5. Assessment of the Deepwater Flatfish Stock Complex in the Gulf of Alaska

Carey R. McGilliard

November 2022

Executive Summary

Introduction

The Gulf of Alaska deepwater flatfish complex is assessed every four years and was last assessed in 2019. In years without an assessment, we present an executive summary to recommend harvest levels for the next two years. Please refer to the 2019 full stock assessment report for further information regarding the assessment model (McGilliard and Palsson, 2019, available online at https://apps-afsc.fisheries.noaa.gov/refm/docs/2019/GOAdeepflat.pdf). A full stock assessment document with updated assessment and projection model results will be presented in 2023.

The deepwater flatfish complex consists of Dover sole, Greenland turbot, deepsea sole, and Kamchatka flounder. The catch of Kamchatka flounder in the GOA is recorded as deepwater flatfish in the AKRO Catch Accounting System, but has not been assessed, assigned a Tier, or included in species-level calculations of the deepwater flatfish ABC in the past. The catch time series for Kamchatka flounder dates back to 2011, when it was separated from arrowtooth flounder in catch accounting and arrowtooth flounder was removed from the deepwater flatfish complex. In 2019, the GOA Plan Team and SSC recommended assigning Kamchatka flounder a species-level OFL of 69 t (the maximum historical catch) as part of the deepwater flatfish complex. Here we present specification tables with Kamchatka flounder and include specification tables without Kamchatka flounder in the Appendix.

Dover sole is assessed using an age-structured model and Tier 3 determination. Thus, the single species projection model was run using parameter values from the accepted 2019 Dover sole assessment model (McGilliard and Palsson 2019), together with updated catch information for 2019-2022, to predict stock status for Dover sole in 2023 and 2024 and to make ABC recommendations for those years. Projections are conducted using numbers-at-age for Dover sole from age 3-59+ and historical recruitment of age 3 individuals from 1978-2019 to calculate OFL's and ABC's. Greenland turbot and deepsea sole fall under Tier 6. ABC's and OFL's for Tier 6 species are based on historical catch levels (average catch over the years 1978-1995) and therefore these quantities cannot be updated. ABC's and OFL's for the individual species in the deepwater flatfish complex are determined only as an intermediate step for the purpose of calculating complex-level OFL's and ABC's.

Summary of Results

As in previous years (McGilliard and Palsson 2019), the species-level ABC is 179 t for Greenland turbot and the OFL is 238 t for both 2023 and 2024. The species-level ABC for deepsea sole is 4 t and the OFL is 6 t for both 2023 and 2024. The species-level ABC for Dover sole is 5,581 t in 2023 and 5,484 t in 2024 and the OFL is 6,605 t in 2023 and 6,489 t in 2024.

Based on the updated projection model results, the recommended complex-level ABC's for 2023 and 2024 are 5,816 t and 5,719 t, and the OFL's are 6,918 t and 6,802 t. The new ABC recommendation and OFL for 2023 are similar to that developed in 2021 (5,766 t). The principal reference values are shown in the following table:

		As estin	nated or	As estimated or		
		specified la	st year for:	recommended this year for:		
Species	Quantity					
		2022	2023	2023*	2024	
	M (natural mortality rate)	0.113(f), 0.119(m)	0.113(t), 0.119(m)	0.119(t), 0.113(m)	0.119(t), 0.113(m)	
	Tier	0.117(11)	0.117(11)	0.115(III) 3a	0.115(III) 3a	
	Projected total (3+) biomass (t)	83,131	81,350	81,328	79,578	
	Projected Female spawning biomass (t)	26,349	25,727	25,717	25,215	
	B 100%	19,032	19,032	19,032	19,032	
Dover sole	$B_{40\%}$	7,613	7,613	7,613	7,613	
	B35%	6,661	6,661	6,661	6,661	
	Fofl	0.11	0.11	0.11	0.11	
	$maxF_{ABC}$	0.09	0.09	0.09	0.09	
	F_{ABC}	0.09	0.09	0.09	0.09	
	OFL (t)	6,713	6,607	6,605	6,489	
	maxABC (t)	5,673	5,583	5,581	5,484	
	ABC (t)	5,673	5,583	5,581	5,484	
	Tier	6	6	6	6	
Greenland turbot	OFL (t)	238	238	238	238	
	maxABC (t)	179	179	179	179	
	ABC (t)	179	179	179	179	
	Tier	6	6	6	6	
Kamchatka	OFL (t)	69	69 51 75	69	69 50	
nounder	maxABC (t)	51.75	51./5	52	52 52	
	ABC (l)	51.75	51.75	52	52	
	OFL(t)	6	6	0	0	
Deepsea sole	maxABC(t)	4	4	4	4	
	ABC (t)	4	4	4	4	
	OFL (t)	6,957	6,851	6,918	6,802	
	maxABC (t)	5,856	5,766	5,816	5,719	
	ABC (t)	5,856	5,766	5,816	5,719	
Deepwater Flatfish Complex	Status	As determined <i>last</i> year for:		As determined <i>this</i> year for:		
		2019	2020	2020	2021	
	Overfishing	no	n/a	no	n/a	
	Overfished	n/a	no	n/a	no	

Approaching overfished	n/a no	n/a no
---------------------------	--------	--------

*Projections are based on realized catches for Dover sole of 113 t, 112 t, 96 t, and 144 t used in place of maximum permissible ABC for 2019-2022. Estimated catches of 155 t were used in place of maximum permissible ABC for 2023-2024 projected catch was calculated as the average catch over 2017-2021.

Area Apportionment

Area apportionment for ABC of deepwater flatfish is currently based on the proportion of survey biomass of Greenland Turbot, Kamchatka flounder, and deepsea sole found within each management area from 2001-2021 and estimates of 2023 and 2024 survey biomass for Dover sole in each management area based on results from the random effects model. An ABC exists only at the level of the complex (deepwater flatfish) and not for each species individually. The ABC by area for the deepwater flatfish complex is then the sum of the species-specific portions of the ABC.

The random effects model is used to fill in depth and area gaps in the Dover sole survey biomass by area and to calculate an area- and depth-specific estimate of 2023 and 2024 survey biomass. These estimates are summed over depths and the resulting relative biomass in each management area is used as the basis for apportionment of the Dover sole portion of the deepwater complex. This method of conducting area apportionment for deepwater flatfish was recommended by the GOA Plan Team in 2016 (McGilliard 2016). The method was chosen because it accounts for time and area gaps in the survey for Dover sole, which comprises nearly all of the deepwater flatfish catch and moves to deeper waters ontogenetically, and explicitly accounts for differences in the spatial distributions of the component species. For instance, Greenland turbot are found exclusively in the Western region by the survey.

				West		
Species	Year	Western	Central	Yakutat	Southeast	Total
		0.8%	37.3%	25.2%	36.7%	100.0%
Dover Sole	2023	45	2,082	1,406	2,048	5,581
Dovel Sole	2024	44	2,045	1,382	2,013	5,484
		100.0%	0.0%	0.0%	0.0%	100.0%
Greenland	2023	179	0	0	0	179
Turbot	2024	179	0	0	0	179
		62.0%	38.0%			100.0%
Kamchatka	2023	32	20	0	0	52
Flounder	2024	32	20	0	0	52
		0.6%	71.8%	14.7%	12.9%	100.0%
Deepsea	2023	0	3	1	0	4
Sole	2024	0	3	1	0	4
Deepwater	2023	256	2,105	1,407	2,048	5,816
Flatfish	2024	255	2,068	1,383	2,013	5,719

Figures

Figure 5.1. Ratio of catch to total age 3+ biomass, including projected ABC: age 3+ total biomass for Dover sole and unidentified species together (catches of Dover sole in the assessment are assumed to be those recorded as Dover and unidentified deepwater flatfish). The two highest historical catches (1991-1992) are recorded as unidentified deepwater flatfish.

Tables

Table 5.1. Total catch of species in the deepwater flatfish complex as of Oct 26, 2022.

	Greenland	Dover			•		Greenland	Dover	Kamchatka	
Year	turbot	sole	Unidentified	Total		Year	turbot	sole	Flounder	Total
1978	51	827		878	•	2011	3	452	14	470
1979	24	530		554		2012	0	260	7	267
1980	57	570		627		2013	15	212	18	245
1981	8	457		465		2014	3	284	70	357
1982	23	457		480		2015	26	197	36	259
1983	145	354		499		2016	4	229	6	239
1984	18	132		150		2017	8	192	67	267
1985	0	43		43		2018	3	145	40	187
1986	0	23		23		2019	7	92	14	113
1987	44	56		100		2020		97	15	112
1988	256	1,087		1,343		2021	9	67	20	96
1989	56	1,521		1,577		2022	21	110	14	144
1990	0	2,348		2,348						
1991			10,196	10,196						
1992			8,497	8,497						
1993	19	1,869	1,935	6,706						
1994	3	2,538	537	3,078						
1995	78	1,416	721	2,215						
1996	6	1,485	704	2,195						
1997	3	2,676	996	3,674						
1998	10	2,111	168	2,289						
1999	6	1,833	447	2,285						
2000	5	813	167	985						
2001	4	654	146	804						
2002	4	411	146	560						
2003	3	899	51	902						
2004	1	646	41	647						
2005	1	378	41	379						
2006	10	327	74	337						
2007	1	235	47	236						
2008	4	517	53	521						
2009	0	435	42	435						
2010	0	546		546						

Year	Dover sole	Greenland turbot	Kamchatka flounder	deepsea sole
1990	96,597	-	-	-
1993	85,557	-	-	-
1996	79,531	-	197	-
1999	74,245	-	90	97
2001	32,424	-	33	52
2003	99,297	109	125	180
2005	80,560	-	10	262
2007	71,469	122	-	270
2009	76,277	-	4	249
2011	77,531	-	10	41
2013	82,739	-	-	74
2015	53,069	-	117	453
2017	58,307	-	11	31
2019	47,983	-	8	122
2021	46,079	-	6	173

Table 5.2. Survey biomass for each of the component species in the deepwater flatfish complex.

Literature Cited

- McGilliard, C.R. and Palsson, W. 2019. 5. Gulf of Alaska Deepwater Flatfish. In Stock Assessment and Fishery Evaluation Report for the Groundfish Resources of the Gulf of Alaska. pp. 649-656. North Pacific Fishery Management Council, P.O. Box 103136, Anchorage AK 99510.
- McGilliard, C.R. and Palsson, W. 2015. 5. Gulf of Alaska Deepwater Flatfish. In Stock Assessment and Fishery Evaluation Report for the Groundfish Resources of the Gulf of Alaska. pp. 563-624. North Pacific Fishery Management Council, P.O. Box 103136, Anchorage AK 99510.