

Genetic Stock Composition Analysis of Chum Salmon Bycatch Samples from the 2010 Bering Sea Groundfish Fisheries

by C. M. Kondzela, W. T. McCraney, H. T. Nguyen, and J. R. Guyon

> U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center

> > February 2012

NOAA Technical Memorandum NMFS

The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature.

The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-NWFSC series is currently used by the Northwest Fisheries Science Center.

This document should be cited as follows:

Kondzela, C. M., W. T. McCraney, H. T. Nguyen, and J. R. Guyon. 2012. Genetic stock composition analysis of chum salmon bycatch samples from the 2010 Bering Sea groundfish fisheries. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-233, 29 p.

Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA.

NOAA Technical Memorandum NMFS-AFSC-233

Genetic Stock Composition Analysis of Chum Salmon Bycatch Samples from the 2010 Bering Sea Groundfish Fisheries

by C. M. Kondzela, W. T. McCraney, H. T. Nguyen, and J. R. Guyon

> Alaska Fisheries Science Center Auke Bay Laboratories 17109 Pt. Lena Loop Road Juneau, AK 99801

> > www.afsc.noaa.gov

U.S. DEPARTMENT OF COMMERCE

John E. Bryson, Secretary **National Oceanic and Atmospheric Administration** Jane Lubchenco, Under Secretary and Administrator **National Marine Fisheries Service** Eric C. Schwaab, Assistant Administrator for Fisheries

February 2012

This document is available to the public through:

National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161

www.ntis.gov

ABSTRACT

A genetic analysis of samples from the chum salmon (Oncorhynchus keta) bycatch of the 2010 Bering Sea groundfish trawl fishery was undertaken to determine the overall stock composition of the sample set. Samples were genotyped for 11 microsatellite markers and results were estimated using the current chum salmon microsatellite baseline. In 2010, genetic samples were collected as part of the species composition analysis of the Alaska Fisheries Science Center's North Pacific Observer Program. This sampling change for 2010 was an interim measure implemented until the systematic sampling protocols are finalized. Consequently, stock composition estimates apply to the sample set and may not represent the entire chum salmon bycatch. Based on the analysis of 1,048 chum salmon bycatch samples collected throughout the 2010 Bering Sea trawl fishery, East Asian (38%), North Asian (26%), Western Alaska (14%), and Eastern Gulf of Alaska/Pacific Northwest (13%) stocks dominated the sample set, with smaller contributions from Upper/Middle Yukon River (7%) stocks. The estimates for the 2010 chum salmon bycatch sample set were similar to the 2005–2009 chum salmon bycatch estimates, suggesting consistency of the regional stock contributions across years. Analysis of temporal groupings within the groundfish "B" season revealed changes in stock composition during the course of the season with decreasing contribution of Western Alaska and Eastern Gulf of Alaska/Pacific Northwest stocks and increasing contribution of North Asian stocks over time, but leaves unanswered whether these changes are due to temporal or spatial differences in the sample set.

CONTENTS

ABSTRACT	iii
CONTENTS	V
INTRODUCTION	
SAMPLE DISTRIBUTION	2
GENETIC STOCK COMPOSITION	6
COMPARISON WITH PREVIOUS ESTIMATES	
TEMPORAL STRATIFICATION OF THE BYCATCH SAMPLES	10
SUMMARY	13
Sampling Issues	
Stock Composition Estimates	14
Temporal Effect on Stock Composition Estimates	15
Application of These Estimates	15
ACKNOWLEDGMENTS	
CITATIONS	
APPENDIX	21

INTRODUCTION

It is important to understand the stock composition of salmon caught in Bering Sea fisheries because this area is a known feeding habitat for multiple brood years of chum salmon (*Oncorhynchus keta*) from many different localities in North America and Asia (Myers et al. 2007; Davis et al. 2009; Urawa et al. 2009). Determining the geographic origin of salmon caught in federally managed fisheries is essential to understanding the effects that fishing has on chum salmon stocks, especially those with conservation concerns. This report includes genetic stock identification results for the chum salmon bycatch samples collected from the 2010 U.S. Bering Sea groundfish trawl fishery. National Marine Fisheries Service (NMFS) geographical statistical areas associated with the groundfish fishery are shown in Figure 1 and are used later in the report to describe the spatial distribution of the chum salmon bycatch and genetic samples.

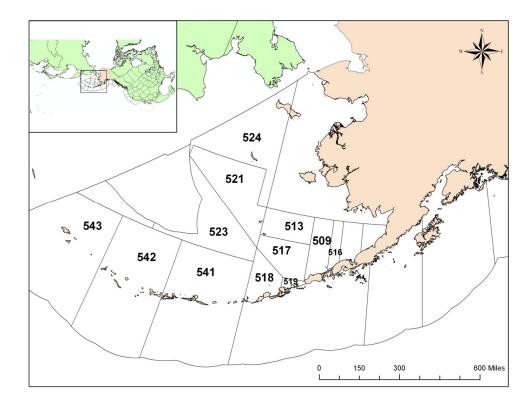


Figure 1. -- Statistical areas associated with the Bering Sea-Aleutian Island groundfish fishery.

We present the stock composition estimates for the 2010 chum salmon bycatch samples collected from the Bering Sea; however, it is important to recognize the limitations imposed by the sampling distribution and the genetic baseline. Hence, this report is divided into six sections: Introduction, Sample Distribution, Genetic Stock Composition, Comparison with Previous Estimates, Temporal Stratification of the Bycatch Samples, and Summary. For additional background and methods, this report is intended to be supplemented with the chum salmon reports prepared previously for the 2005–2009 Bering Sea trawl fisheries (Guyon et al. 2010; Marvin et al. 2011; Gray et al. 2010; Gray et al. 2011a,b). The chum salmon bycatch, designated as non-Chinook in the NMFS database, comprises over 99% of the total non-Chinook bycatch (NPFMC 2005).

SAMPLE DISTRIBUTION

Genetic samples were collected as part of the species composition analysis of the Alaska Fisheries Science Center's (AFSC) North Pacific Observer Program in 2010 for the AFSC's Auke Bay Laboratories. This sampling change from previous years is an interim measure implemented until the systematic sampling protocols recommended by Pella and Geiger (2009) are finalized. Chum salmon axillary processes (for genetic analysis) and scales (for ageing) were collected throughout the season and stored in coin envelopes that were labeled, frozen, and shipped to the Auke Bay Laboratories. The majority of the chum salmon bycatch genetic samples were derived from the primarily mid-water walleye pollock (*Theragra chalcogramma*) trawl fishery (91% pollock, 2% Pacific cod (*Gadus macrocephalus*), 2% other, and 5% unknown); however, the actual target was not determined until after the season and annotated as the most common catch in a haul or offload. In addition, a vessel can theoretically participate in

2

various fisheries on a particular cruise before an offload. For these reasons, results are presented as the stock composition of the Bering Sea Aleutian Island groundfish trawl fishery for 2010.

In 2010, an estimated 14,965 chum salmon were incidentally taken as bycatch in the Bering Sea groundfish fisheries (NMFS 2011). This number is ~90% less than the average of 142,931 non-Chinook salmon taken in the fisheries between 1994 and 2010 and ~78% less than the median of 66,994 (Fig. 2). The final genetic sample set for the 2010 chum bycatch was 1,048 fish from statistical areas 509-543 which represented a sampling rate of 7.03% of the 14,912 chum salmon caught in those areas. This is the highest chum salmon bycatch sampling rate observed from 2005 to 2010, whereas the second highest was 4.15% for the 2008 season.

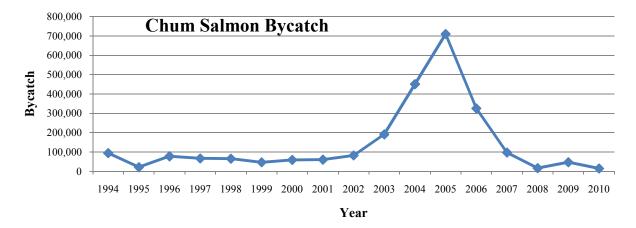
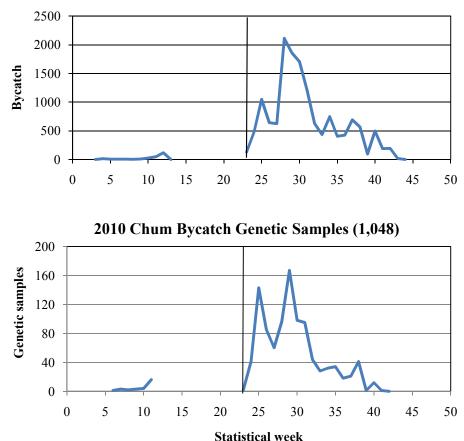



Figure 2. -- Yearly estimates for the non-Chinook salmon bycatch from the Bering Sea groundfish trawl fishery (NMFS 2011).

Biases and errors associated with the collection of genetic samples from the bycatch are well documented, and have the potential to affect stock composition estimates (Pella and Geiger 2009). Methods to collect representative samples are being implemented by the Alaska Fisheries Science Center to reduce sampling error and bias. Potential biases associated with the successfully genotyped 2010 chum salmon bycatch sample set were evaluated by visually comparing the genetic sample distributions with the overall bycatch estimates. Temporal bias by statistical week ending on Sunday was minimal (Fig. 3) when samples were pooled across management areas. However, temporal biases were evident at finer spatial scales (Fig. 4). For example, statistical area 521 was overrepresented early in the "B" season (weeks 25-27). For samples collected from offloads in which the vessel fished in multiple areas, the sample location of the entire catch of a fishing trip was identified by the location of the first haul because generally fishing locations were in close proximity to each other.

2010 Chum Salmon Bycatch (14,912)

Figure 3. -- Number of Bering Sea chum salmon bycatch and genetic samples from 2010 by statistical week. Total numbers of chum salmon caught in the Bering Sea groundfish trawl fishery (top panel) in areas 509-543 compared with the available 1,048 genetic samples (bottom panel). Weeks 3-23 correspond to the groundfish "A" season, whereas weeks 24-43 correspond to the "B" season, the demarcation of which is a vertical line.

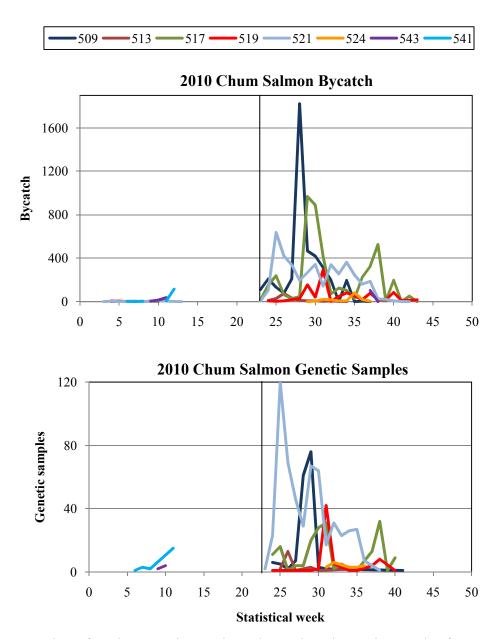


Figure 4. -- Number of Bering Sea chum salmon bycatch and genetic samples from 2010 by statistical week and NMFS area. Not shown in the chum salmon bycatch are an estimated 36 fish from area 514 and 11 fish from area 523. Two fish from area 521 for statistical weeks 9 and 11, and two fish from area 543 for statistical week 27 are not shown for the genetic sample set. Weeks 4-23 correspond to the groundfish "A" season, whereas weeks 24-43 correspond to the "B" season, the demarcation of which is a vertical line. NMFS statistical areas are designated in the legend.

GENETIC STOCK COMPOSITION

DNA was extracted from the axillary processes of the chum salmon bycatch genetic samples and microsatellite genotyping was performed as described previously (Guyon et al. 2010). Briefly, samples were genotyped for the following 11 microsatellite loci: *Oki100* (Beacham et al. 2009a), *Omm1070* (Rexroad et al. 2001), *Omy1011* (Spies et al. 2005), *One101*, *One102*, *One104*, *One114* (Olsen et al. 2000), *Ots103* (Nelson and Beacham 1999), *Ots3* (Greig and Banks 1999), *Otsg68* (Williamson et al. 2002), and *Ssa419* (Cairney et al. 2000). Thermal cycling for the amplification of DNA fragments with the polymerase chain reaction (PCR) was performed on a dual 384-well GeneAmp PCR System 9700 (Applied Biosystems, Inc.). Samples from the PCR reactions were diluted into 96-well plates for analysis by a 16-capillary, 36 cm array on the ABI 3130xl Genetic Analyzer. Genotypes were double-scored with GeneMapper 4.0 software (Applied Biosystems, Inc.) and exported to Excel spreadsheets (Microsoft, Inc.) for further analysis.

A total of 1,152 samples from the 2010 chum salmon bycatch were analyzed, of which 1,048 samples were successfully genotyped for 8 or more of the 11 loci and analyzed in GENALEX (Peakall and Smouse 2006) for data integrity. Previous simulation analyses have demonstrated that a set of 8 selected loci can provide similar levels of stock resolution as the entire set of 11 loci (Gray et al. 2010); this is also supported by results reported in the literature for other loci sets (Beacham et al. 2009b). The remaining 1,048 samples had genetic information for an average of 10.81 loci (out of 11). There were 908 samples with data for all 11 loci, 102 with 10 loci, 22 with 9 loci, and 16 with 8 loci. There were four individual allele calls observed that were not present in the chum salmon baseline; those alleles and the associated haplotype were changed to "no calls" for further analysis.

6

For the mixture files, allele designations were converted to match those in the Fisheries and Oceans Canada (DFO) chum salmon microsatellite baseline (Beacham et al. 2009b,c). Genotypes from converted mixtures were then exported from Excel as text files, and C programs were used to format the data into both SPAM and BAYES mixture files. Stock compositions were determined by comparing mixture genotypes with those from reference baseline populations. As described previously (Gray et al. 2010), baseline populations were grouped into the following six regions: East Asia, North Asia, Western Alaska, Upper/Middle Yukon, Southwest Alaska, and the Eastern Gulf of Alaska/Pacific Northwest (Prince William Sound to Washington State). A listing of the individual populations grouped by region is shown in the Appendix.

As with previous chum bycatch analyses (Guyon et al. 2010; Marvin et al. 2011; Gray et al. 2010; Gray et al. 2011a,b), stock composition analysis for the 2010 chum bycatch samples was performed with both the SPAM and BAYES software by using previously published procedures (ADF&G 2003, Pella and Masuda 2001). Because the SPAM estimates were in close agreement with the BAYES estimates, the SPAM estimates are not shown. BAYES software uses a Bayesian algorithm to produce stock composition estimates and can account for missing alleles in the baseline (Pella and Masuda 2001). BAYES stock composition estimates based on data from all 11 loci were derived for the six regional groupings (Table 1). For each analysis, six Monte Carlo chains starting at disparate values of stock proportions were configured such that 95% of the stocks came from one designated region with weights equally distributed among the stocks of that region. The remaining 5% was equally distributed among remaining stocks from all other regions. For all estimates, a flat prior of 0.002625 (calculated as 1/381) was used for all 381 populations. The stock composition analyses were completed for a chain length of 10,000

7

with the first 5,000 deleted during the burn-in phase. Convergence of the chains to posterior distributions of stock proportions was determined with Gelman and Rubin shrink statistics, which were all 1.05 or less (Table 1), conveying strong convergence to a single posterior distribution (Pella and Masuda 2001).

Table 1. -- Regional BAYES stock composition estimates for 1,048 chum salmon samples from the bycatch of the 2010 season Bering Sea groundfish trawl fishery. BAYES estimates utilized information from all 11 loci. BAYES mean estimates are provided with standard deviations (SD), 95% credible intervals, median estimate, and the associated Gelman and Rubin shrink statistic.

BAYES Region	Mean	<u>SD</u>	<u>2.5%</u>	<u>Median</u>	<u>97.5%</u>	<u>Shrink</u>
East Asia	0.377	0.016	0.346	0.377	0.409	1.00
North Asia	0.263	0.018	0.229	0.263	0.299	1.02
Western Alaska	0.140	0.016	0.109	0.140	0.172	1.05
Upper/Middle Yukon	0.073	0.010	0.055	0.073	0.094	1.01
Southwest Alaska	0.018	0.008	0.002	0.018	0.034	1.01
Eastern GOA/PNW	0.129	0.012	0.105	0.129	0.154	1.00

COMPARISON WITH PREVIOUS ESTIMATES

The stock composition results from the analysis of the 2010 chum salmon bycatch samples were similar to previous estimates (Fig. 5, upper panel), although differences within individual regions were apparent between years. The primary difference in the stock composition of the chum salmon bycatch samples appears to be the higher contribution from East Asia in more recent years. However, caution must be used in comparisons across years as there are differences in where and when genetic bycatch samples were collected from year-to-year. The 1994-1995 chum bycatch sample estimates were produced with allozyme data (Wilmot et al. 1998), whereas the 2005 (Guyon et al. 2010), 2006 (Marvin et al. 2011), 2007 (Gray et al. 2011a), 2008 (Gray et al. 2011b), and 2009 (Gray et al. 2010) chum salmon bycatch sample

45 **1994** 40 1995 2005 35 2006 30 **2007** Percentage 52 20 50 2008 2009 2010 15 10 5 0 ■ 1994 (94,548) ■ 1995 (21,875) 200 2005 (709,387) 2006 (325,181) 2007 (97,351) Numbers of fish x 1000 2008 (16,901) 150 2009 (47,497) 2010 (14,965) 100 Τ 50 0 North Asia SW Alaska East Asia Western AK Upper/Mid Yukon Eastern GOA/PNW

Figure 5. -- Comparison of yearly stock composition estimates of available genetic samples from the Bering Sea chum salmon bycatch. Percentages in top panel; numbers of fish in bottom panel. The 1994-1995 estimates were derived with allozyme loci, and the 2005–2010 estimates were produced with DNA-based loci. 95% BAYES credible intervals are shown for the DNA-based analyses. Error bars are based on only the genetic BAYES credible intervals and do not include errors associated with the overall annual bycatch size estimation or potential biases in sample distribution. Total estimated chum salmon bycatch from the Bering Sea groundfish fisheries is shown in parenthesis in the bottom figure legend.

estimates were derived from DNA-based microsatellite loci. The allozyme (77 populations) and microsatellite DNA (381 populations) baselines have data from many of the same populations and have similar regional groupings. When yearly stock composition estimates are extrapolated to the total bycatch from the Bering Sea groundfish fisheries, it is apparent that the effect of the bycatch on chum salmon populations is influenced by the overall size of the bycatch (Fig. 5, lower panel).

TEMPORAL STRATIFICATION OF THE BYCATCH SAMPLES

An understanding of the temporal distribution of the chum salmon bycatch is important. For example, if the samples are randomly distributed or represent a distribution that can be described mathematically, temporally biased estimates could be adjusted with respect to the overall bycatch rate. Likewise, if the bycatch stock distribution changes consistently over time, the bycatch could be managed in a manner to minimize effects on critical stocks.

As with the 2005–2009 analyses, the 2010 sample set was temporally split into three "B" season time periods: early, middle, and late (Table 2, Fig. 6). Stock composition analyses for 2010 and similar temporal strata of the 2005–2009 year chum salmon bycatch sample sets are included for comparison purposes (Fig. 7). Results from this analysis should be used cautiously because sample spatial differences are apparent in the 2010 time-stratified sample set (Fig. 6) as compared with the 2005–2009 time stratified sample sets. These differences could affect the stock composition estimates. Table 2. -- Temporal groupings from the 2010 chum salmon bycatch genetic sample sets for which temporal information was available and which samples fell between those sample collection dates.

Weeks	Dates	Number of samples
24-29	June 12 – July 25	594
30-34	July 26 – August 29	297
35-41	August 30 – October 11	128

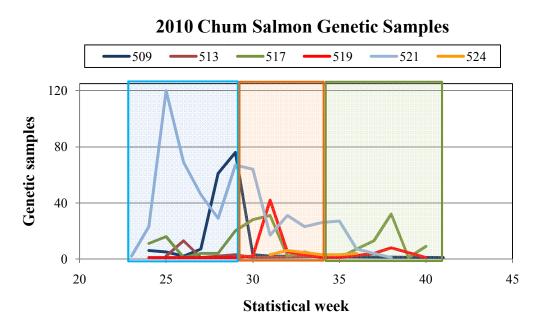
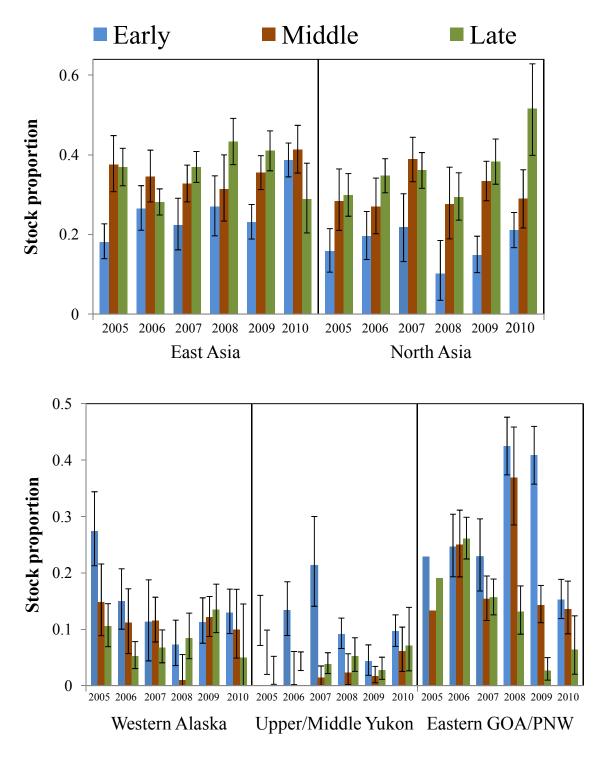



Figure 6. -- Genetic samples from the 2010 chum salmon bycatch identified by early (blue), middle (brown), and late (green) temporal groupings. NMFS statistical areas are designated in the legend.

^{Figure 7. -- BAYES stock composition estimates and 95% credible intervals for the early, middle, and late periods (defined in Table 2) from the 2005–2010 chum salmon bycatch. The 95% credible intervals for the 2005 Eastern GOA/PNW grouping are not shown because this region represents a sum of the SE Alaska/N. BC, Skeena, and BC/Washington groupings used in the 2005 analysis (Guyon et al. 2010). Not shown is the SW Alaska region for which estimates never exceeded 5.6%.}

BAYES stock composition estimates were made as described previously for each of the three temporal strata for each year. Gelman and Rubin shrink statistics were in all cases below 1.09 and suggested strong convergence to a single posterior distribution. The stock composition estimates differed between time periods (Fig. 7). As reported previously with the 2005–2009 chum salmon bycatch samples (Guyon et al. 2010; Marvin et al. 2011; Gray et al. 2010; Gray et al. 2011a,b), there was a shift in the regional contributions of the 2010 chum salmon sample stock composition estimate over time, with East Asian and North American stocks more dominant in the early sampling and fish from North Asia more dominant in the later sampling period. However, the prevalence of fish from the eastern Gulf of Alaska/Pacific Northwest region in the early part of the season (Weeks 24-29) apparent in 2008 and 2009 was not repeated in 2010. The contribution of fish from North Asia in the latest period (Weeks 35-41) was double that from the early periods and resulted in the highest level observed for this region across the 6vear time period. The higher contribution from East Asia in the earliest period may be due to an increase in sampling in area 521 during the early part of the "B" season. Relatively small sample sets can bias the stock composition estimates, but the overall trends were repeatable across years and were also observed for chum salmon bycatch samples analyzed from the 1994-1995 years (Wilmot et al. 1998). This demonstrates that the stock composition of the chum salmon bycatch changes during the course of the season, but leaves unanswered whether these changes are due to temporal or spatial differences in the sample sets.

SUMMARY

Stock composition estimates of the salmon bycatch in the Bering Sea groundfish fisheries are needed for fishery managers to understand the impact of these fisheries on salmon populations, particularly those in western Alaska. This report provides a stock composition

13

analysis of a set of 1,048 individuals sampled from the 2010 chum salmon bycatch. The limitations and results of this analysis are summarized below.

Sampling Issues

We highlight the inherent spatial and temporal biases in the 2010 sample set (Figs. 3 and 4), which may limit the application of the genetic sample stock composition estimate to the entire 2010 chum salmon bycatch. NMFS recently published regulations implementing Amendment 91 to the fishery management plan for groundfish of the Bering Sea and Aleutian Islands Management Area (75 FR 53026, August 30, 2010) which requires that all salmon taken as bycatch in the Bering Sea pollock fishery be sorted by species and counted to ensure compliance with the salmon bycatch caps for the pollock fishery. This new regulation will provide additional opportunity for observers to collect representative samples from the salmon bycatch for genetic analysis, and improve the capability to characterize the origin of salmon taken as bycatch in the Bering Sea pollock fishery.

Stock Composition Estimates

Overall, the genetic samples collected from the 2010 bycatch of Bering Sea chum salmon were predominantly from Asian stocks (64%) although substantial contributions were also from Western Alaska (14%), Upper/Middle Yukon (7.3%), and Eastern GOA/PNW (12.9%). These stock proportions are similar to previous estimates and follow the trend of increasing contribution from East Asia; however, there appeared to be a lower contribution from eastern Gulf of Alaska/Pacific Northwest. Given the differences in where and when genetic bycatch samples were collected from year-to-year, caution must be used in making comparisons across years. Temporal Effect on Stock Composition Estimates

A temporal analysis was completed to determine whether stock compositions differed across the fishing season. This was limited to a time-stratified analysis of the bycatch from the pollock "B" season, when the majority of chum salmon are intercepted. In 2010, Asian-derived chum salmon were predominant across all three sampling times; fish from northern Asia were predominant in the late sampling time. As in most other years, the contribution of fish from North America decreased throughout the "B" season. For the most part, stock composition estimates differed in a consistent manner between years, suggesting temporal stratification of chum salmon stocks in the Bering Sea and/or changes in sampling or fishing locations.

Application of These Estimates

The extent to which any salmon stock is impacted as the bycatch in the Bering Sea trawl fishery is dependent on many factors including 1) the overall size of the bycatch, 2) the age of the salmon caught in the bycatch, 3) the age of the returning salmon, and 4) the total escapement of the affected stocks taking into account lag time for maturity and returning to the river. As such, a higher stock composition estimate one year does not necessarily infer greater impact than a smaller estimate in another year.

ACKNOWLEDGMENTS

The baseline used for these analyses was obtained through a web portal sponsored by Fisheries and Oceans Canada and developed in the Molecular Genetics Laboratory with genetic loci identified in a number of laboratories. This document was peer reviewed by AFSC and external reviewers for which we are especially grateful.

CITATIONS

- ADF&G (Alaska Department of Fish and Game). 2003. SPAM Version 3.7: Statistics program for analyzing mixtures. Alaska Department of Fish and Game, Commercial Fisheries Division, Gene Conservation Laboratory, Anchorage, Alaska.
- Beacham, T. D., K. D. Le, M. Wetklo, B. McIntosh, T. Ming, and K. M. Miller. 2009a.
 Population structure and stock identification of chum salmon from western Alaska determined with microsatellite and major histocompatibility complex variation, p. 141-160. *In* C. C. Krueger and C. E. Zimmerman (eds.), Pacific salmon: ecology and management in western Alaska's populations. American Fisheries Society, Symposium 70, Bethesda, Maryland.
- Beacham, T. D., J. R. Candy, C. W. Wallace, S. Sato, S. Urawa, N. V. Varnavskaya, K. D. Le, and M. Wetklo. 2009b. Microsatellite stock identification of chum salmon on a Pacific Rim basis and a comparison with single nucleotide polymorphisms (SNPs). N. Pac. Anadr. Fish Comm. Doc. 1105. 77 p. (Available at http://www.npafc.org).
- Beacham, T. D., J. R. Candy, K. D. Le, and M. Wetklo. 2009c. Population structure of chum salmon (*Oncorhynchus keta*) across the Pacific Rim, determined from microsatellite analysis. Fish. Bull., U.S. 107:244-260.
- Cairney, M., J. B. Taggart, and B. Hoyheim. 2000. Characterization of microsatellite and minisatellite loci in Atlantic salmon (*Salmo salar* L.) and cross-species amplification in other salmonids. Mol. Ecol. 9:2175-2178.
- Davis, N. D., A. V. Volkov, A. Y. Efimkin, N. A. Kuznetsova, J. L. Armstrong, and O. Sakai. 2009. Review of BASIS salmon food habits studies. N. Pac. Anadr. Fish. Comm. Bull. 5:197-208.
- Gray, A., T. McCraney, C. Kondzela, C. Marvin, and J. R. Guyon. 2011a. Genetic stock composition analysis of chum salmon bycatch samples from the 2007 Bering Sea trawl fisheries. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-220, 28 p.
- Gray, A. K., W. T. McCraney, C. T. Marvin, C. M. Kondzela, H. T. Nguyen, and F. R. Guyon. 2011b. Genetic stock composition analysis of chum salmon bycatch samples from the 2008 Bering Sea groundfish fisheries. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-222, 29 p.
- Gray, A., C. Marvin, C. Kondzela, T. McCraney, and J. R. Guyon. 2010. Genetic stock composition analysis of chum salmon bycatch samples from the 2009 Bering Sea trawl fisheries, 23 p. Report to the North Pacific Fishery Management Council, 605 W. 4th Ave., Anchorage AK 99510.
- Greig, C. and M. A. Banks. 1999. Five multiplexed microsatellite loci for rapid response run identification of California's endangered winter chinook salmon. Anim. Genet. 30:318-320.

- Guyon, J. R., C. Kondzela, T. McCraney, C. Marvin, and E. Martinson. 2010. Genetic stock composition analysis of chum salmon bycatch samples from the 2005 Bering Sea groundfish fishery. Report to the North Pacific Fishery Management Council, 605 W. 4th Ave., Anchorage AK 99510. 31 p.
- Marvin, C., S. Wildes, C. Kondzela, N. Nguyen, and J. R. Guyon. 2011. Genetic stock composition analysis of chum salmon bycatch samples from the 2006 Bering Sea groundfish fishery. U. S. Dep. Commer., NOAA Tech. Memo. 219, 32 p.
- Myers, K. W., N. V. Klovach, O. F. Gritsenko, S. Urawa, and T. C. Royer. 2007. Stock-specific distributions of Asian and North American salmon in the open ocean, interannual changes, and oceanographic conditions. N. Pac. Anadr. Fish. Comm. Bull. 4:159-177.
- Nelson, R. J., and T. D. Beacham 1999. Isolation and cross species amplification of microsatellite loci useful for study of Pacific salmon. Anim. Genet. 30:228-229.
- NMFS (National Marine Fisheries Service). 2011. BSAI non-Chinook salmon mortality estimates, 1991-present, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Alaska Regional Office, Juneau, Alaska. <u>http://www.fakr.noaa.gov/sustainablefisheries/inseason/chum_salmon_mortality.pdf</u>.
- NPFMC (North Pacific Fishery Management Council). 2005. Environmental assessment/regulatory impact review/initial regulatory flexibility assessment for modifying existing chum and Chinook salmon savings areas: amendment 84, secretariat review draft. North Pacific Fishery Management Council, 605 W. 4th Ave., Anchorage AK 99510.
- Olsen, J. B., S. L. Wilson, E. J. Kretschmer, K. C. Jones, and J. E. Seeb. 2000. Characterization of 14 tetranucleotide microsatellite loci derived from sockeye salmon. Mol. Ecol. 9:2185-2187.
- Peakall, R., and P. E. Smouse. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6:288-295.
- Pella, J., and H. J. Geiger. 2009. Sampling considerations for estimating geographic origins of chum salmon bycatch in the Bering Sea pollock fishery. Alaska Dep. Fish Game Spec. Publ. No. SP 09-08.
- Pella, J., and M. Masuda. 2001. Bayesian methods for analysis of stock mixtures from genetic characters. Fish. Bull., U.S. 99:151-167.
- Rexroad, C. E., R. L. Coleman, A. M. Martin, W. K. Hershberger, and J. Killefer. 2001. Thirtyfive polymorphic microsatellite markers for rainbow trout (*Oncorhynchus mykiss*). Anim. Genet. 32:317-319.
- Spies, I. B., D. J. Brasier, T. L. O'Reilly, T. R. Seamons, and P. Bentzen. 2005. Development and characterization of novel tetra-, tri-, and dinucleotide microsatellite markers in rainbow trout (*Oncorhynchus mykiss*). Mol. Ecol. Notes 5:278-281.

- Urawa, S., S. Sato, P. A. Crane, B. Agler, R. Josephson, and T. Azumaya. 2009. Stock-specific ocean distribution and migration of chum salmon in the Bering Sea and North Pacific Ocean. N. Pac. Anadr. Fish Comm. Bull. 5:131-146.
- Williamson, K. S., J. F. Cordes, and B. May. 2002. Characterization of microsatellite loci in chinook salmon (*Oncorhynchus tshawytscha*) and cross-species amplification in other salmonids. Mol. Ecol. Notes 2:17-19.
- Wilmot, R. L., C. M. Kondzela, C. M. Guthrie, and M. M. Masuda 1998. Genetic stock identification of chum salmon harvested incidentally in the 1994 and 1995 Bering Sea trawl fishery. N. Pac. Anadr. Fish Comm. Bull. 1:285-299.

APPENDIX

Appendix Chum salmon populations in the Fisheries and Oceans Canada (DFO) microsatellite
baseline with the regional designations used in the analyses of this report.

DFO number	Population name	Region number	Region
41	Abashiri	1	East Asia
215	Avakumovka	1	East Asia
40	Chitose	1	East Asia
315	Gakko River	1	East Asia
292	Hayatsuki	1	East Asia
44	Horonai	1	East Asia
252	Kawabukuro	1	East Asia
313	Koizumi_River	1	East Asia
300	Kushiro	1	East Asia
37	Miomote	1	East Asia
391	Namdae_R	1	East Asia
231	Narva	1	East Asia
298	Nishibetsu	1	East Asia
293	Ohkawa	1	East Asia
297	Orikasa	1	East Asia
214	Ryazanovka	1	East Asia
312	Sakari_River	1	East Asia
311	Shari_River	1	East Asia
36	Shibetsu	1	East Asia
299	Shikiu	1	East Asia
253	Shiriuchi	1	East Asia
310	Shizunai	1	East Asia
217	Suifen	1	East Asia
35	Teshio	1	East Asia
39	Tokachi	1	East Asia
38	Tokoro	1	East Asia
314	Tokushibetsu	1	East Asia
291	Toshibetsu	1	East Asia
296	Tsugaruishi	1	East Asia
316	Uono_River	1	East Asia
309	Yurappu	1	East Asia
218	Amur	2	North Asia
207	Anadyr	2	North Asia
384	Apuka_River	2	North Asia
382	Bolshaya	2	North Asia
380	Dranka	2	North Asia
223	Hairusova	2	North Asia
378	Ivashka	2	North Asia
213	Kalininka	2	North Asia
225	Kamchatka	2	North Asia

DFO number	Population name	Region number	Region
219	Kanchalan	2	North Asia
379	Karaga	2	North Asia
294	Kikchik	2	North Asia
209	Kol	2	North Asia
233	Magadan	2	North Asia
211	Naiba	2	North Asia
295	Nerpichi	2	North Asia
381	Okhota	2	North Asia
212	Oklan	2	North Asia
222	Ola	2	North Asia
386	Olutorsky Bay	2	North Asia
228	Ossora	2	North Asia
224	Penzhina	2	North Asia
385	Plotnikova R	2	North Asia
221	Pymta	2	North Asia
220	Tauy	2	North Asia
383	Tugur River	2	North Asia
226	Tym_	2	North Asia
230	Udarnitsa	2	North Asia
290	Utka River	2	North Asia
208	Vorovskaya	2	North Asia
387	Zhypanova	2	North Asia
348	Agiapuk	3	Western Alaska
376	Alagnak	3	Western Alaska
3	Andreafsky	3	Western Alaska
357	Aniak	3	Western Alaska
301	Anvik	3	Western Alaska
80	Chulinak	3	Western Alaska
347	Eldorado	3	Western Alaska
358	George	3	Western Alaska
307	Gisasa	3	Western Alaska
371	Goodnews	3	Western Alaska
288	Henshaw_Creek	3	Western Alaska
339	Imnachuk	3	Western Alaska
361	Kanektok	3	Western Alaska
362	Kasigluk		Western Alaska
328	Kelly Lake	3 3 3	Western Alaska
340	Kobuk	3	Western Alaska
343	Koyuk		Western Alaska
363	Kwethluk	3 3	Western Alaska
336	Kwiniuk River	3	Western Alaska
303	Melozitna	3	Western Alaska
373	Mulchatna	3	Western Alaska
372	Naknek	3	Western Alaska
330	Niukluk	3	Western Alaska
329	Noatak	3	Western Alaska
345	Nome	3	Western Alaska
		-	

DFO number	Population name	Region number	Region
302	Nulato	3	Western Alaska
374	Nunsatuk	3	Western Alaska
13	Peel River	3	Western Alaska
322	Pikmiktalik	3	Western Alaska
331	Pilgrim_River	3	Western Alaska
346	Shaktoolik	3	Western Alaska
341	Snake	3	Western Alaska
368	Stuyahok River	3	Western Alaska
375	Togiak	3	Western Alaska
154	Tozitna	3	Western Alaska
342	Unalakleet	3	Western Alaska
344	Ungalik	3	Western Alaska
8	Big_Creek	4	Upper/Middle Yukon
89	Big Salt	4	Upper/Middle Yukon
86	Black River	4	Upper/Middle Yukon
87	Chandalar	4	Upper/Middle Yukon
28	Chandindu	4	Upper/Middle Yukon
82	Cheena	4	Upper/Middle Yukon
81	Delta	4	Upper/Middle Yukon
7	Donjek	4	Upper/Middle Yukon
5	Fishing Br	4	Upper/Middle Yukon
88	Jim River	4	Upper/Middle Yukon
85	Kantishna	4	Upper/Middle Yukon
2	Kluane	4	Upper/Middle Yukon
59	Kluane Lake	4	Upper/Middle Yukon
181	Koyukuk late	4	Upper/Middle Yukon
90	Koyukuk south	4	Upper/Middle Yukon
10	Minto	4	Upper/Middle Yukon
6	Pelly	4	Upper/Middle Yukon
439	Porcupine	4	Upper/Middle Yukon
83	Salcha	4	Upper/Middle Yukon
4	Sheenjek	4	Upper/Middle Yukon
1	Tatchun	4	Upper/Middle Yukon
9	Teslin	4	Upper/Middle Yukon
84	Toklat	4	Upper/Middle Yukon
360	Alagoshak	5	Southwest Alaska
333	American River	5	Southwest Alaska
366	Big_River	5	Southwest Alaska
354	Coleman Creek	5	Southwest Alaska
355	Delta Creek	5	Southwest Alaska
359	Egegik	5	Southwest Alaska
332	Frosty_Creek	5	Southwest Alaska
365	Gertrude Creek	5	Southwest Alaska
370	Joshua Green	5	Southwest Alaska
364	Meshik	5	Southwest Alaska
283	Moller Bay	5	Southwest Alaska
369	Pumice Creek	5	Southwest Alaska
		-	

DFO number	Population name	Region number	Region
367	Stepovak Bay	5	Southwest Alaska
335	Sturgeon	5	Southwest Alaska
350	Uganik	5	Southwest Alaska
334	Volcano_Bay	5	Southwest Alaska
356	Westward Creek	5	Southwest Alaska
239	Ahnuhati	6	Eastern GOA/PNW
69	Ahta	6	Eastern GOA/PNW
155	Ain	6	Eastern GOA/PNW
183	Algard	6	Eastern GOA/PNW
58	Alouette	6	Eastern GOA/PNW
325	Alouette North	6	Eastern GOA/PNW
270	AndesiteCr	6	Eastern GOA/PNW
428	Arnoup_Cr	6	Eastern GOA/PNW
153	Ashlulm	6	Eastern GOA/PNW
156	Awun	6	Eastern GOA/PNW
133	Bag Harbour	6	Eastern GOA/PNW
164	Barnard	6	Eastern GOA/PNW
16	Bella Bell	6	Eastern GOA/PNW
79	Bella Coola	6	Eastern GOA/PNW
49	Big_Qual	6	Eastern GOA/PNW
201	Big Quilcene	6	Eastern GOA/PNW
281	Bish Cr	6	Eastern GOA/PNW
198	Bitter Creek	6	Eastern GOA/PNW
103	Blackrock Creek	6	Eastern GOA/PNW
390	Blaney Creek	6	Eastern GOA/PNW
138	Botany_Creek	6	Eastern GOA/PNW
264	Buck Channel	6	Eastern GOA/PNW
169	Bullock Chann	6	Eastern GOA/PNW
61	Campbell River	6	Eastern GOA/PNW
323	Carroll	6	Eastern GOA/PNW
78	Cascade	6	Eastern GOA/PNW
76	Cayeghle	6	Eastern GOA/PNW
42	Cheakamus	6	Eastern GOA/PNW
398	Cheenis Lake	6	Eastern GOA/PNW
51	Chehalis	6	Eastern GOA/PNW
19	Chemainus	6	Eastern GOA/PNW
47	Chilliwack	6	Eastern GOA/PNW
392	Chilqua Creek	6	Eastern GOA/PNW
117	Chuckwalla	6	Eastern GOA/PNW
139	Clapp_Basin	6	Eastern GOA/PNW
107	Clatse Creek	6	Eastern GOA/PNW
118	Clyak	6	Eastern GOA/PNW
62	Cold Creek	6	Eastern GOA/PNW
77	Colonial	6	Eastern GOA/PNW
353	Constantine	6	Eastern GOA/PNW
168	Cooper Inlet	6	Eastern GOA/PNW
197	County Line	6	Eastern GOA/PNW

DFO number	Population name	Region number	Region
12	Cowichan	6	Eastern GOA/PNW
414	Crag_Cr	6	Eastern GOA/PNW
161	Dak	6	Eastern GOA/PNW
259	Dana Creek	6	Eastern GOA/PNW
123	Date Creek	6	Eastern GOA/PNW
250	Dawson Inlet	6	Eastern GOA/PNW
91	Dean River	6	Eastern GOA/PNW
261	Deena	6	Eastern GOA/PNW
170	Deer Pass	6	Eastern GOA/PNW
46	Demamiel	6	Eastern GOA/PNW
210	Dipac Hatchery	6	Eastern GOA/PNW
319	Disappearance	6	Eastern GOA/PNW
269	Dog-tag	6	Eastern GOA/PNW
177	Draney	6	Eastern GOA/PNW
114	Duthie Creek	6	Eastern GOA/PNW
427	East Arm	6	Eastern GOA/PNW
266	Ecstall River	6	Eastern GOA/PNW
94	Elcho Creek	6	Eastern GOA/PNW
193	Ellsworth Cr	6	Eastern GOA/PNW
203	 Elwha	6	Eastern GOA/PNW
276	Ensheshese	6	Eastern GOA/PNW
263	Fairfax Inlet	6	Eastern GOA/PNW
32	Fish Creek	6	Eastern GOA/PNW
429	Flux Cr	6	Eastern GOA/PNW
102	Foch Creek	6	Eastern GOA/PNW
179	Frenchman	6	Eastern GOA/PNW
227	Gambier	6	Eastern GOA/PNW
96	Gill Creek	6	Eastern GOA/PNW
166	Gilttoyee	6	Eastern GOA/PNW
145	Glendale	6	Eastern GOA/PNW
135	Gold Harbour	6	Eastern GOA/PNW
11	Goldstream	6	Eastern GOA/PNW
66	Goodspeed River	6	Eastern GOA/PNW
136	Government	6	Eastern GOA/PNW
205	Grant Creek	6	Eastern GOA/PNW
100	Green River	6	Eastern GOA/PNW
450	GreenRrHatchery	6	Eastern GOA/PNW
237	Greens	6	Eastern GOA/PNW
141	Harrison	6	Eastern GOA/PNW
438	Harrison late	6	Eastern GOA/PNW
64	Hathaway Creek	6	Eastern GOA/PNW
234	Herman_Creek	6	Eastern GOA/PNW
17	Heydon_Cre	6	Eastern GOA/PNW
407	Hicks Cr	6	Eastern GOA/PNW
400	Homathko	6	Eastern GOA/PNW
411	Honna	6	Eastern GOA/PNW
204	Hoodsport	6	Eastern GOA/PNW

DFO number	Population name	Region number	Region
185	Hooknose	6	Eastern GOA/PNW
406	Hopedale_Cr	6	Eastern GOA/PNW
412	Hutton_Head	6	Eastern GOA/PNW
278	Illiance	6	Eastern GOA/PNW
152	Inch Creek	6	Eastern GOA/PNW
146	Indian River	6	Eastern GOA/PNW
92	Jenny Bay	6	Eastern GOA/PNW
115	Kainet River	6	Eastern GOA/PNW
144	Kakweiken	6	Eastern GOA/PNW
268	Kalum	6	Eastern GOA/PNW
395	Kanaka Cr	6	Eastern GOA/PNW
402	Kano Inlet Cr	6	Eastern GOA/PNW
162	Kateen	6	Eastern GOA/PNW
389	Kawkawa	6	Eastern GOA/PNW
95	Kemano	6	Eastern GOA/PNW
192	Kennedy Creek	6	Eastern GOA/PNW
238	Kennell	6	Eastern GOA/PNW
351	Keta Creek	6	Eastern GOA/PNW
101	Khutze River	6	Eastern GOA/PNW
126	Khutzeymateen	6	Eastern GOA/PNW
282	Kiltuish	6	Eastern GOA/PNW
93	Kimsquit	6	Eastern GOA/PNW
187	Kimsquit Bay	6	Eastern GOA/PNW
419	Kincolith	6	Eastern GOA/PNW
273	Kispiox	6	Eastern GOA/PNW
106	Kitasoo	6	Eastern GOA/PNW
99	Kitimat River	6	Eastern GOA/PNW
275	Kitsault_Riv	6	Eastern GOA/PNW
163	Kitwanga	6	Eastern GOA/PNW
271	Kleanza Cr	6	Eastern GOA/PNW
437	Klewnuggit_Cr	6	Eastern GOA/PNW
21	Klinaklini	6	Eastern GOA/PNW
418	Ksedin	6	Eastern GOA/PNW
125	Kshwan	6	Eastern GOA/PNW
423	Kumealon	6	Eastern GOA/PNW
112	Kwakusdis_River	6	Eastern GOA/PNW
436	Kxngeal_Cr	6	Eastern GOA/PNW
127	Lachmach	6	Eastern GOA/PNW
262	Lagins	6	Eastern GOA/PNW
131	Lagoon_Inlet	6	Eastern GOA/PNW
448	LagoonCr	6	Eastern GOA/PNW
167	Lard	6	Eastern GOA/PNW
160	Little_Goose	6	Eastern GOA/PNW
50	Little_Qua	6	Eastern GOA/PNW
413	Lizard_Cr	6	Eastern GOA/PNW
119	Lockhart-Gordon	6	Eastern GOA/PNW
11)			

DFO number	Population name	Region number	Region
137	Mace Creek	6	Eastern GOA/PNW
242	Mackenzie_Sound	6	Eastern GOA/PNW
116	MacNair Creek	6	Eastern GOA/PNW
55	Mamquam	6	Eastern GOA/PNW
121	Markle Inlet Cr	6	Eastern GOA/PNW
27	Martin Riv	6	Eastern GOA/PNW
338	Mashiter Creek	6	Eastern GOA/PNW
109	McLoughin Creek	6	Eastern GOA/PNW
178	Milton	6	Eastern GOA/PNW
194	Minter Cr	6	Eastern GOA/PNW
254	Mountain Cr	6	Eastern GOA/PNW
111	Mussel River	6	Eastern GOA/PNW
157	Naden	6	Eastern GOA/PNW
337	Nahmint River	6	Eastern GOA/PNW
444	Nakut Su	6	Eastern GOA/PNW
14	Nanaimo	6	Eastern GOA/PNW
122	Nangeese	6	Eastern GOA/PNW
422	Nass_River	6	Eastern GOA/PNW
399	Necleetsconnay	6	Eastern GOA/PNW
113	Neekas Creek	6	Eastern GOA/PNW
321	Neets Bay early	6	Eastern GOA/PNW
320	Neets Bay late	6	Eastern GOA/PNW
173	Nekite	6	Eastern GOA/PNW
104	Nias_Creek	6	Eastern GOA/PNW
143	Nimpkish	6	Eastern GOA/PNW
53	Nitinat	6	Eastern GOA/PNW
191	Nooksack	6	Eastern GOA/PNW
186	Nooseseck	6	Eastern GOA/PNW
318	NorrishWorth	6	Eastern GOA/PNW
159	North_Arm	6	Eastern GOA/PNW
377	Olsen_Creek	6	Eastern GOA/PNW
184	Orford	6	Eastern GOA/PNW
287	Pa-aat_River	6	Eastern GOA/PNW
260	Pacofi	6	Eastern GOA/PNW
56	Pallant	6	Eastern GOA/PNW
65	Pegattum_Creek	6	Eastern GOA/PNW
48	Puntledge	6	Eastern GOA/PNW
98	Quaal_River	6	Eastern GOA/PNW
147	Quap	6	Eastern GOA/PNW
108	Quartcha_Creek	6	Eastern GOA/PNW
199	Quinault	6	Eastern GOA/PNW
110	Roscoe_Creek	6	Eastern GOA/PNW
397	Salmon_Bay	6	Eastern GOA/PNW
195	Salmon_Cr	6	Eastern GOA/PNW
134	Salmon_River	6	Eastern GOA/PNW
200	Satsop	6	Eastern GOA/PNW
236	Sawmill	6	Eastern GOA/PNW

DFO number	Population name	Region number	Region
410	Seal Inlet Cr	6	Eastern GOA/PNW
158	Security	6	Eastern GOA/PNW
130	Sedgewick	6	Eastern GOA/PNW
393	Serpentine R	6	Eastern GOA/PNW
317	Shovelnose Cr	6	Eastern GOA/PNW
249	Shustnini	6	Eastern GOA/PNW
206	Siberia Creek	6	Eastern GOA/PNW
25	Silverdale	6	Eastern GOA/PNW
196	Skagit	6	Eastern GOA/PNW
274	Skeena	6	Eastern GOA/PNW
171	Skowquiltz	6	Eastern GOA/PNW
447	SkykomishRiv	6	Eastern GOA/PNW
132	Slatechuck Cre	6	Eastern GOA/PNW
43	Sliammon	6	Eastern GOA/PNW
15	Smith Cree	6	Eastern GOA/PNW
54	Snootli	6	Eastern GOA/PNW
180	Southgate	6	Eastern GOA/PNW
26	Squakum	6	Eastern GOA/PNW
142	Squamish	6	Eastern GOA/PNW
128	Stagoo	6	Eastern GOA/PNW
265	Stanley	6	Eastern GOA/PNW
52	Stave	6	Eastern GOA/PNW
396	Stawamus	6	Eastern GOA/PNW
409	Steel_Cr	6	Eastern GOA/PNW
424	Stewart_Cr	6	Eastern GOA/PNW
416	Stumaun_Cr	6	Eastern GOA/PNW
327	Sugsaw	6	Eastern GOA/PNW
324	Surprise	6	Eastern GOA/PNW
75	Taaltz	6	Eastern GOA/PNW
30	Taku	6	Eastern GOA/PNW
18	Takwahoni	6	Eastern GOA/PNW
251	Tarundl_Creek	6	Eastern GOA/PNW
149	Theodosia	6	Eastern GOA/PNW
22	Thorsen	6	Eastern GOA/PNW
129	Toon	6	Eastern GOA/PNW
279	Tseax	6	Eastern GOA/PNW
202	Tulalip	6	Eastern GOA/PNW
97	Turn_Creek	6	Eastern GOA/PNW
430	Turtle_Cr	6	Eastern GOA/PNW
247	Tuskwa	6	Eastern GOA/PNW
165	Tyler	6	Eastern GOA/PNW
33	Tzoonie	6	Eastern GOA/PNW
124	Upper_Kitsumkal	6	Eastern GOA/PNW
140	Vedder	6	Eastern GOA/PNW
70	Viner_Sound	6	Eastern GOA/PNW
45	Wahleach	6	Eastern GOA/PNW
172	Walkum	6	Eastern GOA/PNW

DFO number	Population name	Region number	Region
73	Waump	6	Eastern GOA/PNW
232	Wells_Bridge	6	Eastern GOA/PNW
352	Wells_River	6	Eastern GOA/PNW
105	West_Arm_Creek	6	Eastern GOA/PNW
267	Whitebottom_Cr	6	Eastern GOA/PNW
326	Widgeon_Slough	6	Eastern GOA/PNW
277	Wilauks_Cr	6	Eastern GOA/PNW
120	Wilson_Creek	6	Eastern GOA/PNW
401	Worth_Creek	6	Eastern GOA/PNW
60	Wortley_Creek	6	Eastern GOA/PNW
248	Yellow_Bluff	6	Eastern GOA/PNW
434	Zymagotitz	6	Eastern GOA/PNW

RECENT TECHNICAL MEMORANDUMS

Copies of this and other NOAA Technical Memorandums are available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22167 (web site: *www.ntis.gov*). Paper and electronic (.pdf) copies vary in price.

AFSC-

- 232 GUTHRIE, C. M. III, H. T. NGUYEN, and J. R. GUYON. 2012. Genetic stock composition analysis of chinook salmon bycatch samples from the 2010 Bering Sea trawl fisheries, 22 p. NTIS number pending.
- 231 SMITH, K. R., R. A. MCCONNAUGHEY, and C. E. ARMISTEAD. 2011. Benthic invertebrates of the Eastern Bering Sea: A synopsis of the life history and ecology of snails of the genus *Neptunea*., 58 p. NTIS number pending.
- 230 HIMES-CORNELL, A., C. PACKAGE, and A. DURLAND. 2011. Improving community profiles for the North Pacific fisheries, 85 p. NTIS number pending.
- 229 YANG, M-S. 2011. Diet of nineteen mesopelagic fishes in the Gulf of Alaska, 67 p. NTIS number pending.
- LEW, D. K., and A. HIMES-CORNELL. 2011. A guide to designing, testing, and implementing Alaska Fisheries Science Center economic and social surveys, 43 p. NTIS No. PB2012100169.
- 227 LAUTH, R. R. 2011. Results of the 2010 eastern and northern Bering Sea continental shelf bottom trawl survey of groundfish and invertebrate fauna, 256 p. NTIS No. PB2012100168.
- 226 TESTA, J. W. (editor). 2011. Fur seal investigations, 2008-2009, 80 p. NTIS No. PB2012100205.
- 225 RARING, N. W., P. G. VON SZALAY, F. R. SHAW, M. E. WILKINS, and M. H. MARTIN. 2011. Data Report: 2001 Gulf of Alaska bottom trawl survey, 179 p. NTIS No. PB2011-111406.
- 224 HOFF, G. R., and L. L. BRITT. 2011. Results of the 2010 eastern Bering Sea upper continental slope survey of groundfish and invertebrate resources, 300 p. NTIS No. PB2011-111407.
- 223 ALLEN, B. M., and R. P. ANGLISS. 2011. Alaska marine mammal stock assessments, 2010, 292 p. NTIS No. PB2011-111461.
- 222 GRAY, A. K.,W. T. MCCRANEY, C. T. MARVIN, C. M. KONDZELA, H. T. NGUYEN, and J. R. GUYON. 2011. Genetic stock composition analysis of chum salmon bycatch samples from the 2008 Bering Sea groundfish fisheries, 29 p. NTIS No. PB2011-110765.
- 221 GRAY, A. K.,W. T. MCCRANEY, C. T. MARVIN, C. M. KONDZELA, H. T. NGUYEN, and J. R. GUYON. 2011. Genetic stock composition analysis of chum salmon bycatch samples from the 2007 Bering Sea groundfish fisheries, 29 p. NTIS No. PB2011-110764.
- 220 MARVIN, C. T., S. L. WILDES, C. M. KONDZELA, H. T. NGUYEN, and J. R. GUYON. 2011. Genetic stock composition analysis of chum salmon bycatch samples from the 2006 Bering Sea groundfish fisheries, 29 p. NTIS No. PB2011-108416.
- 219 JONES, D. T., A. De ROBERTIS, and N. J. WILLIAMSON. 2011. Statistical combination of multifrequency sounder-detected bottom lines reduces bottom integrations, 13 p. NTIS No. PB2011-108416.
- 218 LANDER, M. E., D. S. JOHNSON, J. T. STERLING, T. S. GELATT, and B. S. FADELY. 2011. Diving behaviors and movements of juvenile Steller sea lions (*Eumetopias jubatus*) captured in the central Aleutian Islands, April 2005, 41 p. NTIS No. PB2011108415.
- 217 LAZRUS, H. M., J. A. SEPEZ, R. G. FELTHOVEN, and J. C. LEE. 2011. Post-rationalization restructuring of commercial crew member opportunities in Bering Sea and Aleutian Island crab fisheries, 62 p. NTIS No. PB2011-107546.