
NOAA Technical Memorandum NMFS-AFSC-171


Vessel Comparison on the 
Seabed Echo: Influence of 
Vessel Attitude 

by V. Hjellvik and A. De Robertis 

U.S. DEPARTMENT OF COMMERCE 
National Oceanic and Atmospheric Administration


National Marine Fisheries Service

Alaska Fisheries Science Center


May 2007 



NOAA Technical Memorandum NMFS 

The National Marine Fisheries Service's Alaska Fisheries Science Center 
uses the NOAA Technical Memorandum series to issue informal scientific and 
technical publications when complete formal review and editorial processing 
are not appropriate or feasible.  Documents within this series reflect sound 
professional work and may be referenced in the formal scientific and technical 
literature. 

The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries 
Science Center continues the NMFS-F/NWC series established in 1970 by the 
Northwest Fisheries Center.  The NMFS-NWFSC series is currently used by 
the Northwest Fisheries Science Center. 

This document should be cited as follows: 

Hjellvik, V., and A. De Robertis. 2007. Vessel comparison on the 
seabed echo: Influence of vessel attitude. U.S. Dep. Commer., NOAA 
Tech. Memo. NMFS-AFSC-171, 34 p. 

Reference in this document to trade names does not imply endorsement by 
the National Marine Fisheries Service, NOAA. 



NOAA Technical Memorandum NMFS-AFSC-171


Vessel Comparison on the

Seabed Echo: Influence of


Vessel Attitude


by


 Vidar Hjellvik1 and Alex De Robertis2


1 Institute of Marine Research,

P.O. Box 1870, Nordnes N-5817,


Bergen, Norway


2Alaska Fisheries Science Center

National Marine Fisheries Service


National Oceanic and Atmospheric Administration

7600 Sand Point Way NE,


Seattle WA 98115

www.afsc.noaa.gov


U.S. DEPARTMENT OF COMMERCE 
Carlos M. Gutierrez, Secretary 

National Oceanic and Atmospheric Administration 
Vice Admiral Conrad C. Lautenbacher, Jr., U.S. Navy (ret.), Under Secretary and Administrator 

National Marine Fisheries Service 
William T. Hogarth, Assistant Administrator for Fisheries 

May 2007 



This document is available to the public through: 

National Technical Information Service 
U.S. Department of Commerce 
5285 Port Royal Road 
Springfield, VA 22161 

www.ntis.gov  



Notice to Users of this Document 

This document is being made available in .PDF format for the convenience of users; however, the 
accuracy and correctness of the document can only be certified as was presented in the original hard 
copy format. 





iii 

ABSTRACT 

During an inter-vessel comparison of the NOAA ships Oscar Dyson and Miller Freeman 

in the Bering Sea in July 2006, significant vessel-differences in acoustic backscatter from walleye 

pollock (Theragra chalcogramma) were observed. However, very similar vessel-differences were 

observed in the seabed echo as well.  Therefore, it was concluded that poorly understood 

differences in echosounder calibration or performance were likely the cause of the observed 

discrepancy in acoustic pollock backscatter from the two vessels.  The seabed echo results were 

crucial to avoiding a faulty interpretation of differential vessel avoidance by fish in the water 

column. However, a careful examination of the seabed echo revealed that it was to some extent 

influenced by the pitch and the roll of the vessels. The most important pitch/roll variable during 

the inter-vessel comparison was the average roll (i.e., the list of the vessels). The seabed echo 

recorded by the NOAA ship Miller Freeman was more influenced by vessel list than was the 

seabed echo recorded by the NOAA ship Oscar Dyson. Since the sea was relatively calm during 

the experiment (wave height less than 2 m most of the time), the list effect was significant but 

small enough that the seabed echo could still be successfully used to help interpret echosounder 

output from both vessels. However, we believe that the effect could have been more severe under 

rougher sea conditions due to differential vessel motion, and – in fact – under very calm 

conditions as well, since the seabed echo may be extremely dependent on the incident angle of the 

acoustic beam, and a small deviance from zero incident angle could hence result in a too weak 

seabed echo. Therefore, the seabed echo must be interpreted with caution in all circumstances.   
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INTRODUCTION 

A new generation of noise-reduced research vessels is now being built around the world 

according to the recommendations for underwater-radiated noise levels developed by the 

International Council for the Exploration of the Seas (ICES) (Mitson 1995). The primary rationale 

for controlling low frequency underwater radiated noise is that there is a substantial body of 

evidence that fish can react to approaching research vessels (Olsen 1990, Mitson 1995, Misund 

1997, Mitson and Knudsen 2003) and it is believed that it is the underwater noise emitted by these 

vessels that causes fish to avoid them. This is a major concern for stock assessment surveys using 

acoustic techniques since the method assumes that fish do not avoid the survey vessel. Thus, by 

making the new research vessels more silent, one would hope to reduce the problem of vessel-

induced fish behavior. 

One of these new vessels is the NOAA ship Oscar Dyson, which was built in 2003 for the 

U. S. National Oceanic and Atmospheric Administration (NOAA). The NOAA ship Oscar Dyson 

(OD) will soon be used as the primary vessel for acoustic surveys of stocks of walleye pollock 

Theragra chalcogramma in Alaska waters, which have traditionally been conducted with the 

NOAA ship Miller Freeman (MF). Although the Miller Freeman has been retrofitted with a new 

propeller designed to reduce radiated noise, the ship still produces low-frequency noise in the 

range of fish hearing which exceeds the ICES specifications for radiated noise (Gonzalez et al. 

1999). If the Oscar Dyson actually causes less fish avoidance than the Miller Freeman, this may 

result in higher echo abundance measurements for the Oscar Dyson, even though the underlying 

fish abundance is not correspondingly higher. Thus, to ensure continuity in the fish abundance 

index time series used for fisheries management, it is important to inter-calibrate the two vessels. 

Because vessel avoidance behaviour is likely to be species and size-specific, and to depend on 
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other factors such as season and depth of the water column, the vessels should be compared under 

conditions representative of those encountered during surveys.  

When undertaking such an inter-vessel comparison, it is crucial that the relationship 

between the output of the echosounder and the fish insonified by its transducer beam is the same 

for the two vessels. To ensure that this is the case, each echosounder is normally calibrated before 

or during the experiment using the standard sphere technique (Foote et al. 1987). Here, a standard 

target with known target strength is placed in the center of the acoustic beam to measure the 

sensitivity of the echosounder. Although this method provides precise measures of sensitivity, it 

does not measure the equivalent beam angle (EBA).  The EBA is a parameter which accounts for 

the shape of the acoustic beam, which is important when estimating the density of objects such as 

fish that are distributed throughout the acoustic beam (i.e., not only in the center). In acoustic 

surveys, it is common practice to perform the on-axis calibration to establish echosounder 

sensitivity, but the equivalent beam angle is set to values provided by the manufacturer 

(Simmonds and MacLennan 2005).  In part, this is because of the difficulty of measuring EBA. 

An alternative approach to echosounder calibration using a standard sphere is to compare 

echosounder output relative to the echo recorded from the seabed (Johannesson and Mitson 

1983), and configure the echosounders such that they record the same echo strength from the 

bottom. Then, if the bottom echo is measured accurately, and the vessels pass over bottoms with 

similar characteristics, the echosounders will report similar echo intensity from the water column 

if they encounter similar fish aggregations. A comparison based on the strength of bottom echoes 

has the advantage that it will incorporate both the sensitivity of the echosounder and the shape of 

the beam. Although this method also has its pitfalls, it turned out to be crucial in the first vessel 

inter-comparison experiment between the Miller Freeman and the Oscar Dyson, which was 

performed in the Bering Sea in July 2006 (De Robertis et al., in review).  In this report, we 
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provide a detailed description of the methodology we used to examine the impact of vessel 

motion on the bottom echoes recorded during this experiment. 

MATERIALS AND METHODS 

Study Design 

An inter-vessel comparison of the Miller Freeman and the Oscar Dyson was 

conducted on 3-13 July 2006, concurrent with the biennial walleye pollock survey on the 

eastern Bering Sea shelf conducted by the Miller Freeman (Fig. 1a).  The weather was calm 

with wind speed decreasing from around 22 knots on 3 July to around 10 knots on 13 July, 

and the wave height, as estimated by the bridge watch, was 2 m or less most of the time. The 

experimental design included a component in which the vessels travelled side-by-side at a 

separation of 0.5 nautical miles (nmi) along three 170-214 nmi transects during the acoustic 

survey (transects 22-24 in Fig. 1b).  These transects were conducted using standard survey 

procedures (e.g. Honkalehto et al., 2002).  An additional 215 nmi long transect was added as 

the vessels returned to port (transect 23.5 in Fig. 1b). For the side-by-side work, the Oscar 

Dyson was randomly displaced 0.5 nmi either to the east or west of the pre-planned Miller 

Freeman survey track line. 

At 10 locations along the survey track lines, the side-by-side comparison was interrupted 

to conduct dedicated experiments (101-110, Fig. 1c-d) in which the vessels took turns "following 

the leader".  The vessels conducted sets of 5.0 nmi east or west heading transects, with one vessel 

leading at a distance of ~1.0 nmi.  Between 5 and 20 transects were conducted during each 

experiment, for a total of 101 transects. Preliminary analysis in the field after the first 36 transects 

were collected hinted toward lower echo abundance for the trailing vessel, potentially due to 

absorption from bubbles caused by the wake of the leading vessel. Due to this possible “lead 
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effect” (which eventually turned out to be very weak), the trailing vessel was displaced 0.1 nmi to 

the starboard side of the leading vessel for the subsequent 65 transects (experiments 105-110, Fig. 

1d) in order to avoid the wake of the leading vessel. The lead vessel was assigned at random for 

each follow the leader transect.  The bottom was very flat where the follow-the-leader 

experiments were conducted. The difference between maximum and minimum depth was less 

than 4 m for all of the 101 transects (on average 2.2 m). 

Acoustic Data Collection 

The NOAA ships Miller Freeman and Oscar Dyson are equipped with 18, 38, 120 and 

200 kHz Simrad split-beam EK60 echosounders as well as the same model Simrad transducers.  

In order to minimize biases in echo integration measurements caused by shallow bubble layers the 

transducers were mounted on centerboards at depths of ~9.1 m (Ona and Traynor 1990).  

Echosounders were operated at power settings recommended by the manufacturer (Simrad 2002) 

to minimize range-dependent losses due to harmonic distortion (Tichy et al., 2003) at a ping 

interval of 1 per second.  Pulse duration was set at 1 ms for all frequencies, and the same sound 

speed (1,470 m s-1) and identical frequency-dependent absorption coefficients were used on both 

vessels. Other acoustic instruments were either turned off or synchronized to the EK60 

echosounders in order to avoid acoustic interference. 

The on-axis response of the echosounders was calibrated using the standard sphere 

technique (Foote et al. 1987) on several occasions during the survey.  In the case of the Miller 

Freeman, calibrations were conducted on four occasions between 4 June and 25 July.  For the 

Oscar Dyson, calibrations were conducted at the beginning and end of the intercomparison 

experiment, although two replicate measurements at 38 kHz were conducted on each occasion.  
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Processing of Acoustic Data 

Acoustic data were post-processed using Sonardata Echoview software (3.50.54). The 

mean values (averaged in linear units) of integration gain from all available calibrations were 

applied to each frequency, and the manufacturer-supplied measurements of equivalent beam angle 

were used in post-processing.  The echosign was primarily assigned to two categories, pollock 

and a near-surface class (mix) whose identity remains poorly known, but is thought to consist 

largely of jellyfish, macrozooplankton, and age 0 pollock.  An additional bottom zone integrating 

the seabed echo was defined extending from the sounder detected bottom to 25 m below this 

point. Acoustic data from 15 m below the surface to 3 m off bottom were exported at a 1 m 

vertical and 0.1 nmi horizontal resolution.  

Statistical Analysis of Echo Abundance 

The analysis was conducted following the approach developed in Kieser et al. (1987). The 

measurements are modelled as  

s =α ρ ε  , i =1, K, n, j = OD, MF ,A, , i j  j i i j  , 

where sA, ,i j  is the sA (nautical area scattering coefficient (m2/nmi2) recorded at transect part i by 

vessel j, ρi  is the true fish density at transect part i, α j  is a vessel-specific scaling factor, and 

ε ,  is lognormally distributed random noise. We are interested in the vessel ratio  i j  

R =αOD /αMF , 



6


Defining 

di = ln(s A, ,OD i ) − ln(s A, ,MF i ) = ln( αOD ) − ln( αMF ) + ei , 

where ei = ln(  i,OD ) − ln(  ε i ,MF )  is normally distributed random noise, we have that R̂ = dε exp( ) , 

where d n = −1 ∑n di , is an unbiased estimate of R. Assuming no autocorrelation in di, the 95%
i=1 

confidence interval for R is exp ( ± s n−1/ 2 ) where t −d tn−1,0.025 d n 1,0.025 is the 2.5% quantile of the t-

distribution with n-1 degrees of freedom. 

With a 0.1 nmi horizontal resolution, di is highly autocorrelated, and we therefore 

aggregated the sA in ESDUs (elementary sampling distance units) of 5 nmi. The ESDUs with 

mean sA less than 20 for a given class (e.g.,  pollock, mix) for one or both of the vessels were 

excluded since at very low densities, di can easily become very large or very small if one vessel 

happens to observe fish that the other vessel doesn’t detect. Also, a low sA means we have less 

confidence that the echosign assignment is correct in the case of pollock. 

Adjustment of Vessel Ratios to the Bottom Echo 

As an alternate form of calibration, the vessel ratio R was scaled to the bottom echoes in 

order to control for poorly understood differences in calibration or echosounder performance that 

are manifested in the bottom echo.  We calculated the vessel ratio R̂bot  for the seabed echo and 

used it to scale the observed vessel ratio R̂obs  for the backscatter from the water column as 

follows:  

R̂corr = R̂obs − (R̂bot −1) ,   (1)  



7 

To account for the biases introduced by physical separation of the vessels (during the side-by-side 

experiments they were 0.5 nmi apart) and vessel motion (see the next subsection), we only 

included transects from the follow-the-leader experiments in which the list of both ships was less 

than one degree.  This procedure results in R̂corr  = 1 for the bottom echoes from these transects 

(substitute R̂obs in Equation 1 with R̂bot  to see this), and is analogous to calibrating the 

echosounders such that the same frequency instruments will report the same bottom backscatter 

strength.   

Vessel Motion (Pitch and Roll) Data Collection 

Pitch and roll data (angle in degrees) were collected on both vessels with a time resolution 

of ten observations per second with an Applanix POS MV 320 position and motion reference 

system. Pitch is defined as positive when the bow is higher than the stern, and the roll is positive 

when the starboard is higher than the port side. In addition, the inclination of the vessel relative to 

a flat position (i.e., the deviation from zero pitch and roll) was calculated as 

inclination = arctan ( )2 2tan (roll) tan (pitch) + , 

which is very close to pitch 2 + roll 2 for pitch and roll < 10 degrees. Pitch, roll, and inclination 

were summarized by calculating the four statistics 

x = x , sd(  )  x = x − x )2 , x = | x |,  max  (|  j	
1 ∑ 

n

i j 
1 ∑ 

n 

( i abs(  )  j 
1 ∑

n 

i i xi |)  j (2)
n i=1 n −1 i=1 n i=1 
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for each one minute interval j, where x denotes either pitch, roll or inclination, and n is the 

number of recordings per minute (600). The mean and standard deviation (SD) statistics represent 

the point about which the motion occurs and the amplitude of the motion, respectively: for 

example, mean roll indicates if the boat is listed or not on average, whereas SD(roll) measures 

how much it rolls. These one minute summaries were again averaged over each 5 nmi transect of 

the follow-the-leader experiments as 

Nt 

yt =∑ y j , 
j=1 

where t denotes transect number, Nt is the duration in minutes of transect t (typically around 

25 minutes) and y is one of the four statistics in Equation 2. These averages were calculated for 

each vessel separately, and the vessel difference (i.e., OD-MF) and vessel ratio (i.e., OD/MF) 

were also calculated. We use the notation  

yt ,OD , yt ,MF , yt ,OD −MF = yt ,OD − yt ,MF , yt ,OD/MF = yt ,OD / yt ,MF , (3) 

for the four cases, respectively. 

Statistical Analysis of Seabed Echo and Vessel Motion 

Linear and quadratic regressions of the seabed echo vessel ratio on pitch and roll data were 

performed as 

r b b y +ε and = +  + y 2 +ε ,= +  r b b y b     (4)  t 0 1 t t t 0 1 t 2 t t 
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where rt = sA,OD, t / sA,MF, t  is the seabed echo vessel ratio, yt  is one of the four statistics in Equation 

3, and ε t is random noise. 

A local variation index was calculated as 

t k, ( )  = xt k, − (xt−1,  k + xt+1,  k )  /  2,  tk = 2,  K, nk −1Δ x ,     (5)  

where x is the variable of interest, and nk is the number of transects in experiment k, k = 1,…,10. 

To investigate how local changes in seabed echo vessel ratio were related to local changes in pitch 

and roll, we computed the regressions in Equation 4 with rt (echo abundance ratio) and yt  (vessel 

motion) replaced by Δ  and Δ y , respectively. Finally, we calculated a zigzag index, t k, ( )r t k, ( )

which indicates how the variable Δt k, ( )x  changes in experiment k as the vessel changes heading: 

1 nk −1 

k ( ) = ∑Δt k  , ( ) x     (6)  Z x  × I (vessel is heading east) ,
nk − 2 t=2 

where I(v) equals to 1 if v is true and to –1 if v is false. If Δt k, ( )x  tends to be positive when the 

vessel is heading east and negative when the vessel is heading west, we have Zk > 0 . In the 

opposite case, Zk < 0 , and with no specific pattern, Zk ≈ 0 . 
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RESULTS 

Echosounder Calibrations 

On-axis calibrations were successfully accomplished for both ships with the exception of 

one case for the Miller Freeman 18 kHz where the appearance of large densities of fish in near-

surface waters degraded the calibration results.  This calibration was not included in further 

analyses.  The on-axis calibrations exhibited relatively high precision over the study period: if we 

had chosen to apply any of the individual calibrations rather than the average of all calibrations, 

we would expect deviation of ~ 1-4% from the observed sA, depending on the frequency (Fig. 2). 

The 200 kHz echosounder aboard the Miller Freeman appeared to have a range-dependent 

bias with the echo intensity decreasing substantially with depth (Fig. 3). Therefore, it was 

excluded from the analysis in De Robertis et al. (in review). However, since there is little 

variation in the bottom depth for the data used in this work and as it is of interest to see how the 

effect of the vessel motion varies with frequency, we have chosen to include it here. 

Vessel Ratio in Fish sA and Seabed sA 

The estimated vessel ratio for pollock sA varied substantially among the four frequencies, 

ranging from around 0.9 at 18 kHz to around 1.6 at 200 kHz (Fig. 4a), and it did not seem 

reasonable that a vessel difference in fish avoidance would be reflected so differently at the 

different frequencies. However, the same pattern was observed in the vessel ratio for the seabed 

sA (Fig. 4b), meaning that the differences in backscatter recorded by the vessels are not caused by 

vessel avoidance by fish or other organisms. Rather, it must somehow be related to problems with 

the instrument calibration or echosounder performance.  However, the on-axis calibrations 

performed during the study were quite precise (see above), and the observed vessel differences in 

sA are too large to be accounted for solely by errors in the on-axis calibration.  By normalizing 
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the echosounder output such that both vessels report the same mean seabed echo, we got much 

more consistent estimates among frequencies for the vessel ratio (Fig. 4c). 

Effects of Pitch and Roll on Seabed sA 

Figure 5a shows the log-transformed seabed sA for each vessel for each transect at 18 kHz, 

which was the frequency most affected by vessel motion. The vessel ratio sA,OD / sA,MF is shown in 

Figure 5b. A clear zigzag pattern is seen in the vessel ratio, with a shift in direction between 

experiment 104 and 105. For the first four experiments the Oscar Dyson sees a relatively stronger 

seabed echo when the vessels are heading east, and for the last six when they are heading west. 

The apparent reason for this shift is that the wind changed from a head/tail wind to a side wind 

after experiment 104 (Fig. 6). The wind speed was about 20-25 knots during experiment 101 and 

decreased gradually to about 10-15 knots during experiment 110. The side wind induced zigzag 

pattern in the local variation index of seabed sA is clearly strongest for the Miller Freeman (Fig. 

5c-d, experiments 105-110), whereas the head/tail wind induced pattern is slightly stronger for the 

Oscar Dyson (Fig. 5c-d, experiments 101-104).  

A corresponding zigzag pattern is evident in the pitch and roll data (Fig. 7). The amplitude 

(as indicated by the standard deviation) of both pitch and roll is largest for experiments 101-104, 

which is also the case for the east-west differences in pitch and roll amplitude (the distance 

between open and solid points). The averages of pitch and roll are more similar for experiments 

101-104 and for 105-110, but there is a stronger east-west pattern for average roll (list) in the later 

experiments. In fact, the local variation in average roll (Equation 5), explains 77% of the local 

variation in seabed sA for the Miller Freeman, whereas it only explains 1% for the Oscar Dyson 

(Fig. 8a). Thus, the list of the Miller Freeman appears to explain much more of the difference in 

seabed backscatter than does the list of the Oscar Dyson. 
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There also seems to be a connection between the roll for the Miller Freeman averaged 

over experiments (Fig. 7 top left) and the seabed sA ratio averaged over experiments (Fig. 5b). In 

fact, 79% of the variation in the seabed sA ratio averages at 18 kHz is explained by a linear 

regression on the Miller Freeman average roll (Fig. 8b). And if experiment 104 is left out, 96% is 

explained. Much of the high explanatory power comes from experiments 103 and 107 where the 

list of the Miller Freeman was largest (the two points in the upper left corner of Fig. 8b).  For 38, 

120 and 200 kHz, the corresponding r2 values are 76%, 22% and 0% for all of the experiments 

and 88%, 48% and 10% with experiment 104 left out. Looking at individual transects rather than 

experiment averages, up to 71% of the variation in the seabed sA ratio is explained by a linear 

regression on the Miller Freeman's average roll (Fig. 9a). In fact, the average roll for Miller 

Freeman explains far more of the variation in the seabed sA ratio than any other single pitch/roll 

variable for any of the vessels, or the vessel ratio or vessel difference in any of the pitch/roll 

variables (Fig. 9a).  

The pattern in the seabed echo for all frequencies is summarized for both ships in Figure 

10. The zigzag patterns tend to be stronger for 38 kHz than for 18 kHz, particularly for the Miller 

Freeman for transects 101-104 and for the Oscar Dyson for transects 105-110. Still, the pitch and 

roll data explain less of the variation in the seabed sA ratio for 38 kHz than for 18 kHz (Fig. 9b). 

Note also the similarities between the Oscar Dyson and the Miller Freeman (Fig. 10), especially 

for 18 kHz and transects 105-110 for 38 kHz. For 120 and 200 kHz the zigzag pattern is much 

weaker (Fig. 10), as is the explanatory power of the pitch and roll data (Fig. 9b). For 18 and 38 

kHz there is a clear trend of getting a larger vessel ratio as the list increases, with the strength of 

the trend depending on which vessel is used to limit which data are included (Fig. 11). For 120 

kHz the trend is in the same direction in Fig. 11a-c, but weaker, and for 200 kHz there is no clear 

trend. Excluding transects where |avg roll| > 1 for one or both vessels resulted in a reduction of 

bottom echo vessel ratio of about 0.04, 0.03, and 0.01 for 18, 38, and 120 kHz, respectively (Fig. 
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12). The pollock vessel ratio estimates R̂corr  (eq. 1) obtained by using the bottom adjustment 

based only on transects with |avg roll| < 1 degree for both vessels are shown in Figure 4d.  Once 

the vessel ratios are corrected by the discrepancy in the bottom echoes, the frequency-dependence 

in the pollock vessel ratio largely disappears. 

Finally, although there seems to be a relatively weak correlation between the lists of the 

two ships if we consider all experiments together, the within experiment correlation is quite 

strong (Fig. 13). This means that the vessels respond similarly to changes in heading, but that the 

mean list of the vessels varies with time.  This is also reflected in the 18 kHz sA through the 

parallelism of Z between the Miller Freeman and Oscar Dyson in Figure 10. Transects in the 

same direction (i.e., eastward or westward) within the same experiment tend to have more similar 

lists than transects from different experiments. This indicates that sea state is not the only factor 

that influences the seabed echo through the list. This suggests that changing vessel loads, for 

example moving of liquids between storage tanks from one experiment to next, may partly cause 

the list.  This is likely the case as the vessels, particularly the Miller Freeman, are not designed to 

maintain even trim (M. Gallagher, commanding officer NOAA ship Miller Freeman, personal 

communication), and vessel trim will thus vary over time. Fuel is consumed from tanks in 

different locations aboard the vessel, and treated gray water is held in holding tanks and 

discharged periodically, which will impact the trim of the vessels during the experiment. 

DISCUSSION 

The intercomparison of echosounders based on the seabed echo was crucial to correctly 

interpreting the results from the inter-vessel comparison experiment with the Oscar Dyson and the 

Miller Freeman in the Bering Sea in July 2006 (cf. De Robertis et al. in review).  Integration of 

the seabed echo has been informative in other applications as well (e.g., Dalen and Løvik 1981, 
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Johannesson and Mitson 1983).  However, our work indicates that one should consider the effects 

of vessel attitude when interpreting the echo strength from the seafloor. An in-depth analysis of 

the data showed a clear relation between vessel motion and seabed echo for both vessels, 

especially at 18 and 38 kHz, but, as the sea was quite calm during our experiment, the impact of 

vessel motion on the seabed echo vessel ratio was relatively small in magnitude compared to the 

ratio in seabed echoes used to intercalibrate the echosounders. Still, we tried to eliminate the bias 

in the seabed calibration introduced by vessel list by only using transects with |avg roll| of less 

than one degree.  This somewhat raised the estimates of the vessel ratio R in Figure 4d for 18, 38, 

and 120 kHz, and slightly lowered them for 200 kHz so that the 95% confidence intervals for the 

vessel ratios for pollock include one in all cases. 

We suspect that the discrepancy between the seabed echoes for frequencies other than  

200 kHz may be explained by biases in the equivalent beam angles (EBA) used to calibrate the 

echosounders. The on-axis calibration results were quite precise, and a likely explanation is that 

the on-axis standard sphere calibration method does not incorporate the equivalent beam angle, 

which is a measure of beam pattern. If the EBA supplied by the manufacturer is incorrect, this 

would result in a consistent offset between echosounders as observed in the echo integrations of 

pollock during the vessel intercomparison.  By normalizing the echosounder to the seabed echo, 

we observed more consistent estimates among frequencies for the vessel ratio.  This is primarily 

because seabed integrations incorporate the EBA as well as on-axis sensitivity, while the on-axis 

calibrations do not. Because of the difficulty of measuring EBA on installed transducers, this is 

rarely done during routine acoustic surveys (Simmonds and MacLennan 2005), although our 

measurements indicate that a better understanding of this quantity is needed for accurate acoustic 

surveys.  Measurements of the EBA of a previous generation of transducers under highly 

controlled conditions (Simmonds, 1990) indicate that although EBA is stable over time, it can 

change depending on the mounting arrangement. Thus, even if the correct values of EBA are 
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supplied by the manufacturer, they may be incorrect and lead to biases once the transducers have 

been installed on a vessel. 

In the case of the 200 kHz data, there appears to be a range-dependent loss in the case of 

the Miller Freeman's echosounder.  It appears that the range correction for absorption and 

spreading of acoustic energy is inadequate, which suggests that the equipment is faulty.  This 

increasing loss of signal with range is similar to what is expected in the case of harmonic 

distortion when transducers are driven at high power (Tichy et al. 2003).  However, we suspect 

that this is not the case, as the echosounder power on both vessels was set to 100 watts, which is 

sufficiently low to avoid these problems (Simrad 2002).  Additionally, if harmonic distortion was 

occurring, one would expect a similar effect on both echosounders.  We thus suspect that 

equipment problems aboard the Miller Freeman are the cause, most likely a faulty transducer.  

The comparison of bottom echoes made it easy to diagnose the difference in echosounder 

performance on both vessels. It is important to note that there was no indication of the problem in 

the results of the sphere calibrations, which are typically conducted at a range of ~ 20 m and will 

not readily identify range-dependent biases.   

If EBA is the cause of the frequency-dependent differences in echosounder output 

observed during the vessel intercomparison study discussed in this document, then the 

discrepancy between the EBA estimates on both ships at a given frequency should account for the 

observed ratio in the seabed echo. To decide if this actually is the case, reliable measurements of 

EBA are needed. A field technique to estimate the EBA on installed transducers has been 

developed (Reynisson 1998), but the precision of the technique is estimated to be ~ ±7%, which is 

insufficient to detect differences of ~10 % between two echosounders as we have observed in the 

case of the 18 and 38 kHz on the Miller Freeman and Oscar Dsyon. Resolving the issue of 

whether EBA is responsible for the observed discrepancies should have high priority, as the 

uncertainty in EBA will introduce biases in survey time series used for fisheries management 
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when vessels are changed or when transducers are replaced.  If EBA is indeed the cause of our 

observations, and it can be quantified, this source of uncertainty can be accounted for and acoustic 

survey results will be more reliable. 

Motivated by the EBA hypothesis, we disassembled the centerboards both vessels, and 

found that the EBA measurements specified by the manufacturer for the 18 kHz transducer on the 

Miller Freeman and the 38 kHz transducer on the Oscar Dyson were in fact for transducers with 

serial numbers that did not match the transducers physically installed on the vessels.  Thus, the 

EBA used in the study for these two transducers were in fact incorrect. For the MF 18 kHz 

transducer this implied an overestimation of the backscatter by a factor of 1.096, and for the OD 

38 kHz transducer the backscatter was underestimated by a factor of 0.977.  After correcting for 

this discrepancy, the vessel ratio at 18 kHz was close to 1.0, whereas for 38 kHz it was still 

around 1.1 (cf. Fig. 5 in De Robertis et al. in review). Thus, for the case of 18 kHz, the bottom 

comparison did identify a discrepancy in EBA as suspected, illustrating the utility of bottom echo 

comparison. Development of new methods for precise and accurate characterization of equivalent 

beam angle is thus still a priority. 

The pollock sA did not exhibit the same zigzag pattern as did the seabed sA, which is 

reasonable since the acoustic signal behaves differently when encountering fish and the seabed. 

Although backscatter from fish (including pollock) is directional (e.g., Hazen and Horne 2003), 

the seabed echo is much more directional. The intensity of acoustic backscatter from the seabed is 

extremely dependent on the incident angle, particularly for sediment covered seabeds like those in 

the eastern Bering Sea (Talukdar et al. 1995).  For example, at an incident angle of ~ 2 degrees 

which is equivalent to the maximum average vessel list observed in his study, the seabed echo is 

several decibels less than that when the incident angle is zero (Talukdar et al. 1995).  In 

comparison the reflectivity of swimbladdered fish such as pollock is much less sensitive to such 

small differences in incident angle (e.g., Foote 1985, Hazen and Horne, 2003).   
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In summary, the measurement of the ratio in seabed echoes was helpful in this application, 

but it is important to recognize that intercalibration on the seabed is not without error.  Although 

it may appear surprising at first, calm conditions and a flat seabed are not necessarily the best 

conditions for intercalibration on the seafloor echo.  In the case of a very flat seabed, and calm 

conditions, specular reflections from the seabed may be important, and the seabed echo may be 

very dependent on the incident angle of the acoustic beam (Urick 1983, Talukdar et al. 1995). The 

mean incident angle will be affected by vessel trim and the pointing angles of the transducers, 

which will alter the echo from the seafloor.  Our observations of an alternating pattern in the 

seabed echo associated with changes in heading are consistent with this mechanism:  As the 

vessel changes heading, pitch and roll change, and there is a corresponding change in the bottom 

echo. Our results indicate that a change of only one or two degrees in vessel trim have detectable 

effects on the bottom ratio.  Thus, vessel motion, particularly list, can impact the bottom echo 

strength and must be considered when intercalibrating on the seafloor echo. Including all 

transects would have resulted in bottom echo ratios that were up to 0.04 higher than those 

computed from transects where the list was less than one degree (Fig. 12).  This difference is 

relatively small, but it will likely be much larger in more severe winds and seas due to 

accentuated differential vessel motion in higher sea sates, and on vessels with different trim.  

There is remaining uncertainty in the bottom adjustment even after limiting the analysis to low list 

cases, and the confidence intervals for the vessel ratios corrected for the bottom echoes are thus 

slightly too narrow, although it is difficult to quantify by exactly how much. In this application, 

however, the bottom echo analysis has been informative, as it has allowed us to attribute the 

frequency-dependent discrepancies in pollock backscatter to echosounder performance or 

calibration rather than differential vessel avoidance by fish.  
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this study compared to applying the mean integration gain from all calibrations 

combined. Each plotted point indicates the impact of using only this calibration on 

echo-integration measurements compared to applying the average integration gain 

from all calibration as has been applied in this study.  Results are expressed as 
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integration gain in linear units.  The calculation accounts for the two-way effects of 
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Figure 9. -- a) The variation in seabed sA ratio explained by linear (black) and quadratic (red) 

regression of various explanatory variables. The diameter of the circles is 

proportional to r2, which is given to the right of the circles. In the first column the 

Oscar Dyson (OD) values are divided by the Miller Freeman (MF) values for the 
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The black numbers are the average vessel ratios calculated from all transects. The 

gray and black dashed lines are the experiment means of the gray and black points, 

respectively. 
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