	0.002	0.002
Coast SE AK	0.064	0.007	0.050	0.063	0.078	0.061	0.007
BC	0.313	0.014	0.285	0.313	0.339	0.325	0.012
WA/OR/CA	0.599	0.013	0.573	0.598	0.624	0.588	0.012

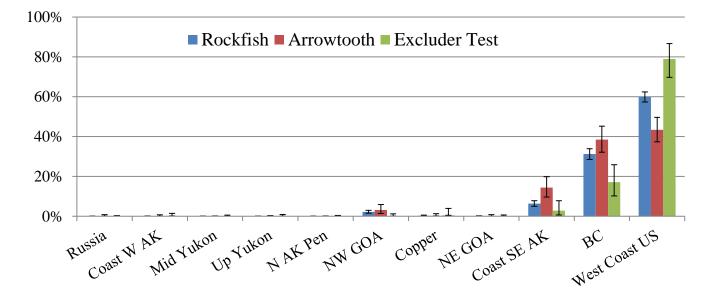
 Table 2. -- Regional BAYES and SPAM Ver. 3.7 stock composition estimates for the 279 Chinook salmon samples from the bycatch of the 2013 GOA arrowtooth flounder trawl fishery. The BAYES mean estimates are also provided with standard deviations (SD), 95% credible intervals, and the median estimate. Standard deviations for the SPAM estimates were determined by the analysis of 1,000 bootstrap resamplings of the mixture.

Region	BAYES	<u>SD</u>	2.5%	Median	<u>97.5%</u>	SPAM	<u>SD</u>
Russia	0.001	0.002	0.000	0.000	0.008	0.000	0.000
Coast W AK	0.001	0.002	0.000	0.000	0.007	0.000	0.000
Mid-Yukon	0.000	0.001	0.000	0.000	0.002	0.000	0.000
Up Yukon	0.000	0.001	0.000	0.000	0.003	0.000	0.000
N AK Penn	0.000	0.001	0.000	0.000	0.002	0.000	0.000
NW GOA	0.032	0.012	0.013	0.031	0.058	0.034	0.012
Copper	0.002	0.003	0.000	0.000	0.011	0.004	0.004
NE GOA	0.001	0.003	0.000	0.000	0.008	0.004	0.005
Coast SE AK	0.144	0.026	0.096	0.143	0.198	0.130	0.025
BC	0.385	0.034	0.321	0.385	0.452	0.397	0.034
WA/OR/CA	0.434	0.031	0.374	0.434	0.496	0.433	0.032

 Table 3. -- Regional BAYES and SPAM Ver. 3.7 stock composition estimates for the 95 Chinook salmon samples from the 2013 test in the GOA of the salmon excluder device. The BAYES mean estimates are also provided with standard deviations (SD), 95% credible intervals, and the median estimate. Standard deviations for the SPAM estimates were determined by the analysis of 1,000 bootstrap resamplings of the mixture.

Region	BAYES	<u>SD</u>	<u>2.5%</u>	Median	<u>97.5%</u>	SPAM	<u>SD</u>
Russia	0.000	0.002	0.000	0.000	0.003	0.000	0.000
Coast W AK	0.002	0.004	0.000	0.000	0.013	0.000	0.000
Mid-Yukon	0.001	0.002	0.000	0.000	0.006	0.000	0.000
Up Yukon	0.001	0.003	0.000	0.000	0.009	0.000	0.000
N AK Penn	0.000	0.002	0.000	0.000	0.004	0.000	0.000
NW GOA	0.001	0.004	0.000	0.000	0.012	0.000	0.000
Copper	0.005	0.010	0.000	0.000	0.035	0.010	0.010
NE GOA	0.001	0.003	0.000	0.000	0.007	0.000	0.000
Coast SE AK	0.028	0.019	0.003	0.025	0.075	0.011	0.011
BC	0.172	0.041	0.100	0.169	0.257	0.180	0.041
WA/OR/CA	0.790	0.043	0.699	0.792	0.868	0.799	0.043

Stock Composition Results – 2013 GOA Excluder Test


The BAYES results estimate that almost all of the 95 Chinook salmon samples from the 2013 GOA salmon excluder device test originated from GOA/Pacific coastal regions, with the West Coast U.S. contributing the most (79%), followed by British Columbia (17%) and Coastal Southeast Alaska (3%) (Table 3).

ESTIMATE COMPARISONS

While differences in collection protocols between the three sample sets necessitate caution in comparing the different analyses, all show an abundance of southern stock groups (British Columbia, West Coast U.S., and Coastal Southeast Alaska) and some contribution from NW Gulf of Alaska stocks (Fig. 5). These results are generally similar to previous analyses of Chinook salmon bycatch sample sets from the 2010-2012 GOA pollock trawl fishery (Guthrie et al. 2014; Guyon et al. 2014) and suggest that most commonly encountered salmon were from Pacific Ocean and Gulf of Alaska spawning tributaries.

Of the three sample sets, the salmon excluder set was the most homogeneous with approximately 79% of the samples estimated from the West Coast U.S. stock grouping although differences in gear (i.e, mesh size) or location (inshore vs. offshore) could influence the results. In addition, since samples from the salmon excluder device test were all derived from a single haul, it's possible that this could represent some type of aggregation effect in which stocks of similar origin could be encountered as part of a group. Interestingly, the average size of the Chinook salmon encountered in the excluder device test (51 cm +/- 4) was smaller than those encountered in the rockfish fishery (60 cm +/- 8) or the arrowtooth flounder fishery (55 cm

+/- 5). This could reflect changes in growth between the sampling periods, whereas uniformity in size (lowest size standard deviation for the excluder samples) could support of some type of schooling activity.

Figure 5. -- Comparison of the GOA stock composition estimates for samples from the 2013 federal rockfish trawl fishery, arrowtooth flounder trawl fishery, and the 2013 GOA salmon excluder device test. Shown are the BAYES 95% credible intervals.

SUMMARY

Many communities are dependent on Chinook salmon for subsistence and commercial purposes. Recent decreasing Chinook salmon returns have caused hardships in Alaska communities and led to fisheries disaster declarations for Yukon River Chinook salmon in 2010 and 2012 by the U.S. Secretary of Commerce (Locke 2010, Blank 2012), and in the Kuskokwim Rivers, and Cook Inlet in 2012 (Blank 2012). Salmon-dependent communities have expressed concern regarding the numbers of salmon caught as bycatch in the federal trawl fisheries (Gisclair 2009). The incidental harvest of Chinook salmon in the GOA from the non-pollock federal groundfish fisheries averaged 7,333 salmon per year during 1991-2013, with a peak of 30,455 in 1991 (NMFS 2014). The GOA Chinook salmon bycatch in the non-pollock federal fisheries was above the 23-year average in 2013 at 10,386 Chinook salmon.

Stock composition estimates of the Chinook salmon bycatch are needed for groundfish and salmon fishery managers to understand the biological effects of the incidental take of salmon in the trawl fishery. This report provides stock composition analysis of genetic sample sets from the 1) Chinook bycatch of the 2013 GOA rockfish and arrowtooth flounder fisheries and 2) a single haul from the 2013 test of the salmon excluder device. In agreement with previous stock composition analyses of the Chinook salmon bycatch from the Gulf of Alaska pollock trawl fishery, bycatch samples from both the 2013 GOA rockfish and arrowtooth flounder fisheries show an abundance of southern stock groups (British Columbia, West Coast U.S., and Coastal Southeast Alaska) with some contribution from NW Gulf of Alaska stocks (Fig. 5).

Stock composition estimates for the GOA Chinook salmon bycatch from the 2013 federal rockfish trawl fishery were performed using representative samples; consequently, the reported stock composition estimate provided is for the overall 2013 rockfish trawl bycatch. Opportunistic sampling used to derive the arrowtooth flounder 2013 GOA estimates limit the application of those estimates to presence of stock group.

ACKNOWLEDGMENTS

Genotyping for this analysis was funded by the Alaska Fisheries Science Center, National Marine Fisheries Service; the North Pacific Fisheries Research Foundation; and the Alaska Sustainable Salmon Fund. We are grateful to Andrew Munro and Bill Templin of ADF&G for providing suggestions and advice regarding the analysis, and reviewing this report. We are also grateful for the help from the AFSC's Fisheries Monitoring and Analysis Division including Martin Loefflad, Liz Chilton, and the many participating observers who provided genetic samples. MALDI-TOF genotyping and assay design were performed in collaboration with Colleen Ramsower, Crystal Richt, and Ryan Sprissler from the genotyping core facility at the University of Arizona. Special thanks to AFSC communications staff, James Lee and Gary Duker for their rapid and thorough editorial review of this document.

CITATIONS

- ADF&G (Alaska Department of Fish and Game). 2003. SPAM Version 3.7b: Statistics Program for Analyzing Mixtures. Alaska Department of Fish and Game, Commercial Fisheries Division, Gene Conservation Laboratory, Anchorage, Alaska.
- Blank, R. 2012. Acting Commerce Secretary Rebecca Blank announces "Fishery Failure" determination for Alaska Chinook salmon. In *Commerce News* release, September 12, 2012, U.S. Department of Commerce, Washington, DC.
- Gabriel, S., L. Ziaugra, and D. Tabbaa. 2009. SNP genotyping using the Sequenom MassARRAY iPLEX platform. Current Protocols in Human Genetics Chapter 2, Unit 2 12.
- Gisclair, B.R. 2009. Salmon bycatch management in the Bering Sea walleye pollock fishery: Threats and opportunities for western Alaska. Am. Fish. Soc. Symp. 70:799–816
- Guthrie, C. M. III, H. Nguyen, and J. R. Guyon. 2012. Genetic stock composition analysis of Chinook salmon bycatch samples from the 2010 Bering Sea trawl fisheries. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-232, 22 p.
- Guthrie, C. M. III, H. Nguyen, and J. R. Guyon. 2013. Genetic stock composition analysis of Chinook salmon bycatch samples from the 2011 Bering Sea and Gulf of Alaska trawl fisheries. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-244, 28 p.
- Guthrie, C. M. III, H. Nguyen, and J. R. Guyon. 2014. Genetic stock composition analysis of Chinook salmon bycatch samples from the 2012 Bering Sea and Gulf of Alaska trawl fisheries. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-270, 33 p.
- Guyon, J. R., C. M. Guthrie, and H. Nguyen. 2010a. Genetic stock composition analysis of Chinook salmon bycatch samples from the 2008 Bering Sea pollock fishery, 32 p. Report to the North Pacific Fishery Management Council, 605 W. 4th Avenue, Anchorage AK 99510.
- Guyon, J. R., C. M. Guthrie, and H. Nguyen. 2010b. Genetic stock composition analysis of Chinook salmon bycatch samples from the 2007 "B" season and 2009 Bering Sea trawl fisheries, p. 32. Report to the North Pacific Fishery Management Council, 605 W. 4th Avenue, Anchorage AK 99510.
- Guyon, J.R., C.M. Guthrie, A.R. Munro, J. Jasper, and W.D. Templin. 2014. Extension of genetic stock composition analysis to the Chinook salmon bycatch in the Gulf of Alaska walleye pollock (*Gadus chalcogrammus*) trawl fisheries, 2012. p. 25. Report to the North Pacific Fishery Management Council, 605 W. 4th Avenue, Anchorage AK 99510.

- Larson, W. A., F. M. Utter, K. W. Myers, W. D. Templin, J. E. Seeb, C. M. Guthrie III, A. V. Bugaev, and L. W. Seeb. 2013. Single-nucleotide polymorphisms reveal distribution and migration of Chinook salmon (*Oncorhynchus tshawytscha*) in the Bering Sea and North Pacific Ocean. Can. J. Fish. Aquat. Sci. 70(1):128-141.
- Locke, G. 2010. Commerce Secretary Gary Locke announces "Fishery Failure" determination for Alaska Chinook salmon. *In Commerce News* release, January 15, 2010, U.S. Dep. Commer., Washington, DC.
- NMFS (National Marine Fisheries Service). 2009. Bering Sea Chinook salmon bycatch management - Volume 1, Final Environmental Impact Statement, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Alaska Regional Office, Juneau, AK.
- NMFS (National Marine Fisheries Service). 2014. GOA Chinook salmon mortality estimates, 1991-present, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Alaska Regional Office, Juneau, AK. http://alaskafisheries.noaa.gov/sustainablefisheries/inseason/goasalmonmort.pdf
- Pella, J., and M. Masuda. 2001. Bayesian methods for analysis of stock mixtures from genetic characters. Fish. Bull., U. S. 99:151-167.
- Templin, W. D., J. E. Seeb, J. R. Jasper, A. W. Barclay, and L. W. Seeb. 2011. Genetic differentiation of Alaska Chinook salmon: the missing link for migratory studies. Mol. Ecol. Res. 11 (Suppl. 1):226–246.

APPENDIX

Chinook salmon populations in the ADF&G SNP baseline with the regional designations used in the analyses of this report. S.= South, R.= River, H.= Hatchery, and L.= Lake.

	Reg			Reg	
Population name	num.	Region name	Population name	num.	Region name
Bistraya River	1	Russia	Henshaw Creek	3	Mid Yukon
Bolshaya River	1	Russia	Kantishna River	3	Mid Yukon
Kamchatka River late	1	Russia	Salcha River	3	Mid Yukon
Pakhatcha River	1	Russia	Sheenjek River	3	Mid Yukon
Andreafsky River	2	Coast W AK	S. Fork Koyukuk River	3	Mid Yukon
Aniak River	2	Coast W AK	Big Salmon River	4	Up Yukon
Anvik River	2	Coast W AK	Blind River	4	Up Yukon
Arolik River	2	Coast W AK	Chandindu River	4	Up Yukon
Big Creek	2	Coast W AK	Klondike River	4	Up Yukon
Cheeneetnuk River	2	Coast W AK	Little Salmon River	4	Up Yukon
Eek River	2	Coast W AK	Mayo River	4	Up Yukon
Gagaryah River	2	Coast W AK	Nisutlin River	4	Up Yukon
George River	2	Coast W AK	Nordenskiold River	4	Up Yukon
Gisasa River	2	Coast W AK	Pelly River	4	Up Yukon
Golsovia River	2	Coast W AK	Stewart River	4	Up Yukon
Goodnews River	2	Coast W AK	Takhini River	4	Up Yukon
Kanektok River	2	Coast W AK	Tatchun Creek	4	Up Yukon
Kisaralik River	2	Coast W AK	Whitehorse Hatchery	4	Up Yukon
Kogrukluk River	2	Coast W AK	Black Hills Creek	5	N AK Pen
Kwethluk River	2	Coast W AK	King Salmon River	5	N AK Pen
Mulchatna River	2	Coast W AK	Meshik River	5	N AK Pen
Naknek River	2	Coast W AK	Milky River	5	N AK Pen
Nushagak River	2	Coast W AK	Nelson River	5	N AK Pen
Pilgrim River	2	Coast W AK	Steelhead Creek	5	N AK Pen
Salmon RPitka Fork	2	Coast W AK	Anchor River	6	NW GOA
Stony River	2	Coast W AK	Ayakulik River	6	NW GOA
Stuyahok River	2	Coast W AK	Benjamin Creek	6	NW GOA
Takotna River	2	Coast W AK	Chignik River	6	NW GOA
Tatlawiksuk River	2	Coast W AK	Crescent Creek	6	NW GOA
Togiak River	2	Coast W AK	Crooked Creek	6	NW GOA
Tozitna River	2	Coast W AK	Deception Creek	6	NW GOA
Tuluksak River	2	Coast W AK	Deshka River	6	NW GOA
Unalakleet River	2	Coast W AK	Funny River	6	NW GOA
Beaver Creek	3	Mid Yukon	Juneau Creek	6	NW GOA
Chandalar River	3	Mid Yukon	Karluk River	6	NW GOA
Chena River	3	Mid Yukon	Kasilof River mainstem	6	NW GOA

Population namenum.Region namePopulation namenum.Region nameKenai River mainstem6NW GOAKowatua River9Coast SE	
Kenai River mainstem 6 NW GOA Kowatua River 9 Coast SE	AK
	1111
Killey Creek6NW GOALittle Tatsemenie River9Coast SE	AK
Ninilchik River6NW GOAMacaulay Hatchery9Coast SE	AK
Prairie Creek 6 NW GOA Medvejie Hatchery 9 Coast SE	AK
Slikok Creek6NW GOANakina River9Coast SE	AK
Talachulitna River6NW GOATahltan River9Coast SE	AK
Willow Creek6NW GOAUnuk RDeer Mountain H.9Coast SE	AK
Bone Creek7CopperUnuk River - LPW9Coast SE	AK
E. Fork Chistochina River 7 Copper Upper Nahlin River 9 Coast SE	AK
Gulkana River7CopperBig Qualicum River10BC	
Indian River7CopperBirkenhead River spring10BC	
Kiana Creek7CopperBulkley River10BC	
Manker Creek7CopperChilko River summer10BC	
Mendeltna Creek7CopperClearwater River summer10BC	
Otter Creek 7 Copper Conuma River 10 BC	
Sinona Creek 7 Copper Damdochax Creek 10 BC	
Tebay River7CopperEcstall River10BC	
Tonsina River7CopperHarrison River10BC	
Big Boulder Creek8NE GOAKateen River10BC	
Kelsall River8NE GOAKincolith Creek10BC	
King Salmon River8NE GOAKitimat River10BC	
Klukshu River8NE GOAKlinaklini River10BC	
Situk River8NE GOAKwinageese Creek10BC	
Tahini River8NE GOALouis River spring10BC	
Tahini River - Pullen Creek H.8NE GOALower Adams River fall10BC	
Andrews Creek9Coast SE AKLower Atnarko River10BC	
Blossom River9Coast SE AKLower Kalum River10BC	
Butler Creek9Coast SE AKLower Thompson River fall10BC	
Chickamin River9Coast SE AKMarble Creek10BC	
Chickamin River-LPW 9 Coast SE AK Middle Shuswap R. summer 10 BC	
Chickamin R.Whitman L. H. 9 Coast SE AK Morkill River summer 10 BC	
Clear Creek 9 Coast SE AK Nanaimo River 10 BC	
Cripple Creek 9 Coast SE AK Nechako River summer 10 BC	
Crystal Lake Hatchery 9 Coast SE AK Nitinat River 10 BC	
Dudidontu River9Coast SE AKOweegee Creek10BC	
Genes Creek9Coast SE AKPorteau Cove10BC	
Hidden Falls Hatchery9Coast SE AKQuesnel River summer10BC	
Humpy Creek9Coast SE AKQuinsam River10BC	
Kerr Creek9Coast SE AKRobertson Creek10BC	
Keta River9Coast SE AKSalmon River summer10BC	
King Creek9Coast SE AKSarita River10BC	

	Reg			Reg	
Population name	num.	Region name	Population name	num.	Region name
Stuart River summer	10	BC	Lower Deschutes R. fall	11	West Coast US
Sustut River	10	BC	Lyons Ferry H. summer/fall	11	West Coast US
Torpy River summer	10	BC	Makah National Fish H. fall	11	West Coast US
Wannock River	10	BC	McKenzie River spring	11	West Coast US
Alsea River fall	11	West Coast US	Sacramento River winter	11	West Coast US
Carson Hatchery spring	11	West Coast US	Siuslaw River fall	11	West Coast US
Eel River fall	11	West Coast US	Soos Creek Hatchery fall	11	West Coast US
Forks Creek fall	11	West Coast US	Upper Skagit River summer	11	West Coast US
Hanford Reach	11	West Coast US			
Klamath River	11	West Coast US			

RECENT TECHNICAL MEMORANDUMS

Copies of this and other NOAA Technical Memorandums are available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22167 (web site: *www.ntis.gov*). Paper and electronic (.pdf) copies vary in price.

AFSC-

- 288 FAUNCE, C. H. 2015. Evolution of observer methods to obtain genetic material from Chinook salmon bycatch in the Alaska pollock fishery, 28 p. NTIS number pending.
- 287 ZIMMERMANN, M., and M. M. PRESCOTT. 2015. Smooth sheet bathymetry of the central Gulf of Alaska, 54p. NTIS number pending.
- 286 CAHALAN, J., J. GASPER, and J. MONDRAGON. 2014. Catch sampling and estimation in the federal groundfish fisheries off Alaska, 2015 edition, 46 p. NTIS number pending.
- 285 GUYON, J. R., C.M. GUTHRIE III, A. R. MUNRO, J. JASPER, and W. D. TEMPLIN. 2014. Extension of genetic stock composition analysis to the Chinook salmon bycatch in the Gulf of Alaska walleye pollock (*Gadus chalcogrammus*) trawl fisheries, 2012, 26 p. NTIS number pending.
- 284 HIMES-CORNELL, A., and K. KENT. 2014. Involving fishing communities in data collection: a summary and description of the Alaska Community Survey 2011, 171 p. NTIS number pending.
- 283 GARVIN, M. R., M. M. MASUDA, J. J. PELLA, P. D. BARRY, S. A. FULLER, R. J. RILEY, R. L. WILMOT, V. BRYKOV, and A. J. GHARRETT. 2014. A Bayesian cross-validation approach to evaluate genetic baselines and forecast the necessary number of informative single nucleotide polymorphisms, 59 p. NTIS number pending.
- 282 DALY, B. J., C. E. ARMISTEAD, and R. J. FOY. 2014. The 2014 eastern Bering Sea continental shelf bottom trawl survey: Results for commercial crab species, 167 p. NTIS No. PB2015-101255.
- 281 FAUNCE, C., J. CAHALAN, J. GASPER, T. A'MAR, S. LOWE, F. WALLACE, and R. WEBSTER. 2014. Deployment performance review of the 2013 North Pacific Groundfish and Halibut Observer Program, 74 p. NTIS No .PB2015-100579.
- 280 HIMES-CORNELL, A., and K. KENT. 2014. Involving fishing communities in data collection: a summary and description of the Alaska Community survey, 2010, 170 p. NTIS No PB2015-100578.
- 279 FISSEL, B. E. 2014. Economic indices for the North Pacific groundfish fisheries: Calculation and visualization, 47 p. NTIS No. PB2015-100577.
- 278 GODDARD, P., R. LAUTH, and C. ARMISTEAD. 2014. Results of the 2012 Chukchi Sea bottom trawl survey of bottomfishes, crabs, and other demersal macrofauna, 110 p. NTIS No.PB2015-100576.
- 277 ALLEN, B. M., and R. P. ANGLISS. Alaska marine mammal stock assessments, 2013, 294 p. NTIS No. PB2015-100575.
- 276 LOEFFLAD, M. R., F. R. WALLACE, J. MONDRAGON, J. WATSON, and G. A. HARRINGTON. 2014. Strategic plan for electronic monitoring and electronic reporting in the North Pacific, 52 p. NTIS No. PB2014-106286.
- 275 ZIMMERMANN, M., and M. M. PRESCOTT. 2014. Smooth sheet bathymetry of Cook Inlet, Alaska, 32 p. NTIS number pending.
- 274 ALLEN, B. M., V. T. HELKER, and L. A. JEMISON. 2014. Human-caused injury and mortality of NMFS-managed Alaska marine mammal stocks, 2007-2011, 84 p. NTIS number pending.
- 273 SMITH, K. R., and C. E. ARMISTEAD. 2014. Benthic invertebrates of the Eastern Bering Sea: a synopsis of the life history and ecology of the sea star *Asterias amurensis*, 60 p. NTIS number pending.