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ABSTRACT 

The determination of the origin of individuals from a mixture composed of multiple 

populations is becoming a routine tool for the management and study of an increasing number of 

taxa. It is accomplished by applying statistical methods and a reference genetic baseline whose 

accuracy and precision must be evaluated to determine its utility. Earlier evaluation methods that 

used simulated mixtures from a baseline with standard maximum likelihood (ML) methods for 

mixed-stock analysis (MSA) provided optimistic evaluations of baselines. More recent methods 

address the optimism but are based solely on ML methods and either do not accommodate 

potentially informative haploid data or require larger datasets than are available or possible. We 

used data from a developing baseline for chum salmon (Oncorhynchus keta) that includes single 

nucleotide polymorphisms (SNPs) and microsatellites to produce a method that we call ‘leave- 

ten-percent-out cross-validation’ (LTO). This method avoids optimism in baseline evaluation, 

uses only observed multi-locus genotypes, accepts haploid and diploid data, applies Bayesian 

methods of MSA, and is less dependent on large baseline sample sizes. In order to further guide 

the development of genetic baselines, we also simulated increasing numbers of SNP loci and 

used LTO and logistic regression to estimate the number of informative SNP loci that would be 

necessary to achieve a specified rate of correct individual assignment.
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INTRODUCTION 

Mixed-stock analysis (MSA) uses multi-locus genotype data to estimate the composition 

of a mixture or to assign its individuals to their respective sources (Pella and Milner 1987, Manel 

et al. 2005). These types of analyses have been used for the study, management, and 

conservation of many species (e.g., Wasser et al. 2004, Bowen et al. 2007, Negrini et al. 2008, 

Griffiths et al. 2010). A reference genetic baseline that includes samples from all of the distinct 

stocks that may contribute to the mixture is required for MSA. The term “stock” typically refers 

to a group of individuals defined for conservation or resource management purposes and is not 

necessarily a breeding population. Regional samples are obtained that represent the likely true 

geographic range and genetic divergence of the focal species.  

Two major goals are to determine the baseline’s ability for stock identification and what 

improvement is needed, if any. Baseline performance is usually evaluated with the baseline 

samples themselves under the assumption that an analysis of samples from a mixture obtained 

independently will be similar. The accuracy and precision of the genetic baselines are repeatedly 

evaluated over time because 1) new loci are often added to a developing baseline to improve 

performance; 2) new stocks are often added to the baseline to ensure that it is a reliable 

representation of the complete list of stocks; or 3) only a subset of the baseline is used for MSA, 

which may be desirable to enhance performance and conserve time and resources.  

A widely used method to evaluate genetic baselines is to repeatedly simulate samples of 

multi-locus genotypes for hypothetical mixtures of a specified stock composition; the 

compositions of those mixtures are estimated by a conditional maximum likelihood method 

(ML) with either the actual or simulated baseline samples. The simulations and estimation are 

accomplished with software programs such as SPAM (Debevec et al. 2000) and GMA 



(Kalinowski 2003), both of which overstate the accuracy and precision of baselines (Anderson et 

al. 2008) because 1) sampling error of baseline allele frequencies inflates the actual genetic 

divergence among stocks (error-enhanced divergence) and 2) mixtures simulated from the actual 

baseline samples often have individuals with genotypes identical to those in the baseline (bi-

presence). These properties make the correct assignment of individuals to their source stocks 

optimistic.    

The program ONCOR (Anderson et al. 2008) performs baseline evaluation by simulating 

hypothetical mixtures of genotypes (like SPAM and GMA) but uses a modified ML method for 

composition estimation that has a leave-one-out (LOO) rule to negate the optimism from bi-

presence. However, ONCOR does not accept potentially informative haploid data, whose 

markers often display greater divergence among populations than do nuclear markers. This 

increased divergence may be a result of the smaller effective population size of mitochondrial 

DNA than the nuclear genome, which makes it more susceptible to drift (Billington 2003). In 

addition, many species demonstrate positive selection in the mitochondrial genome, which could 

further increase divergence among populations1. Finally, phenotypic data such as meristic traits 

(Nolte and Sheets 2005) or isotope data (Rundel et al. 2013) could also be evaluated in the same 

manner as haploid data within the framework of MSA.  

Here we evaluated the precision and accuracy of a developing chum salmon baseline with 

a method that we call ‘leave-ten-percent-out cross-validation’ (LTO) as an alternative to 

ONCOR. LTO is derived from the K-fold cross-validation method of classification statistics 

(Geisser 1975, Hastie et al. 2001) and has been recommended for use in MSA applications for 

fisheries (Waples 2010). Our LTO method reduces optimism of baseline evaluation, 

1M. R. Garvin, School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 
unpublished data. 
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accommodates haploid and diploid data, and the MSAs can be estimated by either Bayesian or 

ML methods. Here we limit consideration to Bayesian methods of estimation because they 

provide some advantages to ML methods and given that they are frequently used in practice, it 

would be more consistent to evaluate a baseline with the same method that will be used when it 

is put into practice. Computer programs to perform Bayesian MSA include BAYES (Pella and 

Masuda 2001) and cBayes (Neaves et al. 2005) although cBayes does not currently accept 

haploid data. We provide code in R that generates the input files for the computer program 

BAYES (Appendix 2). 

Many baseline development projects are concerned with conversion from microsatellite-

based baselines to SNP-based baselines. Attempts to quantify the number of SNPs that provide 

equivalent discrimination to microsatellite loci often compare either equivalent numbers of 

alleles (Kalinowski 2002) or the number of SNPs and microsatellites surveyed on the same 

individuals (Narum et al. 2008, Santure et al. 2010). As an alternative, we simulated increasing 

numbers of SNP loci from the current baseline data and evaluated the anticipated baseline 

performance from the combined laboratory-derived loci with LTO. We then used logistic 

regression to extrapolate the number of SNPs necessary to provide a given degree of accuracy. 

Key to the extrapolation is an assumption that the same methods used in discovery of the current 

SNP baseline will be used to search for the future informative SNP loci. 
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MATERIALS AND METHODS 

Generation of Test Baselines and Stock Mixtures 

Samples from 74 chum salmon stocks taken from populations across the Pacific Rim 

were obtained between 1987 and 2008 (Fig. 1; Table 1). Each individual in the baseline2 was 

genotyped with nine microsatellite loci and 23 SNPs representing 12 SNP loci (Table 2). The 

SNP loci were developed to maximize divergence among stocks (see Appendix 1) and the stocks 

were sorted into 25 reporting groups based on geography and management areas delineated in 

previous work (e.g., Beacham et al. 2009, Seeb et al. 2011) as well as from our principal 

components analysis (PCA) of the current baseline (Appendix Fig. 1-1). Additional loci and 

additional stocks will be added to the baseline as management problems are identified and funds 

become available. 

We divided each baseline stock sample sequentially into 10 equal parts with code in R 

(Appendix 2). The individuals that composed one part from each stock were combined into a test 

mixture of 450 individuals, and the genetic information from the remaining nine parts was used 

as the baseline data in the mixture analyses performed with the program BAYES (Pella and 

Masuda 2001). The BAYES analyses were repeated 10 times; each time, a different one of the 10 

parts was used as the test mixture and the remaining 9 parts served as the baseline. The LTO 

method guarantees that each individual is used in a test mixture once and in a test baseline nine 

times, except for ‘remainder’ individuals (see below), and that no individual occurs in both a test 

mixture and the test baseline used in its analysis (no bi-presence). The stock compositions of all 

test mixtures were identical. 

2Data are available upon request from the lead author. 

4



In our baseline, the sample sizes of many stocks differed and many were not evenly 

divisible by 10 (Table 1). Therefore, the composition of the mixture was nearly proportional to 

baseline sample sizes. In addition, when we divided our baseline stock samples into 10 equal 

parts, some individuals remained. These ‘remainder’ individuals were added to each of the 10 

test baselines but not included in any of the test mixtures. The term ‘test dataset’ will be used to 

denote one of the 10 ‘test mixtures’ and the associated ‘test baseline’. 

Measurements of Diversity 

Many of the loci that we evaluated in this work are potentially informative for MSA 

because they demonstrate large divergence estimates among baseline populations (Storer et al. 

2012). We used GDA (Lewis and Zaykin 2001) to calculate FST  (Weir and Cockerham 1984) 

locus by locus and overall,  (the haploid equivalent of FST), expected heterozygosity (He) for 

nuclear loci and haplotype diversity for the mitochondrial locus (Excoffier et al. 1992). We used 

the ‘adegenet’ package (Jombart 2008) to calculate DEST - Jost’s D (Jost 2008) (methods for the 

haploid data were identical). 

As noted earlier, some optimism could have been introduced into our baseline 

evaluations from error-enhanced divergence (Anderson 2010). However, for the baseline 

samples, BAYES revises the observed allele frequencies by objectively shrinking them toward a 

better-determined central value among stocks (Pella and Masuda 2001). To demonstrate the 

shrinkage effects, we compared apparent diversity before and after the revision of the allele 

frequencies. We calculated GST values for each locus with the methods of Nei and Chesser 

(1983) with the observed allele frequencies from the entire baseline and then for each of the 10 

baselines that were created during LTO. We then performed the same calculations with the mean 

ST
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allele frequencies of the baseline posterior, computed as a weighted average of the original 

frequencies and the prior grand mean (Equation 4 in Pella and Masuda 2001). This latter baseline 

posterior distribution serves as the prior for the analysis of the mixture sample. 

BAYES LTO 

We used the program BAYES to estimate the proportion that each of the 74 stocks 

contributed to each test mixture. The low information Dirichlet prior probability distribution for 

stock proportions (its weight during estimation counts as a single individual added to the mixture 

of 450 individuals) was set to equal proportions among the entire 74 stocks. Three independent 

MCMC chains were run for each test mixture with different starting values for stock proportions. 

The three MCMC chains were run with the BAYES program to obtain 400,000 samples 

of the unknowns (stock proportions and baseline genetic parameters) from their posterior 

distribution and every 40th sample was saved. The first half of each chain was discarded as burn-

in to remove dependence on starting values. The second halves of the three chains were 

combined to provide a total sample of 15,000 stock composition estimates from their posterior 

distribution. Gelman and Rubin statistics were computed for each of the 25 reporting groups (all 

were less than 1.2) to verify that pooled samples from the three chains had converged to the 

posterior distribution for the regional composition (Gelman and Rubin 1992).  

The results from BAYES for the 10 test datasets provided a sample of 10 posterior 

distributions of stock composition estimates for the mixtures of the 74 baseline stocks. The 

posterior average for each of these distributions was considered the point estimate. Regional 

compositions were obtained as sums over the point estimates for the individual stocks of the 

regional groups; and their means and variances, as well as the observed bias and mean square 

6



errors from the true and known regional proportions, were computed. After the BAYES analysis, 

we assigned each individual in the mixture sample to the source stock with the highest posterior 

probability; that is, the so-called maximum a posteriori (MAP) rule. 

For comparative purposes, we generated stock composition estimates with the program 

SPAM with the same 10 test datasets. We also generated estimates with SPAM in simulation 

mode with the same 10 test baselines that were used in the BAYES and SPAM LTO, but we 

simulated mixtures that had the expected composition to the mixtures created with LTO 

(Appendix Figs. 1-2 to 1-7). 

How Many SNPs Would Equal the Discriminatory Power  
of the Current Combined SNP and Microsatellite Baseline? 

To simulate “new” hypothetical nuclear SNP loci, we used the same data from 74 chum 

salmon populations genotyped with 23 SNPs, which represented 12 loci (11 nuclear loci and the 

mitochondrial genome). These new nuclear loci were obtained by randomly drawing, with 

replacement, additional loci from the 11 empirically genotyped nuclear SNP loci for which real 

data were available. That is, we assumed the 11 SNP loci found by our laboratory methods 

represented a random sample from a large population of independent SNPs for chum salmon. We 

did not include the mitochondrial data in the simulation of the new loci because the genetic 

material in the mitochondrion of an individual behaves as a single locus so generation of 

additional mitochondrial loci would not be biologically meaningful.  

A locus was randomly drawn from the 11 nuclear SNP loci and corresponding single-

locus genotypes were generated for each original baseline individual by drawing a pair of alleles 

without replacement between the two draws from the sample of its SNP baseline stock. Multi-

locus SNP genotypes for individuals were generated by parallel independent sampling for 
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additional new loci, followed by concatenation of the outcomes. This strategy preserves the 

genetic information from our original informative loci but adds the multi-locus variability that 

would be expected at additional unlinked loci. The new SNP loci were appended to the original 

11 SNP loci and the mitochondrial locus to generate seven extended SNP sets with 20, 30, 40, 

50, 60, 70, and 80 SNP loci. For example, 8 new SNP loci were simulated and added to the 11 

original SNP loci and the mitochondrial locus to create 20 locus genotypes. The baseline samples 

were then divided into 10 equal test datasets and analyzed with BAYES LTO. 

We assigned each of the 450 individuals in a test mixture to the stock with the highest 

posterior probability and thereby to the reporting group of origin. The proportion of individuals 

correctly assigned to a reporting group was calculated for each test mixture and the 

corresponding average of the 10 test mixtures from the LTO was then calculated. For instances 

in which identical posterior source probabilities were calculated for an individual belonging to 

either of two reporting groups, we randomly assigned the individual to one of the groups. The 

number of identical probabilities that occurred was inconsequential and ranged from zero to five 

for a single test mixture. These equivocal individuals accounted for only 0.3% of the total 

assignments for the 10 test mixtures and their frequency of occurrence did not appear to be 

related to the number of loci. 

To determine the number of SNP loci required for a high degree of correct assignment, 

we used logistic regression to estimate the correct proportional assignment to reporting group 

   for a given number of SNPs (X) based on the empirical performance of the extended SNP 

sets for 20 to 80 SNPs. The log odds regression model relating  and X is 

ln ൬ 1ߠ − ൰ߠ = ߚ  ,ଵܺߚ	+
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where i  is the probability of correct assignment of a random individual to its reporting group, Xi  

is the number of  SNP loci (X1 = 20, X2 = 30,.., X7 = 80),  is the intercept parameter, and  is 

the slope. We fit the model to the counts of correctly and incorrectly assigned individuals as 

related to the number of SNPs by the ML method. The fit was performed in each of the 10 cross- 

validation datasets which provided estimates of  and . Finally, the estimates for those 

parameters were used to extrapolate an estimated number of SNPs necessary to achieve 90% 

correct assignment (X90%) for each of the 10 datasets. 

RESULTS 

Evaluation of Combined Microsatellite and SNP Baseline 

We estimated the stock compositions and their standard errors for each of the 10 test 

datasets with the program BAYES (Appendix Table 1-1; Fig. 2a). Three regional groups stand 

out for their higher standard errors: the Lower Yukon River, the Lower Kuskokwim River, and 

Behm Canal. We based our regional groups on what has already been reported in the literature 

(Beacham et al. 2009, Seeb et al. 2011) as well as our PCA (Appendix Fig. 1-1). We also display 

the baseline performance as in Anderson et al. (2008), with the mean stock group composition 

estimates paired with their true values and a reference line that indicates perfect accuracy (Fig. 

2b). For comparison, LTO results were obtained with the program SPAM with the ML method 

and with SPAM in simulation mode but with 10 simulated mixtures with expected composition 

matching the composition of the LTO mixtures (Appendix Figs. 1-2 to 1-4).  

0 1

0 1
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Evaluation of the Bias and Accuracy of Estimates with BAYES 

We quantified the overall accuracy of BAYES LTO by calculating the absolute 

difference between the mean of the 10 test estimates of a regional proportion and the true value 

for each of the 25 reporting groups (Fig. 3). A few regions had relatively high estimates of 

absolute bias of a mixture proportion from 0.01 to 0.02.   

We evaluated the apparent precision of BAYES LTO by calculating the standard 

deviation of the 10 estimates for each of the 25 reporting groups (Fig. 4). The 10 estimates for 

any method are not independent because baseline and mixture samples among sets overlap to 

some degree, which is why we say apparent precision. Many of the reporting groups that had 

high estimated biases also had high standard deviations.   

Finally, we combined the bias and variance estimates into the mean squared error (we 

report the square root to provide equivalent measures to the accuracy and precision estimates) 

(Fig. 5).  For comparative purposes, we also include these three estimates when the program 

SPAM was used for LTO and in simulation mode (Appendix Figs. 1-5 to 1-7). As was expected, 

the simulation mode of SPAM provides optimistic assessments with both low bias and high 

precision. For regions in western Alaska that are difficult to delineate, SPAM LTO demonstrated 

higher bias but higher precision compared to BAYES. That is, the estimate was not as accurate 

but appeared to be a better estimate because the precision was higher.  

Evaluation of Potential Bias in Baseline 

Optimism could have been introduced into our baseline evaluation because we used some 

of the same samples to choose SNPs and to evaluate them (high-grading bias). However, the 

subset of samples used both to choose and to evaluate the SNPs was small and our large sample 
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sizes for the ascertainment panels likely offset some bias (see Appendix 1). Further optimism is 

possible through error-enhanced divergence from baseline sampling (Anderson et al. 2008). In 

order to determine how inflated divergence estimates might affect our baseline evaluation, we 

compared locus-by-locus GST values for the original baseline with corresponding mean GST 

values computed for the 10 BAYES LTO baselines (Fig. 6). For some loci, the GST values of the 

LTO baselines were indeed inflated, which suggests that optimism would be introduced from the 

smaller sample sizes that resulted when we created the mixtures. However, the locus-by-locus 

GST values for the 10 BAYES LTO baselines with allele frequencies that were shrunk toward 

their prior means from Equation 4 in Pella and Masuda (2001) were all smaller than for the 

original allele frequencies (Fig. 6). Therefore, the shrinkage directly opposes optimism in the 

evaluation from error-enhanced divergence. 

Future Baseline Improvements 

We plotted the assignment of each individual across all geographic groups3 to identify: 1) 

if they were assigned correctly to their population of origin, 2) if they were assigned incorrectly 

to the population of origin but correctly to their geographic reporting group, or 3) to which 

population they were incorrectly assigned (Fig. 7). We chose to display three examples: one that 

mis-assigns individuals to a population of origin (true population is Sopochnoe) but correctly to 

region (Kurils), one that mis-assigns individuals to both population and region (true population 

and region are Anadyr), and one that assigns individuals correctly to population (Big Creek) and 

region (S. Bristol Bay).  

3Data for all 74 populations are available upon request from the lead author. 
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How Many SNP Loci are Needed to Exceed or Equal 
the Combined SNP and Microsatellite Baseline? 

We calculated the mean proportion of individuals correctly assigned by the MAP rule to 

the 25 reporting groups from the 10 test datasets. These values were determined for each of the 

20, 30, 40, 50, 60, 70, and 80 extended SNP locus genotypes (‘Simulated Loci’, Fig. 8) and for 

the original combined microsatellite and SNP baseline (horizontal dashed line, Fig. 8). A 

reference line is provided for a hypothetical 90% correct assignment accuracy for all individuals 

in the baseline (horizontal solid line). Between 50 and 60 informative SNP loci appear necessary 

to equal the combined SNP and microsatellite baseline.   

To identify further improvement if more SNP loci were used we fit an asymptotic curve 

with logistic regression to the simulated data for each of the 10 extended datasets with 20, 30, 40, 

50, 60, 70, and 80 SNP loci. The mean values for the slope and intercept parameters from these 

10 fitted models were used to display the relationship between the number of SNPs and the 

proportion of correctly assigned individuals (Fig. 8). We estimated the number of SNP loci 

needed to achieve 90% accuracy (a common value used in MSA) to region from the fitted curve 

of each extended dataset, which averaged 125 SNPs with a standard error of ±5.4. This number 

corresponds to the mean percent correct assignment over all reporting groups. Specific reporting 

groups may require more or fewer SNPs depending on the divergence among those stocks. 

DISCUSSION 

Mixed-stock analysis is an important tool for the conservation and management of 

numerous species, and technological advances will likely continue to provide a growing wealth 

of genetic data as well as the ability to generate millions of genotypes rapidly and inexpensively 
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(Larson-Cook et al. 2011, Ragoussis 2009). As a result, MSA will increasingly be used to 

manage and monitor an ever-wider array of species and stocks. These applications of MSA will 

require trustworthy baseline evaluations in order to meet the challenges to managers from the 

affected resource users and stakeholders.   

Our results demonstrate how the LTO method can be used to evaluate a baseline for any 

species and identify where future resources should be devoted. For example, the output of our 

analysis indicates that individuals from populations in coastal western Alaska are difficult to 

assign correctly to their population or even geographic region of origin. Consequently, for this 

baseline and for this species, informative SNP markers should be developed to improve 

assignment to that geographical region. Output from LTO can be combined with other known 

information to further direct marker development efforts. For instance, the difficulty of 

assignment of chum salmon (Oncorhynchus keta) from this geographic area may reflect their 

recent colonization after the Last Glacial Maximum (Seeb and Crane 1999, Wilmot et al. 1994), 

high levels of gene flow (Olsen et al. 2010), or both (Garvin et al. 2013) and therefore markers 

that are responsible for local adaptation and that show higher levels of genetic divergence than 

neutral markers may be necessary to improve MSA. New markers could be developed and then 

re-evaluated with LTO.  

Our results also emphasize several advantages compared to simulation-based evaluations. 

First, the LTO method can use Bayesian or ML methods for MSA while the simulation-based 

method implemented in ONCOR is currently limited to a modified ML algorithm. We use 

Bayesian MSA here because it is frequently used in applications now and the baseline evaluation 

should employ the same estimation technique for accuracy and consistency. The use of Bayesian 

methods also adds scope to the types of data and models that can be used for MSA. Haploid 
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genetic data can now be included in baseline evaluations using BAYES LTO, which is highly 

informative for many species including chum salmon (see Appendix Fig. 1-1). Importantly, 

spatial, temporal, and morphometric data for individuals could also be used with this method in 

the future to increase the ability to distinguish among stock sources (Nolte and Sheets 2005, 

Barbee and Swearer 2007, Gomez-Diaz and Gonzales-Solis 2007, Reich et al. 2008, Reich and 

Bondell 2011).  

Second, the LTO method uses real multi-locus genotypes observed in the baseline 

samples for creating the mixtures, which adds authenticity to the evaluation that is easily 

understood. The simulation-based methods always include genetic assumptions for genotype 

frequencies in the separate stocks in order to generate the hypothetical genotypes of the mixture 

individuals, and these assumptions could reduce trust in the baseline evaluations.  

Third and last, each individual from the baseline (except the few remainder individuals) 

occurs in one test mixture for the LTO method. Therefore, the assignments of nearly all baseline 

individuals are known, which can provide useful information that is unavailable with simulation-

based methods. For example, an individual may be mis-assigned because of missing data from 

multiple loci, and that individual could be easily identified by a search of the database. Also, the 

stock source and destination of mis-assigned individuals can be used to form regional groups for 

which estimates will have lower bias and higher precision. For this LTO method, the individual 

assignment not only indicates which stock or region of interest is difficult to correctly assign but 

specifically the stock or region to which individuals are mis-assigned. This provides information 

on the geographic regions for which future baseline development efforts should be directed. 

Several baseline evaluations reported in the literature use ‘100% proof tests’ to evaluate 

genetic baselines (Habicht et al. 2010, Seeb et al. 2011, Templin et al. 2011) in which several 
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hundred individuals are removed from the baseline as a test mixture to be evaluated with the now 

reduced baseline. Proof tests avoid the optimism discussed by Anderson et al. (2008), can 

accommodate haploid data and use Bayesian-based methods, but require a sufficient number of 

samples to accommodate the removal of a few hundred individuals to produce the mixtures. If 

species have small census sizes or if only a portion of the baseline is to be evaluated, then sample 

sizes will be insufficient.  

Furthermore, the proof tests have been used with 100% mixtures instead of the nearer-to-

equal contribution mixtures with our LTO method (this is also often the case with simulation 

methods; for example, Beacham et al. 2009, Seeb et al. 2011). These 100% mixtures 

inadvertently introduce further optimism into baseline evaluation because their composition is 

easier to determine. The accuracy and precision of estimated mixture composition is limited by 

success in assignment of individuals to the baseline stocks. Highest accuracy and precision occur 

when individuals of all stocks can be correctly assigned and the simple multinomial sampling 

model applies. As percent correct assignments decline, sampling variation and bias accrue in the 

mixture analyses (Pella and Robertson 1979). Whether ML or Bayesian estimation is used, 

assignments are based on the posterior source probabilities of the mixture individuals (see 

Equation 5 of Pella and Milner 1987). When the true compositions are used in the posterior 

source probabilities, the mixture individuals can be assigned with certainty to their source for 

100% mixtures, but not for the equal proportions mixtures. The estimated mixture proportions 

will vary and approximate these true values as the estimation algorithms cycle; consequently, 

correct classification will be less for the equal-proportions mixture and higher for the 100% 

mixture.   
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The main limitations of LTO are that the number and possible mixtures to include in the 

baseline evaluation are few. The simulation-based methods generate hypothetical genotypes for 

individuals in these mixtures of arbitrary stock composition and size by computer modeling of 

the baseline data. The number of times that a mixture of a specified stock composition and size 

can be generated and analyzed is arbitrarily large (typically 100 to 1,000 times) but this is not 

possible with our LTO method because Bayesian estimation is computationally intensive. 

The development of genetic baselines can be costly in both time and resources if the 

number of markers needed to provide accurate composition estimates of mixtures or assignments 

of individuals is unknown prior to baseline development. Open-ended development of genetic 

baselines has been the standard practice, and the number of SNPs needed has depended on the 

target species of interest, the amount of divergence among stocks, and the stocks that were 

included in the analysis (Campbell et al. 2012, Campbell and Narum 2008, Elfstrom et al. 2006, 

Griffiths et al. 2010, Smith et al. 2005). We provide a method to estimate the number of genetic 

markers that will be needed for MSA of a specified accuracy given an initial small set of 

informative markers. We showed that, for this chum salmon baseline, about 60 informative SNPs 

would be equivalent to the nine microsatellite and 12 informative SNP loci in the baseline. 

Furthermore, a logistic regression analysis predicted that a baseline with about 125 informative 

SNPs found by our laboratory techniques would be needed to assign stocks with at least 90% 

accuracy to a group. Our cross-validation method provides managers and scientists with the 

ability to place a direct cost on the development of accurate baselines. 
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Table 1. -- Stocks used in the study and their sources*. The regional groupings and the baseline sample sizes are provided. 

Stock No. Stock name Date Latitude Longitude 25 Group No. 25 Group name Sample size Source 
1 Tsugarishi 1991 39.20 141.80 1 Honshu 40 KITU 
2 Katagishi 1991 39.60 142.00 40 KITU 
3 Reidovaya 2006 45.38 147.98 2 Kurils 30 LGG 
4 Sopochnoe Lake 2004 45.32 148.41 48 LGG 
5 Naiba 1995/1996 47.45 142.76 3 S. Sakhalin 47 RAS 
6 Okhotsk 2003 46.87 143.17 23 RAS 
7 Taranai 2003 46.63 142.43 25 LGG 
8 Udararnitsa 1994 46.80 143.30 48 RAS 
9 Tym 1995/2003 51.26 142.71 4 N. Sakhalin 71 RAS/ABL 
10 Heilong 1994 48.38 134.38 5 Amur 44 X.Luan 
11 Amur Early 2003 52.93 141.17 45 RAS 
12 Amur Late 2003 52.93 141.17 27 RAS 
13 Anuyi 2002 49.32 136.47 6 Primore 46 RAS 
14 Barabashevka 1994/1995 43.11 131.64 50 RAS 
15 Narva 1995/2005 42.99 131.49 67 RAS 
16 Ryazakanovka 1994/1995 43.16 132.11 63 RAS 
17 Suifen 1994 43.34 131.82 20 RAS 
18 Ola 1999 59.60 151.27 7 Magadan 43 RAS 
19 Taui 1999 59.39 149.14 37 RAS 
20 Hailula 2003 58.20 162.03 8 Kamchatka 47 RAS
21 Ossoro 1996 59.18 163.15 48 TNRO 
22 Hairsova 1990/1993 57.09 156.52 96 RAS 
23 Kol 2003 53.81 155.94 47 RAS 
24 Utka 2002 53.15 156.08 35 RAS 
25 Oclan 1993 62.77 164.33 9 Anadyr 73 RAS 
26 Anadyr 1991 64.90 176.22 111 RAS 
27 Kanchalon 1991 65.12 176.53 79 ABL 
28 Salcha 1994 64.47 -146.98 10 Middle Yukon 96 ADF&G 
29 Toklat 1994 64.45 -150.31 96 ADF&G 
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Table 1. -- Continued. 

30 FishBranch 1992 66.45 -138.58 11 Upper Yukon 96 ADF&G 
31 Kluane 1992 61.88 -139.72 96 USFWS 
32 Sheenjek 1988/1989 66.74 -144.57 96 ADF&G 
33 Teslin 1992 61.57 -134.90 96 USFWS 
34 Kobuk 2000 66.92 -160.81 12 Lower Yukon 96 ADF&G 
35 Agiapuk 65.17 -165.68 96 DFO 
36 Pilgrim 2004 65.16 -165.22 96 KWRK 
37 Snake 2004 64.50 -165.41 96 KWRK 
38 Pikmitalik 2004 63.27 -162.60 96 KWRK 
39 Atchulingak 1989 61.96 -162.83 96 USFWS 
40 Anvik 1989 62.68 -160.20 75 USFWS 
41 Kaltag 1992 64.33 -158.72 48 USFWS 
42 Nulato 2003 64.71 -158.14 48 USFWS 
43 Kanektok 1989 59.75 -161.93 13 Lower Kuskokwim 75 ADF&G 
44 Kasigluk 1990 60.85 -161.23 73 ADF&G 
45 Kwethluk 1989 60.81 -161.45 77 ADF&G 
46 Goodnews 1989 59.13 -161.48 96 ADF&G 
47 Nushagak 1988 58.80 -158.63 75 ADF&G 
48 Bigcreek 1988/2000 58.29 -157.53 14 S. Bristol Bay 96 ADF&G 
49 Gertrude 1987/1999 58.17 -156.21 96 ADF&G 
50 Meshik 1989 56.81 -158.66 75 ADF&G 
51 Frosty 2000 55.07 -162.81 15 Frosty 96 ADF&G 
52 Kizyuak 1989 57.82 -152.80 16 Kodiak 48 ADF&G 
53 Little Susitna 1990 61.25 -150.29 17 Cook Inlet 39 ABL 
54 Olsen 1992/1997 60.76 -146.17 18 Prince William Sound 96 ABL 
55 Alsek 2000 59.13 -138.62 19 Yakutat 96 ABL 
56 EAlsek 2006 59.11 -138.52 48 UAFSFOS 
57 Green's Creek 1995 58.10 -134.76 20 Northern SE Alaska 96 ABL 
58 Herman Creek 1987/1990/2008 59.42 -136.10 96 ABL 
59 Taku 2000 58.43 -133.98 45 ABL 
60 Blossom 1986 55.40 -130.61 21 Behm Canal 48 ABL 
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Table 1. -- Continued. 

61 Marten 1986 55.16 -130.53 48 ABL 
62 Portage Creek 1986/1988 55.77 -131.04 96 ABL 
63 Wilson 1986 55.40 -130.61 40 ABL 
64 Herman River 1986 55.99 -131.27 40 ABL 
65 Karta 1986 55.56 -132.57 22 Prince of Wales Island 48 ABL 
66 Old Tom Creek 1986/1988 55.40 -132.40 96 ABL 
67 Bag Harbor 1989 52.35 -131.36 23 QCI 48 ABL 
68 Tasu 1989 52.87 -132.08 48 ABL 
69 Klownick 1989 52.38 -126.75 24 N. British Columbia 48 ABL 
70 Neekas 1989 52.47 -128.17 48 ABL 
71 Grant 1998 48.27 -122.02 25 Puget Sound 96 WDFG 
72 Kennedy 1996 47.10 -123.09 96 WDFG 
73 Johns 2003 47.24 -123.04 96 WDFG 
74 Quilcene 1997 47.80 -122.86 40 ABL 

*ADF&G – Alaska Department of Fish & Game, DFO – Department of Fisheries Oceans, Canada, KWRK – Kawerek, LGG – Laboratory of Genetic
Identification, Institute of General Genetics, ABL – Auke Bay Laboratories, Alaska Fisheries Science Center, TNRO – Kamchatka TINRO, UAFSFOS – 
University of Alaska Fairbanks, USFWS – U.S. Fish and Wildlife Service, WDFG– Washington Department of Fish and Game, RAS – Russian Academy of 
Sciences, KITU - Kitasato University. 
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Table 2. -- Measures of genetic diversity for the 12 single nucleotide polymorphism (SNP) and 
nine microsatellite loci analyzed for all individuals in the 74 chum salmon stocks in 
this work. FST is Weir and Cockerham’s  ߠ (Weir and Cockerham 1984), DEST is 
Jost’s D (Jost 2008), and He is the expected heterozygosity. Some SNP loci had more 
than one allele because they consisted of multiple-linked SNPs in which the phase 
was determined. 

Locus No. SNPs Type FST DEST He No. alleles 
VT 1 SNP 0.086 0.101 0.491 2
IN 2 SNP 0.053 0.015 0.228 3
SP 1 SNP 0.076 0.074 0.484 2
RH 1 SNP 0.081 0.012 0.129 2
VR 3 SNP 0.156 0.308 0.730 4
IS 2 SNP 0.081 0.120 0.622 4
ER 1 SNP 0.388 0.225 0.435 2
PL 1 SNP 0.096 0.034 0.276 2
RF 1 SNP 0.218 0.071 0.303 2
CL 1 SNP 0.034 0.020 0.408 2
PER 1 SNP 0.040 0.004 0.082 2
MT 8 SNP 0.345 0.371 0.454 15
One104 N/A mSat 0.027 0.346 0.951 35 
One102 N/A mSat 0.011 0.127 0.922 38 
Otsg68 N/A mSat 0.019 0.298 0.956 54 
SSa419 N/A mSat 0.028 0.157 0.872 31 
One114 N/A mSat 0.017 0.178 0.933 55 
Omy1011 N/A mSat 0.026 0.272 0.937 34 
One101 N/A mSat 0.060 0.384 0.908 42 
Oki100 N/A mSat 0.044 0.313 0.905 30 
Ots103 N/A mSat 0.022 0.378 0.965 49 
mSats only 0.028 0.273 0.928 
SNPs only 0.157 0.089 0.399 
Overall  0.073 0.172 0.627
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Figure 1. -- Area of study. Geographical sam
groups are provided in Table 1. 

mpling locations (dots) of the 74 stocks used for mixed-stock analysis. Regional 
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Figure 2a. -- Mean stock composition estimates for 2
the bars) were calculated from the 10 te
combined microsatellite and SNP basel
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Figure 2b. -- Comparison of the mean stock composition estimates for BAYES leave-ten-percent-out cross-validation of mixtures for 
25 reporting groups versus the true composition of the mixture. The black diagonal line represents the relationship 
between a perfectly accurate estimate and the true value (100% correct assignment). Each circle represents the average 
proportion for one of the 25 reporting groups and the standard error of the estimated proportions is indicated by the 
whiskers for each circle. Names of groups whose averages included a large error for at least one of the 10 mixture 
samples are indicated with arrows. 
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Figure 3. -- Absolute bias of composition estimates for BAYES leave-ten-percent-out cross-validation (LTO) calculated as the 
absolute difference between the mean estimate and the true value for each of the 25 reporting groups. The gray continuous 
line is scaled by the secondary y-axis and shows the sample size for each group. 
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Figure 4. -- Standard deviation of stock proportion estimates for BAYES leave-ten-percent-out cross-validation (LTO). The gray 
continuous line is scaled by the secondary y-axis and shows the sample size for each group. 
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Figure 5. -- Square root of the mean-squared-error (MSE) of the stock proportion estimates for BAYES leave-ten-percent-out cross-
validation (LTO). The gray continuous line is scaled by the secondary y-axis and shows the sample size for each group.
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Figure 6. -- GST values to assess possible introduction of bias calculated with the observed allele frequencies from the original full 
baseline and then for each of the 10 leave-ten-percent-out cross-validation (LTO) baselines. The calculations were 
repeated with allele frequencies that were shrunk toward their prior grand mean according to Equation 4 in Pella and 
Masuda (2001). 
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Figure 7. -- Individual assignments for 3 of the 74 po
proportion of times that the individual w
assign to the Kuril region with high prob
Those in Anadyr, however, show mis-as
available upon request from the lead aut

opulations in the baseline. Each bar represents an individual. The
was assigned to a population given on the x-axis. Individuals from
bability and those in Big Creek assign to the correct drainage wit
ssignments to both Asian and Alaskan stocks. Data for the 74 pop
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th high accuracy. 
pulations are 
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Figure 8. -- Mean proportion of individuals in the mixture correctly assigned to their reporting group with the maximum a posteriori 
rule as related to the total number of single nucleotide polymorphisms (SNPs), the original (12 SNPs), and the simulated 
(8 or more SNPs). Simulated data are shown with the solid line and black squares. The gray line represents a logistic 
function fit to the data with maximum likelihood and the dotted gray lines are the 2.5% and 97.5% confidence intervals. 
The solid black horizontal line represents the 0.9 proportion correctly assigned and the dashed black horizontal line is the 
proportion correctly assigned with the current combined SNP, microsatellite (mSat), and mitochondrial DNA data (21 
loci).
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APPENDIX 1 

Single Nucleotide Polymorphism Discovery 

The development of baselines from single nucleotide polymorphism (SNP) data involves 

four steps: 1) discovery of SNP loci, 2) development of a laboratory assay for each SNP, 3) 

selection of SNPs for inclusion into the baseline among those assayed, and 4) evaluation of the 

SNP baseline’s capacity to distinguish its stocks in mixtures. Most baseline development projects 

use Sanger or next-generation sequencing to discover tens or even thousands of SNPs from 

which a subset is developed into a laboratory assay and used to genotype baseline samples. In an 

attempt to reduce the number of SNPs to be used for MSA, a subset of the most promising are 

high-graded and then evaluated for precision and accuracy, usually with simulations of mixture 

samples from the baseline itself.  

Anderson (2010) cautioned that a systematic upward bias in predicted accuracy can be 

introduced into baseline evaluation when SNPs are high-graded if the same samples are used to 

choose loci and to evaluate the new baseline. This bias is distinct from error-enhanced 

divergence described earlier by Anderson et al. (2008) and results from the fact that divergence 

estimates from a sample are larger or smaller than the true value. SNP loci that are chosen based 

on their high divergence estimates will exhibit the statistical phenomenon called regression to the 

mean and likely not perform as well with different baseline and mixture samples, and loci that 

were initially excluded because of low divergence may perform better than expected in later 

samples. High-grading is also different than so-called ‘ascertainment bias’, which occurrs when 

too few individuals are used in the ascertainment panel for SNP discovery (although this is best 

described as sampling error, we will use the term most often reported in the literature).  
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We constructed an alternative system to develop and evaluate SNP baselines that reduces 

ascertainment bias introduced during the discovery step, reduces the costs associated with the 

development step as well as bias introduced during the selection step (Garvin and Gharrett 

2007), and either reduces or eliminates optimistic bias in baseline evaluation from error-

enhanced divergence and high-grading. Our Eco-TILLING method essentially combines the 

discovery and selection steps (1 and 3) of the baseline development into a single step. Our 

ascertainment panel consisted of 480 individuals that represented 12 populations across a 

geographic range, which was used to survey each target DNA sequence. Ascertainment bias was 

reduced because 40 individuals per stock were surveyed for genetic variants compared to a 

handful with standard sequencing methods. Costs were reduced because only informative SNPs 

are subsequently developed into laboratory assays.  

We used a single population to represent each geographic reporting group for both SNP 

discovery and to high-grade loci with Eco-TILLING (Garvin and Gharrett 2007). Importantly, 

the representative population for a reporting group was not always the same for all SNPs 

discovered, and less than half of a sample from a population was used for the discovery and 

high-grading step. 

For our SNP discovery efforts, we amplified targeted DNA sequences with pools of DNA 

from a regional representative stock and chose potentially informative loci according to 

estimated allele frequencies. Those loci were then evaluated with our LTO method with all of the 

baseline samples, which included the first portions of the sample used to choose the loci (the 

training set), the second portion of the sample (the holdout set), and complete samples from other 

populations within the geographic region that the discovery sample represented (additional 

holdout samples).   
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The mitochondrial SNPs were validated from previous RFLP work (Garvin et al. 2010) 

and other SNPs were reported in a method in which the phase of linked SNPs was determined 

empirically (Garvin and Gharrett 2010). Potentially informative SNPs are those with high FST 

values (Storer et al. 2012), or for the mitochondrial variants (Garvin et al. 2010;  > 0.3, 

Moriya et al. 2006). 

Principal Components Analysis 

A principal components analysis (PCA) was performed on the allele frequency data that 

were arcsine square-root transformed before the analysis in SYSTAT (Sokal and Rohlf 1994). 

For the multi-allelic microsatellite data, if the expected number of alleles at each locus for the 

smallest sample was less than four, the alleles were binned with the next largest-sized allele. The 

absolute values of the loadings for the first component were also computed to quantify the 

informativeness of each allele at each locus. 

ST ST
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Appendix Table 1-1. -- Mean stock proportion estimates from each of the 10 BAYES leave-ten-percent-out cross-validation analyses 
with the 25 reporting groups. 
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Honshu 0.020 0.007 0.018 0.007 0.019 0.007 0.017 0.007 0.019 0.007 0.022 0.007 0.013 0.006 0.019 0.007 0.021 0.007 0.019 0.007 0.018 
Kurils 0.018 0.006 0.016 0.006 0.017 0.007 0.015 0.006 0.020 0.007 0.016 0.006 0.013 0.006 0.015 0.006 0.016 0.006 0.019 0.007 0.016 
S. Sakhalin 0.036 0.011 0.028 0.009 0.030 0.010 0.022 0.008 0.024 0.009 0.030 0.010 0.023 0.008 0.020 0.008 0.016 0.007 0.028 0.011 0.027 
N. Sakhalin 0.014 0.009 0.018 0.009 0.006 0.008 0.030 0.010 0.004 0.008 0.019 0.011 0.019 0.009 0.000 0.001 0.001 0.003 0.015 0.011 0.016 
Amur 0.019 0.008 0.038 0.011 0.011 0.009 0.013 0.009 0.027 0.009 0.032 0.013 0.023 0.009 0.016 0.008 0.014 0.007 0.028 0.011 0.031 
Primore 0.044 0.011 0.042 0.010 0.064 0.014 0.067 0.014 0.043 0.011 0.043 0.012 0.067 0.014 0.064 0.013 0.054 0.012 0.040 0.010 0.042 
Magadan 0.002 0.004 0.001 0.004 0.000 0.001 0.001 0.003 0.001 0.003 0.001 0.002 0.000 0.002 0.011 0.009 0.011 0.009 0.001 0.003 0.016 
Kamchatka 0.056 0.014 0.057 0.014 0.042 0.014 0.043 0.013 0.054 0.015 0.048 0.016 0.024 0.010 0.093 0.022 0.071 0.017 0.050 0.016 0.053 
Anadyr 0.050 0.012 0.024 0.011 0.065 0.016 0.044 0.013 0.079 0.015 0.053 0.014 0.071 0.014 0.044 0.013 0.037 0.012 0.050 0.013 0.056 
Middle Yukon 0.036 0.014 0.022 0.010 0.044 0.015 0.035 0.012 0.033 0.013 0.022 0.010 0.033 0.015 0.078 0.018 0.057 0.014 0.042 0.016 0.040 
Upper Yukon 0.079 0.015 0.105 0.018 0.086 0.017 0.071 0.015 0.092 0.016 0.103 0.017 0.094 0.018 0.076 0.017 0.074 0.014 0.088 0.017 0.080 
Lower Yukon 0.152 0.031 0.184 0.034 0.095 0.028 0.160 0.035 0.199 0.029 0.147 0.028 0.178 0.034 0.139 0.030 0.135 0.031 0.162 0.033 0.153 
Lower Kuskokwim 0.112 0.031 0.083 0.032 0.154 0.031 0.110 0.035 0.019 0.019 0.100 0.027 0.066 0.033 0.064 0.027 0.107 0.031 0.095 0.035 0.082 
S. Bristol Bay 0.047 0.013 0.039 0.012 0.034 0.013 0.055 0.015 0.062 0.014 0.045 0.012 0.049 0.014 0.049 0.014 0.064 0.015 0.033 0.015 0.056 
Frosty 0.020 0.008 0.019 0.007 0.026 0.008 0.023 0.008 0.025 0.008 0.021 0.008 0.028 0.009 0.012 0.007 0.015 0.007 0.022 0.008 0.020 
Kodiak 0.011 0.011 0.001 0.003 0.003 0.004 0.002 0.004 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.002 0.016 0.010 0.009 
Cook Inlet 0.007 0.004 0.007 0.004 0.010 0.006 0.003 0.004 0.009 0.005 0.009 0.005 0.012 0.006 0.008 0.005 0.006 0.004 0.006 0.004 0.007 
Prince William Sound 0.020 0.011 0.017 0.008 0.001 0.004 0.019 0.010 0.009 0.007 0.019 0.009 0.022 0.008 0.005 0.007 0.024 0.010 0.020 0.010 0.018 
Yakutat 0.032 0.009 0.027 0.009 0.021 0.007 0.024 0.008 0.035 0.010 0.031 0.009 0.036 0.009 0.028 0.009 0.031 0.009 0.034 0.009 0.029 
Northern SE AK 0.055 0.015 0.059 0.016 0.059 0.015 0.047 0.016 0.059 0.016 0.054 0.015 0.036 0.013 0.031 0.013 0.061 0.017 0.038 0.019 0.049 
Behm Canal 0.039 0.021 0.103 0.030 0.090 0.021 0.062 0.018 0.054 0.015 0.060 0.020 0.057 0.016 0.124 0.024 0.083 0.021 0.060 0.026 0.056 
Prince of Wales 0.045 0.014 0.027 0.012 0.033 0.013 0.047 0.015 0.031 0.017 0.033 0.017 0.057 0.015 0.029 0.015 0.036 0.016 0.043 0.016 0.029 
Haida Gwaii 0.013 0.007 0.016 0.011 0.018 0.008 0.029 0.011 0.014 0.008 0.008 0.011 0.023 0.010 0.014 0.008 0.017 0.007 0.020 0.011 0.018 
Northern B.C. 0.020 0.015 0.008 0.014 0.004 0.007 0.003 0.006 0.032 0.012 0.050 0.015 0.000 0.001 0.002 0.005 0.002 0.006 0.008 0.013 0.018 
Puget Sound 0.053 0.014 0.043 0.015 0.069 0.014 0.057 0.014 0.058 0.012 0.036 0.014 0.057 0.013 0.061 0.015 0.048 0.013 0.067 0.017 0.064 
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Appendix Figure 1-1a. -- Principal components anal
lines indicate geographical

ysis of the 74 baseline stocks. The first and second components a
l groups.

are shown and 
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Appendix Figure 1-1b. -- The loadings for each of the 21 loci used in this study. Loadings for each allele are identified in each locus 
with color-scale bars. 
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Appendix Figure 1-2. -- Mean stock composition est
out cross-validation (LTO),
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Appendix Figure 1-3. -- Comparison of the mean stock composition estimates for SPAM Simulation of mixtures for 25 reporting 
groups versus the true composition of the mixture. The black diagonal line represents the relationship 
between a perfectly accurate estimate and the true value (100% correct assignment). Each circle represents 
the average proportion for one of the 25 reporting groups, and the standard error of the estimated proportions 
is indicated by the whiskers for each circle. Names of groups whose averages included a large error for at 
least one of the ten mixture samples are indicated with arrows. 
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Appendix Figure 1-4. -- Comparison of the mean stock composition estimates for SPAM leave-ten-percent-out cross-validation (LTO) 
of mixtures for 25 reporting groups versus the true composition of the mixture. The black diagonal line 
represents the relationship between a perfectly accurate estimate and the true value (100% correct 
assignment). Each circle represents the average proportion for one of the 25 reporting groups, and the 
standard error of the estimated proportions is indicated by the whiskers for each circle. Names of groups 
whose averages included a large error for at least one of the ten mixture samples are indicated with arrows. 
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Appendix Figure 1-5. -- Absolute bias of composition estimates for BAYES leave-ten-percent-out cross-validation (LTO), SPAM 
LTO, and SPAM Simulation calculated as the absolute difference between the mean estimate and the true 
value for each of the 25 reporting groups. The gray continuous line is scaled by the secondary y-axis and 
shows the sample size for each group. 
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Appendix Figure 1-6. -- Standard deviation of stock proportion estimates for BAYES leave-ten-percent-out cross-validation (LTO), 
SPAM LTO, and SPAM Simulation. The gray continuous line is scaled by the secondary y-axis and shows 
the sample size for each group. 
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Appendix Figure 1-7. -- Square root of the mean-squared-error (MSE) of the stock proportion estimates for BAYES leave-ten-percent-
out cross-validation (LTO), SPAM LTO, and SPAM Simulation. The gray continuous line is scaled by the 
secondary y-axis and shows the sample size for each group. 
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APPENDIX 2 

### This code describes the leave-ten-percent-out cross-validation for mixed-stock analysis. 
### The code was written by Garvin for his Ph.D. thesis and was substantially 
### altered by Patrick Barry as a side project.  
### The code was written for PCs but should be able to run on  
### both linux and mac OS as there are not any packages or system commands 
### implemented.  
### There are three major pieces to the code: 
### Piece one makes many baseline.bse files 
### Piece two makes many mixture files 
### Piece three makes a control file to run with the program BAYES 
### Because Bayes is extremely menu driven it is not possible to run  
### it in batches from MSDOS command prompt.  

### In order to execute the code you will need to have your data  
### formatted according to the example given: 
### The first column is the Individual # 
### The second column is population of the individual 
### Then each column after is a single allele from a locus 
### diploid loci will occupy two columns and should come before haploid loci 
### Haploid loci should occupy two columns with the second column  
### coded with 888 denoting that it is haploid. 

### To make the control file, a Stock.ID tab delim .txt file is needed 
### to specify the priors for the dirichlet and other stock 
### specific options for the program Bayes. 

BaseMix_csv<-function(x,Prop=10,loci.diploid,loci.haploid,print_pop.sum = TRUE) 
{ 
  #This is a function to produce baseline and mixture files 
  #from an input file. These files can then be formatted 
  #for analysis with Bayes 

  #read in data file 
  Y<-read.csv(x,na.string="?") 

  #Recode all the 888 for haploid loci with na 
  Y[Y==888]<-NA 

  #How many populations do we have? 
  Pops <- length(unique(Y$Population)) 
  #How many individuals per pop? 
  Pop.sum<-matrix(data=NA,ncol=4,nrow=Pops) 
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  Pop.sum[,1]<-seq(from=1, to = Pops,by=1) 
  for (q in 1:Pops){ 
    Pop.sum[q,2]<-nrow(Y[Y$Population==q,,]) 
  } 

  #We can add to our vector how many individuals to be taken that are 1/10th the population 
  #and the leftovers to be added back 
  for(w in 1:Pops){ 
    Pop.sum[w,3]<-Pop.sum[w,2]%/%10 
    Pop.sum[w,4]<- Pop.sum[w,2]%%10 
  } 
  colnames(Pop.sum)<-c("Pop","n","N","LO") 

  if (print_pop.sum == TRUE) {write.table(Pop.sum,quote=FALSE,file="Pop.sum.txt") 
 cat("Population Summary Printed to Pop.sum\n", sep="") 

  }  

  ###How many unique alleles for each locus? 
  Allele.sum<- matrix(data=NA,nrow=loci.diploid+loci.haploid,ncol=2) #matrix to hold 
information to reference later 
  colnames(Allele.sum)<- c("Locus", "Max.Num") 

  for (a.s in 1:nrow(Allele.sum)){ # fill in loci names 
    Allele.sum[a.s,1]<- colnames(Y[a.s*2+1]) 
    all.alleles<-
list((as.vector(na.omit(suppressWarnings(as.numeric(rownames(table(Y[,(a.s*2+1):(a.s*2+2)])))
)))),(as.vector(na.omit(suppressWarnings(as.numeric(colnames(table(Y[,(a.s*2+1):(a.s*2+2)]))))
)))) 
    length(all.alleles) 

    u.all<-(unique(Y[,a.s*2+1])) 
    u.all<-append(u.all,unique(Y[,a.s*2+2])) 
    u.all<-unique(u.all) 
    u.all<-sort(u.all) 
    Allele.sum[a.s,2] <- length(u.all) 
    assign(paste("Locus",a.s,sep=""),u.all)# make a vector for each with a list of the alleles found 
  } 

  write.table(Allele.sum,file="LociSummary.csv",quote=F,sep=",", row.names=F,col.names=F) 

### Create indexing in the Y file 
  Y$Index<-NA # Create index vector  
  index<- vector() 
  for (v in 1:Pops){ 
    index[(sum(Pop.sum[Pop.sum[,1] < v,2])+1):(as.numeric((sum(Pop.sum[Pop.sum[,1] < 
v,2])+Pop.sum[v,3]*10)))]<- rep(1:10,rep((Pop.sum[v,3]),10)) 
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    if (as.logical(Pop.sum[v,4]>0)){ 
      index[(as.numeric((sum(Pop.sum[Pop.sum[,1] < 
v,2])+Pop.sum[v,3]*10))+1):(as.numeric((sum(Pop.sum[Pop.sum[,1] < 
v,2])+Pop.sum[v,3]*10)+Pop.sum[v,4]))]<- rep(11,Pop.sum[v,4]) 
    } 
  } 
  Y$Index<- index 

  #add Index shuffle values to matrix 
  Y$Index.shuff<-NA 
  Index.shuff.temp<- vector(mode="numeric", length=sum(Pop.sum[,2])) 
  #Shuffle the index within each population 
  for (u in 1:Pops){ 
    P.temp<- Y[Y$Population==u,]### This gives me the data I want to use 
    Index.shuff<-P.temp$Index 
    Index.shuff<- sample(Index.shuff,length(Index.shuff),replace=FALSE) 
    #Write the shuffled values back to Y 
    Index.shuff.temp[(sum(Pop.sum[Pop.sum[,1] < 
u,2])+1):(as.numeric((sum(Pop.sum[Pop.sum[,1] < u,2])+Pop.sum[u,2])))]<- Index.shuff 
  } 
  Y$Index.shuff<- Index.shuff.temp 

  #Recombine all 101 x 10 mixtures to create 10 mixed stocks:      
  for (i in 1:10){ 
    assign(paste('Mix',i,sep=""),Y[Y$Index==i,]) 
    assign(paste('Baseline',i,sep=""),Y[Y$Index!=i,]) 
  } 

  #Clean up file by getting rid of shuffling col. 
  for (i in 1:10){ 

assign(paste('Baseline',i,sep=""),eval(parse(text=paste('Baseline',i,'[,1:(ncol(',(paste('Baseline',i,s
ep="")),')-2)]',sep="")))) 
  } 

  #Export the files: 
  for (i in 1:10){ 

write.table(eval(parse(text=paste('Mix',i,sep=""))),quote=FALSE,file=paste('Mix',i,'.csv',sep=""),
row.names = FALSE, sep=",") 
  } 

  for (i in 1:10){ 
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write.table(eval(parse(text=paste("Baseline",i,sep=""))),quote=FALSE,file=paste("Baseline",i,".c
sv",sep=""),row.names = FALSE, sep=",") 
  } 
  cat('Baseline and Mixture files written to working directory') 

} 

############################################################################ 
#RtoBAYESBASE 
Bayes_format<-function(x,cores=2,loci.haploid,loci.diploid,npops){ 
  # x is the original baseline to test 
  # cores = number of cores on the computer 
  # L is number of loci 
  # requires that .csv files produced by BaseMix_csv() 
  # be located in the working directory 

  #RtoBAYESBASE 
  ####Read baseline file 
  library(doSNOW) 
  library(foreach) 
  cl<-makeCluster(cores) 
  registerDoSNOW(cl) 

  Y<-read.csv(x,na.string="?") 
  L<-loci.haploid + loci.diploid 
  Loci.names<-paste("Locus",seq(from=1,to=L,by=1),sep="") 

  ###How many unique alleles for each locus? 
  Allele.sum<- matrix(data=NA,nrow=L,ncol=2) #matrix to hold information to reference later 
  colnames(Allele.sum)<- c("Locus", "Max.Num") 

  for (a.s in 1:nrow(Allele.sum)){ # fill in loci names 
    Allele.sum[a.s,1]<- colnames(Y[a.s*2+1]) 
    all.alleles<-
list((as.vector(na.omit(suppressWarnings(as.numeric(rownames(table(Y[,(a.s*2+1):(a.s*2+2)])))
)))),(as.vector(na.omit(suppressWarnings(as.numeric(colnames(table(Y[,(a.s*2+1):(a.s*2+2)]))))
)))) 
    length(all.alleles) 

    u.all<-(unique(Y[,a.s*2+1])) 
    u.all<-append(u.all,unique(Y[,a.s*2+2])) 
    u.all<-unique(u.all) 
    u.all<-sort(u.all) 
    Allele.sum[a.s,2] <- length(u.all) 
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    assign(paste("Locus",a.s,sep=""),u.all)# make a vector for each with a list of the alleles found 
  } 

  cat('Please be patient, this may take a moment\n') 

  foreach (o = 1:10,.export=Loci.names) %dopar% { 
    Base.temp<-read.csv(paste("Baseline",o,".csv", sep="")) 
    #Calculate the number of populations 
    P<-unique(Base.temp$Population) 

    C<-ncol(Base.temp) 

    # Create a matrix to index the alleles at each locus 
    maxalleles= as.numeric(max(Allele.sum[,2])) 
    Base <- matrix(data=NA,ncol=maxalleles+3, nrow=L*npops)#### rows here probably have to 
extend much further! 
    colnames(Base)<- c("Pop","Locus","N",rep(1:max(Allele.sum[,2]))) 
    Base[,1]<- rep(1:npops,rep(L,npops)) 
    Base[,2]<-rep(1:L,npops) 

    for(k in 1:npops){ 
      Pop.k <- Base.temp[Base.temp$Population==k,] 

      for(i in 1:L){ 
        allele.temp <- eval(parse(text=paste("Locus",i,sep="")))# which alleles are we dealing with  
        ##add up all alleles 
        a.vec<-vector(mode="numeric",length=length(allele.temp)) 
        for (a in 1:length(allele.temp)){ 
          if (i<= loci.diploid){ 
            a.vec[a]<-sum(Pop.k[,((2*i+1):(2*i+2))]== 
eval(parse(text=paste("Locus",i,"[a]",sep=""))),na.rm=T) 
          } else { 
            a.vec[a]<-sum(Pop.k[,(2*i+1)]== 
eval(parse(text=paste("Locus",i,"[a]",sep=""))),na.rm=T) 
          }#if 
          if (i<= loci.diploid){ 
            Base[(k-1)*L+i,4:(3+length(allele.temp))]<-a.vec # need to be clever about the 1 in the 
base 
            Base[(k-1)*L+i,3]<- sum(Base[(k-1)*L+i,4:(3+length(allele.temp))],na.rm=T) 
          } else { 
            Base[(k-1)*L+i,4:(3+length(allele.temp))]<-a.vec # need to be clever about the 1 in the 
base 
            Base[(k-1)*L+i,3]<- sum(Base[(k-1)*L+i,4:(3+length(allele.temp))],na.rm=T)*2 
          }#if 
        }#over allele 
      }#over loci 
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    }#over pops 

    #write the Base to a file 
    write.table(Base,quote=FALSE,file=paste("Baseline",o,".txt",sep=""),row.names = 
FALSE,col.names=FALSE, sep="\t", na="") 
  } 
  ##### format baseline ####################################################### 
  require(stringr) 
  foreach (o = 1:10,.packages=c('stringr')) %dopar% {  
    file.create(paste("Baseline",o,".bse",sep="")) 
    line.temp<-readLines(paste("Baseline",o,".txt",sep="")) 
    line.temp<-str_trim(line.temp) 
    line.temp<-str_split(line.temp,"\t") 
    max.ln<-npops*L 
    for (l.n in 1:max.ln){ 
      line.temp2<-line.temp[[l.n]] 
      line.temp2<-gsub(",","",paste(formatC(line.temp2, width=6,flag=" "),collapse=",")) 
      lapply(line.temp2, write, paste("Baseline",o,".bse",sep=""), append=TRUE) 
    }} 

  cat('Baseline.bse files are now saved to the working directory\n') 

##############################################################################
####### 
  #### Lets format all the Mixture files now 
  foreach (m = 1:10,.export=Loci.names) %dopar% { 
    mix.temp<- read.csv(paste("Mix",m,".csv", sep="")) 

    mix <- matrix(data=NA, ncol=sum(as.numeric(Allele.sum[,2]))+(L-1), 
nrow=nrow(mix.temp)) 

    #count alleles at each locus 
    for (m.l in 1:L){ 
      allele.temp2 <- eval(parse(text=paste("Locus",m.l,sep=""))) 

      mix.a.mtrx<-matrix(data=NA,nrow=nrow(mix.temp),ncol=length(allele.temp2)) 

      if (m.l<= loci.diploid){ # count over locus 
        for (ind.m in 1:nrow(mix.temp)){ # count for each individual in mix 
          for (a.m in 1:length(allele.temp2)){ # count over all alleles at a locus 
            mix.a.mtrx[ind.m,a.m]<-sum(mix.temp[ind.m, 
((m.l*2+1):(m.l*2+2))]==allele.temp2[a.m],na.rm=T) 
          }} 
        if (m.l<2){# this section puts the results in the right place 
          mix[,1:length(allele.temp2)]<- mix.a.mtrx 
        } else { 
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          mix[,((sum(as.numeric(Allele.sum[((m.l-1):1),2]))+1)+m.l-
1):(((sum(as.numeric(Allele.sum[((m.l-1):1),2])))+(length(allele.temp2-1)))+m.l-1)]<-mix.a.mtrx  
        }# if it is the first locus it needs to be placed in the right spot. 
      } else { # if it is haploid 
        for (ind.m in 1:nrow(mix.temp)){ 
          for (a.m in 1:length(allele.temp2)){ 
            mix.a.mtrx[ind.m,a.m]<-sum(mix.temp[ind.m, (m.l*2+1)]==allele.temp2[a.m],na.rm=T) 
          }} 
        mix[,((sum(as.numeric(Allele.sum[((m.l-
1):1),2])))+m.l):(((sum(as.numeric(Allele.sum[((m.l-1):1),2])))+(length(allele.temp2-1)))+m.l-
1)]<-mix.a.mtrx   
        gsub("NA"," ",mix)  
      } 
    } 
    # write the mixture to a file 
    write.table(mix,quote=FALSE,na=" ",file=paste("Mixture",m,".mix", sep=""),row.names = 
FALSE, sep="", col.names=FALSE) 

  } 
  cat ('Mixture files are now saved to working directory. Have fun running Bayes.exe') 
} 
############################################################################ 
Ctl_file<-function(MCMC.num=1000,TI.SP=10,TI.BAF=10,TI.SAI=100,BAYES.options="T T 
F T F T F", 

Stock.ID='StockID.txt',Bayes.title='BayesTitle',Pops=74, 
loci.haploid,loci.diploid){  

# Let's make a control file 
  # we have 10 mixtures and 10 baselines! 

  #User input for making the control file 
  #MCMC.num<-How many MCMC samples? 
  #TI.SP<-thinning interval for stock proportion 
  #TI.BAF<-thinning interval baseline allele freq 
  #TI.SAI<-thinning interval stock assignment for individual. 
  #BAYES.options<-options for output of program SEE bayes manual ex."T T F T F T F" 
  #Stock.ID<- StockID block in the control file. No way to make this generic. 
  #Bayes.title<- Name for the analysis 
  Allele.sum<-read.csv('LociSummary.csv',header=F) 
  write.table(Bayes.title,quote=FALSE,file=paste(Bayes.title,'.ctl',sep=""),row.names = FALSE, 
sep="", col.names=FALSE) #write name to file 

write.table('Baseline1.bse',quote=FALSE,file=paste(Bayes.title,'.ctl',sep=""),append=TRUE,row.
names = FALSE, sep="", col.names=FALSE)#baseline file 

write.table('Mixture1.mix',quote=FALSE,file=paste(Bayes.title,'.ctl',sep=""),append=TRUE,row.
names = FALSE, sep="", col.names=FALSE) #mixture file 
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  #output names 
  Out.names<-
c('Summary.SUM','MCMC_StockProp.BOT','MCMC_AlleleFreq.FRQ','Binary_Restart.B01','St
ock_IndAssign.CLS','MCMC_SGRP.RGN') 

write.table(Out.names,quote=FALSE,file=paste(Bayes.title,'.ctl',sep=""),append=TRUE,row.na
mes = FALSE, sep="", col.names=FALSE) #output names 
  #MCMC 
  write.table(format(MCMC.num, 
scientific=F),quote=FALSE,file=paste(Bayes.title,'.ctl',sep=""),append=TRUE,row.names = 
FALSE, sep="", col.names=FALSE) #MCMC 
  # number of stocks - get from input file.  
  write.table(Pops,quote=FALSE,file=paste(Bayes.title,'.ctl',sep=""),append=TRUE,row.names = 
FALSE, sep="", col.names=FALSE) #stocks 
  # number of characters  
  Characters<-loci.diploid+loci.haploid 

write.table(Characters,quote=FALSE,file=paste(Bayes.title,'.ctl',sep=""),append=TRUE,row.nam
es = FALSE, sep="", col.names=FALSE) #loci  
  # 3 random seeds 
  Seeds<-sample(1:200000,3) 
  write.table(Seeds,quote=FALSE,file=paste(Bayes.title,'.ctl',sep=""),append=TRUE,row.names 
= FALSE, sep="", col.names=FALSE) #Seeds 
  #Thinning intervals 

write.table(c(TI.SP,TI.BAF,TI.SAI),quote=FALSE,file=paste(Bayes.title,'.ctl',sep=""),append=T
RUE,row.names = FALSE, sep="", col.names=FALSE) #Thinning intervals  
  # Fortran Format for the mixture file 
  Fortran.Mix<-paste('(',(paste(Allele.sum[,2],'I1,','1X',sep="",collapse=',')),')',sep="") 

write.table(Fortran.Mix,quote=FALSE,file=paste(Bayes.title,'.ctl',sep=""),append=TRUE,row.na
mes = FALSE, sep="", col.names=FALSE) #Fortran mixture 
  # Fortran Format of Baseline 
  # column numbers in baseline I6) 
  FtF_bse<-paste('(',(as.numeric(max(Allele.sum[,2]))+3),'I','6)',sep="") 

write.table(FtF_bse,quote=FALSE,file=paste(Bayes.title,'.ctl',sep=""),append=TRUE,row.names 
= FALSE, sep="", col.names=FALSE) 

  #Options for output from BAYES 

write.table(BAYES.options,quote=FALSE,file=paste(Bayes.title,'.ctl',sep=""),append=TRUE,ro
w.names = FALSE, sep="", col.names=FALSE) #Bayes Options 

  # character descriptions 
  Ch.Des<- matrix(data=NA,ncol=4,nrow=Characters) 
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  Ch.Des[,1]<-seq(from=1,to=Characters,by=1) 
  Ch.Des[,2]<-Allele.sum[,2] 
  Ch.Des[(1:loci.diploid),3]<-rep('T',time=loci.diploid) 
  Ch.Des[((loci.diploid+1):(loci.diploid+loci.haploid)),3]<-rep('F',time=loci.haploid)  
  Ch.Des[,4]<-Allele.sum[,1] 
  Ch.D<-paste(formatC(Ch.Des[,1], width = 3, flag = "+"),formatC(Ch.Des[,2], width = 3, flag = 
"+"),(paste(formatC(Ch.Des[,3], width = 3, flag = "+"),formatC(Ch.Des[,4], width = 3, flag = "-
"),sep=" ")),sep="") 
  write.table(Ch.D,quote=FALSE,file=paste(Bayes.title,'.ctl',sep=""),append=TRUE,row.names = 
FALSE, sep="", col.names=FALSE) #Bayes Options 

  #Stock ID block 
  # would this be easiest to just make the user make a stock id block? 
  # read in the StockID file 
  Stk.ID <- readLines(con=Stock.ID) 
  #split into strings 
  Stk.ID<- str_split(Stk.ID,pattern='\t') 
  #what is the max length of the population name? 
  C5<-max(nchar(sapply(Stk.ID, "[", 4))) 
  Stk.ID.w<-paste(formatC(sapply(Stk.ID, "[", 1), width = 3, flag = "+"),formatC(sapply(Stk.ID, 
"[", 2), width = 3, flag = "+"),formatC(gsub( "^0+" , "" , sapply(Stk.ID, "[", 3) ), width = 8, flag 
= "+"),formatC(sapply(Stk.ID, "[", 4), width = C5+1, flag = "+"),formatC(gsub( "^0+" , "" , 
sapply(Stk.ID, "[", 5) ), width = 8, flag = "+"),sep="") 

write.table(Stk.ID.w,quote=FALSE,file=paste(Bayes.title,'.ctl',sep=""),append=TRUE,row.name
s = FALSE, sep="", col.names=FALSE) #Bayes Options 
  cat (paste((paste(Bayes.title,'.ctl',sep="")),'is saved in working directory',sep=" ")) 
}= 
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