

NOAA Technical Memorandum NMFS-AFSC-260

North Pacific Marine Mammal Bycatch Estimation Methodology and Results, 2007-2011

by J. M. Breiwick

> U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center

> > December 2013

NOAA Technical Memorandum NMFS

The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature.

The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-NWFSC series is currently used by the Northwest Fisheries Science Center.

This document should be cited as follows:

Breiwick, J. M. 2013. North Pacific marine mammal bycatch estimation methodology and results, 2007-2011. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-260, 40 p.

Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA.

NOAA Technical Memorandum NMFS-AFSC-260

North Pacific Marine Mammal Bycatch Estimation Methodology and Results, 2007-2011

by J. M. Breiwick

National Marine Mammal Laboratory Alaska Fisheries Science Center 7600 Sand Point Way N.E. Seattle WA 98115 U.S.A.

www.afsc.noaa.gov

U.S. DEPARTMENT OF COMMERCE

Penny. S. Pritzker, Secretary **National Oceanic and Atmospheric Administration** Kathryn D. Sullivan, Under Secretary and Administrator **National Marine Fisheries Service** Samuel D. Rauch III, Acting Assistant Administrator for Fisheries

December 2013

This document is available to the public through:

National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161

www.ntis.gov

ABSTRACT

Analyses of North Pacific marine mammal bycatch data for the period 1989-2006 have been made by Perez (2003, 2006, Unpubl.) based on Structured Query Language scripts. A change in the structure of the Oracle database maintained by the Fisheries Monitoring and Analysis (FMA) Division of the Alaska Fisheries Science Center in 2008 required that analysis programs be rewritten. The present analysis, for the period 2007-2011, was undertaken using the R programming language (R Core Team 2012). Bycatch estimates were calculated for each of 23 groundfish trawl, longline, and pot fisheries in Alaska using the FMA observer data and the total fishery data from the Catch Accounting System of the Alaska Regional Office of the National Marine Fisheries Service. Fisheries were determined by the target species, gear type, and area. The weight of all groundfish caught in a haul was used as a measure of effort. The total number of hauls was unknown for each fishery. The ratio of sampled groundfish weight to number of sampled hauls was assumed to be equal to the ratio of total groundfish weight for the fishery to the total number of hauls in the fishery. The observed bycatch of all marine mammal species for the years 2007-2011 was 16, 38, 20, 23 and 32, respectively. An additional 12 marine mammal mortalities were observed but were not used to estimate total marine mammal mortality because they occurred in hauls with unknown effort. The estimated by catch of all marine mammals for these years was 31.8, 42.9, 21.1, 28.6 and 38.4, respectively. The following marine mammal species were bycaught during 2007-2011: bearded seal, harbor seal, northern elephant seal, northern fur seal, Steller (northern) sea lion, ribbon seal, ringed seal, spotted seal (larga seal), unidentified pinniped, walrus, Dall's porpoise, gray whale, harbor porpoise, humpback whale, killer whale and sperm whale. Annual bycatch (killed or seriously injured) estimates were calculated for each marine mammal stock in each fishery for the 5 year period. These estimates are used to assess and manage marine mammal stocks and for classification of commercial fisheries.

iii

ABSTRACT	iii
INTRODUCTION	1
Data Sources	1
North Pacific Groundfish and Halibut Observer Program	3
Catch Accounting System (CAS) Data	
Bycatch Estimation Method	
Statistical Formulas	
Potential Sources of Error	
R Analysis and Functions	
RESULTS and DISCUSSION	11
ACKNOWLEDGMENTS	13
CITATIONS	15
Fig. 1. – National Marine Fisheries Service statistical areas (Federal reporting areas) and fisheries	
management plan regions in Alaska	16
Table 1. – Number of sampled hauls by year and marine mammal interaction	17
Table 2. – Number of animals by year and marine mammal interaction code (based on hauls in Table 1)	17
Table 3. – Observer coverage (fractions) by year, fishery and vessel class	
Table 4. – Number of hauls/sets sampled by fishery, year, and gear type (dot indicates no data).	19
Table 5. – Observed and estimated bycatch by year, fishery and marine mammal species	22
Table 6. – Data from Table 5, formatted as in Alaska Marine Mammal Stock Assessments reports	24
Appendix 1. – National Marine Fisheries Service list of fisheries (LOF) for which bycatch	
	21
estimates must be made	
Appendix 2. – Oracle views and tables at AFSC used in bycatch analyses	32
Appendix 3. – Marine mammal interaction codes (Observer Program data)	32
Appendix 4. – Gear codes	32
Appendix 5. – Marine mammal species codes, common names and scientific names	33
Appendix 6. – Catch Accounting System species group codes and target species codes	34

CONTENTS

Appendix 7. – Description of Oracle table: OBSINT.DEBRIEFED_MAMMAL_V	35
Appendix 8. – Description of NORPAC Oracle materialized view: NORPAC.AKR_OBS_HAUL_MV	36
Appendix 9. – Description of NORPAC Oracle materialized view:	
NORPAC.AKR_CA_PRIMARY_TXN_MV	
Appendix 10. – Description of NORPAC Oracle materialized view: NORPAC.AKR_V_VESSEL_MV	
Appendix 11. – Outline of principal R functions used in analyses.	40

INTRODUCTION

Information collected by fisheries observers on marine mammal interactions with groundfish fisheries in the North Pacific Ocean (Bering Sea/Aleutian Islands (BSAI) and Gulf of Alaska (GOA)) has been compiled and analyzed by the National Marine Mammal Laboratory (NMML) and the North Pacific Groundfish and Halibut Observer Program (Observer Program) at the Alaska Fisheries Science Center (AFSC) since the early 1970s (Perez 2003). The observer program based at the AFSC is a largely industry-funded, on-board observer monitoring system implemented in early 1990. During this data collection period (2007 - 2011), all vessels fishing for groundfish in federal waters were required to carry observers for at least a portion of their fishing time, except halibut vessels and vessels less than 60 feet. Observers were placed on vessels to collect fishery data as well as data on interactions with seabirds and marine mammals. Observer trips occurred on either pot, longline or trawl vessels. Vessels between 60 and 125 feet and all vessels fishing pot gear were required to have observers on board for 30% of their fishing days (30% coverage strata), while vessels over 125 feet were required to have at least one observer on board for all fishing days (100% and 200% coverage strata; 200% coverage means that there were two observers and all trips and hauls or sets were sampled) as were vessels participating in some limited access fisheries (GOA rockfish, American Fisheries Act (AFA) pollock). On trips with less than 200% coverage (single observer on board), hauls were randomly selected to be sampled for species composition and collection of biological samples, unless the observer was able to sample all hauls. Vessels were responsible for obtaining observers and determining when they would be on board. The Fisheries Monitoring and Analysis (FMA) division of the AFSC monitors groundfish fishing activities in the U.S. Exclusive Economic Zone (EEZ) off Alaska and conducts research associated with sampling commercial fishery catches¹. The commercial catch data and marine mammal interaction data, including marine mammal serious injury and mortality that occurs incidental to the fishery, are maintained by the FMA in an Oracle database. Further mention of marine mammal bycatch refers to serious injury and/or mortality.

Although the basic statistical methodology for calculating marine mammal bycatch estimates is much the same as used previously (e.g., Perez 2006), the manner in which the data are organized and processed for the bycatch analyses has changed since 2006. Earlier analyses were almost entirely based on SQL² (Structured Query Language)

 ¹ In 2013 the observer deployment plan changed (NMFS 2013).
 ² SQL is a language for querying and managing data in databases (see http://en.wikipedia.org/wiki/SQL).

queries and scripts to access the Observer Program and National Marine Fisheries Service (NMFS) Alaska Regional Office Catch Accounting System (CAS) Oracle databases to summarize and analyze marine mammal bycatch. The previous SQL scripts were updated to accommodate changes made to the Observer Program Oracle database structure in 2008. Current methods are based on analyzing the results of Oracle SQL queries of the Observer Program and CAS databases using the R programming environment (R Development Core Team 2012). Oracle tables and views are queried from within R; bycatch estimation and other analyses are then carried out using the data in the R data frames.

Information recorded by the Observer Program observers includes: haul date, NMFS statistical area, latitude, longitude, cruise, vessel code, vessel type, gear type, etc. If there are any marine mammal interactions, which may include incidental mortality, injury, or deterrence, further data are collected: including marine mammal interaction type, species name, condition, number of animals, probable cause of any mortalities, specimen type (e.g., photo taken, tooth extracted). Multiple animals and/or species may be involved in an interaction.

Estimation of total marine mammal bycatch is carried out for each fishery in the NMFS List of Fisheries (LOF). Currently there are 23 fisheries for which bycatch must be estimated (Appendix 1; the NMFS publishes the LOF annually in the Federal Register; see <u>http://www.nmfs.noaa.gov/pr/interactions/lof/index.htm</u>). Bycatch data are analyzed by post-stratifying the data with post-strata defined by year, fishery (based on target species, gear type, and NMFS statistical area), marine mammal species involved in an interaction (resulting in a mortality or serious injury), NMFS statistical area, time period, and vessel class (based on vessel length) (Fig. 1).

Information on trip target species for a particular haul is obtained from querying the CAS database, which contains information on target species and total groundfish weight. The target species is determined using an algorithm developed by the NMFS Alaska Regional Office. The parameters used for calculating the target fishery are different for catcher/processors (CPs) and catcher vessels (CVs), the amount of observer coverage, and whether delivery is made to a mothership or to a shoreside facility (Cahalan et al. 2010, p. 22). It should be noted that the target species may not necessarily correspond to the predominant species caught in a particular haul. An earlier version of this document used target species weights as a measure of effort. In the current analysis, effort has been defined as the estimated weight of all groundfish caught.

2

Groundfish catch weights are determined by the NMFS Alaska Regional Office (AKR) and are available from the FMA Oracle views of AKR data (Appendices 2, 8 and 9), created by Douglas Turnbull of AFSC/FMA. Groundfish weights are based on sampling the catch (haul/set). In cases where it was not possible for observers to sample the catch then no groundfish weight for the haul is given although marine mammal bycatch may have been documented by the observer. The AKR does impute (the substitution of some value for missing data) weights for these "missed" hauls based on species composition data from hauls near in time but these imputed weights have not been used in bycatch estimation; their use would introduce a further source of error that would not be quantifiable.

The species, gear, and other codes used by the AFSC and AKR Oracle tables were converted to a common format, usually numeric. For example, the AFSC gear codes are numeric while the CAS gear codes are character codes. The various codes and their definitions are given in Appendices 2-5.

Data Sources

North Pacific Groundfish and Halibut Observer Program Data

The Observer Program Oracle database contains haul records that are uniquely identified by a 20-digit identifier (haul_join: since 2008; a 6 or 7 digit number prior to 2008). A fishery number (currently 1 through 23, corresponding to the number of fisheries in the LOF) is assigned to each haul or set based on the NMFS statistical area, gear type and target species code – see Appendix 1). Each Observer Program haul record is assigned a number corresponding to each week period (1 to 53) based on the week-ending dates from the CAS database. After which, the data contain codes for identifying fishery, area, marine mammal species, marine mammal interaction type, target species weight, week period, etc. For a given post-stratum, the total weight of the target species is obtained from the CAS data. The primary table (view) used to obtain bycatch data summarizes much of the marine mammal interaction data by haul or set (Appendix 7). The statistical methodology used to estimate bycatch and its variance are given below.

Catch Accounting System (CAS) Data

The CAS contains data for the entire fishery (observed and unobserved) for each trip and week-ending date (Saturday). These data contain groundfish weight as well as trip target codes, gear type and NMFS area from which a fishery (Appendix 1) can be assigned to a post-stratum. Descriptions of the observer haul data and the trip data are given in Appendices 8-9). The input data are updated periodically (materialized views) by a database administrator and in near-real time each time they are accessed (views).

The same procedure was used to determine the fishery for both the Observer Program data and the CAS data: a fishery is defined by gear type, statistical area, and target species.

Bycatch Estimation Method

Bycatch estimates have been carried out previously using either design-based estimators (Pikitch et al. 1998) or model-based estimators (Perkins and Edwards 1996). The ratio-estimation method used here is a simplified form of a model-based estimator within a sampling design (Wigley et al. 2007). The ratio method consists of multiplying a bycatch ratio, defined for a stratum as the number of animals bycaught divided by some measure of fishing effort, times the total fishing effort in the stratum. For this study, the metric tons (t) of all groundfish caught has been used as a measure of effort (i.e., not just catch (t) of target species). This approach recognizes that, in the event that a haul takes groundfish that are not the target species for that fishery, NMFS statistical area, week and vessel class, the process of catching the non-target groundfish required that the haul be fishing for some period of time and so the effort should be included in the calculations.

Bycatch of marine mammals was occasionally observed in hauls that were not sampled for fish composition. These bycatches were not used in estimating bycatch since effort (groundfish weight of the haul or set) was unknown. The corresponding coefficient of variation (CV) refers only to the estimated bycatch and does not take into account bycatches from unsampled hauls or sets.

The variance of the simple ratio estimate requires that the total number of hauls in the strata is known. Since this is unknown, the assumption has been made that the sampling fraction based on the number of hauls sampled (n/N) is approximately the same as the sample fraction defined in terms of weight of groundfish (w/W) for the stratum $(n/N \approx$

4

w/W where *n* is the number of hauls sampled, *N* is the total number of hauls, *w* is the groundfish weight of sampled hauls, and *W* is the total groundfish weight); hence $N \approx n \cdot W/w$.

The number of hauls sampled in a single year is on the order of 40,000 while the observed bycatch (of all marine mammal species) is usually not more than 30-40 animals. The data are thus too sparse to establish how (or even if) the observed bycatch is related to the groundfish catch (in t), especially by marine mammal species. However, in order to estimate bycatch and an approximate variance, the above assumption has been made (as was done for earlier bycatch estimates).

From a query of this view the observed bycatch can be determined (except for marine mammal injuries which, upon examination of observer comments and photos, etc., are determined to be a serious injury as defined by NMFS Policy Directive PD 02-038). The data on effort, the metric tons of groundfish caught in marine mammal bycatch hauls, is obtained from AFFSC Oracle views that are based on AKR Oracle data (Appendices 8-9).

Vessel class, defined by vessel length) was used as a post-stratum: vessel class $1 = vessel lengths \ge 125$ feet, vessel class 2 = vessel lengths from 60 - 124 feet, and vessel class 3 = vessel lengths < 60 feet. Vessel class 3 was not used since only vessels ≥ 60 feet carried observers. Preliminary analyses indicated that observed bycatches were noticeably larger for vessels ≥ 125 feet. This is not unexpected since these vessels have 100% observer coverage while vessels ≥ 60 feet and < 125 feet have partial coverage. The present analysis post-stratifies data into three time periods: weeks 1-18, weeks 19-36 and weeks > 36. This was done in order to reduce the number of strata that have few or no data. Previous analyses (Perez 2006) used 4-week time periods. In addition, the present analyses discontinued use of the analyst's judgment at certain steps in the analytical procedures. Since, the present procedure is based on the execution of a series of R functions that query the various Oracle tables or views, and barring that the Oracle data has not changed, the results are reproducible.

Statistical Formulas

Analytical methods are based on Perez (2006; see also Manly (2009) and Cochran (1977, p. 155, Equation 6.13)). Bycatches are estimated for each species by year, fishery and marine mammal species. Post-stratified estimates by NMFS statistical area (about 20 areas comprise the Bering Sea-Aleutian Islands and the Gulf of Alaska), time period (weeks 1-18, 19-36 and > 36) and vessel class (generally, two classes; see above) are also provided. For a given marine mammal post-stratum *s* (defined by year and fishery), let $\mathcal{Y}_{s,a,t,v}$ be the observed number of marine mammals bycaught (including animals seriously injured) in the observed hauls or sets in NMFS statistical area *a*, time period *t*, and vessel class *v*. Furthermore, let $W_{s,a,t,v}$ be the metric tons of groundfish caught in observed hauls or sets in post-strata *a*, *t*, *v* of *s* and $W_{s,a,t,v}$ be the corresponding total (observed and unobserved) metric tons of groundfish caught. Then the estimated bycatch rate, $\hat{r}_{s,a,t,v}$, is given by

$$\hat{r}_{s,a,t,v} = \frac{\mathcal{Y}_{s,a,t,v}}{W_{s,a,t,v}}.$$

The estimate of total bycatch in stratum *s* is

$$\hat{Y}_{s} = \sum_{a,t,v} \hat{r}_{s,a,t,v}, \forall W_{s,a,t,v},$$

and the variance is

$$\operatorname{var}(\hat{Y}_s) = \sum_{a,t,v} \operatorname{var}(\hat{r}_{s,a,t,v}) W_{s,a,t,v}^2.$$

The estimated variance of $\hat{r}_{s,a,t,v}$ is given by

$$\operatorname{var}(\hat{r}_{s,a,t,v}) = \frac{\sum_{i=1}^{n} (y_i - \hat{r}_{s,a,t,v} \cdot w_i)^2}{n-1} \frac{(1 - n/N)}{n\overline{w}^2}$$

where the summation takes place over the number of hauls or sets within the post-stratum *a*, *t*, *v* and \overline{w} is the mean observed effort (metric tons of groundfish caught) in the post-stratum. Since *N*, the total number of hauls or sets in the post-stratum, is unknown (data for the total fishery is in metric tons of groundfish species caught by week), the ratio n/N is approximated by the ratio of groundfish species weights, w/W. It is assumed that the total weight of the groundfish species caught in the post-stratum is known with little or no error. Since this is unlikely to be the case, and since additional variance arising from the post-stratification of hauls is not included, the variance estimates may underestimate the true variance.

If we consider the post-strata to be independent, the variance of the sum of post-strata estimates is the sum of the post-strata variances. The estimation method described above can be generalized by computing a weighed bycatch ratio for post-stratum *s*:

$$\hat{r}_s = \sum_{a,t,v} \alpha_{s,a,t,v} \hat{r}_{s,a,t,v}$$

where the summation takes place over the strata of *s* and $\sum_{a,t,v} \alpha_{s,a,t,v} = 1$. The estimated bycatch is then

$$\hat{Y}_s = \hat{r}_s W_s$$

where $W_s = \sum_{a,t,v} W_{s,a,t,v}$. If $\alpha_{s,a,t,v}$ is equal to $W_{s,a,t,v}/W_s$ then \hat{Y}_s is the simple ratio estimate. Another possible

weight would be the relative observed effort in each substratum, $w_{s,a,t,v} / \sum_{a,t,v} w_{s,a,t,v}$. By computing a bycatch ratio for

each post-stratum and adding the estimates by stratum, equal weights are given to each bycatch ratio whereas computing a single weighted bycatch ratio (with statistical weights proportional to the observed effort) for the poststrata will yield a bycatch ratio that gives more weight to post-strata with higher fractions of total effort that are observed. The simple ratio estimate has been used here despite that observed bycatches in strata with low effort could lead to relatively larger estimates of bycatch. However, using a single weighted bycatch ratio estimate (other than with weights equal to the relative total effort in the strata), could "hide" an important issue that should be addressed in the fishery.

Confidence intervals (CI) are based on the lognormal distribution (Burnham et al. 1987, p. 212). Because most of the hauls (usually > 99%) have zero bycatch, standard (based on normal distribution assumptions) confidence intervals (estimate ± 2 S.E.) can result in negative lower confidence intervals. An obvious fix is to use the observed catch for the lower confidence bound. The lognormal distribution, however, has the advantage that the resulting confidence bound is positive (though this assumes that the positive data are log-normally distributed).

If the CV (coefficient of variation) is not small, Burnham et al. (1987) recommend computing confidence intervals based on the log-transform with

$$\operatorname{var}\left[\log\left(\hat{r}\right)\right] = \log\left(1 + \left[cv\left(\hat{r}\right)\right]^{2}\right).$$

For an approximate (1- α)100% CI, the lower and upper bounds, \hat{r}_L and \hat{r}_U , are given by

$$\hat{r}_L = \hat{r}/C$$
 and $\hat{r}_U = \hat{r} \cdot C$, where $C = \exp\left(z_{\alpha/2}\sqrt{\log\left(1 + \left[cv(\hat{r})\right]^2\right)}\right)$. For bycatch analyses, $z_{\alpha/2} = 2$ has been used,

yielding approximate 95% confidence intervals. Thus, lower and upper confidence intervals for \hat{Y}_s are given by:

$$\hat{W}_{s} \cdot \hat{r}_{s} / C$$
 and $\hat{W}_{s} \cdot \hat{r}_{s} \cdot C$

If the groundfish species weight is missing for a stratum then the bycatch ratio and standard error for that stratum cannot be calculated. This can occur if species sub-sampling did not take place. A confidence interval computed using the above procedure could be used but it would only apply to the strata with no missing values.

When bycatch ratio in a stratum, y_s/w_s , is small, which is the case, the ratio estimate is equivalent to assuming a Poisson distribution for the bycatch ratio: probability (bycatch = 0) = $\exp(-y_s/w_s) \approx 1 - y_s/w_s$. If the probability is small that > 1 animals are bycaught in a stratum, then probability (bycatch = 1) $\approx 1 - \text{prob.}$ (bycatch = 0) = y_s/w_s and the estimated bycatch is $W_s y_s/w_s$, which is equivalent to the ratio estimate.

Potential Sources of Error

- As indicated above, N_{s} , the number of hauls or sets in a strata is generally unknown and must be estimated based on the assumption that the ratio of observed to total hauls or sets is equal to the ratio of groundfish weight from observed hauls or sets to the total groundfish weight in the post-strata. Both the observed and total groundfish weights are estimates based on sampling the catch. The ratio of these groundfish weights is used to prorate the observed bycatch in a stratum to the total bycatch in a stratum and is also used in the variance formula, where it is assumed to be the ratio of known integers. It is not possible to account for the potential error in the estimated CV of the bycatch due this assumption (the ratio of these random variables are equivalent to the sample fraction). Using the ratio of groundfish weights could result in either an under- or over-estimate of the total bycatch because it is not known in which direction the ratio deviates from the true ratio (n_s/N_s). Treating the ratio as a fixed quantity though will lead to an underestimate of the CV.
- The error incurred in the estimating species composition and weight is also unknown. Bycatch rates are estimated by summing over all observed hauls in the strata so they will be biased towards bycatch rates from larger vessels, which have greater observer coverage. The combination of data from different sample strata,

having different coverage rates, may introduce a bias in the bycatch rates (Cahalan et al. 2010). In addition, the number of hauls in a stratum is a random variable and treating it as a known constant will underestimate the variance for the stratum.

- A part of groundfish catch on longline gear may be lost to predation by marine mammals or sharks prior to retrieval (Perez 2003). There is no way to determine the weight of groundfish lost but it would affect both the observed and total sets in a stratum so the bias may be negligible.
- There may also be uncertainty in determining a single target species to assign to an observed haul or a trip. However, the algorithm employed by the CAS has been used throughout. In almost all cases a target species is assigned by the CAS.

For most sources of error it is not possible to determine how they will likely impact the bycatch estimates. However, most sources of error that are not possible to quantify will result in underestimating the standard error (and thus, CV) of the estimated bycatch.

Observer Coverage

Observer coverage, the percentage of a fishery observed by the observers, as with other bycatch analyses, is based on groundfish weight instead of the proportion of hauls or sets sampled. Since observers are placed on vessels ≥ 60 feet the coverage can only be estimated for vessels ≥ 60 feet. The total groundfish weight for a fishery (from landings data) will contain some data from vessels < 60 feet. These are filtered out using an Oracle table that gives the length of each vessel (using vessel ID). The observer coverage for a fishery is calculated as the groundfish weight from observed hauls or sets divided by the total groundfish weight for vessels greater than 60 feet. A CAS code indicates where (jurisdictional waters) the harvest took place: S = state waters, F = federal waters, and NULL indicates a groundfish discard estimate generated from a landing report and thus cannot be attributed to either state or federal waters. A further code, the state fishery flag, indicates whether or not the catch contributed to a state fishery (Y) or not (N).

A small bias is introduced by only extracting total groundfish catch (t) records with the state fishery flag = F and ignoring groundfish discard estimates. This resulted in lower a groundfish catch (t) of about 0.8% and results in very

slightly smaller bycatch estimates (since the ratio of total groundfish catch (t) to observed groundfish catch (t) is smaller).

R Analysis and Functions

Analytical methods are based on Perez (2006; see also Manly 2009). However, the methods for obtaining the necessary data are different, especially since the design of the Oracle tables and view changed in 2008. All the Oracle tables and views are read by R as data frames and subsequent data manipulations and computations are carried out in R (R Development Core Team 2012). A simplified description of the approach is as follows:

- Bycatch data, including unique identifying haul numbers (haul_join) are obtained by strata from the OBSINT.DEBRIEFED_MAMMAL table (Appendix 2). Strata are year, fishery, marine mammal species, NMFS statistical area, time period and vessel class.
- The above data do not contain groundfish weight by haul or set so the hauls are matched with those in the NORPAC.AKR_OBS_HAUL_MV (matching on haul_join, Appendix 2) materialized view which contains the groundfish weights for observed all hauls or sets. Vessel class, fishery, time period and other variables are then computed.
- 3. The bycatch ratios, *r*, are then computed for the area, time period and vessel class post-strata for each year, fishery and marine mammal species (where there are data) and the variances of the bycatch ratios are computed. The estimated bycatch for the strata are obtained adding the estimates for each post-stratum (area, time-period, vessel class strata).
- 4. Total groundfish weights (observed and unobserved) for these strata are obtained from the NORPAC.AKR_CA_PRIMARY_TXN_MV materialized view (Appendices 2, 9). Vessel class, fishery, time period and other variables are also computed for the records in this table.

A. Observed bycatch

The observed bycatch is based on the Observer Program data for a given year. Marine mammal interactions "killed by gear", "killed by propeller", and "lethal removal" are automatically considered bycatch mortalities (Appendix 3). Each marine mammal interaction "entangled in gear" is reviewed separately to assess whether the entanglement caused a serious injury. The data table is first filtered to include only bycatch records (hauls) and these are sorted by fishery, gear type, marine mammal species, NMFS area, the time period (weeks 1-18 = 1, 19-36 = 2 and weeks > 36

= 3). In some cases, where there may be more than one marine mammal interaction per haul, multiple records exists for a single haul and these must be accounted for (the groundfish weight will be the same for each record).

B. Estimated bycatch

The estimated bycatch is based on computing the bycatch rate in each stratum (as defined above) and the sum of the groundfish weights for that stratum (from the Observer Program data). The total groundfish weight is obtained from the CAS data for the stratum. The CAS data is based on trips and week periods. The estimated bycatch is the observed bycatch per groundfish weight (for a stratum) times the total groundfish weight (observed and unobserved data) for the stratum from the CAS data.

RESULTS and DISCUSSION

Estimated bycatches of all marine mammal species for 2007-2011, based on time periods of 4, 8, 10 and 18 weeks (used in this study) were 177, 182, 162 and 171, respectively. The number of observed hauls with marine mammal interactions, by interaction code (see Appendix 3) and year are given in Table 1. Mortalities are shown in gray (codes 4 and 5). These interactions resulted in the number of animals by interaction code and year shown in Table 2. Table 3 gives the estimated observer coverage by fishery, vessel class and year, based on metric tons of groundfish caught (effort). Coverage for vessel class 1 can be seen to be almost always greater than for vessel class 2 for each fishery. Table 4 shows the number of hauls or sets sampled by fishery and gear type for each year. The estimated bycatch by year, fishery and marine mammal species is shown in Table 5. It should be noted that the observed and estimated by catches have been summed over the substrata NMFS statistical area, vessel class and time period. The observer coverage is for the entire fishery for the year, based on groundfish weights, and ignores vessel class. The annual observer coverage in Table 5 is not used in estimating bycatch. The observer coverage in the strata NMFS statistical area, vessel class and time period are used and these can be often quite different from the annual observer coverage. Table 6 presents the information in Table 5 for formatted in the manner used for Alaska Marine Mammal Stock Assessments (Allen and Angliss 2011). The mean annual mortality (MAM) of a marine mammal species is the arithmetic average of the estimated mortality for 2007-2011 by species and fishery. Similarly, the mean total annual mortality (MTAM) is the sum of the MAMs by fishery for a marine mammal species (see Allen and Angliss 2011). The various database codes and definitions are given in Appendices 1-10.

Marine mammal bycatch estimates in commercial fisheries are reported in the annual marine mammal stock assessment reports (e.g., Allen and Angliss 2011) and used to classify commercial fisheries in the NMFS List of Fisheries as required under Section 118 of the Marine Mammal Protection Act. These data are also used in management regimes for marine mammal stocks.

Some of the decisions made in the course of the analysis that affected the number of observed marine mammals used in the bycatch calculation include:

- Marine mammal bycatch events seen by an observer were used and not marine mammal events that were reported by the captain or crew but not seen by an observer
- Effort for which a fisheries could not be assigned (trip target species not given) was not used
- If a bycatch was recorded but a groundfish weight of zero was given for the haul the bycatch was used in the analysis and a zero weight was used for effort (there may be hundreds of hauls in the strata so this would introduce a very small error).

Vessels less than 60 feet (vessel class 3) were not considered in the analysis since there were no observers placed on these vessels and hence no information available on bycatches for these vessels. They make up, however, a small portion, by weight of catch, of the overall effort in the LOF fisheries. Vessel class 1 (\geq 125 feet) substrata have higher observer coverage than vessel class 2 (> 60 feet and < 125 feet) and hence the bycatch estimates are more reliable.

Only one marine mammal species, northern fur seal, in the 2007 BSAI pollock fishery, resulted in much larger estimated bycatch (14.6) than was observed (3). This was due to a stratum with low observer coverage so that the bycatch ratio was scaled up by a factor of about 5. Other estimated bycatches do not differ greatly from the observed bycatches because the observer coverage was relatively high. Estimated CVs show large variations, from 0.01 to 0.88 and the larger CVs generally correspond to lower observer coverage for the strata. The CVs are likely underestimates for the reasons indicated previously.

ACKNOWLEDGMENTS

I thank Ren Narita and Doug Turnbull of the FMA division of the AFSC for their extensive help with Oracle scripts and their willingness to answer my queries. Ren and Doug wrote a number scripts to obtain the type of data that I needed for the analyses and Doug created several Oracle views that were used in analyses. Jennifer Cahalan and Craig Faunce of FMA were also very helpful in discussing various aspects of the Observer Program data. Jennifer Mondragon and Jason Gasper of the Sustainable Fisheries division of the NMFS Alaska Regional Office in Juneau are thanked for providing CAS data for the Alaska fisheries and answering queries I had about the fisheries and the CAS data. I also thank Terry Hiatt (retired) of the REFM division of the AFSC for his help in setting up the CAS query on the AKFIN Oracle Answers. Dee Allen and Van Helker are thanked for reviewing injury and mortality data and for advising on summary statistics needed for NMFS SAR reports. Robyn Angliss, Nancy Friday, Dee Allen, Paul Wade and Phillip Clapham provided helpful comments on the manuscript. Jennifer Cahalan is thanked for providing detailed comments on several versions of the manuscript.

CITATIONS

- Allen, B. M. and R. P. Angliss. 2011. Alaska marine mammal stock assessments, 2010. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-223, 292 p.
- Burnham, K. P, D. R. Anderson, G. C. White, C. Brownie and K. H. Pollock. 1987. Design and analysis methods for fish survival experiments based on release-recapture. Monograph 5, American Fisheries Society, Bethesda, MD. 437 p.
- Cahalan, J., J. Mondragon, and J. Gasper. 2010. Catch sampling and estimation in the Federal groundfish fisheries off Alaska. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-206, 53 p.
- Cochran, W. G. 1977. Sampling techniques. Third ed. John Wiley & Sons, New York. 428 p.
- Loney, K. 2004. Oracle Database 10g: the complete reference. McGraw-Hill/Osborne, New York. 1369 p.
- Manly, B. F. J. 2009. Incidental take and interactions of marine mammals and birds in the Yakutat salmon setnet fishery, 2007 and 2008. Draft report to NMFS.
- National Marine Fisheries Service. 2005. Revisions to Guidelines for Assessing Marine Mammal Stocks. 24 p. Available at <u>http://www.nmfs.noaa.gov/pr/pdfs/sars/gamms2005.pdf</u>.
- National Marine Fisheries Service. 2013 Annual deployment plan for observers in the groundfish and halibut fisheries off Alaska. Fisheries Monitoring and Analysis Division, Alaska Fisheries Science Center and Alaska Regional Office, NMFS, ii + 80 p.
- Perez, M. A. 2003. Compilation of marine mammal incidental take data from the domestic and joint venture groundfish fisheries in the U.S. EEZ of the North Pacific, 1989-2001. U.S. Dep. Commer. NOAA Tech. Memo. NMFS-AFSC-138, 145 p.
- Perez, M. A. 2006. Analysis of marine mammal bycatch data from trawl longline and pot groundfish fisheries of Alaska 1998-2004, defined by geographic area, gear type, and target groundfish species. U.S. Dep. Commer. NOAA Tech. Memo. NMFS-AFSC-167, 194 p.
- Perez, M. A. Unpubl. ms. Analysis of marine mammal bycatch data from the trawl, longline, and pot groundfish fisheries of Alaska, 2005. 71 p. Available NMML-AFSC.
- Perez, M. A. Unpubl. ms. Bycatch of marine mammals in the groundfish fisheries of Alaska, 2006. 67 p. Available NMML-AFSC.
- Perkins P. C. and E. F. Edwards. 1996. A mixture model for estimating discarded bycatch from data with many zero observations: tuna discards in the eastern tropical Pacific Ocean. Fish. Bull., U.S. 94:330-340.
- Pikitch E. K., J. R. Wallace, E. A. Babcock, D. L. Erickson, M. Saelens and G. Oddsson. 1998. Pacific halibut bycatch in the Washington, Oregon and California groundfish and shrimp trawl fisheries. N. Am. J. Fish. Manage. 18:569-586.
- R Core Team. 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.
- Wigley S. E., P. J. Rago, K. A. Sosebee and D. L. Palka. 2007. The analytic component to the standardized bycatch reporting methodology omnibus amendment: Sampling design, and estimation of precision and accuracy (2nd Edition). U.S. Dep. Commer., Northeast Fish. Sci. Cent. Ref. Doc. 07-09; 156 p.

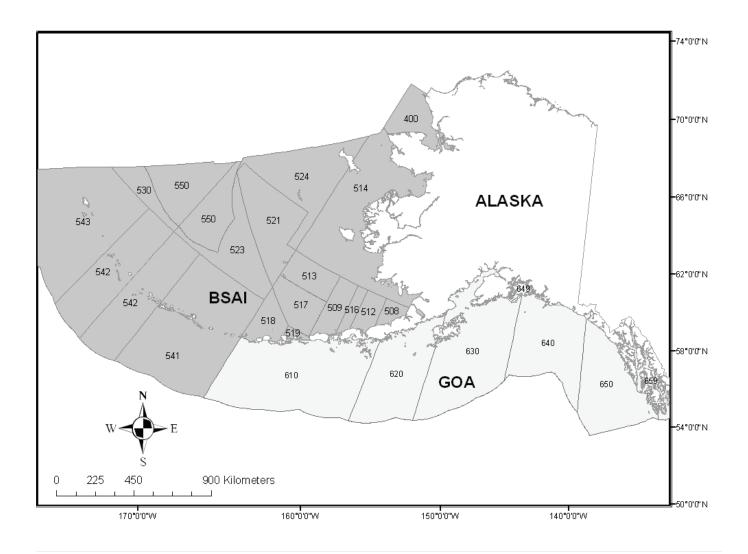


Fig. 1.-- National Marine Fisheries Service statistical areas (Federal reporting areas) and fisheries management plan regions in Alaska. The Bering Sea and Aleutian Island (BSAI) region is shaded dark grey; the Gulf of Alaska (GOA) is shaded in light grey; and NMFS statistical areas are identified with numbers (from Cahalan et al. 2010).

					Intera	action cod	les ¹					
Year	1	2	3	4	5	6	9	10	12	13	14	Sum
2007	7	1	1	20	0	54	8	237	12	3	0	343
2008	5	0	0	38	1	65	6	158	1	2	115	391
2009	34	0	0	18	2	28	0	188	4	3	52	329
2010	34	0	0	26	1	7	0	195	11	7	62	363
2011	34	0	0	33	0	34	5	197	7	2	48	360
Sum	114	1	1	135	4	208	19	975	35	17	277	1786

Table 1. -- Number of sampled hauls by year and marine mammal interaction.

¹ Interaction codes 4 and 5 are mortalities: killed by gear and killed by propeller. Any seriously injured animals were included in either interaction codes 4 or 5. Other interaction codes and definitions are given in Appendix 3

Table 2. -- Number of animals by year and marine mammal interaction code (based on hauls in Table 1).

					Inter	action co	des					
Year	1	2	3	4	5	6	9	10	12	13	14	Sum
2007	20	1	1	20	0	55	11	1155	39	4	0	1306
2008	17	0	0	38	1	65	6	385	1	3	1318	1834
2009	182	0	0	19	2	28	0	747	10	3	144	1135
2010	140	0	0	26	1	27	0	633	27	26	154	1034
2011	126	0	0	33	0	34	5	529	10	2	228	967
Sum	485	1	1	136	4	209	22	3449	87	38	1844	6276

				Year		
Fishery	Vessel class	2007	2008	2009	2010	2011
AK BSAI Atka mackerel trawl	1	0.95	1.00	0.99	1.00	1.00
	2	0.56	0.89	1.00	-	0.98
BSAI flatfish trawl	1	0.78	1.00	1.00	1.00	1.00
	2	0.36	0.99	0.99	1.00	1.00
BSAI Pacific cod trawl	1	0.77	1.00	1.00	1.00	1.00
	2	0.32	0.36	0.41	0.44	0.42
BSAI pollock trawl	1	0.97	0.97	0.98	0.98	0.98
_	2	0.31	0.33	0.34	0.37	0.97
BSAI rockfish trawl	1	0.88	1.00	0.99	1.00	1.00
	2	0.10	0.19	1.00	1.00	1.00
GOA flatfish trawl	1	0.88	0.51	0.56	0.55	0.67
	2	0.21	0.26	0.19	0.23	0.20
GOA Pacific cod trawl	1	-	0.97	1.00	-	1.00
	2	0.25	0.23	0.38	0.36	0.44
GOA pollock trawl	2	0.27	0.34	0.43	0.29	0.32
GOA rockfish trawl	1	0.98	0.98	0.97	0.94	0.97
	2	0.75	0.71	0.81	0.90	0.82
BSAI Greenland turbot longline	1	0.62	0.75	0.77	0.60	0.66
	2	0.84	0.67	0.51	0.56	0.39
BSAI Pacific cod longline	1	0.66	0.65	0.62	0.66	0.62
	2	0.52	0.56	0.56	0.58	0.43
BSAI rockfish longline	1	0.88	-	1.00	0.63	-
BSAI sablefish longline	1	0.57	0.51	0.88	0.65	0.85
	2	0.48	0.53	0.42	0.56	0.50
GOA Pacific cod longline	1	0.64	0.56	0.62	0.68	0.58
	2	0.34	0.21	0.38	0.34	0.48
GOA Pacific halibut longline	1	0.48	0.68	0.55	0.52	0.49
	2	0.10	0.01	0.11	0.08	0.09
GOA rockfish longline	1	-	-	0.80	-	-
-	2	-	-	2.40	0.15	-
GOA sablefish longline	1	0.64	0.53	0.69	0.68	0.60
	2	0.34	0.31	0.35	0.34	0.32
BSAI Pacific cod pot	1	0.37	0.41	0.46	0.33	0.38
-	2	0.28	0.18	0.23	0.26	0.24
BS sablefish pot	1	-	-	0.37	0.34	0.42
-	2	0.35	0.37	0.44	0.34	0.37
AI sablefish pot	1	-	-	-	-	0.78
*	2	0.39	-	0.28	0.11	0.57
GOA Pacific cod pot	1	-	0.58	0.82	-	-
*	2	0.16	0.25	0.16	0.14	0.22

¹ Alaska Pacific halibut longline fisheries and Gulf of Alaska longline flatfish fishery are not shown; only partial data available

cates no data).
s no
ot indicates
op.
type (
gear
and
shery, year, and gear typ
/ fishery,
by
led
hauls/sets sam
uls
f ha
L O
Number
ł
4.
Table

		2007	07				7	2008		
		Gear type	oe				Gear type	type		
Fishery	TqN	PTR	POT	HAL	Sum	INT	PTR	POT	HAL	Sum
AK BSAI Atka mackerel trawl	1366				1366	1061				1061
AK BSAI flatfish trawl	7908				7908	13118				13118
AK BSAI Pacific cod trawl	4196	6			4205	1678	6			1687
AK BSAI pollock trawl	40	16006			16046	212	12769			12981
AK BSAI rockfish trawl	275				275	366	1			367
AK GOA flatfish trawl	1404	10			1414	1670	ŝ			1673
AK GOA Pacific cod trawl	378	12			390	379	34			413
AK GOA pollock trawl	19	424			443	91	425			516
AK GOA rockfish trawl	944	285			1229	1014	167			1181
AK BSAI Greenland turbot longline				580	580		•		307	307
AK BSAI Pacific cod longline				8942	8942				12395	12395
AK BSAI Pacific halibut longline				72	72				83	83
AK BSAI rockfish longline				14	14					0
AK BSAI sablefish longline				352	352				356	356
AK GOA Pacific cod longline				662	662				676	676
AK GOA Pacific halibut longline				88	88				147	147
AK GOA rockfish longline				0	0					
AK GOA sablefish longline				1549	1549				1214	1214
AK GOA Pacific cod pot			466		466			352		352
AK BSAI Pacific cod pot			836		836			795		795
Unknown (non-LOF)	442	105	801	453	1801	216	164	651	636	1590
Sum	16972	16851	2103	12712	48638	19805	13495	1798	15814	50912

Gear types: NPT = Non-pelagic trawl PTR = Pelagic trawl POT = Pot HAL = Hook and line

		2009	6(2010		
		Gear type	/pe				•	Gear type		
Fishery	NPT	PTR	POT	HAL	Sum	NPT	PTR	POT	HAL	
AK BSAI Atka mackerel trawl	1393	0			1393	1421				1421
AK BSAI flatfish trawl	10818	2			10820	11473				11473
AK BSAI Pacific cod trawl	1246	34			1280	1249	11			1260
AK BSAI pollock trawl	285	10030			10315	337	9130			9467
AK BSAI rockfish trawl	344				344	411	1			412
AK GOA flatfish trawl	1549	ŝ			1552	1391				1391
AK GOA Pacific cod trawl	308	8			316	452	9			458
AK GOA pollock trawl	35	371			406	31	416			447
AK GOA rockfish trawl	1192	195			1387	1148	167			1315
AK BSAI Greenland turbot longline	•			544	544				784	784
AK BSAI Pacific cod longline				12000	12000				10898	10898
AK BSAI Pacific halibut longline				91	91				179	179
AK BSAI rockfish longline				23	23				12	12
AK BSAI sablefish longline				673	673				553	553
AK GOA Pacific cod longline				823	823				1462	1462
AK GOA Pacific halibut longline				285	285				130	130
AK GOA rockfish longline				46	46				4	4
AK GOA sablefish longline				1140	1140				1051	1051
AK GOA Pacific cod pot			187		187			168		168
AK BSAI Pacific cod pot			726		726			1198		1198
Unknown (non-LOF)	163	49	646	501	1359	110	32	605	427	1264*
Sum	17333	10692	1559	16126	45710	18023	9763	1971	15500	45302

* Includes 45 unknown gear codes

20

Table 4. -- Cont.

		2011	1	
		Gear type	ype	
Fishery	INPT	PTR	POT	HAL
AK BSAI Atka mackerel trawl	1113	5		
AK BSAI flatfish trawl	11091			
AK BSAI Pacific cod trawl	1596	6		
AK BSAI pollock trawl	249	17285		
AK BSAI rockfish trawl	635			
AK GOA flatfish trawl	1162			
AK GOA Pacific cod trawl	553	1		
AK GOA pollock trawl	83	417		
AK GOA rockfish trawl	1030	105		
AK BSAI Greenland turbot longline				623
AK BSAI Pacific cod longline				12804
AK BSAI Pacific halibut longline				105
AK BSAI rockfish longline				2
AK BSAI sablefish longline				600
AK GOA Pacific cod longline				1707
AK GOA Pacific halibut longline				114
AK GOA rockfish longline				
AK GOA sablefish longline				1135
AK GOA Pacific cod pot			477	
AK BSAI Pacific cod pot			1242	
Unknown (non-LOF)	577	151	813	350
Sum	18089	17973	2532	17440

Gear types: NPT = Non-pelagic trawl PTR = Pelagic trawl POT = Pot HAL = Hook and line

Table 4. -- Cont.

Table 5. -- Observed and estimated bycatch by year, fishery and marine mammal species, including estimated fraction of the fishery observed, observed bycatch, estimated bycatch and CV of the estimated bycatch. Numbers in parentheses are observed bycatches in unsampled hauls are not used to estimate bycatch and the CV.

Year	Fishery	Observed coverage	Marine mammal species	Observed Bycatch	Estimated bycatch	CV
2007	AK BSAI Atka mackerel trawl	0.940	Ribbon seal	1	1.0	0.22
2007	BSAI flatfish trawl	0.718	Steller (northern) sea lion	$3(1)^{1}$	3.7	0.25
			Walrus	2	3.8	0.54
			Harbor porpoise	1	1.8	0.67
			Harbor seal	(1)		
	BSAI Pacific cod trawl	0.534	Steller (northern) sea lion	1 (2)	1.0	0.15
	BSAI pollock trawl	0.848	Northern fur seal	3	14.6	0.88
			Bearded seal	1	1.0	0.00
			Steller (northern) sea lion	2	2.0	0.04
	BSAI Greenland turbot longline	0.639	Killer whale	1	1.5	0.6
	GOA sablefish longline	0.167	Sperm whale	1	1.4	0.5
				16 (4)	31.8	0.4
2008	BSAI flatfish trawl	0.996	Northern fur seal	2	2.1	0.17
	Bearded seal11.0Steller (northern) sea lion1111.0Killer whale11.0Walrus11.0	0.0				
2008			Steller (northern) sea lion	11	11.0	0.0
			Killer whale	1	1.0	0.0
			Walrus	1	1.0	0.0
			Ringed seal	2	2.0	0.0
			Spotted seal (Larga seal)	2	2.0	0.0
	BSAI pollock trawl	0.854	Northern fur seal	1	1.0	0.1
			Bearded seal	4	4.1	0.0
			Steller (northern) sea lion	8	10.1	0.2
			Ribbon seal	2	2.1	0.1
			Ringed seal	1	1.0	0.1
			Harbor seal	1	2.9	0.8
	GOA Pacific cod longline	0.146	Steller (northern) sea lion	1	1.6	0.6
				$38(1)^2$	42.9	0.0
2009	AK BSAI Atka mackerel trawl	0.990	Ribbon seal	1	1.0	0.0
	BSAI flatfish trawl	0.998	Northern fur seal	1	1.0	0.0
			Steller (northern) sea lion	3	3.0	0.0
	BSAI flatfish trawi		Killer whale	2	2.0	0.0
			Ringed seal	1	1.0	0.0
			Spotted seal (Larga seal)	1	1.0	0.0
	BSAI pollock trawl	0.855	Bearded seal	1	1.0	0.2
			Steller (northern) sea lion	6	6.2	0.0
			Ribbon seal	1	1.0	0.1
			Ringed seal	1	1.0	0.1
			Dall's porpoise	1	1.0	0.2
	GOA flatfish trawl	0.213	Northern elephant seal	1	1.9	0.6
	BSAI Pacific cod longline	0.604	Dall's porpoise	(1)		
	5		• •	20(1)	21.1	0.0

Table	5	Cont.
-------	---	-------

2010	AK BSAI Atka mackerel trawl	0.999	Steller (northern) sea lion	1	1.0	0.05
	BSAI flatfish trawl	0.999	Northern fur seal	(1)		
			Steller (northern) sea lion	4(1)	4.0	0.01
			Gray whale	1	1.0	0.01
			Humpback whale	(1)		
			Walrus	2	2.0	0.01
	BSAI Pacific cod trawl	0.659	Steller (northern) sea lion	1	1.0	0.00
	BSAI pollock trawl	0.862	Northern fur seal	2	2.0	0.07
			Bearded seal	(1)		
			Steller (northern) sea lion	5	8.2	0.35
			Humpback whale	1	1.0	0.08
			Spotted seal (Larga seal)	1	1.0	0.11
	BSAI rockfish trawl	1.000	Killer whale	1	1.0	0.00
	GOA Pacific cod trawl	0.314	Harbor seal	1	2.8	0.82
	BSAI Pacific cod longline	0.641	Northern fur seal	1	1.4	0.51
			Unident. pinniped	1	1.1	0.34
	GOA Pacific cod longline	0.284	Steller (northern) sea lion	1	1.1	0.32
				23(4)	28.6	0.13
2011	BSAI flatfish trawl	0.999	Bearded seal	1	1.0	0.06
			Steller (northern) sea lion	7	7.0	0.01
			Ringed seal	6(1)	6.0	0.02
			Harbor seal	1	1.0	0.04
	BSAI Pacific cod trawl	0.595	Steller (northern) sea lion	1	1.0	0.12
			Ringed seal	1	1.0	0.00
	BSAI pollock trawl	0.979	Steller (northern) sea lion	9	9.3	0.06
			Ringed seal	3	3.0	0.03
	GOA flatfish trawl	0.307	Harbor seal	1	1.9	0.68
	BSAI Pacific cod longline	0.573	Ringed seal	1	1.6	0.60
			Spotted seal (Larga seal)	1	1.6	0.60
				$32(2)^3$	38.4	0.06

 ¹ Numbers in parentheses are observed bycatches in unsampled hauls and were not used in estimating bycatch and its CV
 ² A Steller (northern) sea lion was observed in an offload operation in 2008. The animal was included in the sum of observed bycatches in unsampled hauls for 2008 (1).

³ A spotted seal (Larga seal) and a bearded seal morality were observed in offload operations in 2011 and could be traced to the pollock fishery in NMFS area 521. This animal was treated as in footnote 2.

Table 6.-- Data from Table 5, formatted as in Alaska Marine Mammal Stock Assessments reports. See foot note 1 for heading abbreviations. MAM, cv MAM, MTAM, and cv MTAM are listed on the first line for each species and fishery and refer to the 5 years 2007-2011.

Marine Mammal			Obs	Obs bycatch	Obs bycatch	Estimated					
Species	Fishery	Year	cov.	(samp.)	(unsamp.)	bycatch	cv	MAM	cv MAM	MTAM	cv MTAM
Northern fur seal	BSAI flatfish trawl	2007	0.718					0.62	0.11	4.42	0.58
		2008	0.996	2		2.1	0.17				
		2009	0.998	1		1.0	0.02				
		2010	0.999		1						
		2011	0.999								
	BSAI pollock trawl	2007	0.848	3		14.6	0.88	3.52	0.73		
		2008	0.854	1		1.0	0.12				
		2009	0.855								
		2010	0.862	2		2.0	0.07				
		2011	0.979								
	BSAI Pacific cod longline	2007	0.626								
	0	2008	0.626								
		2009	0.604								
		2010	0.641	1		1.4	0.52	0.28	0.51		
		2011	0.573								
Bearded seal	BSAI flatfish trawl	2007	0.718					0.4	0.03	1.62	0.05
		2008	0.996	1		1.0	0.04				
		2009	0.998								
		2010	0.999								
		2011	0.999	1		1.0	0.06				
	BSAI pollock trawl	2007	0.848	1		1.0	0	1.22	0.06		
		2008	0.854	4		4.1	0.08	1.22	0.00		
		2009	0.855	1		1.0	0.21				
		2010	0.862		1	1.0	0.21				
		2011	0.979								
Steller (northern) sea lion	AK BSAI Atka mackerel trawl	2007	0.940					0.2	0.05	14.24	0.06
Stener (normenn) seu non		2008	0.999					0.2	0.05	11.21	0.00
		2009	0.990								
		2010	0.999	1		1.0	0.05				
		2010	0.999	1		1.0	0.05				
	BSAI flatfish trawl	2007	0.718	3	1	3.7	0.25	5.74	0.03		
	namon nawi	2007	0.996	11	1	11.0	0.23	5.74	0.05		
		2008	0.990	3		3.0	0.01				
		2009	0.998	4	1	4.0	0.00				
		2010	0.999	4	1	4.0 7.0	0.01				
		2011	0.999	/		7.0	0.01				

	BSAI Pacific cod trawl	2007	0.534	1	2	1.0	0.15	0.6	0.07		
		2008	0.586								
		2009	0.634								
		2010	0.659	1		1.0	0				
		2011	0.595	1		1.0	0.12				
	BSAI pollock trawl	2007	0.848	2		2.0	0.04	7.16	0.11		
		2008	0.854	8		10.1	0.24				
		2009	0.855	6		6.2	0.09				
		2010	0.862	5		8.2	0.35				
		2011	0.979	9		9.3	0.06				
	GOA Pacific cod longline	2007	0.202					0.54	0.39		
		2008	0.146	1		1.6	0.61				
		2009	0.209								
		2010	0.284	1		1.1	0.32				
		2011	0.303								
Gray whale	BSAI flatfish trawl	2007	0.718					0.2	0.01	0.2	0.01
		2008	0.996								
		2009	0.998								
		2010	0.999	1		1.0	0.01				
		2011	0.999								
Northern elephant seal	GOA flatfish trawl	2007	0.31					0.38	0.67	0.38	0.67
		2008	0.274								
		2009	0.213	1		1.9	0.68				
		2010	0.263								
		2011	0.307								
Humpback whale	BSAI pollock trawl	2007	0.848					0.2	0.08	0.2	0.08
		2008	0.854								
		2009	0.855								
		2010	0.862	1		1.0	0.08				
		2011	0.979								
		2007	0.710								
	BSAI flatfish trawl	2007	0.718								
		2008	0.996								
		2009	0.998		1						
		2010	0.999		1						
		2011	0.999								
		2008	0.996	1		1.0	0.03				
		2008	0.990	2		2.0	0.03				
		2009	0.998	4		2.0	0.02				
		2010	0.999								
		2011	0.777								

	BSAI rockfish trawl	2007	0.876					0.2	0		
		2008	0.984								
		2009	0.994								
		2010	1.000	1		1.0	0				
		2010	0.998	1		1.0	0				
		2011	0.998								
	BSAI Greenland turbot										
	longline	2007	0.639	1		1.5	0.59	0.3	0.61		
		2008	0.738								
		2009	0.737								
		2010	0.592								
		2011	0.589								
Walrus	BSAI flatfish trawl	2007	0.718	2		3.8	0.54	1.36	0.3	1.36	0.3
		2008	0.996	1		1.0	0				
		2009	0.998								
		2010	0.999	2		2.0	0.01				
		2010	0.999	2		2.0	0.01				
		2011	0.777								
	AK BSAI Atka mackerel										
Ribbon seal	trawl	2007	0.940	1		1.0	0.21	0.4	0.11	1.02	0.08
		2008	0.999								
		2009	0.990	1		1.0	0.01				
		2010	0.999								
		2011	0.999								
	BSAI pollock trawl	2007	0.848					0.62	0.1		
		2008	0.854	2		2.1	0.14				
		2009	0.855	1		1.0	0.11				
		2010	0.862								
		2011	0.979								
Ringed seal	BSAI flatfish trawl	2007	0.718					1.8	0.02	3.32	0.06
illiged sear		2008	0.996	2		2.0	0.02	1.0	0.02	0.02	0.00
		2009	0.998	1		1.0	0.01				
		2009	0.999	1		1.0	0.01				
		2010	0.999	6	1	6.0	0.02				
		2011	0.999	0	1	0.0	0.02				
	BSAI Pacific cod trawl	2007	0.534					0.2	0		
	DSAI Pacific cou trawi	2007 2008						0.2	0		
			0.586								
		2009	0.634								
		2010	0.659								
		2011	0.595	1		1.0	0				
	BSAI pollock trawl	2007	0.848					1	0.04		
		2008	0.854	1		1.0	0.15				
		2009	0.855	1		1.0	0.11				
		2010	0.862								
		2011	0.979	3		3.0	0.03				

	BSAI Pacific cod longline	2007	0.626					0.32	0.6		
	-	2008	0.626								
		2009	0.604								
		2009	0.641								
				1		1.6	0.(1				
		2011	0.573	1		1.6	0.61				
		2007	0.710					0.6	0.00	1.10	0.17
Spotted seal (Larga seal)	BSAI flatfish trawl	2007	0.718	_				0.6	0.02	1.12	0.17
		2008	0.996	2		2.0	0.02				
		2009	0.998	1		1.0	0				
		2010	0.999								
		2011	0.999								
	BSAI pollock trawl	2007	0.848					0.2	0.11		
		2008	0.854								
		2009	0.855								
		2010	0.862	1		1.0	0.11				
		2011	0.979								
	BSAI Pacific cod longline	2007	0.626					0.32	0.6		
		2008	0.626								
		2000	0.604								
		2010	0.641	1		1.6	0.(1				
		2011	0.573	1		1.6	0.61				
Sperm whale	GOA sablefish longline	2007	0.167	1		1.4	0.56	0.28	0.57	0.28	0.57
Sperin whate	OOA sabielisii lõiigille			1		1.4	0.50	0.28	0.57	0.28	0.37
		2008	0.156								
		2009	0.162								
		2010	0.152								
		2011	0.141								
H 1		2007	0.710	1		1.0	0.7	0.26	0.7	0.26	0.67
Harbor porpoise	BSAI flatfish trawl	2007	0.718	1		1.8	0.67	0.36	0.67	0.36	0.67
		2008	0.996								
		2009	0.998								
		2010	0.999								
		2011	0.999								
Harbor seal	BSAI flatfish trawl	2007	0.718		1			0.2	0.04	1.72	0.41
		2008	0.996								
		2009	0.998								
		2010	0.999								
		2011	0.999	1		1.0	0.04				
	BSAI pollock trawl	2007	0.848					0.58	0.82		
		2008	0.854	1		2.9	0.81				
		2009	0.855								
		2010	0.862								
		2011	0.979								

				129	10	158.5		31.76		31.76	
		2011	0.573								
		2010	0.641	1		1.1	0.33				
		2009	0.604								
		2008	0.626								
Unident. pinniped	BSAI Pacific cod longline	2007	0.626					0.22	0.34	0.22	0.34
		2011	0.573								
		2010	0.641								
		2009	0.604		1						
		2008	0.626								
	BSAI Pacific cod longline	2007	0.626								
		2011	0.979								
		2010	0.862								
		2009	0.855	1		1.0	0.20				
		2008	0.854								
Dall's porpoise	BSAI pollock trawl	2007	0.848					0.20	0.20	0.20	0.20
		2011	0.410								
		2010	0.314	1		2.8	0.81				
		2009	0.294	1		2.0	0.01				
		2008	0.153								
	GOA Pacific cod trawl	2007	0.174					0.56	0.82		
		2011	0.307	1		1.9	0.68				
		2010	0.263								
		2009	0.213								
		2008	0.274								
	GOA flatfish trawl	2007	0.310					0.38	0.68		

¹ Heading abbreviations: Obs. Cov.: observer coverage, Obs. Bycatch (samp.): observed bycatch in sampled hauls, Obs. Bycatch (unsamp.): observed bycatch in unsampled hauls, cv: coefficient of variation of estimated bycatch, MAM: mean annual mortality, cv MAM: cv of MAM, MTAM: mean total annual mortality, cv MTAM: cv of MTAM.

APPENDICES

Fishery		Target species	CAS species group
AL	K BSAI groundfish trawl fishery		
Ar 1	AK BSAI Atka mackerel trawl fishery	А	АМСК
2	AK BSAI flatfish, trawl fishery	\mathbf{X} $\mathbf{Y} + \mathbf{R} + \mathbf{L} + \mathbf{F} + \mathbf{E} + \mathbf{W} + \mathbf{T}$	AKPL, ARTH, FLO5, FSOL, GRTB, RSOL, YSOL
3	AK BSAI Pacific cod trawl fishery	C	PCOD
4	AK BSAI pollock trawl fishery	B + P	PLCK
5	AK BSAI rockfish trawl fishery	K	NORK, REYE, ROCK, SRKR
Aŀ	K GOA groundfish trawl fishery		
6	AK GOA flatfish trawl fishery	D + H + W + X + L	ARTH, DFL4, FLO5, FSOL, REXS, SFL1
7	AK GOA Pacific cod trawl fishery	С	PCOD
8	AK GOA pollock trawl fishery	B + P	PLCK
9	AK GOA rockfish trawl fishery	K	DEM1, NORK, PEL7, REYE, ROCK, SRKR, THDS
Aŀ	K BSAI groundfish longline/set line fishery		
10	AK BSAI Greenland turbot longline fishery	Т	GTRB
11	AK BSAI Pacific cod longline fishery	С	PCOD
12	AK BSAI Pacific halibut longline fishery	Ι	HLBT
13	AK BSAI rockfish longline fishery	Κ	NORK, REYE, ROCK, SRKR
14	AK BSAI sablefish longline fishery	S	SABL
Aŀ	GOA groundfish longline/set line fishery		
15	AK GOA Pacific cod longline fishery	С	PCOD
16	AK GOA Pacific halibut longline fishery	Ι	HLBT
17	AK GOA rockfish longline fishery	K	DEM1, NORK, PEL7, REYE, SRKR
18	AK GOA sablefish longline fishery	S	SABL
19	AK GOA flatfish longline fishery	D + H + W + X + L	ARTH, DFL4, FLO5, SFL1, REXS, FSOL
Aŀ	K BS and GOA finfish pot fishery		
20	AK BSAI Pacific cod pot fishery	С	PCOD
21	i i i i i i i j	S	SABL
22	AK AI sablefish pot fishery	S	SABL
23	A K GOA Pacific cod pot fishery	С	PCOD

Appendix 1. -- National Marine Fisheries Service list of fisheries (LOF) for which bycatch estimates must be made.

Abbreviations:

AK Alaska

BS Bering Sea BSAI Bering Sea - Aleutian Islands

Gulf of Alaska GOA

Appendix 2. -- Oracle views and tables at AFSC used in bycatch analyses.

Table or view name	Description
NORPAC.AKR_OBS_HAUL_MV ¹	AKR Observer haul data, including observed groundfish weights
NORPAC.AKR_CA_PRIMARY_TXN MV ²	AKR trip data, including total groundfish weights
OBSINT.DEBRIEFED_MAMMAL	AFSC marine mammal interaction data
NORPAC.AKR_V_VESSEL_MV	Vessel length view

¹ Equivalent to the AKR table AKFISH.V_OBS_HAUL ² Equivalent to the AKR table AKFISH.V_GG_TXN_PRIMARY_ALL

Appendix 3. -- Marine mammal interaction codes (Observer Program data)

Code	Description	Bycatch
1	Deterrence used	
2	Entangled in gear (not trailing gear)	
3	Entangled in gear (trailing gear)	
4	Killed by gear	√
5	Killed by propeller	√
6	Previously dead	
7	Lethal removal (trailing gear)	✓
8	Lethal removal (not trailing gear)	✓
9	Boarded vessel	
10	Feeding on catch (not yet landed)	
12	Other	
13	Unknown	
14	Feeding on discards	

 \checkmark = mortality

Appendix 4. -- Gear codes

Observer Program Code	CAS code	Description
1	NPT	Non-pelagic trawl
2	PTR	Pelagic trawl
6	РОТ	Pot
7	JIG	Jig
8	HAL	Hook and line

Code	Common name	Scientific name
BA	Minke Whale	Balaenoptera acutorostrata
BB	Sei Whale	Balaenoptera borealis
BE	Baird's Beaked Whale	Berardius bairdii
BG	Black Right Whale Balaena glacialis	
BL		
BM	Bowhead Whale	Balaena mysticetus
BP	Fin Whale	Balaenoptera physalus
BX	Bryde's Whale	Balaenoptera edeni
CU	Northern Fur Seal	Callorhinus ursinus
DD	Common Dolphin	Delphinus delphis
DL	Beluga	Delphinapterus leucas
EB	Bearded seal	Erignathus barbatus
EJ	Steller (Northern) Sea Lion	Eumetopias jubatus
EL	Sea Otter	Enhydra lutris
ER	Gray Whale	Eschrichtius robustus
FA	Pygmy Killer Whale	Feresa attenuata
GG	Risso's Dolphin	Grampus griseus
GM	Shortfin Pilot Whale	Globicephala macrorhynchus
LB	Northern Right Whale Dolphin	Lissodelphis borealis
LH	Frasier's Dolphin	Lagenodelphis hosei
LO	Pacific Whitesided Dolphin	Lagenorhynchus obliquidens
MA	Northern Elephant seal	Mirounga angustirostris
MM	Narwhal	Monodon monoceros
MN	Humpback Whale	Megaptera novaeangliae
MS	Bering Sea beaked Whale	Mesoplodon stejnegeri
00	Killer Whale	Orcinus orca
OR	Walrus	Odobenus rosmarus
PC	False Killer Whale	Pseudorca crassidens
PF	Ribbon seal	Histriophoca fasciata
PH	Ringed seal	Phoca hispida
PL	Spotted Seal (Larga Seal)	Phoca largha
PM	Sperm Whale	Physeter macrocephalus
PP	Harbor Porpoise	Phocoena phocoena
PV	Harbor Seal	Phoca vitulina
PX	Dall's Porpoise	Phocoenoides dalli
SA	Spotted Dolphin (Cent. Pac.)	Stenella attenuata
SB SC	Rough Toothed Dolphin Striped Dolphin	Steno bredanensis
SC SG	Spotted Dolphin (East. Pac.)	Stenella coeruleoalba Stenella attenuata
SL TT	Spinner Dolphin Bottlenose Dolphin	Stenella longirostris
UC	Unidentified Cetacean	Tursiops truncatus NA
UD	Unident. Dolphin/Porp.	Unidentified dolphin/porpoise
UO	Unident. Otariid	Unidentified otariid
UP	Unident. Pinniped	Unidentified pinniped
US	Unidentiphied Phocid	Unidentified phocid
UW	Unidentified Whale	NA
UX	Unidentified Small Whale	NA
UZ	Unidentified Large Whale	NA
ZC	California Sea Lion	Zalophus californianus
ZX	Goosebeak Whale	Ziphius cavirostris
ZZ	Unidentified Mammal	NA

Appendix 5. -- Marine mammal species codes, common names and scientific names.

CAS Species Group Codes		Target Species Codes			
Code	Description	Code	Description		
AKPL	Alaska Plaice BSAI Alaska Plaice	Α	Atka Mackerel	(BSAI	GOA
AMCK	Atka Mackerel	В	Bottom Trawl Pollock	(BSAI	GOA
ARTH	Arrowtooth Flounder	С	Pacific Cod	(BSAI	GOA
BSKT	GOA Skate Big	D	Deep Water Flatfish	(GOA
DEM1	GOA Demersal Shelf Rockfish	Е	Alaska Plaice	(BSAI	
DFL4	GOA Deep Water Flatfish	F	Other Flatfish	(BSAI	
FLO5	BSAI Other Flatfish; Other Flatfish	Н	Shallow Water Flatfish	(GOA
FSOL	Flathead Sole	I	Halibut	(BSAI	GOA
GTRB	Greenland Turbot	K	Rockfish	(BSAI	GOA
LSKT	GOA Skate Longnose	L	Flathead Sole	(BSAI	GOA
NORK	Northern Rockfish	Р	Pelagic Pollock	(BSAI	GOA
OTHR	Other Species	R	Rock Sole	(BSAI	
PCOD	Pacific Cod	S	Sablefish	(BSAI	GOA
PEL7	GOA Pelagic Shelf Rockfish	Т	Greenland Turbot	(BSAI	
PLCK	Pollock	W	Arrowtooth Flounder	(BSAI	GOA
POPA	Pacific Ocean Perch	X	Rex Sole	(GOA
REXS	BOA Rex Sole	Y	Yellowfin Sole	(BSAI	
REYE	GOA, BSAI Rougheye Rockfish	0	Other Species		
ROCK	Other Rockfish	Z	No Retained Catch		
RSOL	Rock Sole				
SABL	Sablefish				
SFL1	BOA Shallow Water Flatfish				
SQID	BSAI Squid				
SRKR	BSAI GOA Shortraker Rockfish;				
THDS	GOA Thornyhead Rockfish				
USKT	GOA Skate; Other				
YSOL	Yellowfin Sole				

Appendix 6. -- Catch Accounting System species group codes and target species codes.

1ANIMAL_CONDITIONVARCHAR2(40)2ANIMAL_NUMBERNUMBER3COMMON_NAMEVARCHAR2(60)4CONDITION_CODENUMBER5CRUISENUMBER6DETERRENCE_CODEVARCHAR2(40)7DETERRENCE DEPLOYEDVARCHAR2(100)8DETERRENCE SUCCESS_FLAGVARCHAR2(1)9GEAR_TYPENUMBER10HAUL_JOINNUMBER11HAUL_SEQNUMBER12HAUL_SEQNUMBER13INTERACTION_CODENUMBER14INTERACTION_CODENUMBER15INTERACTION_DATEDATE16INTERACTION_DESCRIPTIONVARCHAR2(4000)15INTERACTION_DESCRIPTIONVARCHAR2(4000)15INTERACTION_DESCRIPTIONVARCHAR2(4000)16INTERACTION_DATEDATE17LATITUDE_DDNUMBER18LONGITUDE_ODNUMBER20MAMAL_RECORD_IDNUMBER21MAMMAL_SPECIES_CODEVARCHAR2(1)22NMFS_AREANUMBER23NUMBER OF ANIMALSNUMBER24OBSERVATION_FLAGVARCHAR2(1)25OFFLOAD_JOINNUMBER26OFFLOAD_SEQNUMBER27OFFLOAD_SEQNUMBER28OFFLOAD_SEQNUMBER29PERMITVARCHAR2(10)31SPECIMEN_TYPEVARCHAR2(10)32SPECIMEN_TYPEVARCHAR2(2000)33SPECIMEN_TYPEVARCHAR2(2000)	COLUMN_ID	COLUMN_NAME	DATA_TYPE
3COMMON_NAMEVARCHAR2(60)4CONDITION_CODENUMBER5CRUISENUMBER6DETERRENCE_CODEVARCHAR2(40)7DETERRENCE_DEPLOYEDVARCHAR2(100)8DETERRENCE_SUCCESS_FLAGVARCHAR2(1)9GEAR_TYPENUMBER10HAUL_JOINNUMBER11HAUL_SEQNUMBER12HAUL_SEQNUMBER13INTERACTION_CODENUMBER14INTERACTION_DATEDATE16INTERACTION_DATEDATE16INTERACTION_DESCRIPTIONVARCHAR2(4000)15INTERACTION_DESCRIPTIONVARCHAR2(60)17LATITUDE_DDNUMBER18LONGITUDE_CONVERTEDNUMBER20MAMAAL_SPECIES_CODEVARCHAR2(2)21MAMMAL_SPECIES_CODEVARCHAR2(2)22NMFS_AREANUMBER23NUMBER_OF_ANIMALSNUMBER24OBSERVATION_FLAGVARCHAR2(1)25OFFICIAL_TOTAL_CATCHNUMBER26OFFICIAD_JOINNUMBER27OFFICIAD_SEQNUMBER28OFFLOAD_SEQNUMBER29PERMITVARCHAR2(10)31SPECIMEN_TYPEVARCHAR2(10)32SPECIMEN_TYPEVARCHAR2(2000)32SPECIMEN_TYPEVARCHAR2(100)34T_TABLEVARCHAR2(2000)35TRIP_JOINNUMBER36TRIP_NUMBERNUMBER37TRR_SEQNUMBER <trr< td=""><td>1</td><td>ANIMAL_CONDITION</td><td>VARCHAR2(40)</td></trr<>	1	ANIMAL_CONDITION	VARCHAR2(40)
4CONDITION_CODENUMBER5CRUISENUMBER(8,0)6DETERRENCE_CODEVARCHAR2(40)7DETERRENCE_DEPLOYEDVARCHAR2(100)8DETERRENCE_SUCCESS_FLAGVARCHAR2(1)9GEAR_TYPENUMBER10HAUL_JOINNUMBER11HAUL_NUMBERNUMBER12HAUL_SEQNUMBER13INTERACTION_CODENUMBER14INTERACTION_COMENTSVARCHAR2(4000)15INTERACTION_DATEDATE16INTERACTION_DESCRIPTIONVARCHAR2(60)17LATITUDE_DDNUMBER18LONGITUDE_CONVERTEDNUMBER20MAMMAL_RECORD_IDNUMBER21MAMMAL_SPECIES_CODEVARCHAR2(2)22NMFS_AREANUMBER23NUMBER_OF_ANIMALSNUMBER24OBSERVATION_FLAGVARCHAR2(1)25OFFLOAD_NUMBERNUMBER26OFFLOAD_NUMBERNUMBER27OFFLOAD_NUMBERNUMBER28OFFLOAD_SEQNUMBER29PERMITVARCHAR2(1)31SPECIMEN_COMMENTSVARCHAR2(2000)32SPECIMEN_TYPEVARCHAR2(2000)33SPECIMEN_TYPEVARCHAR2(2000)34T_TABLEVARCHAR2(2000)35TRIP_JOINNUMBER36TRIP_NUMBERNUMBER37TRP_SEQNUMBER38VALUEVARCHAR2(40)39VESSELVARCHAR2(40) <td>2</td> <td>ANIMAL_NUMBER</td> <td>NUMBER</td>	2	ANIMAL_NUMBER	NUMBER
5CRUISENUMBER(8,0)6DETERRENCE_CODEVARCHAR2(40)7DETERRENCE_DEPLOYEDVARCHAR2(100)8DETERRENCE_SUCCESS_FLAGVARCHAR2(1)9GEAR_TYPENUMBER10HAUL_JOINNUMBER11HAUL_SEQNUMBER12HAUL_SEQNUMBER13INTERACTION_CODENUMBER14INTERACTION_DESCRIPTIONVARCHAR2(4000)15INTERACTION_DESCRIPTIONVARCHAR2(60)17LATITUDE_DDNUMBER18LONGITUDE_DDNUMBER20MAMMAL_RECORD_IDNUMBER21MAMMAL_SPECIES_CODEVARCHAR2(2)22NMFS_AREANUMBER23NUMBER_OF_ANIMALSNUMBER24OBSERVATION_FLAGVARCHAR2(1)25OFFICIAL_TOTAL_CATCHNUMBER26OFFICAD_JOINNUMBER27OFFICAD_SEQNARCHAR2(1)28OFFLOAD_SEQNUMBER29PERMITVARCHAR2(10)31SPECIMEN_COMMENTSVARCHAR2(10)32SPECIMEN_TYPEVARCHAR2(100)33SPECIMEN_TYPEVARCHAR2(2000)34T_TABLEVARCHAR2(32)35TRIP_JOINNUMBER36TRIP_NUMBERNUMBER37TRIP_SEQNUMBER38VALUEVARCHAR2(40)39VESSELVARCHAR2(6)	3	COMMON NAME	VARCHAR2(60)
6DETERRENCE_CODEVARCHAR2(40)7DETERRENCE_DEPLOYEDVARCHAR2(100)8DETERRENCE_SUCCESS_FLAGVARCHAR2(1)9GEAR_TYPENUMBER10HAUL_JOINNUMBER11HAUL_NUMBERNUMBER12HAUL_SEQNUMBER13INTERACTION_CODENUMBER14INTERACTION_CODENUMBER15INTERACTION_DATEDATE16INTERACTION_DESCRIPTIONVARCHAR2(4000)15INTERACTION_DESCRIPTIONVARCHAR2(60)17LATITUDE_DDNUMBER18LONGITUDE_CONVERTEDNUMBER19LONGITUDE_CONVERTEDNUMBER20MAMMAL_RECORD_IDNUMBER21MAMMAL_SPECIES_CODEVARCHAR2(2)22NMFS_AREANUMBER23NUMBER_OF_ANIMALSNUMBER24OBSERVATION_FLAGVARCHAR2(1)25OFFICIAL_TOTAL_CATCHNUMBER26OFFICAD_NUMBERNUMBER27OFFLOAD_NUMBERNUMBER28OFFLOAD_SEQNUMBER29PERMITVARCHAR2(10)31SPECIMEN_COMMENTSVARCHAR2(100)32SPECIMEN_TYPEVARCHAR2(2000)33SPECIMEN_TYPEVARCHAR2(2000)34T_TABLEVARCHAR2(32)35TRIP_JOINNUMBER36TRIP_NUMBERNUMBER37TRIP_SEQNUMBER38VALUEVARCHAR2(40)39VESSELVARCHAR2(6) </td <td></td> <td>CONDITION_CODE</td> <td>NUMBER</td>		CONDITION_CODE	NUMBER
7DETERRENCE_DEPLOYEDVARCHAR2(100)8DETERRENCE_SUCCESS_FLAGVARCHAR2(1)9GEAR_TYPENUMBER10HAUL_JOINNUMBER11HAUL_NUMBERNUMBER12HAUL_SEQNUMBER13INTERACTION_CODENUMBER14INTERACTION_COMENTSVARCHAR2(4000)15INTERACTION_DATEDATE16INTERACTION_DESCRIPTIONVARCHAR2(60)17LATITUDE_DDNUMBER18LONGITUDE_CONVERTEDNUMBER20MAMMAL_RECORD_IDNUMBER21MAMMAL_SPECIES_CODEVARCHAR2(2)22NMFS_AREANUMBER23NUMBER_OF_ANIMALSNUMBER24OBSERVATION_FLAGVARCHAR2(1)25OFFICAL_TOTAL_CATCHNUMBER26OFFLOAD_JOINNUMBER27OFFLOAD_SEQNUMBER28OFFLOAD_SEQNUMBER29PERMITVARCHAR2(10)31SPECIMEN_TYPEVARCHAR2(2000)32SPECIMEN_NUMBERNUMBER33SPECIMEN_TYPEVARCHAR2(2000)34T_TABLEVARCHAR2(32)35TIRIP_JOINNUMBER36TRIP_NUMBERNUMBER37TRIP_SEQNUMBER38VALUEVARCHAR2(40)39VESSELVARCHAR2(40)	5	CRUISE	NUMBER $(8,0)$
8DETERRENCE_SUCCESS_FLAGVARCHAR2(1)9GEAR_TYPENUMBER10HAUL_JONNUMBER11HAUL_ONNUMBER12HAUL_SEQNUMBER13INTERACTION_CODENUMBER14INTERACTION_COMMENTSVARCHAR2(4000)15INTERACTION_DATEDATE16INTERACTION_DESCRIPTIONVARCHAR2(60)17LATITUDE_DDNUMBER18LONGITUDE_CONVERTEDNUMBER19LONGITUDE_DDNUMBER20MAMMAL_RECORD_IDNUMBER21MAMMAL_SPECIES_CODEVARCHAR2(2)22NMFS_AREANUMBER23NUMBER_OF_ANIMALSNUMBER(3,0)24OBSERVATION_FLAGVARCHAR2(1)25OFFICIAL_TOTAL_CATCHNUMBER26OFFLOAD_JOINNUMBER27OFFLOAD_SEQNUMBER28OFFLOAD_SEQNUMBER29PERMITVARCHAR2(6)31SPECIMEN_COMMENTSVARCHAR2(100)32SPECIMEN_TYPEVARCHAR2(2000)34T_TABLEVARCHAR2(32)35TRIP_JOINNUMBER36TRIP_NUMBERNUMBER36TRIP_NUMBERVARCHAR2(40)39VESSELVARCHAR2(6)	6	DETERRENCE_CODE	VARCHAR2(40)
9GEAR_TYPENUMBER10HAUL_JOINNUMBER11HAUL_SIQNUMBER12HAUL_SEQNUMBER13INTERACTION_CODENUMBER14INTERACTION_COMMENTSVARCHAR2(4000)15INTERACTION_DATEDATE16INTERACTION_DESCRIPTIONVARCHAR2(60)17LATITUDE_DDNUMBER18LONGITUDE_CONVERTEDNUMBER19LONGITUDE_ODNUMBER20MAMMAL_RECORD_IDNUMBER21MAMMAL_SPECIES_CODEVARCHAR2(2)22NMFS_AREANUMBER23NUMBER_OF_ANIMALSNUMBER(3,0)24OBSERVATION_FLAGVARCHAR2(1)25OFFICIAL_TOTAL_CATCHNUMBER26OFFLOAD_JOINNUMBER27OFFLOAD_SEQNUMBER28OFFLOAD_SEQNUMBER29PERMITVARCHAR2(10)31SPECIMEN_COMMENTSVARCHAR2(2000)32SPECIMEN_TYPEVARCHAR2(2000)34T_TABLEVARCHAR2(32)35TRIP_JOINNUMBER36TRIP_NUMBERNUMBER36TRIP_NUMBERNUMBER37TRIP_SEQNUMBER38VALUEVARCHAR2(40)39VESSELVARCHAR2(6)	7	DETERRENCE_DEPLOYED	VARCHAR2(100)
10HAUL_JOINNUMBER11HAUL_JOINNUMBER12HAUL_SEQNUMBER13INTERACTION_CODENUMBER14INTERACTION_COMMENTSVARCHAR2(4000)15INTERACTION_DATEDATE16INTERACTION_DESCRIPTIONVARCHAR2(60)17LATITUDE_DDNUMBER18LONGITUDE_CONVERTEDNUMBER20MAMAL_RECORD_IDNUMBER21MAMMAL_SPECIES_CODEVARCHAR2(2)22NMFS_AREANUMBER23NUMBER_OF_ANIMALSNUMBER24OBSERVATION_FLAGVARCHAR2(1)25OFFICIAL_TOTAL_CATCHNUMBER26OFFLOAD_NUMBERNUMBER27OFFLOAD_NUMBERNUMBER28OFFLOAD_SEQNUMBER29PERMITVARCHAR2(10)31SPECIMEN_COMMENTSVARCHAR2(2000)32SPECIMEN_NUMBERNUMBER33SPECIMEN_TYPEVARCHAR2(100)34T_TABLEVARCHAR2(32)35TRIP_JOINNUMBER36TRIP_NUMBERVARCHAR2(40)39VESSELVARCHAR2(40)	8	DETERRENCE_SUCCESS_FLAG	VARCHAR2(1)
11HAUL_NUMBERNUMBER12HAUL_SEQNUMBER13INTERACTION_CODENUMBER14INTERACTION_COMMENTSVARCHAR2(4000)15INTERACTION_DATEDATE16INTERACTION_DESCRIPTIONVARCHAR2(60)17LATITUDE_DDNUMBER18LONGITUDE_CONVERTEDNUMBER20MAMMAL_RECORD_IDNUMBER21MAMMAL_SPECIES_CODEVARCHAR2(2)22NMFS_AREANUMBER23NUMBER_OF_ANIMALSNUMBER24OBSERVATION_FLAGVARCHAR2(1)25OFFICIAL_TOTAL_CATCHNUMBER26OFFLOAD_JOINNUMBER27OFFLOAD_NUMBERNUMBER28OFFLOAD_SEQNUMBER29PERMITVARCHAR2(1)31SPECIMEN_COMMENTSVARCHAR2(2000)32SPECIMEN_TYPEVARCHAR2(2000)34T_TABLEVARCHAR2(32)35TRIP_JOINNUMBER36TRIP_NUMBERNUMBER37TRIP_SEQNUMBER38VALUEVARCHAR2(40)39VESSELVARCHAR2(40)	9	GEAR_TYPE	NUMBER
12HAUL_SEQNUMBER13INTERACTION_CODENUMBER14INTERACTION_COMMENTSVARCHAR2(4000)15INTERACTION_DATEDATE16INTERACTION_DESCRIPTIONVARCHAR2(60)17LATITUDE_DDNUMBER18LONGITUDE_CONVERTEDNUMBER19LONGITUDE_CONVERTEDNUMBER20MAMMAL_RECORD_IDNUMBER21MAMMAL_SPECIES_CODEVARCHAR2(2)22NMFS_AREANUMBER23NUMBER OF_ANIMALSNUMBER24OBSERVATION_FLAGVARCHAR2(1)25OFFICIAL_TOTAL_CATCHNUMBER26OFFLOAD_JOINNUMBER27OFFLOAD_NUMBERNUMBER28OFFLOAD_SEQNUMBER29PERMITVARCHAR2(1)31SPECIMEN_COMMENTSVARCHAR2(10)32SPECIMEN_NUMBERNUMBER33SPECIMEN_TYPEVARCHAR2(2000)34T_TABLEVARCHAR2(32)35TRIP_JOINNUMBER36TRIP_NUMBERNUMBER37TRIP_SEQNUMBER38VALUEVARCHAR2(40)39VESSELVARCHAR2(6)	10	HAUL_JOIN	NUMBER
13INTERACTION_CODENUMBER14INTERACTION_COMMENTSVARCHAR2(4000)15INTERACTION_DATEDATE16INTERACTION_DESCRIPTIONVARCHAR2(60)17LATITUDE_DDNUMBER18LONGITUDE_CONVERTEDNUMBER19LONGITUDE_DDNUMBER20MAMMAL_RECORD_IDNUMBER21MAMMAL_SPECIES_CODEVARCHAR2(2)22NMFS_AREANUMBER23NUMBER_OF_ANIMALSNUMBER(3,0)24OBSERVATION_FLAGVARCHAR2(1)25OFFICIAL_TOTAL_CATCHNUMBER26OFFLOAD_JOINNUMBER27OFFLOAD_NUMBERNUMBER28OFFLOAD_SEQNUMBER29PERMITVARCHAR2(6)30SEXVARCHAR2(1)31SPECIMEN_COMMENTSVARCHAR2(2000)32SPECIMEN_TYPEVARCHAR2(100)34T_TABLEVARCHAR2(100)35TRIP_JOINNUMBER36TRIP_NUMBERNUMBER37TRIP_SEQNUMBER38VALUEVARCHAR2(40)39VESSELVARCHAR2(6)	11	HAUL_NUMBER	NUMBER
14INTERACTION_COMMENTSVARCHAR2(4000)15INTERACTION_DATEDATE16INTERACTION_DESCRIPTIONVARCHAR2(60)17LATITUDE_DDNUMBER18LONGITUDE_CONVERTEDNUMBER19LONGITUDE_DDNUMBER20MAMMAL_RECORD_IDNUMBER21MAMMAL_SPECIES_CODEVARCHAR2(2)22NMFS_AREANUMBER23NUMBER_OF_ANIMALSNUMBER(3,0)24OBSERVATION_FLAGVARCHAR2(1)25OFFICIAL_TOTAL_CATCHNUMBER26OFFLOAD_JOINNUMBER27OFFLOAD_SEQNUMBER28OFFLOAD_SEQNUMBER29PERMITVARCHAR2(6)30SEXVARCHAR2(1)31SPECIMEN_COMMENTSVARCHAR2(2000)32SPECIMEN_TYPEVARCHAR2(100)34T_TABLEVARCHAR2(32)35TRIP_JOINNUMBER36TRIP_JOINNUMBER37TRIP_SEQNUMBER38VALUEVARCHAR2(40)39VESSELVARCHAR2(6)		HAUL_SEQ	NUMBER
15INTERACTION_DATEDATE16INTERACTION_DESCRIPTIONVARCHAR2(60)17LATITUDE_DDNUMBER18LONGITUDE_CONVERTEDNUMBER19LONGITUDE_DDNUMBER20MAMMAL_RECORD_IDNUMBER21MAMMAL_SPECIES_CODEVARCHAR2(2)22NMFS_AREANUMBER23NUMBER_OF_ANIMALSNUMBER(3,0)24OBSERVATION_FLAGVARCHAR2(1)25OFFLOAD_JOINNUMBER26OFFLOAD_JOINNUMBER27OFFLOAD_SEQNUMBER28OFFLOAD_SEQNUMBER29PERMITVARCHAR2(6)30SEXVARCHAR2(1)31SPECIMEN_COMMENTSVARCHAR2(2000)32SPECIMEN_TYPEVARCHAR2(100)34T_TABLEVARCHAR2(32)35TRIP_JOINNUMBER36TRIP_NUMBERNUMBER37TRIP_SEQNUMBER38VALUEVARCHAR2(40)39VESSELVARCHAR2(6)	13	INTERACTION_CODE	NUMBER
16INTERACTION_DESCRIPTIONVARCHAR2(60)17LATITUDE_DDNUMBER18LONGITUDE_CONVERTEDNUMBER19LONGITUDE_DDNUMBER20MAMMAL_RECORD_IDNUMBER21MAMMAL_SPECIES_CODEVARCHAR2(2)22NMFS_AREANUMBER23NUMBER_OF_ANIMALSNUMBER(3,0)24OBSERVATION_FLAGVARCHAR2(1)25OFFICIAL_TOTAL_CATCHNUMBER26OFFLOAD_JOINNUMBER27OFFLOAD_SEQNUMBER28OFFLOAD_SEQNUMBER29PERMITVARCHAR2(6)30SEXVARCHAR2(100)31SPECIMEN_COMMENTSVARCHAR2(2000)32SPECIMEN_TYPEVARCHAR2(32)33SPECIMEN_TYPEVARCHAR2(32)34T_TABLEVARCHAR2(32)35TRIP_JOINNUMBER36TRIP_NUMBERNUMBER37TRIP_SEQNUMBER38VALUEVARCHAR2(40)39VESSELVARCHAR2(6)	14	INTERACTION_COMMENTS	VARCHAR2(4000)
17LATITUDE_DNUMBER18LONGITUDE_CONVERTEDNUMBER19LONGITUDE_DDNUMBER20MAMAL_RECORD_IDNUMBER21MAMMAL_SPECIES_CODEVARCHAR2(2)22NMFS_AREANUMBER23NUMBER_OF_ANIMALSNUMBER(3,0)24OBSERVATION_FLAGVARCHAR2(1)25OFFICIAL_TOTAL_CATCHNUMBER26OFFLOAD_JOINNUMBER27OFFLOAD_NUMBERNUMBER28OFFLOAD_SEQNUMBER29PERMITVARCHAR2(6)30SEXVARCHAR2(1)31SPECIMEN_COMMENTSVARCHAR2(2000)32SPECIMEN_TYPEVARCHAR2(100)34T_TABLEVARCHAR2(32)35TRIP_JOINNUMBER36TRIP_NUMBERNUMBER37TRIP_SEQNUMBER38VALUEVARCHAR2(40)39VESSELVARCHAR2(6)	15	INTERACTION_DATE	DATE
18LONGITUDE_CONVERTEDNUMBER19LONGITUDE_DDNUMBER20MAMAL_RECORD_IDNUMBER21MAMAL_SPECIES_CODEVARCHAR2(2)22NMFS_AREANUMBER23NUMBER_OF_ANIMALSNUMBER(3,0)24OBSERVATION_FLAGVARCHAR2(1)25OFFICIAL_TOTAL_CATCHNUMBER26OFFLOAD_JOINNUMBER27OFFLOAD_NUMBERNUMBER28OFFLOAD_SEQNUMBER29PERMITVARCHAR2(6)30SEXVARCHAR2(1)31SPECIMEN_COMMENTSVARCHAR2(2000)32SPECIMEN_TYPEVARCHAR2(100)34T_TABLEVARCHAR2(32)35TRIP_JOINNUMBER36TRIP_NUMBERNUMBER37TRIP_SEQNUMBER38VALUEVARCHAR2(40)39VESSELVARCHAR2(6)	16	INTERACTION_DESCRIPTION	VARCHAR2(60)
19LONGITUDE_DDNUMBER20MAMMAL_RECORD_IDNUMBER21MAMMAL_SPECIES_CODEVARCHAR2(2)22NMFS_AREANUMBER23NUMBER_OF_ANIMALSNUMBER(3,0)24OBSERVATION_FLAGVARCHAR2(1)25OFFICIAL_TOTAL_CATCHNUMBER26OFFLOAD_JOINNUMBER27OFFLOAD_NUMBERNUMBER28OFFLOAD_SEQNUMBER29PERMITVARCHAR2(6)30SEXVARCHAR2(1)31SPECIMEN_COMMENTSVARCHAR2(2000)32SPECIMEN_TYPEVARCHAR2(100)34T_TABLEVARCHAR2(32)35TRIP_JOINNUMBER36TRIP_NUMBERNUMBER37TRIP_SEQNUMBER38VALUEVARCHAR2(40)39VESSELVARCHAR2(6)		LATITUDE_DD	NUMBER
20MAMMAL_RECORD_IDNUMBER21MAMMAL_SPECIES_CODEVARCHAR2(2)22NMFS_AREANUMBER23NUMBER_OF_ANIMALSNUMBER(3,0)24OBSERVATION_FLAGVARCHAR2(1)25OFFICIAL_TOTAL_CATCHNUMBER26OFFLOAD_JOINNUMBER27OFFLOAD_NUMBERNUMBER28OFFLOAD_SEQNUMBER29PERMITVARCHAR2(6)30SEXVARCHAR2(1)31SPECIMEN_COMMENTSVARCHAR2(2000)32SPECIMEN_TYPEVARCHAR2(100)34T_TABLEVARCHAR2(32)35TRIP_JOINNUMBER36TRIP_NUMBERNUMBER37TRIP_SEQNUMBER38VALUEVARCHAR2(40)39VESSELVARCHAR2(6)		LONGITUDE_CONVERTED	NUMBER
21MAMMAL_SPECIES_CODEVARCHAR2(2)22NMFS_AREANUMBER23NUMBER_OF_ANIMALSNUMBER(3,0)24OBSERVATION_FLAGVARCHAR2(1)25OFFICIAL_TOTAL_CATCHNUMBER26OFFLOAD_JOINNUMBER27OFFLOAD_NUMBERNUMBER28OFFLOAD_SEQNUMBER29PERMITVARCHAR2(6)30SEXVARCHAR2(1)31SPECIMEN_COMMENTSVARCHAR2(2000)32SPECIMEN_NUMBERNUMBER33SPECIMEN_TYPEVARCHAR2(100)34T_TABLEVARCHAR2(32)35TRIP_JOINNUMBER36TRIP_NUMBERNUMBER37TRIP_SEQNUMBER38VALUEVARCHAR2(40)39VESSELVARCHAR2(6)	19	LONGITUDE_DD	NUMBER
22NMFS_AREANUMBER23NUMBER_OF_ANIMALSNUMBER(3,0)24OBSERVATION_FLAGVARCHAR2(1)25OFFICIAL_TOTAL_CATCHNUMBER26OFFLOAD_JOINNUMBER27OFFLOAD_NUMBERNUMBER28OFFLOAD_SEQNUMBER29PERMITVARCHAR2(6)30SEXVARCHAR2(1)31SPECIMEN_COMMENTSVARCHAR2(2000)32SPECIMEN_NUMBERNUMBER33SPECIMEN_TYPEVARCHAR2(100)34T_TABLEVARCHAR2(32)35TRIP_JOINNUMBER36TRIP_NUMBERNUMBER37TRIP_SEQNUMBER38VALUEVARCHAR2(40)39VESSELVARCHAR2(6)		MAMMAL_RECORD_ID	NUMBER
23NUMBER_OF_ANIMALSNUMBER(3,0)24OBSERVATION_FLAGVARCHAR2(1)25OFFICIAL_TOTAL_CATCHNUMBER26OFFLOAD_JOINNUMBER27OFFLOAD_NUMBERNUMBER28OFFLOAD_SEQNUMBER29PERMITVARCHAR2(6)30SEXVARCHAR2(1)31SPECIMEN_COMMENTSVARCHAR2(2000)32SPECIMEN_NUMBERNUMBER33SPECIMEN_TYPEVARCHAR2(100)34T_TABLEVARCHAR2(32)35TRIP_JOINNUMBER36TRIP_NUMBERNUMBER37TRIP_SEQNUMBER38VALUEVARCHAR2(40)39VESSELVARCHAR2(6)		MAMMAL_SPECIES_CODE	VARCHAR2(2)
24OBSERVATION_FLAGVARCHAR2(1)25OFFICIAL_TOTAL_CATCHNUMBER26OFFLOAD_JOINNUMBER27OFFLOAD_NUMBERNUMBER28OFFLOAD_SEQNUMBER29PERMITVARCHAR2(6)30SEXVARCHAR2(1)31SPECIMEN_COMMENTSVARCHAR2(2000)32SPECIMEN_NUMBERNUMBER33SPECIMEN_TYPEVARCHAR2(100)34T_TABLEVARCHAR2(32)35TRIP_JOINNUMBER36TRIP_NUMBERNUMBER37TRIP_SEQNUMBER38VALUEVARCHAR2(40)39VESSELVARCHAR2(6)		NMFS_AREA	NUMBER
25OFFICIAL_TOTAL_CATCHNUMBER26OFFLOAD_JOINNUMBER27OFFLOAD_NUMBERNUMBER28OFFLOAD_SEQNUMBER29PERMITVARCHAR2(6)30SEXVARCHAR2(1)31SPECIMEN_COMMENTSVARCHAR2(2000)32SPECIMEN_NUMBERNUMBER33SPECIMEN_TYPEVARCHAR2(100)34T_TABLEVARCHAR2(32)35TRIP_JOINNUMBER36TRIP_NUMBERNUMBER37TRIP_SEQNUMBER38VALUEVARCHAR2(40)39VESSELVARCHAR2(6)		NUMBER_OF_ANIMALS	
26OFFLOAD_JOINNUMBER27OFFLOAD_NUMBERNUMBER28OFFLOAD_SEQNUMBER29PERMITVARCHAR2(6)30SEXVARCHAR2(1)31SPECIMEN_COMMENTSVARCHAR2(2000)32SPECIMEN_NUMBERNUMBER33SPECIMEN_TYPEVARCHAR2(100)34T_TABLEVARCHAR2(32)35TRIP_JOINNUMBER36TRIP_NUMBERNUMBER37TRIP_SEQNUMBER38VALUEVARCHAR2(40)39VESSELVARCHAR2(6)		OBSERVATION_FLAG	VARCHAR2(1)
27OFFLOAD_NUMBERNUMBER28OFFLOAD_SEQNUMBER29PERMITVARCHAR2(6)30SEXVARCHAR2(1)31SPECIMEN_COMMENTSVARCHAR2(2000)32SPECIMEN_NUMBERNUMBER33SPECIMEN_TYPEVARCHAR2(100)34T_TABLEVARCHAR2(32)35TRIP_JOINNUMBER36TRIP_NUMBERNUMBER37TRIP_SEQNUMBER38VALUEVARCHAR2(40)39VESSELVARCHAR2(6)		OFFICIAL_TOTAL_CATCH	NUMBER
28OFFLOAD_SEQNUMBER29PERMITVARCHAR2(6)30SEXVARCHAR2(1)31SPECIMEN_COMMENTSVARCHAR2(2000)32SPECIMEN_NUMBERNUMBER33SPECIMEN_TYPEVARCHAR2(100)34T_TABLEVARCHAR2(32)35TRIP_JOINNUMBER36TRIP_NUMBERNUMBER37TRIP_SEQNUMBER38VALUEVARCHAR2(40)39VESSELVARCHAR2(6)		OFFLOAD_JOIN	NUMBER
29PERMITVARCHAR2(6)30SEXVARCHAR2(1)31SPECIMEN_COMMENTSVARCHAR2(2000)32SPECIMEN_NUMBERNUMBER33SPECIMEN_TYPEVARCHAR2(100)34T_TABLEVARCHAR2(32)35TRIP_JOINNUMBER36TRIP_NUMBERNUMBER37TRIP_SEQNUMBER38VALUEVARCHAR2(40)39VESSELVARCHAR2(6)		OFFLOAD_NUMBER	NUMBER
30SEXVARCHAR2(1)31SPECIMEN_COMMENTSVARCHAR2(2000)32SPECIMEN_NUMBERNUMBER33SPECIMEN_TYPEVARCHAR2(100)34T_TABLEVARCHAR2(32)35TRIP_JOINNUMBER36TRIP_NUMBERNUMBER37TRIP_SEQNUMBER38VALUEVARCHAR2(40)39VESSELVARCHAR2(6)		OFFLOAD_SEQ	
31SPECIMEN_COMMENTSVARCHAR2(2000)32SPECIMEN_NUMBERNUMBER33SPECIMEN_TYPEVARCHAR2(100)34T_TABLEVARCHAR2(32)35TRIP_JOINNUMBER36TRIP_NUMBERNUMBER37TRIP_SEQNUMBER38VALUEVARCHAR2(40)39VESSELVARCHAR2(6)		PERMIT	
32SPECIMEN_NUMBERNUMBER33SPECIMEN_TYPEVARCHAR2(100)34T_TABLEVARCHAR2(32)35TRIP_JOINNUMBER36TRIP_NUMBERNUMBER37TRIP_SEQNUMBER38VALUEVARCHAR2(40)39VESSELVARCHAR2(6)		SEX	
33SPECIMEN_TYPEVARCHAR2(100)34T_TABLEVARCHAR2(32)35TRIP_JOINNUMBER36TRIP_NUMBERNUMBER37TRIP_SEQNUMBER38VALUEVARCHAR2(40)39VESSELVARCHAR2(6)		SPECIMEN_COMMENTS	VARCHAR2(2000)
34T_TABLEVARCHAR2(32)35TRIP_JOINNUMBER36TRIP_NUMBERNUMBER37TRIP_SEQNUMBER38VALUEVARCHAR2(40)39VESSELVARCHAR2(6)			
35TRIP_JOINNUMBER36TRIP_NUMBERNUMBER37TRIP_SEQNUMBER38VALUEVARCHAR2(40)39VESSELVARCHAR2(6)		SPECIMEN_TYPE	()
36TRIP_NUMBERNUMBER37TRIP_SEQNUMBER38VALUEVARCHAR2(40)39VESSELVARCHAR2(6)		_	VARCHAR2(32)
37TRIP_SEQNUMBER38VALUEVARCHAR2(40)39VESSELVARCHAR2(6)		—	NUMBER
38VALUEVARCHAR2(40)39VESSELVARCHAR2(6)		_	NUMBER
39 VESSEL VARCHAR2(6)		TRIP_SEQ	
		VALUE	
40 YEAR NUMBER		VESSEL	
	40	YEAR	NUMBER

Appendix 7. -- Description of Oracle table: OBSINT.DEBRIEFED_MAMMAL_V

COLUMN_ID	COLUMN_NAME	DATA_TYPE
1	CA_REFERENCE_KEY	NUMBER (20,0)
2	CRUISE	NUMBER (8,0)
3	OBS_VESSEL_ID	VARCHAR2 (4 BYTE)
4	HAUL_DATE	DATE
5	HAUL_NUMBER	NUMBER (4,0)
6	HAUL_JOIN	NUMBER (24,0)
7	SAMPLED_FLAG	VARCHAR2 (1 BYTE)
8	EXTRAP_SOURCE_CA_REF_KEY	NUMBER (20,0)
9	AKR_VESSEL_ID	NUMBER (6,0)
10	OBS_PROCESSOR_ID	VARCHAR2 (6 BYTE)
11	CATCHER_BOAT_ADFG	VARCHAR2 (6 BYTE)
12	FISHING_START_DATE	DATE
13	CDQ_GROUP_ID	NUMBER $(6,0)$
14	OBS_CDQ_CODE	VARCHAR2 (3 BYTE)
15	IFQ_FLAG	VARCHAR2 (1 BYTE)
16	GEAR_ID	NUMBER (6,0)
17	OBS_GEAR_CODE	NUMBER (2,0)
18	AKR_GEAR_CODE	VARCHAR2 (5 BYTE)
19	PERFORMANCE	NUMBER $(2,0)$
20	OBS_VESSEL_TYPE	NUMBER (2,0)
21	DEPLOYMENT_DATE	DATE
22	DEPLOYMENT_LATITUDE	NUMBER $(4,0)$
23	DEPLOYMENT_LONGITUDE	NUMBER $(5,0)$
24	FISHING_DEPTH	NUMBER $(4,0)$
25	BOTTOM_DEPTH	NUMBER $(5,0)$
26	RETRIEVAL_DATE	DATE
27	LOCATION	VARCHAR2 (1 BYTE)
28	LATITUDE	NUMBER $(5,0)$
29 20	LONGITUDE	NUMBER $(5,0)$
30	REPORTING_AREA_ID	NUMBER $(6,0)$
31 32	REPORTING_AREA_CODE	VARCHAR2 (6 BYTE)
32	FMP_AREA_ID	NUMBER (6,0) NUMBER (3,0)
33 34	GENERIC_AREA	VARCHAR2 (1 BYTE)
34	COBLZ FLAG	NUMBER $(6,2)$
36	OFFICIAL_TOTAL_CATCH OBSERVER ESTIMATE	NUMBER $(6,2)$
30	VESSEL ESTIMATE	NUMBER $(6,2)$
38	OBSERVER ESTIMATE METHOD	VARCHAR2 (1 BYTE)
38	HAUL PURPOSE CODE	VARCHAR2 (1 BYTE)
40	TARGET_FISHERY_CODE	VARCHAR2 (J BYTE)
40	DENSITY	NUMBER $(3,2)$
42	SKATES IN SET	NUMBER $(4,0)$
43	HOOKS PER SKATE	NUMBER $(4,0)$
44	TOTAL HOOKS POTS	NUMBER $(6,0)$
45	HAUL SAMPLED BY	NUMBER $(5,0)$
46	RANDOM SAMPLE TABLE	VARCHAR2 (1 BYTE)
40	RANDOM BREAK TABLE	VARCHAR2 (1 BYTE)
48	MM PERCENT MONITORED	NUMBER $(3,0)$
49	BIRD DETERRENCE	VARCHAR2 (2 BYTE)
50	BIRD VERIFICATION	VARCHAR2 (2 BYTE) VARCHAR2 (1 BYTE)
51	DELIVERY NUMBER	NUMBER $(4,0)$
52	YEAR	NUMBER $(4,0)$

Appendix 8. -- Description of NORPAC Oracle materialized view: NORPAC.AKR_OBS_HAUL_MV (equivalent to the AKR view AKFISH.V_OBS_HAUL)

Appendix 8. -- Cont.

53	LAST_MODIFIED_DATE	DATE
54	DATE_OF_ENTRY	DATE
55	SOURCE_TABLE	VARCHAR2 (8 BYTE)
56	DEPLOYMENT_LATITUDE_DD	NUMBER (10,6)
57	DEPLOYMENT_LONGITUDE_DD	NUMBER (11,6)
58	RETRIEVAL_LATITUDE_DD	NUMBER (10,6)
59	RETRIEVAL_LONGITUDE_DD	NUMBER (11,6)
60	ADFG STAT AREA ID	NUMBER $(6,0)$
61	ADFG STAT AREA CODE	VARCHAR2 (6 BYTE)
62	CRITICAL HABITAT AREA ID	NUMBER $(6,0)$
63	CRITICAL HABITAT AREA CODE	VARCHAR2 (6 BYTE)
64	SPECIAL AREA ID	NUMBER $(6,0)$
65	SPECIAL AREA CODE	VARCHAR2 (6 BYTE)
66	AFA COOP	NUMBER $(6,0)$
67	BSAI PROC SECTOR	VARCHAR2 (2 BYTE)
68	GOA PROC SECTOR	VARCHAR2 (1 BYTE)
69	AFA HARVEST SECTOR	VARCHAR2 (2 BYTE)
70	BSAI PCOD VESSEL SIZE CAT	VARCHAR2 (1 BYTE)
71	BSAI POLLOCK VESSEL SIZE CAT	VARCHAR2 (1 BYTE)
72	TARGET FISHERY AREA	NUMBER $(6,0)$
73	TARGET FISHERY YEAR	NUMBER
74	PCOD DIR FISHING FLAG	VARCHAR2 (1 BYTE)
75	POLLOCK DIR FISHING FLAG	VARCHAR2 (1 BYTE)
76	TOTAL GROUNDFISH WEIGHT	NUMBER $(11,2)$
77	RETAINED GROUNDFISH WEIGHT	NUMBER $(11,2)$
78	TRIP TARGET CODE	VARCHAR2 (1 BYTE)
79	TRIP TARGET DATE	DATE
80	PSCNO PROCESSING SECTOR	VARCHAR2 (2 BYTE)
81	SEABIRD SAMPLE TYPE	VARCHAR2 (1 BYTE)
82	CATCHER VESSEL ID	NUMBER $(6,0)$
83	CURRENT STATE CODE	VARCHAR2 (6 BYTE)
84	PENDING PROCESS STATE CODE	VARCHAR2 (6 BYTE)
85	VERSION NUMBER	NUMBER $(4,0)$
-		× 2-7

COLUMN_ID	COLUMN NAME	DATA_TYPE
1	PRIMARY ACCOUNT	NUMBER $(9,0)$
2	YEAR	NUMBER $(4,0)$
3	CATCH REPORT TYPE CODE	VARCHAR2 (6 BYTE)
4	HAUL JOIN	NUMBER
5	REPORT ID	NUMBER
6	REPORT DATE	DATE
7	CATCH ACTIVITY DATE	DATE
8	TRIP TARGET DATE	DATE
9	WEEK END DATE	DATE
10	BSAI_PROCESSING_SECTOR	VARCHAR2 (2 BYTE)
11	GOA_PROCESSING_SECTOR	VARCHAR2 (1 BYTE)
12	PSCNQ_PROCESSING_SECTOR	VARCHAR2 (2 BYTE)
13	HARVEST_SECTOR	VARCHAR2 (2 BYTE)
14	PROCESSOR_PERMIT_ID	NUMBER $(6,0)$
15	VESSEL_ID	NUMBER $(6,0)$
16	CATCHER_VESSEL_ID	NUMBER $(6,0)$
17	BSAI_PCOD_VESSEL_SIZE_CAT	VARCHAR2 (1 BYTE)
18	BSAI_POLLOCK_VESSEL_SIZE_CAT	VARCHAR2 (1 BYTE)
19	MANAGEMENT_PROGRAM_ID	NUMBER $(6,0)$
20	MANAGEMENT_PROGRAM_CODE	VARCHAR2 (5 BYTE)
21	AFA_COOP_ID	NUMBER $(6,0)$
22	CDQ_GROUP_ID	NUMBER $(6,0)$
23	AGENCY_GEAR_ID	NUMBER $(6,0)$
24	AGENCY_GEAR_CODE	VARCHAR2 (5 BYTE)
25	TARGET_FISHERY_AREA	NUMBER $(6,0)$
26	FMP_AREA_ID	NUMBER
27	FMP_AREA_CODE	VARCHAR2 (6 BYTE)
28	REPORTING_AREA_ID	NUMBER $(6,0)$
29	REPORTING_AREA_CODE	VARCHAR2 (5 BYTE)
30	SPECIAL_AREA_ID	NUMBER $(6,0)$
31	SPECIAL_AREA_CODE	VARCHAR2 (5 BYTE)
32	ADFG_STAT_AREA_ID	NUMBER
33	ADFG_STAT_AREA_CODE	VARCHAR2 (6 BYTE)
34	STATE_FEDERAL_WATERS_CODE	VARCHAR2 (1 BYTE)
35	STATE_FISHERY_FLAG	VARCHAR2 (1 BYTE)
36	TRIP_TARGET_CODE	VARCHAR2 (1 BYTE)
37	PCOD_DIRECTED_FISHING_FLAG	VARCHAR2 (1 BYTE)
38	POLLOCK_DIRECTED_FISHING_FLAG	VARCHAR2 (1 BYTE)
39	AGENCY_SPECIES_ID	NUMBER $(6,0)$
40	AGENCY_SPECIES_CODE	VARCHAR2 (5 BYTE)
41	SPECIES_GROUP_ID	NUMBER $(6,0)$
42	SPECIES_GROUP_CODE	VARCHAR2 (4 BYTE)
43	WEIGHT_POSTED	NUMBER $(11,3)$
44	SOURCE_TABLE	CHAR(1 BYTE)
45	POSTED_ON_DATE	DATE
46	CA_REFERENCE_KEY	NUMBER $(20,0)$
47	CA_SPECIES_REFERENCE_KEY	NUMBER $(20,0)$
48	PROCESSOR_ID	NUMBER $(6,0)$

Appendix 9. -- Description of NORPAC Oracle materialized view: NORPAC.AKR_CA_PRIMARY_TXN_MV (equivalent to the AKR view AKFISH.V_GG_TXN_PRIMARY_ALL)

COLUMN ID	COLUMN NAME	DATA TYPE
1	ADFG NUMBER	VARCHAR2(6 BYTE)
2	AFA ELIGIBLE FLAG	VARCHAR2(1 BYTE)
3	COAST_GUARD_NUMBER	VARCHAR2(10 BYTE)
4	GROSS_TONNAGE	NUMBER
5	HOMEPORT_CITY_NAME	VARCHAR2(40 BYTE)
6	HOMEPORT_COUNTRY_CODE	VARCHAR2(10 BYTE)
7	HOMEPORT_STATE_CODE	VARCHAR2(5 BYTE)
8	ID	NUMBER(6,0)
9	LENGTH	NUMBER
10	LENGTH_OVERALL	NUMBER
11	NAME	VARCHAR2(60 BYTE)
12	NET_TONNAGE	NUMBER
13	PRIMARY_OWNER_PERSON_ID	NUMBER
14	REGISTERED_LENGTH	NUMBER
15	SHAFT_HORSEPOWER	NUMBER
16	UNDER_SANCTION_FLAG	VARCHAR2(1 BYTE)

Appendix 10. -- Description of NORPAC Oracle materialized view: NORPAC.AKR_V_VESSEL_MV

Appendix 11. -- Outline of principal R functions used in analyses.

A single R function, BC.fns, is called which in turn calls various other functions to carry out the tasks to estimate bycatch by year, fishery and marine mammal species. The main functions called by BC.fns are given below (various, small utility functions are not included):

BC.fns BycatchStats GetObsHaul GetPrimary AssignFishery ConvertGearType WedByYear WeekEndDate GetArea GetStatArea GetStatArea GetMmSpp FisheryName	 Master function Obtains variables for bycatch haul joins (Oracle view: NORPAC.AKR_OBS_HAUL_MV) Gets bycatch records from OBSINT.DEBRIEFED_MAMMAL_V table and merges with NORPAC.AKR_OBS_HAUL_MV Gets AKR groundfish weight data Assigns a fishery number based on target species code, statistical area and gear type Converts gear code to a numeric value Computes week-ending dates (Saturday) for a given year Computers week-ending date for a given date Gets geographical area (e.g. EGOA, CGOA, WGOA, GOA) Gets NMFS statistical area number Gets common names for marine mammal species (from 2-character codes) Lookup table to convert fishery number to a fishery name
5	1 5 5
GetVesselLen SortDataFrame	Assigns class to vessel according to length Sorts a data frame by column(s)
SAR.table	Creates a table in the form required for SAR report

RECENT TECHNICAL MEMORANDUMS

Copies of this and other NOAA Technical Memorandums are available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22167 (web site: *www.ntis.gov*). Paper and electronic (.pdf) copies vary in price.

AFSC-

- 259 HIMES-CORNELL, A., K. HOELTING, C. MAGUIRE, L. MUNGER-LITTLE, J. LEE, J. FISK, R. FELTHOVEN, C. GELLER, and P. LITTLE. 2013. Community profiles for North Pacific fisheries Alaska. (Volumes 1-12). NTIS number pending.
- 258 HOFF, G. R. 2013. Results of the 2012 eastern Bering Sea upper continental slope survey of groundfish and invertebrate resources, 268 p. NTIS number pending.
- 257 TESTA, J. W. (editor). 2013. Fur seal investigations, 2012, 90 p. NTIS number pending.
- LAUTH, R. R., and D. G. NICHOL. 2013. Results of the 2012 eastern Bering Sea continental shelf bottom trawl survey of groundfish and invertebrate resources, 162 p. NTIS No. PB2014100850.
- 255 BOVENG, P. L., J. L. BENGTSON, M. F. CAMERON, S. P. DAHLE, E. A. LOGERWELL, J. M. LONDON, J. E. OVERLAND, J. T. STERLING, D. E. STEVENSON, B. L. TAYLOR, and H. L. ZIEL.2013. Status review of the ribbon seal (*Histriophoca fasciata*), 174 p. NTIS No. PB2009104582.
- 254 ECHAVE, K. B., D. H. HANSELMAN, and N. E. MALONEY. 2013. Report to industry on the Alaska sablefish tag program, 1972 2012, 47 p. NTIS No. PB2013111080.
- 253 ECHAVE, K., C. RODGVELLER, and S.K. SHOTWELL. 2013. Calculation of the geographic area sizes used To create population indices for the Alaska Fisheries Science Center longline survey, 93 p. NTIS number pending.
- 252 HOBBS, R. C. 2013. Detecting changes in population trends for Cook Inlet beluga whales (*Delphinapterus leucas*) using alternative schedules for aerial surveys, 93 p. NTIS No. PB2013108752.
- 251 FRITZ, L., K. SWEENEY, D. JOHNSON, M. LYNN, T. GELATT, and J. GILPATRICK. 2013. Aerial and ship-based surveys of Steller sea lions (*Eumetopias jubatus*) conducted in Alaska in June-July 2008 through 2012, and an update on the status and trend of the western distinct population segment in Alaska, 91 p. NTIS No. PB2013108751.
- 250 ZIMMERMANN, M., M. M. PRESCOTT, and C. N. ROOPER. 2013. Smooth sheet bathymetry of the Aleutian Islands, 43 p. NTIS No. PB2013108750.
- 249 ZIMMERMANN, M., and J. L. BENSON. 2013. Smooth sheets: How to work with them in a GIS to derive bathymetry, features and substrates, 52 p. NTIS No. PB2013108749.
- 248 SINCLAIR, E. H., D. S. JOHNSON, T. K. ZEPPELIN, and T. S. GELATT. 2013. Decadal variation in the diet of Western Stock Steller sea lions (*Eumetopias jubatus*). U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-248, 67 p. NTIS No. PB2013108748.
- 247 CLAUSEN, D. M., and C. J. RODGVELLER. 2013.Deep-water longline experimental survey for giant grenadier, Pacific grenadier, and sablefish in the Western Gulf of Alaska, 30 p. NTIS No. PB2013108297.
- 246 YANG, M-S., and C. YEUNG. 2013. Habitat-associated diet of some flatfish in the southeastern Bering Sea,151 p. NTIS No. PB2013-107698.
- ALLEN, B. M., and R. P. ANGLISS. 2013. Alaska marine mammal stock assessments, 2012, 282 p. NTIS No. PB2013108740.
- 244 GUTHRIE, C. M. III, H. T. NGUYEN, and J. R. GUYON. 2013. Genetic stock composition analysis of Chinook salmon bycatch samples from the 2011 Bering Sea and Gulf of Alaska trawl fisheries, 28 p. NTIS No. PB2013106489.