# Assessment of the Yellowfin Sole Stock in the Bering Sea and Aleutian Islands 

Ingrid Spies, Meaghan Bryan, Lewis Barnett, Emily Markowitz, Zack Oyafuso, Elizabeth Siddon Alaska Fisheries Science Center, National Marine Fisheries Service<br>National Oceanic and Atmospheric Administration<br>7600 Sand Point Way NE., Seattle, WA 98115-6349<br>07 November, 2023

## Executive Summary

## Summary of Changes in Assessment Inputs

The following substantive changes have been made to the BSAI yellowfin sole assessment relative to the 2022 Bering Sea and Aleutian Islands (BSAI) SAFE report. Several models are presented in this document that incorporate new data since the last full assessment in 2022.

## Changes in the data

1. The 2022 fishery age compositions were added
2. The 2022 VAST survey age compositions were added.
3. The estimate of the total catch made through the end of 2022 was updated as reported by the NMFS Alaska Regional office. The catch through the end of 2023 was estimated based on available data to be $79,688 \mathrm{t}$. Catch for the 2024 and 2025 projections were assumed to be the mean of the past 5 years, 2019-2023, 121,103 t.
4. The 2023 NMFS survey biomass estimate and standard error were included. Model-based (VAST) estimate of the EBS and NBS biomass and standard error were used in all models presented.

Changes in the assessment methods
Two models are presented in this assessment. Model 22.1 was the accepted model in 2022 and is presented with updated data. Model 23.0 is based on Model 22.1, except that a single sex time-varying fishery selectivity was used rather than separate time-varying fishery selectivities for males and females. Further details are described below.

1. Model 22.1 was accepted by the BSAI Plan Team and the SSC in 2022. Survey biomass index data (1982-2023) and age compositions consisted of VAST estimates for the combined eastern Bering Sea and northern Bering Sea.
2. Model 23.0 is the same as Model 22.1 except a single-sex fishery selectivity was used rather than a separate fishery selectivity for males and females. Survey index data (1982-2023) and age compositions were based on VAST model-based indices for the combined eastern Bering Sea and northern Bering Sea. This is the authors' preferred model.

## Summary of Results

The models presented in this assessment include interpolated survey bottom temperature within the summer bottom trawl area < 100 m as a covariate on survey catchability, as well as National Marine Fisheries Service eastern Bering Sea survey start date and the interaction of start date and temperature (Nichol et al. 2019). These models also specify female natural mortality to be fixed at 0.12 while allowing the model to estimate male natural mortality. Model 23.0 builds upon Model 22.1 by collapsing time-varying fishery selectivity into
a single set of parameters for males and females. All models use model-based (VAST) survey indices and age compositions from the combined EBS and NBS survey areas. Model 23.0 is the preferred model.

|  | As estimated or specified <br> last year for: |  | As estimated or recommended <br> this year for: |  |
| :--- | ---: | ---: | ---: | ---: |
| Quantity | 2023 | 2024 | 2024 | 2025 |
| $M$ (natural mortality rate) | $0.12,0.125$ | $0.12,0.125$ | $0.12,0.137$ | $0.12,0.137$ |
| Tier | 1 a | 1 a | 1 a | 1 a |
| Projected total (age 6+) biomass (t) | $3,321,640 \mathrm{t}$ | $4,062,230 \mathrm{t}$ | $2,512,810 \mathrm{t}$ | $2,616,800 \mathrm{t}$ |
| Projected female spawning biomass (t) | $885,444 \mathrm{t}$ | $897,062 \mathrm{t}$ | $881,640 \mathrm{t}$ | $857,354 \mathrm{t}$ |
| $B_{0}$ | $1,407,000 \mathrm{t}$ | $1,407,000 \mathrm{t}$ | $1,516,980 \mathrm{t}$ | $1,516,980 \mathrm{t}$ |
| $B_{M S Y}$ | $475,199 \mathrm{t}$ | $475,199 \mathrm{t}$ | $539,657 \mathrm{t}$ | $539,657 \mathrm{t}$ |
| $F_{O F L}$ | 0.122 | 0.122 | 0.121 | 0.121 |
| $\max F_{A B C}$ | 0.114 | 0.114 | 0.106 | 0.106 |
| $F_{A B C}$ | 0.114 | 0.114 | 0.106 | 0.106 |
| OFL (t) | $404,882 \mathrm{t}$ | $495,155 \mathrm{t}$ | $305,298 \mathrm{t}$ | $317,932 \mathrm{t}$ |
| maxABC | $378,499 \mathrm{t}$ | $462,890 \mathrm{t}$ | $265,913 \mathrm{t}$ | $276,917 \mathrm{t}$ |
| ABC $(\mathrm{t})$ | $378,499 \mathrm{t}$ | $462,890 \mathrm{t}$ | $265,913 \mathrm{t}$ | $276,917 \mathrm{t}$ |
| Status | 2021 | 2022 | 2022 | 2023 |
| Overfishing | No | $\mathrm{n} / \mathrm{a}$ | No | $\mathrm{n} / \mathrm{a}$ |
| Overfished | $\mathrm{n} / \mathrm{a}$ | No | $\mathrm{n} / \mathrm{a}$ | No |
| Approaching overfished | $\mathrm{n} / \mathrm{a}$ | No | $\mathrm{n} / \mathrm{a}$ | No |

Note: Projections were based on estimated catches of $79,688 \mathrm{t}$ in 2023 and $121,103 \mathrm{t}$ used in place of maximum ABC for 2024. This estimate was based on the mean catch over the past 5 years, 2019-2023, which includes the extrapolated catch of $79,688 \mathrm{t}$ for 2023.

In the eastern Bering Sea (EBS) bottom trawl survey performed in 2023, the EBS yellowfin sole model-based biomass estimate was $32 \%$ lower than estimated by the 2022 EBS bottom trawl survey, at 2,007,140 t. Spawning biomass estimated by Model 23.0 was $1.63 * B_{M S Y}$. Therefore, yellowfin sole continues to qualify for management under Tier 1a. The 1978-2017 age-1 recruitments and the corresponding spawning biomass estimates were used to fit the stock recruitment curve and determine the Tier 1 harvest recommendations. Tier 3 estimates were also calculated, which is typical for this assessment. This assessment updates last year's model with total and spawning biomass estimates for 2023 that are lower than the 2022 estimates for 2023. This year's recommended ABC and OFL are lower than the 2022 assessment, coincident with a decrease in the 2023 survey biomass estimate.

Catch of yellowfin sole as of October 1, 2023 in the Bering Sea and Aleutian Islands was $74,848 \mathrm{t}$. Over the past 5 years (2018-2022), approximately $93.9 \%$ of the catch has taken place by this date. Therefore, the full year's estimate of catch in 2023 was extrapolated to be $79,688 \mathrm{t}$. This is lower than the average catch over the past ten years, $128,825 \mathrm{t}$. Future catch for the next 10 years, $2024-2033$, was estimated to be the mean of the catch from the past five years, 2019-2022, and the extrapolated full year's catch for 2023, which resulted in an estimate of $121,103 \mathrm{t}$.

Yellowfin sole female spawning biomass continues to be above $B_{M S Y}$ and the annual harvest remains below the ABC level. Management quantities are given in the results summary table for the 2022 accepted model (Model 22.1 - 2022) and the 2023 preferred model (Model 23.0). The projected estimate of total biomass for 2024 was lower by $38 \%$ from the 2022 assessment of $4,062,230 \mathrm{t}$, to $2,512,810 \mathrm{t}$. The model projection of spawning biomass for 2024 , assuming catch for 2023 as described above, was $881,640 \mathrm{t}$, $2 \%$ higher than the projected 2024 spawning biomass from the 2022 assessment of 897,062 t. The 2024 and 2025 ABCs using $F_{A B C}$ from this assessment model were lower than last year's 2024 ABC of $462,890 \mathrm{t} ; 265,913 \mathrm{t}$ and 276,917 t. The 2024 and 2025 OFLs estimated by Model 23.0 were $305,298 \mathrm{t}$ and $317,932 \mathrm{t}$.

Two elements of the Risk Table, Population dynamics and Environmental/ecosystem components were rated as level 2, "Major concern". The other Risk Table elements were rated as level 1, "No concern". There were no recommended reductions in ABC .

## Responses to SSC and Plan Team comments on Assessments in General

## SSC December 2022

The SSC recommends that for future Tier 1-3 assessments some consideration be given as to how best to represent biomass estimates in the Executive Summary table for each stock (currently, model total biomass and spawning stock biomass are provided) so that the relationship of the biomass to the OFL and ABC in the stock status table is clear.

Authors' response
Within the document we include biomass estimates that are based on all age classes. However, the estimates involve an application of expected age-specific selectivity which can be variable. Therefore, ABC and OFL are calculated from age 6+ fish because the fishery does not select for ages 5 and under. This should serve as a reasonable proxy for considering ABC and OFLs in the context of exploitation rates.

## SSC December 2022

For all assessments using VAST, the SSC requests a figure comparing the VAST estimate used in the previous assessment to the current assessment (if new data are added), noting that VAST will refit the time series when additional data are added, and the estimated extent and directionality of spatial correlation may change. The SSC anticipates the changes will likely be small; however, given these are new methods for many assessments, this figure would provide information on the stability of estimates.

Authors' response
This figure has been created, see Figure 1.
SSC December 2022
The SSC reminds authors and PTs to please bring forward and respond to SSC comments from previous assessments, particularly where updates with minimal change to the assessment have been conducted in the intervening year(s).
Authors' response
Noted.

## Responses to SSC and Plan Team comments specific to this assessmemt

SSC November 2020
The SSC recommends further investigation of previously noted issues as time allows, including possible further adjustments to estimating separate natural mortality for males and females, explorations of the sex ratio relative to the timing of annual spawning migrations as an alternative explanation for a high proportion of females, a potential link between wave height and catchability, and a single selectivity curve for both sexes. We note that the latter is supported by survey selectivity estimates that are virtually indistinguishable in Model 18.2 (2020 Assessment, Fig. 4.17) and by time-varying fishery selectivities that are very similar between males and females since the early 1980s, but diverge widely and inconsistently in some earlier years (2020 Assessment, Fig. 4.18).

Author's response:
A single fishery selectivity curve was implemented in Model 23.0 in response to this comment. We plan to explore natural mortality estimates in the 2024 assessment.

## Introduction

Yellowfin sole (Limanda aspera) are one of the most abundant flatfish species in the eastern Bering Sea (EBS) and currently is the target of the largest flatfish fishery in the world. Yellowfin sole are distributed in North American waters from off British Columbia, Canada, (approx. lat. $49^{\circ} \mathrm{N}$ ) to the Chukchi Sea (approx. lat.
$70^{\circ} \mathrm{N}$ ) and south along the Asian coast off the South Korean coast in the Sea of Japan (approximately lat. $\left.35^{\circ} \mathrm{N}\right)$. Their abundance in the Aleutian Islands region is considered low to negligible.

Adults exhibit a benthic lifestyle and occupy separate spawning areas in winter and feeding distributions in summer on the eastern Bering Sea shelf, Wakabayashi 1989). Adults begin a migration from over-wintering grounds near the shelf margins ( $>100 \mathrm{~m}$ ) onto the inner shelf ( $15-75 \mathrm{~m}$ ) in April or early May each year for spawning and feeding. Adults migrate back offshore in fall and winter as a response to ice cover/cold water of the inner and central shelf water in winter (Bakkala 1979). Young yellowfin sole remain in the shallow nearshore nursery areas throughout their first few years of life. They begin to disperse offshore age 3-5, and by 5-8 years they follow adult migratory patterns (Bakkala 1979).

Year-class strength of flatfishes is thought to be determined during the first few years of life between the pelagic egg and benthic settlement (van der Veer et al., 2015). Temperature in the early life stages can affect egg size, larval duration, size at settlement, as well as the size of suitable nursery habitat (Yeung and Cooper 2019). It has been hypothesized that colder bottom temperatures delay migration and spawning in yellowfin sole. As a result, mature individuals may reside in nearshore nursery grounds during months in which the NMFS survey occurs, which likely decreases survey biomass estimates during cold years (Nichol et al., 2019; Yeung and Cooper 2019).

Yellowfin sole may be less sensitive to temperature due to their settlement timing, relative to Northern Rock Sole, which seems to be sensitive to temperature. Yellowfin sole settle later in summer, when the influence of the cold pool is weaker and nearshore bottom temperature is relatively stable and high (Yeung and Yang, 2018). In contrast, yellowfin sole migrate across the shelf to spawn near their nursery habitat, rather than relying on currents for larval transport to nursery habitat (Nichol and Acuna, 2001); therefore, their larvae may be less susceptible to variable currents (Yeung and Cooper 2019).

There appear to be several distinct stocks, although the genetic basis remains to be determined. The stocks are referred to as the Unimak group, the Pribilof-west group, and the Pribilof-east group (Figure 2). Yellowfin sole are managed as a single stock in the BSAI management area as there is presently no direct evidence of stock structure.

## Fishery

Yellowfin sole has been targeted with bottom trawls on the Bering Sea shelf since the fishery began in 1954. It was overexploited by foreign fisheries in 1959-1962 when catches averaged 404,000 t annually (Figure 3, top panel). Catch is typically taken throughout the Bering Sea shelf, as far north as $65^{\circ} \mathrm{N}$ and low to negligible amounts are taken in the Aleutian Islands (Figure 4). Catches declined to an annual average of 117,800 t from 1963-1971 and further declined to an annual average of 50,700 t from $1972-1977$. The lower yield in this latter period was partially due to the discontinuation of the Union of Soviet Socialist Republics (U.S.S.R.) fishery. In the early 1980s, after the stock condition had improved, catches again increased reaching a peak of over $227,000 \mathrm{t}$ in 1985.

During the 1980s, there was also a major transition in the characteristics of the fishery. Yellowfin sole were traditionally taken exclusively by foreign fisheries and these fisheries continued to dominate through 1984. However, U.S. fisheries developed rapidly during the 1980s in the form of joint ventures, and during the last half of the decade began to dominate and then take all of the catch as the foreign fisheries were phased out of the Eastern Bering Sea. Since 1990, only domestic harvesting and processing has occurred.

The management of the yellowfin sole fishery changed significantly in 2008 with the implementation of Amendment 80 to the BSAI Fisheries Management Plan. The Amendment directly allocated fishery resources among BSAI trawl harvesters in consideration of their historic harvest patterns and future harvest needs to improve retention and utilization of fishery resources by the non-AFA (American Fisheries Act) trawl catcher/processor fleet. This was accomplished by extending the groundfish retention standards to all H\&G (headed and gutted, fish are processed with heads and viscera removed) vessels and also by providing the ability to form cooperatives within the newly formed Amendment 80 sector. In addition, Amendment 80 also mandated additional monitoring requirements which included observer coverage on all hauls, motioncompensating scales for weighing samples, flow scales to obtain accurate catch weight estimates for the entire
catch, no mixing of hauls and no on-deck sorting. The partitioning of TAC (total allowable catch) and PSC (prohibited species catch) among cooperatives has significantly changed the way the annual catch has accumulated (Figure 3, lower panel) and the rate of target catch per bycatch ton. There is now a more even and slow attainment of the annual catch relative to the pre-Amendment 80 fishing behavior.

In 2010, following a comprehensive assessment process, the yellowfin sole fishery was certified under the Marine Stewardship Council environmental standard for sustainable and well-managed fisheries. The certification also applies to all the major flatfish fisheries in the BSAI and GOA.

In 2011, federally permitted vessels using non-pelagic trawl gear whose harvest resulted in flatfish retained catch that was greater than any other retained fishery category were required to use modified trawl gear. The modifications required the use of elevating devices to raise the section of the trawl warps between the doors and the trawl wing tips by 2.5 inches off the seafloor. The purpose of the management action was to reduce damage of non-target animals, particularly those that form habitat structure or support other fisheries while not substantially reducing flatfish catch rates or causing gear handling problems (Rose et al. 2010).
Yellowfin sole are typically headed and gutted, frozen at sea, and then shipped primarily to China and South Korea. Reprocessed yellowfin sole from China may also be sold to Japan, US, and Europe as fillets, among other countries (AFSC 2016). The 1997 catch of $182,814 \mathrm{t}$ (retained and discarded) was the largest since the fishery became completely domestic, but decreased from 1998-2010, averaging 94,004 t (Table 1, Table 2). From 2011-2014 the catch increased, averaging $155,000 \mathrm{t}$. The 2013 catch totaled approximately $182,814 \mathrm{t}$ ( $73 \%$ of the ABC), and was the highest annual catch since 1988. Catches have declined since 2013 and the average catch over the past ten years was $128,825 \mathrm{t}$. The full year's estimate of catch in 2023 was $79,684 \mathrm{t}$. This estimate was based on catch data downloaded October 20, 2023, and projected forward through the remainder of the year.

Yellowfin sole accounted for $66 \%$ of the retained flatfish catch in 2021 caught in the Eastern Bering Sea by catcher/processors in the Amendment 80 Fleet. The first-wholesale value of yellowfin sole and rock sole showed a small increase from $0.66 \mathrm{USD} /$ pound to $0.67 \mathrm{USD} /$ pound between 2020 and 2021. Export quantities of yellowfin sole and rock sole decreased in 2021 to 48.54 t from 80.75 t in 2020 (Appendix A, Ablelman 2021). In $202125 \%$ tariffs were imposed on yellowfin sole exports to China, which may have played a role in the decreased catch.

As of late October 2023, the fishing season is ongoing. To estimate the total 2023 catch for the stock assessment model, the average proportion of the 2018-2022 cumulative catch attained by the end of October was applied to the 2023 catch amount at the same time period and resulted in a 2023 catch estimate of 79,684 $\mathrm{t}, 17.21 \%$ of the 2022 ABC .

Length distributions of yellowfin sole throughout NMFS areas 509, 513, 514, 516, 521, and 524 ranged from $20-50 \mathrm{~cm}$, and were largest in the northern areas 514, 521, and 524 (Figure 5).

## Data

The data used in this assessment include estimates of total catch, bottom trawl survey biomass estimates and their $95 \%$ confidence intervals, catch-at-age from the fishery, eastern Bering Sea survey bottom temperatures $<100 \mathrm{~m}$, and population age composition estimates from the bottom trawl survey. Weight-at-age and proportion mature-at-age from studies conducted during the bottom trawl surveys were also used. Estimates of fishery weight-at-age were based on catch-at-age methodology used in the walleye pollock assessment (Ianelli et al. 2019), following Kimura (1989) and modified by Dorn (1992).

| Data source | Year |
| :--- | :--- |
| Fishery catch | $1954-2023$ |
| Fishery age composition | $1964-2022$ |
| Fishery weight-at-age | Catch-at-age methodology |
| Survey biomass and standard error | $1982-2023$ (not 2020) |
| Bottom temperature | $1982-2023$ |


| Data source | Year |
| :--- | :--- |
| Survey age composition | $1979-2022$ (not 2020) |
| Annual length-at-age and weight-at-age from surveys | $1979-2022$ (not 2020) |
| Age at maturity | Combined 1992 and 2012 samples |

## Fishery

## Age Determination

Yellowfin sole ages have been determined at the AFSC by using the break and burn method on otoliths collected in surveys and from fisheries since 1979. In 2016 the age determination methods for yellowfin sole were validated using the bomb-produced uptake measurement of 14 C method (Kastelle et al. 2016). There have been an average of 721 fish aged on EBS trawl surveys since 1982 and 735 fish aged from fishery collections during that time period (Table 3). The number of hauls which from which otoliths have been taken from the survey has averaged 44 per year (Table 3).

Trends for males and female ages from the fishery indicate that the 2010 year class has been the dominant cohort and the 2015 age class may be entering the fishery as a new dominant cohort at age 7 (Figure 6). Survey age data shows a different trend, likely due to higher survey selectivity at younger ages. Survey age data indicates an extremely strong 2017 year class that has appeared as 5 year olds in the survey (Figure 7).

## Catch

This assessment uses fishery catch data from 1954-2023 (Table 1), and fishery catch-at-age (proportions) from 1964-2022 (Table 4). Removals from sources other than those that are included in the Alaska Region's official estimate of catch including removals due to scientific surveys, subsistence fishing, recreational fishing, fisheries managed under other FMPs are tabulated and presented in Table 5. Catch per unit effort calculated from fishery trawl data, based on the catch in kg and duration of the tow, does not indicate a strong upward or downward trend through the time series, 1996-2023 for vessels $>125$ feet (Figure 8), although 2022 showed an increase, and 2023 appeared back to a relative mean value. Vessels $<125$ feet appear to have increased CPUE through time. The CPUE shows a negative correlation with bottom temperature, with increased CPUE in 2022, which was a cooler/average year in the Bering Sea. This relationship does not appear to be strong in all years, including 2023, in which temperature was average but CPUE was down.

Bycatch of yellowfin sole takes place primarily in the directed rock sole fishery, followed by the flathead sole fishery, and smaller amounts in the pollock fisheries (Table 6).

## Numbers at age

The proportion of length at age from the fishery was applied to the length frequencies from the aged sample from the fishery, providing fishery proportions at age. The fishery age composition has always been primarily composed of fish older than 9 years with a large amount of $20+$ fish, although the proportion has declined from $90 \%$ over age 7 to $70 \%$ over age 7 since the 1970's (Table 4). The most recent two years (2021 and 2023) show the lowest proportions over age 7 ( $68 \%$ ).

## Weight-at-age

The fishery weight-at-age composition was based on the catch-at-age methodology of Kimura (1989) and modified by Dorn (1992), as implemented in the 2019 walleye pollock stock assessment (Ianelli et al. 2019). Length-stratified age data were used to construct age-length keys for each stratum and sex. These keys are then applied to randomly sampled catch length frequency data. The stratum-specific age composition estimates were then weighted by the catch within each stratum to arrive at an overall age composition for each year. The three strata were the EBS trimesters of the year (January-April, May-August, and September-December). This method was used to derive the age compositions from 1991-2022 (the period for which all the necessary information was readily available). The catch-at-age estimation method uses a two-stage bootstrap resampling of the data with 1,000 bootstraps. Observed tows were first selected with replacement, followed by resampling actual lengths and age specimens given that set of tows. This method
allows an objective way to specify the effective sample size for fitting fishery age composition data within the assessment model. Estimates of stratum-specific fishery mean weights-at-age are a product of this analysis and these were used as input data to the model (Figure 9).

## Maturity-at-age

Nichol (1995) estimated the age of $50 \%$ maturity at 10.5 years based on the histological examination of 639 ovaries collected from yellowfin sole females during the 1992 and 1993 eastern Bering Sea trawl surveys (Table 7). Maturity was re-evaluated from a histological analysis of ovaries collected in 2012 (Table 7). Results were very similar to the earlier study with only a $2 \%$ difference in estimates of yellowfin sole female spawning biomass (TenBrink and Wilderbuer 2015). The current maturity schedule uses estimates derived from both the 1992 and the 2012 collections (Table 7). For yellowfin sole sexual maturity occurs well after the age of entry into the fishery. Yellowfin sole females are $82 \%$ selected to the fishery by age 10 whereas they have been found to be only $40 \%$ mature at this age.
A new study was published in 2022 which provided a new analysis of the maturity-at-age schedule of 209 yellowfin sole samples taken from the northern Bering Sea (TenBrink 2022). The maturity curve resulting from this study was very similar to that of previous studies ( $A_{50 \%} 95 \%$ confidence interval: 9.47-10.76 years). This maturity curve was not incorporated into the 2023 assessment because samples were taken from the northern Bering Sea only, but this information may be incorporated into a future assessment model.

## Survey

## Eastern Bering Sea bottom temperature

The eastern Bering Sea bottom temperatures $<100 \mathrm{~m}$ were computed within the R package coldpool (https://github.com/afsc-gap-products/coldpool; Rohan et al., in review). Temperatures in 2023 were lower than in 2022 and close to the mean for the time series (Figure 8).
Length and Weight-at-Age
Sex-specific size at age used in the model is based on the average length-at-age and weight-at-length relationships from the time-series of survey observations over all years since 1971. The survey age data from 2021 and 2022 indicate that the dominant age classes in 2021 and 2022 were 5 and 6 year olds spawned in 2017 (Figure 7). This appears to be a significant age class that may result in an increase in population biomass as it grows over time.

The use of annual observed population mean weight-at-age (time-varying) from the trawl survey allows for time-varying (year effect on growth) in the age-structured stock assessment model.

## Survey Biomass Estimates and Population Age Composition Estimates

Indices of relative abundance available from AFSC surveys showed high NMFS surveys biomass estimates in the 1980s (Table 8. High levels of biomass in the late 1970s have been documented through Japanese commercial pair trawl data and catch-at-age modeling in past assessments (Bakkala and Wilderbuer 1990). Average survey CPUE for yellowfin sole has fluctuated from approximately $30-60 \mathrm{~kg} /$ hectare over the eastern Bering Sea time survey from 1982-2023 (Figure 10). The CPUE for 2023 was the second lowest in the time series, at $27 \mathrm{~kg} /$ hectare. The lowest occurred in $1999,25 \mathrm{~kg} /$ hectare, which corresponded to the lowest survey biomass estimate for yellowfin sole in the eastern Bering Sea.

Biomass estimates for yellowfin sole from the annual bottom trawl survey on the eastern Bering Sea shelf showed a doubling of survey biomass between 1975 and 1979 with a further increase to over 3.3 million $t$ in 1981 (Table 9 and Figure 11). Total survey abundance estimates fluctuated from 1983 to 1990 with biomass ranging from as high as 3.5 million t in 1983 to as low as 1.9 million t in 1986. Biomass estimates since 1990 indicate an even trend at high levels of abundance for yellowfin sole, with the exception of the results from the 1999 and 2000 summer surveys, which were at lower levels. Surveys from 2001-2005 estimated an increase each year but the estimates since 2006 indicate a stable level with some annual variability. However, the 2012 estimate is a $19 \%$ decrease from 2011 and the 2013 and 2014 surveys have estimated a $17 \%$ increase over 2012. Similarly, there was a $24 \%$ decrease from 2014 to 2015 followed by a $48 \%$ increase from 2015 to 2016,
the highest biomass estimate since 1984. Fluctuations of the magnitude shown between 1980 and 1990, 1998 and 1999, 2008 and 2009, 2011 and 2012, 2014 and 2015, and 2015 and 2016 are unreasonable considering the elements of slow growth and long life span of yellowfin sole combined with low to moderate exploitation rate, characteristics which should produce more gradual changes in abundance (Table 8).
The 2023 EBS trawl survey estimate for yellowfin sole biomass was the second lowest from the entire time series, and a declining pattern has been observed since 2016 (Table 8, Figure 11), in addition to a longer term declining pattern since 2005. Similarly, in the northern Bering Sea, Yellowfin sole biomass estimates were the lowest in the time series in 2023 at $2,023 \mathrm{t}$ (Table 10).

The center of gravity for yellowfin sole moved west in the late 2010s before moving eastward during the past few years, while the northward trend in the center of gravity as continued since about 2014 and seems to have plateaued in 2023 (Figure 12). The VAST analysis indicates that the total effective area occupied by yellowfin sole has decreased since a peak in 2018. The effective area occupied in the eastern Bering Sea has been declining since 2018 and the area occupied in the northern Bering Sea has been on a slowly increasing trend over most of the time series since 2000 (Figure 13).

Variability of yellowfin sole survey biomass estimates (Figure 11) is in part due to the availability of yellowfin sole to the survey area (Nichol 1998, Nichol et al. 2019). Yellowfin sole are known to undergo annual migrations from wintering areas off the shelf-slope break to near shore waters where they spawn throughout the spring and summer months (Nichol 1995; Wakabayashi 1989; Wilderbuer et al. 1992). Exploratory survey sampling in coastal waters of the eastern Bering Sea during early summer indicate that yellowfin sole concentrations can be greater in these shallower areas not covered by the standard AFSC survey than in the survey proper. Commercial bottom trawlers have commonly found high concentrations of yellowfin sole in areas such as near Togiak Bay (Low and Narita 1990) and in more recent years from Kuskokwim Bay to just south of Nunivak Island. The coastal areas are sufficiently large enough to offer a substantial refuge for yellowfin sole from the current survey.
Experiments examining the bridle efficiency of the Bering Sea survey trawl indicate that yellowfin sole are herded into the trawl path from an area between the wing tips of the net and the point where the bridles contact the seafloor (Somerton and Munro 2001). The herding experiments suggest that the survey trawl vulnerability (a component of catchability) is greater than 1.0. In a previous assessment, the likelihood profile of $q$ from the model indicated a small variance with a narrow range of likely values with a low probability of $q$ being equal to the value of 1.0 (Wilderbuer and Nichol 2003).

Survey biomass estimates for yellowfin sole have shown a positive correlation with shelf bottom temperatures (Nichol, 2019); estimates have generally been lower during cold years. The 1999 survey, which was conducted in exceptionally cold waters, indicated a decline in biomass that was unrealistic. The bottom temperatures during the 2000 survey were much warmer than in 1999, and the biomass increased, but still did not approach estimates from earlier years. Average bottom temperature and biomass both increased again during the period 2001 - 2003, with the 2003 value the highest temperature and biomass observed over the 22 year time series up to that time. Given that both the 1999 and 2000 surveys were conducted two weeks earlier than previous surveys, it is possible that the time difference may also have also affected the availability of yellowfin sole to the survey. If, for example, the timing of peak yellowfin sole spawning in nearshore waters corresponded to the time of the survey, a greater proportion of the population would be unavailable to the standard survey area. This pattern was observed again in 2009 and 2012 when the temperatures and the bottom trawl survey point estimates were lower. Summer shelf bottom temperatures in 2012 were the 2nd coldest recorded by the survey and the time-series and resulted in a $19 \%$ decline from 2011. Temperatures in the Bering Sea have been higher than the mean since 2013 (Figure 14), and the 2016 estimate of biomass was the highest in 32 years and $48 \%$ higher than the 2015 estimate. In the current year, 2023, survey biomass estimates were down for the NBS and the EBS (Table 8, Table 10).

We propose several possible reasons why survey biomass estimates are often lower during years when bottom temperatures are low. First, catchability may be lower because yellowfin sole may be less active when cold. Less active fish may be less susceptible to herding and more likely to escape under the foot rope of survey gear. Secondly, bottom temperatures may influence the timing of the inshore spawning migrations of yellowfin sole and therefore affect their availability to the survey area (Nichol et al. 2019). Because yellowfin sole
spawning grounds include nearshore areas outside the survey area, availability of fish within the survey area can vary with the timing of this migration and the timing of the survey. In the case of 2016 , a very warm year in the Bering Sea, it appears that a higher portion of the adult biomass was distributed on the shelf (outside of the spawning areas) relative to the average of all previous survey years, indicating earlier spawning migration. Third, yellowfin sole growth appears to be correlated with temperature, as can be seen with greater length anomalies of 5 year old males in females in warm years and smaller lengths in cold years (Figure 14). Increased biomass estimates in 2022 could be a result of favorable conditions for yellowfin sole for the past several years, as well as temperatures that were lower than in 2021 but still slightly above the long-term mean.

Yellowfin sole population numbers-at-age are estimated based on otolith collections from annual EBS bottom trawl surveys Table 11. The occurrence of yellowfin sole in trawl survey hauls and associated collections of lengths and age structures since 1982 have not changed significantly (Table 3). The number of hauls from which age structures have been collected increased in 2021 when otolith collections changed from stratified to randome. The total tonnage caught in the resource assessment surveys since 1982 is listed in Table 5.

## Northern Bering Sea survey

Trawl survey sampling was extended to the northern Bering Sea in 2010, 2017, 2018, 2019, 2021, 2022, and 2023. The trawl surveys conducted in 2010, 2017, 2019, 2021, 2022, and 2023 occupied the same areas with similar sampling densities. The 2018 survey was a reduced effort and only sampled a subset of the northern Bering Sea. Stations in 2018 were 30 nautical miles apart (instead of 20 nm ) and excluded Norton Sound and inshore areas north of Nunivak Island. For comparison among years, 2018 biomass estimates were derived by truncating the areal coverage of the 2010 and 2017 surveys to include only the area covered in 2018 that was common to all three surveys, and this was treated as a single stratum. This truncated area was 158,286 square kilometers (compared to 200,207 square kilometers in 2010 and 2017). There has been an increase in the biomass estimate of yellowfin sole in the northern Bering Sea since 2010, as described above, but it decreased from 2022 to 2023. Large shifts in the abundance of yellowfin sole into the Bering Sea have not been observed, but the center jdistribution of yellowfin sole appears to be slowly shifting northward. The spatial distribution of the yellowfin sole stock in the eastern and northern Bering Sea appears continuous, and the survey data from the region occupied by the entire population was included in the 2022 accepted model 22.1 and the 2023 models 22.1 and 23.0.

A time series based on an ADF\&G survey in Norton Sound confirmed that the biomass of yellowfin sole has generally increased since 1980. The mean CPUE/ $\mathrm{km}^{2}$ of yellowfin sole in Norton Sound increased from a mean CPUE of 201 over the first five survey years $(1976,1979,1982,1985$, and 1988) to a mean CPUE of 411 over the last five survey years (2017, 2018, 2019, 2020, and 2021) (Figure 15). There was no Norton Sound survey in 2022 and the 2023 data is not yet available.

## VAST estimates of biomass

We incorporated vector-autoregressive spatio-temporal (VAST) biomass estimates into Model 22.1, incorporated VAST estimates from the NBS and the EBS from 1982-2022 (Thorson 2019). The software versions of dependent programs used to generate VAST estimates were Microsoft R Open (4.0.2), INLA (21.11.22) (Rue et al. 2009), TMB (1.9.0) (Kristensen et al. 2016), TMBhelper (1.4.0), VAST (3.9.0), FishStatsUtils (2.11.0).

## VAST abundance

For model-based indices in the Bering Sea, observations of biomass per unit area were fitted from all grid cells and corner stations in the 83-112 bottom trawl survey of the EBS, 1982-2022, including exploratory northern extension samples in 2001, 2005, and 2006, as well as $83-112$ samples available in the NBS in 1982, $1985,1988,1991,2010$, and 2017-2021. NBS samples collected prior to 2010 and in 2018 did not follow the 20 nautical mile sampling grid that was used in 2010, 2017, 2019, 2021 and 2022 surveys. Assimilating these data therefore required extrapolating into unsampled areas. This extrapolation was facilitated by including a spatially varying response (Thorson 2019) to mean bottom temperature within the outer and middle domain strata, estimated for both linear predictors of the delta-model. All environmental data used as covariates
were computed within the R package coldpool (https://github.com/afsc-gap-products/coldpool; Rohan et al., in review). Detailed comparison of results for EBS pollock has shown that a spatially varying covariate (cold-pool index) has a small but notable effect on these indices and resulting stock assessment outputs (O'Leary et al. 2020).

A Poisson-link delta-model (Thorson 2018) involving two linear predictors, and a gamma distribution to model positive catch rates were used in the VAST model. Population density was extrapolated to the entire EBS and NBS in each year, using extrapolation grids that are available within FishStatsUtils, which were updated since the 2021 assessment cycle based on new shapefiles developed by J. Conner (https://github.com/James-Thorson-NOAA/FishStatsUtils). These extrapolation grids are defined using $3705 \mathrm{~m}(2 \mathrm{nmi}) \times 3705 \mathrm{~m}(2 \mathrm{nmi})$ cells; this results in 36,690 extrapolation-grid cells for the eastern Bering Sea and 15,079 in the northern Bering Sea. Bilinear interpolation was used to interpolate densities from 750 "knots" to these extrapolation grid cells; knots were approximately evenly distributed over space, in proportion to the dimensions of the extrapolation grid. Geometric anisotropy was estimated, and included a spatial and spatio-temporal term for both linear predictors. To facilitate interpolation of density between unsampled years, the spatio-temporal fields were structured over time as an $\operatorname{AR}(1)$ process (where the magnitude of autocorrelation was estimated as a fixed effect for each linear predictor). However, temporal correlation was not included for intercepts, each linear predictor and year were treated as fixed effects. Finally, we used epsilon bias-correction to correct for retransformation bias (Thorson and Kristensen 2016).

Model fits for evidence of non-convergence were checked by confirming that (1) the derivative of the marginal likelihood with respect to each fixed effect was sufficiently small and (2) that the Hessian matrix was positive definite. A second check for evidence of model fit was performed by computing Dunn-Smyth randomized quantile residuals (Dunn and Smyth 1996) and visualizing these using a quantile-quantile plot within the $D H A R M a$ R package. The distribution of these residuals was also evaluated over space in each year, and inspected for evidence of residual spatio-temporal patterns.

The motivation for using survey data from the EBS and NBS in Model 22.1 is that accounting for the entire biomass of a stock within its natural boundaries is advantageous to presenting an accurate model, regardless of the footprint of the fishery, especially since YFS likely migrate between the EBS and NBS. In some cases, models can estimate the proportion of a stock outside the survey area via the catchability coefficient if there is mixing between areas $(q<1)$, but it is better to include an actual estimate covering the entire area of occurrence. If a population is well-mixed within its distributional area it does not matter if fishing takes place in only a portion of the area. Analogously, yellowfin sole biomass would not be omitted from closed areas.

## VAST estimates of age compositions

For model-based estimation of age compositions in the Bering Sea, observations of numerical abundance-at-age were fitted at each sampling location. This was made possible by applying a year-specific, region-specific (EBS and NBS) age-length key to records of numerical abundance and length-composition. These estimates were computed in VAST, assuming a Poisson-link delta-model (Thorson 2018) involving two linear predictors, and a gamma distribution to model positive catch rates. Density covariates were not computed in estimation of age composition for consistency with models used in the previous assessment and due to computational limitations. The same extrapolation grid was used as implemented for abundance indices, but here spatial and spatiotemporal fields were modeled with a mesh with coarser spatial resolution than the index model, using 50 "knots". This reduction in the spatial resolution of the model, relative to that used abundance indices, was necessary due to the increased computational load of fitting multiple age categories and using epsilon bias-correction. The same diagnostics were implemented to check convergence and model fit as those used for abundance indices.

## Data weighting

Model-based and VAST survey age composition data were weighted using the methodology of Francis (2011). Specifically, survey age composition data in Models 22.1 and 23.0 was initially weighted based on the number of hauls from which otoliths were collected. Stage 2 weighting was performed using Equation TA1.8 of

Francis (2011) for two iterations. The mean survey age composition weights were used to weight fishery age composition data, as a constant annual value.

## Analytic Approach

## General Model Structure

The abundance, mortality, recruitment and selectivity of yellowfin sole were assessed with a stock assessment model using the AD Model Builder language (Fournier et al. 2012; Ianelli and Fournier 1998). The conceptual model is a separable catch-age analysis that uses survey estimates of biomass and age composition as auxiliary information (Fournier and Archibald 1982). The assessment model simulates the dynamics of the population and compares the expected values of the population characteristics to the characteristics observed from surveys and fishery sampling programs. This was accomplished by the simultaneous estimation of the parameters in the model using the maximum likelihood estimation procedure. The fit of the simulated values to the observable characteristics was optimized by maximizing a $\log$ (likelihood) function given some distributional assumptions about the observed data.

The model includes ages one through $20+$. In the $20+$ group, fish older than twenty are allowed to accumulate into an age category that includes fish of age twenty and older (20+). Since the sex-specific weight-at-age for yellowfin sole diverges after age of maturity (about age 10 for $40 \%$ of the stock), with females growing larger than males, the current assessment model is coded to accommodate the sex-specific aspects of the population dynamics of yellowfin sole. The model allows for the input of sex-specific estimates of fishery and survey age composition and weight-at-age and provides sex-specific estimates of population numbers, fishing mortality, fishery and survey age composition and allows for the estimation of sex-specific natural mortality and catchability. The model retains the utility to fit combined sex data inputs.

The suite of parameters estimated by the model are classified by three likelihood components:

| Data component | Distributional assumption |
| :--- | :---: |
| Trawl fishery catch-at-age | Multinomial |
| Trawl survey population age composition | Multinomial |
| Trawl survey biomass estimates and S.E. | Log-normal |

The AD Model Builder software fits the data components using automatic differentiation (Griewank 2000) software developed as a set of libraries (AUTODIFF C++ library). The model of yellowfin sole population dynamics was evaluated with respect to the observations of the time-series of survey and fishery age compositions and the survey biomass trend since 1982.

Sharp increases in trawl survey abundance estimates for most species of Bering Sea flatfish between 1981 and 1982 indicate that the 83-112 trawl was more efficient for capturing these species than the 400 -mesh eastern trawl used in 1975, and 1979-81. Allowing the model to tune to these early survey estimates would underestimate the true pre-1982 biomass, thus exaggerating the degree to which biomass increased during that period. Although this underestimate would have little effect on the estimate of current yellowfin sole biomass, it would affect the spawner and recruitment estimates for the time-series. Hence, the pre-1982 survey biomass estimates were omitted from the analysis.

Total mortality $Z$ in the model was modeled as the sum of fishing mortality $F$ and natural mortality $M$, such that total mortality in year $t$ at age $a$ is $Z_{t, a}=F_{t, a}+M$.

Fishing mortality at each year and age, $F_{t, a}$, was the product of age-specific fishing gear selectivity $s_{a}$ and the median year-effect of fishing mortality $\mu^{F}$, with normally distributed error,

$$
F_{t, a}=s_{a} \mu^{F} e^{\epsilon_{t}^{F}}, \epsilon_{t}^{F} \backsim N\left(0, \sigma_{F}^{2}\right)
$$

where $\epsilon_{t}^{F}$ is the residual year-effect of fishing mortality and $\sigma_{F}$ is the standard deviation of fishing mortality. Age-specific fishing selectivity $s_{a}$ was calculated using the logistic equation

$$
s_{a}=\frac{1}{1+e^{(-\alpha+\text { age } \beta)}} .
$$

Catch in year $t$ for age $a$ fish $C_{t, a}$ was calculated:

$$
C_{t, a}=\frac{F_{t, a}}{Z_{t, a}}\left(1-e^{Z_{t, a}}\right) N_{t, a}
$$

where $N_{t, a}$ is the number of fish at time $t$, age $a$. Total catch in each year $C_{t}$ was the sum of catch over all ages, $C_{t}=\sum_{a} C_{t, a}$, and the proportion at age in catch was $P_{t, a}=\frac{C_{t, a}}{C_{t}}$.

Recruitment from 1956-1977 was modeled as $N_{t, 1}=R_{t}=R_{0} e^{\tau_{t}}, \tau_{t} \backsim N\left(0, \sigma_{R}^{2}\right)$, where $R_{0}$ is the geometric mean of the modeled age 1 recruitment from 1956-1975, and $\sigma_{R}$ is the standard deviation of recruitment.

Recruitment from 1978-2023 was determined using the Ricker stock recruitment curve,

$$
R=\alpha S e^{-\beta S}
$$

where $S$ is the spawning stock biomass (Ricker 1958). Parameters $\alpha$ and $\beta$ were estimated by fitting spawning biomass and recruitment during the period 1978-2017, and are shown from Model 22.1 (Figure 16) and Model 23.0 (Figure 17).

The number of fish in year $t+1$ at age $a$ was the number of fish in the previous year subjected to natural and fishing mortality,

$$
N_{t+1, a+1}=N_{t, a} e^{-Z_{t, a}}
$$

The "plus group" included all fish age 20 and older included fish surviving from age 19 as well as those age 20 and higher,

$$
N_{t+1, A}=N_{t, a} e^{-Z_{t, A-1}}+N_{t, A} e^{-Z_{t, A}}
$$

Spawning biomass was calculated as the product of weight-at-age and the number of mature females at each age,

$$
S_{t}=\sum N_{t, a} W_{t, a} \phi_{a}
$$

where $\phi_{a}$ is the proportion of mature females at age $a$ and $W_{a, t}$ is the mean body weight in kg of fish age $a$ in year $t$. Survey biomass was assumed to be the product of catchability $q$, survey selectivity $s_{a}$, and the biomass,

$$
\text { Biomass }_{\text {survey }, t}=q \sum N_{t, a} W_{t, a} s_{a}
$$

## Description of Alternative Models

In this assessment we considered Model 22.1 used in the 2022 assessment updated with 2023 data. This model used a fixed value for female natural mortality ( $M=0.12$ ) and allowed male natural mortality to be estimated within the model. Model 22.1 also used a single value of survey selectivity for males and females. Model 23.0 was similar to Model 22.1 except it used a single annual value of time-varying fishery selectivity for males and females. All models used model-based VAST estimates of biomass from the eastern Bering Sea plus northern Bering Sea survey area, rather than standard design-based estimates of biomass.

## Parameters Estimated Outside the Assessment Model

Weight at age
Parameters of the von Bertalanffy growth curve were estimated for yellowfin sole, by sex, from the trawl survey database::

| Sex | $L_{\text {inf }}$ | $K$ | $t_{0}$ | $n$ |
| :--- | :--- | :--- | :--- | :--- |
| Males | 34.03 | 0.161 | 0.515 | 656 |
| Females | 38.03 | 0.137 | 0.297 | 709 |

A sex-specific length-weight relationship was also calculated from the survey database using the power function, $W \operatorname{eight}(g)=a * \operatorname{Length}(c m)^{b}$, where $a$ and $b$ are parameters estimated to provide the best fit to the data.

Weight at age from the survey time series were evaluated as follows. Survey weights at age were available from 1984 through 2019 (19,074 records). Weight-at-age was calculated for all ages 1-19 as well as the age 20 plus group (all ages 20 and over). There were some gaps due to years in which no fish of a particular age had been collected. Where possible, these gaps were filled with survey length at age data converted to weight at age. Between 1971 through 2019, there were lengths associated with aged yellowfin sole for more years than weights. Lengths at age were converted to weights at age and used to fill gaps using a sex-specific length-weight relationship based on all available current data. The relationship between weight and length was calculated using the power function, Weight $(g)=a * \operatorname{Length}(\mathrm{~cm})^{b}$, where $a$ and $b$ are parameters estimated to provide the best fit to the data. The parameter estimates and the number of individual data points are shown below.

| Sex | $a$ | $b$ | $n$ |
| :--- | :--- | :--- | :--- |
| Males | 0.0091 | 3.068 | 10,663 |
| Females | 0.0059 | 3.205 | 13,702 |

Finally, annual age categories for which no length-at-age or weight-at-age were available were filled by calculating weight at age (using the power relationship described above) from a mean overall length at age for males and females from 1971-2019 data.

The mean weight at age from 2022 was used as an estimate for weight at age in 2023, as the 2023 ages have not yet been processed. The most recent data was used for 2023 in consideration of the increase in average size at age (Figure 18, Table 12,Table 13).

## Natural mortality

Natural mortality $(M)$ was initially estimated by a least squares analysis where catch at age data were fitted to Japanese pair trawl effort data while varying the catchability coefficient $(q)$ and $M$ simultaneously. The best fit to the data (the point where the residual variance was minimized) occurred at a value of $M=0.12$ (Bakkala and Wespestad 1984). This was also the value which provided the best fit to the observable population characteristics when $M$ was profiled over a range of values in the stock assessment model using data up to 1992. Since then, natural mortality has been estimated as a free parameter in some of the stock assessment model runs which have been evaluated the past five years. A fixed female natural mortality at $M=0.12$ and male natural mortality estimated by the model is used in Models 22.1 and 23.0.

## Maturity

Yellowfin sole maturity schedules were estimated from in-situ observations from two studies as discussed in the "Data" section (Table 7).

## Parameter Estimates

A list of selected parameters estimated inside the model are shown for Model 22.1 in Table 14, and for Model 23.0 in Table 15.

## Parameters Estimated Inside the Assessment Model

There were 524 parameters estimated by Model 22.1, and 382 estimated by Model 23.0. Model 22.1 from 2022 had 518 parameters. The number of key parameters are presented below:

| Fishing mortality | Selectivity | Survey catchability | Year-class strength | Spawner-recruit | $M$ | Total |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 70 | $330(182)$ | 4 | 117 | 2 | 1 | $524(382)$ |

The increase in the number of parameters estimated in this assessment compared to last year (6) can be accounted for by the input of another year of fishery data and the entry of another year-class into the observed population and four more sex-specific fishery selectivity parameters. Model 23.0 has only 382 estimated parameters, due to the removal of separate male time varying fishery selectivity parameters ( 2 parameters per year for 70 years). The population simulation specifies the numbers-at-age in the beginning year of the simulation, the number of recruits in each subsequent year, and the survival rate for each cohort as it moves through the population over time.

## Selectivity

Survey selectivity in all models was combined over males and females. Fishery selectivity was time-varying for all models. However, time-varying fishery selectivity was modeled separately for males and females in Model 22.1 and combined in Model 23.0. The selectivity pattern was asymptotic increasing logistic for the fishery and survey. The oldest year-classes in the surveys and fisheries were truncated at 20 and allowed to accumulate into the $20+$ age category. For Models 22.1 and 23.0, a single selectivity curve, for both males and females, was fit for all years of survey data (Figure 19). Time-varying fishing selectivity curves were estimated because there have been annual changes in management, vessel participation and possibly gear selectivity (Figure 20, Figure 21). A logistic equation was used to model fishery selectivity and is a function of time-varying parameters specifying the age and slope at $50 \%$ selection, $\varphi_{t}$ and $\eta_{t}$, respectively. The fishing selectivity ( $S^{f}$ ) for age a and year t is modeled as,

$$
\begin{equation*}
S_{a, t}^{f}=\left[1+e^{\eta_{t}\left(a-\varphi_{t}\right)}\right]^{-1} \tag{1}
\end{equation*}
$$

where $\varphi_{t}$ and $\eta_{t}$ are time-varying and partitioned (for estimation) into parameters representing the mean and a vector of deviations (log-scale) conditioned to sum to zero. The deviations are constrained by a lognormal prior with a variance that was iteratively estimated. The process of iterating was to first set the variance to a high value to estimate the deviations. The next step was to compare the variability of model estimates. The variance of the model estimates was then rounded up slightly and fixed for subsequent runs. The 2023 values were fixed as the average of the 3 most recent years.

## Fishing Mortality

The fishing mortality rates $(F)$ for each age and year are calculated to approximate the catch weight by solving for F while still allowing for observation error in catch measurement. A large emphasis (300) was placed on the catch likelihood component to force the model to closely match the observed catch.

## Survey Catchability

Past assessments have examined the relationship between estimates of survey biomass and bottom water temperature. To better understand how water temperature may affect the catchability of yellowfin sole to the survey trawl, catchability was estimated for each year in the stock assessment model as:

$$
\begin{equation*}
q=e^{-\alpha+\beta T} \tag{2}
\end{equation*}
$$

where $q$ is catchability, $T$ is the average annual bottom water temperature anomaly at survey stations less than 100 m , and $\alpha$ and $\beta$ are parameters estimated by the model. The catchability equation has two parts. The
$e^{-\alpha}$ term is a constant or time-independent estimate of $q$. The second term, $e^{\beta T}$ is a time-varying (annual) $q$ which responds to metabolic aspects of herding or distribution (availability) which can vary annually with bottom water temperature. The result of incorporating bottom temperature to estimate annual $q$ has resulted in an improved fit to the survey (described in the 2018 BSAI yellowfin sole assessment).

The survey catchability model includes survey start date (expressed as deviation in days (- and + ) from the average survey start date of June 4th). This feature has been used since 2018, and its interaction with annual bottom water temperature is added to the catchability equation as:

$$
\begin{equation*}
q=e^{-\alpha+\beta T+\gamma S+\mu T: S} \tag{3}
\end{equation*}
$$

where $T=$ survey bottom temperature (averaged per year for all stations $<100 \mathrm{~m}$ ), $S=$ survey start date, and $T: S=$ interaction of $T$ and $S$. Earlier survey start dates usually encounter colder water and since the timing of the survey start date is positively correlated with bottom water temperature, improvement in fitting the survey biomass estimates can be gained by estimating two new parameters ( $\mu$ and $\gamma$ ). Akaike information criterion (AIC) were used to determine if the additional variables ( $S$ and $T: S$ ) improved the regression fit. The improvement in fit was more than offset by the additional two parameters (Nichol et al. 2019).

## Spawner-Recruit Estimation

Annual recruitment estimates from 1978-2017 were constrained to fit a Ricker (1958) form of the stock recruitment relationship as follows:

$$
\begin{equation*}
R=\alpha S e^{-\beta S} \tag{4}
\end{equation*}
$$

where $R$ is age 1 recruitment, $S$ is female spawning biomass in metric tons the previous year, and $\alpha$ and $\beta$ are parameters estimated by the model. This stock recruitment curve expresses a peak level of recruitment at an intermediate stock abundance and density dependence at higher stock sizes. The spawner-recruit fitting is estimated in a later phase after initial estimates of survival, numbers-at-age and selectivity are obtained.

## Results

## Model Evaluation

For this assessment, Model 22.1 and Model 23.0 are presented. Model 22.1 was the accepted model in the 2022 yellowfin sole stock assessment, and Model 23.0 is the preferred model for 2023.

Model 22.1 estimated male natural mortality 0.136254 to be higher than female natural mortality 0.12 , which is in common with known life history parameters of other Alaska flatfish. Models 23.0 also estimated higher male than female natural mortality, 0.137. In Arrowtooth Flounder, higher natural mortality is assumed for males and is consistent with their skewed sex ratio (Wilderbuer and Turnock 2009). Higher natural mortality for male flatfish has been assumed for flatfish from other regions as well (Maunder and Wong 2011). Higher natural mortality indicates greater productivity of a stock and therefore higher management quantities.

Overall, Models 22.1 and 23.0 provided very similar results. Models 22.1 and 23.0 used the same input data (EBS and NBS VAST survey estimates of biomass index). The Akaike Information Criterion was calculated from the hessian and objective function value $O F V$ of the ADMB output .par file to compare models 22.1 and 23.0. The hessian Hess was transformed back into the original parameter space and the marginal likelihood Likelihood $_{M A R}$ was estimated as:

$$
\begin{equation*}
\text { Likelihood }_{M A R}=-0.5 * \text { Hess }_{T}-O F V \tag{5}
\end{equation*}
$$

The marginal likelihood was then used to calculate AIC, as follows:

$$
\begin{equation*}
A I C=2 * k-2 * \text { Likelihood }_{M A R}, \tag{6}
\end{equation*}
$$

where $k$ is the number of parameters used in the model. The AIC for Model 23.0 was lower (AIC = 2670.419) than for Model $22.1($ AIC $=3345.167)$, indicating that Model 23.0 is a more parsimonious and better-fit model.

In other respects, Models 23.0 and 22.1 appeared to fit the data almost identically. The survey selectivity was similar (Figure 19), survey catchability was similar (Figure 22), sex ratio appeared similar (Figure 23), predicted survey biomass was similar (Figure 24), as were total biomass, numbers at age, and spawning stock biomass (Figure 25,Figure 26, and Figure 27). Therefore, Model 23.0 was considered a better fit to the data, with fewer parameters.

Models 22.1 (2023) and 23.0 (Figure 22) indicate a shift towards higher survey catchability, than Model 22.1, corresponding with lower bottom temperatures than in 2022 (Figure 14). The proportion female was estimated to be closer to $50 \%$ in Model 22.1 (2022) than Model 23.0 and 22.1, which have slightly higher proportion of females (Figure 23). In addition, the anomalous spike in the proportion female in the 1960s is reduced for Model 22.1 (2023). Notably, Model 23.0 indicates the most stable sex ratio composition during the 1960 biomass decline.

Models 22.1 and 23.0 similarly provided a good fit the survey age compositions (Figure 28, Figure 29), as well as the fishery age compositions (Figure 30, Figure 31). Models 22.1 and 23.0 fit survey biomass similarly (Figure 11).

Given the uncertainty of the productivity of yellowfin sole at low spawning stock sizes, and because the AFSC policy for reference point time-series selection is to use the post 1977 regime shift values unless there is a compelling reason to do otherwise, the productivity of yellowfin sole in this assessment was estimated by fitting the 1977-2017 spawner-recruit data in the model. The resulting stock recruitment curve shows average recruitment for the years 2016-2021 except 2017 and 2019 which are above average, based on Model 22.1 (Figure 16), and Model 23.0 (Figure 17).

Model 23.0 is the preferred model for estimating the yellowfin sole stock size and management quantities for the 2024 fishing season because it provides the best fit to the data, lowest AIC, and the most parsimonious set of parameter estimates. Comparison between Models 22.1 and 23.0 show that a single fishery selectivity provides a better model fit.

## Time Series Results

The data was updated in 2023 to include current values of catch, survey biomass estimates, and fishery and survey age compositions from 2022. The latest year of fishery weight-at-age data was included. The eight past years in the Bering Sea have had bottom temperature anomalies above the mean, to varying degree, but 2022 and 2023 have been near-average. The temperature-dependent $q$ adjustment for 2023 was 1.07 for Model 22.1, 1.06 for Model 23.0.

## Fishing Mortality and Selectivity

The full-selection fishing mortality, $F$, has averaged 0.0714 over the 5 years, 2019 -2023 (Table 16). Model estimated selectivities, Figure 19 and Figure 20 indicate that yellowfin sole are $50 \%$ selected by the fishery at about age 9 and nearly fully selected by age 13 , with annual variability. Based on results from the stock assessment model, annual average exploitation rates of yellowfin sole since 1977 ranged from $3 \%$ to $7 \%$ of the total biomass, and have averaged approximately $4 \%$.

## Abundance Trends

Model 22.1 estimated catchability $q$ at an average value of 1.1 for the period 1982-2023 which resulted in a model estimate of the 2023 age $2+$ total biomass at 2.687 million $t$ (Table 9 ). In comparison, catchability
was similar and only slightly lower for Model 23.0 , which was estimated at 1.11 , which resulted in a $2+$ total biomass estimate of 2.716 million $t$. Model results indicate that yellowfin sole total biomass (age $2+$ ) was at low levels during most of the 1960s and early 1970s (700,000-1,000,000 t) after a period of high exploitation (Table 9, Figure 26). Sustained above average recruitment from 1967-1976 combined with light exploitation resulted in a biomass increase to a peak of approximately 3.6 million $t$ by 1985 . The population biomass has since been in a slow decline as the strong 1981 and 1983 year-classes have passed through the population, with only the 1991, 1995 and 2003 year-classes at levels observed during the 1970s. The current model indicates that the population is increasing and predicts that it will continue to increase through 2024 . The present biomass is estimated at $76 \%$ of the peak 1985 level. The female spawning biomass has also declined since the peak in 1994, with a 2023 estimate of $916,707 \mathrm{t}$ (Table 17).

Allowing $q$ to be correlated with annual bottom temperature and survey start date provides a better fit to the bottom trawl survey estimates than using a $q$ fixed at the average value (Fig. 4.18, Wilderbuer et al. 2018). Both the trawl survey and the stock assessment model indicate that the yellowfin sole resource (total biomass) increased during the 1970s and early 1980s to a peak level during the mid-1980s. The yellowfin sole population biomass slowly decreased over the 23 years since the mid-1990s as the majority of year-classes during those years were below average strength. Average to above average recruitment from 2006 to 2009 is expected to maintain the abundance of yellowfin sole at a level above $B_{M S Y}$ in the near future. The stock assessment projection model indicates a generally stable trend in female spawning biomass through 2036 if the fishing mortality rate continues at the same level as the average of the past 5 years (Figure 32).

## Recruitment Trends

The primary reason for the sustained increase in abundance of yellowfin sole during the 1970s and early 1980s was the recruitment of a series of stronger than average year-classes spawned in 1967-1976 (Figure 33). The 1981 year-class was the strongest observed (and estimated) during the time series, followed by the 1983 year-class. Survey age composition estimates and the assessment model also estimate that the 1987 and 1988 year-classes were average and the 1986 and 1988 year-classes were above average. Recruitment since 1990 has been below the long-term average in most years, and the 2016, 2017, and 2018 year-classes appeared to be one of the lowest on record (Figure 33). Recruitment for years subsequent to 2017 may be less reliable given the fit to the stock recruitment curve and lack of survey data to confirm recruitment estimates. Given the large proportion of new recruits from the 2017 year class that are apparent in survey age composition data, it is probable that future assessments will indicate higher recruitment in 2017.

## Retrospective Analysis

A within-model retrospective analysis was included for the recommended assessment model (Model 23.0), as well as Model 22.1. In this analysis, retrospective female spawning biomass was calculated by sequentially dropping data one year at a time and then comparing the peeled estimate to the reference stock assessment model used in the assessment (Figure 34 and Figure 35). Mohn's rho for Model 22.1 was 0.06 and for Model 22.1 it was 0.005 . Mohn's rho for Model 22.1 (2022) was 0.007 . The directionality of the retrospective peels can provide insight into the retrospective pattern. For Model 22.1 and 23.0 the first four retrospective peels were positively different from the terminal year, but the remaining peels resulted in an upward shift of the entire time series (Figure 36 and Figure 37), indicating that information in the $3-4$ terminal years result in a downward shift of the time series. However, the Mohn's rho values presented here are within the range of acceptable values and do not indicate any significant retrospective issues in either Model 23.0 or Model 22.1. The Mohn's rho does not exceed the rule of thumb guideline for long-lived stocks proposed by Hurtado-Ferro at al. (2015), which includes flatfish, that values of Mohn's rho higher than 0.20 or lower than -0.15 may be an indication of a retrospective pattern.

## Risk Table

## Assessment related considerations

The BSAI yellowfin sole assessment is based on surveys conducted annually on the EBS shelf from 1982-2023, continually except for 2020 due to the COVID-19 pandemic. Fish ages, derived from otoliths collected during
the surveys and the fishery to calculate annual estimates of population and fishery age composition, have been validated. Survey age composition data is used in the assessment from 1982-2022. The assessment model exhibits good fits to all compositional and abundance data and converges to a single minima in the likelihood surface. Recruitment estimates track strong year-classes that are consistent with the data. The retrospective pattern and Mohn's rho value, 0.06 , indicate that there are no significant time varying trends that are not accounted for by the model (Figure 34 and Figure 35).

We propose a level 1 designation for the assessment category in the risk table.

## Population dynamics considerations

Stock assessment model results indicate that yellowfin sole total biomass (age $2+$ ) was at low levels during most of the 1960s and early 1970s (700,000-1,000,000 t) after a period of high exploitation. Sustained above average recruitment from 1967-1976 combined with light exploitation resulted in a biomass increase to a peak in 1985. The population biomass has since been in a slow decline over the time series since a peak in the mid-1980s. Only the 1991, 1995 and 2003 year-classes have achieved levels observed during the 1970s. The 2022 EBS survey biomass estimate for yellowfin sole was an increase from the previous year, and the 2023 survey estimate is the second lowest in the time series since 1982. The current model for 2023 estimates $B_{M S Y}$ at 539,657 t. Projections indicate that the FSB will remain above the $B_{M S Y}$ level through 2037. The large 2017 year class will be age 7 in 2024 and will become selected by the fishery as it grows. This is predicted to result in higher population size estimates for the yellowfin sole stock.

We propose a level 2 designation for the population dynamics category in the risk table.

## Environmental/ecosystem considerations

Environmental processes: Over the last year, broad-scale climate indices, like the North Pacific Index, reflected a transition from La Niña conditions to developing El Niño conditions in the tropic Pacific; the impact of the developing El Niño on the EBS shelf conditions are unknown at this time. The recent warm stanza persisted from approximately 2014 through 2021, since which the Eastern Bering Sea has experienced near average oceanographic conditions. Regional sea surface and bottom temperature trends were largely at or near the long-term average in 2023. Exceptions include (i) slightly warmer than average sea surface temperature (SST) over the outer domain (southern and northern shelf) and over the southern middle domain from approximately December 2022 through April 2023 and (ii) slightly cooler than average bottom temperature over the outer domain of the southern shelf from August 2022 through August 2023. During the standard bottom trawl survey in summer 2023, bottom temperatures were slightly cooler than the time series average with the coldest bottom temperatures in the southern inner domain since 2013. Sea ice metrics, such as early ice extent (Oct. - Dec.), annual ice extent, and sea ice thickness were all near the respective time series averages.

The 2023 cold pool extent was also near its historical average (Hennon et al., 2023). Yellowfin sole (YFS) demonstrate earlier migration to spawning grounds and earlier spawning events under warmer conditions. In addition, somatic growth of YFS increases in warmer temperatures. A proposed thermal window (Yeung et al., 2021) suggests continued warming over the EBS shelf may result in temperatures above the thermal physiological maximum of YFS. Adult yellowfin sole are distributed off-shelf in winter, therefore may have experienced cooler than average bottom temperature conditions this past winter. Yellowfin sole move inshore during summer for spawning and young-of-the-year (YOY) rear in inshore habitats. Therefore, YOY may have experienced cooler hatching and rearing temperatures in 2023.

Prey: The dominant prey of adult YFS are polychaete worms, miscellaneous worms, clams, and benthic amphipods. Direct measurements of infaunal abundance trends are not available, however, abundance trends of motile epifauna that also consume infauna (i.e., indirect measurements) are quantified from the bottom trawl survey. The biomass of motile epifauna from the standard bottom trawl survey grid peaked in 2017 and remains above their long-term mean in 2023, though the guild biomass decreased from 2022 (Siddon, 2023). No direct or indirect measures of prey availability exist for the northern Bering Sea shelf. Early life stages of YFS may consume pelagic zooplankton, such as small copepods. The Rapid Zooplankton Assessment in the southeastern Bering Sea in spring noted a moderate abundance of small copepods, but low abundance
and low lipid content of large copepods and euphausiids. In fall, the moderate abundance of small copepods continued, and while the abundance of large copepods and euphausiids remained low, abundances increased from south to north. In the northern Bering Sea in fall, small copepods were ubiquitous and increased in abundance from south to north, while hot spots of large copepods and euphausiids were observed around St. Lawrence Island (Kimmel et al., 2023). In 2023, adult fish condition (as measured by length-weight residuals) was above-average in the standard bottom trawl survey grid, though it decreased from 2022. It is worth noting that the condition of several flatfishes species from the standard bottom trawl survey grid declined from 2022 to 2023, including northern rock sole, arrowtooth flounder, Alaska plaice, and flathead sole. In the northern Bering Sea bottom trawl survey, fish condition was strongly negative, continuing a trend since 2019, though it is based on a shorter time series (Prohaska and Rohan, 2023). Over the southern shelf, trends in motile epifauna, as an indirect measure of prey availability, mirror trends in adult fish condition which was near average, but declined from 2022 to 2023 . Over the northern shelf, no indicators of prey availability exist; declining and negative adult fish condition indicate potential concerns in prey availability.
Competitors: Competitors for YFS prey resources include other benthic foragers, like northern rock sole and flathead sole. The trend in biomass of the benthic foragers guild from the standard bottom trawl survey grid decreased from 2022 to 2023 and remained below the time series mean. Trends in benthic forager biomass indirectly indicate availability of infauna (i.e., prey of these species), suggesting competition for prey resources remains low in 2023 (Siddon, 2023).

Predators: Predators of YFS include Pacific cod and Pacific halibut, which are included in the apex predator guild. The biomass of the apex predator guild measured during the standard bottom trawl survey was nearly equal to their long term mean. The trend in the apex predator guild is largely driven by Pacific cod, which had a modest increase from 2022 (Siddon, 2023). While an increase in Pacific cod abundance may represent increased predation pressure for YFS, the spatial distribution of Pacific cod may provide a potential refuge from predation in the inner domain. The Pacific halibut stock decreased from a peak in the early 2000s and remains low in 2023, therefore represents no increase in predation pressure.
Summary for Environmental/Ecosystem considerations:

- Environment: Adult YFS may have experienced cooler than average bottom temperatures in the off-shelf region during winter 2022/2023 (based on ROMS) and YOY may have experienced cooler than average bottom temperatures in inshore spawning and rearing habitats during summer 2023 (based on BTS). Cooler temperatures may result in delayed migration to spawning grounds, delayed spawning, and decreased somatic growth.
- Prey: Sufficient prey may have been available for early life stages of YFS and for adult YFS over the southern shelf based on trends in motile epifauna and fish condition. Declining and negative adult fish condition indicate potential concerns in prey availability over the northern shelf.
- Competition: The trend in biomass of benthic foragers decreased from 2022 to 2023 and remained below the time series mean, suggesting competition for prey resources remains low in 2023.
- Predation: Predation pressure may be mixed; a modest increase in Pacific cod biomass may be countered by potential refuge from predation in the inner domain. Pacific halibut biomass continues to decline in the EBS and represents no increase in predation pressure.

Together, the most recent data available suggest an ecosystem risk Level 2 - "Multiple indicators showing consistent adverse signals a) across the same trophic level as the stock, and/or b) up or down trophic levels (i.e., predators and prey of the stock)." Multiple indicators "across the same trophic level" are present in the consistent declines in fish condition for flatfishes. In addition there are indicators down trophic levels due to prey concerns.

## Fishery performance considerations

The 2023 fishery CPUE shows no concerns regarding stock biomass trend, unusual spatial pattern of fishing, changes in the percent of TAC taken, or changes in the duration of fishery openings. Catches were low for YFS in 2023 , but it was an issue with the market, not the fishery itself. From January through June, the
fishery had average catch rates, fish sizes, and market. However in June, demand decreased. For the fishing that has occurred in the fall of 2023, CPUE is reported to be good and the fish are high quality.

An extension to the tariff exclusion was approved in Dec. 2022 and it was set to expire Sept. 30, 2023. On Sept. 6 the exclusions were extended through the end of 2023 . While this is good news, the presence of tariffs and exclusions leads to market uncertainty. It is uncertain whether tariffs will be in place January 1, 2024.

We propose a level 1 designation for the fishery performance category in the risk table.

| Assessment <br> consideration | Population <br> dynamics | Environmental <br> ecosystem | Fishery <br> performance |
| :--- | :--- | :--- | :--- |
| Level 1: No concern | Level 2: Major con- | Level 2: Major con- | Level 1: No concern |
|  | cern | cern |  |

We recommend no reduction in ABC based on this risk table assessment.

## Harvest Recommendations

## Scenario Projections and Two-Year Ahead Overfishing Level

In addition to the seven standard harvest scenarios, Amendments 48/48 to the BSAI and GOA Groundfish Fishery Management Plans require projections of the likely OFL two years into the future. The 2023 numbers at age from the stock assessment model are projected to 2024 given the 2023 estimated full year's catch, and then a 2024 catch of $128,825 \mathrm{t}$ was applied to the projected 2024 population biomass to obtain the 2024 OFL.

The SSC determined in December 2006 that yellowfin sole would be managed under the Tier 1 harvest guidelines, and therefore future harvest recommendations would be based on maximum sustainable yield $M S Y$ and the associated fishing effort $F_{M S Y}$ values calculated from a spawner-recruit relationship. $M S Y$ is an equilibrium concept and its value is dependent on both the spawner-recruit estimates which are assumed to represent the equilibrium stock size-recruitment relationship and the model used to fit the estimates. In the yellowfin sole stock assessment model, a Ricker form of the stock-recruit relationship was fit to various combinations of these data and estimates of $F_{M S Y}$ and $B_{M S Y}$ were calculated, assuming that the fit to the stock-recruitment data represents the long-term productivity of the stock (details provided in Wilderbuer et al. 2018). The 2024 ABC is calculated using Tier 1 methodology. The Tier 1 harvest level is calculated as the product of the harmonic mean of $F_{M S Y}$ and the geometric mean of the 2024 biomass estimate.

The geometric mean of the 2024 biomass estimate, $B_{g m}$, is estimated using the equation $B_{g m}=e^{\ln (B)-\left(c v^{2} / 2\right)}$, where $B$ is the point estimate of the 2024 biomass from the stock assessment model and $c v^{2}$ is the coefficient of variation of the point estimate (a proxy for sigma). The harmonic mean of $F_{M S Y}, F_{h a r}$ is estimated as $F_{h a r}=e^{\ln \left(F_{M S Y}-\left(\ln \left(s d^{2}\right) / 2\right)\right.}$, where $F_{M S Y}$ is the peak mode of the $F_{M S Y}$ distribution and $s d^{2}$ is the square of the standard deviation of the $F_{M S Y}$ distribution.

In 2006 the SSC selected the 1978-2001 data set for the Tier 1 harvest recommendation. Using this approach for the 2024 harvest (now the 1978-2017 time-series) recommendation (Model 23.0), the $F_{A B C}=F_{H m e a n}=$ 0.106. The estimate of age $6+$ total biomass for 2024 is $2,512,810 \mathrm{t}$. The calculations outlined above give a Tier 1 ABC harvest recommendation of $265,913 \mathrm{t}$ and an OFL of $305,298 \mathrm{t}$ for 2024 . This results in an $13 \%$ $(39,385 \mathrm{t})$ buffer between ABC and OFL.
The stock assessment analysis must also consider harvest limits, usually described as overfishing fishing mortality levels with corresponding yield amounts. Amendment 56 to the BSAI FMP sets the Tier 1 harvest limit at the $F_{M S Y}$ fishing mortality value. The overfishing limit mortality values, ABC fishing mortality values and their corresponding yields are given as follows:

| Harvest level | F value | 2024 Yield |
| :--- | :---: | :---: |
| Tier 1 $F_{O F L}=F_{M S Y}$ | 0.121 | $305,298 \mathrm{t}$ |
| Tier 1 $F_{A B C}=F_{\text {harmonicmean }}$ | 0.106 | $265,913 \mathrm{t}$ |

A complete record of catch, ABC, and OFL since 1980 is available in Table 18.

## Status Determination

A standard set of projections is required for each stock managed under Tiers 1, 2, or 3 of Amendment 56. This set of projections encompasses seven harvest scenarios designed to satisfy the requirements of Amendment 56, the National Environmental Policy Act, and the Magnuson-Stevens Fishery Conservation and Management Act (MSFCMA), which was implemented in 1977.

For each scenario, the projections begin with the vector of 2023 numbers at age estimated in the assessment. This vector is then projected forward to the beginning of 2024 using the schedules of natural mortality and selectivity described in the assessment and the best available estimate of total (year-end) catch for 2023. In each subsequent year, the fishing mortality rate is prescribed on the basis of the spawning biomass in that year and the respective harvest scenario. In each year, recruitment is drawn from an inverse Gaussian distribution whose parameters consist of maximum likelihood estimates determined from recruitments estimated in the assessment. Spawning biomass is computed in each year based on the time of peak spawning and the maturity and weight schedules described in the assessment. Total catch is assumed to equal the catch associated with the respective harvest scenario in all years. This projection scheme is run 1,000 times to obtain distributions of possible future stock sizes, fishing mortality rates, and catches.

Five of the seven standard scenarios will be used in an Environmental Assessment prepared in conjunction with the final SAFE. These five scenarios, which are designed to provide a range of harvest alternatives that are likely to bracket the final TAC for 2024 , are as follows (max $F_{A B C}$ refers to the maximum permissible value of $F_{A B C}$ under Amendment 56):

- Scenario 1: In all future years, $F$ is set equal to $\max F_{A B C}$. (Rationale: Historically, $T A C$ has been constrained by ABC, so this scenario provides a likely upper limit on future TACs.)
- Scenario 2: In all future years, F is set equal to a constant fraction of max $F_{A B C}$, where this fraction is equal to the ratio of the $F_{A B C}$ value for 2023 recommended in the assessment to the max $F_{A B C}$ for 2024. (Rationale: When $F_{A B C}$ is set at a value below max $F_{A B C}$, it is often set at the value recommended in the stock assessment.)
- Scenario 3: In all future years, $F$ is set equal to the 2018-2022 average $F$. (Rationale: For some stocks, $T A C$ can be well below ABC , and recent average $F$ may provide a better indicator of $F_{T A C}$ than $F_{A B C}$.)
- Scenario 4: In all future years, $F$ is set equal to $F_{60} \%$. (Rationale: This scenario provides a likely lower bound on $F_{A B C}$ that still allows future harvest rates to be adjusted downward when stocks fall below reference levels.)
- Scenario 5: In all future years, $F$ is set equal to zero. (Rationale: In extreme cases, $T A C$ may be set at a level close to zero.)

Two other scenarios are needed to satisfy the MSFCMA's requirement to determine whether a stock is currently in an overfished condition or is approaching an overfished condition. These two scenarios are as follow (for Tier 3 stocks, the $M S Y$ level is defined as $B_{35 \%}$ ):

- Scenario 6: In all future years, F is set equal to $F_{O F L}$. (Rationale: This scenario determines whether a stock is overfished. If the stock is 1) above its MSY level in 2023 or 2) above $1 / 2$ of its MSY level in 2023 and expected to be above its MSY level in 2033 under this scenario, then the stock is not overfished.)
- Scenario 7: In 2024 , F is set equal to $\max F_{A B C}$, and in all subsequent years, F is set equal to $F_{O F L}$. (Rationale: This scenario determines whether a stock is approaching an overfished condition. If the stock is 1) above its MSY level in 2025 or 2) above $1 / 2$ of its MSY level in 2025 and expected to be above its MSY level in 2035 under this scenario, then the stock is not approaching an overfished condition.)

Simulation results shown in Table 19 indicate that yellowfin sole are not currently overfished and are not approaching an overfished condition. If fishing continues at the same fishing mortality as in the past 5 years, the stock is projected to remain well above $B_{M S Y}$ (Figure 32). A phase plane figure of the estimated time-series of yellowfin sole female spawning biomass (FSB) relative to the harvest control rule indicates
that the stock is above $B_{M S Y}$, has been consistently fished below $F_{M S Y}$ for decades, and that projections of female spawning biomass are expected to be above $B_{M S Y}$ for Model 22.1 (Figure 38). A phaseplane plot for Model 23.0 shows similar results (Figure 39)
The ABC and OFL based on the recommended model 23.0 for 2024 and 2025 assuming average catch rates are shown in the following table.

| Year | Catch | FSB | Geom. mean 6+ biomass | ABC | OFL |
| :---: | :---: | :---: | ---: | :---: | :---: |
| 2024 | 121,103 | 881,640 | $2,512,810$ | 265,913 | 305,298 |
| 2025 | 121,103 | 857,354 | $2,616,800$ | 276,917 | 317,932 |

## Acknowledgments

We thank Jon Short and Delsa Anderl and the entire age and growth team for age data. We also thank fisheries observers and all those who participated in eastern Bering Sea research surveys to provide invaluable data for this assessment.

## References

Alaska Fisheries Science Center. 2016. Wholesale market profiles for Alaska groundfish and crab fisheries. 134 p. Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv. 7600 Sand Point Way NE. Seattle, WA.

Bakkala, R.G., 1979. Population characteristics and ecology of yellowfin sole. NWAFC PROCESSED REPORT 79-20, p. 280.

Bakkala, R. G. and V. Wespestad. 1984. Yellowfin sole. In R. G. Bakkala and L. resources of the eastern Bering Sea and Aleutian Islands region in 1983, p. 37-60. U.S. Dep. Commer., NOAA Tech. Memo. NMFS F/NWC-53.
Bakkala, R. G., and T. K. Wilderbuer. 1990. Yellowfin sole. In Stock Assessment and Fishery Evaluation Document for Groundfish Resources in the Bering Sea/Aleutian Islands Region as Projected for 1990, p. 60-78. North Pacific Fishery Management Council, P. O. Box 103136, Anchorage, Ak 99510.

Clark, W. G., Hare, S. R., Parms, A. M., Sullivan, P, J., Trumble, R. J. 1999. Decadal changes in growth and recruitment of Pacific halibut (Hippoglossus stenolepis). Can. J. fish. Aquat. Sci. 56, 242-252.

Dorn, M.W. 1992. Detecting environmental covariates of Pacific whiting Merluccius productus growth using a growth-increment regression model. Fish. Bull. 90:260-275.

Dunn, K.P., and Smyth, G.K. 1996. Randomized quantile residuals. Journal of Computational and Graphical Statistics 5, 1-10.

Fissel, B. 2021. Flatfish (BSAI) Economic Performance Report for 2020.
Fournier, D. A., H.G. Skaug, J. Ancheta, J. Ianelli, A. Magnusson, M. N. Maunder, A. Nielsen, and J. Sibert. 2012. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim. Methods Softw. 27:233-239.

Fournier, D. A. and C.P. Archibald. 1982. A general theory for analyzing catch-at-age data. Can. J. Fish Aquat. Sci. 39:1195-1207.

Griewank, A. 2000. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. Philadelphia: SIAM.

Haflinger, K. 1981. A survey of benthic infaunal communities of the Southeastern Bering Sea shelf. In Hood and Calder (editors) The Eastern Bering Sea Shelf: Oceanography and Resources, Vol. 2. P. 1091-1104. Office Mar. Pol. Assess., NOAA. Univ. Wash. Press, Seattle, Wa 98105.

Hennon, T., L. Barnett, N. Bond, M. Callahan, S. Danielson, L. Divine, K. Kearney, E. Lemagie, A. Lestenkof, J. Overland, N. Pelland, S. Rohan, R. Thoman, and M. Wang (authors listed alphabetically after 1st author). 2022. Physical Environment Synthesis. In Siddon, E.C., 2022. Ecosystem Status Report 2022: Eastern Bering Sea, Stock Assessment and Fishery Evaluation Report, North Pacific Fishery Management Council, 1007 West Third, Suite 400, Anchorage, Alaska 99501.

Hurtado-Ferro, F., Szuwalski, C.S., Valero, J.L., Anderson, S.C., Cunningham, C.J., Johnson, K.F., Licandeo, R., McGilliard, C.R., Monnahan, C.C., Muradian, M.L. and Ono, K., 2015. Looking in the rear-view mirror: bias and retrospective patterns in integrated, age-structured stock assessment models. ICES Journal of Marine Science, 72(1), pp.99-110.
Ianelli, J. N. and D. A. Fournier. 1998. Alternative age-structured analyses of the NRC simulated stock assessment data. In Restrepo, V. R. [ed.] Analyses of simulated data sets in support of the NRC study on stock assessment methods. NOAA Tech. Memo. NMFS-F/SPO-30. 96 p.

Ianelli, J. N., Fissel, B., Holsman, K., Honkalehto, T., Kotwicki, S., Monnahan, C., Siddon, E., Stienessen, S., and Thorson, J. 2019. Assessment of the Walleye Pollock Stock in the Eastern Bering Sea. NPFMC Bering Sea and Aleutian Islands Stock Assessment and Fishery Evaluation. https://www.afsc.noaa.gov/REFM/Sto cks/assessments.htm.

Kastelle, C., T. Helser, S. Wischniowski, T. Loher, B. Geotz and L. Kautzi. 2016. Incorporation of bombproduced 14 C into fish otoliths: A novel approach for evaluating age validation and bias with an application to yellowfin sole and northern rockfish. Ecological modeling 320 (2016) 79-91.

Kimura, D.K. 1989. Variability in estimating catch-in-numbers-at-age and its impact on cohort analysis. In R.J. Beamish and G.A. McFarlane (eds.), Effects on ocean variability on recruitment and an evaluation of parameters used in stock assessment models. Can. Spec. Publ. Fish. Aq. Sci. 108:57-66.

Kotwicki, S., Lauth, R. R., Williams, K., and Goodman, S. E. 2017. Selectivity ratio: A useful tool for comparing size selectivity of multiple survey gears. Fisheries Research, 191: 76-86.

Kristensen K, Nielsen A, Berg CW, Skaug H, Bell BM. 2016. TMB: Automatic Differentiation and Laplace Approximation. Journal of Statistical Software, 70(5), 1-21. doi:10.18637/jss.v070.i05.

Liller, Z.W. 2021. Adult Salmon Run Failures Throughout the Arctic-Yukon-Kuskokwim Region. In Siddon, E.C., 2021. Ecosystem Status Report 2021: Eastern Bering Sea, Stock Assessment and Fishery Evaluation Report, North Pacific Fishery Management Council, 1007 West Third, Suite 400, Anchorage, Alaska 99501.

Low, L. and R.E. Narita. 1990. Condition of groundfish resources in the Bering Sea-Aleutian Islands region as assessed in 1988. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-F/NWC-178, 224 p.

Matta, M. E., B. A. Black and T. K. Wilderbuer. 2010. Climate-driven synchrony in otolith growth-increment chronologies for three Bering Sea flatfish species. MEPS, Vol. 413:137-145, 2010.

Maunder, M.N. and Wong, R.A., 2011. Approaches for estimating natural mortality: application to summer flounder (Paralichthys dentatus) in the US mid-Atlantic. Fisheries Research, 111(1-2), pp.92-99.

Monnahan, C.C. and Kristensen, K., 2018. No-U-turn sampling for fast Bayesian inference in ADMB and TMB: Introducing the adnuts and tmbstan R packages. PloS one, 13(5), p.e0197954.

Nichol, D. G., and Acuna, E. I. 2001. Annual and batch fecundities of yellowfin sole, Limanda aspera, in the eastern Bering Sea. Fishery Bulletin, 99: 108-122.

Nichol, D. R . 1995. Spawning and maturation of female yellowfin sole in the eastern Bering Sea. In Proceedings of the international flatfish symposium, October 1994, Anchorage, Alaska, p. 35-50. Univ. Alaska, Alaska Sea Grant Rep. 95-04.

Nichol, D. R. 1998. Annual and between sex variability of yellowfin sole, Pleuronectes asper, spring-summer distributions in the eastern Bering Sea. Fish. Bull., U.S. 96: 547-561.

Nichol, D.G., Kotwicki, S., Wilderbuer, T.K., Lauth, R.R. and Ianelli, J.N., 2019. Availability of yellowfin sole Limanda aspera to the eastern Bering Sea trawl survey and its effect on estimates of survey biomass. Fisheries Research, 211, pp.319-330.

Richar, J. 2021. Eastern Bering Sea Commercial Crab Stock Biomass Indices. In Siddon, E.C., 2021. Ecosystem Status Report 2021: Eastern Bering Sea, Stock Assessment and Fishery Evaluation Report, North Pacific Fishery Management Council, 1007 West Third, Suite 400, Anchorage, Alaska 99501.

Richar, J. 2022. Eastern Bering Sea Commercial Crab Stock Biomass Indices. In Siddon, E.C., 2022. Ecosystem Status Report 2022: Eastern Bering Sea, Stock Assessment and Fishery Evaluation Report, North Pacific Fishery Management Council, 1007 West Third, Suite 400, Anchorage, Alaska 99501.

Ricker, W. E. 1958. Handbook of computations for biological statistics of fish populations. Bull. Fish. Res. Bd. Can., (119) 300 p.

Rohan, SK, Barnett, LAK \& N Charriere. Evaluating approaches to estimating mean temperatures and cold pool area from AFSC bottom trawl surveys of the eastern Bering Sea. In review. NOAA Technical Memorandum.

Rohan, S., B. Prohaska, and C. O'Leary. 2022. Eastern and Northern Bering Sea Groundfish Condition. In Siddon, E.C., 2022. Ecosystem Status Report 2022: Eastern Bering Sea, Stock Assessment and Fishery

Evaluation Report, North Pacific Fishery Management Council, 1007 West Third, Suite 400, Anchorage, Alaska 99501.

Rose, C. S., J. R. Gauvin and C. F. Hammond. 2010. Effective herding of flatfish by cables with minimal seafloor contact. Fishery Bulletin 108(2):136-144.

Rue, H., Martino, S., and Chopin, N. 2009. Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations (with discussion). Journal of the Royal Statistical Society, Series B, 71(2):319.

Siddon, E.C., 2021. Ecosystem Status Report 2021: Eastern Bering Sea, Stock Assessment and Fishery Evaluation Report, North Pacific Fishery Management Council, 1007 West Third, Suite 400, Anchorage, Alaska 99501.

Somerton, D. A. and P. Munro. 2001. Bridle efficiency of a survey trawl for flatfish. Fish. Bull. 99:641-652 (2001).

TenBrink, T. T. and T. K. Wilderbuer. 2015. Updated maturity estimates for flatfishes (Pleuronectidae) in the eastern Bering Sea, with notes on histology and implications to fisheries management. Coastal and Marine Fisheries: Dynamics, Management and Ecosystem Science. O:1-9. 2015. DOI: 10.1080/19425120.2015.1091411.

TenBrink, T.T., 2022. Delineating yellowfin sole (Limanda aspera) reproduction in the northern Bering Sea provides information across the eastern Bering Sea continental shelf. Fisheries Research, 252, p. 106335.

Thorson, J.T., Kristensen, K., 2016. Implementing a generic method for bias correction in statistical models using random effects, with spatial and population dynamics examples. Fish. Res. 175, 66-74. https://doi.org/10.1016/j.fishres.2015.11.016

Thorson, J.T., 2018. Three problems with the conventional delta-model for biomass sampling data, and a computationally efficient alternative. Can. J. Fish. Aquat. Sci. 75, 1369-1382. https://doi.org/10.1139/cjfas-2017-0266

Thorson, J.T., 2019. Measuring the impact of oceanographic indices on species distribution shifts: The spatially varying effect of cold-pool extent in the eastern Bering Sea. Limnol. Oceanogr. 64, 2632-2645. https://doi.org/10.1002/lno. 11238
van der Veer, H. W., and Witte, J. I. J. 1993. The 'maximum growth/optimal food condition' hypothesis: a test for 0-group plaice Pleuronectes platessa in the Dutch Wadden Sea. Marine Ecology Progress Series, 101: 81-90.

Wakabayashi, K. 1989. Studies on the fishery biology of yellowfin sole in the eastern Bering Sea. [In Jpn., Engl. Summ.] Bull. Far Seas Fish. Res. Lab. 26:21-152.

Walters, G. E. and T. K. Wilderbuer. 2000. Decreasing length at age in a rapidly expanding population of northern rock sole in the eastern Bering Sea and its effect on management advice. Journal of Sea Research 44(2000)17-26.

Whitehouse, G.A., 2022. 2022 Report Card. In Siddon, E.C., 2022. Ecosystem Status Report 2022: Eastern Bering Sea, Stock Assessment and Fishery Evaluation Report, North Pacific Fishery Management Council, 1007 West Third, Suite 400, Anchorage, Alaska 99501.

Wilderbuer, T.K., G.E. Walters, and R.G. Bakkala 1992. Yellowfin sole, Pleuronectes aspera, of the eastern Bering Sea: biological characteristics, history of exploitation, and management. Mar Fish. Rev. 54(4):1-18.

Wilderbuer, T.K. and Turnock, B.J., 2009. Sex-specific natural mortality of arrowtooth flounder in Alaska: Implications of a skewed sex ratio on exploitation and management. North American Journal of Fisheries Management, 29(2), pp.306-322.

Wilderbuer, T. K. and D. Nichol. 2003. Yellowfin sole. In Stock Assessment and Fishery Evaluation Document for Groundfish Resources in the Bering Sea/Aleutian Islands Region as Projected for 2004, chapter 4. North Pacific Fishery Management Council, P. O. Box 103136, Anchorage, Ak 99510.

Wilderbuer, T. K. D. G. Nichol, and J. Ianelli. 2018. Yellowfin sole. In Stock Assessment and Fishery Evaluation Document for Groundfish Resources in the Bering Sea/Aleutian Islands Region as Projected for 2019, chapter 4. North Pacific Fishery Management Council, P. O. Box 103136, Anchorage, Ak 99510.
Yeung, C., and Yang, M.-S. 2018. Spatial variation in habitat quality for juvenile flatfish in the southeastern Bering Sea and its implications for productivity in a warming ecosystem. Journal of Sea Research, 139: 62-72.

Yeung, C. and Cooper, D.W., 2019. Contrasting the variability in spatial distribution of two juvenile flatfishes in relation to thermal stanzas in the eastern Bering Sea. ICES Journal of Marine Science, 77(3), pp.953-963.

Yeung, C., Copeman, L.A., Matta, M.E. and Yang, M.S., 2021. Latitudinal variation in the growth and condition of Juvenile flatfishes in the Bering Sea. Estuarine, Coastal and Shelf Science, 258, p. 107416.

## Tables

Table 1: Foreign and domestic catch ( t ) of yellowfin sole 1954-2023. Foreign catches are designated as joint venture processing (JVP), and non-foreign catches as domestic annual processing (DAP). Domestic catch since 1991 is subdivided into catch from the Aleutian Islands and the Bering Sea. Catch for 2023 was downloaded October 20, 2023.

| Year | Foreign | Domestic |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | JVP | DAP | Aleutian Islands | Bering Sea |  |
| 1954 | 12,562 |  |  |  |  | 12,562 |
| 1955 | 14,690 |  |  |  |  | 14,690 |
| 1956 | 24,697 |  |  |  |  | 24,697 |
| 1957 | 24,145 |  |  |  |  | 24,145 |
| 1958 | 44,153 |  |  |  |  | 44,153 |
| 1959 | 185,321 |  |  |  |  | 185,321 |
| 1960 | 456,103 |  |  |  |  | 456,103 |
| 1961 | 553,742 |  |  |  |  | 553,742 |
| 1962 | 420,703 |  |  |  |  | 420,703 |
| 1963 | 85,810 |  |  |  |  | 85,810 |
| 1964 | 111,777 |  |  |  |  | 111,777 |
| 1965 | 53,810 |  |  |  |  | 53,810 |
| 1966 | 102,353 |  |  |  |  | 102,353 |
| 1967 | 162,228 |  |  |  |  | 162,228 |
| 1968 | 84,189 |  |  |  |  | 84,189 |
| 1969 | 167,134 |  |  |  |  | 167,134 |
| 1970 | 133,079 |  |  |  |  | 133,079 |
| 1971 | 160,399 |  |  |  |  | 160,399 |
| 1972 | 47,856 |  |  |  |  | 47,856 |
| 1973 | 78,240 |  |  |  |  | 78,240 |
| 1974 | 42,235 |  |  |  |  | 42,235 |
| 1975 | 64,690 |  |  |  |  | 64,690 |
| 1976 | 56,221 |  |  |  |  | 56,221 |
| 1977 | 58,373 |  |  |  |  | 58,373 |
| 1978 | 138,433 |  |  |  |  | 138,433 |
| 1979 | 99,019 |  |  |  |  | 99,019 |
| 1980 | 77,768 | 9,623 |  |  |  | 87,391 |
| 1981 | 81,255 | 16,046 |  |  |  | 97,301 |
| 1982 | 78,331 | 17,381 |  |  |  | 95,712 |
| 1983 | 85,874 | 22,511 |  |  |  | 108,385 |
| 1984 | 126,762 | 32,764 |  |  |  | 159,526 |
| 1985 | 100,706 | 126,401 |  |  |  | 227,107 |
| 1986 | 57,197 | 151,400 |  |  |  | 208,597 |
| 1987 | 1,811 | 179,613 | 4 |  |  | 181,428 |
| 1988 |  | 213,323 | 9,833 |  |  | 223,156 |
| 1989 |  | 151,501 | 1,664 |  |  | 153,165 |
| 1990 |  | 69,677 | 14,293 |  |  | 83,970 |
| 1991 |  |  | 117,303 |  | 117,303 | 117,303 |
| 1992 |  |  | 145,386 | 3.6 | 145,382 | 145,386 |
| 1993 |  |  | 105,810 |  | 105,810 | 105,810 |
| 1994 |  |  | 140,050 | 0.2 | 140,050 | 140,050 |
| 1995 |  |  | 124,752 | 5.6 | 124,746 | 124,752 |
| 1996 |  |  | 129,659 | 0.4 | 129,659 | 129,659 |
| 1997 |  |  | 182,814 | 1.2 | 182,813 | 182,814 |


| 1998 | 101,155 | 4.7 | 101,150 | 101,155 |
| :--- | ---: | ---: | ---: | ---: |
| 1999 | 69,234 | 12.8 | 69,221 | 69,234 |
| 2000 | 84,071 | 12.5 | 84,058 | 84,071 |
| 2001 | 63,579 | 14.5 | 63,564 | 63,579 |
| 2002 | 74,986 | 28.5 | 74,957 | 74,986 |
| 2003 | 79,806 | 0.4 | 79,806 | 79,806 |
| 2004 | 75,511 | 8.8 | 75,502 | 75,511 |
| 2005 | 94,385 | 1.8 | 94,383 | 94,385 |
| 2006 | 99,160 | 3.8 | 99,156 | 99,160 |
| 2007 | 120,964 | 2.4 | 120,962 | 120,964 |
| 2008 | 148,894 | 0.5 | 148,893 | 148,894 |
| 2009 | 107,513 | 1.1 | 107,512 | 107,513 |
| 2010 | 118,624 | 0.2 | 118,624 | 118,624 |
| 2011 | 151,158 | 1.1 | 151,157 | 151,158 |
| 2012 | 147,187 | 1.1 | 147,186 | 147,187 |
| 2013 | 164,944 | 0.3 | 164,944 | 164,944 |
| 2014 | 156,772 | 0.3 | 156,772 | 156,772 |
| 2015 | 126,937 | 0 | 126,937 | 126,937 |
| 2016 | 135,324 | 0.2 | 135,324 | 135,324 |
| 2017 | 132,220 | 0.6 | 132,219 | 132,220 |
| 2018 | 131,496 | 4.5 | 131,491 | 131,496 |
| 2019 | 128,051 | 4.6 | 129,061 | 128,051 |
| 2020 | 133,799 | 11.1 | 133,788 | 133,799 |
| 2021 | 108,788 | 53.9 | 108,734 | 108,788 |
| 2022 | 154,253 | 8.7 | 154,245 | 154,253 |
| 2023 | 74,848 | 1.2 | 74,847 | 74,848 |

Table 2: Estimates of retained and discarded (t) yellowfin sole caught in Bering Sea fisheries from 1991 through October 30th, 2023, and the proportion discarded.

| Year | Retained $(\mathrm{t})$ | Discarded $(\mathrm{t})$ | Proportion discarded |
| :--- | ---: | ---: | ---: |
| 1991 | 88,967 | 28,337 | 0.24 |
| 1992 | 102,542 | 42,840 | 0.29 |
| 1993 | 76,798 | 29,012 | 0.27 |
| 1994 | 104,918 | 35,132 | 0.25 |
| 1995 | 96,767 | 27,980 | 0.22 |
| 1996 | 101,324 | 28,335 | 0.22 |
| 1997 | 150,745 | 32,068 | 0.18 |
| 1998 | 80,263 | 20,887 | 0.21 |
| 1999 | 56,604 | 12,617 | 0.18 |
| 2000 | 69,971 | 14,087 | 0.17 |
| 2001 | 54,918 | 8,646 | 0.14 |
| 2002 | 63,625 | 11,332 | 0.15 |
| 2003 | 68,832 | 10,974 | 0.14 |
| 2004 | 62,746 | 12,756 | 0.17 |
| 2005 | 85,311 | 9,072 | 0.1 |
| 2006 | 90,592 | 8,564 | 0.09 |
| 2007 | 109,004 | 11,958 | 0.1 |
| 2008 | 141,235 | 7,659 | 0.05 |
| 2009 | 100,642 | 6,870 | 0.06 |
| 2010 | 113,244 | 5,379 | 0.05 |
| 2011 | 146,418 | 4,739 | 0.03 |
| 2012 | 142,132 | 5,054 | 0.03 |
| 2013 | 158,781 | 6,163 | 0.04 |
| 2014 | 152,167 | 4,605 | 0.03 |
| 2015 | 123,065 | 3,871 | 0.03 |
| 2016 | 131,202 | 4,121 | 0.03 |
| 2017 | 128,665 | 3,554 | 0.03 |
| 2018 | 127,331 | 4,160 | 0.03 |
| 2019 | 126,111 | 2,951 | 0.02 |
| 2020 | 131,774 | 2,025 | 0.02 |
| 2021 | 106,785 | 2,003 | 0.02 |
| 2022 | 151,493 | 2,760 | 0.02 |
| 2023 | 93,801 | 1,503 | 0.02 |
|  |  |  |  |
|  |  |  |  |

Table 3: Occurrence of yellowfin sole in the eastern Bering Sea trawl survey and collections of length and age structures and the number of otoliths aged from the survey. The final column represents the number of otoliths read in each year from the fishery.

| Year | Total hauls | Hauls with length | Number of lengths | Hauls with otoliths | Hauls with ages | N. otoliths | N. ages (survey) | N. ages (fishery) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1982 | 334 | 246 | 37,023 | 35 | 35 | 744 | 744 | 2432 |
| 1983 | 353 | 256 | 33,924 | 37 | 37 | 709 | 709 | 1178 |
| 1984 | 355 | 271 | 33,894 | 56 | 56 | 821 | 796 | 338 |
| 1985 | 356 | 261 | 33,824 | 44 | 43 | 810 | 802 | 840 |
| 1986 | 354 | 249 | 30,470 | 34 | 34 | 739 | 739 | 1503 |
| 1987 | 357 | 224 | 31,241 | 16 | 16 | 798 | 798 | 1071 |
| 1988 | 373 | 254 | 27,138 | 14 | 14 | 543 | 543 | 1361 |
| 1989 | 374 | 236 | 29,672 | 24 | 24 | 740 | 740 | 1462 |
| 1990 | 371 | 251 | 30,257 | 28 | 28 | 792 | 792 | 1220 |
| 1991 | 372 | 248 | 27,986 | 26 | 26 | 742 | 742 | 935 |
| 1992 | 356 | 229 | 23,628 | 16 | 16 | 606 | 606 | 1203 |
| 1993 | 375 | 242 | 26,651 | 20 | 20 | 549 | 549 | 1020 |
| 1994 | 375 | 269 | 24,448 | 14 | 14 | 526 | 522 | 573 |
| 1995 | 376 | 254 | 22,116 | 20 | 20 | 654 | 647 | 554 |
| 1996 | 375 | 247 | 27,505 | 16 | 16 | 729 | 721 | 314 |
| 1997 | 376 | 262 | 26,034 | 11 | 11 | 470 | 466 | 397 |
| 1998 | 375 | 310 | 34,509 | 15 | 15 | 575 | 570 | 426 |
| 1999 | 373 | 276 | 28,431 | 31 | 31 | 777 | 770 | 487 |
| 2000 | 372 | 255 | 24,880 | 20 | 20 | 517 | 511 | 583 |
| 2001 | 375 | 251 | 26,558 | 25 | 25 | 604 | 593 | 491 |
| 2002 | 375 | 246 | 26,309 | 32 | 32 | 738 | 723 | 486 |
| 2003 | 376 | 241 | 27,135 | 37 | 37 | 699 | 695 | 590 |
| 2004 | 375 | 251 | 26,103 | 26 | 26 | 725 | 712 | 483 |
| 2005 | 373 | 251 | 24,658 | 35 | 35 | 663 | 653 | 494 |
| 2006 | 376 | 246 | 28,470 | 39 | 39 | 428 | 426 | 490 |
| 2007 | 376 | 247 | 24,790 | 66 | 66 | 779 | 772 | 496 |
| 2008 | 375 | 238 | 25,848 | 65 | 65 | 858 | 830 | 542 |
| 2009 | 376 | 235 | 22,018 | 70 | 70 | 783 | 751 | 515 |
| 2010 | 376 | 228 | 20,619 | 77 | 77 | 841 | 827 | 535 |
| 2011 | 376 | 228 | 21,665 | 65 | 64 | 784 | 753 | 525 |
| 2012 | 376 | 242 | 23,519 | 72 | 72 | 992 | 973 | 504 |
| 2013 | 376 | 232 | 23,261 | 70 | 70 | 821 | 803 | 670 |
| 2014 | 376 | 219 | 20,229 | 52 | 52 | 799 | 790 | 502 |
| 2015 | 376 | 223 | 20,830 | 73 | 73 | 878 | 875 | 622 |
| 2016 | 376 | 242 | 26,674 | 69 | 69 | 884 | 876 | 495 |
| 2017 | 376 | 258 | 25,767 | 78 | 78 | 896 | 886 | 595 |
| 2018 | 376 | 262 | 27,285 | 68 | 68 | 724 | 720 | 608 |
| 2019 | 376 | 270 | 25,669 | 67 | 67 | 836 | 832 | 589 |
| 2020 |  |  |  |  |  |  |  | 660 |
| 2021 | 376 | 234 | 18,757 | 201 | 200 | 1030 | 983 | 700 |
| 2022 | 376 | 238 | 16,765 | 195 | 195 | 619 | 581 | 635 |
| 2023 | 376 | 233 | 15,501 | 172 |  | 515 |  |  |

Table 4: Yellowfin sole fishery catch-at-age (proportions), 1975-2022 female first then male, ages 7-17+.

| Year | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17+ | Total female proportion over age 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1975 | 0.1401 | 0.2759 | 0.2184 | 0.1019 | 0.0647 | 0.0309 | 0.0216 | 0.0249 | 0.0095 | 0.0081 | 0.0048 | 0.9008 |
| 1976 | 0.0998 | 0.1634 | 0.2574 | 0.1874 | 0.0866 | 0.0552 | 0.0265 | 0.0185 | 0.0213 | 0.0081 | 0.0070 | 0.9312 |
| 1977 | 0.1574 | 0.2034 | 0.1700 | 0.1620 | 0.0920 | 0.0389 | 0.0241 | 0.0115 | 0.0080 | 0.0092 | 0.0035 | 0.8800 |
| 1978 | 0.0876 | 0.1900 | 0.2146 | 0.1585 | 0.1408 | 0.0774 | 0.0323 | 0.0199 | 0.0095 | 0.0066 | 0.0076 | 0.9448 |
| 1979 | 0.0583 | 0.1414 | 0.2122 | 0.1864 | 0.1230 | 0.1050 | 0.0570 | 0.0237 | 0.0146 | 0.0069 | 0.0048 | 0.9333 |
| 1980 | 0.0665 | 0.0857 | 0.1546 | 0.1932 | 0.1573 | 0.1012 | 0.0858 | 0.0465 | 0.0193 | 0.0119 | 0.0056 | 0.9276 |
| 1981 | 0.0814 | 0.1062 | 0.1029 | 0.1488 | 0.1650 | 0.1276 | 0.0805 | 0.0677 | 0.0366 | 0.0152 | 0.0093 | 0.9412 |
| 1982 | 0.0591 | 0.1396 | 0.1287 | 0.0973 | 0.1239 | 0.1302 | 0.0987 | 0.0618 | 0.0518 | 0.0280 | 0.0116 | 0.9307 |
| 1983 | 0.0726 | 0.0895 | 0.1570 | 0.1210 | 0.0845 | 0.1044 | 0.1086 | 0.0820 | 0.0512 | 0.0430 | 0.0232 | 0.9370 |
| 1984 | 0.0341 | 0.0918 | 0.0975 | 0.1555 | 0.1150 | 0.0791 | 0.0972 | 0.1010 | 0.0761 | 0.0476 | 0.0399 | 0.9348 |
| 1985 | 0.0237 | 0.0591 | 0.1150 | 0.0988 | 0.1440 | 0.1033 | 0.0703 | 0.0862 | 0.0894 | 0.0674 | 0.0421 | 0.8993 |
| 1986 | 0.0390 | 0.0461 | 0.0790 | 0.1191 | 0.0916 | 0.1285 | 0.0910 | 0.0618 | 0.0756 | 0.0784 | 0.0591 | 0.8692 |
| 1987 | 0.0220 | 0.0556 | 0.0537 | 0.0803 | 0.1145 | 0.0865 | 0.1208 | 0.0855 | 0.0580 | 0.0709 | 0.0736 | 0.8214 |
| 1988 | 0.0549 | 0.0468 | 0.0855 | 0.0600 | 0.0759 | 0.1020 | 0.0757 | 0.1051 | 0.0743 | 0.0503 | 0.0616 | 0.7921 |
| 1989 | 0.0086 | 0.0836 | 0.0617 | 0.0936 | 0.0586 | 0.0711 | 0.0943 | 0.0697 | 0.0968 | 0.0683 | 0.0463 | 0.7526 |
| 1990 | 0.0414 | 0.0321 | 0.1956 | 0.0821 | 0.0857 | 0.0463 | 0.0536 | 0.0703 | 0.0518 | 0.0718 | 0.0507 | 0.7814 |
| 1991 | 0.0369 | 0.1420 | 0.0571 | 0.2053 | 0.0663 | 0.0634 | 0.0334 | 0.0385 | 0.0504 | 0.0372 | 0.0515 | 0.7820 |
| 1992 | 0.0224 | 0.0559 | 0.1863 | 0.0620 | 0.1964 | 0.0595 | 0.0554 | 0.0289 | 0.0332 | 0.0434 | 0.0319 | 0.7753 |
| 1993 | 0.0240 | 0.0363 | 0.0694 | 0.1906 | 0.0584 | 0.1805 | 0.0544 | 0.0506 | 0.0264 | 0.0304 | 0.0397 | 0.7607 |
| 1994 | 0.0243 | 0.0445 | 0.0592 | 0.0887 | 0.1981 | 0.0541 | 0.1593 | 0.0471 | 0.0435 | 0.0226 | 0.0260 | 0.7674 |
| 1995 | 0.0430 | 0.0783 | 0.0887 | 0.0735 | 0.0829 | 0.1648 | 0.0433 | 0.1260 | 0.0371 | 0.0343 | 0.0178 | 0.7897 |
| 1996 | 0.0228 | 0.0841 | 0.1139 | 0.0970 | 0.0685 | 0.0725 | 0.1409 | 0.0368 | 0.1067 | 0.0314 | 0.0290 | 0.8036 |
| 1997 | 0.0261 | 0.0502 | 0.1303 | 0.1261 | 0.0895 | 0.0589 | 0.0609 | 0.1176 | 0.0306 | 0.0888 | 0.0261 | 0.8051 |
| 1998 | 0.0346 | 0.0443 | 0.0662 | 0.1381 | 0.1198 | 0.0820 | 0.0534 | 0.0550 | 0.1061 | 0.0276 | 0.0801 | 0.8072 |
| 1999 | 0.0118 | 0.0458 | 0.0541 | 0.0725 | 0.1390 | 0.1159 | 0.0782 | 0.0507 | 0.0522 | 0.1007 | 0.0262 | 0.7471 |
| 2000 | 0.0149 | 0.0408 | 0.1208 | 0.0904 | 0.0802 | 0.1224 | 0.0932 | 0.0610 | 0.0391 | 0.0401 | 0.0774 | 0.7803 |
| 2001 | 0.0194 | 0.0423 | 0.0812 | 0.1577 | 0.0882 | 0.0689 | 0.1009 | 0.0759 | 0.0495 | 0.0317 | 0.0325 | 0.7482 |
| 2002 | 0.0243 | 0.0308 | 0.0619 | 0.0988 | 0.1621 | 0.0833 | 0.0630 | 0.0912 | 0.0683 | 0.0445 | 0.0285 | 0.7567 |
| 2003 | 0.0248 | 0.1134 | 0.0853 | 0.0922 | 0.0951 | 0.1285 | 0.0618 | 0.0458 | 0.0660 | 0.0494 | 0.0321 | 0.7944 |
| 2004 | 0.0195 | 0.0492 | 0.1672 | 0.0937 | 0.0857 | 0.0828 | 0.1095 | 0.0524 | 0.0388 | 0.0558 | 0.0417 | 0.7963 |
| 2005 | 0.0326 | 0.0545 | 0.0866 | 0.1931 | 0.0850 | 0.0704 | 0.0658 | 0.0862 | 0.0411 | 0.0304 | 0.0437 | 0.7894 |
| 2006 | 0.0549 | 0.0722 | 0.0823 | 0.0941 | 0.1754 | 0.0716 | 0.0577 | 0.0535 | 0.0698 | 0.0332 | 0.0246 | 0.7893 |
| 2007 | 0.0331 | 0.0876 | 0.0881 | 0.0830 | 0.0870 | 0.1573 | 0.0636 | 0.0511 | 0.0473 | 0.0617 | 0.0294 | 0.7892 |
| 2008 | 0.0514 | 0.0708 | 0.1241 | 0.0908 | 0.0733 | 0.0725 | 0.1284 | 0.0516 | 0.0414 | 0.0383 | 0.0499 | 0.7925 |
| 2009 | 0.0384 | 0.0799 | 0.0873 | 0.1266 | 0.0846 | 0.0660 | 0.0645 | 0.1139 | 0.0457 | 0.0367 | 0.0339 | 0.7775 |
| 2010 | 0.0695 | 0.0863 | 0.1120 | 0.0872 | 0.1085 | 0.0689 | 0.0529 | 0.0514 | 0.0907 | 0.0364 | 0.0292 | 0.7930 |
| 2011 | 0.0323 | 0.1183 | 0.1072 | 0.1111 | 0.0781 | 0.0938 | 0.0589 | 0.0450 | 0.0437 | 0.0771 | 0.0309 | 0.7964 |
| 2012 | 0.0369 | 0.0628 | 0.1574 | 0.1084 | 0.0990 | 0.0665 | 0.0787 | 0.0492 | 0.0375 | 0.0365 | 0.0643 | 0.7972 |
| 2013 | 0.0309 | 0.0563 | 0.0765 | 0.1615 | 0.1028 | 0.0913 | 0.0608 | 0.0718 | 0.0448 | 0.0342 | 0.0332 | 0.7641 |
| 2014 | 0.0246 | 0.0588 | 0.0801 | 0.0835 | 0.1537 | 0.0930 | 0.0814 | 0.0540 | 0.0636 | 0.0396 | 0.0303 | 0.7626 |
| 2015 | 0.0211 | 0.0461 | 0.0847 | 0.0890 | 0.0807 | 0.1411 | 0.0841 | 0.0732 | 0.0485 | 0.0571 | 0.0356 | 0.7612 |
| 2016 | 0.0413 | 0.0704 | 0.0941 | 0.1057 | 0.0832 | 0.0671 | 0.1130 | 0.0665 | 0.0577 | 0.0382 | 0.0450 | 0.7822 |
| 2017 | 0.0260 | 0.0993 | 0.1070 | 0.1001 | 0.0949 | 0.0704 | 0.0557 | 0.0932 | 0.0548 | 0.0475 | 0.0314 | 0.7803 |
| 2018 | 0.0160 | 0.0467 | 0.1317 | 0.1125 | 0.0945 | 0.0861 | 0.0631 | 0.0497 | 0.0831 | 0.0488 | 0.0424 | 0.7746 |
| 2019 | 0.0257 | 0.0362 | 0.0688 | 0.1427 | 0.1060 | 0.0848 | 0.0762 | 0.0556 | 0.0438 | 0.0731 | 0.0430 | 0.7559 |
| 2020 | 0.0306 | 0.0570 | 0.0526 | 0.0741 | 0.1334 | 0.0939 | 0.0738 | 0.0659 | 0.0480 | 0.0377 | 0.0630 | 0.7300 |
| 2021 | 0.0576 | 0.0554 | 0.0697 | 0.0511 | 0.0654 | 0.1139 | 0.0794 | 0.0621 | 0.0554 | 0.0403 | 0.0317 | 0.6820 |
| 2022 | 0.0673 | 0.0855 | 0.0613 | 0.0652 | 0.0446 | 0.0557 | 0.0962 | 0.0668 | 0.0523 | 0.0466 | 0.0339 | 0.6754 |


| Year | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17+ | Total male proportion over age 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1975 | 0.1445 | 0.2799 | 0.2179 | 0.1000 | 0.0625 | 0.0294 | 0.0201 | 0.0229 | 0.0086 | 0.0072 | 0.0042 | 0.8972 |
| 1976 | 0.1040 | 0.1675 | 0.2594 | 0.1857 | 0.0844 | 0.0530 | 0.0250 | 0.0171 | 0.0195 | 0.0073 | 0.0061 | 0.9290 |
| 1977 | 0.1624 | 0.2063 | 0.1696 | 0.1590 | 0.0888 | 0.0369 | 0.0225 | 0.0105 | 0.0072 | 0.0082 | 0.0031 | 0.8745 |
| 1978 | 0.0915 | 0.1950 | 0.2167 | 0.1574 | 0.1375 | 0.0744 | 0.0305 | 0.0185 | 0.0086 | 0.0059 | 0.0067 | 0.9427 |
| 1979 | 0.0611 | 0.1459 | 0.2154 | 0.1861 | 0.1208 | 0.1014 | 0.0541 | 0.0221 | 0.0134 | 0.0063 | 0.0043 | 0.9309 |
| 1980 | 0.0702 | 0.0890 | 0.1580 | 0.1942 | 0.1555 | 0.0984 | 0.0820 | 0.0437 | 0.0179 | 0.0108 | 0.0050 | 0.9247 |
| 1981 | 0.0864 | 0.1109 | 0.1057 | 0.1503 | 0.1640 | 0.1247 | 0.0774 | 0.0640 | 0.0340 | 0.0139 | 0.0084 | 0.9397 |
| 1982 | 0.0629 | 0.1461 | 0.1325 | 0.0984 | 0.1233 | 0.1275 | 0.0950 | 0.0585 | 0.0483 | 0.0256 | 0.0104 | 0.9285 |
| 1983 | 0.0777 | 0.0941 | 0.1624 | 0.1232 | 0.0846 | 0.1028 | 0.1052 | 0.0781 | 0.0480 | 0.0396 | 0.0210 | 0.9367 |
| 1984 | 0.0369 | 0.0977 | 0.1020 | 0.1601 | 0.1165 | 0.0788 | 0.0953 | 0.0973 | 0.0722 | 0.0444 | 0.0366 | 0.9378 |
| 1985 | 0.0258 | 0.0633 | 0.1214 | 0.1025 | 0.1470 | 0.1037 | 0.0694 | 0.0837 | 0.0854 | 0.0633 | 0.0389 | 0.9044 |
| 1986 | 0.0428 | 0.0497 | 0.0838 | 0.1243 | 0.0940 | 0.1297 | 0.0904 | 0.0603 | 0.0726 | 0.0741 | 0.0549 | 0.8766 |
| 1987 | 0.0243 | 0.0607 | 0.0576 | 0.0847 | 0.1187 | 0.0883 | 0.1212 | 0.0844 | 0.0563 | 0.0677 | 0.0691 | 0.8330 |
| 1988 | 0.0611 | 0.0512 | 0.0920 | 0.0635 | 0.0790 | 0.1044 | 0.0762 | 0.1041 | 0.0723 | 0.0482 | 0.0580 | 0.8100 |
| 1989 | 0.0097 | 0.0922 | 0.0669 | 0.0998 | 0.0615 | 0.0734 | 0.0958 | 0.0696 | 0.0950 | 0.0660 | 0.0440 | 0.7739 |
| 1990 | 0.0459 | 0.0350 | 0.2100 | 0.0867 | 0.0890 | 0.0473 | 0.0539 | 0.0695 | 0.0503 | 0.0687 | 0.0477 | 0.8040 |
| 1991 | 0.0404 | 0.1531 | 0.0605 | 0.2141 | 0.0680 | 0.0639 | 0.0331 | 0.0376 | 0.0484 | 0.0351 | 0.0478 | 0.8020 |
| 1992 | 0.0247 | 0.0606 | 0.1986 | 0.0651 | 0.2026 | 0.0604 | 0.0553 | 0.0284 | 0.0320 | 0.0412 | 0.0298 | 0.7987 |
| 1993 | 0.0267 | 0.0397 | 0.0745 | 0.2015 | 0.0607 | 0.1846 | 0.0547 | 0.0501 | 0.0257 | 0.0291 | 0.0373 | 0.7846 |
| 1994 | 0.0271 | 0.0488 | 0.0639 | 0.0942 | 0.2069 | 0.0556 | 0.1610 | 0.0468 | 0.0425 | 0.0218 | 0.0246 | 0.7932 |
| 1995 | 0.0477 | 0.0854 | 0.0952 | 0.0776 | 0.0860 | 0.1683 | 0.0435 | 0.1244 | 0.0361 | 0.0327 | 0.0168 | 0.8137 |
| 1996 | 0.0253 | 0.0919 | 0.1224 | 0.1026 | 0.0712 | 0.0741 | 0.1417 | 0.0364 | 0.1038 | 0.0301 | 0.0273 | 0.8268 |
| 1997 | 0.0289 | 0.0548 | 0.1400 | 0.1332 | 0.0931 | 0.0603 | 0.0612 | 0.1163 | 0.0298 | 0.0849 | 0.0246 | 0.8271 |
| 1998 | 0.0387 | 0.0487 | 0.0717 | 0.1470 | 0.1254 | 0.0844 | 0.0541 | 0.0548 | 0.1040 | 0.0266 | 0.0759 | 0.8313 |
| 1999 | 0.0133 | 0.0510 | 0.0592 | 0.0780 | 0.1472 | 0.1207 | 0.0801 | 0.0511 | 0.0517 | 0.0981 | 0.0251 | 0.7755 |
| 2000 | 0.0167 | 0.0451 | 0.1312 | 0.0966 | 0.0842 | 0.1265 | 0.0947 | 0.0609 | 0.0385 | 0.0388 | 0.0736 | 0.8068 |
| 2001 | 0.0217 | 0.0466 | 0.0879 | 0.1679 | 0.0924 | 0.0710 | 0.1022 | 0.0756 | 0.0485 | 0.0306 | 0.0308 | 0.7752 |
| 2002 | 0.0273 | 0.0342 | 0.0674 | 0.1059 | 0.1710 | 0.0864 | 0.0643 | 0.0915 | 0.0674 | 0.0432 | 0.0272 | 0.7858 |
| 2003 | 0.0276 | 0.1240 | 0.0917 | 0.0975 | 0.0989 | 0.1314 | 0.0622 | 0.0454 | 0.0642 | 0.0473 | 0.0302 | 0.8204 |
| 2004 | 0.0217 | 0.0538 | 0.1801 | 0.0993 | 0.0892 | 0.0848 | 0.1104 | 0.0519 | 0.0378 | 0.0535 | 0.0393 | 0.8218 |
| 2005 | 0.0361 | 0.0594 | 0.0927 | 0.2035 | 0.0880 | 0.0718 | 0.0660 | 0.0850 | 0.0399 | 0.0290 | 0.0410 | 0.8124 |
| 2006 | 0.0606 | 0.0784 | 0.0880 | 0.0989 | 0.1813 | 0.0728 | 0.0577 | 0.0526 | 0.0675 | 0.0316 | 0.0230 | 0.8124 |
| 2007 | 0.0367 | 0.0956 | 0.0946 | 0.0876 | 0.0904 | 0.1607 | 0.0639 | 0.0505 | 0.0460 | 0.0590 | 0.0276 | 0.8126 |
| 2008 | 0.0567 | 0.0770 | 0.1326 | 0.0955 | 0.0758 | 0.0737 | 0.1285 | 0.0508 | 0.0401 | 0.0364 | 0.0468 | 0.8139 |
| 2009 | 0.0427 | 0.0872 | 0.0938 | 0.1338 | 0.0880 | 0.0674 | 0.0649 | 0.1127 | 0.0445 | 0.0351 | 0.0319 | 0.8020 |
| 2010 | 0.0768 | 0.0938 | 0.1197 | 0.0916 | 0.1122 | 0.0700 | 0.0529 | 0.0506 | 0.0878 | 0.0346 | 0.0273 | 0.8173 |
| 2011 | 0.0357 | 0.1287 | 0.1147 | 0.1170 | 0.0809 | 0.0955 | 0.0589 | 0.0443 | 0.0424 | 0.0735 | 0.0290 | 0.8206 |
| 2012 | 0.0408 | 0.0683 | 0.1684 | 0.1140 | 0.1025 | 0.0677 | 0.0789 | 0.0484 | 0.0364 | 0.0348 | 0.0603 | 0.8205 |
| 2013 | 0.0345 | 0.0617 | 0.0825 | 0.1713 | 0.1072 | 0.0937 | 0.0614 | 0.0712 | 0.0437 | 0.0328 | 0.0314 | 0.7914 |
| 2014 | 0.0276 | 0.0648 | 0.0867 | 0.0890 | 0.1611 | 0.0959 | 0.0825 | 0.0538 | 0.0624 | 0.0382 | 0.0287 | 0.7907 |
| 2015 | 0.0238 | 0.0511 | 0.0923 | 0.0954 | 0.0850 | 0.1462 | 0.0857 | 0.0734 | 0.0478 | 0.0554 | 0.0340 | 0.7901 |
| 2016 | 0.0462 | 0.0774 | 0.1017 | 0.1124 | 0.0871 | 0.0691 | 0.1144 | 0.0662 | 0.0565 | 0.0368 | 0.0426 | 0.8104 |
| 2017 | 0.0290 | 0.1089 | 0.1154 | 0.1062 | 0.0990 | 0.0722 | 0.0562 | 0.0925 | 0.0535 | 0.0456 | 0.0297 | 0.8082 |
| 2018 | 0.0180 | 0.0514 | 0.1428 | 0.1200 | 0.0991 | 0.0889 | 0.0640 | 0.0496 | 0.0816 | 0.0472 | 0.0402 | 0.8028 |
| 2019 | 0.0289 | 0.0400 | 0.0748 | 0.1526 | 0.1115 | 0.0878 | 0.0776 | 0.0556 | 0.0431 | 0.0708 | 0.0409 | 0.7836 |
| 2020 | 0.0344 | 0.0630 | 0.0571 | 0.0792 | 0.1402 | 0.0971 | 0.0751 | 0.0659 | 0.0472 | 0.0365 | 0.0600 | 0.7557 |
| 2021 | 0.0643 | 0.0609 | 0.0754 | 0.0543 | 0.0684 | 0.1172 | 0.0803 | 0.0618 | 0.0542 | 0.0388 | 0.0300 | 0.7056 |
| 2022 | 0.0748 | 0.0935 | 0.0659 | 0.0690 | 0.0464 | 0.0570 | 0.0968 | 0.0662 | 0.0509 | 0.0446 | 0.0319 | 0.6970 |

Table 5: Total tonnage of yellowfin sole caught in resource assessment surveys in the eastern Bering Sea from 1977-2022.

| Year | Research catch (t) |
| :--- | ---: |
| 2006 | 0 |
| 2007 | 0 |
| 2010 | 119 |
| 2011 | 101 |
| 2012 | 83 |
| 2013 | 75 |
| 2014 | 83 |
| 2015 | 65 |
| 2016 | 98 |
| 2017 | 112 |
| 2018 | 73 |
| 2019 | 85 |
| 2020 | 0 |
| 2021 | 72 |
| 2022 | 87 |

Table 6: Discarded and retained catch of non-CDQ yellowfin sole, by fishery, in 2022. Gear types include longline (HAL), bottom trawl (NPT), pot (POT), and pelagic trawl (PTR). Catch was non-zero for all target-gear combinations shown, but may appear as zero as results were rounded to the nearest metric ton (t). Source: NMFS AKRO BLEND/Catch Accounting System.

|  | Gear type | Discarded (t) | Retained (t) |
| :--- | ---: | ---: | ---: |
| Other species | HAL | 3 | 0 |
| Pacific cod | HAL | 619 | 0 |
| Arrowtooth flounder | NPT | 0 | 0 |
| Atka mackerel | NPT | 1 | 0 |
| Flathead sole | NPT | 60 | 3,821 |
| Other flatfish | NPT | 0 | 0 |
| Pacific cod | NPT | 5 | 18 |
| Pollock - bottom | NPT | 10 | 451 |
| Rock sole | NPT | 49 | 4,125 |
| Rockfish | NPT | 0 | 0 |
| Sablefish | NPT | 0 | 0 |
| Yellowfin sole | NPT | 1,721 | 142,764 |
| Pacific cod | POT | 175 | 0 |
| Pollock - bottom | PTR | 1 | 104 |
| Pollock - midwater | PTR | 114 | 205 |

Table 7: Female yellowfin sole proportion mature at age from Nichol (1995) and TenBrink and Wilderbuer (2015).

|  | Nichol (1995) | TenBrink and Wilderbuer (2015) | Total |
| :---: | :---: | :---: | :---: |
| Age | 1992, 1993 samples | 2012 samples | Combined |
| 1 | 0.000 | 0.00 | 0.00 |
| 2 | 0.000 | 0.00 | 0.00 |
| 3 | 0.001 | 0.00 | 0.00 |
| 4 | 0.004 | 0.00 | 0.00 |
| 5 | 0.008 | 0.00 | 0.00 |
| 6 | 0.020 | 0.01 | 0.01 |
| 7 | 0.046 | 0.03 | 0.04 |
| 8 | 0.104 | 0.09 | 0.10 |
| 9 | 0.217 | 0.21 | 0.21 |
| 10 | 0.397 | 0.43 | 0.41 |
| 11 | 0.612 | 0.68 | 0.65 |
| 12 | 0.790 | 0.86 | 0.83 |
| 13 | 0.899 | 0.94 | 0.92 |
| 14 | 0.955 | 0.98 | 0.97 |
| 15 | 0.981 | 0.99 | 0.99 |
| 16 | 0.992 | 1.00 | 1.00 |
| 17 | 0.997 | 1.00 | 1.00 |
| 18 | 1.000 | 1.00 | 1.00 |
| 19 | 1.000 | 1.00 | 1.00 |
| 20 | 1.000 | 1.00 | 1.00 |

Table 8: Yellowfin sole design-based (DB) biomass estimates (t) from the annual eastern Bering Sea shelf bottom trawl survey, and model-based (MB) biomass estimates for the combined northern and eastern Bering Sea survey areas (EBS+NBS), with upper (UCI) and lower (LCI) $95 \%$ confidence intervals. Note that surveys were not conducted in 2020.

| Year | EBS Biomass DB (t) | LCI | UCI | EBS+NBS Biomass MB (t) | LCI | UCI |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1982 | 3,509,130 | 3,508,559 | 3,509,700 | 4,027,030 | 4,026,482 | 4,027,577 |
| 1983 | 3,672,420 | 3,672,015 | 3,672,824 | 4,568,050 | 4,567,398 | 4,568,701 |
| 1984 | 3,341,320 | 3,340,953 | 3,341,686 | 4,185,330 | 4,184,745 | 4,185,914 |
| 1985 | 2,398,080 | 2,397,771 | 2,398,388 | 3,024,480 | 3,024,146 | 3,024,813 |
| 1986 | 2,031,600 | 2,031,298 | 2,031,901 | 2,336,500 | 2,336,219 | 2,336,780 |
| 1987 | 2,530,210 | 2,529,824 | 2,530,595 | 3,022,300 | 3,021,953 | 3,022,646 |
| 1988 | 2,195,920 | 2,195,507 | 2,196,332 | 2,635,670 | 2,635,416 | 2,635,923 |
| 1989 | 2,329,420 | 2,329,078 | 2,329,761 | 2,775,430 | 2,775,116 | 2,775,743 |
| 1990 | 2,192,590 | 2,192,292 | 2,192,887 | 2,622,700 | 2,622,419 | 2,622,980 |
| 1991 | 2,406,530 | 2,406,253 | 2,406,806 | 3,153,540 | 3,153,238 | 3,153,841 |
| 1992 | 2,215,410 | 2,215,022 | 2,215,797 | 2,884,600 | 2,884,144 | 2,885,055 |
| 1993 | 2,484,910 | 2,484,596 | 2,485,223 | 3,137,850 | 3,137,434 | 3,138,265 |
| 1994 | 2,615,720 | 2,615,379 | 2,616,060 | 3,556,680 | 3,556,107 | 3,557,252 |
| 1995 | 2,026,890 | 2,026,605 | 2,027,174 | 2,529,190 | 2,528,843 | 2,529,536 |
| 1996 | 2,230,820 | 2,230,435 | 2,231,204 | 2,723,150 | 2,722,794 | 2,723,505 |
| 1997 | 2,176,540 | 2,176,285 | 2,176,794 | 2,871,530 | 2,871,075 | 2,871,984 |
| 1998 | 2,222,670 | 2,222,392 | 2,222,947 | 3,551,080 | 3,550,259 | 3,551,900 |
| 1999 | 1,266,420 | 1,266,239 | 1,266,600 | 2,020,680 | 2,020,155 | 2,021,204 |
| 2000 | 1,600,280 | 1,600,079 | 1,600,480 | 2,125,330 | 2,124,987 | 2,125,672 |
| 2001 | 1,690,560 | 1,690,319 | 1,690,800 | 2,338,410 | 2,338,025 | 2,338,794 |
| 2002 | 1,923,070 | 1,922,811 | 1,923,328 | 2,603,860 | 2,603,406 | 2,604,313 |
| 2003 | 2,171,730 | 2,171,319 | 2,172,140 | 2,915,860 | 2,915,402 | 2,916,317 |
| 2004 | 2,557,800 | 2,557,417 | 2,558,182 | 3,494,700 | 3,494,133 | 3,495,266 |
| 2005 | 2,840,250 | 2,839,528 | 2,840,971 | 3,568,890 | 3,568,381 | 3,569,398 |
| 2006 | 2,146,500 | 2,146,186 | 2,146,813 | 2,898,850 | 2,898,459 | 2,899,240 |
| 2007 | 2,168,040 | 2,167,660 | 2,168,419 | 2,825,340 | 2,824,942 | 2,825,737 |
| 2008 | 2,112,690 | 2,112,187 | 2,113,192 | 3,012,310 | 3,011,801 | 3,012,818 |
| 2009 | 1,752,060 | 1,751,759 | 1,752,360 | 2,407,410 | 2,407,058 | 2,407,761 |
| 2010 | 2,388,160 | 2,387,605 | 2,388,714 | 3,118,130 | 3,117,799 | 3,118,460 |
| 2011 | 2,422,500 | 2,422,019 | 2,422,980 | 2,876,520 | 2,876,164 | 2,876,875 |
| 2012 | 1,965,410 | 1,965,135 | 1,965,684 | 2,875,650 | 2,875,253 | 2,876,046 |
| 2013 | 2,295,210 | 2,294,866 | 2,295,553 | 2,817,990 | 2,817,656 | 2,818,323 |
| 2014 | 2,531,400 | 2,530,941 | 2,531,858 | 3,047,780 | 3,047,426 | 3,048,133 |
| 2015 | 1,946,300 | 1,946,012 | 1,946,587 | 2,396,930 | 2,396,655 | 2,397,204 |
| 2016 | 2,876,800 | 2,876,474 | 2,877,125 | 3,796,820 | 3,796,422 | 3,797,217 |
| 2017 | 2,805,160 | 2,804,683 | 2,805,636 | 3,711,310 | 3,710,979 | 3,711,640 |
| 2018 | 1,903,040 | 1,902,812 | 1,903,267 | 2,961,540 | 2,961,279 | 2,961,800 |
| 2019 | 2,017,620 | 2,017,203 | 2,018,036 | 2,875,140 | 2,874,905 | 2,875,374 |
| 2021 | 1,633,970 | 1,633,755 | 1,634,184 | 2,476,000 | 2,475,787 | 2,476,212 |
| 2022 | 2,039,970 | 2,039,705 | 2,040,234 | 2,936,470 | 2,936,215 | 2,936,724 |
| 2023 | 1,393,378 | 1,136,033 | 1,650,724 | 2,007,140 | 2,006,955 | 2,007,324 |

Table 9: Model estimates of yellowfin sole age $2+$ total biomass ( t ) from the 2022 and 2023 stock assessments, Model 22.1 (2022), Model 22.1 (2023), and 23.0. All are model-based (VAST) estimates.

| Model | $22.1(2022)$ |  | $22.1(2023)$ |  |  | 23 |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  | Biomass (t) |  | Biomass (t) |  | Biomass (t) | LCI |


| 2002 | $2,868,870$ | $2,579,190$ | $2,608,310$ | $2,203,290$ | $3,087,780$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2003 | $3,167,540$ | $2,903,890$ | $2,936,550$ | $2,491,760$ | $3,460,720$ |
| 2004 | $3,292,090$ | $3,080,870$ | $3,115,450$ | $2,652,440$ | $3,659,290$ |
| 2005 | $3,352,180$ | $3,188,350$ | $3,223,170$ | $2,751,400$ | $3,775,840$ |
| 2006 | $3,376,190$ | $3,225,930$ | $3,260,800$ | $2,785,250$ | $3,817,540$ |
| 2007 | $3,294,640$ | $3,179,030$ | $3,211,900$ | $2,747,430$ | $3,754,890$ |
| 2008 | $3,152,100$ | $3,049,690$ | $3,081,100$ | $2,635,940$ | $3,601,440$ |
| 2009 | $3,167,340$ | $3,077,850$ | $3,110,560$ | $2,652,310$ | $3,647,980$ |
| 2010 | $3,308,680$ | $3,215,050$ | $3,248,490$ | $2,770,760$ | $3,808,580$ |
| 2011 | $3,259,250$ | $3,174,060$ | $3,205,520$ | $2,744,070$ | $3,744,580$ |
| 2012 | $3,089,540$ | $3,017,860$ | $3,049,110$ | $2,604,170$ | $3,570,070$ |
| 2013 | $2,971,180$ | $2,898,760$ | $2,928,580$ | $2,499,880$ | $3,430,800$ |
| 2014 | $2,947,440$ | $2,857,770$ | $2,887,920$ | $2,461,330$ | $3,388,450$ |
| 2015 | $2,936,120$ | $2,836,930$ | $2,866,870$ | $2,434,830$ | $3,375,560$ |
| 2016 | $2,983,790$ | $2,851,390$ | $2,881,680$ | $2,451,140$ | $3,387,840$ |
| 2017 | $3,018,220$ | $2,841,830$ | $2,873,180$ | $2,430,700$ | $3,396,210$ |
| 2018 | $2,809,720$ | $2,586,720$ | $2,615,040$ | $2,214,570$ | $3,087,930$ |
| 2019 | $3,010,490$ | $2,644,610$ | $2,673,750$ | $2,258,330$ | $3,165,600$ |
| 2020 | $3,065,090$ | $2,546,630$ | $2,574,660$ | $2,168,900$ | $3,056,320$ |
| 2021 | $3,443,250$ | $2,596,360$ | $2,623,810$ | $2,214,230$ | $3,109,160$ |
| 2022 | $3,782,420$ | $2,690,830$ | $2,719,490$ | $2,284,120$ | $3,237,830$ |
| 2023 |  | $2,687,780$ | $2,716,370$ | $2,264,470$ | $3,258,460$ |

Table 10: Yellowfin sole design-based biomass estimates ( t ) from the northern Bering Sea survey, with upper and lower $95 \%$ confidence intervals, as well as number of hauls, hauls with yellowfin sole, and hauls in which length data was obtained.

| Year | Biomass (t) | LCI | HCI | Haul count | Hauls with catch | Hauls with length | Otoliths read | Hauls with otoliths |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2010 | 427,374 | 331,321 | 523,426 | 141 | 121 | 121 | 351 | 46 |
| 2017 | 434,087 | 336,225 | 531,949 | 143 | 131 | 130 | 536 | 50 |
| 2019 | 520,031 | 395,637 | 644,425 | 144 | 141 | 140 | 0 | 33 |
| 2021 | 496,045 | 392,315 | 599,775 | 144 | 138 | 135 | 0 | 122 |
| 2022 | 548,026 | 365,861 | 730,191 | 144 | 136 | 108 | 362 | 123 |
| 2023 | 393,304 | 314,123 | 472,485 | 116 | 108 |  | 107 |  |

Table 11: Yellowfin sole population numbers-at-age (millions) estimated from the annual EBS bottom trawl surveys, 1987-2022 (Current year data is not yet available and there was no survey in 2020). Data in years 1987 or later come from the 'plusnw' extended survey area. Females are presented first, followed by males. Continued on next page.

| Year | Age (Females) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17+ |
| 1987 | 0 | 0 | 68 | 117 | 786 | 446 | 821 | 252 | 364 | 580 | 344 | 434 | 234 | 261 | 238 | 174 |
| 1988 | 0 | 0 | 6 | 344 | 65 | 1,363 | 501 | 498 | 164 | 214 | 317 | 187 | 325 | 246 | 198 | 152 |
| 1989 | 0 | 0 | 14 | 98 | 720 | 234 | 1,341 | 596 | 449 | 74 | 180 | 309 | 235 | 239 | 184 | 82 |
| 1990 | 0 | 0 | 70 | 102 | 326 | 1,072 | 193 | 1,263 | 410 | 484 | 101 | 72 | 107 | 78 | 232 | 127 |
| 1991 | 0 | 9 | 127 | 249 | 123 | 407 | 899 | 151 | 1,267 | 213 | 527 | 62 | 128 | 87 | 123 | 164 |
| 1992 | 0 | 18 | 239 | 464 | 499 | 203 | 274 | 899 | 91 | 794 | 72 | 297 | 124 | 131 | 163 | 104 |
| 1993 | 0 | 24 | 100 | 360 | 639 | 437 | 270 | 226 | 1,323 | 78 | 872 | 157 | 166 | 69 | 68 | 91 |
| 1994 | 0 | 53 | 95 | 223 | 518 | 906 | 556 | 482 | 284 | 1,172 | 0 | 516 | 43 | 274 | 142 | 41 |
| 1995 | 0 | 19 | 153 | 290 | 182 | 896 | 632 | 276 | 136 | 25 | 638 | 20 | 565 | 104 | 80 | 97 |
| 1996 | 0 | 15 | 150 | 793 | 280 | 270 | 421 | 501 | 199 | 141 | 146 | 583 | 112 | 616 | 44 | 29 |
| 1997 | 0 | 18 | 326 | 506 | 729 | 257 | 240 | 507 | 229 | 114 | 177 | 184 | 502 | 44 | 315 | 75 |
| 1998 | 0 | 9 | 79 | 455 | 401 | 859 | 248 | 194 | 352 | 393 | 351 | 161 | 167 | 252 | 63 | 397 |
| 1999 | 0 | 3 | 62 | 189 | 168 | 179 | 704 | 100 | 104 | 238 | 184 | 180 | 70 | 99 | 170 | 102 |
| 2000 | 0 | 11 | 54 | 249 | 209 | 307 | 448 | 543 | 191 | 200 | 240 | 221 | 65 | 118 | 146 | 110 |
| 2001 | 0 | 1 | 66 | 221 | 478 | 225 | 363 | 371 | 584 | 333 | 74 | 172 | 138 | 114 | 170 | 99 |
| 2002 | 0 | 15 | 119 | 163 | 243 | 747 | 325 | 273 | 215 | 433 | 209 | 85 | 290 | 109 | 143 | 137 |
| 2003 | 0 | 15 | 114 | 236 | 243 | 278 | 1,111 | 218 | 269 | 276 | 242 | 99 | 111 | 163 | 161 | 83 |
| 2004 | 10 | 33 | 197 | 442 | 572 | 417 | 218 | 976 | 224 | 213 | 222 | 222 | 107 | 20 | 169 | 187 |
| 2005 | 0 | 53 | 168 | 195 | 588 | 414 | 231 | 473 | 877 | 221 | 137 | 184 | 336 | 164 | 50 | 181 |
| 2006 | 8 | 67 | 304 | 378 | 277 | 637 | 472 | 177 | 327 | 741 | 133 | 133 | 71 | 157 | 176 | , |
| 2007 | 0 | 37 | 519 | 349 | 384 | 276 | 505 | 309 | 124 | 228 | 507 | 119 | 138 | 127 | 105 | 77 |
| 2008 | 0 | 23 | 115 | 741 | 624 | 545 | 357 | 361 | 196 | 128 | 255 | 355 | 151 | 78 | 85 | 119 |
| 2009 | 5 | 37 | 205 | 205 | 1,199 | 600 | 495 | 266 | 211 | 219 | 130 | 139 | 197 | 89 | 43 | 1 |
| 2010 | 0 | 33 | 330 | 389 | 441 | 902 | 558 | 520 | 331 | 338 | 155 | 167 | 136 | 174 | 99 | 49 |
| 2011 | 0 | 14 | 245 | 543 | 712 | 466 | 775 | 413 | 460 | 205 | 227 | 149 | 143 | 145 | 187 | 99 |
| 2012 | 10 | 50 | 231 | 397 | 508 | 295 | 244 | 758 | 257 | 336 | 107 | 157 | 37 | 151 | 128 | 150 |
| 2013 | 0 | 4 | 89 | 271 | 423 | 535 | 257 | 221 | 411 | 408 | 360 | 120 | 135 | 133 | 133 | 94 |
| 2014 | 0 | 0 | 37 | 424 | 386 | 250 | 422 | 232 | 229 | 526 | 343 | 161 | 145 | 230 | 34 | 123 |
| 2015 | 0 | 22 | 3 | 168 | 470 | 352 | 309 | 289 | 250 | 150 | 283 | 260 | 135 | 99 | 80 | 68 |
| 2016 | 0 | 32 | 71 | 45 | 165 | 748 | 568 | 405 | 365 | 301 | 144 | 246 | 230 | 140 | 163 | 170 |
| 2017 | 16 | 79 | 384 | 381 | 122 | 319 | 1,007 | 484 | 337 | 379 | 229 | 149 | 203 | 201 | 149 | 118 |
| 2018 | 0 | 49 | 182 | 262 | 178 | 91 | 265 | 641 | 326 | 231 | 81 | 76 | 41 | 124 | 99 | 103 |
| 2019 | 1 | 124 | 209 | 309 | 156 | 241 | 79 | 211 | 548 | 360 | 130 | 160 | 125 | 123 | 72 | 43 |
| 2021 | 0 | 258 | 100 | 1,450 | 457 | 317 | 123 | 176 | 94 | 157 | 162 | 108 | 105 | 67 | 54 | 61 |
| 2022 | 0 | 97 | 360 | 282 | 1,405 | 424 | 404 | 88 | 160 | 80 | 126 | 174 | 86 | 72 | 77 | 66 |


| Year | Age (Males) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17+ |
| 1987 | 0 | 4 | 39 | 104 | 820 | 456 | 655 | 430 | 316 | 267 | 202 | 142 | 102 | 136 | 177 | 211 |
| 1988 | 0 | 1 | 9 | 413 | 45 | 1,087 | 507 | 406 | 77 | 171 | 25 | 163 | 308 | 173 | 25 | 106 |
| 1989 | 0 | 2 | 23 | 181 | 789 | 177 | 1,310 | 515 | 358 | 135 | 50 | 104 | 53 | 205 | 35 | 38 |
| 1990 | 0 | 10 | 47 | 121 | 318 | 894 | 196 | 1,151 | 319 | 265 | 39 | 65 | 67 | 24 | 54 | 73 |
| 1991 | 0 | 0 | 103 | 357 | 140 | 277 | 1,051 | 68 | 1,143 | 330 | 245 | 74 | 64 | 60 | 53 | 91 |
| 1992 | 0 | 0 | 141 | 428 | 542 | 251 | 216 | 778 | 109 | 875 | 186 | 206 | 11 | 12 | 59 | 37 |
| 1993 | 0 | 20 | 52 | 235 | 651 | 396 | 280 | 248 | 1,105 | 70 | 849 | 53 | 53 | 50 | 0 | 48 |
| 1994 | 4 | 21 | 71 | 166 | 427 | 954 | 657 | 308 | 191 | 824 | 25 | 623 | 45 | 132 | 11 | 36 |
| 1995 | 0 | 0 | 170 | 120 | 272 | 672 | 570 | 95 | 181 | 75 | 481 | 13 | 608 | 49 | 24 | 77 |
| 1996 | 0 | 74 | 92 | 822 | 238 | 220 | 413 | 335 | 321 | 137 | 135 | 388 | 58 | 436 | 122 | 92 |
| 1997 | 0 | 9 | 216 | 428 | 803 | 182 | 184 | 449 | 246 | 195 | 215 | 109 | 518 | 79 | 266 | 31 |
| 1998 | 0 | 46 | 66 | 335 | 546 | 796 | 151 | 215 | 193 | 258 | 328 | 142 | 149 | 178 | 107 | 250 |
| 1999 | 0 | 5 | 96 | 136 | 216 | 234 | 555 | 141 | 91 | 299 | 261 | 72 | 51 | 27 | 115 | 34 |
| 2000 | 0 | 0 | 35 | 220 | 261 | 144 | 514 | 589 | 79 | 217 | 134 | 77 | 93 | 78 | 66 | 154 |
| 2001 | 0 | 0 | 81 | 130 | 604 | 309 | 341 | 324 | 513 | 190 | 80 | 144 | 59 | 67 | 129 | 55 |
| 2002 | 0 | 56 | 70 | 152 | 297 | 726 | 303 | 315 | 247 | 419 | 183 | 134 | 207 | 151 | 124 | 20 |
| 2003 | 0 | 23 | 93 | 174 | 251 | 244 | 1,046 | 231 | 354 | 51 | 277 | 168 | 9 | 69 | 56 | 104 |
| 2004 | 4 | 64 | 116 | 477 | 454 | 201 | 400 | 1,005 | 267 | 82 | 198 | 226 | 104 | 48 | 253 | 104 |
| 2005 | 0 | 48 | 167 | 179 | 453 | 458 | 239 | 297 | 1,007 | 123 | 139 | 118 | 131 | 68 | 91 | 126 |
| 2006 | 0 | 101 | 174 | 350 | 333 | 508 | 395 | 289 | 300 | 386 | 117 | 156 | 90 | 39 | 11 | 55 |
| 2007 | 0 | 58 | 485 | 355 | 408 | 285 | 549 | 210 | 166 | 268 | 336 | 100 | 132 | 70 | 59 | 123 |
| 2008 | 0 | 10 | 100 | 667 | 465 | 486 | 346 | 455 | 226 | 145 | 186 | 331 | 63 | 66 | 34 | 104 |
| 2009 | 0 | 65 | 145 | 292 | 960 | 467 | 548 | 249 | 251 | 218 | 78 | 31 | 196 | 30 | 29 | 51 |
| 2010 | 0 | 78 | 201 | 421 | 373 | 1,040 | 466 | 514 | 173 | 190 | 160 | 53 | 117 | 152 | 79 | 53 |
| 2011 | 0 | 6 | 151 | 388 | 486 | 360 | 798 | 401 | 226 | 177 | 78 | 81 | 137 | 103 | 157 | 97 |
| 2012 | 0 | 69 | 276 | 355 | 348 | 277 | 241 | 429 | 300 | 181 | 98 | 67 | 91 | 34 | 100 | 59 |
| 2013 | 0 | 6 | 92 | 369 | 387 | 485 | 212 | 270 | 448 | 201 | 202 | 33 | 89 | 100 | 118 | 18 |
| 2014 | 0 | 0 | 8 | 368 | 399 | 288 | 341 | 312 | 253 | 403 | 207 | 194 | 20 | 193 | 94 | 108 |
| 2015 | 0 | 29 | 36 | 132 | 430 | 335 | 303 | 314 | 320 | 48 | 181 | 131 | 81 | 0 | 80 | 111 |
| 2016 | 0 | 43 | 85 | 20 | 142 | 709 | 548 | 404 | 369 | 126 | 118 | 228 | 181 | 88 | 35 | 92 |
| 2017 | 9 | 121 | 233 | 399 | 107 | 262 | 886 | 501 | 312 | 277 | 196 | 108 | 217 | 156 | 37 | 12 |
| 2018 | 0 | 39 | 175 | 188 | 229 | 72 | 236 | 523 | 261 | 189 | 95 | 77 | 73 | 75 | 69 | 29 |
| 2019 | 0 | 136 | 252 | 234 | 103 | 272 | 109 | 148 | 491 | 271 | 130 | 155 | 84 | 68 | 57 | 94 |
| 2021 | 0 | 52 | 189 | 1,079 | 517 | 373 | 87 | 106 | 69 | 84 | 158 | 42 | 62 | 37 | 41 | 55 |
| 2022 | 0 | 74 | 120 | 444 | 1,040 | 487 | 308 | 79 | 95 | 62 | 106 | 143 | 67 | 25 | 136 | 66 |

Table 12: Mean unsmoothed survey weight-at-age (grams) for yellowfin sole, females, 1964-2023.

| Year | Age (Females) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 64 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 | 590 |
| 1965 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 | 590 |
| 1966 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 | 590 |
| 1967 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 | 590 |
| 1968 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 | 590 |
| 1969 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 | 590 |
| 1970 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 | 590 |
| 1971 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 | 590 |
| 1972 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 | 590 |
| 1973 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 | 590 |
| 1974 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 | 590 |
| 1975 | 8 | 20 | 31 | 55 | 84 | 124 | 165 | 217 | 266 | 301 | 341 | 374 | 407 | 428 | 443 | 480 | 483 | 499 | 590 | 590 |
| 1976 | 8 | 20 | 31 | 55 | 84 | 124 | 165 | 217 | 266 | 301 | 341 | 374 | 407 | 428 | 443 | 480 | 483 | 499 | 590 | 590 |
| 1977 | 8 | 20 | 31 | 55 | 84 | 124 | 165 | 217 | 266 | 301 | 341 | 374 | 407 | 428 | 443 | 480 | 483 | 499 | 590 | 590 |
| 1978 | 8 | 20 | 31 | 55 | 84 | 124 | 165 | 217 | 266 | 301 | 341 | 374 | 407 | 428 | 443 | 480 | 483 | 499 | 590 | 590 |
| 1979 | 8 | 20 | 31 | 55 | 84 | 124 | 165 | 217 | 266 | 301 | 341 | 374 | 407 | 428 | 443 | 480 | 483 | 499 | 590 | 590 |
| 1980 | 8 | 20 | 31 | 55 | 84 | 124 | 165 | 217 | 266 | 301 | 341 | 374 | 407 | 428 | 443 | 480 | 483 | 499 | 590 | 590 |
| 1981 | 8 | 20 | 31 | 55 | 84 | 124 | 165 | 217 | 266 | 301 | 341 | 374 | 407 | 428 | 443 | 480 | 483 | 499 | 590 | 590 |
| 1982 | 8 | 20 | 42 | 75 | 98 | 139 | 176 | 214 | 233 | 235 | 331 | 359 | 393 | 410 | 436 | 482 | 470 | 476 | 586 | 590 |
| 1983 | 10 | 14 | 26 | 60 | 103 | 162 | 185 | 201 | 243 | 255 | 318 | 350 | 391 | 419 | 455 | 503 | 489 | 503 | 605 | 590 |
| 1984 | 14 | 26 | 33 | 57 | 110 | 156 | 177 | 222 | 246 | 294 | 318 | 342 | 375 | 418 | 453 | 498 | 492 | 536 | 617 | 590 |
| 1985 | 11 | 16 | 28 | 46 | 77 | 177 | 202 | 251 | 286 | 302 | 314 | 341 | 367 | 417 | 450 | 502 | 520 | 556 | 623 | 590 |
| 1986 | 14 | 27 | 23 | 41 | 71 | 103 | 173 | 239 | 284 | 338 | 314 | 336 | 366 | 401 | 439 | 490 | 511 | 547 | 628 | 590 |
| 1987 | 10 | 14 | 20 | 47 | 55 | 127 | 179 | 256 | 317 | 324 | 331 | 351 | 375 | 411 | 443 | 475 | 519 | 557 | 619 | 590 |
| 1988 | 9 | 12 | 16 | 34 | 66 | 85 | 159 | 237 | 286 | 307 | 351 | 364 | 377 | 393 | 418 | 446 | 490 | 528 | 597 | 590 |
| 1989 | 12 | 21 | 33 | 67 | 71 | 112 | 133 | 197 | 279 | 339 | 364 | 384 | 402 | 400 | 422 | 445 | 506 | 490 | 570 | 590 |
| 1990 | 11 | 17 | 24 | 38 | 65 | 99 | 126 | 197 | 243 | 321 | 389 | 400 | 411 | 405 | 430 | 436 | 475 | 475 | 559 | 590 |
| 1991 | 11 | 16 | 23 | 58 | 56 | 100 | 142 | 156 | 238 | 310 | 394 | 421 | 420 | 429 | 446 | 450 | 486 | 481 | 557 | 590 |
| 1992 | 12 | 21 | 29 | 55 | 85 | 121 | 177 | 176 | 283 | 305 | 377 | 417 | 430 | 456 | 454 | 464 | 498 | 485 | 562 | 59 |
| 1993 | 15 | 28 | 35 | 64 | 93 | 155 | 165 | 232 | 244 | 301 | 368 | 411 | 438 | 469 | 470 | 477 | 506 | 496 | 563 | 590 |
| 1994 | 20 | 46 | 53 | 86 | 87 | 125 | 155 | 235 | 276 | 284 | 355 | 405 | 418 | 470 | 472 | 482 | 486 | 504 | 571 | 590 |
| 1995 | 12 | 20 | 28 | 60 | 84 | 123 | 160 | 217 | 284 | 332 | 333 | 403 | 412 | 463 | 470 | 478 | 515 | 495 | 575 | 90 |
| 1996 | 11 | 16 | 36 | 51 | 108 | 137 | 167 | 202 | 222 | 311 | 322 | 379 | 403 | 448 | 461 | 487 | 509 | 503 | 567 | 590 |
| 1997 | 16 | 34 | 33 | 72 | 85 | 157 | 200 | 236 | 260 | 292 | 336 | 383 | 397 | 439 | 457 | 488 | 492 | 514 | 577 | 590 |
| 1998 | 10 | 14 | 36 | 51 | 90 | 104 | 177 | 237 | 278 | 279 | 333 | 383 | 391 | 430 | 439 | 478 | 479 | 513 | 576 | 590 |
| 1999 | 9 | 12 | 18 | 37 | 67 | 103 | 131 | 239 | 284 | 296 | 331 | 374 | 398 | 417 | 429 | 474 | 484 | 506 | 593 | 590 |
| 2000 | 6 | 8 | 14 | 33 | 36 | 92 | 142 | 192 | 211 | 231 | 294 | 336 | 378 | 361 | 393 | 458 | 491 | 522 | 505 | 609 |
| 2001 | 6 | 4 | 8 | 31 | 39 | 62 | 99 | 148 | 195 | 242 | 284 | 383 | 392 | 436 | 424 | 442 | 474 | 528 | 530 | 663 |
| 2002 | 6 | 8 | 19 | 27 | 45 | 66 | 105 | 156 | 229 | 246 | 276 | 343 | 328 | 394 | 451 | 480 | 504 | 552 | 560 | 631 |
| 2003 | 6 | 8 | 14 | 29 | 56 | 87 | 127 | 171 | 224 | 299 | 328 | 357 | 413 | 454 | 417 | 505 | 374 | 600 | 575 | 652 |
| 2004 | 6 | 8 | 14 | 38 | 64 | 101 | 163 | 162 | 231 | 300 | 328 | 359 | 440 | 524 | 551 | 476 | 485 | 500 | 500 | 654 |
| 2005 | 6 | 4 | 21 | 40 | 72 | 114 | 156 | 217 | 236 | 284 | 349 | 356 | 377 | 464 | 509 | 505 | 612 | 472 | 620 | 693 |
| 2006 | 6 | 6 | 16 | 36 | 76 | 114 | 149 | 206 | 236 | 303 | 308 | 360 | 368 | 592 | 493 | 495 | 532 | 568 | 618 | 740 |
| 2007 | 6 | 8 | 16 | 38 | 70 | 113 | 170 | 196 | 239 | 330 | 304 | 351 | 361 | 406 | 456 | 466 | 558 | 568 | 683 | 740 |
| 2008 | 6 | 8 | 24 | 31 | 57 | 106 | 140 | 203 | 239 | 281 | 309 | 345 | 395 | 432 | 422 | 501 | 567 | 555 | 594 | 660 |
| 2009 | 6 | 6 | 10 | 22 | 51 | 92 | 142 | 182 | 248 | 321 | 334 | 377 | 434 | 429 | 433 | 575 | 874 | 556 | 565 | 697 |
| 2010 | 6 | 2 | 16 | 25 | 57 | 84 | 136 | 186 | 218 | 343 | 337 | 403 | 446 | 460 | 517 | 557 | 594 | 620 | 744 | 795 |
| 2011 | 6 | 8 | 12 | 30 | 49 | 92 | 145 | 210 | 264 | 318 | 329 | 405 | 419 | 441 | 448 | 621 | 534 | 516 | 623 | 696 |
| 2012 | , | 6 | 11 | 27 | 53 | 91 | 146 | 167 | 258 | 317 | 367 | 321 | 452 | 529 | 502 | 514 | 562 | 654 | 598 | 730 |
| 2013 | 6 | 8 | 12 | 21 | 40 | 102 | 131 | 195 | 275 | 318 | 366 | 399 | 415 | 474 | 473 | 518 | 550 | 555 | 606 | 702 |
| 2014 | 6 | 8 | 19 | 16 | 37 | 85 | 145 | 201 | 252 | 306 | 368 | 360 | 428 | 421 | 495 | 592 | 536 | 577 | 570 | 715 |
| 2015 | 6 | 8 | 15 | 12 | 40 | 62 | 130 | 215 | 262 | 355 | 418 | 437 | 411 | 484 | 474 | 596 | 647 | 593 | 531 | 731 |
| 2016 | 6 | 12 | 25 | 37 | 69 | 86 | 130 | 211 | 329 | 378 | 417 | 415 | 517 | 465 | 509 | 522 | 581 | 580 | 618 | 723 |
| 2017 | 6 | 9 | 19 | 51 | 69 | 118 | 143 | 187 | 273 | 366 | 382 | 436 | 536 | 503 | 553 | 647 | 601 | 701 | 585 | 824 |
| 2018 |  | 8 | 22 | 39 | 88 | 111 | 163 | 236 | 248 | 346 | 421 | 447 | 504 | 478 | 542 | 606 | 586 | 571 | 717 | 677 |
| 2019 | 6 | 6 | 21 | 47 | 92 | 160 | 180 | 254 | 277 | 346 | 404 | 583 | 503 | 505 | 570 | 680 | 701 | 673 | 698 | 720 |
| 2021 | 6 |  | 21 | 47 | 92 | 160 | 180 | 254 | 277 | 346 | 404 | 583 | 503 | 505 | 570 | 680 | 701 | 673 | 698 | 720 |
| 2022 | 6 | 6 | 21 | 43 | 103 | 188 | 248 | 321 | 365 | 453 | 438 | 478 | 540 | 564 | 592 | 637 | 602 | 635 | 650 | 667 |
| 2023 | 6 | 6 | 17 | 49 | 85 | 151 | 244 | 338 | 391 | 437 | 524 | 516 | 518 | 626 | 635 | 646 | 644 | 739 | 784 | 734 |

Table 13: Mean unsmoothed survey weight-at-age (grams) for yellowfin sole, males, 1964-2023.

| Year | Age (Females) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 1964 | 0 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 |
| 1965 | 0 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 |
| 1966 | 0 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 |
| 1967 | 0 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 |
| 1968 | 0 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 |
| 1969 | 0 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 |
| 1970 | 0 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 |
| 1971 | 0 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 |
| 1972 | 0 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 |
| 1973 | 0 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 |
| 1974 | 0 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 |
| 1975 | 4 | 14 | 18 | 32 | 54 | 85 | 120 | 156 | 193 | 225 | 253 | 280 | 303 | 324 | 330 | 344 | 355 | 366 | 390 | 423 |
| 1976 | 4 | 14 | 18 | 32 | 54 | 85 | 120 | 156 | 193 | 225 | 253 | 280 | 303 | 324 | 330 | 344 | 355 | 366 | 390 | 423 |
| 1977 | 4 | 14 | 18 | 32 | 54 | 85 | 120 | 156 | 193 | 225 | 253 | 280 | 303 | 324 | 330 | 344 | 355 | 366 | 390 | 423 |
| 1978 | 4 | 14 | 18 | 32 | 54 | 85 | 120 | 156 | 193 | 225 | 253 | 280 | 303 | 324 | 330 | 344 | 355 | 366 | 390 | 423 |
| 1979 | 4 | 14 | 18 | 32 | 54 | 85 | 120 | 156 | 193 | 225 | 253 | 280 | 303 | 324 | 330 | 344 | 355 | 366 | 390 | 423 |
| 1980 | 4 | 14 | 18 | 32 | 54 | 85 | 120 | 156 | 193 | 225 | 253 | 280 | 303 | 324 | 330 | 344 | 355 | 366 | 390 | 423 |
| 1981 | 4 | 14 | 18 | 32 | 54 | 85 | 120 | 156 | 193 | 225 | 253 | 280 | 303 | 324 | 330 | 344 | 355 | 366 | 390 | 423 |
| 1982 | 4 | 11 | 25 | 50 | 83 | 112 | 133 | 142 | 158 | 182 | 242 | 266 | 286 | 309 | 345 | 352 | 361 | 384 | 418 | 420 |
| 1983 | 4 | 5 | 5 | 23 | 57 | 95 | 156 | 156 | 155 | 176 | 233 | 256 | 271 | 295 | 331 | 341 | 344 | 385 | 414 | 417 |
| 1984 | 4 | 10 | 20 | 31 | 57 | 121 | 150 | 181 | 202 | 193 | 223 | 242 | 259 | 281 | 316 | 325 | 330 | 394 | 394 | 406 |
| 1985 | 4 | 11 | 23 | 32 | 51 | 84 | 148 | 186 | 214 | 227 | 218 | 236 | 254 | 269 | 307 | 317 | 340 | 399 | 423 | 399 |
| 1986 | 4 | 9 | 18 | 27 | 34 | 61 | 98 | 176 | 217 | 233 | 215 | 225 | 248 | 257 | 293 | 313 | 322 | 389 | 405 | 389 |
| 1987 | 4 | 8 | 14 | 17 | 27 | 53 | 97 | 157 | 211 | 226 | 228 | 236 | 266 | 269 | 267 | 294 | 306 | 358 | 364 | 386 |
| 1988 | 4 | 7 | 10 | 18 | 45 | 75 | 76 | 138 | 207 | 242 | 238 | 252 | 281 | 278 | 283 | 297 | 314 | 347 | 355 | 381 |
| 1989 | 4 | 7 | 10 | 27 | 47 | 72 | 142 | 130 | 179 | 244 | 252 | 279 | 300 | 298 | 295 | 305 | 336 | 325 | 370 | 377 |
| 1990 | 4 | 9 | 16 | 22 | 44 | 64 | 98 | 120 | 175 | 197 | 261 | 295 | 312 | 309 | 305 | 301 | 324 | 318 | 332 | 377 |
| 1991 | 4 | 9 | 17 | 29 | 51 | 75 | 100 | 132 | 180 | 212 | 266 | 302 | 323 | 328 | 319 | 308 | 341 | 315 | 378 | 379 |
| 1992 | 4 | 9 | 17 | 28 | 53 | 86 | 97 | 125 | 174 | 208 | 262 | 302 | 322 | 368 | 345 | 329 | 349 | 328 | 394 | 373 |
| 1993 | 4 | 9 | 18 | 45 | 56 | 93 | 135 | 145 | 206 | 209 | 257 | 294 | 339 | 369 | 347 | 341 | 362 | 335 | 397 | 372 |
| 1994 | 4 | 23 | 32 | 53 | 76 | 92 | 116 | 182 | 198 | 207 | 255 | 291 | 334 | 367 | 353 | 362 | 355 | 369 | 394 | 387 |
| 1995 | 4 | 10 | 19 | 32 | 59 | 88 | 110 | 154 | 177 | 207 | 250 | 278 | 333 | 361 | 349 | 380 | 359 | 375 | 406 | 399 |
| 1996 | 4 | 10 | 19 | 32 | 54 | 107 | 134 | 163 | 184 | 215 | 241 | 277 | 324 | 349 | 347 | 374 | 355 | 398 | 365 | 410 |
| 1997 | 4 | 8 | 14 | 37 | 64 | 75 | 149 | 174 | 185 | 239 | 240 | 274 | 315 | 308 | 335 | 362 | 363 | 400 | 353 | 427 |
| 1998 | 4 | 10 | 20 | 27 | 49 | 79 | 113 | 156 | 208 | 207 | 244 | 274 | 296 | 308 | 324 | 356 | 354 | 401 | 354 | 429 |
| 1999 | 4 | 6 | 7 | 18 | 37 | 63 | 95 | 123 | 170 | 171 | 241 | 263 | 287 | 292 | 324 | 340 | 362 | 375 | 355 | 434 |
| 2000 | 4 | 8 | 33 | 30 | 34 | 71 | 105 | 157 | 162 | 244 | 218 | 245 | 266 | 272 | 288 | 335 | 304 | 342 | 364 | 428 |
| 2001 | 4 | 8 | 20 | 22 | 32 | 49 | 95 | 151 | 170 | 196 | 244 | 259 | 296 | 299 | 313 | 307 | 362 | 436 | 447 | 410 |
| 2002 | 4 | 8 | 17 | 22 | 53 | 58 | 91 | 146 | 204 | 213 | 232 | 257 | 274 | 309 | 345 | 362 | 334 | 383 | 440 | 423 |
| 2003 | 4 | 8 | 27 | 39 | 53 | 83 | 112 | 170 | 189 | 250 | 265 | 308 | 267 | 443 | 407 | 370 | 360 | 367 | 381 | 469 |
| 2004 | 4 | 8 | 14 | 36 | 59 | 95 | 150 | 158 | 207 | 260 | 321 | 311 | 311 | 368 | 469 | 384 | 414 | 392 | 465 | 464 |
| 2005 | 4 | 4 | 19 | 40 | 72 | 115 | 134 | 162 | 206 | 265 | 291 | 334 | 395 | 312 | 310 | 364 | 391 | 374 | 418 | 446 |
| 2006 | 4 | 8 | 18 | 32 | 67 | 118 | 144 | 183 | 207 | 237 | 233 | 318 | 350 | 417 | 452 | 438 | 352 | 343 | 380 | 449 |
| 2007 | 4 | 8 | 17 | 33 | 67 | 105 | 139 | 177 | 208 | 244 | 287 | 282 | 302 | 351 | 408 | 369 | 339 | 381 | 400 | 449 |
| 2008 | 4 | 8 | 8 | 27 | 50 | 95 | 121 | 181 | 192 | 244 | 270 | 298 | 312 | 346 | 384 | 405 | 373 | 399 | 436 | 481 |
| 2009 | 4 | 8 | 10 | 20 | 42 | 85 | 128 | 155 | 200 | 287 | 276 | 316 | 399 | 338 | 430 | 308 | 439 | 384 | 369 | 481 |
| 2010 | 4 | 8 | 13 | 24 | 48 | 80 | 141 | 167 | 183 | 302 | 315 | 322 | 356 | 414 | 402 | 401 | 417 | 512 | 461 | 501 |
| 2011 | 4 |  | 11 | 31 | 59 | 88 | 133 | 188 | 227 | 262 | 341 | 302 | 398 | 338 | 381 | 445 | 409 | 416 | 440 | 523 |
| 2012 | 4 | 8 | 12 | 27 | 53 | 88 | 126 | 183 | 216 | 256 | 283 | 320 | 292 | 422 | 420 | 387 | 431 | 393 | 355 | 475 |
| 2013 | 4 | 8 | 12 | 20 | 41 | 77 | 131 | 189 | 228 | 267 | 269 | 346 | 275 | 371 | 383 | 420 | 456 | 407 | 395 | 487 |
| 2014 | 4 | 8 | 20 | 30 | 59 | 86 | 154 | 188 | 243 | 292 | 313 | 311 | 321 | 332 | 424 | 466 | 429 | 527 | 492 | 495 |
| 2015 | 4 | 6 | 19 | 25 | 38 | 64 | 135 | 202 | 230 | 321 | 361 | 386 | 368 | 367 | 400 | 432 | 445 | 537 | 563 | 494 |
| 2016 | 4 | 8 | 33 | 46 | 50 | 83 | 127 | 190 | 260 | 332 | 327 | 340 | 406 | 394 | 416 | 409 | 443 | 474 | 375 | 505 |
| 2017 | 4 | 8 | 21 | 46 | 76 | 102 | 110 | 170 | 247 | 311 | 347 | 367 | 404 | 380 | 466 | 483 | 614 | 577 | 496 | 573 |
| 2018 |  | 8 | 23 | 45 | 89 | 95 | 161 | 178 | 221 | 276 | 316 | 403 | 384 | 435 | 421 | 386 | 424 | 431 | 548 | 484 |
| 2019 | 4 | 8 | 20 | 48 | 97 | 126 | 195 | 206 | 237 | 280 | 324 | 384 | 377 | 384 | 431 | 464 | 434 | 454 | 464 | 507 |
| 2021 | 4 | 8 | 20 | 48 | 97 | 126 | 195 | 206 | 237 | 280 | 324 | 384 | 377 | 384 | 431 | 464 | 434 | 454 | 464 | 507 |
| 2022 | 4 | 8 | 24 | 59 | 110 | 180 | 232 | 250 | 267 | 332 | 331 | 374 | 420 | 428 | 435 | 455 | 462 | 449 | 431 | 448 |
| 2023 | 4 | 4 | 21 | 42 | 82 | 162 | 228 | 266 | 325 | 362 | 383 | 414 | 412 | 435 | 447 | 472 | 499 | 547 | 524 | 570 |

Table 14: Parameter values and their $95 \%$ confidence intervals, Model 22.1 (2023). Total biomass is presented from 1954-2023.

| Name | Value | Standard Deviation | Name | Value | Standard Deviation |
| :---: | :---: | :---: | :---: | :---: | :---: |
| male natural mortality | $1.3625 \mathrm{e}-01$ | $4.9606 \mathrm{e}-03$ | TotBiom | 3483.6 | 269.30 |
| alpha (q-temp model) | $1.1427 \mathrm{e}-01$ | $8.3100 \mathrm{e}-02$ | TotBiom | 3515.0 | 262.95 |
| beta (q-temp model) | $6.8791 \mathrm{e}-02$ | $1.0886 \mathrm{e}-02$ | TotBiom | 3451.9 | 258.87 |
| beta (survey start date) | $5.8464 \mathrm{e}-03$ | $3.0061 \mathrm{e}-03$ | TotBiom | 3593.0 | 263.42 |
| beta (start date/temp interaction) | -2.6584e-03 | $3.1902 \mathrm{e}-03$ | TotBiom | 3538.6 | 263.82 |
| mean log recruitment | $9.1957 \mathrm{e}-01$ | $1.0577 \mathrm{e}-01$ | TotBiom | 3223.6 | 251.63 |
| log_avg_fmort | $-2.4794 \mathrm{e}+00$ | $1.1543 \mathrm{e}-01$ | TotBiom | 3115.5 | 249.03 |
| sel_slope_fsh_f | $1.1875 \mathrm{e}+00$ | $1.9746 \mathrm{e}-01$ | TotBiom | 2971.5 | 240.58 |
| sel50_fsh_f | $8.1269 \mathrm{e}+00$ | $3.8217 \mathrm{e}-01$ | TotBiom | 2998.0 | 244.45 |
| sel_slope_fsh_m | $1.1843 \mathrm{e}+00$ | $2.1741 \mathrm{e}-01$ | TotBiom | 2839.8 | 234.76 |
| sel50_fsh_m | $8.4860 \mathrm{e}+00$ | $4.4429 \mathrm{e}-01$ | TotBiom | 2937.3 | 236.53 |
| sel_slope_srv | $1.5791 \mathrm{e}+00$ | $2.3838 \mathrm{e}-01$ | TotBiom | 3126.8 | 244.43 |
| sel50_srv | $4.3215 \mathrm{e}+00$ | $2.0127 \mathrm{e}-01$ | TotBiom | 3213.1 | 249.85 |
| R_logalpha | $-4.5148 \mathrm{e}+00$ | $6.1058 \mathrm{e}-01$ | TotBiom | 3287.9 | 253.00 |
| R_logbeta | $-6.5082 \mathrm{e}+00$ | $4.0221 \mathrm{e}-01$ | TotBiom | 3063.3 | 242.38 |
| q_srv | $1.0714 \mathrm{e}+00$ | $9.0915 \mathrm{e}-02$ | TotBiom | 3009.7 | 240.02 |
| ABC_biom | $4.7154 \mathrm{e}+03$ | $8.5763 \mathrm{e}+02$ | TotBiom | 3078.2 | 245.79 |
| Bmsy | $5.2119 \mathrm{e}+02$ | $1.3332 \mathrm{e}+02$ | TotBiom | 2810.8 | 234.37 |
| Bmsyr | $4.2618 \mathrm{e}+03$ | $4.6482 \mathrm{e}+02$ | TotBiom | 2613.4 | 223.70 |
| TotBiom | $2.5918 \mathrm{e}+03$ | $2.6009 \mathrm{e}+02$ | TotBiom | 2492.2 | 211.78 |
| TotBiom | $2.5363 \mathrm{e}+03$ | $2.4206 \mathrm{e}+02$ | TotBiom | 2477.9 | 213.48 |
| TotBiom | $2.4759 \mathrm{e}+03$ | $2.1884 \mathrm{e}+02$ | TotBiom | 2579.2 | 215.46 |
| TotBiom | $2.4127 \mathrm{e}+03$ | $1.9078 \mathrm{e}+02$ | TotBiom | 2903.9 | 236.02 |
| TotBiom | $2.3678 \mathrm{e}+03$ | $1.5899 \mathrm{e}+02$ | TotBiom | 3080.9 | 245.26 |
| TotBiom | $2.3229 \mathrm{e}+03$ | $1.2613 \mathrm{e}+02$ | TotBiom | 3188.3 | 249.60 |
| TotBiom | $2.1488 \mathrm{e}+03$ | $9.6193 \mathrm{e}+01$ | TotBiom | 3225.9 | 251.52 |
| TotBiom | $1.7122 \mathrm{e}+03$ | $7.2604 \mathrm{e}+01$ | TotBiom | 3179.0 | 245.59 |
| TotBiom | $1.2059 \mathrm{e}+03$ | $5.9199 \mathrm{e}+01$ | TotBiom | 3049.7 | 235.37 |
| TotBiom | $8.5859 \mathrm{e}+02$ | $5.5850 \mathrm{e}+01$ | TotBiom | 3077.9 | 242.71 |
| TotBiom | $9.0324 \mathrm{e}+02$ | $5.7271 \mathrm{e}+01$ | TotBiom | 3215.1 | 252.97 |
| TotBiom | $8.9584 \mathrm{e}+02$ | $6.1041 \mathrm{e}+01$ | TotBiom | 3174.1 | 243.98 |
| TotBiom | $9.5680 \mathrm{e}+02$ | $6.6496 \mathrm{e}+01$ | TotBiom | 3017.9 | 235.50 |
| TotBiom | $9.6054 \mathrm{e}+02$ | $7.3498 \mathrm{e}+01$ | TotBiom | 2898.8 | 226.98 |
| TotBiom | $9.0465 \mathrm{e}+02$ | $8.2407 \mathrm{e}+01$ | TotBiom | 2857.8 | 226.01 |
| TotBiom | $9.6212 \mathrm{e}+02$ | $9.4125 \mathrm{e}+01$ | TotBiom | 2836.9 | 229.30 |
| TotBiom | $9.6600 \mathrm{e}+02$ | $1.0844 \mathrm{e}+02$ | TotBiom | 2851.4 | 228.27 |
| TotBiom | $1.0539 \mathrm{e}+03$ | $1.2558 \mathrm{e}+02$ | TotBiom | 2841.8 | 235.24 |
| TotBiom | $1.1624 \mathrm{e}+03$ | $1.4421 \mathrm{e}+02$ | TotBiom | 2586.7 | 212.83 |
| TotBiom | $1.4463 \mathrm{e}+03$ | $1.6393 \mathrm{e}+02$ | TotBiom | 2644.6 | 221.08 |
| TotBiom | $1.7217 \mathrm{e}+03$ | $1.8324 \mathrm{e}+02$ | TotBiom | 2546.6 | 216.26 |
| TotBiom | $2.1041 \mathrm{e}+03$ | $2.0742 \mathrm{e}+02$ | TotBiom | 2596.4 | 218.20 |
| TotBiom | $2.4343 \mathrm{e}+03$ | $2.2545 \mathrm{e}+02$ | TotBiom | 2690.8 | 232.58 |
| TotBiom | $2.7551 \mathrm{e}+03$ | $2.4056 \mathrm{e}+02$ | TotBiom | 2687.8 | 242.52 |
| TotBiom | $3.0503 \mathrm{e}+03$ | $2.5268 \mathrm{e}+02$ |  |  |  |
| TotBiom | $3.2011 \mathrm{e}+03$ | $2.6107 \mathrm{e}+02$ |  |  |  |
| TotBiom | $3.3594 \mathrm{e}+03$ | $2.6658 \mathrm{e}+02$ |  |  |  |

Table 15: Parameter values and their $95 \%$ confidence intervals, Model 23.0. Total biomass is presented from 1954-2023.

| Name | Value | Standard Deviation | Name | Value | Standard Deviation |
| :---: | :---: | :---: | :---: | :---: | :---: |
| male natural mortality | $1.3657 \mathrm{e}-01$ | $4.9348 \mathrm{e}-03$ | future_TotBiom | 4023.8 | 738.37 |
| alpha (q-temp model) | $1.0349 \mathrm{e}-01$ | $8.4087 \mathrm{e}-02$ | future_TotBiom | 4361.2 | 843.12 |
| beta (q-temp model) | $6.8618 \mathrm{e}-02$ | $1.0890 \mathrm{e}-02$ | future_TotBiom | 4658.3 | 953.49 |
| beta (survey start date) | $5.8988 \mathrm{e}-03$ | $3.0066 \mathrm{e}-03$ | future_TotBiom | 2829.5 | 269.70 |
| beta (start date/temp interaction) | -2.6649e-03 | $3.1919 \mathrm{e}-03$ | future_TotBiom | 2780.8 | 294.62 |
| mean log recruitment | $9.3771 \mathrm{e}-01$ | $1.0623 \mathrm{e}-01$ | future_TotBiom | 2790.9 | 353.96 |
| log_avg_fmort | $-2.5071 \mathrm{e}+00$ | $1.1524 \mathrm{e}-01$ | future_TotBiom | 2863.6 | 428.92 |
| sel_slope_fsh_f | $1.2022 \mathrm{e}+00$ | $1.4434 \mathrm{e}-01$ | future_TotBiom | 2976.4 | 504.00 |
| sel50_fsh_f | $8.1960 \mathrm{e}+00$ | $3.0661 \mathrm{e}-01$ | future_TotBiom | 3180.9 | 580.67 |
| sel_slope_srv | $1.5805 \mathrm{e}+00$ | $2.3845 \mathrm{e}-01$ | future_TotBiom | 3469.8 | 664.75 |
| rechat | $2.6195 \mathrm{e}+00$ | $4.2843 \mathrm{e}-01$ | future_TotBiom | 3781.8 | 764.94 |
| pred_rec | $1.3772 \mathrm{e}+00$ | $3.0951 \mathrm{e}-01$ | future_TotBiom | 4099.1 | 889.75 |
| pred_rec | $9.2597 \mathrm{e}-01$ | $2.3658 \mathrm{e}-01$ | future_TotBiom | 4371.1 | 1026.70 |
| pred_rec | $1.1640 \mathrm{e}+00$ | $2.6551 \mathrm{e}-01$ | future_TotBiom | 2829.5 | 269.70 |
| pred_rec | $9.9559 \mathrm{e}-01$ | $2.3888 \mathrm{e}-01$ | future_TotBiom | 2926.4 | 308.06 |
| future_SSB | $7.0445 \mathrm{e}+02$ | $7.5885 \mathrm{e}+01$ | future_TotBiom | 3056.2 | 365.34 |
| future_SSB | $1.0102 \mathrm{e}+03$ | $1.6821 \mathrm{e}+02$ | future_TotBiom | 3229.0 | 433.27 |
| future_SSB | $1.0731 \mathrm{e}+03$ | $1.9172 \mathrm{e}+02$ | future_TotBiom | 3422.6 | 501.83 |
| future_SSB | $1.1648 \mathrm{e}+03$ | $2.1762 \mathrm{e}+02$ | future_TotBiom | 3694.5 | 573.75 |
| future_SSB | $9.0054 \mathrm{e}+02$ | $1.0533 \mathrm{e}+02$ | future_TotBiom | 4044.5 | 650.00 |
| future_SSB | $9.3035 \mathrm{e}+02$ | $1.0298 \mathrm{e}+02$ | future_TotBiom | 4402.9 | 728.41 |
| future_SSB | $9.8513 \mathrm{e}+02$ | $1.0302 \mathrm{e}+02$ | future_TotBiom | 4769.8 | 808.88 |
| future_SSB | $1.0638 \mathrm{e}+03$ | $1.0664 \mathrm{e}+02$ | future_TotBiom | 5098.2 | 885.59 |
| future_SSB | $1.1383 \mathrm{e}+03$ | $1.1336 \mathrm{e}+02$ | future_TotBiom | 2829.5 | 269.70 |
| future_SSB | $1.2225 \mathrm{e}+03$ | $1.2772 \mathrm{e}+02$ | future_TotBiom | 3043.1 | 308.11 |
| future_SSB | $1.3306 \mathrm{e}+03$ | $1.5259 \mathrm{e}+02$ | future_TotBiom | 3283.5 | 364.27 |
| future_SSB | $1.4245 \mathrm{e}+03$ | $1.8150 \mathrm{e}+02$ | future_TotBiom | 3562.1 | 431.18 |
| future_SSB | $1.5424 \mathrm{e}+03$ | $2.1179 \mathrm{e}+02$ | future_TotBiom | 3852.5 | 499.83 |
| future_SSB | $1.6913 \mathrm{e}+03$ | $2.4414 \mathrm{e}+02$ | future_TotBiom | 4213.6 | 572.81 |
| future_SSB | $8.8164 \mathrm{e}+02$ | $1.0501 \mathrm{e}+02$ | future_TotBiom | 4648.8 | 648.45 |
| future_SSB | $8.5735 \mathrm{e}+02$ | $1.0174 \mathrm{e}+02$ | future_TotBiom | 5074.0 | 720.10 |
| future_SSB | $8.5982 \mathrm{e}+02$ | $1.0108 \mathrm{e}+02$ | future_TotBiom | 5501.6 | 783.77 |
| future_SSB | $8.8628 \mathrm{e}+02$ | $1.0483 \mathrm{e}+02$ | future_TotBiom | 5886.0 | 837.21 |
| future_SSB | $9.1256 \mathrm{e}+02$ | $1.1287 \mathrm{e}+02$ | future_TotBiom | 2829.5 | 269.70 |
| future_SSB | $9.5148 \mathrm{e}+02$ | $1.2967 \mathrm{e}+02$ | future_TotBiom | 2930.7 | 308.63 |
| future_SSB | $1.0126 \mathrm{e}+03$ | $1.5684 \mathrm{e}+02$ | future_TotBiom | 3067.1 | 366.36 |
| future_SSB | $1.0694 \mathrm{e}+03$ | $1.8649 \mathrm{e}+02$ | future_TotBiom | 3249.8 | 435.60 |
| future_SSB | $1.1535 \mathrm{e}+03$ | $2.1673 \mathrm{e}+02$ | future_TotBiom | 3457.5 | 507.08 |
| future_SSB | $1.2731 \mathrm{e}+03$ | $2.4903 \mathrm{e}+02$ | future_TotBiom | 3746.9 | 583.83 |
| future_TotBiom | $2.8295 \mathrm{e}+03$ | $2.6970 \mathrm{e}+02$ | future_TotBiom | 4118.6 | 666.06 |
| future_TotBiom | $2.8430 \mathrm{e}+03$ | $2.9643 \mathrm{e}+02$ | future_TotBiom | 4504.0 | 749.40 |
| future_TotBiom | $2.9018 \mathrm{e}+03$ | $3.5206 \mathrm{e}+02$ | future_TotBiom | 4907.8 | 832.57 |
| future_TotBiom | $3.0132 \mathrm{e}+03$ | $4.2239 \mathrm{e}+02$ | future_TotBiom | 5286.5 | 910.63 |
| future_TotBiom | $3.1558 \mathrm{e}+03$ | $4.9389 \mathrm{e}+02$ |  |  |  |
| future_TotBiom | $3.3843 \mathrm{e}+03$ | $5.6809 \mathrm{e}+02$ |  |  |  |
| future_TotBiom | $3.6949 \mathrm{e}+03$ | $6.4830 \mathrm{e}+02$ |  |  |  |

Table 16: Model estimates of yellowfin sole full selection fishing mortality (Full sel. F) and exploitation rate (Catch/Total Biomass) for Models 22.1 (2022), 22.1 (2023), and 23.0.

| Year | Model 22.1 (2022) |  | Model 22.1 (2023) |  | Model 23.0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Full sel. F | Catch/Tot. Biom. | Full sel. F | Catch/Tot. Biom. | Full sel. F | Catch/Tot. Biom. |
| 1954 | 0.007 | 0.005 | 0.006 | 0.005 | 0.007 | 0.005 |
| 1955 | 0.008 | 0.006 | 0.007 | 0.006 | 0.008 | 0.006 |
| 1956 | 0.014 | 0.011 | 0.013 | 0.010 | 0.014 | 0.011 |
| 1957 | 0.015 | 0.011 | 0.013 | 0.010 | 0.014 | 0.011 |
| 1958 | 0.028 | 0.020 | 0.026 | 0.019 | 0.028 | 0.019 |
| 1959 | 0.134 | 0.085 | 0.122 | 0.080 | 0.132 | 0.082 |
| 1960 | 0.453 | 0.223 | 0.401 | 0.212 | 0.456 | 0.217 |
| 1961 | 1.139 | 0.336 | 0.892 | 0.323 | 1.417 | 0.327 |
| 1962 | 4.766 | 0.360 | 2.179 | 0.349 | 1.062 | 0.343 |
| 1963 | 0.341 | 0.108 | 0.355 | 0.100 | 0.326 | 0.097 |
| 1964 | 0.285 | 0.133 | 0.374 | 0.124 | 0.277 | 0.121 |
| 1965 | 0.254 | 0.065 | 0.223 | 0.060 | 0.212 | 0.059 |
| 1966 | 0.447 | 0.117 | 0.358 | 0.107 | 0.361 | 0.104 |
| 1967 | 0.526 | 0.187 | 0.470 | 0.169 | 0.464 | 0.165 |
| 1968 | 0.422 | 0.105 | 0.265 | 0.093 | 0.265 | 0.091 |
| 1969 | 0.678 | 0.199 | 0.603 | 0.174 | 0.597 | 0.169 |
| 1970 | 0.722 | 0.160 | 0.449 | 0.138 | 0.407 | 0.134 |
| 1971 | 0.619 | 0.176 | 0.558 | 0.152 | 0.491 | 0.147 |
| 1972 | 0.323 | 0.048 | 0.202 | 0.041 | 0.177 | 0.040 |
| 1973 | 0.435 | 0.061 | 0.276 | 0.054 | 0.242 | 0.053 |
| 1974 | 0.138 | 0.027 | 0.086 | 0.025 | 0.074 | 0.024 |
| 1975 | 0.120 | 0.033 | 0.104 | 0.031 | 0.091 | 0.030 |
| 1976 | 0.118 | 0.025 | 0.078 | 0.023 | 0.074 | 0.023 |
| 1977 | 0.052 | 0.022 | 0.048 | 0.021 | 0.044 | 0.021 |
| 1978 | 0.106 | 0.047 | 0.098 | 0.045 | 0.092 | 0.045 |
| 1979 | 0.061 | 0.032 | 0.059 | 0.031 | 0.056 | 0.030 |
| 1980 | 0.068 | 0.027 | 0.047 | 0.026 | 0.045 | 0.026 |
| 1981 | 0.054 | 0.028 | 0.047 | 0.028 | 0.045 | 0.028 |
| 1982 | 0.041 | 0.027 | 0.041 | 0.027 | 0.039 | 0.027 |
| 1983 | 0.042 | 0.030 | 0.044 | 0.031 | 0.042 | 0.031 |
| 1984 | 0.065 | 0.042 | 0.066 | 0.044 | 0.064 | 0.044 |
| 1985 | 0.095 | 0.059 | 0.098 | 0.064 | 0.095 | 0.064 |
| 1986 | 0.089 | 0.059 | 0.094 | 0.065 | 0.092 | 0.064 |
| 1987 | 0.086 | 0.051 | 0.090 | 0.058 | 0.088 | 0.058 |
| 1988 | 0.109 | 0.065 | 0.118 | 0.075 | 0.117 | 0.074 |
| 1989 | 0.081 | 0.044 | 0.089 | 0.051 | 0.089 | 0.051 |
| 1990 | 0.039 | 0.025 | 0.046 | 0.030 | 0.046 | 0.029 |
| 1991 | 0.046 | 0.034 | 0.054 | 0.040 | 0.052 | 0.040 |
| 1992 | 0.054 | 0.039 | 0.069 | 0.046 | 0.068 | 0.046 |
| 1993 | 0.049 | 0.028 | 0.055 | 0.033 | 0.055 | 0.033 |
| 1994 | 0.064 | 0.037 | 0.078 | 0.043 | 0.077 | 0.042 |
| 1995 | 0.055 | 0.035 | 0.071 | 0.041 | 0.070 | 0.040 |
| 1996 | 0.052 | 0.037 | 0.067 | 0.043 | 0.066 | 0.043 |
| 1997 | 0.084 | 0.052 | 0.107 | 0.059 | 0.105 | 0.059 |
| 1998 | 0.058 | 0.032 | 0.069 | 0.036 | 0.069 | 0.036 |
| 1999 | 0.041 | 0.023 | 0.047 | 0.026 | 0.048 | 0.026 |
| 2000 | 0.047 | 0.030 | 0.055 | 0.034 | 0.055 | 0.033 |
| 2001 | 0.035 | 0.023 | 0.040 | 0.026 | 0.040 | 0.025 |


| 2002 | 0.040 | 0.026 | 0.047 | 0.029 | 0.047 | 0.029 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2003 | 0.035 | 0.025 | 0.041 | 0.027 | 0.040 | 0.027 |
| 2004 | 0.032 | 0.023 | 0.036 | 0.025 | 0.036 | 0.024 |
| 2005 | 0.038 | 0.028 | 0.043 | 0.030 | 0.042 | 0.029 |
| 2006 | 0.040 | 0.029 | 0.045 | 0.031 | 0.044 | 0.030 |
| 2007 | 0.052 | 0.037 | 0.057 | 0.038 | 0.055 | 0.038 |
| 2008 | 0.066 | 0.047 | 0.073 | 0.049 | 0.071 | 0.048 |
| 2009 | 0.046 | 0.034 | 0.048 | 0.035 | 0.047 | 0.035 |
| 2010 | 0.050 | 0.036 | 0.054 | 0.037 | 0.053 | 0.037 |
| 2011 | 0.065 | 0.046 | 0.069 | 0.048 | 0.068 | 0.047 |
| 2012 | 0.064 | 0.048 | 0.068 | 0.049 | 0.066 | 0.048 |
| 2013 | 0.075 | 0.056 | 0.079 | 0.057 | 0.077 | 0.056 |
| 2014 | 0.077 | 0.053 | 0.079 | 0.055 | 0.078 | 0.054 |
| 2015 | 0.066 | 0.043 | 0.065 | 0.045 | 0.065 | 0.044 |
| 2016 | 0.072 | 0.045 | 0.071 | 0.047 | 0.070 | 0.047 |
| 2017 | 0.068 | 0.044 | 0.069 | 0.047 | 0.068 | 0.046 |
| 2018 | 0.068 | 0.047 | 0.071 | 0.051 | 0.070 | 0.050 |
| 2019 | 0.070 | 0.043 | 0.075 | 0.048 | 0.074 | 0.048 |
| 2020 | 0.072 | 0.044 | 0.080 | 0.053 | 0.078 | 0.052 |
| 2021 | 0.058 | 0.032 | 0.066 | 0.042 | 0.064 | 0.041 |
| 2022 | 0.076 | 0.034 | 0.089 | 0.057 | 0.085 | 0.057 |
| 2023 | 0.007 | 0.005 | 0.048 | 0.028 | 0.047 | 0.028 |

Table 17: Model estimates of yellowfin sole female spawning biomass (FSB) in the eastern Bering Sea in metric tons ( t ) and upper (HCI) and lower (LCI) $95 \%$ confidence intervals from the 2022 and 2023 stock assessments, including Model 22.1 (2022), 22.1 (2023), and 23.0.

| Model | 22.1 (2022) | 22.1 (2023) |  |  | 23.0 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | FSB (t) | FSB (t) | LCI | HCI | FSB (t) | LCI | HCI |
| 1954 | 902,163 | 1,009,550 | 747,089 | 1,364,210 | 942,185 | 669,184 | 1326560 |
| 1955 | 910,428 | 1,019,200 | 764,201 | 1,359,290 | 950,817 | 682,656 | 1324320 |
| 1956 | 901,639 | 1,009,930 | 766,235 | 1,331,130 | 941,647 | 682,378 | 1299420 |
| 1957 | 878,436 | 984,705 | 754,577 | 1,285,020 | 917,440 | 669,672 | 1256880 |
| 1958 | 843,822 | 946,727 | 731,335 | 1,225,560 | 881,269 | 646,586 | 1201130 |
| 1959 | 770,719 | 868,309 | 671,186 | 1,123,320 | 805,469 | 587,675 | 1103980 |
| 1960 | 590,420 | 680,368 | 510,780 | 906,261 | 618,848 | 426,433 | 898084 |
| 1961 | 297,337 | 382,539 | 250,173 | 584,939 | 298,863 | 134,248 | 665332 |
| 1962 | 33,713 | 110,451 | 37,041 | 329,348 | 116,917 | 43,620 | 313377 |
| 1963 | 5,894 | 34,633 | 6,852 | 175,048 | 75,738 | 37,009 | 154997 |
| 1964 | 12,024 | 40,164 | 11,390 | 141,626 | 84,800 | 50,807 | 141537 |
| 1965 | 21,594 | 51,912 | 19,576 | 137,657 | 100,964 | 67,548 | 150909 |
| 1966 | 36,321 | 74,103 | 35,011 | 156,842 | 123,067 | 87,301 | 173485 |
| 1967 | 51,718 | 89,542 | 47,306 | 169,487 | 131,833 | 94,348 | 184210 |
| 1968 | 68,311 | 97,591 | 53,704 | 177,342 | 132,825 | 93,216 | 189263 |
| 1969 | 69,140 | 102,234 | 57,749 | 180,987 | 131,256 | 88,926 | 193735 |
| 1970 | 69,115 | 91,616 | 49,422 | 169,833 | 113,644 | 70,969 | 181980 |
| 1971 | 74,327 | 82,268 | 39,215 | 172,586 | 102,921 | 58,707 | 180434 |
| 1972 | 67,047 | 76,709 | 33,772 | 174,232 | 96,388 | 49,935 | 186056 |
| 1973 | 74,523 | 88,683 | 39,470 | 199,253 | 109,262 | 55,857 | 213726 |
| 1974 | 87,493 | 108,469 | 51,276 | 229,454 | 130,058 | 68,558 | 246725 |
| 1975 | 137,928 | 172,936 | 91,772 | 325,880 | 200,295 | 115,430 | 347554 |
| 1976 | 200,473 | 246,678 | 147,134 | 413,569 | 275,727 | 172,869 | 439786 |
| 1977 | 296,953 | 355,359 | 232,776 | 542,497 | 386,760 | 260,797 | 573561 |
| 1978 | 421,756 | 488,649 | 342,439 | 697,288 | 523,068 | 373,051 | 733411 |
| 1979 | 552,840 | 625,546 | 457,205 | 855,870 | 662,815 | 490,181 | 896249 |
| 1980 | 699,582 | 780,161 | 589,623 | 1,032,270 | 820,285 | 625,415 | 1075870 |
| 1981 | 835,554 | 927,097 | 717,879 | 1,197,290 | 969,633 | 756,487 | 1242830 |
| 1982 | 912,222 | 1,005,260 | 790,314 | 1,278,660 | 1,047,420 | 828,856 | 1323610 |
| 1983 | 1,024,230 | 1,117,590 | 891,019 | 1,401,770 | 1,160,050 | 930,045 | 1446930 |
| 1984 | 1,112,620 | 1,197,990 | 966,406 | 1,485,070 | 1,238,910 | 1,003,890 | 1528960 |
| 1985 | 1,166,280 | 1,238,160 | 1,001,480 | 1,530,770 | 1,276,440 | 1,036,010 | 1572670 |
| 1986 | 1,155,190 | 1,203,420 | 969,720 | 1,493,430 | 1,237,270 | 999,653 | 1531370 |
| 1987 | 1,153,440 | 1,172,470 | 939,380 | 1,463,390 | 1,202,480 | 965,322 | 1497910 |
| 1988 | 1,096,160 | 1,081,000 | 858,934 | 1,360,470 | 1,105,970 | 879,813 | 1390260 |
| 1989 | 1,074,330 | 1,018,440 | 802,292 | 1,292,810 | 1,039,080 | 818,816 | 1318580 |
| 1990 | 1,091,800 | 993,169 | 782,716 | 1,260,210 | 1,010,820 | 796,426 | 1282940 |
| 1991 | 1,181,860 | 1,033,990 | 822,410 | 1,299,990 | 1,050,570 | 835,173 | 1321530 |
| 1992 | 1,277,710 | 1,084,160 | 870,850 | 1,349,720 | 1,100,260 | 883,004 | 1370970 |
| 1993 | 1,323,910 | 1,107,650 | 893,553 | 1,373,050 | 1,122,900 | 904,920 | 1393400 |
| 1994 | 1,318,420 | 1,104,910 | 893,803 | 1,365,870 | 1,119,520 | 904,879 | 1385090 |
| 1995 | 1,306,810 | 1,095,890 | 885,700 | 1,355,960 | 1,110,750 | 897,410 | 1374810 |
| 1996 | 1,229,900 | 1,036,740 | 835,344 | 1,286,680 | 1,051,540 | 847,189 | 1305170 |
| 1997 | 1,192,110 | 1,010,000 | 811,964 | 1,256,330 | 1,025,010 | 824,082 | 1274930 |
| 1998 | 1,120,550 | 953,793 | 762,121 | 1,193,670 | 967,906 | 773,338 | 1211430 |
| 1999 | 1,108,230 | 952,462 | 760,774 | 1,192,450 | 966,259 | 771,889 | 1209570 |
| 2000 | 1,041,530 | 901,738 | 718,467 | 1,131,760 | 914,905 | 729,169 | 1147950 |


| 2001 | $1,106,600$ | 963,023 | 767,526 | $1,208,320$ | 977,689 | 779,568 | 1226160 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2002 | $1,074,700$ | 950,004 | 760,348 | $1,186,970$ | 965,461 | 773,138 | 1205630 |
| 2003 | $1,134,740$ | $1,018,300$ | 818,397 | $1,267,030$ | $1,036,050$ | 833,149 | 1288350 |
| 2004 | $1,177,520$ | $1,078,760$ | 870,780 | $1,336,410$ | $1,098,610$ | 887,288 | 1360270 |
| 2005 | $1,210,830$ | $1,127,750$ | 913,074 | $1,392,900$ | $1,148,700$ | 930,420 | 1418180 |
| 2006 | $1,253,620$ | $1,183,450$ | 959,126 | $1,460,250$ | $1,206,230$ | 977,920 | 1487840 |
| 2007 | $1,201,800$ | $1,154,590$ | 936,159 | $1,423,980$ | $1,176,780$ | 954,450 | 1450900 |
| 2008 | $1,129,350$ | $1,105,760$ | 896,836 | $1,363,350$ | $1,127,590$ | 914,724 | 1389980 |
| 2009 | $1,178,930$ | $1,170,720$ | 947,817 | $1,446,040$ | $1,194,250$ | 967,065 | 1474810 |
| 2010 | $1,236,230$ | $1,240,280$ | $1,003,310$ | $1,533,210$ | $1,264,790$ | $1,023,370$ | 1563180 |
| 2011 | $1,144,810$ | $1,163,980$ | 943,644 | $1,435,770$ | $1,186,290$ | 961,872 | 1463060 |
| 2012 | $1,143,040$ | $1,168,490$ | 945,688 | $1,443,790$ | $1,190,830$ | 963,920 | 1471150 |
| 2013 | $1,094,710$ | $1,123,650$ | 909,788 | $1,387,780$ | $1,144,280$ | 926,529 | 1413210 |
| 2014 | $1,064,040$ | $1,093,170$ | 882,054 | $1,354,820$ | $1,112,410$ | 897,460 | 1378840 |
| 2015 | $1,096,900$ | $1,131,030$ | 911,606 | $1,403,270$ | $1,149,250$ | 925,999 | 1426320 |
| 2016 | $1,080,390$ | $1,116,720$ | 900,977 | $1,384,110$ | $1,133,570$ | 914,256 | 1405500 |
| 2017 | $1,114,700$ | $1,153,160$ | 926,382 | $1,435,460$ | $1,171,400$ | 940,773 | 1458550 |
| 2018 | $1,018,300$ | $1,045,950$ | 843,034 | $1,297,700$ | $1,062,240$ | 856,132 | 1317970 |
| 2019 | $1,081,010$ | $1,095,600$ | 881,193 | $1,362,180$ | $1,113,460$ | 895,683 | 1384190 |
| 2020 | $1,045,950$ | $1,043,360$ | 835,355 | $1,303,150$ | $1,061,580$ | 850,278 | 1325400 |
| 2021 | 967,874 | 953,089 | 760,503 | $1,194,440$ | 971,291 | 775,613 | 1216340 |
| 2022 | 923,828 | 959,936 | 760,333 | $1,211,940$ | 980,120 | 777,156 | 1236090 |
| 2023 | NA | 896,720 | 706,333 | $1,138,430$ | 916,707 | 722,973 | 1162360 |

Table 18: Yellowfin sole total allowable catch (TAC), overfishing limit (OFL), and acceptable biological catch (ABC) levels, 1980-2021. Catch for the Bering Sea and Aleutian Islands was recorded through October 20, 2023. Data is in metric tons. Estimates for 2023 were calculated using Model 23.0, and the 2023 TAC has not yet been set.

| Year | TAC | ABC | OFL | Catch |
| ---: | ---: | ---: | ---: | ---: |
| 1980 | 117,000 | 169,000 | n/a | 87,391 |
| 1981 | 117,000 | 214,500 | n/a | 97,301 |
| 1982 | 117,000 | 214,500 | n/a | 95,712 |
| 1983 | 117,000 | 214,500 | n/a | 108,385 |
| 1984 | 230,000 | 310,000 | n/a | 159,526 |
| 1985 | 229,900 | 310,000 | n/a | 227,107 |
| 1986 | 209,500 | 230,000 | n/a | 208,597 |
| 1987 | 187,000 | 187,000 | n/a | 181,428 |
| 1988 | 254,000 | 254,000 | n/a | 223,156 |
| 1989 | 182,675 | 241,000 | n/a | 153,165 |
| 1990 | 207,650 | 278,900 | n/a | 83,970 |
| 1991 | 135,000 | 250,600 | n/a | 117,303 |
| 1992 | 235,000 | 372,000 | 452,000 | 145,386 |
| 1993 | 220,000 | 238,000 | 275,000 | 105,810 |
| 1994 | 150,325 | 230,000 | 269,000 | 140,050 |
| 1995 | 190,000 | 277,000 | 319,000 | 124,752 |
| 1996 | 200,000 | 278,000 | 342,000 | 129,659 |
| 1997 | 230,000 | 233,000 | 339,000 | 182,814 |
| 1998 | 220,000 | 220,000 | 314,000 | 101,155 |
| 1999 | 207,980 | 212,000 | 308,000 | 69,234 |
| 2000 | 123,262 | 191,000 | 226,000 | 84,071 |
| 2001 | 113,000 | 176,000 | 209,000 | 63,579 |
| 2002 | 86,000 | 115,000 | 136,000 | 74,986 |
| 2003 | 83,750 | 114,000 | 136,000 | 79,806 |
| 2004 | 86,075 | 114,000 | 135,000 | 75,511 |
| 2005 | 90,686 | 124,000 | 148,000 | 94,385 |
| 2006 | 95,701 | 121,000 | 144,000 | 99,160 |
| 2007 | 136,000 | 225,000 | 240,000 | 120,964 |
| 2008 | 225,000 | 248,000 | 265,000 | 148,894 |
| 2009 | 210,000 | 210,000 | 224,000 | 107,513 |
| 2010 | 219,000 | 219,000 | 234,000 | 118,624 |
| 2011 | 196,000 | 239,000 | 262,000 | 151,158 |
| 2012 | 202,000 | 203,000 | 222,000 | 147,187 |
| 2013 | 198,000 | 206,000 | 220,000 | 164,944 |
| 2014 | 184,000 | 239,800 | 259,700 | 156,772 |
| 2015 | 149,000 | 248,800 | 266,400 | 126,937 |
| 2016 | 144,000 | 211,700 | 228,100 | 135,324 |
| 2017 | 154,000 | 260,800 | 287,000 | 132,220 |
| 2018 | 154,000 | 277,500 | 306,700 | 131,496 |
| 2019 | 154,000 | 263,200 | 290,000 | 128,051 |
| 2020 | 150,700 | 260,918 | 287,307 | 133,800 |
| 2021 | 200,000 | 313,477 | 341,571 | 108,788 |
| 2022 | 250,000 | 354,014 | 377,014 | 106,096 |
| 2023 |  | 265,913 | 305,298 | 74,848 |
|  |  |  |  |  |
|  |  |  |  |  |
| 10 |  |  |  |  |

Table 19: Projections of yellowfin sole female spawning biomass (FSB), future catch, and full selection fishing mortality rates $(\mathrm{F})$ for seven future harvest scenarios. Estimates of FSB and catch are in metric tons ( t ). All estimates are based on Model 22.1.

| Scenarios 1 and 2 <br> Maximum ABC |  |  |  |
| :--- | :--- | :--- | ---: |
| Year | FSB | Catch | F |
| 2023 | 751,980 | 121,103 | 0.068 |
| 2024 | 703,832 | 190,122 | 0.110 |
| 2025 | 655,756 | 176,358 | 0.104 |
| 2026 | 635,994 | 170,204 | 0.101 |
| 2027 | 628,709 | 168,501 | 0.100 |
| 2028 | 632,470 | 173,211 | 0.101 |
| 2029 | 641,483 | 177,834 | 0.102 |
| 2030 | 654,103 | 183,311 | 0.104 |
| 2031 | 665,351 | 187,538 | 0.106 |
| 2032 | 671,331 | 188,526 | 0.107 |
| 2033 | 679,924 | 189,517 | 0.107 |
| 2034 | 685,601 | 188,648 | 0.106 |
| 2035 | 690,501 | 188,530 | 0.105 |
| 2036 | 694,295 | 188,388 | 0.105 |


| Scenario 4, Maximum Tier 3 ABC <br> harvest permissible set at F60 |  |  |  |
| :--- | :--- | :--- | ---: |
| Year | FSB | Catch | F |
| 2023 | 751,980 | 121,103 | 0.068 |
| 2024 | 716,550 | 95,785 | 0.054 |
| 2025 | 701,622 | 97,277 | 0.054 |
| 2026 | 709,241 | 100,234 | 0.054 |
| 2027 | 725,790 | 102,991 | 0.054 |
| 2028 | 751,341 | 107,320 | 0.054 |
| 2029 | 780,880 | 110,531 | 0.054 |
| 2030 | 814,014 | 113,569 | 0.054 |
| 2031 | 845,749 | 116,063 | 0.054 |
| 2032 | 870,216 | 117,747 | 0.054 |
| 2033 | 897,519 | 119,879 | 0.054 |
| 2034 | 919,371 | 121,172 | 0.054 |
| 2035 | 938,463 | 122,737 | 0.054 |
| 2036 | 953,939 | 124,027 | 0.054 |


| Scenario 3 |  |  |  |
| :--- | :--- | :--- | ---: |
| Harvest at average F over past |  |  |  |
| Year | FSB | years |  |
| 2023 | 751,980 | 121,103 | 0.068 |
| 2024 | 712,890 | 123,222 | 0.070 |
| 2025 | 687,857 | 123,548 | 0.070 |
| 2026 | 685,977 | 125,890 | 0.070 |
| 2027 | 693,457 | 128,163 | 0.070 |
| 2028 | 710,345 | 132,533 | 0.070 |
| 2029 | 731,734 | 135,592 | 0.070 |
| 2030 | 757,013 | 138,496 | 0.070 |
| 2031 | 781,297 | 140,797 | 0.070 |
| 2032 | 799,298 | 142,211 | 0.070 |
| 2033 | 820,082 | 144,199 | 0.070 |
| 2034 | 836,230 | 145,287 | 0.070 |
| 2035 | 850,140 | 146,729 | 0.070 |
| 2036 | 861,188 | 147,862 | 0.070 |


| Scenario 5 <br> No fishing |  |  |  |
| :--- | :--- | :--- | ---: |
| Year | FSB | Catch | F |
| 2023 | 751,980 | 121,103 | 0.068 |
| 2024 | 729,084 | 0 | 0.000 |
| 2025 | 750,385 | 0 | 0.000 |
| 2026 | 794,380 | 0 | 0.000 |
| 2027 | 847,877 | 0 | 0.000 |
| 2028 | 910,762 | 0 | 0.000 |
| 2029 | 977,286 | 0 | 0.000 |
| 2030 | $1,047,577$ | 0 | 0.000 |
| 2031 | $1,116,075$ | 0 | 0.000 |
| 2032 | $1,174,192$ | 0 | 0.000 |
| 2033 | $1,236,336$ | 0 | 0.000 |
| 2034 | $1,290,279$ | 0 | 0.000 |
| 2035 | $1,339,791$ | 0 | 0.000 |
| 2036 | $1,382,560$ | 0 | 0.000 |


| Alternative 6, Determination of whether <br> yellowfin sole are currently overfished |  |  |  |
| :--- | :--- | :--- | ---: |
| Year | FSB | Catch | F |
| 2023 | 751,980 | 121,103 | 0.068 |
| 2024 | 699,032 | 224,987 | 0.131 |
| 2025 | 639,525 | 200,187 | 0.122 |
| 2026 | 612,051 | 188,556 | 0.116 |
| 2027 | 599,078 | 183,520 | 0.113 |
| 2028 | 598,509 | 186,520 | 0.113 |
| 2029 | 604,198 | 190,005 | 0.114 |
| 2030 | 614,053 | 194,747 | 0.116 |
| 2031 | 622,991 | 198,441 | 0.118 |
| 2032 | 627,281 | 199,708 | 0.119 |
| 2033 | 633,773 | 202,073 | 0.120 |
| 2034 | 637,220 | 201,820 | 0.120 |
| 2035 | 639,770 | 201,950 | 0.120 |
| 2036 | 641,385 | 201,725 | 0.119 |

Scenario 7, Determination of whether stock is approaching an overfished condition

| Year | FSB | Catch | F |
| :--- | :--- | :--- | ---: |
| 2023 | 751,980 | 121,103 | 0.068 |
| 2024 | 703,832 | 190,122 | 0.110 |
| 2025 | 655,756 | 176,358 | 0.104 |
| 2026 | 632,192 | 200,377 | 0.120 |
| 2027 | 614,804 | 192,316 | 0.117 |
| 2028 | 610,442 | 193,024 | 0.116 |
| 2029 | 612,862 | 194,613 | 0.116 |
| 2030 | 620,047 | 197,877 | 0.118 |
| 2031 | 626,945 | 200,472 | 0.119 |
| 2032 | 629,750 | 200,941 | 0.120 |
| 2033 | 635,266 | 202,761 | 0.120 |
| 2034 | 638,097 | 202,188 | 0.120 |
| 2035 | 640,264 | 202,138 | 0.120 |
| 2036 | 641,632 | 201,811 | 0.119 |

## Figures



Figure 1: VAST biomass estimates for the EBS+NBS, generated in 2023 (VAST_2023) and 2022 (VAST_2022), and the design-based estimate for the eastern Bering Sea only (DB_2023).


Figure 2: Distribution of wintering, spawning, and feeding areas for yellowfin sole in the Bering Sea, and observed regional grouping. Migration routes from wintering to feeding take place in spring, and the dates that yellowfin sole return to their wintering areas are unknown, adapted from Wakabayashi (1989).


Figure 3: Yellowfin sole annual total catch (1,000s t) in the eastern Bering Sea from 2003-2023 (upper panel). Yellowfin sole annual cumulative catch by month and year (non CDQ) 2003-October 20, 2023 (lower panel).

Yellowfin Sole catch by bottom trawl gear, 2 degree bins


Figure 4: Catch of yellowfin sole by non-pelagic trawl gear in the eastern Bering Sea, 2008-2023, by year, reported by observers. Colored circles represent catch of yellowfin sole, with darker shades representing higher catch.


Figure 5: Size composition of the yellowfin sole catch in 2023 (through October 28) caught by trawl gear, by subarea, for the primary areas where yellowfin sole are caught, $509,513,514,516,521$, and 524 .



Figure 6: Age frequency of females and males from the yellowfin sole fishery, 1975-2022.


YFS Ages - Survey Males


Figure 7: Age frequency of yellowfin sole females and males from the AFSC/NMFS research surveys, 1977-2022.

CPUE Weight/Duration for trawl gear, Vessel size cutoff 125 ft .


Figure 8: Catch per unit effort based on yellowfin sole fishery data, 1996-2023. CPUE weight (kg)/trawl duration (min) is shown for vessels greater and less than 125 ft , and only including self-made tows. Estimates of relative CPUE are complete through October 26, 2023. Results are limited to Catcher/Processor and Catcher vessels and tow duration $>0$ and $<$ the $90 \%$ percentile of all the data ( 974 minutes). Source: NMFS/AKRO Catch Accounting System. The EBS bottom temperature anomalies from 1996-2023 (x10 for visualization) are shown as a dotted line.


Figure 9: Estimates of weight (g) at age for yellowfin sole females and males, based on fishery data 1954-2022, and used in this year's models.


Figure 10: Average catch per unit effort on NMFS eastern Bering Sea surveys, 1987-2022, in kg/hectare.


Figure 11: Annual eastern Bering Sea bottom trawl survey biomass point estimates and $95 \%$ confidence intervals for yellowfin sole, 1982-2023, with 2022 Model 22.1 (red line), Model 22.1 (orange line), and Model 23.0 (blue line). Model 22.1 and Model 23.0 biomass estimates were identical, and the blue line covers the orange line. VAST survey estimates with $95 \%$ confidence intervals are in grey (2023 estimate) and black (2022 estimate).


Figure 12: Center of gravity plot with eastings (Longitude) in the left panel and northings (Latitude) in the right panel. The units are in kilometers.


Figure 13: The effective area occupied by yellowfin sole, estimated in the VAST analysis, in the eastern Bering Sea (green), northern Bering Sea (blue) and the combined region (red).


## Series

- Females
- Males
- Temperature

Figure 14: Yellowfin sole length-at-age anomalies, for 5-year old males and females, and bottom temperature anomalies from the eastern Bering Sea survey area $<100 \mathrm{~m}$. Correspondence in these residuals is apparent with a $2-3$ year lag effect from the mid-1990s to 2022 (excluding 2020). Late 1980s and early 1990s pattern may be a density-dependent response in growth from the large 1981 and 1983 year-classes. Note: Bottom temperature anomalies were scaled up by a factor of 10 to demonstrate the pattern and match length anomalies. Age data is not yet available for 2023, but the 2023 temperature anomaly is represented by a blue point.


Figure 15: Average catch per unit effort (CPUE) of yellowfin sole in Norton Sound, based on ADF\&G survey time series, 1976-2021. There was no survey in 2022 and the 2023 data is not yet available.

Model 22.1


Figure 16: Ricker stock recruitment curve for yellowfin sole Model 22.1 with $95 \%$ confidence intervals (shaded region) fit to female spawning biomass and recruitment data from 1978-2017. Years in black indicate data used to fit the model, years in blue were not used to fit the model.

Model 23.0


Figure 17: Ricker stock recruitment curve for yellowfin sole Model 23.0 with $95 \%$ confidence intervals (shaded region) fit to female spawning biomass and recruitment data from 1978-2017. Years in black indicate data used to fit the model, years in blue were not used to fit the model.

Female survey weight at age used in 2023 models


Male survey weight at age used in 2023 models


Figure 18: Mean weight at age (g) for yellowfin sole females and males from the eastern Bering Sea survey, 1954-2023 used in Model 22.1 and 23.0. Estimates for 2023 are highlighted in yellow.


Figure 19: Estimate of yellowfin sole survey selectivity for males and females, Model 22.1 upper panel, and Model 23.0 lower panel.


Figure 20: Estimate of yellowfin sole fishery selectivity for males and females, 1954-2022, Model 18.2.


Figure 21: Estimate of yellowfin sole fishery selectivity for males and females, 1954-2022, Model 22.1.


Figure 22: Survey catchability for yellowfin sole Model 22.1 (2022 and 2023 versions) and 23.0, 1982-2023.


Figure 23: Model estimates of the proportion of female yellowfin sole in the population, 1982-2023 for Models $18.2,22.0$, and 22.1. Note that the proportion female from Models 18.2 and 22.0 are superimposed.

Model 22.1, 2022


Model 22.1


Model 23.0


Figure 24: Model 22.1 from 2022 (upper panel), Model 22.1 from 2023 (middle panel), and Model 23.0 (lower panel) fit to NMFS Bering Sea survey biomass estimates for yellowfin sole, from 1982-2023. All models use NBS+EBS model-based (VAST) estimates, but the 2022 VAST index differs from the 2023 index due to the addition of an additional year (which affects the entire time series). Blue lines are model estimates, grey represent survey estimates.


Figure 25: Total (age 2+) and spawning stock biomass for yellowfin sole, and total numbers, based on Models 22.1 (2022), 22.1 (2023), and 23.0, 1954-2023.


Figure 26: Model estimates of yellowfin sole total (age 2+) and female spawning biomass with $95 \%$ confidence intervals, 1954-2023, Model 22.1. Dots indicate projections for 2024 and 2025.


Figure 27: Model estimates of yellowfin sole total (age 2+) and female spawning biomass with $95 \%$ confidence intervals, 1954-2023, Model 23.0. Dots indicate projections for 2024 and 2025.

Fit to Survey Age Compositions, Model 22.1


Figure 28: Model 22.1 fit to the time-series of yellowfin sole survey age composition, by sex, 1979-2022. The x -axis represents age.

Fit to Survey Age Compositions, Model 23.0


Figure 29: Model 23.0 fit to the time-series of yellowfin sole survey age composition, by sex, 1979-2022. The x -axis represents age.

Fit to Fishery Age Compositions, Model 22.1


Figure 30: Model 22.1 fit to the time-series of yellowfin sole fishery age composition, by sex, 1975-2022. The x -axis represents age.

Fit to Fishery Age Compositions, Model 23.0


Figure 31: Model 23.0 fit to the time-series of yellowfin sole fishery age composition, by sex, 1975-2022. The x -axis represents age.


Figure 32: Projected yellowfin sole female spawning biomass for 2023 to 2036 (blue line), with $5 \%$ and $95 \%$ confidence intervals, and fishing at the 5 -year (2018-2022) average fishing mortality rate, $\mathrm{F}=0.0741$, Model 23.0.


Figure 33: Year-class strength of age 5 yellowfin sole estimated by the stock assessment model. The horizontal line represents the average of the estimates from recruitment, 1954-2019, 1.6 billion, Model 23.0.


Figure 34: Retrospective plot of female spawning biomass for yellowfin sole Model 23.0. Mohn's Rho for this model was 0.06 .


Figure 35: Retrospective plot of female spawning biomass for yellowfin sole Model 22.1. Mohn's Rho for this model was 0.005 .


Figure 36: Retrospective differences in female spawning biomass between sequential years for yellowfin sole Model 22.1.


Figure 37: Retrospective differences in female spawning biomass between sequential years for yellowfin sole Model 23.0.


Figure 38: Yellowfin sole fishing mortality rate and female spawning biomass from 1975 to 2023 compared to the F35\% and F40\% control rules, based on Model 22.1. Vertical line is B35\%. Squares indicate estimates for 2023, 2024, and 2025.


Figure 39: Yellowfin sole fishing mortality rate and female spawning biomass from 1975 to 2023 compared to the F35\% and F40\% control rules, based on Model 23.0. Vertical line is B35\%. Squares indicate estimates for 2023, 2024, and 2025.


Figure 40: Catch of yellowfin sole in the BSAI in 2023 by month (through October 29), reported by observers. Circles represent presence of yellowfin sole catch by the following gear types: non-pelagic trawl, pair trawl, or pelagic trawl.


Figure 41: Bottom temperature anomalies from the NMFS survey $<100 \mathrm{~m}, 1982$-2023.

