# Assessment of the Yellowfin Sole Stock in the Bering Sea and Aleutian Islands 

Ingrid Spies, Lewis Barnett, Rebecca Haehn, James Ianelli, Emily Markowitz, Zack Oyafuso, Elizabeth Siddon, Cynthia Yeung<br>Alaska Fisheries Science Center, National Marine Fisheries Service<br>National Oceanic and Atmospheric Administration<br>7600 Sand Point Way NE., Seattle, WA 98115-6349<br>18 November, 2022

## Executive summary

## Summary of changes in assessment inputs

The following substantive changes have been made to the BSAI yellowfin sole assessment relative to the 2021 Bering Sea and Aleutian Islands (BSAI) SAFE report. Several models are presented in this document that incorporate new data since the last full assessment in 2021.

## Changes in the data

1. The 2021 fishery and survey age compositions were added.
2. The estimate of the total catch made through the end of 2021 was updated as reported by the NMFS Alaska Regional office. The catch through the end of 2022 was estimated based on available data to be $127,712 \mathrm{t}$. Catch for the 2023 and 2024 projections were assumed to be the mean of the past 5 years, 2018-2022, 126,157 t.
3. The 2022 NMFS survey biomass estimate and standard error were included. A model-based (VAST) estimate of the EBS and NBS biomass estimates, standard error, and age composition were used in Model 22.1.

## Changes in the assessment methods

Three models are presented in this assessment. Model 18.2 was the accepted model in 2021 and is presented with updated data. Models 22.0 and 22.1 are based on Model 18.2, except that a single sex survey selectivity was used rather than a separate survey selectivity for males and females. Further details are described below.

1. Model 18.2 uses a fixed value for female natural mortality ( $M=0.12$ ) and allows male natural mortality to be estimated within the model. This model was accepted by the BSAI Plan Team and the SSC in 2021. Survey index data (1982-2022) used design-based eastern Bering Sea estimates.
2. Model 22.0 is the same as Model 18.2 except a single-sex survey selectivity is used rather than a separate survey selectivity for males and females. Survey index data (1982-2022) and age compositions are based on design-based indices for the eastern Bering Sea.
3. Model 22.1 is the same as Model 22.0 except that the survey index data and age compositions (1982-2022) are based on model-based indices (VAST) for the combined Northern Bering Sea and eastern Bering Sea survey region. This is the authors' preferred model.

## Summary of Results

The three models presented in this assessment include interpolated survey bottom temperature within the summer bottom trawl area $<100 \mathrm{~m}$ as a covariate on survey catchability, as well as National Marine Fisheries Service eastern Bering Sea survey start date as an additional covariate within the model, as documented in

Nichol et al. (2019) to be informative for yellowfin sole. These models also specify female natural mortality to be fixed at 0.12 while allowing the model to estimate male natural mortality. Model 22.0 builds upon Model 18.2 by collapsing survey selectivity into a single set of parameters for males and females. Model 22.1 further builds up on Model 22.0 by using model-based survey indices and age compositions from the combined EBS and NBS survey areas. Model 22.1 is the preferred model.

In the eastern Bering Sea (EBS) bottom trawl survey performed in 2022, the EBS yellowfin sole design-based biomass estimate was $25 \%$ higher than estimated by the 2021 EBS bottom trawl survey, at 2,039,970 t. Spawning biomass estimated by Model 22.1 was $1.86 * B_{M S Y}$. Therefore, yellowfin sole continues to qualify for management under Tier 1a. The 1978-2016 age-1 recruitments and the corresponding spawning biomass estimates were used to fit the stock recruitment curve and determine the Tier 1 harvest recommendations. Tier 3 estimates were also conducted, which is typical for this assessment.

This assessment updates last year's model with total and spawning biomass estimates that are higher than the 2021 assessment. This year's recommended ABC and OFL are higher than the 2021 assessment, in part due to an increase in biomass estimates as well as the recommended use of the EBS+NBS survey area.
Catch of yellowfin sole as of October 1, 2022 in the Bering Sea and Aleutian Islands was 106,096 t. Over the past 5 years (2017-2021), approximately $83.1 \%$ of the catch has taken place by this date. Therefore, the full year's estimate of catch in 2022 was extrapolated to be $127,718 \mathrm{t}$. This is similar to the average catch over the past ten years, $134,698 \mathrm{t}$. Future catch for the next 10 years, $2023-2032$, was estimated to be the mean of the catch from the past five years, 2018-2021, and the extrapolated full year's catch for 2022, which resulted in an estimate of $126,157 \mathrm{t}$.

Yellowfin sole female spawning biomass continues to be above $B_{M S Y}$ and the annual harvest remains below the ABC level. Management quantities are given in the following table for the 2021 accepted model (Model 18.2-2021) and the 2022 preferred model (Model 22.1). The projected estimate of total biomass for 2023 was higher by $45 \%$ from the 2021 assessment of $2,284,820 \mathrm{t}$, to $3,321,640 \mathrm{t}$. The model projection of spawning biomass for 2023, assuming catch for 2022 as described above, was $885,444 \mathrm{t}, 22 \%$ higher than the projected 2022 spawning biomass from the 2021 assessment of $727,101 \mathrm{t}$. The 2023 and 2024 ABCs using $F_{A B C}$ from this assessment model were higher than last year's 2023 ABC of $326,235 \mathrm{t} ; 378,499 \mathrm{t}$ and $462,890 \mathrm{t}$. The 2023 and 2024 OFLs estimated by Model 22.1 were $404,882 \mathrm{t}$ and $495,155 \mathrm{t}$. Increases in management quantities for the preferred Model 22.1 are largely due to the increased survey area.

The Risk Table indicates an overall risk level of 1 and there were no recommended reductions in ABC.

| Quantity | As estimated or specified last year for: |  | As estimated or recommended this year for: |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 2022 | 2023 | 2023 | 2024 |
| $M$ (natural mortality rate) | 0.12, 0.135 | 0.12, 0.135 | 0.12, 0.125 | 0.12, 0.125 |
| Tier | 1a | 1 a | 1 a | 1 a |
| Projected total (age 6+) biomass (t) | 2,479,370 t | 2,284,820 t | 3,321,640 t | 4,062,230 t |
| Projected female spawning biomass ( t ) | $857,101 \mathrm{t}$ | 727,101 t | 885,444 t | 897,062 t |
| $B_{0}$ | 1,489,190 t | 1,489,190 t | 1,407,000 t | 1,407,000 t |
| $B_{M S Y}$ | 495,904 t | 495,904 t | 475,199 t | 475,199 t |
| $F_{O F L}$ | 0.152 | 0.152 | 0.122 | 0.122 |
| $\max F_{A B C}$ | 0.143 | 0.143 | 0.114 | 0.114 |
| $F_{A B C}$ | 0.143 | 0.143 | 0.114 | 0.114 |
| OFL (t) | 377,071 t | 347,483 t | 404,882 t | 495,155 t |
| $\max A B C$ | 354,014 t | 326,235 t | 378,499 t | 462,890 t |
| ABC (t) | 354,014 t | 326,235 t | 378,499 t | 462,890 t |
| Status | 2020 | 2021 | 2021 | 2022 |
| Overfishing | No | n/a | No | n/a |
| Overfished | $\mathrm{n} / \mathrm{a}$ | No | $\mathrm{n} / \mathrm{a}$ | No |
| Approaching overfished | $\mathrm{n} / \mathrm{a}$ | No | $\mathrm{n} / \mathrm{a}$ | No |

Projections were based on estimated catches of $127,712 \mathrm{t}$ in 2022 and $126,157 \mathrm{t}$ used in place of maximum ABC for 2023. This estimate was based on the mean of the past 5 years, 2018-2022, which includes the extrapolated catch of $127,712 \mathrm{t}$ for 2022.

## Responses to SSC and Plan Team comments on Assessments in General

## SSC December 2021

With respect to Risk Tables, the SSC would like to highlight that "risk" is the risk of the ABC exceeding the true (but unknown) OFL, as noted in the October 2021 SSC Risk Table workshop report. Therefore, for all stocks with a risk table, assessment authors should evaluate the risk of the ABC exceeding the true (but unknown) OFL and whether a reduction from maximum ABC is warranted, even if past TACs or exploitation rates are low.

Authors' response
Noted.
SSC December 2021
During review of the EBS Pacific cod assessment the SSC noted that the VAST model results were sensitive to the number of knots used to structure the analysis. That assessment increased the number of knots from 100 to 750 , recognizing that this would likely provide a better approximation to the underlying spatial process. The SSC recommends that all assessment authors consider whether the number of knots used for their species is sufficient to provide a robust analysis, and to compare alternative models including more knots where possible.

Authors' response
The VAST data generated in this assessment used 750 knots for the abundance index and 50 for the age composition data. These are the same numbers of knots currently used for all Bering Sea stocks, and the number of knots used for all of these abundance indices were increased dramatically last year in response to SSC comments. The knots for the age comps cannot be increased at this time due to computational limitations.

SSC December 2021
The SSC recommends that groundfish, crab and scallop assessment authors do not change recommendations in documents between the Plan Team and the SSC meetings, because it makes it more difficult to understand the
context of the Plan Team's rationale and seems counter to the public process without seeing a revision history of the document... However, this recommendation is not meant to prevent correcting typos, transcription errors, figure labels and other editorial issues for the final posted documents.

Authors' response
Noted.

## Responses to SSC and Plan Team comments specific to this assessmemt

## SSC November 2020

The SSC recommends further investigation of previously noted issues as time allows, including possible further adjustments to estimating separate natural mortality for males and females, explorations of the sex ratio relative to the timing of annual spawning migrations as an alternative explanation for a high proportion of females, a potential link between wave height and catchability, and a single selectivity curve for both sexes. We note that the latter is supported by survey selectivity estimates that are virtually indistinguishable in Model 18.2 (2020 Assessment, Fig. 4.17) and by time-varying fishery selectivities that are very similar between males and females since the early 1980s, but diverge widely and inconsistently in some earlier years (2020 Assessment, Fig. 4.18).

Author's response:
A single survey selectivity curve was implemented in Models 22.0 and 22.1 in response to this comment. Future work will explore single fishery selectivities for males and females as well as the other comments noted.

## SSC December 2021

The SSC commends the author for thoroughly addressing the majority of previous SSC comments and noted the much-improved retrospective patterns due to these updates. The SSC looks forward to continued work on previous SSC recommendations, especially bringing forward updated models that include VAST estimates and include NBS data (similar to 2021 models 18.2 a and 18.2 b) and incorporate NBS bottom temperatures into estimates of survey catchability (if appropriate).

Author's response:
We have included a model (Model 22.1) that includes a model-based survey index for the combined EBS and NBS regions. Model-based age compositions for the EBS and NBS combined region were also used. Given the computational effort required to generate model-based age compositions, we support the use of cloud computing for future model-based data synthesis.
Future work will consider bottom temperature throughout the EBS and NBS.
SSC December 2021
An important issue discussed by the SSC was the posterior probability distributions for key model parameters (2021 Assessment, Figure 4.31) still indicate the absence of the smooth probability distributions that are often associated with model convergence and efficient MCMC sampling. The SSC suggests that this could result from poor MCMC chain mixing, an insufficiently long chain, or high autocorrelation, and may be indicative of important estimation challenges within this complex assessment model. The SSC requests the authors present standard MCMC convergence diagnostics including trace plots, autocorrelation, and potential scale reduction factors for model parameters and derived quantities.

## Author's response:

In this assessment the authors have examined the yellowfin sole modeled parameter space (Model 22.0) using the R package adnuts, which offers an expanded toolset for MCMC sampling of ADMB models including use of the random walk Metropolis algorithm (Monnahan and Kristensen 2018). We examined whether previous MCMC runs could have had poor MCMC chain mixing, an insufficiently long chain, or high autocorrelation, or were indicative of challenges within this complex assessment model. A thorough description of the methodology and the results are presented in the document. MCMC diagnostics indicated sufficient mixing
and no autocorrelation for all key parameters. However, several male and female selectivity parameters of low inferential importance early in the time series were not well mixed and will be examined prior to the next assessment cycle.

## SSC December 2021

The SSC also requests the authors investigate the negative values for recruitment in the lower confidence interval (2021 Assessment, Figure 4.18). Author's response:

Negative values for recruitment in the lower confidence interval were due to normally distributed confidence intervals. These have been changed to lognormally distributed confidence intervals. (Table 1).

SSC December 2021
Finally, the author and the BSAI GPT highlighted potential impacts associated with the implementation of Amendment 80, including an incentive to reduce discards of smaller fish and changes in observer coverage. The SSC encourages the author to seek input from the industry to explore these potential effects along with other factors (e.g. markets, tariffs) that may be impacting fishery catch compositions.

## Author's response:

Authors have reached out to fishing industry representatives and NMFS economists for information on tariffs, observer coverage and retention, and CPUE. Their responses are summarized here.

Flatfish were among the species to receive relief under the USDA Seafood Tariff Relief Program in 2019-2020. Tariffs impact the price of yellowfin sole. Fishing industry representatives report that after tariffs are applied they wait for the exclusion process to be announced, apply for an exclusion, and the exclusion has thus far been granted each time and it applies retroactively. In 2022, fishing started with the tariffs in place (meaning prices were impacted for the start of the year) and the exclusion request was granted in March of 2022 and applied retroactively back to Oct. 12, 2021 and continues through December 31, 2022. While fish importers from China can apply for a refund of any tariff paid since Oct. 12, 2021, none of those funds reach the fishing industry.
All boats that participate in the yellowfin sole fishery have been fully observed since 2008. A80 vessels have two observers, AFA vessels that fish yellowfin sole have 2 observers, and any trawl Catcher Vessels that participate deliver to either A80 or AFA vessels, so all catch is weighed on certified scales and $99 \%$ or more of hauls are sampled by observers. Retention of all species increased under A80; $90 \%$ or greater of the groundfish are retained. Historic A80 coop reports with allocations, catch, and retention can be found in (Table 2).

Overall colder water in the Bering Sea in 2022 has resulted in a relatively high catch per unit effort (CPUE).
The tariff battle with China potentially impacted flatfish fishing through lower prices which can affect the incentive to fish. Additionally, supply chain problems stemming from COVID restrictions likely also affected the incentive to fish in 2020 and after. Most flatfish is processed in China. China applied tariffs on products destined for their domestic market, but in an attempt to protect their reprocessing sector, product that came into China and was subsequently exported were excluded from Chinese tariffs. The problematic tariffs would mostly be our (U.S) tariffs on Chinese imports (of fish that we caught).

## Introduction

Yellowfin sole (Limanda aspera) are one of the most abundant flatfish species in the eastern Bering Sea (EBS) and currently is the target of the largest flatfish fishery in the world. Yellowfin sole are distributed in North American waters from off British Columbia, Canada, (approx. lat. $49^{\circ} \mathrm{N}$ ) to the Chukchi Sea (approx. lat. $70^{\circ} \mathrm{N}$ ) and south along the Asian coast off the South Korean coast in the Sea of Japan (approximately lat. $\left.35^{\circ} \mathrm{N}\right)$. Their abundance in the Aleutian Islands region is considered low to negligible.

Adults exhibit a benthic lifestyle and occupy separate spawning areas in winter and feeding distributions in summer on the eastern Bering Sea shelf (Figure 1, Wakabayashi 1989). Adults begin a migration from over-wintering grounds near the shelf margins ( $>100 \mathrm{~m}$ ) onto the inner shelf (15-75 m) in April or early May
each year for spawning and feeding. Adults migrate back offshore in fall and winter as a response to ice cover/cold water of the inner and central shelf water in winter (Bakkala 1979). Young yellowfin sole remain in the shallow nearshore nursery areas throughout their first few years of life. They begin to disperse offshore age $3-5$, and by $5-8$ years they follow adult migratory patterns (Bakkala 1979).
Year-class strength of flatfishes is thought to be determined during the first few years of life between the pelagic egg and benthic settlement (van der Veer et al., 2015). Temperature in the early life stages can affect egg size, larval duration, size at settlement, as well as the size of suitable nursery habitat (Yeung and Cooper 2019). It has been hypothesized that colder bottom temperatures delay migration and spawning in yellowfin sole. As a result, mature individuals may reside in nearshore nursery grounds during months in which the NMFS survey occurs, which likely decreases survey biomass estimates during cold years (Nichol et al., 2019; Yeung and Cooper 2019).

Yellowfin sole may be less sensitive to temperature due to their settlement timing, relative to Northern Rock Sole, which seems to be sensitive to temperature. Yellowfin sole settle later in summer, when the influence of the cold pool is weaker and nearshore bottom temperature is relatively stable and high (Yeung and Yang, 2018). In contrast, yellowfin sole migrate across the shelf to spawn near their nursery habitat, rather than relying on currents for larval transport to nursery habitat (Nichol and Acuna, 2001); therefore, their larvae may be less susceptible to variable currents (Yeung and Cooper 2019).

There appear to be several distinct stocks, although the genetic basis remains to be determined. The stocks are referred to as the Unimak group, the Pribilof-west group, and the Pribilof-east group (Figure 1). Yellowfin sole are managed as a single stock in the BSAI management area as there is presently no direct evidence of stock structure.

## Fishery

Yellowfin sole has been targeted with bottom trawls on the Bering Sea shelf since the fishery began in 1954. It was overexploited by foreign fisheries in 1959-1962 when catches averaged 404,000 t annually (Figure 2, top panel). Catch is typically taken throughout the Bering Sea shelf, as far north as $65^{\circ} \mathrm{N}$ and low to negligible amounts are taken in the Aleutian Islands (Figure 3). Catches declined to an annual average of $117,800 \mathrm{t}$ from 1963-1971 and further declined to an annual average of $50,700 \mathrm{t}$ from $1972-1977$. The lower yield in this latter period was partially due to the discontinuation of the Union of Soviet Socialist Republics (U.S.S.R.) fishery. In the early 1980s, after the stock condition had improved, catches again increased reaching a peak of over $227,000 \mathrm{t}$ in 1985.

During the 1980s, there was also a major transition in the characteristics of the fishery. Yellowfin sole were traditionally taken exclusively by foreign fisheries and these fisheries continued to dominate through 1984. However, U.S. fisheries developed rapidly during the 1980s in the form of joint ventures, and during the last half of the decade began to dominate and then take all of the catch as the foreign fisheries were phased out of the Eastern Bering Sea. Since 1990, only domestic harvesting and processing has occurred.

The management of the yellowfin sole fishery changed significantly in 2008 with the implementation of Amendment 80 to the BSAI Fisheries Management Plan. The Amendment directly allocated fishery resources among BSAI trawl harvesters in consideration of their historic harvest patterns and future harvest needs to improve retention and utilization of fishery resources by the non-AFA (American Fisheries Act) trawl catcher/processor fleet. This was accomplished by extending the groundfish retention standards to all H\&G (headed and gutted, fish are processed with heads and viscera removed) vessels and also by providing the ability to form cooperatives within the newly formed Amendment 80 sector. In addition, Amendment 80 also mandated additional monitoring requirements which included observer coverage on all hauls, motioncompensating scales for weighing samples, flow scales to obtain accurate catch weight estimates for the entire catch, no mixing of hauls and no on-deck sorting. The partitioning of TAC (total allowable catch) and PSC (prohibited species catch) among cooperatives has significantly changed the way the annual catch has accumulated (Figure 2, lower panel) and the rate of target catch per bycatch ton. There is now a more even and slow attainment of the annual catch relative to the pre-Amendment 80 fishing behavior.

In 2010, following a comprehensive assessment process, the yellowfin sole fishery was certified under the Marine

Stewardship Council environmental standard for sustainable and well-managed fisheries. The certification also applies to all the major flatfish fisheries in the BSAI and GOA.
In 2011, federally permitted vessels using non-pelagic trawl gear whose harvest resulted in flatfish retained catch that was greater than any other retained fishery category were required to use modified trawl gear. The modifications required the use of elevating devices to raise the section of the trawl warps between the doors and the trawl wing tips by 2.5 inches off the seafloor. The purpose of the management action was to reduce damage of non-target animals, particularly those that form habitat structure or support other fisheries while not substantially reducing flatfish catch rates or causing gear handling problems (Rose et al. 2010).

Yellowfin sole are typically headed and gutted, frozen at sea, and then shipped primarily to China and South Korea. Reprocessed yellowfin sole from China may also be sold to Japan, US, and Europe as fillets, among other countries (AFSC 2016). The 1997 catch of $181,389 \mathrm{t}$ (retained and discarded) was the largest since the fishery became completely domestic, but decreased from 1998-2010, averaging 94,004 t (Table 3, Table 2). From 2011-2014 the catch increased, averaging $155,000 \mathrm{t}$. The 2013 catch totaled approximately $165,000 \mathrm{t}$ ( $73 \%$ of the ABC), and was the highest annual catch since 1988. Catches have declined since 2013 and the average catch over the past ten years was $134,698 \mathrm{t}$. The full year's estimate of catch in 2022 was $127,718 \mathrm{t}$.

Yellowfin sole accounted for $66 \%$ of the retained flatfish catch in 2021 caught in the Eastern Bering Sea by catcher/processors in the Amendment 80 Fleet. The first-wholesale value of yellowfin sole and rock sole showed a small increase from $0.66 \mathrm{USD} /$ pound to $0.67 \mathrm{USD} /$ pound between 2020 and 2021. Export quantities of yellowfin sole and rock sole decreased in 2021 to 48.54 t from 80.75 t in 2020 (Appendix A, Ablelman 2021). In $202125 \%$ tariffs were imposed on yellowfin sole exports to China, which may have played a role in the decreased catch.

As of late October 2022, the fishing season is ongoing. To estimate the total 2022 catch for the stock assessment model, the average proportion of the 2017-2021 cumulative catch attained by the end of October was applied to the 2022 catch amount at the same time period and resulted in a 2022 catch estimate of $127,718 \mathrm{t}, 39.15 \%$ of the ABC.

Length distributions of yellowfin sole throughout NMFS areas $509,513,514,516,521$, and 524 ranged from $20-50 \mathrm{~cm}$, and were similar throughout the Bering Sea (Figure 4). Catch proportions of yellowfin sole by month and area were highest in areas 509, 513, 514, and 521 in 2022 (Figure 5). The highest proportion of the catch was taken in February through May. Catches in July are typically low relative to other months, and catch in July 2022 was $1 \%$ of the total for 2022. Maps of the locations where yellowfin sole were caught in 2022, by month (through October 1), are shown in Figure 6. The average age of yellowfin sole in the 2021 catch was estimated at 12.44 and 12.89 years for females and males, respectively. Age data for the current year is not yet available, and no survey was conducted in 2020.

The time-series of catch in Table 3 also includes yellowfin sole that were discarded in domestic fisheries from 1987 to the present. Annual discard estimates were calculated from at-sea sampling (Table 2). The rate of discard has ranged from a low of $2 \%$ of the total catch in 2019 through 2022 to a high of $29 \%$ in 1992 . The trend has been toward fuller retention of the catch in recent years, and with the advent of the Amendment 80 harvest practices, discarding is at its lowest level since these estimates have become available. Historically, discarding primarily occurred in the yellowfin sole directed fishery, with lesser amounts in the Pacific cod, Pollock, rock sole, flathead sole, and "other flatfish" fisheries (Table 4).

## Data

The data used in this assessment include estimates of total catch, bottom trawl survey biomass estimates and their $95 \%$ confidence intervals, catch-at-age from the fishery, eastern Bering Sea survey bottom temperatures $<100 \mathrm{~m}$, and population age composition estimates from the bottom trawl survey. Weight-at-age and proportion mature-at-age are also available from studies conducted during the bottom trawl surveys. Estimates of fishery weight-at-age was based on catch-at-age methodology used in the walleye pollock assessment (Ianelli et al. 2019), following Kimura (1989) and modified by Dorn (1992).

| Data source | Year |
| :--- | :--- |
| Fishery catch | $1954-2022$ |
| Fishery age composition | $1964-2021$ |
| Fishery weight-at-age | Catch-at-age methodology |
| Survey biomass and standard error | $1982-2022$ (not 2020) |
| Bottom temperature | $1982-2022$ |
| Survey age composition | $1979-2021$ (not 2020) |
| Annual length-at-age and weight-at-age from surveys | $1979-2021$ (not 2020) |
| Age at maturity | Combined 1992 and 2012 samples |

## Fishery

## Age Determination

Yellowfin sole ages have been determined at the AFSC by using the break and burn method on otoliths collected in surveys and from fisheries since 1979. In 2016 the age determination methods for yellowfin sole were validated using the bomb-produced uptake measurement of 14 C method (Kastelle et al. 2016). The number of otoliths read from the survey has averaged 725 per year and the number from the fishery has averaged 737 (Table 5). Trends for males and female ages from the fishery indicate that 2010 year class has been the dominant cohort and the 2015 age class may be entering the fishery as a new dominant cohort at age 7 (Figure 7). Survey age data shows a different trend, likely due to higher survey selectivity at younger ages. Survey age data indicates an extremely strong 2017 year class that has appeared as 5 year olds in the survey (Figure 8).

## Catch

This assessment uses fishery catch data from 1954-2022 (Table 3), and fishery catch-at-age (proportions) from 1964-2021 (Table 6). Removals from sources other than those that are included in the Alaska Region's official estimate of catch including removals due to scientific surveys, subsistence fishing, recreational fishing, fisheries managed under other FMPs are tabulated and presented in Table 7. Catch per unit effort calculated from fishery trawl data, based on the catch in kg and duration of the tow, does not indicate a strong upward or downward trend through the time series, 1996-2022 for vessels $>125$ feet (Figure 9). Vessels $<125$ feet appear to have increased CPUE through time. The CPUE shows a negative correlation with bottom temperature, with increased CPUE in the most recent year, which was a cooler/average year in the Bering Sea.

## Numbers at age

The proportion of length at age from the fishery was applied to the length frequencies from the aged sample from the fishery, providing fishery proportions at age. The fishery age composition has always been primarily composed of fish older than 9 years with a large amount of $20+$ fish, although the proportion has declined from $90 \%$ over age 7 to $70 \%$ over age 7 since the 1970's (Table 6).

## Weight-at-age

The fishery weight-at-age composition was based on the catch-at-age methodology of Kimura (1989) and modified by Dorn (1992), as implemented in the 2019 walleye pollock stock assessment (Ianelli et al. 2019). Length-stratified age data were used to construct age-length keys for each stratum and sex. These keys are then applied to randomly sampled catch length frequency data. The stratum-specific age composition estimates were then weighted by the catch within each stratum to arrive at an overall age composition for each year. The three strata were the EBS trimesters of the year (January-April, May-August, and September-December). This method was used to derive the age compositions from 1991-2021 (the period for which all the necessary information was readily available). The catch-at-age estimation method uses a two-stage bootstrap resampling of the data with 1,000 bootstraps. Observed tows were first selected with replacement, followed by resampling actual lengths and age specimens given that set of tows. This method allows an objective way to specify the effective sample size for fitting fishery age composition data within the
assessment model. Estimates of stratum-specific fishery mean weights-at-age are a product of this analysis and these were used as input data to the model (Figure 10).

## Maturity-at-age

Nichol (1995) estimated the age of $50 \%$ maturity at 10.5 years based on the histological examination of 639 ovaries collected from yellowfin sole females during the 1992 and 1993 eastern Bering Sea trawl surveys (Table 8). Maturity was re-evaluated from a histological analysis of ovaries collected in 2012 (Table 8). Results were very similar to the earlier study with only a $2 \%$ difference in estimates of yellowfin sole female spawning biomass (TenBrink and Wilderbuer 2015). The current maturity schedule uses estimates derived from both the 1992 and the 2012 collections (Table 8). For yellowfin sole sexual maturity occurs well after the age of entry into the fishery. Yellowfin sole females are $82 \%$ selected to the fishery by age 10 whereas they have been found to be only $40 \%$ mature at this age.

## Survey

## Eastern Bering Sea bottom temperature

The eastern Bering Sea bottom temperatures $<100 \mathrm{~m}$ were computed within the R package coldpool (https://github.com/afsc-gap-products/coldpool; Rohan et al., in review). Temperatures in 2022 were lower than in 2021 and close to the mean for the time series (Figure 9).

## Length and Weight-at-Age

Sex-specific size at age used in the model is based on the average length-at-age and weight-at-length relationships from the time-series of survey observations over all years since 1971. The survey age data in 2021 indicated that the dominant age class in 2021 were 11 year olds, spawned in 2010, but in 2022 these have been replaced by 5 year olds spawned in 2017 (Figure 8).
Applications of dendrochronology (tree-ring techniques) have been used to develop biochronologies from the otolith growth increments of northern rock sole (Lepidopsetta polyxystra), yellowfin sole and Alaska plaice (Pleuronectes quadrituberculatus) in the eastern Bering Sea. These techniques ensure that all growth increments are assigned the correct calendar year, allowing for estimation of somatic growth by age and year for chronologies that span approximately 25 years (Matta et al. 2010). The analysis indicated that age 5 yellowfin sole somatic growth exhibits annual variability and has a strong positive correlation with May bottom water temperature in the Bering Sea (Figure 11).

The relationship between temperature and growth was further explored by reanalyzing yellowfin sole growth by age and year. Length-weight data collected when obtaining otolith (age) samples in RACE surveys ( $\mathrm{n}=$ 7,000 from 1987, 1994 and 1999-2009) also indicate that weight-at-age exhibits annual variability and is highly correlated with summer bottom water temperature observations (shown for age 5 fish in Figure 12). These empirical data indicate good somatic growth correspondence with annual bottom temperature anomalies. These observations were then extended back to 1979 using survey population length-at-age estimates (since weight-at-age is a power function of the length-at-age, Clark et al. 1999, Walters and Wilderbuer 2000).

The use of annual observed population mean weight-at-age (time-varying) from the trawl survey allows for time-varying (year effect on growth) in the age-structured stock assessment model.

## Survey Biomass Estimates and Population Age Composition Estimates

Changes were made in 2022 to the eastern Bering Sea survey stratum area table, which resulted in small changes to the biomass and abundance estimates for all survey years for all species. The changes that were made achieved the following objectives:

- The projection was transformed into a standard EPSG format
- 200 m contour was made contiguous to the BS slope shapefiles
- EBS and NBS were made contiguous
- The boundary artifact polygon was removed

Shapefiles exclude landmass using the ARDEM dataset (downloaded on $12 / 29 / 2017$ ) at 0.0 elevation settings for ARDEM transformation/conversion not recorded. If depth limits are changed to 20 m in the future, research into optimal settings is advised. NBS extent excludes station AA-10 which was dropped from sampling beginning in 2017. The southern border of the Chukchi Sea survey extent was altered for contiguity. These changes altered the area of extrapolation for each stratum from $0-1.9 \%$, and increased the overall survey area (EBS + NBS) by $0.01 \%$. Because we want to maintain consistency throughout the data series for trend analysis, these new stratum areas were applied to the entire data series this year.

Indices of relative abundance available from AFSC surveys showed high NMFS surveys biomass estimates in the 1980s (Table 9. High levels of biomass in the late 1970s have been documented through Japanese commercial pair trawl data and catch-at-age modeling in past assessments (Bakkala and Wilderbuer 1990).

Average survey CPUE for yellowfin sole has fluctuated from approximately $30-60 \mathrm{~kg} /$ hectare over the eastern Bering Sea time survey from 1982-2021 (Figure 13). In 2021, survey CPUE was the third lowest in the time series, since the year 2000 , at $32.93 \mathrm{~kg} /$ hectare, but it increased to just over $40 \mathrm{~kg} /$ hectare in 2022 . Biomass estimates for yellowfin sole from the annual bottom trawl survey on the eastern Bering Sea shelf showed a doubling of survey biomass between 1975 and 1979 with a further increase to over 3.3 million t in 1981 (Table 10 and Figure 14). Total survey abundance estimates fluctuated from 1983 to 1990 with biomass ranging from as high as 3.5 million $t$ in 1983 to as low as 1.9 million $t$ in 1986. Biomass estimates since 1990 indicate an even trend at high levels of abundance for yellowfin sole, with the exception of the results from the 1999 and 2000 summer surveys, which were at lower levels. Surveys from 2001-2005 estimated an increase each year but the estimates since 2006 indicate a stable level with some annual variability. However, the 2012 estimate is a $19 \%$ decrease from 2011 and the 2013 and 2014 surveys have estimated a $17 \%$ increase over 2012. Similarly, there was a $24 \%$ decrease from 2014 to 2015 followed by a $48 \%$ increase from 2015 to 2016, the highest biomass estimate since 1984. Fluctuations of the magnitude shown between 1980 and 1990, 1998 and 1999, 2008 and 2009, 2011 and 2012, 2014 and 2015, and 2015 and 2016 are unreasonable considering the elements of slow growth and long life span of yellowfin sole combined with low to moderate exploitation rate, characteristics which should produce more gradual changes in abundance (Table 9). While the 2021 EBS trawl survey estimate for yellowfin sole biomass was the third lowest from the entire time series, it was up 24.8 in 2022, at 2039.97 (Table 9). Yellowfin sole biomass estimates from the northern Bering Sea increased from 310,617 t in 2010 to $520,029 \mathrm{t}$ in 2019 , and a subsequent decline to $496,038 \mathrm{t}$ in 2021 (Table 11). Northern Bering Sea biomass estimates for 2022 were up 10.5 to 548,027 t in 2022 (Table 11). The center of gravity for yellowfin sole moved west in the late 2010s before moving more east during the past few years, while the northward trend in the center of gravity as continued since about 2014 (Figure 15). The VAST analysis indicates that the effective area occupied by yellowfin sole has decreased since a peak in 2018 (Figure 16).
Variability of yellowfin sole survey biomass estimates (Figure 14) is in part due to the availability of yellowfin sole to the survey area (Nichol 1998, Nichol et al. 2019). Yellowfin sole are known to undergo annual migrations from wintering areas off the shelf-slope break to near shore waters where they spawn throughout the spring and summer months (Nichol 1995; Wakabayashi 1989; Wilderbuer et al. 1992). Exploratory survey sampling in coastal waters of the eastern Bering Sea during early summer indicate that yellowfin sole concentrations can be greater in these shallower areas not covered by the standard AFSC survey than in the survey proper. Commercial bottom trawlers have commonly found high concentrations of yellowfin sole in areas such as near Togiak Bay (Low and Narita 1990) and in more recent years from Kuskokwim Bay to just south of Nunivak Island. The coastal areas are sufficiently large enough to offer a substantial refuge for yellowfin sole from the current survey.

Experiments examining the bridle efficiency of the Bering Sea survey trawl indicate that yellowfin sole are herded into the trawl path from an area between the wing tips of the net and the point where the bridles contact the seafloor (Somerton and Munro 2001). The herding experiments suggest that the survey trawl vulnerability (a component of catchability) is greater than 1.0. The likelihood profile of $q$ from the model indicated a small variance with a narrow range of likely values with a low probability of $q$ being equal to the value of 1.0 in a past assessment (Wilderbuer and Nichol 2003).
Over the past 18 years, survey biomass estimates for yellowfin sole have shown a positive correlation with shelf bottom temperatures (Nichol, 1998); estimates have generally been lower during cold years. The 1999 survey,
which was conducted in exceptionally cold waters, indicated a decline in biomass that was unrealistic. The bottom temperatures during the 2000 survey were much warmer than in 1999, and the biomass increased, but still did not approach estimates from earlier years. Average bottom temperature and biomass both increased again during the period 2001 - 2003, with the 2003 value the highest temperature and biomass observed over the 22 year time series up to that time. Given that both the 1999 and 2000 surveys were conducted two weeks earlier than previous surveys, it is possible that the time difference may also have also affected the availability of yellowfin sole to the survey. If, for example, the timing of peak yellowfin sole spawning in nearshore waters corresponded to the time of the survey, a greater proportion of the population would be unavailable to the standard survey area. This pattern was observed again in 2009 and 2012 when the temperatures and the bottom trawl survey point estimates were lower. Summer shelf bottom temperatures in 2012 were the 2nd coldest recorded by the survey and the time-series and resulted in a $19 \%$ decline from 2011. Temperatures in the Bering Sea have been higher than the mean since 2013 (Figure 12), and the 2016 estimate of biomass was the highest in 32 years and $48 \%$ higher than the 2015 estimate. In the current year, 2022, survey biomass estimates were up for the NBS and the EBS, despite lower temperatures (Table 9, Table 11).
We propose several possible reasons why survey biomass estimates are often lower during years when bottom temperatures are low. First, catchability may be lower because yellowfin sole may be less active when cold. Less active fish may be less susceptible to herding and more likely to escape under the foot rope of survey gear. Secondly, bottom temperatures may influence the timing of the inshore spawning migrations of yellowfin sole and therefore affect their availability to the survey area (Nichol et al. 2019). Because yellowfin sole spawning grounds include nearshore areas outside the survey area, availability of fish within the survey area can vary with the timing of this migration and the timing of the survey. In the case of 2016, a very warm year in the Bering Sea, it appears that a higher portion of the adult biomass was distributed on the shelf (outside of the spawning areas) relative to the average of all previous survey years, indicating earlier spawning migration. Third, yellowfin sole growth appears to be correlated with temperature, as can be seen with greater length anomalies of 5 year old males in females in warm years and smaller lengths in cold years (Figure 12). Increased biomass estimates in 2022 could be a result of favorable conditions for yellowfin sole for the past several years, as well as temperatures that were lower than in 2021 but still slightly above the long-term mean.

Yellowfin sole population numbers-at-age estimated from the annual bottom trawl surveys are shown in Table 12 and their occurrence in trawl survey hauls and associated collections of lengths and age structures since 1982 are shown in Table 5. Their total tonnage caught in the resource assessment surveys since 1982 are listed in Table 7.

## Northern Bering Sea survey

Trawl survey sampling was extended to the northern Bering Sea in 2010, 2017, 2018, 2019, 2021, and 2022. The trawl surveys conducted in 2010, 2017, 2019, 2021 and 2022 occupied the same areas with similar sampling densities. The 2018 survey was a reduced effort and only sampled a subset of the northern Bering Sea. Stations in 2018 were 30 nautical miles apart (instead of 20 nm ) and excluded Norton Sound and inshore areas north of Nunivak Island. For comparison among years, 2018 biomass estimates were derived by truncating the areal coverage of the 2010 and 2017 surveys to include only the area covered in 2018 that was common to all three surveys, and this was treated as a single stratum. This truncated area was 158,286 square kilometers (compared to 200,207 square kilometers in 2010 and 2017). There has been an increase in the biomass estimate of yellowfin sole in the northern Bering Sea since 2010, as described above. Since bottom trawl fishing is presently prohibited in the northern Bering Sea, the biomass from this area has typically not been included in the stock assessment model, although Model 22.1 does incorporate EBS + NBS biomass estimates. Large shifts in the abundance of yellowfin sole into the Bering Sea have not been observed, but the distribution of yellowfin sole appears continuous between the eastern and northern Bering Sea, and it is therefore reasonable to include survey data from the region occupied by the entire population.

A time series based on an ADF\&G survey in Norton Sound confirmed that the biomass of yellowfin sole has generally increased since 1980. The mean CPUE/ $\mathrm{km}^{2}$ of yellowfin sole in Norton Sound increased from a mean CPUE of 201 over the first five survey years (1976, 1979, 1982, 1985, and 1988) to a mean CPUE of 411 over the last five survey years (2017, 2018, 2019, 2020, and 2021) (Figure 17). There was no Norton Sound
survey in 2022.

## VAST estimates of biomass

We incorporated vector-autoregressive spatio-temporal (VAST) biomass estimates into Model 22.1, incorporated VAST estimates from the NBS and the EBS from 1982-2022 (Thorson 2019). The software versions of dependent programs used to generate VAST estimates were Microsoft R Open (4.0.2), INLA (21.11.22) (Rue et al. 2009), TMB (1.9.0) (Kristensen et al. 2016), TMBhelper (1.4.0), VAST (3.9.0), FishStatsUtils (2.11.0).

## VAST abundance

For model-based indices in the Bering Sea, observations of biomass per unit area were fitted from all grid cells and corner stations in the 83-112 bottom trawl survey of the EBS, 1982-2022, including exploratory northern extension samples in 2001, 2005, and 2006, as well as $83-112$ samples available in the NBS in 1982, $1985,1988,1991,2010$, and 2017-2021. NBS samples collected prior to 2010 and in 2018 did not follow the 20 nautical mile sampling grid that was used in 2010, 2017, 2019, 2021 and 2022 surveys. Assimilating these data therefore required extrapolating into unsampled areas. This extrapolation was facilitated by including a spatially varying response (Thorson 2019) to mean bottom temperature within the outer and middle domain strata, estimated for both linear predictors of the delta-model. All environmental data used as covariates were computed within the R package coldpool (https://github.com/afsc-gap-products/coldpool; Rohan et al., in review). Detailed comparison of results for EBS pollock has shown that a spatially varying covariate (cold-pool index) has a small but notable effect on these indices and resulting stock assessment outputs (O'Leary et al. 2020).

A Poisson-link delta-model (Thorson 2018) involving two linear predictors, and a gamma distribution to model positive catch rates were used in the VAST model. Population density was extrapolated to the entire EBS and NBS in each year, using extrapolation grids that are available within FishStatsUtils, which were updated since the 2021 assessment cycle based on new shapefiles developed by J. Conner (https://github.com/James-Thorson-NOAA/FishStatsUtils). These extrapolation grids are defined using $3705 \mathrm{~m}(2 \mathrm{nmi}) \times 3705 \mathrm{~m}(2 \mathrm{nmi})$ cells; this results in 36,690 extrapolation-grid cells for the eastern Bering Sea and 15,079 in the northern Bering Sea. Bilinear interpolation was used to interpolate densities from 750 "knots" to these extrapolation grid cells; knots were approximately evenly distributed over space, in proportion to the dimensions of the extrapolation grid. Geometric anisotropy was estimated, and included a spatial and spatio-temporal term for both linear predictors. To facilitate interpolation of density between unsampled years, the spatio-temporal fields were structured over time as an $\operatorname{AR}(1)$ process (where the magnitude of autocorrelation was estimated as a fixed effect for each linear predictor). However, temporal correlation was not included for intercepts, each linear predictor and year were treated as fixed effects. Finally, we used epsilon bias-correction to correct for retransformation bias (Thorson and Kristensen 2016).

Model fits for evidence of non-convergence were checked by confirming that (1) the derivative of the marginal likelihood with respect to each fixed effect was sufficiently small and (2) that the Hessian matrix was positive definite. A second check for evidence of model fit was performed by computing Dunn-Smyth randomized quantile residuals (Dunn and Smyth 1996) and visualizing these using a quantile-quantile plot within the $D H A R M a$ R package. The distribution of these residuals was also evaluated over space in each year, and inspected for evidence of residual spatio-temporal patterns.

The motivation for using survey data from the EBS and NBS in Model 22.1 is that accounting for the entire biomass of a stock within its natural boundaries is advantageous to presenting an accurate model, regardless of the footprint of the fishery, especially since YFS likely migrate between the EBS and NBS. In some cases, models can estimate the proportion of a stock outside the survey area via the catchability coefficient if there is mixing between areas $(q<1)$, but it is better to include an actual estimate covering the entire area of occurrence. If a population is well-mixed within its distributional area it does not matter if fishing takes place in only a portion of the area. Analogously, yellowfin sole biomass would not be omitted from closed areas.

## VAST estimates of age compositions

For model-based estimation of age compositions in the Bering Sea, observations of numerical abundance-at-age were fitted at each sampling location. This was made possible by applying a year-specific, region-specific (EBS and NBS) age-length key to records of numerical abundance and length-composition. These estimates were computed in VAST, assuming a Poisson-link delta-model (Thorson 2018) involving two linear predictors, and a gamma distribution to model positive catch rates. Density covariates were not computed in estimation of age composition for consistency with models used in the previous assessment and due to computational limitations. The same extrapolation grid was used as implemented for abundance indices, but here spatial and spatiotemporal fields were modeled with a mesh with coarser spatial resolution than the index model, using 50 "knots". This reduction in the spatial resolution of the model, relative to that used abundance indices, was necessary due to the increased computational load of fitting multiple age categories and using epsilon bias-correction. The same diagnostics were implemented to check convergence and model fit as those used for abundance indices.

## Data weighting

Model-based and VAST survey age composition data were weighted using the methodology of Francis (2011). Specifically, data weighting was performed on Models 18.2, 22.0, and 22.1 for 2022, as stage 2 weighting that incorporated stage 1 legacy weights using Equation TA1.8 of Francis (2011). Survey age compositions used equal stage 1 weights for each year of the composition dataset (200).

## Analytic Approach

## General Model Structure

The abundance, mortality, recruitment and selectivity of yellowfin sole were assessed with a stock assessment model using the AD Model Builder language (Fournier et al. 2012; Ianelli and Fournier 1998). The conceptual model is a separable catch-age analysis that uses survey estimates of biomass and age composition as auxiliary information (Fournier and Archibald 1982). The assessment model simulates the dynamics of the population and compares the expected values of the population characteristics to the characteristics observed from surveys and fishery sampling programs. This was accomplished by the simultaneous estimation of the parameters in the model using the maximum likelihood estimation procedure. The fit of the simulated values to the observable characteristics was optimized by maximizing a $\log$ (likelihood) function given some distributional assumptions about the observed data.

The model includes ages one through $20+$. In the $20+$ group, fish older than twenty are allowed to accumulate into an age category that includes fish of age twenty and older (20+). Since the sex-specific weight-at-age for yellowfin sole diverges after age of maturity (about age 10 for $40 \%$ of the stock), with females growing larger than males, the current assessment model is coded to accommodate the sex-specific aspects of the population dynamics of yellowfin sole. The model allows for the input of sex-specific estimates of fishery and survey age composition and weight-at-age and provides sex-specific estimates of population numbers, fishing mortality, fishery and survey age composition and allows for the estimation of sex-specific natural mortality and catchability. The model retains the utility to fit combined sex data inputs.

The suite of parameters estimated by the model are classified by three likelihood components:

| Data component | Distributional assumption |
| :--- | :---: |
| Trawl fishery catch-at-age | Multinomial |
| Trawl survey population age composition | Multinomial |
| Trawl survey biomass estimates and S.E. | Log-normal |

The AD Model Builder software fits the data components using automatic differentiation (Griewank 2000) software developed as a set of libraries (AUTODIFF C++ library). The model of yellowfin sole population
dynamics was evaluated with respect to the observations of the time-series of survey and fishery age compositions and the survey biomass trend since 1982.
Sharp increases in trawl survey abundance estimates for most species of Bering Sea flatfish between 1981 and 1982 indicate that the $83-112$ trawl was more efficient for capturing these species than the $400-$ mesh eastern trawl used in 1975, and 1979-81. Allowing the model to tune to these early survey estimates would underestimate the true pre-1982 biomass, thus exaggerating the degree to which biomass increased during that period. Although this underestimate would have little effect on the estimate of current yellowfin sole biomass, it would affect the spawner and recruitment estimates for the time-series. Hence, the pre-1982 survey biomass estimates were omitted from the analysis.

Total mortality $Z$ in the model was modeled as the sum of fishing mortality $F$ and natural mortality $M$, such that total mortality in year $t$ at age $a$ is $Z_{t, a}=F_{t, a}+M$.

Fishing mortality at each year and age, $F_{t, a}$, was the product of age-specific fishing gear selectivity $s_{a}$ and the median year-effect of fishing mortality $\mu^{F}$, with normally distributed error,

$$
F_{t, a}=s_{a} \mu^{F} e^{\epsilon_{t}^{F}}, \epsilon_{t}^{F} \backsim N\left(0, \sigma_{F}^{2}\right),
$$

where $\epsilon_{t}^{F}$ is the residual year-effect of fishing mortality and $\sigma_{F}$ is the standard deviation of fishing mortality. Age-specific fishing selectivity $s_{a}$ was calculated using the logistic equation

$$
s_{a}=\frac{1}{1+e^{(-\alpha+\text { age } \beta)}} .
$$

Catch in year $t$ for age $a$ fish $C_{t, a}$ was calculated:

$$
C_{t, a}=\frac{F_{t, a}}{Z_{t, a}}\left(1-e^{Z_{t, a}}\right) N_{t, a}
$$

where $N_{t, a}$ is the number of fish at time $t$, age $a$. Total catch in each year $C_{t}$ was the sum of catch over all ages, $C_{t}=\sum_{a} C_{t, a}$, and the proportion at age in catch was $P_{t, a}=\frac{C_{t, a}}{C_{t}}$.
Recruitment from 1956-1975 was modeled as $N_{t, 1}=R_{t}=R_{0} e^{\tau_{t}}, \tau_{t} \sim N\left(0, \sigma_{R}^{2}\right)$, where $R_{0}$ is the geometric mean of the modeled age 1 recruitment from 1956-1975, and $\sigma_{R}$ is the standard deviation of recruitment.

Recruitment from 1978-2022 was determined using the Ricker stock recruitment curve,

$$
R=\alpha S e^{-\beta S}
$$

where $S$ is the spawning stock biomass (Ricker 1958). Parameters $\alpha$ and $\beta$ were estimated by fitting spawning biomass and recruitment during the period 1978-2016, and are shown from Model 22.0 (Figure 18) and Model 22.1 (Figure 19).

The number of fish in year $t+1$ at age $a$ was the number of fish in the previous year subjected to natural and fishing mortality,

$$
N_{t+1, a+1}=N_{t, a} e^{-Z_{t, a}} .
$$

The "plus group" included all fish age 20 and older included fish surviving from age 19 as well as those age 20 and higher,

$$
N_{t+1, A}=N_{t, a} e^{-Z_{t, A-1}}+N_{t, A} e^{-Z_{t, A}} .
$$

Spawning biomass was calculated as the product of weight-at-age and the number of mature females at each age,

$$
S_{t}=\sum N_{t, a} W_{t, a} \phi_{a}
$$

where $\phi_{a}$ is the proportion of mature females at age $a$ and $W_{a, t}$ is the mean body weight in kg of fish age $a$ in year $t$. Survey biomass was assumed to be the product of catchability $q$, survey selectivity $s_{a}$, and the biomass,

$$
\text { Biomass }_{\text {survey }, t}=q \sum N_{t, a} W_{t, a} s_{a}
$$

## Description of Alternative Models

In this assessment we considered Model 18.2 used in the 2021 assessment updated with 2022 data. This model used a fixed value for female natural mortality ( $M=0.12$ ) and allowed male natural mortality to be estimated within the model. Model 22.0 was similar to Model 18.2 except it used a single value of survey selectivity for males and females. Model 22.1 built upon Model 22.0 to use model-based VAST estimates of biomass from the eastern Bering Sea plus northern Bering Sea survey area, rather than standard design-based estimates of biomass. Model 22.1 also incorporated model-based estimates of survey age compositions.

## Parameters Estimated Outside the Assessment Model

## Weight at age

Parameters of the von Bertalanffy growth curve were estimated for yellowfin sole, by sex, from the trawl survey database::

| Sex | $L_{i n f}$ | $K$ | $t_{0}$ | $n$ |
| :--- | :--- | :--- | :--- | :--- |
| Males | 34.03 | 0.161 | 0.515 | 656 |
| Females | 38.03 | 0.137 | 0.297 | 709 |

A sex-specific length-weight relationship was also calculated from the survey database using the power function, Weight $(g)=a * \operatorname{Length}(\mathrm{~cm})^{b}$, where $a$ and $b$ are parameters estimated to provide the best fit to the data.

Weight at age from the survey time series were evaluated as follows. Survey weights at age were available from 1984 through 2019 (19,074 records). Weight-at-age was calculated for all ages 1-19 as well as the age 20 plus group (all ages 20 and over). There were some gaps due to years in which no fish of a particular age had been collected. Where possible, these gaps were filled with survey length at age data converted to weight at age. Between 1971 through 2019, there were lengths associated with aged yellowfin sole for more years than weights. Lengths at age were converted to weights at age and used to fill gaps using a sex-specific length-weight relationship based on all available current data. The relationship between weight and length was calculated using the power function, Weight $(g)=a * \operatorname{Length}(\mathrm{~cm})^{b}$, where $a$ and $b$ are parameters estimated to provide the best fit to the data. The parameter estimates and the number of individual data points are shown below.

| Sex | $a$ | $b$ | $n$ |
| :--- | :--- | :--- | :--- |
| Males | 0.0091 | 3.068 | 10,663 |
| Females | 0.0059 | 3.205 | 13,702 |

Finally, annual age categories for which no length-at-age or weight-at-age were available were filled by calculating weight at age (using the power relationship described above) from a mean overall length at age for males and females from 1971-2019 data.

The mean weight at age from from first 10 years (1971-1980) was used to fill in years 1954-1970. It was important to select years from the beginning of the time series, as it appears that length and weight at age appears to be increasing in yellowfin sole (Figure 20, but there is no evidence that the length-weight relationship has changed Figure 21). The plot of female weight at length was plotted over time and there does not seem to be any differences in weight at length since at least 1990. Samples from the 1970's do show a somewhat reduced pattern of weight at length, but this may be due in part to differences in sampling protocol.

The mean weight at age from 2021 was used as an estimate for weight at age in 2022, as the 2022 ages have not yet been processed. The most recent data was used for 2022 in consideration of the increase in average size at age (Figure 22, Table 13, Table 14).

## Natural mortality

Natural mortality $(M)$ was initially estimated by a least squares analysis where catch at age data were fitted to Japanese pair trawl effort data while varying the catchability coefficient $(q)$ and $M$ simultaneously. The best fit to the data (the point where the residual variance was minimized) occurred at a value of $M=0.12$ (Bakkala and Wespestad 1984). This was also the value which provided the best fit to the observable population characteristics when $M$ was profiled over a range of values in the stock assessment model using data up to 1992. Since then, natural mortality has been estimated as a free parameter in some of the stock assessment model runs which have been evaluated the past five years. A fixed female natural mortality at $M=0.12$ and male natural mortality estimated by the model is used in Model 18.2, 22.0, and 22.1.

## Maturity

Yellowfin sole maturity schedules were estimated from in-situ observations from two studies as discussed in the "Data" section (Table 8).

## Parameter Estimates

A list of selected parameters estimated inside the model are shown for Model 18.2 in Table 15, for Model 22.0 in Table 16, and for Model 22.1 in Table 17.

## Parameters Estimated Inside the Assessment Model

There were 520 parameters estimated by Model 18.2, and 518 estimated by Models 22.0, and 22.1, and last year's model had 514. The number of key parameters are presented below:

| Fishing mortality | Selectivity | Survey catchability | Year-class strength | Spawner-recruit | $M$ | Total |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 70 | $330(328)$ | 4 | 117 | 2 | 1 | $520(518)$ |

The increase in the number of parameters estimated in this assessment compared to last year (6) can be accounted for by the input of another year of fishery data and the entry of another year-class into the observed population and four more sex-specific fishery selectivity parameters. Models 22.0 and 22.1 have only 518 estimated parameters, due to the removal of two separate male selectivity parameters. The population simulation specifies the numbers-at-age in the beginning year of the simulation, the number of recruits in each subsequent year, and the survival rate for each cohort as it moves through the population over time.

## Selectivity

Fishery selectivity in all models and survey selectivity in Model 18.2 were modeled separately for males and females using the two parameter formulation of the logistic function. The model was run with an asymptotic selectivity curve for the older fish in the fishery and survey, but still allowed to estimate the shape of the logistic curve for young fish. The oldest year-classes in the surveys and fisheries were truncated at 20 and allowed to accumulate into the $20+$ age category. For Models 22.0 and 22.1 , a single selectivity curve, for both males and females, was fit for all years of survey data (Figure 23).
Time-varying fishing selectivity curves were estimated because there have been annual changes in management, vessel participation and possibly gear selectivity (Figure 24, Figure 25). A logistic equation was used to model fishery selectivity and is a function of time-varying parameters specifying the age and slope at $50 \%$ selection, $\varphi_{t}$ and $\eta_{t}$, respectively. The fishing selectivity $\left(S^{f}\right)$ for age a and year t is modeled as,

$$
\begin{equation*}
S_{a, t}^{f}=\left[1+e^{\eta_{t}\left(a-\varphi_{t}\right)}\right]^{-1} \tag{1}
\end{equation*}
$$

where $\varphi_{t}$ and $\eta_{t}$ are time-varying and partitioned (for estimation) into parameters representing the mean and a vector of deviations (log-scale) conditioned to sum to zero. The deviations are constrained by a lognormal prior with a variance that was iteratively estimated. The process of iterating was to first set the variance to a
high value to estimate the deviations. The next step was to compare the variability of model estimates. The variance of the model estimates was then rounded up slightly and fixed for subsequent runs. The 2022 values were fixed as the average of the 3 most recent years.

The single combined sex survey selectivity for Models 22.0 and 22.1 used only two parameters rather than four.

## Fishing Mortality

The fishing mortality rates $(F)$ for each age and year are calculated to approximate the catch weight by solving for F while still allowing for observation error in catch measurement. A large emphasis (300) was placed on the catch likelihood component to force the model to closely match the observed catch.

## Survey Catchability

Past assessments have examined the relationship between estimates of survey biomass and bottom water temperature. To better understand how water temperature may affect the catchability of yellowfin sole to the survey trawl, catchability was estimated for each year in the stock assessment model as:

$$
\begin{equation*}
q=e^{-\alpha+\beta T} \tag{2}
\end{equation*}
$$

where $q$ is catchability, $T$ is the average annual bottom water temperature anomaly at survey stations less than 100 m , and $\alpha$ and $\beta$ are parameters estimated by the model. The catchability equation has two parts. The $e^{-\alpha}$ term is a constant or time-independent estimate of $q$. The second term, $e^{\beta T}$ is a time-varying (annual) $q$ which responds to metabolic aspects of herding or distribution (availability) which can vary annually with bottom water temperature. The result of incorporating bottom temperature to estimate annual $q$ has resulted in an improved fit to the survey (described in the 2018 BSAI yellowfin sole assessment).

The survey catchability model includes survey start date (expressed as deviation in days ( - and + ) from the average survey start date of June 4th). This feature has been used since 2018, and its interaction with annual bottom water temperature is added to the catchability equation as:

$$
\begin{equation*}
q=e^{-\alpha+\beta T+\gamma S+\mu T: S} \tag{3}
\end{equation*}
$$

where $T=$ survey bottom temperature (averaged per year for all stations $<100 \mathrm{~m}$ ), $S=$ survey start date, and $T: S=$ interaction of $T$ and $S$. Earlier survey start dates usually encounter colder water and since the timing of the survey start date is positively correlated with bottom water temperature, improvement in fitting the survey biomass estimates can be gained by estimating two new parameters ( $\mu$ and $\gamma$ ). Akaike information criterion (AIC) were used to determine if the additional variables ( $S$ and $T: S$ ) improved the regression fit. The improvement in fit was more than offset by the additional two parameters (Nichol et al. 2019).

## Spawner-Recruit Estimation

Annual recruitment estimates from 1978-2016 were constrained to fit a Ricker (1958) form of the stock recruitment relationship as follows:

$$
\begin{equation*}
R=\alpha S e^{-\beta S} \tag{4}
\end{equation*}
$$

where $R$ is age 1 recruitment, $S$ is female spawning biomass in metric tons the previous year, and $\alpha$ and $\beta$ are parameters estimated by the model. This stock recruitment curve expresses a peak level of recruitment at an intermediate stock abundance and density dependence at higher stock sizes. The spawner-recruit fitting is estimated in a later phase after initial estimates of survival, numbers-at-age and selectivity are obtained.

## Results

## Model Evaluation

For this assessment, Model 18.2 and two additional exploratory models were examined, Model 22.0 and 22.1. Model 18.2 was the accepted model in the 2021 yellowfin sole stock assessment, and Model 22.1 is the preferred model.

Model 18.2 estimated male natural mortality 0.13843 to be higher than female natural mortality 0.12 , which is in common with known life history parameters of other Alaska flatfish. Models 22.0 and 22.1 also estimated higher male than female natural mortality, 0.139 and 0.125 respectively. In Arrowtooth Flounder, higher natural mortality is assumed for males and is consistent with their skewed sex ratio (Wilderbuer and Turnock 2009). Higher natural mortality for male flatfish has been assumed for flatfish from other regions as well (Maunder and Wong 2011). Higher natural mortality indicates greater productivity of a stock and therefore higher management quantities. Model 22.1 estimated lower male natural mortality than Models 18.2 or 22.0.
Overall, Models 18.2 and 22.0 provided almost identical results. Models 18.2 and 22.0 vs. 22.1 used different assumptions for the estimates of biomass (design-based vs. VAST); therefore, their likelihoods could not be compared. However, Models 18.2 and 22.0 used the same likelihood assumption. The Akaike Information Criterion was calculated from the hessian and objective function value $O F V$ of the ADMB output .par file to compare models 18.2 and 22.0. The hessian Hess was transformed back into the original parameter space and the marginal likelihood Likelihood $_{M A R}$ was estimated as:

$$
\begin{equation*}
\text { Likelihood }_{M A R}=-0.5 * \text { Hess }_{T}-O F V \tag{5}
\end{equation*}
$$

The marginal likelihood was then used to calculate AIC, as follows:

$$
\begin{equation*}
A I C=2 * k-2 * \text { Likelihood }_{M A R}, \tag{6}
\end{equation*}
$$

where $k$ is the number of parameters used in the model. The AIC for Model 22.0 was lower (AIC $=6136.6$ ) than for Model $18.2($ AIC $=6154.1)$, indicating that Model 22.0 is a better-fit model.

In other respects, Models 22.0 and 18.2 appeared to fit the data almost identically. The fit to survey selectivity was similar (Figure 23), survey catchability was similar (Figure 26), sex ratio appeared similar (Figure 27), predicted survey biomass was similar (Figure 28), as were total biomass, numbers at age, and spawning stock biomass (Figure 29,Figure 30, and Figure 31). Therefore, Model 22.0 was considered a better fit to the data, with fewer parameters. Subsequent comparisons did not incorporate Model 18.2, due to the similarity between Model 22.0 and Model 18.2.

Model 22.1 (Figure 26), indicates a shift towards higher survey catchability in 2022, than Models 18.2 and 22.0, corresponding with lower bottom temperatures than in 2021 (Figure 12). The proportion female was estimated to be closer to $50 \%$ in Model 22.1 than Model 22.0 and 18.2 (Figure 27). In addition, the anomalous spike in the proportion female in the 1960s is reduced for Model 22.1.

Models 22.0 and 22.1 similarly provided a good fit the survey age compositions (Figure 32, Figure 33) and fishery age compositions (Figure 34, Figure 35).
Models 22.0 and 22.1 fit different survey biomass estimates, but the fit to each appeared to modulate extremes in yearly observations (Figure 28). For example, higher estimated survey biomass was estimated by the model than the survey during the past few years, which is also affected by the temperature covariate on survey catchability. In this relationship, higher than average water temperatures reduce estimates of survey catchability and the opposite is also true. Discrepancies between the survey biomass and the model fit can also be attributed larger confidence intervals on design based estimates of biomass compared with VAST. There was some discontinuity in the fit for 2016 that was consistent among all three models, that corresponded with the second largest temperature anomaly on record, after 2019 Figure 36).

A new approach was taken to MCMC sampling of the yellowfin sole modeled parameter space (using Model 22.0) using the R package adnuts. This tool offers improved MCMC sampling of ADMB models including use of the random walk Metropolis algorithm (Monnahan and Kristensen 2018). Markov chain Monte Carlo (MCMC) methods allow for random sampling from a probability distribution, even with a large number of random variables. This allows the algorithm to examine probability distributions underlying parameters that are approximated from the distribution, and to determine whether there are conflicts in probability distributions. By constructing a Markov chain that has the desired distribution as its equilibrium distribution, one can obtain a sample of the desired distribution by recording states from the chain. The more steps that are included, the more closely the distribution of the sample matches the actual desired distribution. We also examined trace plots of selected parameters and the effective sample size and $\hat{R}$, which is the ratio of the spread of all the values combined to the mean spread of each chain; if all the chains are sampling properly from the posterior distribution, this ratio should be 1 . In this case, $\hat{R}$ is very close to 1 (Figure 37 .

Previous MCMC runs of the yellowfin sole assessment model were performed in ADMB with 1,000,000 iterations and thinning every 200. Explorations in adnuts indicated that a larger sample was required to obtain a random probability distribution; $10^{7}$ iterations were required, with thinning every 1000 runs. The outcome indicated good mixing in key parameters distributions estimated by the model (Figure 38). The effective sample size (ESS) for this parameter was 1,146 and $\hat{R}$ was 0.9999575 (Figure 37). Some parameters of low inferential importance were not well mixed, such as several male and female selectivity parameters early in the time series. These parameters will be examined prior to the next assessment cycle.

Given the uncertainty of the productivity of yellowfin sole at low spawning stock sizes, and because the AFSC policy for reference point time-series selection is to use the post 1977 regime shift values unless there is a compelling reason to do otherwise, the productivity of yellowfin sole in this assessment was estimated by fitting the 1977-2016 spawner-recruit data in the model. The resulting stock recruitment curve shows average recruitment for the years 2016-2021 except 2017 and 2019 which are above average, based on Model 22.0 (Figure 18, and Model 22.1 Figure 19).
Model 22.1 is the preferred model for estimating the yellowfin sole stock size and management quantities for the 2023 fishing season because it incorporates model-based abundance index and age compositions for the eastern Bering Sea and northern Bering Sea survey areas. In addition, the comparison between Models 18.2 and 22.0 show that a single survey selectivity provides a better model fit, and Model 22.1 incorporates a single survey selectivity curve. Model 22.1 provided consistently higher management quantities than Models 22.0 and 18.2 , which is expected given the larger survey area. Reference points resulting from all models, as well as the 2021 accepted model are shown in (Table 18).

## Time Series Results

The data was updated in 2022 to include current values of catch, survey biomass estimates, and fishery and survey age compositions from 2021. The latest year of fishery weight-at-age data was included. The eight past years in the Bering Sea have had bottom temperature anomalies above the mean, to varying degree. The temperature-dependent $q$ adjustment for 2022 was 0.79 for Model 18.2, 0.79 for Model 22.0, and 0.96 for Model 22.1.

## Fishing Mortality and Selectivity

The full-selection fishing mortality, $F$, has averaged 0.0795 over the 5 years, 2018 -2022 (Table 19). Model estimated selectivities, Figure 23 and Figure 24 indicate that yellowfin sole are $50 \%$ selected by the fishery at about age 9 and nearly fully selected by age 13 , with annual variability. Based on results from the stock assessment model, annual average exploitation rates of yellowfin sole since 1977 ranged from $3 \%$ to $7 \%$ of the total biomass, and have averaged approximately $4 \%$.

## Abundance Trends

Model 22.1 estimated catchability $q$ at an average value of 1 for the period 1982-2022 which resulted in a model estimate of the 2022 age $2+$ total biomass at 3.782 million $t$ (Table 10). In comparison, catchability was lower for Models 18.2 and 22.0, which was estimated at 0.82 for both models. Model results indicate that yellowfin sole total biomass (age 2+) was at low levels during most of the 1960s and early 1970s (700,000-1,000,000 t)
after a period of high exploitation (Table 10, Figure 30). Sustained above average recruitment from 1967-1976 combined with light exploitation resulted in a biomass increase to a peak of approximately 3.6 million $t$ by 1985. The population biomass has since been in a slow decline as the strong 1981 and 1983 year-classes have passed through the population, with only the 1991, 1995 and 2003 year-classes at levels observed during the 1970s. The current model indicates that the population is increasing and predicts that it will continue to increase through 2024. The present biomass is estimated at $95 \%$ of the peak 1985 level. The female spawning biomass has also declined since the peak in 1994, with a 2022 estimate of $923,828 \mathrm{t}$ (Table 20).

Allowing $q$ to be correlated with annual bottom temperature and survey start date provides a better fit to the bottom trawl survey estimates than using a $q$ fixed at the average value (Fig. 4.18, Wilderbuer et al. 2018). Both the trawl survey and the stock assessment model indicate that the yellowfin sole resource (total biomass) increased during the 1970s and early 1980s to a peak level during the mid-1980s. The yellowfin sole population biomass slowly decreased over the 23 years since the mid-1990s as the majority of year-classes during those years were below average strength. Average to above average recruitment from 2006 to 2009 is expected to maintain the abundance of yellowfin sole at a level above $B_{M S Y}$ in the near future. The stock assessment projection model indicates a generally stable trend in female spawning biomass through 2035 if the fishing mortality rate continues at the same level as the average of the past 5 years (Figure 39).

## Recruitment Trends

The primary reason for the sustained increase in abundance of yellowfin sole during the 1970s and early 1980s was the recruitment of a series of stronger than average year-classes spawned in 1967-76 (Table 1 and Figure 40). The 1981 year-class was the strongest observed (and estimated) during the time series, followed by the 1983 year-class. Survey age composition estimates and the assessment model also estimate that the 1987 and 1988 year-classes were average and the 1986 and 1988 year-classes were above average. Recruitment since 1990 has been below the long-term average in most years, and the 2016 year-class appeared to be one of the lowest on record (Figure 40, Figure 41). Recruitment for years subsequent to 2016 may be less reliable given the fit to the stock recruitment curve and lack of survey data to confirm recruitment estimates.

## Retrospective Analysis

A within-model retrospective analysis was included for the recommended assessment model (Model 22.1), as well as Model 22.0. In this analysis, retrospective female spawning biomass was calculated by sequentially dropping data one year at a time and then comparing the peeled estimate to the reference stock assessment model used in the assessment (Figure 42 and Figure 43). Mohn's rho for Model 22.1 was 0.007 and for Model 22.0 it was -0.007. Mohn's rho for Model 18.2 (2021) was -0.118 . This was an improvement over past assessment models.

A similar retrospective pattern was observed as in recent years, in which earlier retrospective years indicated a lower level of spawning biomass than the current year's data (Figure 42 and Figure 43). The difference in female spawning biomass was negative for most recent years, except for the most recent (Figure 44, Figure $45)$, and very similar among models. This is an improvement in the retrospective pattern than seen in previous years. The Mohn's rho does not exceed the rule of thumb guideline for long-lived stocks proposed by Hurtado-Ferro at al. (2015), which includes flatfish, that values of Mohn's rho higher than 0.20 or lower than -0.15 may be an indication of a retrospective pattern.

In the 2017 assessment it was demonstrated that low values of Mohn's rho and desirable retrospective patterns of female spawning biomass were obtainable if lower values of $M$ and $q$ were used relative to the base model. The Plan Team and SSC requested a plot of the model-estimated female spawning biomass trajectory that reduced the retrospective pattern using $M$ fixed at 0.09 and $q=1.0$ on top of the estimated female spawning biomass trajectory with confidence interval from the assessment.

## Risk Table

## Assessment related considerations

The BSAI yellowfin sole assessment is based on surveys conducted annually on the EBS shelf from 1982-2022, continually except for 2020 due to the COVID-19 pandemic. Fish ages, derived from otoliths collected during the surveys and the fishery to calculate annual estimates of population and fishery age composition, have been validated. The assessment model exhibits good fits to all compositional and abundance data and converges to a single minima in the likelihood surface. MCMC indicated good mixing in key parameters distributions estimated by the model. Recruitment estimates track strong year-classes that are consistent with the data.

The retrospective pattern from the assessment model has typically been less than desirable and has been the subject of some concern for the assessment. However, in the 2021 assessment, reanalysis of survey weights at age resulted in a Mohn's rho value that is still negative, but closer to zero. Peculiar to the yellowfin sole assessment, in comparison to the northern rock sole and Alaska plaice assessments (that have preferable patterns), is the large amount of variability in the annual survey biomass assessments for this stock due to the temperature-influenced availability to the survey. In the 2022 Models 22.0 and 22.1 , combining male and female survey selectivities further improved the retrospective pattern.
We propose a level 1 designation for the assessment category in the risk table, given the improvement to the retrospective pattern and favorable outcome of MCMC evaluation.

## Population dynamics considerations

Stock assessment model results indicate that yellowfin sole total biomass (age $2+$ ) was at low levels during most of the 1960s and early 1970s (700,000-1,000,000 t) after a period of high exploitation. Sustained above average recruitment from 1967-76 combined with light exploitation resulted in a biomass increase to a peak of 3.6 million $t$ by 1985. The population biomass has since been in a slow decline as the strong 1981 and 1983 year-classes have passed through the population, with only the 1991, 1995 and 2003 year-classes at levels observed during the 1970s, although the 2006-2010 year-classes appear average according to the 2018 stock assessment. The current model for 2022 estimates $B_{M S Y}$ at 475,199 t. Projections indicate that the $F S B$ will remain well-above the $B_{M S Y}$ level through 2035 (Figure 39).

We propose a level 1 designation for the population dynamics category in the risk table.

## Environmental/ecosystem considerations

Environmental processes: The extended warm phase experienced in the eastern Bering Sea (EBS) that began in approximately 2014 has largely relaxed to normal conditions over the past year (August 2021 August 2022). The North Pacific Index (NPI) has been positive during 5 out of the last 6 winters, with the exception being the winter of 2018-2019. Positive values mean a weak Aleutian Low Pressure System and generally calmer conditions. Sea surface temperature (SST) was within one standard deviation of the long term average and marine heatwaves were relatively weak and short-lived compared to recent years. Estimates of bottom temperature derived from the ROMS model suggest that bottom temperatures in the northern Bering Sea (NBS) over the past year were within normal ranges while the southeastern Bering Sea (SEBS) was significantly cooler than average. The Bering Sea ice extent was generally higher than average throughout much of the 2021-2022 winter. Ice advanced rapidly in November, though there was an abrupt springtime retreat beginning in mid-April. These cool-to-normal winter conditions were favorable to cold pool formation, though not to the areal extent in the years preceding 2014. The 2022 cold pool was near the historical average and resembled other average-to-cool years, most similar to 2017 (Hennon et al. 2022).

Yellowfin sole (YFS) demonstrate earlier migration to spawning grounds and earlier spawning events under warmer conditions. In addition, somatic growth of YFS increases in warmer temperatures. A proposed thermal window (Yeung et al. 2021) suggests continued warming over the EBS shelf may result in temperatures above the thermal physiological maximum of YFS. The center of gravity for the population continued to shift northward, as has been the case for the past several years, and shifted slightly westward in 2022 relative to 2021. The ecosystem 'red flags' that occurred in the NBS in 2021, notably the crab population declines
(Richar 2021) and salmon run failures in the Arctic-Yukon-Kuskokwim region (Liller 2021), continued into 2022 (Richar 2022; Whitehouse 2022). Concerns about the food web dynamics and carrying capacity in the NBS have existed since 2018; monitoring fish condition provides insight into habitat and prey conditions for YFS in the NBS.

Prey: The dominant prey of YFS are polychaete worms, miscellaneous worms, clams, and benthic amphipods. Direct measurements of infaunal abundance trends are not available, however, abundance trends of motile epifauna that also consume infauna (i.e., indirect measurements) are quantified from the bottom trawl survey. The biomass of motile epifauna peaked in 2017 and remains above their long-term mean in 2022. Trends in motile epifauna biomass indicate benthic productivity, although individual species and/or taxa may reflect varying time scales of productivity. Brittle stars, sea stars, and other echinoderms are well above their long-term means, while king crabs, tanner crab, and snow crab are all below their long-term means (Whitehouse 2022).

In 2022, fish condition (as measured by length-weight residuals) was above-average in the SEBS and increased from 2021, and was just below average in the NBS and decreased from 2021 (Rohan et al. 2022). These trends in fish condition indicate sufficient prey is available over the southern shelf, supported by similar trends in motile epifauna, resulting in above-average fish condition. No direct or indirect measures of prey availability exist for the northern shelf, where YFS condition has declined since 2019.

Competitors: Competitors for YFS prey resources include other benthic foragers, like northern rock sole and flathead sole. The trend in biomass of the benthic foragers guild increased $18 \%$ from 2021 to 2022 but remains below the time series mean. There were increases in biomass for the four most dominant species in this guild (yellowfin sole, northern rock sole, flathead sole, and Alaska plaice), though all but flathead sole remain below their long term mean (1982-2022) (Whitehouse 2022). Trends in benthic forager biomass indirectly indicate availability of infauna (i.e., prey of these species), suggesting competition for prey resources remains low in 2022.

Predators: Predators of YFS include Pacific cod and Pacific halibut, which are included in the apex predator guild. The biomass of the apex predator guild increased from 2021 to 2022 to nearly equal to their long term mean. The trend in this guild is largely driven by Pacific cod and arrowtooth flounder, both of which increased from 2021 (Whitehouse 2022). While an increase in Pacific cod abundance may represent increased predation pressure for YFS, the spatial distribution of Pacific cod may provide a potential refuge from predation in the inner domain.

Summary for Environmental/Ecosystem considerations:

- Environment: The extended warm phase experienced by the eastern Bering Sea (EBS) that began in approximately 2014 has largely relaxed to normal conditions over the past year (August 2021 - August 2022).
- Prey: Sufficient prey may have been available for YFS over the southern shelf based on trends in motile epifauna.
- Fish condition was above-average in the SEBS and increased from 202; condition was just below average in the NBS and decreased from 2021.
- Competition: Trends in benthic forager biomass suggest competition for prey resources remains low in 2022.
- Predation pressure may be mixed; an increase in Pacific cod biomass may be countered by potential refuge from predation in the inner domain.

Together, the most recent data available suggest an ecosystem risk Level 1 - Normal: "No apparent environmental/ecosystem concerns."

## Fishery performance considerations

At the current time, fishery CPUE shows no contrasting pattern from the stock biomass trend, unusual spatial pattern of fishing, changes in the percent of TAC taken, or changes in the duration of fishery openings.

Several other fishery performance considerations are as follows:

- Landings of benthic foragers (including YFS) remained relatively stable through 2020.
- Landings of benthic forager flatfish may be larger than salmon, but salmon ex-vessel value is higher because it commands a higher price.
- Export quantity and value have declines from 2020-2021, likely due to tariffs and possibly COVID.

| Assessment <br> consideration | Population <br> dynamics | Environmental <br> ecosystem | Fishery <br> performance |
| :--- | :--- | :--- | :--- |
| Level 1: There has | Level 1: The EBS | Level 1: 2022 was | Level 1: Normal. |
| been an improve- | survey estimate in | a cool/average ther- <br> ment to the retro- | 2022 was an in- <br> mal year in the EBS |
| spective pattern. | crease over 2021. | and NBS |  |

We recommend no reduction in ABC , based on this risk table assessment.

## Harvest Recommendations

## Scenario Projections and Two-Year Ahead Overfishing Level

In addition to the seven standard harvest scenarios, Amendments 48/48 to the BSAI and GOA Groundfish Fishery Management Plans require projections of the likely OFL two years into the future. The 2022 numbers at age from the stock assessment model are projected to 2022 given the 2021 catch and then a 2022 catch of $134,698 \mathrm{t}$ was applied to the projected 2022 population biomass to obtain the 2023 OFL.

The SSC determined in December 2006 that yellowfin sole would be managed under the Tier 1 harvest guidelines, and therefore future harvest recommendations would be based on maximum sustainable yield $M S Y$ and the associated fishing effort $F_{M S Y}$ values calculated from a spawner-recruit relationship. $M S Y$ is an equilibrium concept and its value is dependent on both the spawner-recruit estimates which are assumed to represent the equilibrium stock size-recruitment relationship and the model used to fit the estimates. In the yellowfin sole stock assessment model, a Ricker form of the stock-recruit relationship was fit to various combinations of these data and estimates of $F_{M S Y}$ and $B_{M S Y}$ were calculated, assuming that the fit to the stock-recruitment data represents the long-term productivity of the stock (details provided in Wilderbuer et al. 2018). The 2023 ABC is calculated using Tier 1 methodology. The Tier 1 harvest level is calculated as the product of the harmonic mean of $F_{M S Y}$ and the geometric mean of the 2023 biomass estimate.
The geometric mean of the 2023 biomass estimate, $B_{g m}$, is estimated using the equation $B_{g m}=e^{\ln (B)-\left(c v^{2} / 2\right)}$, where $B$ is the point estimate of the 2023 biomass from the stock assessment model and $c v^{2}$ is the coefficient of variation of the point estimate (a proxy for sigma). The harmonic mean of $F_{M S Y}, F_{h a r}$ is estimated as $F_{h a r}=e^{\ln \left(F_{M S Y}-\left(\ln \left(s d^{2}\right) / 2\right)\right.}$, where $F_{M S Y}$ is the peak mode of the $F_{M S Y}$ distribution and $s d^{2}$ is the square of the standard deviation of the $F_{M S Y}$ distribution.

In 2006 the SSC selected the 1978-2001 data set for the Tier 1 harvest recommendation. Using this approach for the 2023 harvest (now the 1978-2016 time-series) recommendation (Model 22.1), the $F_{A B C}=F_{H m e a n}=$ 0.114. The estimate of age $6+$ total biomass for 2023 is $3,321,640$ t. The calculations outlined above give a Tier 1 ABC harvest recommendation of $378,499 \mathrm{t}$ and an OFL of $404,882 \mathrm{t}$ for 2023 . This results in an $7 \%$ ( $26,383 \mathrm{t}$ ) buffer between ABC and OFL.

The stock assessment analysis must also consider harvest limits, usually described as overfishing fishing mortality levels with corresponding yield amounts. Amendment 56 to the BSAI FMP sets the Tier 1 harvest limit at the $F_{M S Y}$ fishing mortality value. The overfishing limit mortality values, ABC fishing mortality values and their corresponding yields are given as follows:

| Harvest level | F value | 2023 Yield |
| :--- | :---: | :---: |
| Tier 1 $F_{O F L}=F_{M S Y}$ | 0.122 | $404,882 \mathrm{t}$ |
| Tier 1 $F_{A B C}=F_{\text {harmonicmean }}$ | 0.114 | $378,499 \mathrm{t}$ |

A complete record of catch, ABC, and OFL since 1980 is available in Table 21.

## Status Determination

A standard set of projections is required for each stock managed under Tiers 1, 2, or 3 of Amendment 56. This set of projections encompasses seven harvest scenarios designed to satisfy the requirements of Amendment 56, the National Environmental Policy Act, and the Magnuson-Stevens Fishery Conservation and Management Act (MSFCMA), which was implemented in 1977.

For each scenario, the projections begin with the vector of 2022 numbers at age estimated in the assessment. This vector is then projected forward to the beginning of 2023 using the schedules of natural mortality and selectivity described in the assessment and the best available estimate of total (year-end) catch for 2022. In each subsequent year, the fishing mortality rate is prescribed on the basis of the spawning biomass in that year and the respective harvest scenario. In each year, recruitment is drawn from an inverse Gaussian distribution whose parameters consist of maximum likelihood estimates determined from recruitments estimated in the assessment. Spawning biomass is computed in each year based on the time of peak spawning and the maturity and weight schedules described in the assessment. Total catch is assumed to equal the catch associated with the respective harvest scenario in all years. This projection scheme is run 1,000 times to obtain distributions of possible future stock sizes, fishing mortality rates, and catches.

Five of the seven standard scenarios will be used in an Environmental Assessment prepared in conjunction with the final SAFE. These five scenarios, which are designed to provide a range of harvest alternatives that are likely to bracket the final TAC for 2023 , are as follows (max $F_{A B C}$ refers to the maximum permissible value of $F_{A B C}$ under Amendment 56):

- Scenario 1: In all future years, $F$ is set equal to $\max F_{A B C}$. (Rationale: Historically, $T A C$ has been constrained by ABC, so this scenario provides a likely upper limit on future TACs.)
- Scenario 2: In all future years, F is set equal to a constant fraction of max $F_{A B C}$, where this fraction is equal to the ratio of the $F_{A B C}$ value for 2022 recommended in the assessment to the max $F_{A B C}$ for 2023. (Rationale: When $F_{A B C}$ is set at a value below max $F_{A B C}$, it is often set at the value recommended in the stock assessment.)
- Scenario 3: In all future years, $F$ is set equal to the 2017-2021 average $F$. (Rationale: For some stocks, $T A C$ can be well below ABC , and recent average $F$ may provide a better indicator of $F_{T A C}$ than $F_{A B C}$.)
- Scenario 4: In all future years, $F$ is set equal to $F_{60} \%$. (Rationale: This scenario provides a likely lower bound on $F_{A B C}$ that still allows future harvest rates to be adjusted downward when stocks fall below reference levels.)
- Scenario 5: In all future years, $F$ is set equal to zero. (Rationale: In extreme cases, $T A C$ may be set at a level close to zero.)

Two other scenarios are needed to satisfy the MSFCMA's requirement to determine whether a stock is currently in an overfished condition or is approaching an overfished condition. These two scenarios are as follow (for Tier 3 stocks, the $M S Y$ level is defined as $B_{35 \%}$ ):

- Scenario 6: In all future years, F is set equal to $F_{O F L}$. (Rationale: This scenario determines whether a stock is overfished. If the stock is 1) above its MSY level in 2022 or 2) above $1 / 2$ of its MSY level in 2022 and expected to be above its MSY level in 2032 under this scenario, then the stock is not overfished.)
- Scenario 7: In 2023 , F is set equal to $\max F_{A B C}$, and in all subsequent years, F is set equal to $F_{O F L}$. (Rationale: This scenario determines whether a stock is approaching an overfished condition. If the stock is 1) above its MSY level in 2024 or 2) above $1 / 2$ of its MSY level in 2024 and expected to be above its MSY level in 2034 under this scenario, then the stock is not approaching an overfished condition.)

Simulation results shown in Table 22 indicate that yellowfin sole are not currently overfished and are not approaching an overfished condition. If fishing continues at the same fishing mortality as in the past 5 years, the stock is projected to remain well above $B_{M S Y}$ (Figure 39). A phase plane figure of the estimated time-series of yellowfin sole female spawning biomass (FSB) relative to the harvest control rule indicates
that the stock is above $B_{M S Y}$, has been consistently fished below $F_{M S Y}$ for decades, and that projections of female spawning biomass are also expected to be above $B_{M S Y}$ (Figure 46). A phaseplane plot for Model 22.0 shows similar results (Figure 47) The ABC and OFL for 2023 and 2024 assuming average catch rates are shown in the following table.

| Year | Catch | FSB | Geom. mean 6+ biomass | ABC | OFL |
| :---: | :---: | :---: | ---: | :---: | :---: |
| 2023 | 126,157 | 885,444 | $3,321,640$ | 378,499 | 404,882 |
| 2024 | 126,157 | 897,062 | $4,062,230$ | 462,890 | 495,155 |

Based on the 2022 assessment Model 22.1, an $\mathrm{F}=0.201$ would have produced a 2021 catch equal to the 2021 OFL, $377,071 \mathrm{t}$.

## Ecosystem Considerations

## Ecosystem Effects on the Stock

## Prey availability/abundance trends

Yellowfin sole diet by life stage varies as follows: Larvae consume plankton and algae, early juveniles consume zooplankton, late juvenile stage and adults prey includes bivalves, polychaetes, amphipods, mollusks, euphausids, shrimps, brittle stars, sculpins and miscellaneous crustaceans. Information is not available to assess the abundance trends of the benthic infauna of the Bering Sea shelf. The original description of infaunal distribution and abundance by Haflinger (1981) resulted from sampling conducted in 1975 and 1976 and has not been re-sampled since. The large populations of flatfish which have occupied the middle shelf of the Bering Sea over the past twenty-five years for summertime feeding do not appear food-limited. These populations have fluctuated due to the variability in recruitment success which suggests that the primary infaunal food source has been at an adequate level to sustain the yellowfin sole resource.

## Predator population trends

As juveniles, it is well-documented from studies in other parts of the world that flatfish are prey for shrimp species in near shore areas. This has not been reported for Bering Sea yellowfn sole due to a lack of juvenile sampling and collections in near shore areas, but is thought to occur. As late juveniles they have been found in stomachs of Pacific cod and Pacific halibut; mostly small yellowfin sole ranging from 7 to 25 cm standard length..

Past, present and projected future population trends of these predator species can be found in their respective SAFE chapters in this volume and also from Annual reports compiled by the International Pacific Halibut Commission. Encounters between yellowfin sole and their predators may be limited since their distributions do not completely overlap in space and time.

## Changes in habitat quality

Changes in the physical environment which may affect yellowfin sole distribution patterns, recruitment success and migration timing patterns are catalogued in the Ecosystem Considerations Report of this SAFE report. Habitat quality may be enhanced during years of favorable cross-shelf advection (juvenile survival) and warmer bottom water temperatures with reduced ice cover (higher metabolism with more active feeding).

## Fishery Effects on the Ecosystem

1. The yellowfin sole target fishery contribution to the total bycatch of other target species is shown for 1992-2019 in Table 23, and bycatch of the Other Species group (Octopus,Shark, Skate, Squid, and Sculpin) are presented in Table 24. The catch of non-target species from 2003-2019 is shown in Table 25. The yellowfin sole target fishery contribution to the total bycatch of prohibited species is summarized for 2015 as follows:

| Prohibited species | yellowfin sole fishery \% of total bycatch |
| :--- | :--- |
| Halibut mortality | 30 |
| Herring | 2 |
| Red King crab | 5 |
| C. bairdi | 25.5 |
| Other Tanner crab | 78.2 |
| Salmon | $<1$ |

2. Relative to the predator needs in space and time, the yellowfin sole target fishery has a low selectivity for fish $7-25 \mathrm{~cm}$ and therefore has minimal overlap with removals from predation.
3. The target fishery is not perceived to have an effect on the amount of large size target fish in the population due to its history of light to moderate exploitation ( $6 \%$ ) over the past 30 years. Population age composition data indicate a large $20+$ age group.
4. Yellowfin sole fishery discards are presented in the Catch History section.
5. It is unknown what effect the fishery has had on yellowfin sole maturity-at-age and fecundity, but based on two maturity studies conducted 20 years apart, it is expected to be minimal.
6. Analysis of the benthic disturbance from the yellowfin sole fishery is available in the Preliminary draft of the Essential Fish Habitat Environmental Impact Statement and summarized in Table 26.

## Data Gaps and Research Priorities

Genetic studies are needed to confirm the assumption that yellowfin sole consist of a single stock throughout the Bering Sea. Additional studies of maturity at age throughout the range of yellowfin sole (including the northern Bering Sea) are also warranted.

In addition, research is needed to study the spatial variation in juvenile flatfish growth and condition in relation to habitat quality in the Bering Sea. The bottom trawl used in the Bering Sea surveys is not efficient in retaining animals of size $\leq 14 \mathrm{~cm}$ (Kotwicki et al. 2017). In recent studies where the 83-112 bottom trawl and the $3-\mathrm{m}$ plumb staff beam trawl were fished consecutively at a survey station, the catch per unit effort (CPUE, number/hectare) of juvenile yellowfin sole ( $\leq 16 \mathrm{~cm}$ ) estimated from the bottom trawl can be lower than the CPUE from the beam trawl by as high as an order of magnitude, or erroneously indicate absence (Yeung, unpubl. data). As a result of the low catch of small fish in the surveys, there is high uncertainty at the left tail of the age-length curve. The age-at-length from otolith analysis of juveniles collected with the beam trawl $(\mathrm{n}=84)$ was consistently older by 1-3 years than the estimated age using the survey-derived age-length key (Matta and Yeung, unpubl. data), suggesting that currently the age of juveniles may have been underestimated. Juvenile yellowfin sole are known historically to be concentrated in shallow, nearshore habitats near Kuskokwim and Togiak Bays in the EBS that are out of bottom-trawl survey range, just as the NBS surveys now showed them in high abundance in habitat of such type in Norton Sound in the NBS. Long-term, systematic survey of the nearshore with appropriate sampling gear will improve the assessment of the density and distribution of juvenile yellowfin sole, and the understanding of the linkages between environmental drivers, habitat quality and usage, and biomass production. Norton Sound and Kuskokwim-Togiak Bays should be focal areas of investigation for their potential importance as nurseries. These coastal areas are of high anthropogenic and environmental sensitivity, and are experiencing anomalously high water temperatures because of climate change that are likely to impact fish growth and condition. To fully assess yellowfin sole stock production, the level of connectivity between the EBS and NBS populations will need to be addressed with tools such as tagging, genomics, biomarkers and otolith microchemistry.

## Acknowledgments

We thank Jon Short and Delsa Anderl and the entire age and growth team for age data. We also thank fisheries observers and all those who participated in eastern Bering Sea research surveys to provide invaluable data for this assessment.

## References

Alaska Fisheries Science Center. 2016. Wholesale market profiles for Alaska groundfish and crab fisheries. 134 p. Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv. 7600 Sand Point Way NE. Seattle, WA.

Bakkala, R.G., 1979. Population characteristics and ecology of yellowfin sole. NWAFC PROCESSED REPORT 79-20, p. 280.

Bakkala, R. G. and V. Wespestad. 1984. Yellowfin sole. In R. G. Bakkala and L. resources of the eastern Bering Sea and Aleutian Islands region in 1983, p. 37-60. U.S. Dep. Commer., NOAA Tech. Memo. NMFS F/NWC-53.
Bakkala, R. G., and T. K. Wilderbuer. 1990. Yellowfin sole. In Stock Assessment and Fishery Evaluation Document for Groundfish Resources in the Bering Sea/Aleutian Islands Region as Projected for 1990, p. 60-78. North Pacific Fishery Management Council, P. O. Box 103136, Anchorage, Ak 99510.

Clark, W. G., Hare, S. R., Parms, A. M., Sullivan, P, J., Trumble, R. J. 1999. Decadal changes in growth and recruitment of Pacific halibut (Hippoglossus stenolepis). Can. J. fish. Aquat. Sci. 56, 242-252.

Dorn, M.W. 1992. Detecting environmental covariates of Pacific whiting Merluccius productus growth using a growth-increment regression model. Fish. Bull. 90:260-275.

Dunn, K.P., and Smyth, G.K. 1996. Randomized quantile residuals. Journal of Computational and Graphical Statistics 5, 1-10.

Fissel, B. 2021. Flatfish (BSAI) Economic Performance Report for 2020.
Fournier, D. A., H.G. Skaug, J. Ancheta, J. Ianelli, A. Magnusson, M. N. Maunder, A. Nielsen, and J. Sibert. 2012. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim. Methods Softw. 27:233-239.

Fournier, D. A. and C.P. Archibald. 1982. A general theory for analyzing catch-at-age data. Can. J. Fish Aquat. Sci. 39:1195-1207.

Griewank, A. 2000. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. Philadelphia: SIAM.

Haflinger, K. 1981. A survey of benthic infaunal communities of the Southeastern Bering Sea shelf. In Hood and Calder (editors) The Eastern Bering Sea Shelf: Oceanography and Resources, Vol. 2. P. 1091-1104. Office Mar. Pol. Assess., NOAA. Univ. Wash. Press, Seattle, Wa 98105.

Hennon, T., L. Barnett, N. Bond, M. Callahan, S. Danielson, L. Divine, K. Kearney, E. Lemagie, A. Lestenkof, J. Overland, N. Pelland, S. Rohan, R. Thoman, and M. Wang (authors listed alphabetically after 1st author). 2022. Physical Environment Synthesis. In Siddon, E.C., 2022. Ecosystem Status Report 2022: Eastern Bering Sea, Stock Assessment and Fishery Evaluation Report, North Pacific Fishery Management Council, 1007 West Third, Suite 400, Anchorage, Alaska 99501.

Hurtado-Ferro, F., Szuwalski, C.S., Valero, J.L., Anderson, S.C., Cunningham, C.J., Johnson, K.F., Licandeo, R., McGilliard, C.R., Monnahan, C.C., Muradian, M.L. and Ono, K., 2015. Looking in the rear-view mirror: bias and retrospective patterns in integrated, age-structured stock assessment models. ICES Journal of Marine Science, 72(1), pp.99-110.
Ianelli, J. N. and D. A. Fournier. 1998. Alternative age-structured analyses of the NRC simulated stock assessment data. In Restrepo, V. R. [ed.] Analyses of simulated data sets in support of the NRC study on stock assessment methods. NOAA Tech. Memo. NMFS-F/SPO-30. 96 p.

Ianelli, J. N., Fissel, B., Holsman, K., Honkalehto, T., Kotwicki, S., Monnahan, C., Siddon, E., Stienessen, S., and Thorson, J. 2019. Assessment of the Walleye Pollock Stock in the Eastern Bering Sea. NPFMC Bering Sea and Aleutian Islands Stock Assessment and Fishery Evaluation. https://www.afsc.noaa.gov/REFM/Sto cks/assessments.htm.

Kastelle, C., T. Helser, S. Wischniowski, T. Loher, B. Geotz and L. Kautzi. 2016. Incorporation of bombproduced 14 C into fish otoliths: A novel approach for evaluating age validation and bias with an application to yellowfin sole and northern rockfish. Ecological modeling 320 (2016) 79-91.
Kimura, D.K. 1989. Variability in estimating catch-in-numbers-at-age and its impact on cohort analysis. In R.J. Beamish and G.A. McFarlane (eds.), Effects on ocean variability on recruitment and an evaluation of parameters used in stock assessment models. Can. Spec. Publ. Fish. Aq. Sci. 108:57-66.

Kotwicki, S., Lauth, R. R., Williams, K., and Goodman, S. E. 2017. Selectivity ratio: A useful tool for comparing size selectivity of multiple survey gears. Fisheries Research, 191: 76-86.

Kristensen K, Nielsen A, Berg CW, Skaug H, Bell BM. 2016. TMB: Automatic Differentiation and Laplace Approximation. Journal of Statistical Software, 70(5), 1-21. doi:10.18637/jss.v070.i05.
Liller, Z.W. 2021. Adult Salmon Run Failures Throughout the Arctic-Yukon-Kuskokwim Region. In Siddon, E.C., 2021. Ecosystem Status Report 2021: Eastern Bering Sea, Stock Assessment and Fishery Evaluation Report, North Pacific Fishery Management Council, 1007 West Third, Suite 400, Anchorage, Alaska 99501.

Low, L. and R.E. Narita. 1990. Condition of groundfish resources in the Bering Sea-Aleutian Islands region as assessed in 1988. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-F/NWC-178, 224 p.

Matta, M. E., B. A. Black and T. K. Wilderbuer. 2010. Climate-driven synchrony in otolith growth-increment chronologies for three Bering Sea flatfish species. MEPS, Vol. 413:137-145, 2010.

Maunder, M.N. and Wong, R.A., 2011. Approaches for estimating natural mortality: application to summer flounder (Paralichthys dentatus) in the US mid-Atlantic. Fisheries Research, 111(1-2), pp.92-99.

Monnahan, C.C. and Kristensen, K., 2018. No-U-turn sampling for fast Bayesian inference in ADMB and TMB: Introducing the adnuts and tmbstan R packages. PloS one, 13(5), p.e0197954.
Nichol, D. G., and Acuna, E. I. 2001. Annual and batch fecundities of yellowfin sole, Limanda aspera, in the eastern Bering Sea. Fishery Bulletin, 99: 108-122.
Nichol, D. R . 1995. Spawning and maturation of female yellowfin sole in the eastern Bering Sea. In Proceedings of the international flatfish symposium, October 1994, Anchorage, Alaska, p. 35-50. Univ. Alaska, Alaska Sea Grant Rep. 95-04.

Nichol, D. R. 1998. Annual and between sex variability of yellowfin sole, Pleuronectes asper, spring-summer distributions in the eastern Bering Sea. Fish. Bull., U.S. 96: 547-561.

Nichol, D.G., Kotwicki, S., Wilderbuer, T.K., Lauth, R.R. and Ianelli, J.N., 2019. Availability of yellowfin sole Limanda aspera to the eastern Bering Sea trawl survey and its effect on estimates of survey biomass. Fisheries Research, 211, pp.319-330.
Richar, J. 2021. Eastern Bering Sea Commercial Crab Stock Biomass Indices. In Siddon, E.C., 2021. Ecosystem Status Report 2021: Eastern Bering Sea, Stock Assessment and Fishery Evaluation Report, North Pacific Fishery Management Council, 1007 West Third, Suite 400, Anchorage, Alaska 99501.

Richar, J. 2022. Eastern Bering Sea Commercial Crab Stock Biomass Indices. In Siddon, E.C., 2022. Ecosystem Status Report 2022: Eastern Bering Sea, Stock Assessment and Fishery Evaluation Report, North Pacific Fishery Management Council, 1007 West Third, Suite 400, Anchorage, Alaska 99501.

Ricker, W. E. 1958. Handbook of computations for biological statistics of fish populations. Bull. Fish. Res. Bd. Can., (119) 300 p.

Rohan, SK, Barnett, LAK \& N Charriere. Evaluating approaches to estimating mean temperatures and cold pool area from AFSC bottom trawl surveys of the eastern Bering Sea. In review. NOAA Technical Memorandum.

Rohan, S., B. Prohaska, and C. O'Leary. 2022. Eastern and Northern Bering Sea Groundfish Condition. In Siddon, E.C., 2022. Ecosystem Status Report 2022: Eastern Bering Sea, Stock Assessment and Fishery

Evaluation Report, North Pacific Fishery Management Council, 1007 West Third, Suite 400, Anchorage, Alaska 99501.

Rose, C. S., J. R. Gauvin and C. F. Hammond. 2010. Effective herding of flatfish by cables with minimal seafloor contact. Fishery Bulletin 108(2):136-144.

Rue, H., Martino, S., and Chopin, N. 2009. Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations (with discussion). Journal of the Royal Statistical Society, Series B, 71(2):319.

Siddon, E.C., 2021. Ecosystem Status Report 2021: Eastern Bering Sea, Stock Assessment and Fishery Evaluation Report, North Pacific Fishery Management Council, 1007 West Third, Suite 400, Anchorage, Alaska 99501.

Somerton, D. A. and P. Munro. 2001. Bridle efficiency of a survey trawl for flatfish. Fish. Bull. 99:641-652 (2001).

TenBrink, T. T. and T. K. Wilderbuer. 2015. Updated maturity estimates for flatfishes (Pleuronectidae) in the eastern Bering Sea, with notes on histology and implications to fisheries management. Coastal and Marine Fisheries: Dynamics, Management and Ecosystem Science. O:1-9. 2015. DOI: 10.1080/19425120.2015.1091411.

Thorson, J.T., Kristensen, K., 2016. Implementing a generic method for bias correction in statistical models using random effects, with spatial and population dynamics examples. Fish. Res. 175, 66-74. https://doi.org/10.1016/j.fishres.2015.11.016

Thorson, J.T., 2018. Three problems with the conventional delta-model for biomass sampling data, and a computationally efficient alternative. Can. J. Fish. Aquat. Sci. 75, 1369-1382. https://doi.org/10.1139/cjfas-2017-0266

Thorson, J.T., 2019. Measuring the impact of oceanographic indices on species distribution shifts: The spatially varying effect of cold-pool extent in the eastern Bering Sea. Limnol. Oceanogr. 64, 2632-2645. https://doi.org/10.1002/lno. 11238
van der Veer, H. W., and Witte, J. I. J. 1993. The 'maximum growth/optimal food condition' hypothesis: a test for 0-group plaice Pleuronectes platessa in the Dutch Wadden Sea. Marine Ecology Progress Series, 101: 81-90.

Wakabayashi, K. 1989. Studies on the fishery biology of yellowfin sole in the eastern Bering Sea. [In Jpn., Engl. Summ.] Bull. Far Seas Fish. Res. Lab. 26:21-152.

Walters, G. E. and T. K. Wilderbuer. 2000. Decreasing length at age in a rapidly expanding population of northern rock sole in the eastern Bering Sea and its effect on management advice. Journal of Sea Research 44(2000)17-26.

Whitehouse, G.A., 2022. 2022 Report Card. In Siddon, E.C., 2022. Ecosystem Status Report 2022: Eastern Bering Sea, Stock Assessment and Fishery Evaluation Report, North Pacific Fishery Management Council, 1007 West Third, Suite 400, Anchorage, Alaska 99501.

Wilderbuer, T.K., G.E. Walters, and R.G. Bakkala 1992. Yellowfin sole, Pleuronectes aspera, of the eastern Bering Sea: biological characteristics, history of exploitation, and management. Mar Fish. Rev. 54(4):1-18.

Wilderbuer, T.K. and Turnock, B.J., 2009. Sex-specific natural mortality of arrowtooth flounder in Alaska: Implications of a skewed sex ratio on exploitation and management. North American Journal of Fisheries Management, 29(2), pp.306-322.

Wilderbuer, T. K. and D. Nichol. 2003. Yellowfin sole. In Stock Assessment and Fishery Evaluation Document for Groundfish Resources in the Bering Sea/Aleutian Islands Region as Projected for 2004, chapter 4. North Pacific Fishery Management Council, P. O. Box 103136, Anchorage, Ak 99510.

Wilderbuer, T. K. D. G. Nichol, and J. Ianelli. 2018. Yellowfin sole. In Stock Assessment and Fishery Evaluation Document for Groundfish Resources in the Bering Sea/Aleutian Islands Region as Projected for 2019, chapter 4. North Pacific Fishery Management Council, P. O. Box 103136, Anchorage, Ak 99510.

Yeung, C., and Yang, M.-S. 2018. Spatial variation in habitat quality for juvenile flatfish in the southeastern Bering Sea and its implications for productivity in a warming ecosystem. Journal of Sea Research, 139: 62-72.

Yeung, C. and Cooper, D.W., 2019. Contrasting the variability in spatial distribution of two juvenile flatfishes in relation to thermal stanzas in the eastern Bering Sea. ICES Journal of Marine Science, 77(3), pp.953-963.

Yeung, C., Copeman, L.A., Matta, M.E. and Yang, M.S., 2021. Latitudinal variation in the growth and condition of Juvenile flatfishes in the Bering Sea. Estuarine, Coastal and Shelf Science, 258, p. 107416.

Tables
Table 1: Model estimates of age 1 recruitment (in billions of fish), 1954-2022, with $95 \%$ lower and upper confidence intervals (LCI, HCI) for Model 18.2 (2021), and 2022 Models 18.2, 22.0, and 22.1.

| Year | $\frac{\text { Model } 18.2(2021)}{\text { Recruitment }}$ | $\frac{\text { Model } 18.2(2022)}{\text { Recruitment }}$ | Model 22.0 |  |  | Model 22.1 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Recruitment | LCI | HCI | Recruitment | LCI | HCI |
| 1954 | 2.051 | 1.631 | 1.530 | 1.110 | 1.951 | 2.147 | 1.558 | 2.735 |
| 1955 | 1.669 | 1.546 | 1.284 | 0.958 | 1.610 | 1.736 | 1.269 | 2.203 |
| 1956 | 1.44 | 2.418 | 1.135 | 0.742 | 1.527 | 1.406 | 0.817 | 1.996 |
| 1957 | 5.392 | 1.765 | 3.709 | 2.735 | 4.682 | 4.470 | 1.733 | 7.208 |
| 1958 | 3.59 | 1.212 | 2.575 | 2.198 | 2.952 | 2.807 | 1.414 | 4.201 |
| 1959 | 2.326 | 3.828 | 1.949 | 1.675 | 2.223 | 1.947 | 1.392 | 2.502 |
| 1960 | 1.965 | 2.672 | 1.852 | 1.591 | 2.112 | 1.776 | 1.463 | 2.090 |
| 1961 | 1.086 | 1.984 | 1.102 | 0.901 | 1.303 | 1.033 | 0.839 | 1.227 |
| 1962 | 2.065 | 1.857 | 2.090 | 1.817 | 2.362 | 1.951 | 1.693 | 2.209 |
| 1963 | 1.079 | 1.072 | 1.073 | 0.873 | 1.273 | 1.029 | 0.837 | 1.221 |
| 1964 | 1 | 1.961 | 0.972 | 0.786 | 1.157 | 0.953 | 0.771 | 1.134 |
| 1965 | 1.312 | 1.078 | 1.324 | 1.096 | 1.552 | 1.245 | 1.033 | 1.456 |
| 1966 | 1.364 | 1.034 | 1.386 | 1.143 | 1.629 | 1.281 | 1.055 | 1.507 |
| 1967 | 2.916 | 1.343 | 2.920 | 2.548 | 3.292 | 2.711 | 2.351 | 3.071 |
| 1968 | 4.539 | 1.373 | 4.398 | 3.926 | 4.869 | 4.162 | 3.696 | 4.628 |
| 1969 | 4.663 | 2.930 | 4.854 | 4.352 | 5.356 | 4.443 | 3.951 | 4.934 |
| 1970 | 6.144 | 4.386 | 6.186 | 5.620 | 6.751 | 5.742 | 5.179 | 6.305 |
| 1971 | 6.79 | 4.826 | 6.773 | 6.193 | 7.353 | 6.335 | 5.750 | 6.919 |
| 1972 | 5.309 | 6.155 | 5.320 | 4.831 | 5.809 | 4.915 | 4.422 | 5.408 |
| 1973 | 3.683 | 6.742 | 3.683 | 3.302 | 4.065 | 3.403 | 3.016 | 3.789 |
| 1974 | 4.951 | 5.298 | 5.024 | 4.587 | 5.461 | 4.588 | 4.146 | 5.030 |
| 1975 | 5.751 | 3.670 | 5.808 | 5.346 | 6.270 | 5.253 | 4.789 | 5.716 |
| 1976 | 3.771 | 5.008 | 3.946 | 3.583 | 4.309 | 3.480 | 3.122 | 3.838 |
| 1977 | 4.726 | 5.792 | 4.893 | 4.483 | 5.303 | 4.337 | 3.932 | 4.741 |
| 1978 | 3.084 | 3.936 | 3.301 | 2.977 | 3.625 | 2.961 | 2.639 | 3.283 |
| 1979 | 1.986 | 4.880 | 2.029 | 1.782 | 2.275 | 1.897 | 1.646 | 2.148 |
| 1980 | 3.894 | 3.293 | 3.987 | 3.630 | 4.344 | 3.715 | 3.351 | 4.078 |
| 1981 | 2.927 | 2.024 | 3.037 | 2.732 | 3.342 | 2.936 | 2.618 | 3.254 |
| 1982 | 8.516 | 3.979 | 8.549 | 7.963 | 9.136 | 8.084 | 7.477 | 8.690 |
| 1983 | 1.572 | 3.031 | 1.350 | 1.154 | 1.546 | 1.362 | 1.153 | 1.570 |
| 1984 | 7.031 | 8.534 | 6.799 | 6.302 | 7.296 | 6.299 | 5.792 | 6.805 |
| 1985 | 2.427 | 1.347 | 2.157 | 1.911 | 2.402 | 2.071 | 1.815 | 2.326 |
| 1986 | 1.866 | 6.787 | 1.787 | 1.567 | 2.007 | 1.587 | 1.368 | 1.807 |
| 1987 | 2.551 | 2.153 | 2.575 | 2.309 | 2.841 | 2.333 | 2.065 | 2.602 |
| 1988 | 3.498 | 1.784 | 3.556 | 3.235 | 3.876 | 3.269 | 2.943 | 3.595 |
| 1989 | 3.494 | 2.571 | 3.571 | 3.250 | 3.892 | 3.465 | 3.127 | 3.802 |
| 1990 | 1.741 | 3.551 | 1.632 | 1.430 | 1.835 | 1.655 | 1.436 | 1.875 |
| 1991 | 1.954 | 3.566 | 1.878 | 1.658 | 2.098 | 1.867 | 1.631 | 2.103 |
| 1992 | 4.327 | 1.631 | 4.375 | 4.005 | 4.744 | 4.197 | 3.811 | 4.583 |
| 1993 | 2.557 | 1.876 | 2.468 | 2.210 | 2.726 | 2.469 | 2.191 | 2.747 |
| 1994 | 2.149 | 4.369 | 2.133 | 1.896 | 2.371 | 2.058 | 1.807 | 2.308 |
| 1995 | 2.15 | 2.465 | 2.010 | 1.780 | 2.239 | 1.970 | 1.726 | 2.214 |
| 1996 | 5.255 | 2.131 | 5.112 | 4.703 | 5.522 | 4.800 | 4.382 | 5.218 |
| 1997 | 2.258 | 2.007 | 2.111 | 1.878 | 2.345 | 2.060 | 1.813 | 2.308 |
| 1998 | 1.864 | 5.106 | 1.749 | 1.541 | 1.957 | 1.774 | 1.549 | 1.999 |
| 1999 | 2.271 | 2.109 | 2.226 | 1.989 | 2.463 | 2.199 | 1.947 | 2.451 |


| 2000 | 3.168 | 1.748 | 3.035 | 2.750 | 3.321 | 3.051 | 2.747 | 3.355 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2001 | 2.042 | 2.224 | 1.982 | 1.761 | 2.202 | 2.015 | 1.777 | 2.253 |
| 2002 | 2.735 | 3.033 | 2.792 | 2.519 | 3.066 | 2.797 | 2.508 | 3.086 |
| 2003 | 2.602 | 1.980 | 2.791 | 2.515 | 3.066 | 2.781 | 2.492 | 3.070 |
| 2004 | 3.947 | 2.791 | 4.256 | 3.884 | 4.628 | 4.273 | 3.890 | 4.656 |
| 2005 | 1.798 | 2.790 | 1.792 | 1.578 | 2.007 | 1.784 | 1.558 | 2.010 |
| 2006 | 1.971 | 4.256 | 1.986 | 1.752 | 2.220 | 1.951 | 1.708 | 2.194 |
| 2007 | 2.288 | 1.793 | 2.251 | 1.988 | 2.514 | 2.204 | 1.935 | 2.472 |
| 2008 | 2.092 | 1.987 | 2.036 | 1.783 | 2.290 | 2.126 | 1.857 | 2.396 |
| 2009 | 2.54 | 2.253 | 2.388 | 2.095 | 2.681 | 2.497 | 2.189 | 2.805 |
| 2010 | 3.544 | 2.039 | 3.296 | 2.910 | 3.682 | 3.382 | 2.990 | 3.773 |
| 2011 | 1.292 | 2.391 | 1.175 | 0.979 | 1.370 | 1.241 | 1.027 | 1.454 |
| 2012 | 0.581 | 3.301 | 0.514 | 0.389 | 0.640 | 0.581 | 0.436 | 0.726 |
| 2013 | 1.479 | 1.177 | 1.248 | 1.015 | 1.481 | 1.284 | 1.038 | 1.530 |
| 2014 | 1.669 | 0.515 | 1.213 | 0.952 | 1.474 | 1.306 | 1.026 | 1.585 |
| 2015 | 2.758 | 1.251 | 2.307 | 1.846 | 2.768 | 2.422 | 1.953 | 2.891 |
| 2016 | 3.881 | 1.216 | 3.224 | 2.541 | 3.907 | 3.161 | 2.508 | 3.815 |
| 2017 | 4.371 | 2.312 | 9.298 | 7.548 | 11.048 | 6.947 | 5.618 | 8.277 |
| 2018 | 2.109 | 3.250 | 2.757 | 1.447 | 4.067 | 2.859 | 1.592 | 4.126 |
| 2019 | 2.534 | 9.315 | 9.583 | 4.679 | 14.488 | 9.086 | 4.554 | 13.618 |
| 2020 | 2.622 | 2.765 | 2.173 | -0.526 | 4.873 | 2.439 | -0.601 | 5.478 |
| 2021 | 2.628 | 9.633 | 2.535 | -0.948 | 6.019 | 2.517 | -0.947 | 5.980 |
| 2022 | - | 2.197 | 2.584 | -1.026 | 6.195 | 2.548 | -1.012 | 6.108 |

Table 2: Estimates of retained and discarded (t) yellowfin sole caught in Bering Sea fisheries from 1991 through October 10th, 2022, and the proportion discarded.

| Year | Retained (t) | Discarded $(\mathrm{t})$ | Proportion discarded |
| :--- | ---: | ---: | ---: |
| 1991 | 88,967 | 28,337 | 0.24 |
| 1992 | 102,542 | 42,840 | 0.29 |
| 1993 | 76,798 | 29,012 | 0.27 |
| 1994 | 104,918 | 35,132 | 0.25 |
| 1995 | 96,767 | 27,980 | 0.22 |
| 1996 | 101,324 | 28,335 | 0.22 |
| 1997 | 150,745 | 32,068 | 0.18 |
| 1998 | 80,263 | 20,887 | 0.21 |
| 1999 | 56,604 | 12,617 | 0.18 |
| 2000 | 69,971 | 14,087 | 0.17 |
| 2001 | 54,918 | 8,646 | 0.14 |
| 2002 | 63,625 | 11,332 | 0.15 |
| 2003 | 68,832 | 10,974 | 0.14 |
| 2004 | 62,746 | 12,756 | 0.17 |
| 2005 | 85,311 | 9,072 | 0.1 |
| 2006 | 90,592 | 8,564 | 0.09 |
| 2007 | 109,004 | 11,958 | 0.1 |
| 2008 | 141,235 | 7,659 | 0.05 |
| 2009 | 100,642 | 6,870 | 0.06 |
| 2010 | 113,244 | 5,379 | 0.05 |
| 2011 | 146,418 | 4,739 | 0.03 |
| 2012 | 142,132 | 5,054 | 0.03 |
| 2013 | 158,781 | 6,163 | 0.04 |
| 2014 | 152,167 | 4,605 | 0.03 |
| 2015 | 123,065 | 3,871 | 0.03 |
| 2016 | 131,202 | 4,121 | 0.03 |
| 2017 | 128,665 | 3,554 | 0.03 |
| 2018 | 127,331 | 4,160 | 0.03 |
| 2019 | 126,111 | 2,951 | 0.02 |
| 2020 | 131,774 | 2,025 | 0.02 |
| 2021 | 106,785 | 2,003 | 0.02 |
| 2022 | 116,692 | 2,013 | 0.02 |
|  |  |  |  |
|  |  | 1 |  |

Table 3: Foreign and domestic catch (t) of yellowfin sole 1954-2022. Foreign catches are designated as joint venture processing (JVP), and non-foreign catches as domestic annual processing (DAP). Domestic catch since 1991 is subdivided into catch from the Aleutian Islands and the Bering Sea. Catch for 2022 was downloaded October 13, 2021.

| Year | Foreign | Domestic |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | JVP | DAP | Aleutian Islands | Bering Sea |  |
| 1954 | 12,562 |  |  |  |  | 12,562 |
| 1955 | 14,690 |  |  |  |  | 14,690 |
| 1956 | 24,697 |  |  |  |  | 24,697 |
| 1957 | 24,145 |  |  |  |  | 24,145 |
| 1958 | 44,153 |  |  |  |  | 44,153 |
| 1959 | 185,321 |  |  |  |  | 185,321 |
| 1960 | 456,103 |  |  |  |  | 456,103 |
| 1961 | 553,742 |  |  |  |  | 553,742 |
| 1962 | 420,703 |  |  |  |  | 420,703 |
| 1963 | 85,810 |  |  |  |  | 85,810 |
| 1964 | 111,777 |  |  |  |  | 111,777 |
| 1965 | 53,810 |  |  |  |  | 53,810 |
| 1966 | 102,353 |  |  |  |  | 102,353 |
| 1967 | 162,228 |  |  |  |  | 162,228 |
| 1968 | 84,189 |  |  |  |  | 84,189 |
| 1969 | 167,134 |  |  |  |  | 167,134 |
| 1970 | 133,079 |  |  |  |  | 133,079 |
| 1971 | 160,399 |  |  |  |  | 160,399 |
| 1972 | 47,856 |  |  |  |  | 47,856 |
| 1973 | 78,240 |  |  |  |  | 78,240 |
| 1974 | 42,235 |  |  |  |  | 42,235 |
| 1975 | 64,690 |  |  |  |  | 64,690 |
| 1976 | 56,221 |  |  |  |  | 56,221 |
| 1977 | 58,373 |  |  |  |  | 58,373 |
| 1978 | 138,433 |  |  |  |  | 138,433 |
| 1979 | 99,019 |  |  |  |  | 99,019 |
| 1980 | 77,768 | 9,623 |  |  |  | 87,391 |
| 1981 | 81,255 | 16,046 |  |  |  | 97,301 |
| 1982 | 78,331 | 17,381 |  |  |  | 95,712 |
| 1983 | 85,874 | 22,511 |  |  |  | 108,385 |
| 1984 | 126,762 | 32,764 |  |  |  | 159,526 |
| 1985 | 100,706 | 126,401 |  |  |  | 227,107 |
| 1986 | 57,197 | 151,400 |  |  |  | 208,597 |
| 1987 | 1,811 | 179,613 | 4 |  |  | 181,428 |
| 1988 |  | 213,323 | 9,833 |  |  | 223,156 |
| 1989 |  | 151,501 | 1,664 |  |  | 153,165 |
| 1990 |  | 69,677 | 14,293 |  |  | 83,970 |
| 1991 |  |  | 117,303 |  | 117,303 | 117,303 |
| 1992 |  |  | 145,386 | 3.6 | 145,382 | 145,386 |
| 1993 |  |  | 105,810 |  | 105,810 | 105,810 |
| 1994 |  |  | 140,050 | 0.2 | 140,050 | 140,050 |
| 1995 |  |  | 124,752 | 5.6 | 124,746 | 124,752 |
| 1996 |  |  | 129,659 | 0.4 | 129,659 | 129,659 |
| 1997 |  |  | 182,814 | 1.2 | 182,813 | 182,814 |
| 1998 |  |  | 101,155 | 4.7 | 101,150 | 101,155 |
| 1999 |  |  | 69,234 | 12.8 | 69,221 | 69,234 |


| 2000 | 84,071 | 12.5 | 84,058 | 84,071 |
| :--- | ---: | ---: | ---: | ---: |
| 2001 | 63,579 | 14.5 | 63,564 | 63,579 |
| 2002 | 74,986 | 28.5 | 74,957 | 74,986 |
| 2003 | 79,806 | 0.4 | 79,806 | 79,806 |
| 2004 | 75,511 | 8.8 | 75,502 | 75,511 |
| 2005 | 94,385 | 1.8 | 94,383 | 94,385 |
| 2006 | 99,160 | 3.8 | 99,156 | 99,160 |
| 2007 | 120,964 | 2.4 | 120,962 | 120,964 |
| 2008 | 148,894 | 0.5 | 148,893 | 148,894 |
| 2009 | 107,513 | 1.1 | 107,512 | 107,513 |
| 2010 | 118,624 | 0.2 | 118,624 | 118,624 |
| 2011 | 151,158 | 1.1 | 151,157 | 151,158 |
| 2012 | 147,187 | 1.1 | 147,186 | 147,187 |
| 2013 | 164,944 | 0.3 | 164,944 | 164,944 |
| 2014 | 156,772 | 0.3 | 156,772 | 156,772 |
| 2015 | 126,937 | 0 | 126,937 | 126,937 |
| 2016 | 135,324 | 0.2 | 135,324 | 135,324 |
| 2017 | 132,220 | 0.6 | 132,219 | 132,220 |
| 2018 | 131,496 | 4.5 | 131,491 | 131,496 |
| 2019 | 128,051 | 4.6 | 129,061 | 128,051 |
| 2020 | 133,799 | 11.1 | 133,788 | 133,799 |
| 2021 | 108,788 | 53.9 | 108,734 | 108,788 |
| 2022 | 106,096 | 8.4 | 106,087 | 106,096 |

Table 4: Discarded and retained catch of non-CDQ yellowfin sole, by fishery, in 2021. Gear types include longline (HAL), bottom trawl (NPT), pot (POT), and pelagic trawl (PTR). Catch was non-zero for all target-gear combinations shown, but may appear as zero as results were rounded to the nearest metric ton (t). Source: NMFS AKRO BLEND/Catch Accounting System.

| Trip target name | Gear type | Discarded (t) | Retained (t) |
| ---: | ---: | ---: | ---: |
| Halibut | HAL | 0 | 0 |
| Pacific Cod | HAL | 358 | 10 |
| Alaska Plaice | NPT | 9 | 962 |
| Arrowtooth Flounder | NPT | 1 | 2 |
| Atka Mackerel | NPT | 0 | 0 |
| Flathead Sole | NPT | 55 | 1,683 |
| Pacific Cod | NPT | 2 | 32 |
| Pollock - bottom | NPT | 4 | 630 |
| Rock Sole | NPT | 98 | 4,312 |
| Rockfish | NPT | 0 | 4 |
| yellowfin sole | NPT | 1,081 | 99,050 |
| Halibut | POT | 0 | 0 |
| Pacific Cod | POT | 370 | 0 |
| Pollock - bottom | PTR | 1 | 39 |
| Pollock - midwater | PTR | 24 | 55 |

Table 5: Occurrence of yellowfin sole in the eastern Bering Sea trawl survey and collections of length and age structures and the number of otoliths aged from the survey. The final column represents the number of otoliths read in each year from the fishery.

| Year | Total hauls | Hauls with length | Number of lengths | Hauls with otoliths | N. ages (survey) | N. ages (fishery) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1982 | 334 | 246 | 37023 | 35 | 744 | 2432 |
| 1983 | 353 | 256 | 33924 | 37 | 709 | 1178 |
| 1984 | 355 | 271 | 33894 | 56 | 796 | 338 |
| 1985 | 357 | 261 | 33824 | 44 | 802 | 840 |
| 1986 | 354 | 249 | 30470 | 34 | 739 | 1503 |
| 1987 | 357 | 224 | 31241 | 16 | 798 | 1071 |
| 1988 | 373 | 254 | 27138 | 14 | 543 | 1361 |
| 1989 | 374 | 236 | 29672 | 24 | 740 | 1462 |
| 1990 | 371 | 251 | 30257 | 28 | 792 | 1220 |
| 1991 | 372 | 248 | 27986 | 26 | 742 | 935 |
| 1992 | 356 | 229 | 23628 | 16 | 606 | 1203 |
| 1993 | 375 | 242 | 26651 | 20 | 549 | 1020 |
| 1994 | 375 | 269 | 24448 | 14 | 522 | 573 |
| 1995 | 376 | 254 | 22116 | 20 | 647 | 554 |
| 1996 | 375 | 247 | 27505 | 16 | 721 | 314 |
| 1997 | 376 | 262 | 26034 | 11 | 466 | 397 |
| 1998 | 375 | 310 | 34509 | 15 | 570 | 426 |
| 1999 | 373 | 276 | 28431 | 31 | 770 | 487 |
| 2000 | 372 | 255 | 24880 | 20 | 511 | 583 |
| 2001 | 375 | 251 | 26558 | 25 | 593 | 491 |
| 2002 | 375 | 246 | 26309 | 32 | 723 | 486 |
| 2003 | 376 | 241 | 27135 | 37 | 695 | 590 |
| 2004 | 375 | 251 | 26103 | 26 | 712 | 483 |
| 2005 | 373 | 251 | 24658 | 34 | 635 | 494 |
| 2006 | 376 | 246 | 28470 | 39 | 426 | 490 |
| 2007 | 376 | 247 | 24790 | 66 | 772 | 496 |
| 2008 | 375 | 238 | 25848 | 65 | 830 | 542 |
| 2009 | 376 | 235 | 22018 | 70 | 752 | 515 |
| 2010 | 376 | 228 | 20619 | 77 | 827 | 535 |
| 2011 | 376 | 228 | 21665 | 65 | 753 | 525 |
| 2012 | 376 | 242 | 23519 | 72 | 973 | 504 |
| 2013 | 376 | 232 | 23261 | 70 | 803 | 670 |
| 2014 | 376 | 219 | 20229 | 52 | 790 | 502 |
| 2015 | 376 | 223 | 20830 | 73 | 875 | 622 |
| 2016 | 376 | 242 | 26674 | 69 | 876 | 495 |
| 2017 | 376 | 258 | 25767 | 78 | 886 | 595 |
| 2018 | 376 | 255 | 1830 | 68 | 720 | 608 |
| 2019 | 376 | 270 | 25669 | 67 | 836 | 589 |
| 2020 |  |  |  |  |  | 660 |
| 2021 | 376 | 234 | 18757 | 201 | 1030 | 700 |

Table 6: Yellowfin sole fishery catch-at-age (proportions), 1975-2021 female first then male, ages 7-17+.

| Year | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17+ | Total female proportion over age 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1975 | 0.1165 | 0.2873 | 0.2676 | 0.1148 | 0.0606 | 0.0314 | 0.0248 | 0.0289 | 0.0077 | 0.0055 | 0.0025 | 0.9476 |
| 1976 | 0.0964 | 0.1650 | 0.2564 | 0.2031 | 0.0885 | 0.0481 | 0.0253 | 0.0201 | 0.0235 | 0.0063 | 0.0044 | 0.9371 |
| 1977 | 0.1825 | 0.2004 | 0.1577 | 0.1287 | 0.0690 | 0.0253 | 0.0129 | 0.0067 | 0.0053 | 0.0061 | 0.0016 | 0.7962 |
| 1978 | 0.0959 | 0.2090 | 0.2278 | 0.1666 | 0.1276 | 0.0658 | 0.0237 | 0.0120 | 0.0062 | 0.0048 | 0.0057 | 0.9451 |
| 1979 | 0.0637 | 0.1471 | 0.2209 | 0.1914 | 0.1274 | 0.0946 | 0.0483 | 0.0173 | 0.0088 | 0.0045 | 0.0035 | 0.9275 |
| 1980 | 0.0647 | 0.0721 | 0.1341 | 0.1904 | 0.1692 | 0.1169 | 0.0890 | 0.0462 | 0.0167 | 0.0085 | 0.0044 | 0.9122 |
| 1981 | 0.0788 | 0.1048 | 0.0968 | 0.1446 | 0.1709 | 0.1346 | 0.0868 | 0.0638 | 0.0325 | 0.0116 | 0.0059 | 0.9311 |
| 1982 | 0.0632 | 0.1417 | 0.1394 | 0.0975 | 0.1215 | 0.1305 | 0.0982 | 0.0621 | 0.0453 | 0.0230 | 0.0082 | 0.9306 |
| 1983 | 0.1037 | 0.1068 | 0.1586 | 0.1230 | 0.0777 | 0.0932 | 0.0988 | 0.0740 | 0.0467 | 0.0340 | 0.0173 | 0.9338 |
| 1984 | 0.0407 | 0.1058 | 0.1048 | 0.1554 | 0.1209 | 0.0766 | 0.0920 | 0.0975 | 0.0731 | 0.0461 | 0.0336 | 0.9465 |
| 1985 | 0.0237 | 0.0680 | 0.1285 | 0.1038 | 0.1416 | 0.1074 | 0.0675 | 0.0809 | 0.0857 | 0.0642 | 0.0405 | 0.9118 |
| 1986 | 0.0581 | 0.0585 | 0.1035 | 0.1352 | 0.0922 | 0.1185 | 0.0881 | 0.0551 | 0.0659 | 0.0697 | 0.0523 | 0.8971 |
| 1987 | 0.0192 | 0.0555 | 0.0483 | 0.0919 | 0.1301 | 0.0922 | 0.1202 | 0.0898 | 0.0562 | 0.0673 | 0.0713 | 0.8420 |
| 1988 | 0.0485 | 0.0501 | 0.1157 | 0.0664 | 0.0922 | 0.1127 | 0.0758 | 0.0970 | 0.0721 | 0.0450 | 0.0539 | 0.8294 |
| 1989 | 0.0043 | 0.0810 | 0.0696 | 0.1272 | 0.0638 | 0.0846 | 0.1024 | 0.0686 | 0.0879 | 0.0653 | 0.0408 | 0.7955 |
| 1990 | 0.0347 | 0.0209 | 0.2341 | 0.1008 | 0.1136 | 0.0470 | 0.0590 | 0.0703 | 0.0470 | 0.0601 | 0.0446 | 0.8321 |
| 1991 | 0.0228 | 0.1028 | 0.0298 | 0.2092 | 0.0782 | 0.0899 | 0.0389 | 0.0505 | 0.0614 | 0.0415 | 0.0534 | 0.7784 |
| 1992 | 0.0202 | 0.0478 | 0.1925 | 0.0432 | 0.2328 | 0.0712 | 0.0718 | 0.0287 | 0.0358 | 0.0426 | 0.0284 | 0.8150 |
| 1993 | 0.0242 | 0.0265 | 0.0483 | 0.1752 | 0.0393 | 0.2182 | 0.0683 | 0.0699 | 0.0282 | 0.0353 | 0.0420 | 0.7754 |
| 1994 | 0.0257 | 0.0481 | 0.0527 | 0.0739 | 0.2045 | 0.0384 | 0.1934 | 0.0577 | 0.0577 | 0.0231 | 0.0287 | 0.8039 |
| 1995 | 0.0538 | 0.0982 | 0.0856 | 0.0551 | 0.0630 | 0.1651 | 0.0306 | 0.1536 | 0.0458 | 0.0458 | 0.0183 | 0.8149 |
| 1996 | 0.0187 | 0.0975 | 0.1244 | 0.0852 | 0.0504 | 0.0563 | 0.1466 | 0.0271 | 0.1361 | 0.0406 | 0.0406 | 0.8235 |
| 1997 | 0.0207 | 0.0354 | 0.1082 | 0.1136 | 0.0769 | 0.0462 | 0.0520 | 0.1361 | 0.0252 | 0.1266 | 0.0378 | 0.7787 |
| 1998 | 0.0465 | 0.0440 | 0.0582 | 0.1307 | 0.1120 | 0.0690 | 0.0399 | 0.0444 | 0.1155 | 0.0214 | 0.1072 | 0.7888 |
| 1999 | 0.0147 | 0.0595 | 0.0498 | 0.0598 | 0.1281 | 0.1083 | 0.0665 | 0.0385 | 0.0428 | 0.1113 | 0.0206 | 0.6999 |
| 2000 | 0.0135 | 0.0429 | 0.1371 | 0.0753 | 0.0634 | 0.1135 | 0.0895 | 0.0537 | 0.0308 | 0.0342 | 0.0888 | 0.7427 |
| 2001 | 0.0213 | 0.0447 | 0.0824 | 0.1620 | 0.0689 | 0.0533 | 0.0933 | 0.0731 | 0.0438 | 0.0252 | 0.0279 | 0.6959 |
| 2002 | 0.0236 | 0.0263 | 0.0571 | 0.0963 | 0.1693 | 0.0674 | 0.0506 | 0.0876 | 0.0684 | 0.0409 | 0.0235 | 0.7110 |
| 2003 | 0.0238 | 0.1183 | 0.0725 | 0.0826 | 0.0918 | 0.1356 | 0.0511 | 0.0377 | 0.0650 | 0.0507 | 0.0303 | 0.7594 |
| 2004 | 0.0206 | 0.0491 | 0.1697 | 0.0771 | 0.0757 | 0.0799 | 0.1163 | 0.0436 | 0.0322 | 0.0554 | 0.0432 | 0.7628 |
| 2005 | 0.0374 | 0.0496 | 0.0738 | 0.1799 | 0.0690 | 0.0638 | 0.0661 | 0.0957 | 0.0358 | 0.0264 | 0.0455 | 0.7430 |
| 2006 | 0.0810 | 0.0869 | 0.0736 | 0.0780 | 0.1589 | 0.0564 | 0.0506 | 0.0518 | 0.0746 | 0.0279 | 0.0205 | 0.7602 |
| 2007 | 0.0268 | 0.0733 | 0.0744 | 0.0672 | 0.0755 | 0.1585 | 0.0569 | 0.0513 | 0.0527 | 0.0760 | 0.0284 | 0.7410 |
| 2008 | 0.0665 | 0.0757 | 0.1257 | 0.0837 | 0.0593 | 0.0597 | 0.1199 | 0.0424 | 0.0380 | 0.0389 | 0.0561 | 0.7659 |
| 2009 | 0.0489 | 0.1023 | 0.0874 | 0.1223 | 0.0765 | 0.0532 | 0.0533 | 0.1069 | 0.0378 | 0.0338 | 0.0346 | 0.7570 |
| 2010 | 0.0833 | 0.0929 | 0.1109 | 0.0764 | 0.1022 | 0.0636 | 0.0442 | 0.0443 | 0.0888 | 0.0314 | 0.0281 | 0.7661 |
| 2011 | 0.0320 | 0.1404 | 0.1117 | 0.1071 | 0.0675 | 0.0876 | 0.0540 | 0.0375 | 0.0375 | 0.0752 | 0.0266 | 0.7771 |
| 2012 | 0.0333 | 0.0544 | 0.1662 | 0.1079 | 0.0964 | 0.0595 | 0.0770 | 0.0474 | 0.0329 | 0.0329 | 0.0660 | 0.7739 |
| 2013 | 0.0226 | 0.0493 | 0.0709 | 0.1807 | 0.1053 | 0.0900 | 0.0547 | 0.0704 | 0.0432 | 0.0300 | 0.0300 | 0.7471 |
| 2014 | 0.0171 | 0.0494 | 0.0777 | 0.0797 | 0.1726 | 0.0955 | 0.0805 | 0.0488 | 0.0626 | 0.0385 | 0.0267 | 0.7491 |
| 2015 | 0.0184 | 0.0371 | 0.0709 | 0.0818 | 0.0747 | 0.1583 | 0.0877 | 0.0740 | 0.0449 | 0.0577 | 0.0354 | 0.7409 |
| 2016 | 0.0379 | 0.0681 | 0.0935 | 0.1057 | 0.0830 | 0.0630 | 0.1247 | 0.0675 | 0.0565 | 0.0342 | 0.0439 | 0.7780 |
| 2017 | 0.0209 | 0.1017 | 0.1040 | 0.0960 | 0.0922 | 0.0693 | 0.0522 | 0.1033 | 0.0559 | 0.0469 | 0.0284 | 0.7708 |
| 2018 | 0.0108 | 0.0443 | 0.1616 | 0.1213 | 0.0921 | 0.0806 | 0.0583 | 0.0433 | 0.0853 | 0.0461 | 0.0386 | 0.7823 |
| 2019 | 0.0323 | 0.0245 | 0.0638 | 0.1709 | 0.1120 | 0.0812 | 0.0701 | 0.0505 | 0.0375 | 0.0737 | 0.0398 | 0.7563 |
| 2020 | 0.0528 | 0.0771 | 0.0351 | 0.0659 | 0.1527 | 0.0949 | 0.0676 | 0.0580 | 0.0417 | 0.0309 | 0.0608 | 0.7375 |
| 2021 | 0.0919 | 0.0717 | 0.0726 | 0.0295 | 0.0540 | 0.1245 | 0.0773 | 0.0551 | 0.0472 | 0.0340 | 0.0252 | 0.6830 |


| Year | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17+ | Total male proportion over age 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1975 | 0.1999 | 0.3521 | 0.2197 | 0.0659 | 0.0358 | 0.0118 | 0.0068 | 0.0089 | 0.0028 | 0.0030 | 0.0022 | 0.9089 |
| 1976 | 0.0957 | 0.1699 | 0.2830 | 0.2201 | 0.0773 | 0.0448 | 0.0151 | 0.0088 | 0.0115 | 0.0037 | 0.0038 | 0.9337 |
| 1977 | 0.1003 | 0.2192 | 0.2457 | 0.2232 | 0.1122 | 0.0320 | 0.0171 | 0.0056 | 0.0033 | 0.0042 | 0.0014 | 0.9642 |
| 1978 | 0.0822 | 0.1838 | 0.2246 | 0.1820 | 0.1507 | 0.0749 | 0.0214 | 0.0115 | 0.0038 | 0.0022 | 0.0028 | 0.9399 |
| 1979 | 0.0574 | 0.1384 | 0.2235 | 0.2016 | 0.1354 | 0.1024 | 0.0491 | 0.0138 | 0.0074 | 0.0024 | 0.0014 | 0.9328 |
| 1980 | 0.0498 | 0.0530 | 0.1038 | 0.1682 | 0.1750 | 0.1398 | 0.1224 | 0.0650 | 0.0196 | 0.0109 | 0.0037 | 0.9112 |
| 1981 | 0.0704 | 0.0865 | 0.0818 | 0.1341 | 0.1753 | 0.1469 | 0.0973 | 0.0740 | 0.0356 | 0.0101 | 0.0054 | 0.9174 |
| 1982 | 0.0718 | 0.1424 | 0.1332 | 0.0929 | 0.1175 | 0.1275 | 0.0948 | 0.0586 | 0.0428 | 0.0202 | 0.0056 | 0.9073 |
| 1983 | 0.0898 | 0.0970 | 0.1543 | 0.1251 | 0.0814 | 0.0999 | 0.1071 | 0.0792 | 0.0489 | 0.0357 | 0.0168 | 0.9352 |
| 1984 | 0.0411 | 0.1070 | 0.1048 | 0.1542 | 0.1204 | 0.0771 | 0.0941 | 0.1007 | 0.0745 | 0.0459 | 0.0335 | 0.9533 |
| 1985 | 0.0279 | 0.0792 | 0.1369 | 0.1033 | 0.1370 | 0.1034 | 0.0656 | 0.0799 | 0.0854 | 0.0631 | 0.0389 | 0.9206 |
| 1986 | 0.0594 | 0.0581 | 0.1018 | 0.1331 | 0.0911 | 0.1175 | 0.0881 | 0.0558 | 0.0679 | 0.0726 | 0.0537 | 0.8991 |
| 1987 | 0.0261 | 0.0925 | 0.0676 | 0.0998 | 0.1240 | 0.0839 | 0.1080 | 0.0809 | 0.0512 | 0.0623 | 0.0666 | 0.8629 |
| 1988 | 0.0621 | 0.0664 | 0.1315 | 0.0653 | 0.0860 | 0.1044 | 0.0703 | 0.0905 | 0.0678 | 0.0429 | 0.0522 | 0.8394 |
| 1989 | 0.0048 | 0.0883 | 0.0726 | 0.1259 | 0.0616 | 0.0818 | 0.0997 | 0.0673 | 0.0866 | 0.0649 | 0.0411 | 0.7946 |
| 1990 | 0.0411 | 0.0201 | 0.2092 | 0.0940 | 0.1109 | 0.0472 | 0.0604 | 0.0732 | 0.0493 | 0.0634 | 0.0475 | 0.8163 |
| 1991 | 0.0390 | 0.1589 | 0.0393 | 0.2312 | 0.0737 | 0.0749 | 0.0303 | 0.0382 | 0.0461 | 0.0310 | 0.0399 | 0.8025 |
| 1992 | 0.0191 | 0.0479 | 0.1973 | 0.0442 | 0.2362 | 0.0708 | 0.0697 | 0.0277 | 0.0347 | 0.0418 | 0.0281 | 0.8175 |
| 1993 | 0.0192 | 0.0198 | 0.0365 | 0.1423 | 0.0356 | 0.2181 | 0.0725 | 0.0761 | 0.0314 | 0.0402 | 0.0488 | 0.7405 |
| 1994 | 0.0203 | 0.0265 | 0.0293 | 0.0528 | 0.1853 | 0.0403 | 0.2177 | 0.0661 | 0.0656 | 0.0262 | 0.0328 | 0.7629 |
| 1995 | 0.0395 | 0.0667 | 0.0684 | 0.0531 | 0.0670 | 0.1812 | 0.0338 | 0.1691 | 0.0495 | 0.0483 | 0.0191 | 0.7957 |
| 1996 | 0.0214 | 0.0827 | 0.1082 | 0.0831 | 0.0525 | 0.0595 | 0.1536 | 0.0281 | 0.1395 | 0.0407 | 0.0397 | 0.8090 |
| 1997 | 0.0229 | 0.0556 | 0.1468 | 0.1271 | 0.0780 | 0.0450 | 0.0493 | 0.1257 | 0.0229 | 0.1136 | 0.0332 | 0.8201 |
| 1998 | 0.0285 | 0.0232 | 0.0330 | 0.0952 | 0.1050 | 0.0758 | 0.0475 | 0.0541 | 0.1403 | 0.0258 | 0.1282 | 0.7566 |
| 1999 | 0.0081 | 0.0261 | 0.0207 | 0.0294 | 0.0867 | 0.0995 | 0.0748 | 0.0482 | 0.0558 | 0.1459 | 0.0269 | 0.6221 |
| 2000 | 0.0114 | 0.0304 | 0.0979 | 0.0637 | 0.0625 | 0.1227 | 0.1014 | 0.0617 | 0.0354 | 0.0387 | 0.0987 | 0.7245 |
| 2001 | 0.0119 | 0.0268 | 0.0590 | 0.1447 | 0.0720 | 0.0594 | 0.1075 | 0.0860 | 0.0517 | 0.0296 | 0.0323 | 0.6809 |
| 2002 | 0.0186 | 0.0213 | 0.0501 | 0.0934 | 0.1752 | 0.0715 | 0.0532 | 0.0922 | 0.0726 | 0.0434 | 0.0247 | 0.7162 |
| 2003 | 0.0211 | 0.1247 | 0.0790 | 0.0868 | 0.0940 | 0.1380 | 0.0518 | 0.0376 | 0.0647 | 0.0508 | 0.0304 | 0.7789 |
| 2004 | 0.0162 | 0.0395 | 0.1499 | 0.0752 | 0.0786 | 0.0856 | 0.1265 | 0.0476 | 0.0347 | 0.0597 | 0.0469 | 0.7604 |
| 2005 | 0.0325 | 0.0453 | 0.0715 | 0.1813 | 0.0708 | 0.0662 | 0.0691 | 0.1007 | 0.0378 | 0.0274 | 0.0472 | 0.7498 |
| 2006 | 0.0526 | 0.0731 | 0.0741 | 0.0839 | 0.1734 | 0.0615 | 0.0553 | 0.0568 | 0.0823 | 0.0308 | 0.0224 | 0.7662 |
| 2007 | 0.0405 | 0.1068 | 0.0912 | 0.0705 | 0.0727 | 0.1465 | 0.0516 | 0.0463 | 0.0476 | 0.0689 | 0.0258 | 0.7684 |
| 2008 | 0.0515 | 0.0645 | 0.1211 | 0.0865 | 0.0630 | 0.0639 | 0.1283 | 0.0452 | 0.0405 | 0.0416 | 0.0603 | 0.7664 |
| 2009 | 0.0308 | 0.0580 | 0.0630 | 0.1133 | 0.0817 | 0.0605 | 0.0621 | 0.1253 | 0.0442 | 0.0397 | 0.0408 | 0.7194 |
| 2010 | 0.0852 | 0.0965 | 0.1156 | 0.0789 | 0.1034 | 0.0634 | 0.0438 | 0.0437 | 0.0872 | 0.0306 | 0.0275 | 0.7758 |
| 2011 | 0.0315 | 0.1275 | 0.1055 | 0.1080 | 0.0701 | 0.0910 | 0.0557 | 0.0385 | 0.0384 | 0.0766 | 0.0269 | 0.7697 |
| 2012 | 0.0467 | 0.0704 | 0.1839 | 0.1085 | 0.0935 | 0.0567 | 0.0716 | 0.0435 | 0.0299 | 0.0298 | 0.0595 | 0.7940 |
| 2013 | 0.0359 | 0.0616 | 0.0739 | 0.1768 | 0.1022 | 0.0879 | 0.0533 | 0.0674 | 0.0409 | 0.0281 | 0.0280 | 0.7560 |
| 2014 | 0.0264 | 0.0638 | 0.0836 | 0.0786 | 0.1674 | 0.0930 | 0.0790 | 0.0477 | 0.0602 | 0.0365 | 0.0251 | 0.7613 |
| 2015 | 0.0192 | 0.0393 | 0.0744 | 0.0835 | 0.0749 | 0.1588 | 0.0884 | 0.0752 | 0.0454 | 0.0574 | 0.0348 | 0.7513 |
| 2016 | 0.0376 | 0.0607 | 0.0842 | 0.1012 | 0.0828 | 0.0644 | 0.1300 | 0.0712 | 0.0603 | 0.0364 | 0.0459 | 0.7747 |
| 2017 | 0.0194 | 0.1078 | 0.1140 | 0.1020 | 0.0935 | 0.0682 | 0.0509 | 0.1013 | 0.0553 | 0.0467 | 0.0282 | 0.7873 |
| 2018 | 0.0077 | 0.0356 | 0.1502 | 0.1235 | 0.0968 | 0.0845 | 0.0606 | 0.0450 | 0.0895 | 0.0488 | 0.0413 | 0.7835 |
| 2019 | 0.0245 | 0.0214 | 0.0629 | 0.1775 | 0.1177 | 0.0851 | 0.0723 | 0.0514 | 0.0381 | 0.0757 | 0.0413 | 0.7679 |
| 2020 | 0.0320 | 0.0572 | 0.0329 | 0.0694 | 0.1662 | 0.1037 | 0.0734 | 0.0620 | 0.0440 | 0.0326 | 0.0648 | 0.7382 |
| 2021 | 0.0632 | 0.0578 | 0.0709 | 0.0318 | 0.0604 | 0.1396 | 0.0861 | 0.0608 | 0.0513 | 0.0364 | 0.0270 | 0.6853 |

Table 7: Total tonnage of yellowfin sole caught in resource assessment surveys in the eastern Bering Sea from 1977-2021.

| Year | Research catch (t) |
| :---: | ---: |
| 2016 | 98 |
| 2017 | 112 |
| 2018 | 73 |
| 2019 | 85 |
| 2020 | 0 |
| 2021 | 72 |

Table 8: Female yellowfin sole proportion mature at age from Nichol (1995) and TenBrink and Wilderbuer (2015).

| Age | Nichol (1995) | TenBrink and Wilderbuer (2015) | Total |
| :---: | :---: | :---: | :---: |
|  | 1992, 1993 samples | 2012 samples | Combined |
| 1 | 0.000 | 0.00 | 0.00 |
| 2 | 0.000 | 0.00 | 0.00 |
| 3 | 0.001 | 0.00 | 0.00 |
| 4 | 0.004 | 0.00 | 0.00 |
| 5 | 0.008 | 0.00 | 0.00 |
| 6 | 0.020 | 0.01 | 0.01 |
| 7 | 0.046 | 0.03 | 0.04 |
| 8 | 0.104 | 0.09 | 0.10 |
| 9 | 0.217 | 0.21 | 0.21 |
| 10 | 0.397 | 0.43 | 0.41 |
| 11 | 0.612 | 0.68 | 0.65 |
| 12 | 0.790 | 0.86 | 0.83 |
| 13 | 0.899 | 0.94 | 0.92 |
| 14 | 0.955 | 0.98 | 0.97 |
| 15 | 0.981 | 0.99 | 0.99 |
| 16 | 0.992 | 1.00 | 1.00 |
| 17 | 0.997 | 1.00 | 1.00 |
| 18 | 1.000 | 1.00 | 1.00 |
| 19 | 1.000 | 1.00 | 1.00 |
| 20 | 1.000 | 1.00 | 1.00 |

Table 9: Yellowfin sole design-based (DB) biomass estimates (t) from the annual eastern Bering Sea shelf bottom trawl survey, and model-based (MB) biomass estimates for the combined northern and eastern Bering Sea survey areas (EBS+NBS), with upper (UCI) and lower (LCI) $95 \%$ confidence intervals. Note that surveys were not conducted in 2020.

| Year | EBS Biomass DB (t) | LCI | UCI | EBS+NBS Biomass MB (t) | LCI | UCI |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1982 | 3,509,130 | 3,508,559 | 3,509,700 | 4,005,490 | 4,005,011 | 4,005,968 |
| 1983 | 3,672,420 | 3,672,015 | 3,672,824 | 4,637,480 | 4,636,866 | 4,638,093 |
| 1984 | 3,341,320 | 3,340,953 | 3,341,686 | 4,227,010 | 4,226,475 | 4,227,544 |
| 1985 | 2,398,080 | 2,397,771 | 2,398,388 | 3,100,980 | 3,100,660 | 3,101,299 |
| 1986 | 2,031,600 | 2,031,298 | 2,031,901 | 2,342,630 | 2,342,378 | 2,342,881 |
| 1987 | 2,530,210 | 2,529,824 | 2,530,595 | 3,089,570 | 3,089,238 | 3,089,901 |
| 1988 | 2,195,920 | 2,195,507 | 2,196,332 | 2,624,770 | 2,624,534 | 2,625,005 |
| 1989 | 2,329,420 | 2,329,078 | 2,329,761 | 2,805,170 | 2,804,872 | 2,805,467 |
| 1990 | 2,192,590 | 2,192,292 | 2,192,887 | 2,627,180 | 2,626,915 | 2,627,444 |
| 1991 | 2,406,530 | 2,406,253 | 2,406,806 | 3,159,460 | 3,159,177 | 3,159,742 |
| 1992 | 2,215,410 | 2,215,022 | 2,215,797 | 2,716,520 | 2,716,140 | 2,716,899 |
| 1993 | 2,484,910 | 2,484,596 | 2,485,223 | 3,121,570 | 3,121,206 | 3,121,933 |
| 1994 | 2,615,720 | 2,615,379 | 2,616,060 | 3,409,740 | 3,409,290 | 3,410,189 |
| 1995 | 2,026,890 | 2,026,605 | 2,027,174 | 2,458,590 | 2,458,303 | 2,458,876 |
| 1996 | 2,230,820 | 2,230,435 | 2,231,204 | 2,722,210 | 2,721,892 | 2,722,527 |
| 1997 | 2,176,540 | 2,176,285 | 2,176,794 | 2,801,760 | 2,801,391 | 2,802,128 |
| 1998 | 2,222,670 | 2,222,392 | 2,222,947 | 3,469,400 | 3,468,695 | 3,470,104 |
| 1999 | 1,266,420 | 1,266,239 | 1,266,600 | 1,786,590 | 1,786,254 | 1,786,925 |
| 2000 | 1,600,280 | 1,600,079 | 1,600,480 | 2,060,409 | 2,060,130 | 2,060,689 |
| 2001 | 1,690,560 | 1,690,319 | 1,690,800 | 2,235,030 | 2,234,727 | 2,235,332 |
| 2002 | 1,923,070 | 1,922,811 | 1,923,328 | 2,519,680 | 2,519,306 | 2,520,053 |
| 2003 | 2,171,730 | 2,171,319 | 2,172,140 | 2,846,480 | 2,846,071 | 2,846,888 |
| 2004 | 2,557,800 | 2,557,417 | 2,558,182 | 3,423,500 | 3,422,996 | 3,424,003 |
| 2005 | 2,840,250 | 2,839,528 | 2,840,971 | 3,495,370 | 3,494,916 | 3,495,823 |
| 2006 | 2,146,500 | 2,146,186 | 2,146,813 | 2,769,500 | 2,769,177 | 2,769,822 |
| 2007 | 2,168,040 | 2,167,660 | 2,168,419 | 2,733,990 | 2,733,650 | 2,734,329 |
| 2008 | 2,112,690 | 2,112,187 | 2,113,192 | 2,811,620 | 2,811,209 | 2,812,030 |
| 2009 | 1,752,060 | 1,751,759 | 1,752,360 | 2,301,320 | 2,301,008 | 2,301,631 |
| 2010 | 2,388,160 | 2,387,605 | 2,388,714 | 2,979,480 | 2,979,182 | 2,979,777 |
| 2011 | 2,422,500 | 2,422,019 | 2,422,980 | 2,805,090 | 2,804,758 | 2,805,421 |
| 2012 | 1,965,410 | 1,965,135 | 1,965,684 | 2,708,880 | 2,708,527 | 2,709,232 |
| 2013 | 2,295,210 | 2,294,866 | 2,295,553 | 2,742,200 | 2,741,897 | 2,742,502 |
| 2014 | 2,531,400 | 2,530,941 | 2,531,858 | 2,967,810 | 2,967,488 | 2,968,131 |
| 2015 | 1,946,300 | 1,946,012 | 1,946,587 | 2,321,780 | 2,321,532 | 2,322,027 |
| 2016 | 2,876,800 | 2,876,474 | 2,877,125 | 3,721,760 | 3,721,384 | 3,722,135 |
| 2017 | 2,805,160 | 2,804,683 | 2,805,636 | 3,478,470 | 3,478,188 | 3,478,751 |
| 2018 | 1,903,040 | 1,902,812 | 1,903,267 | 2,786,270 | 2,786,042 | 2,786,497 |
| 2019 | 2,017,620 | 2,017,203 | 2,018,036 | 2,729,680 | 2,729,473 | 2,729,886 |
| 2021 | 1,633,970 | 1,633,755 | 1,634,184 | 2,358,660 | 2,358,473 | 2,358,846 |
| 2022 | 2,039,970 | 2,039,705 | 2,040,234 | 2,777,020 | 2,776,793 | 2,777,246 |

Table 10: Model estimates of yellowfin sole age $2+$ total biomass ( t ) from the 2021 and 2022 stock assessments, Model 18.2, Model 22.0, and 22.1.

| Model | 18.2 (2021) | 18.2 (2022) | 22.0 (2022) |  |  | 22.1 (2022) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Biomass (t) | Biomass (t) | Biomass (t) | LCI | HCI | Biomass (t) | LCI | HCI |
| 1954 | 2,459,520 | 2,547,430 | 2,762,530 | 2,465,140 | 3,095,790 | 2,325,940 | 1,922,760 | 2,813,670 |
| 1955 | 2,408,250 | 2,497,920 | 2,696,210 | 2,432,570 | 2,988,420 | 2,292,910 | 1,909,210 | 2,753,720 |
| 1956 | 2,350,890 | 2,444,060 | 2,615,610 | 2,385,470 | 2,867,940 | 2,255,750 | 1,894,670 | 2,685,650 |
| 1957 | 2,291,420 | 2,386,420 | 2,524,180 | 2,326,030 | 2,739,210 | 2,217,200 | 1,885,490 | 2,607,270 |
| 1958 | 2,255,490 | 2,346,080 | 2,446,930 | 2,279,430 | 2,626,740 | 2,200,690 | 1,911,640 | 2,533,440 |
| 1959 | 2,226,960 | 2,305,070 | 2,369,440 | 2,230,880 | 2,516,600 | 2,188,520 | 1,958,360 | 2,445,730 |
| 1960 | 2,075,700 | 2,134,270 | 2,165,610 | 2,053,570 | 2,283,760 | 2,049,610 | 1,890,340 | 2,222,310 |
| 1961 | 1,667,480 | 1,699,980 | 1,706,040 | 1,622,080 | 1,794,340 | 1,646,620 | 1,558,480 | 1,739,740 |
| 1962 | 1,198,730 | 1,194,950 | 1,191,970 | 1,137,620 | 1,248,920 | 1,167,170 | 1,109,650 | 1,227,680 |
| 1963 | 883,734 | 843,446 | 867,111 | 834,798 | 900,674 | 797,719 | 744,937 | 854,241 |
| 1964 | 909,922 | 881,976 | 907,101 | 873,529 | 941,964 | 841,190 | 793,335 | 891,931 |
| 1965 | 893,725 | 856,558 | 875,543 | 841,797 | 910,642 | 823,902 | 782,879 | 867,075 |
| 1966 | 936,616 | 900,292 | 919,872 | 884,459 | 956,703 | 874,130 | 835,104 | 914,981 |
| 1967 | 920,712 | 891,014 | 905,739 | 869,274 | 943,733 | 865,892 | 828,489 | 904,983 |
| 1968 | 838,598 | 823,074 | 824,102 | 787,864 | 862,006 | 803,119 | 766,511 | 841,476 |
| 1969 | 884,087 | 859,462 | 867,345 | 827,693 | 908,897 | 840,381 | 800,644 | 882,090 |
| 1970 | 877,450 | 861,662 | 867,975 | 825,150 | 913,022 | 831,048 | 788,161 | 876,268 |
| 1971 | 973,328 | 950,652 | 954,834 | 905,566 | 1,006,780 | 913,093 | 863,441 | 965,600 |
| 1972 | 1,085,260 | 1,069,310 | 1,053,280 | 996,497 | 1,113,300 | 1,004,630 | 946,365 | 1,066,490 |
| 1973 | 1,389,710 | 1,359,560 | 1,343,960 | 1,275,410 | 1,416,200 | 1,282,430 | 1,211,580 | 1,357,410 |
| 1974 | 1,692,950 | 1,635,200 | 1,625,730 | 1,544,750 | 1,710,950 | 1,557,480 | 1,473,070 | 1,646,730 |
| 1975 | 2,106,110 | 2,028,190 | 2,012,170 | 1,915,110 | 2,114,140 | 1,931,240 | 1,829,680 | 2,038,440 |
| 1976 | 2,473,680 | 2,374,790 | 2,360,440 | 2,248,840 | 2,477,580 | 2,266,300 | 2,149,250 | 2,389,720 |
| 1977 | 2,839,680 | 2,722,310 | 2,709,600 | 2,584,050 | 2,841,250 | 2,602,960 | 2,471,120 | 2,741,840 |
| 1978 | 3,184,900 | 3,049,680 | 3,038,590 | 2,900,050 | 3,183,750 | 2,920,350 | 2,774,740 | 3,073,590 |
| 1979 | 3,383,090 | 3,234,400 | 3,224,580 | 3,075,590 | 3,380,780 | 3,097,980 | 2,941,290 | 3,263,020 |
| 1980 | 3,596,120 | 3,437,730 | 3,428,570 | 3,270,200 | 3,594,620 | 3,294,130 | 3,127,480 | 3,469,660 |
| 1981 | 3,784,250 | 3,621,770 | 3,613,400 | 3,447,130 | 3,787,680 | 3,472,530 | 3,297,500 | 3,656,840 |
| 1982 | 3,910,940 | 3,756,070 | 3,748,560 | 3,577,900 | 3,927,360 | 3,596,580 | 3,417,020 | 3,785,570 |
| 1983 | 3,879,200 | 3,727,680 | 3,719,770 | 3,548,500 | 3,899,300 | 3,570,740 | 3,390,470 | 3,760,600 |
| 1984 | 4,139,580 | 3,983,830 | 3,976,860 | 3,794,330 | 4,168,170 | 3,822,390 | 3,629,880 | 4,025,110 |
| 1985 | 4,156,090 | 4,001,030 | 3,994,810 | 3,807,160 | 4,191,710 | 3,842,710 | 3,644,510 | 4,051,700 |
| 1986 | 3,840,060 | 3,689,420 | 3,683,870 | 3,503,010 | 3,874,060 | 3,544,930 | 3,353,420 | 3,747,370 |
| 1987 | 3,818,360 | 3,666,410 | 3,661,740 | 3,476,070 | 3,857,340 | 3,526,410 | 3,329,450 | 3,735,020 |
| 1988 | 3,699,210 | 3,548,150 | 3,543,650 | 3,359,580 | 3,737,810 | 3,429,020 | 3,232,960 | 3,636,960 |
| 1989 | 3,769,470 | 3,607,330 | 3,603,180 | 3,411,140 | 3,806,030 | 3,497,640 | 3,292,540 | 3,715,520 |
| 1990 | 3,608,930 | 3,449,380 | 3,445,360 | 3,257,690 | 3,643,840 | 3,357,890 | 3,156,900 | 3,571,660 |
| 1991 | 3,722,400 | 3,559,590 | 3,555,610 | 3,363,000 | 3,759,260 | 3,479,890 | 3,273,140 | 3,699,710 |
| 1992 | 3,943,130 | 3,773,830 | 3,770,200 | 3,567,340 | 3,984,590 | 3,693,160 | 3,475,570 | 3,924,370 |
| 1993 | 4,000,570 | 3,827,750 | 3,824,060 | 3,616,950 | 4,043,030 | 3,760,580 | 3,538,120 | 3,997,040 |
| 1994 | 4,031,160 | 3,859,030 | 3,855,260 | 3,646,420 | 4,076,050 | 3,810,610 | 3,585,880 | 4,049,420 |
| 1995 | 3,762,690 | 3,597,700 | 3,593,880 | 3,393,940 | 3,805,600 | 3,562,460 | 3,347,020 | 3,791,780 |
| 1996 | 3,647,430 | 3,485,610 | 3,481,680 | 3,285,950 | 3,689,080 | 3,470,810 | 3,259,500 | 3,695,820 |
| 1997 | 3,671,430 | 3,507,960 | 3,504,160 | 3,306,000 | 3,714,200 | 3,502,830 | 3,289,140 | 3,730,400 |
| 1998 | 3,344,660 | 3,190,990 | 3,187,210 | 3,000,480 | 3,385,560 | 3,201,910 | 3,000,250 | 3,417,130 |
| 1999 | 3,114,080 | 2,969,190 | 2,965,470 | 2,787,620 | 3,154,680 | 2,990,320 | 2,798,060 | 3,195,790 |
| 2000 | 2,923,320 | 2,783,620 | 2,779,740 | 2,612,780 | 2,957,360 | 2,823,360 | 2,642,550 | 3,016,540 |
| 2001 | 2,907,760 | 2,765,330 | 2,761,120 | 2,592,280 | 2,940,970 | 2,815,840 | 2,632,980 | 3,011,400 |


| 2002 | $2,951,050$ | $2,804,630$ | $2,800,310$ | $2,631,690$ | $2,979,740$ | $2,868,870$ | $2,686,660$ | $3,063,430$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2003 | $3,243,010$ | $3,078,120$ | $3,073,280$ | $2,890,510$ | $3,267,600$ | $3,167,540$ | $2,970,430$ | $3,377,720$ |
| 2004 | $3,363,450$ | $3,186,450$ | $3,181,460$ | $2,993,460$ | $3,381,260$ | $3,292,090$ | $3,090,130$ | $3,507,250$ |
| 2005 | $3,430,080$ | $3,242,780$ | $3,237,880$ | $3,047,180$ | $3,440,520$ | $3,352,180$ | $3,148,770$ | $3,568,730$ |
| 2006 | $3,440,340$ | $3,251,830$ | $3,246,710$ | $3,053,500$ | $3,452,150$ | $3,376,190$ | $3,170,750$ | $3,594,950$ |
| 2007 | $3,348,810$ | $3,162,960$ | $3,157,800$ | $2,968,340$ | $3,359,350$ | $3,294,640$ | $3,094,340$ | $3,507,900$ |
| 2008 | $3,178,680$ | $3,001,990$ | $2,996,540$ | $2,813,730$ | $3,191,240$ | $3,152,100$ | $2,959,080$ | $3,357,720$ |
| 2009 | $3,183,490$ | $3,001,720$ | $2,996,050$ | $2,807,080$ | $3,197,740$ | $3,167,340$ | $2,968,750$ | $3,379,220$ |
| 2010 | $3,310,990$ | $3,123,860$ | $3,117,510$ | $2,916,670$ | $3,332,180$ | $3,308,680$ | $3,098,900$ | $3,532,670$ |
| 2011 | $3,233,080$ | $3,059,290$ | $3,052,500$ | $2,852,780$ | $3,266,210$ | $3,259,250$ | $3,052,370$ | $3,480,140$ |
| 2012 | $3,057,680$ | $2,893,680$ | $2,887,020$ | $2,690,050$ | $3,098,410$ | $3,089,540$ | $2,887,330$ | $3,305,910$ |
| 2013 | $2,918,060$ | $2,763,740$ | $2,756,680$ | $2,560,950$ | $2,967,370$ | $2,971,180$ | $2,771,560$ | $3,185,170$ |
| 2014 | $2,869,780$ | $2,717,150$ | $2,709,250$ | $2,506,790$ | $2,928,060$ | $2,947,440$ | $2,742,400$ | $3,167,800$ |
| 2015 | $2,844,510$ | $2,690,820$ | $2,682,360$ | $2,471,100$ | $2,911,690$ | $2,936,120$ | $2,723,710$ | $3,165,090$ |
| 2016 | $2,876,990$ | $2,724,530$ | $2,715,330$ | $2,492,840$ | $2,957,670$ | $2,983,790$ | $2,762,980$ | $3,222,240$ |
| 2017 | $2,901,320$ | $2,740,640$ | $2,730,420$ | $2,495,100$ | $2,987,940$ | $3,018,220$ | $2,786,310$ | $3,269,420$ |
| 2018 | $2,695,360$ | $2,551,750$ | $2,541,510$ | $2,313,290$ | $2,792,240$ | $2,809,720$ | $2,588,860$ | $3,049,420$ |
| 2019 | $2,894,520$ | $2,757,350$ | $2,745,490$ | $2,487,390$ | $3,030,370$ | $3,010,490$ | $2,767,080$ | $3,275,330$ |
| 2020 | $2,972,280$ | $2,846,760$ | $2,833,460$ | $2,553,690$ | $3,143,880$ | $3,065,090$ | $2,809,520$ | $3,343,920$ |
| 2021 | $3,371,550$ | $3,291,390$ | $3,274,840$ | $2,925,680$ | $3,665,670$ | $3,443,250$ | $3,139,710$ | $3,776,150$ |
| 2022 |  | $3,704,690$ | $3,685,130$ | $3,251,160$ | $4,177,030$ | $3,782,420$ | $3,411,860$ | $4,193,220$ |

Table 11: Yellowfin sole design-based biomass estimates ( t ) from the northern Bering Sea survey, with upper and lower $95 \%$ confidence intervals, as well as number of hauls, hauls with yellowfin sole, and hauls in which length data was obtained.

| Year | Biomass (t) | LCI | HCI | Haul count | Hauls with catch | Number count | Length count |
| ---: | :--- | :--- | :--- | ---: | ---: | ---: | ---: |
| 2010 | 310,617 | 215,238 | 405,997 | 108 | 88 | 88 | 88 |
| 2017 | 368,156 | 254,797 | 481,515 | 110 | 98 | 98 | 97 |
| 2018 | 373,373 | 240,861 | 505,885 | 49 | 49 | 49 | 49 |
| 2019 | 520,029 | 398,122 | 641,936 | 144 | 141 | 141 | 140 |
| 2021 | 496,038 | 394,385 | 394,385 | 144 | 138 | 138 | 137 |
| 2022 | 548,027 | 369,505 | 726,549 | 144 | 136 | 135 | 135 |

Table 12: Yellowfin sole population numbers-at-age (millions) estimated from the annual EBS bottom trawl surveys, 1987-2021 (Current year data is not yet available and there was no survey in 2020). Data in years 1987 or later come from the 'plusnw' extended survey area. Females are presented first, followed by males. Continued on next page.

| Year | Age (Females) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17+ |
| 1987 | 0 | 0 | 68 | 117 | 786 | 446 | 821 | 252 | 364 | 580 | 344 | 434 | 234 | 261 | 238 | 174 |
| 1988 | 0 | 0 | 6 | 344 | 65 | 1,363 | 501 | 498 | 164 | 214 | 317 | 187 | 325 | 246 | 198 | 152 |
| 1989 | 0 | 0 | 14 | 98 | 720 | 234 | 1,341 | 596 | 449 | 74 | 180 | 309 | 235 | 239 | 184 | 82 |
| 1990 | 0 | 0 | 70 | 102 | 326 | 1,072 | 193 | 1,263 | 410 | 484 | 101 | 72 | 107 | 78 | 232 | 127 |
| 1991 | 0 | 9 | 127 | 249 | 123 | 407 | 899 | 151 | 1,267 | 213 | 527 | 62 | 128 | 87 | 123 | 164 |
| 1992 | 0 | 18 | 239 | 464 | 499 | 203 | 274 | 899 | 91 | 794 | 72 | 297 | 124 | 131 | 163 | 104 |
| 1993 | 0 | 24 | 100 | 360 | 639 | 437 | 270 | 226 | 1,323 | 78 | 872 | 157 | 166 | 69 | 68 | 91 |
| 1994 | 0 | 53 | 95 | 223 | 518 | 906 | 556 | 482 | 284 | 1,172 | 0 | 516 | 43 | 274 | 142 | 41 |
| 1995 | 0 | 19 | 153 | 290 | 182 | 896 | 632 | 276 | 136 | 25 | 638 | 20 | 565 | 104 | 80 | 97 |
| 1996 | 0 | 15 | 150 | 793 | 280 | 270 | 421 | 501 | 199 | 141 | 146 | 583 | 112 | 616 | 44 | 29 |
| 1997 | 0 | 18 | 326 | 506 | 729 | 257 | 240 | 507 | 229 | 114 | 177 | 184 | 502 | 44 | 315 | 75 |
| 1998 | 0 | 9 | 79 | 455 | 401 | 859 | 248 | 194 | 352 | 393 | 351 | 161 | 167 | 252 | 63 | 397 |
| 1999 | 0 | 3 | 62 | 189 | 168 | 179 | 704 | 100 | 104 | 238 | 184 | 180 | 70 | 99 | 170 | 102 |
| 2000 | 0 | 11 | 54 | 249 | 209 | 307 | 448 | 543 | 191 | 200 | 240 | 221 | 65 | 118 | 146 | 110 |
| 2001 | 0 | 1 | 66 | 221 | 478 | 225 | 363 | 371 | 584 | 333 | 74 | 172 | 138 | 114 | 170 | 99 |
| 2002 | 0 | 15 | 119 | 163 | 243 | 747 | 325 | 273 | 215 | 433 | 209 | 85 | 290 | 109 | 143 | 137 |
| 2003 | 0 | 15 | 114 | 236 | 243 | 278 | 1,111 | 218 | 269 | 276 | 242 | 99 | 111 | 163 | 161 | 83 |
| 2004 | 10 | 33 | 197 | 442 | 572 | 417 | 218 | 976 | 224 | 213 | 222 | 222 | 107 | 20 | 169 | 187 |
| 2005 | 0 | 53 | 168 | 195 | 588 | 414 | 231 | 473 | 877 | 221 | 137 | 184 | 336 | 164 | 50 | 181 |
| 2006 | 8 | 67 | 304 | 378 | 277 | 637 | 472 | 177 | 327 | 741 | 133 | 133 | 71 | 157 | 176 | 1 |
| 2007 | 0 | 37 | 519 | 349 | 384 | 276 | 505 | 309 | 124 | 228 | 507 | 119 | 138 | 127 | 105 | 77 |
| 2008 | 0 | 23 | 115 | 741 | 624 | 545 | 357 | 361 | 196 | 128 | 255 | 355 | 151 | 78 | 85 | 119 |
| 2009 | 5 | 37 | 205 | 205 | 1,199 | 600 | 495 | 266 | 211 | 219 | 130 | 139 | 197 | 89 | 43 | 1 |
| 2010 | 0 | 33 | 330 | 389 | 441 | 902 | 558 | 520 | 331 | 338 | 155 | 167 | 136 | 174 | 99 | 49 |
| 2011 | 0 | 14 | 245 | 543 | 712 | 466 | 775 | 413 | 460 | 205 | 227 | 149 | 143 | 145 | 187 | 99 |
| 2012 | 10 | 50 | 231 | 397 | 508 | 295 | 244 | 758 | 257 | 336 | 107 | 157 | 37 | 151 | 128 | 150 |
| 2013 | 0 | 4 | 89 | 271 | 423 | 535 | 257 | 221 | 411 | 408 | 360 | 120 | 135 | 133 | 133 | 94 |
| 2014 | 0 | 0 | 37 | 424 | 386 | 250 | 422 | 232 | 229 | 526 | 343 | 161 | 145 | 230 | 34 | 123 |
| 2015 | 0 | 22 | 3 | 168 | 470 | 352 | 309 | 289 | 250 | 150 | 283 | 260 | 135 | 99 | 80 | 68 |
| 2016 | 0 | 32 | 71 | 45 | 165 | 748 | 568 | 405 | 365 | 301 | 144 | 246 | 230 | 140 | 163 | 170 |
| 2017 | 16 | 79 | 384 | 381 | 122 | 319 | 1,007 | 484 | 337 | 379 | 229 | 149 | 203 | 201 | 149 | 118 |
| 2018 | 0 | 49 | 182 | 262 | 178 | 91 | 265 | 641 | 326 | 231 | 81 | 76 | 41 | 124 | 99 | 103 |
| 2019 | 1 | 124 | 209 | 309 | 156 | 241 | 79 | 211 | 548 | 360 | 130 | 160 | 125 | 123 | 72 | 43 |
| 2021 | 0 | 258 | 100 | 1,450 | 457 | 317 | 123 | 176 | 94 | 157 | 162 | 108 | 105 | 67 | 54 | 61 |


| Year | Age (Males) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17+ |
| 1987 | 0 | 4 | 39 | 104 | 820 | 456 | 655 | 430 | 316 | 267 | 202 | 142 | 102 | 136 | 177 | 211 |
| 1988 | 0 | 1 | 9 | 413 | 45 | 1,087 | 507 | 406 | 77 | 171 | 25 | 163 | 308 | 173 | 25 | 106 |
| 1989 | 0 | 2 | 23 | 181 | 789 | 177 | 1,310 | 515 | 358 | 135 | 50 | 104 | 53 | 205 | 35 | 38 |
| 1990 | 0 | 10 | 47 | 121 | 318 | 894 | 196 | 1,151 | 319 | 265 | 39 | 65 | 67 | 24 | 54 | 73 |
| 1991 | 0 | 0 | 103 | 357 | 140 | 277 | 1,051 | 68 | 1,143 | 330 | 245 | 74 | 64 | 60 | 53 | 91 |
| 1992 | 0 | 0 | 141 | 428 | 542 | 251 | 216 | 778 | 109 | 875 | 186 | 206 | 11 | 12 | 59 | 37 |
| 1993 | 0 | 20 | 52 | 235 | 651 | 396 | 280 | 248 | 1,105 | 70 | 849 | 53 | 53 | 50 | 0 | 48 |
| 1994 | 4 | 21 | 71 | 166 | 427 | 954 | 657 | 308 | 191 | 824 | 25 | 623 | 45 | 132 | 11 | 36 |
| 1995 | 0 | 0 | 170 | 120 | 272 | 672 | 570 | 95 | 181 | 75 | 481 | 13 | 608 | 49 | 24 | 77 |
| 1996 | 0 | 74 | 92 | 822 | 238 | 220 | 413 | 335 | 321 | 137 | 135 | 388 | 58 | 436 | 122 | 92 |
| 1997 | 0 | 9 | 216 | 428 | 803 | 182 | 184 | 449 | 246 | 195 | 215 | 109 | 518 | 79 | 266 | 31 |
| 1998 | 0 | 46 | 66 | 335 | 546 | 796 | 151 | 215 | 193 | 258 | 328 | 142 | 149 | 178 | 107 | 250 |
| 1999 | 0 | 5 | 96 | 136 | 216 | 234 | 555 | 141 | 91 | 299 | 261 | 72 | 51 | 27 | 115 | 34 |
| 2000 | 0 | 0 | 35 | 220 | 261 | 144 | 514 | 589 | 79 | 217 | 134 | 77 | 93 | 78 | 66 | 154 |
| 2001 | 0 | 0 | 81 | 130 | 604 | 309 | 341 | 324 | 513 | 190 | 80 | 144 | 59 | 67 | 129 | 55 |
| 2002 | 0 | 56 | 70 | 152 | 297 | 726 | 303 | 315 | 247 | 419 | 183 | 134 | 207 | 151 | 124 | 20 |
| 2003 | 0 | 23 | 93 | 174 | 251 | 244 | 1,046 | 231 | 354 | 51 | 277 | 168 | 9 | 69 | 56 | 104 |
| 2004 | 4 | 64 | 116 | 477 | 454 | 201 | 400 | 1,005 | 267 | 82 | 198 | 226 | 104 | 48 | 253 | 104 |
| 2005 | 0 | 48 | 167 | 179 | 453 | 458 | 239 | 297 | 1,007 | 123 | 139 | 118 | 131 | 68 | 91 | 126 |
| 2006 | 0 | 101 | 174 | 350 | 333 | 508 | 395 | 289 | 300 | 386 | 117 | 156 | 90 | 39 | 11 | 55 |
| 2007 | 0 | 58 | 485 | 355 | 408 | 285 | 549 | 210 | 166 | 268 | 336 | 100 | 132 | 70 | 59 | 123 |
| 2008 | 0 | 10 | 100 | 667 | 465 | 486 | 346 | 455 | 226 | 145 | 186 | 331 | 63 | 66 | 34 | 104 |
| 2009 | 0 | 65 | 145 | 292 | 960 | 467 | 548 | 249 | 251 | 218 | 78 | 31 | 196 | 30 | 29 | 51 |
| 2010 | 0 | 78 | 201 | 421 | 373 | 1,040 | 466 | 514 | 173 | 190 | 160 | 53 | 117 | 152 | 79 | 53 |
| 2011 | 0 | 6 | 151 | 388 | 486 | 360 | 798 | 401 | 226 | 177 | 78 | 81 | 137 | 103 | 157 | 97 |
| 2012 | 0 | 69 | 276 | 355 | 348 | 277 | 241 | 429 | 300 | 181 | 98 | 67 | 91 | 34 | 100 | 59 |
| 2013 | 0 | 6 | 92 | 369 | 387 | 485 | 212 | 270 | 448 | 201 | 202 | 33 | 89 | 100 | 118 | 18 |
| 2014 | 0 | 0 | 8 | 368 | 399 | 288 | 341 | 312 | 253 | 403 | 207 | 194 | 20 | 193 | 94 | 108 |
| 2015 | 0 | 29 | 36 | 132 | 430 | 335 | 303 | 314 | 320 | 48 | 181 | 131 | 81 | 0 | 80 | 111 |
| 2016 | 0 | 43 | 85 | 20 | 142 | 709 | 548 | 404 | 369 | 126 | 118 | 228 | 181 | 88 | 35 | 92 |
| 2017 | 9 | 121 | 233 | 399 | 107 | 262 | 886 | 501 | 312 | 277 | 196 | 108 | 217 | 156 | 37 | 12 |
| 2018 | 0 | 39 | 175 | 188 | 229 | 72 | 236 | 523 | 261 | 189 | 95 | 77 | 73 | 75 | 69 | 29 |
| 2019 | 0 | 136 | 252 | 234 | 103 | 272 | 109 | 148 | 491 | 271 | 130 | 155 | 84 | 68 | 57 | 94 |
| 2021 | 0 | 52 | 189 | 1,079 | 517 | 373 | 87 | 106 | 69 | 84 | 158 | 42 | 62 | 37 | 41 | 55 |

Table 13: Mean unsmoothed weight-at-age (grams) for yellowfin sole, based on survey data, females, 1964-2022, except 2020.

| Year | Age (Females) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 1964 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 | 590 |
| 1965 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 | 590 |
| 1966 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 | 590 |
| 1967 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 | 590 |
| 1968 | , | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 | 590 |
| 1969 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 | 590 |
| 1970 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 | 590 |
| 1971 | , | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 | 590 |
| 1972 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 | 590 |
| 1973 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 | 590 |
| 1974 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 | 590 |
| 1975 | 8 | 20 | 31 | 55 | 84 | 124 | 165 | 217 | 266 | 301 | 341 | 374 | 407 | 428 | 443 | 480 | 483 | 499 | 590 | 590 |
| 1976 | 8 | 20 | 31 | 55 | 84 | 124 | 165 | 217 | 266 | 301 | 341 | 374 | 407 | 428 | 443 | 480 | 483 | 499 | 590 | 590 |
| 1977 | 8 | 20 | 31 | 55 | 84 | 124 | 165 | 217 | 266 | 301 | 341 | 374 | 407 | 428 | 443 | 480 | 483 | 499 | 590 | 590 |
| 1978 | 8 | 20 | 31 | 55 | 84 | 124 | 165 | 217 | 266 | 301 | 341 | 374 | 407 | 428 | 443 | 480 | 483 | 499 | 590 | 590 |
| 1979 | 8 | 20 | 31 | 55 | 84 | 124 | 165 | 217 | 266 | 301 | 341 | 374 | 407 | 428 | 443 | 480 | 483 | 499 | 590 | 590 |
| 1980 | 8 | 20 | 31 | 55 | 84 | 124 | 165 | 217 | 266 | 301 | 341 | 374 | 407 | 428 | 443 | 480 | 483 | 499 | 590 | 590 |
| 1981 | 8 | 20 | 31 | 55 | 84 | 124 | 165 | 217 | 266 | 301 | 341 | 374 | 407 | 428 | 443 | 480 | 483 | 499 | 590 | 590 |
| 1982 | 8 | 20 | 42 | 75 | 98 | 139 | 176 | 214 | 233 | 235 | 331 | 359 | 393 | 410 | 436 | 482 | 470 | 476 | 586 | 590 |
| 1983 | 10 | 14 | 26 | 60 | 103 | 162 | 185 | 201 | 243 | 255 | 318 | 350 | 391 | 419 | 455 | 503 | 489 | 503 | 605 | 590 |
| 1984 | 14 | 26 | 33 | 57 | 110 | 156 | 177 | 222 | 246 | 294 | 318 | 342 | 375 | 418 | 453 | 498 | 492 | 536 | 617 | 590 |
| 1985 | 11 | 16 | 28 | 46 | 77 | 177 | 202 | 251 | 286 | 302 | 314 | 341 | 367 | 417 | 450 | 502 | 520 | 556 | 623 | 590 |
| 1986 | 14 | 27 | 23 | 41 | 71 | 103 | 173 | 239 | 284 | 338 | 314 | 336 | 366 | 401 | 439 | 490 | 511 | 547 | 628 | 590 |
| 1987 | 10 | 14 | 20 | 47 | 55 | 127 | 179 | 256 | 317 | 324 | 331 | 351 | 375 | 411 | 443 | 475 | 519 | 557 | 619 | 590 |
| 1988 | 9 | 12 | 16 | 34 | 66 | 85 | 159 | 237 | 286 | 307 | 351 | 364 | 377 | 393 | 418 | 446 | 490 | 528 | 597 | 590 |
| 1989 | 12 | 21 | 33 | 67 | 71 | 112 | 133 | 197 | 279 | 339 | 364 | 384 | 402 | 400 | 422 | 445 | 506 | 490 | 570 | 590 |
| 1990 | 11 | 17 | 24 | 38 | 65 | 99 | 126 | 197 | 243 | 321 | 389 | 400 | 411 | 405 | 430 | 436 | 475 | 475 | 559 | 590 |
| 1991 | 11 | 16 | 23 | 58 | 56 | 100 | 142 | 156 | 238 | 310 | 394 | 421 | 420 | 429 | 446 | 450 | 486 | 481 | 557 | 590 |
| 1992 | 12 | 21 | 29 | 55 | 85 | 121 | 177 | 176 | 283 | 305 | 377 | 417 | 430 | 456 | 454 | 464 | 498 | 485 | 562 | 590 |
| 1993 | 15 | 28 | 35 | 64 | 93 | 155 | 165 | 232 | 244 | 301 | 368 | 411 | 438 | 469 | 470 | 477 | 506 | 496 | 563 | 90 |
| 1994 | 20 | 46 | 53 | 86 | 87 | 125 | 155 | 235 | 276 | 284 | 355 | 405 | 418 | 470 | 472 | 482 | 486 | 504 | 571 | 590 |
| 1995 | 12 | 20 | 28 | 60 | 84 | 123 | 160 | 217 | 284 | 332 | 333 | 403 | 412 | 463 | 470 | 478 | 515 | 495 | 575 | 590 |
| 1996 | 11 | 16 | 36 | 51 | 108 | 137 | 167 | 202 | 222 | 311 | 322 | 379 | 403 | 448 | 461 | 487 | 509 | 503 | 567 | 90 |
| 1997 | 16 | 34 | 33 | 72 | 85 | 157 | 200 | 236 | 260 | 292 | 336 | 383 | 397 | 439 | 457 | 488 | 492 | 514 | 577 | 590 |
| 1998 | 10 | 14 | 36 | 51 | 90 | 104 | 177 | 237 | 278 | 279 | 333 | 383 | 391 | 430 | 439 | 478 | 479 | 513 | 576 | 590 |
| 1999 | 9 | 12 | 18 | 37 | 67 | 103 | 131 | 239 | 284 | 296 | 331 | 374 | 398 | 417 | 429 | 474 | 484 | 506 | 593 | 90 |
| 2000 | 6 | 8 | 14 | 33 | 36 | 92 | 142 | 192 | 211 | 231 | 294 | 336 | 378 | 361 | 393 | 458 | 491 | 522 | 505 | 609 |
| 2001 | 6 | 4 |  | 31 | 39 | 62 | 99 | 148 | 195 | 242 | 284 | 383 | 392 | 436 | 424 | 442 | 474 | 528 | 530 | 663 |
| 2002 | 6 | 8 | 19 | 27 | 45 | 66 | 105 | 156 | 229 | 246 | 276 | 343 | 328 | 394 | 451 | 480 | 504 | 552 | 560 | 631 |
| 2003 | 6 | 8 | 14 | 29 | 56 | 87 | 127 | 171 | 224 | 299 | 328 | 357 | 413 | 454 | 417 | 505 | 374 | 600 | 575 | 652 |
| 2004 | 6 | 8 | 14 | 38 | 64 | 101 | 163 | 162 | 231 | 300 | 328 | 359 | 440 | 524 | 551 | 476 | 485 | 500 | 500 | 654 |
| 2005 | 6 | 4 | 21 | 40 | 72 | 114 | 156 | 217 | 236 | 284 | 349 | 356 | 377 | 464 | 509 | 505 | 612 | 472 | 620 | 693 |
| 2006 | 6 | 6 | 16 | 36 | 76 | 114 | 149 | 206 | 236 | 303 | 308 | 360 | 368 | 592 | 493 | 495 | 532 | 568 | 618 | 740 |
| 2007 | 6 | 8 | 16 | 38 | 70 | 113 | 170 | 196 | 239 | 330 | 304 | 351 | 361 | 406 | 456 | 466 | 558 | 568 | 683 | 740 |
| 2008 | 6 | 8 | 24 | 31 | 57 | 106 | 140 | 203 | 239 | 281 | 309 | 345 | 395 | 432 | 422 | 501 | 567 | 555 | 594 | 660 |
| 2009 | 6 | 6 | 10 | 22 | 51 | 92 | 142 | 182 | 248 | 321 | 334 | 377 | 434 | 429 | 433 | 575 | 874 | 556 | 565 | 697 |
| 2010 | 6 | 2 | 16 | 25 | 57 | 84 | 136 | 186 | 218 | 343 | 337 | 403 | 446 | 460 | 517 | 557 | 594 | 620 | 744 | 795 |
| 2011 | 6 | 8 | 12 | 30 | 49 | 92 | 145 | 210 | 264 | 318 | 329 | 405 | 419 | 441 | 448 | 621 | 534 | 516 | 623 | 696 |
| 2012 | 6 | 6 | 11 | 27 | 53 | 91 | 146 | 167 | 258 | 317 | 367 | 321 | 452 | 529 | 502 | 514 | 562 | 654 | 598 | 730 |
| 2013 | , | 8 | 12 | 21 | 40 | 102 | 131 | 195 | 275 | 318 | 366 | 399 | 415 | 474 | 473 | 518 | 550 | 555 | 606 | 702 |
| 2014 | 6 | 8 | 19 | 16 | 37 | 85 | 145 | 201 | 252 | 306 | 368 | 360 | 428 | 421 | 495 | 592 | 536 | 577 | 570 | 715 |
| 2015 | 6 | 8 | 15 | 12 | 40 | 62 | 130 | 215 | 262 | 355 | 418 | 437 | 411 | 484 | 474 | 596 | 647 | 593 | 531 | 731 |
| 2016 | 6 | 12 | 25 | 37 | 69 | 86 | 130 | 211 | 329 | 378 | 417 | 415 | 517 | 465 | 509 | 522 | 581 | 580 | 618 | 723 |
| 2017 | 6 | 9 | 19 | 51 | 69 | 118 | 143 | 187 | 273 | 366 | 382 | 436 | 536 | 503 | 553 | 647 | 601 | 701 | 585 | 824 |
| 2018 | 6 | 8 | 22 | 39 | 88 | 111 | 163 | 236 | 248 | 346 | 421 | 447 | 504 | 478 | 542 | 606 | 586 | 571 | 717 | 677 |
| 2019 | 6 | 6 | 21 | 47 | 92 | 160 | 180 | 254 | 277 | 346 | 404 | 583 | 503 | 505 | 570 | 680 | 701 | 673 | 698 | 720 |
| 2021 | 6 | 6 | 21 | 47 | 92 | 160 | 180 | 254 | 277 | 346 | 404 | 583 | 503 | 505 | 570 | 680 | 701 | 673 | 698 | 720 |
| 2022 | 6 | 6 | 21 | 43 | 103 | 188 | 248 | 321 | 365 | 453 | 438 | 478 | 540 | 564 | 592 | 637 | 602 | 635 | 650 | 667 |

Table 14: Mean unsmoothed weight-at-age (grams) for yellowfin sole, based on survey data, males, 1964-2022, except 2020, continued on next page.

| Year | Age (Females) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 964 | 0 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 |
| 1965 | 0 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 |
| 1966 | 0 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 |
| 1967 | 0 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 |
| 1968 | 0 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 |
| 1969 | 0 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 |
| 1970 | 0 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 |
| 1971 | 0 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 |
| 1972 | 0 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 |
| 1973 | 0 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 |
| 1974 | 0 | 4 | 15 | 34 | 60 | 91 | 125 | 160 | 195 | 230 | 263 | 294 | 322 | 348 | 372 | 393 | 412 | 429 | 444 | 481 |
| 1975 | 4 | 14 | 18 | 32 | 54 | 85 | 120 | 156 | 193 | 225 | 253 | 280 | 303 | 324 | 330 | 344 | 355 | 366 | 390 | 423 |
| 1976 | 4 | 14 | 18 | 32 | 54 | 85 | 120 | 156 | 193 | 225 | 253 | 280 | 303 | 324 | 330 | 344 | 355 | 366 | 390 | 423 |
| 1977 | 4 | 14 | 18 | 32 | 54 | 85 | 120 | 156 | 193 | 225 | 253 | 280 | 303 | 324 | 330 | 344 | 355 | 366 | 390 | 423 |
| 1978 | 4 | 14 | 18 | 32 | 54 | 85 | 120 | 156 | 193 | 225 | 253 | 280 | 303 | 324 | 330 | 344 | 355 | 366 | 390 | 423 |
| 1979 | 4 | 14 | 18 | 32 | 54 | 85 | 120 | 156 | 193 | 225 | 253 | 280 | 303 | 324 | 330 | 344 | 355 | 366 | 390 | 423 |
| 1980 | 4 | 14 | 18 | 32 | 54 | 85 | 120 | 156 | 193 | 225 | 253 | 280 | 303 | 324 | 330 | 344 | 355 | 366 | 390 | 423 |
| 1981 | 4 | 14 | 18 | 32 | 54 | 85 | 120 | 156 | 193 | 225 | 253 | 280 | 303 | 324 | 330 | 344 | 355 | 366 | 390 | 423 |
| 1982 | 4 | 11 | 25 | 50 | 83 | 112 | 133 | 142 | 158 | 182 | 242 | 266 | 286 | 309 | 345 | 352 | 361 | 384 | 418 | 420 |
| 1983 | 4 | 5 | 5 | 23 | 57 | 95 | 156 | 156 | 155 | 176 | 233 | 256 | 271 | 295 | 331 | 341 | 344 | 385 | 414 | 417 |
| 1984 | 4 | 10 | 20 | 31 | 57 | 121 | 150 | 181 | 202 | 193 | 223 | 242 | 259 | 281 | 316 | 325 | 330 | 394 | 394 | 406 |
| 1985 | 4 | 11 | 23 | 32 | 51 | 84 | 148 | 186 | 214 | 227 | 218 | 236 | 254 | 269 | 307 | 317 | 340 | 399 | 423 | 399 |
| 1986 | 4 | 9 | 18 | 27 | 34 | 61 | 98 | 176 | 217 | 233 | 215 | 225 | 248 | 257 | 293 | 313 | 322 | 389 | 405 | 389 |
| 1987 | 4 | 8 | 14 | 17 | 27 | 53 | 97 | 157 | 211 | 226 | 228 | 236 | 266 | 269 | 267 | 294 | 306 | 358 | 364 | 386 |
| 1988 | 4 | 7 | 10 | 18 | 45 | 75 | 76 | 138 | 207 | 242 | 238 | 252 | 281 | 278 | 283 | 297 | 314 | 347 | 355 | 381 |
| 1989 | 4 | 7 | 10 | 27 | 47 | 72 | 142 | 130 | 179 | 244 | 252 | 279 | 300 | 298 | 295 | 305 | 336 | 325 | 370 | 377 |
| 1990 | 4 | 9 | 16 | 22 | 44 | 64 | 98 | 120 | 175 | 197 | 261 | 295 | 312 | 309 | 305 | 301 | 324 | 318 | 332 | 377 |
| 1991 | 4 | 9 | 17 | 29 | 51 | 75 | 100 | 132 | 180 | 212 | 266 | 302 | 323 | 328 | 319 | 308 | 341 | 315 | 378 | 379 |
| 1992 | 4 | 9 | 17 | 28 | 53 | 86 | 97 | 125 | 174 | 208 | 262 | 302 | 322 | 368 | 345 | 329 | 349 | 328 | 394 | 373 |
| 1993 | 4 | 9 | 18 | 45 | 56 | 93 | 135 | 145 | 206 | 209 | 257 | 294 | 339 | 369 | 347 | 341 | 362 | 335 | 397 | 372 |
| 1994 | 4 | 23 | 32 | 53 | 76 | 92 | 116 | 182 | 198 | 207 | 255 | 291 | 334 | 367 | 353 | 362 | 355 | 369 | 394 | 387 |
| 1995 | 4 | 10 | 19 | 32 | 59 | 88 | 110 | 154 | 177 | 207 | 250 | 278 | 333 | 361 | 349 | 380 | 359 | 375 | 406 | 399 |
| 1996 | 4 | 10 | 19 | 32 | 54 | 107 | 134 | 163 | 184 | 215 | 241 | 277 | 324 | 349 | 347 | 374 | 355 | 398 | 365 | 410 |
| 1997 | 4 | 8 | 14 | 37 | 64 | 75 | 149 | 174 | 185 | 239 | 240 | 274 | 315 | 308 | 335 | 362 | 363 | 400 | 353 | 427 |
| 1998 | 4 | 10 | 20 | 27 | 49 | 79 | 113 | 156 | 208 | 207 | 244 | 274 | 296 | 308 | 324 | 356 | 354 | 401 | 354 | 429 |
| 1999 | 4 | 6 | 7 | 18 | 37 | 63 | 95 | 123 | 170 | 171 | 241 | 263 | 287 | 292 | 324 | 340 | 362 | 375 | 355 | 434 |
| 2000 | 4 | 8 | 33 | 30 | 34 | 71 | 105 | 157 | 162 | 244 | 218 | 245 | 266 | 272 | 288 | 335 | 304 | 342 | 364 | 428 |
| 2001 | 4 | 8 | 20 | 22 | 32 | 49 | 95 | 151 | 170 | 196 | 244 | 259 | 296 | 299 | 313 | 307 | 362 | 436 | 447 | 410 |
| 2002 | 4 | 8 | 17 | 22 | 53 | 58 | 91 | 146 | 204 | 213 | 232 | 257 | 274 | 309 | 345 | 362 | 334 | 383 | 440 | 423 |
| 2003 | 4 | 8 | 27 | 39 | 53 | 83 | 112 | 170 | 189 | 250 | 265 | 308 | 267 | 443 | 407 | 370 | 360 | 367 | 381 | 469 |
| 2004 | 4 | 8 | 14 | 36 | 59 | 95 | 150 | 158 | 207 | 260 | 321 | 311 | 311 | 368 | 469 | 384 | 414 | 392 | 465 | 464 |
| 2005 | 4 | 4 | 19 | 40 | 72 | 115 | 134 | 162 | 206 | 265 | 291 | 334 | 395 | 312 | 310 | 364 | 391 | 374 | 418 | 446 |
| 2006 | 4 | 8 | 18 | 32 | 67 | 118 | 144 | 183 | 207 | 237 | 233 | 318 | 350 | 417 | 452 | 438 | 352 | 343 | 380 | 449 |
| 2007 | 4 | 8 | 17 | 33 | 67 | 105 | 139 | 177 | 208 | 244 | 287 | 282 | 302 | 351 | 408 | 369 | 339 | 381 | 400 | 449 |
| 2008 | 4 | 8 | 8 | 27 | 50 | 95 | 121 | 181 | 192 | 244 | 270 | 298 | 312 | 346 | 384 | 405 | 373 | 399 | 436 | 481 |
| 2009 | 4 | 8 | 10 | 20 | 42 | 85 | 128 | 155 | 200 | 287 | 276 | 316 | 399 | 338 | 430 | 308 | 439 | 384 | 369 | 481 |
| 2010 | 4 | 8 | 13 | 24 | 48 | 80 | 141 | 167 | 183 | 302 | 315 | 322 | 356 | 414 | 402 | 401 | 417 | 512 | 461 | 501 |
| 2011 | 4 | 4 | 11 | 31 | 59 | 88 | 133 | 188 | 227 | 262 | 341 | 302 | 398 | 338 | 381 | 445 | 409 | 416 | 440 | 523 |
| 2012 | 4 | 8 | 12 | 27 | 53 | 88 | 126 | 183 | 216 | 256 | 283 | 320 | 292 | 422 | 420 | 387 | 431 | 393 | 355 | 475 |
| 2013 | 4 | 8 | 12 | 20 | 41 | 77 | 131 | 189 | 228 | 267 | 269 | 346 | 275 | 371 | 383 | 420 | 456 | 407 | 395 | 487 |
| 2014 | 4 | 8 | 20 | 30 | 59 | 86 | 154 | 188 | 243 | 292 | 313 | 311 | 321 | 332 | 424 | 466 | 429 | 527 | 492 | 495 |
| 2015 | 4 | 6 | 19 | 25 | 38 | 64 | 135 | 202 | 230 | 321 | 361 | 386 | 368 | 367 | 400 | 432 | 445 | 537 | 563 | 494 |
| 2016 | 4 | 8 | 33 | 46 | 50 | 83 | 127 | 190 | 260 | 332 | 327 | 340 | 406 | 394 | 416 | 409 | 443 | 474 | 375 | 505 |
| 2017 | 4 | 8 | 21 | 46 | 76 | 102 | 110 | 170 | 247 | 311 | 347 | 367 | 404 | 380 | 466 | 483 | 614 | 577 | 496 | 573 |
| 2018 | 4 | 8 | 23 | 45 | 89 | 95 | 161 | 178 | 221 | 276 | 316 | 403 | 384 | 435 | 421 | 386 | 424 | 431 | 548 | 484 |
| 2019 | 4 | 8 | 20 | 48 | 97 | 126 | 195 | 206 | 237 | 280 | 324 | 384 | 377 | 384 | 431 | 464 | 434 | 454 | 464 | 507 |
| 2021 | 4 | 8 | 20 | 48 | 97 | 126 | 195 | 206 | 237 | 280 | 324 | 384 | 377 | 384 | 431 | 464 | 434 | 454 | 464 | 507 |
| 2022 | 4 | 8 | 24 | 59 | 110 | 180 | 232 | 250 | 267 | 332 | 331 | 374 | 420 | 428 | 435 | 455 | 462 | 449 | 431 | 448 |

Table 15: Parameter values and their $95 \%$ confidence intervals, Model 18.2. Total biomass is presented from 1954-2022.

| Name | Value | Standard Deviation | Name | Value | Standard Deviation |
| :---: | :---: | :---: | :---: | :---: | :---: |
| male natural mortality | $1.3843 \mathrm{e}-01$ | $1.0888 \mathrm{e}-03$ | TotBiom | 3437.7 | 81.886 |
| alpha (q-temp model) | -2.0325e-01 | $3.3312 \mathrm{e}-02$ | TotBiom | 3621.8 | 85.921 |
| beta (q-temp model) | $6.3739 \mathrm{e}-02$ | $1.2623 \mathrm{e}-02$ | TotBiom | 3756.1 | 88.150 |
| beta (survey start date) | $1.1707 \mathrm{e}-02$ | $3.0215 \mathrm{e}-03$ | TotBiom | 3727.7 | 88.496 |
| beta (start date/temp interaction) | -9.4095e-03 | $2.8430 \mathrm{e}-03$ | TotBiom | 3983.8 | 94.274 |
| mean log recruitment | $9.6282 \mathrm{e}-01$ | $9.0866 \mathrm{e}-02$ | TotBiom | 4001.0 | 96.945 |
| log_avg_fmort | $-2.4112 \mathrm{e}+00$ | $7.6356 \mathrm{e}-02$ | TotBiom | 3689.4 | 93.533 |
| sel_slope_fsh_f | $1.2176 \mathrm{e}+00$ | $7.9392 \mathrm{e}-02$ | TotBiom | 3666.4 | 96.080 |
| sel50_fsh_f | $8.4508 \mathrm{e}+00$ | $2.3235 \mathrm{e}-01$ | TotBiom | 3548.1 | 95.307 |
| sel_slope_fsh_m | $1.3151 \mathrm{e}+00$ | $8.8023 \mathrm{e}-02$ | TotBiom | 3607.3 | 99.491 |
| sel50_fsh_m | $8.5455 \mathrm{e}+00$ | $2.3116 \mathrm{e}-01$ | TotBiom | 3449.4 | 97.283 |
| sel_slope_srv | $1.5759 \mathrm{e}+00$ | $5.7191 \mathrm{e}-02$ | TotBiom | 3559.6 | 99.820 |
| sel50_srv | $4.9501 \mathrm{e}+00$ | $4.6519 \mathrm{e}-02$ | TotBiom | 3773.8 | 105.100 |
| sel_slope_srv_m | $3.9196 \mathrm{e}-02$ | $4.8862 \mathrm{e}-02$ | TotBiom | 3827.7 | 107.320 |
| sel50_srv_m | -5.2061e-03 | $1.1410 \mathrm{e}-02$ | TotBiom | 3859.0 | 108.220 |
| q_srv | $7.3827 \mathrm{e}-01$ | $2.8123 \mathrm{e}-02$ | TotBiom | 3597.7 | 103.690 |
| ABC_biom | $5.6028 \mathrm{e}+03$ | $9.1855 \mathrm{e}+02$ | TotBiom | 3485.6 | 101.560 |
| ABC_biom | $5.8633 \mathrm{e}+03$ | $9.8860 \mathrm{e}+02$ | TotBiom | 3508.0 | 102.840 |
| Bmsy | $5.1525 \mathrm{e}+02$ | $8.2683 \mathrm{e}+01$ | TotBiom | 3191.0 | 97.020 |
| Bmsyr | $4.4708 \mathrm{e}+03$ | $4.9100 \mathrm{e}+02$ | TotBiom | 2969.2 | 92.479 |
| TotBiom | $2.5474 \mathrm{e}+03$ | $1.9356 \mathrm{e}+02$ | TotBiom | 2783.6 | 86.831 |
| TotBiom | $2.4979 \mathrm{e}+03$ | $1.7819 \mathrm{e}+02$ | TotBiom | 2765.3 | 87.869 |
| TotBiom | $2.4441 \mathrm{e}+03$ | $1.6075 \mathrm{e}+02$ | TotBiom | 2804.6 | 87.720 |
| TotBiom | $2.3864 \mathrm{e}+03$ | $1.4042 \mathrm{e}+02$ | TotBiom | 3078.1 | 95.052 |
| TotBiom | $2.3461 \mathrm{e}+03$ | $1.1637 \mathrm{e}+02$ | TotBiom | 3186.5 | 97.758 |
| TotBiom | $2.3051 \mathrm{e}+03$ | $8.9702 \mathrm{e}+01$ | TotBiom | 3242.8 | 99.158 |
| TotBiom | $2.1343 \mathrm{e}+03$ | $6.3593 \mathrm{e}+01$ | TotBiom | 3251.8 | 100.510 |
| TotBiom | $1.7000 \mathrm{e}+03$ | $4.0681 \mathrm{e}+01$ | TotBiom | 3163.0 | 98.598 |
| TotBiom | $1.1949 \mathrm{e}+03$ | $2.8426 \mathrm{e}+01$ | TotBiom | 3002.0 | 95.213 |
| TotBiom | $8.4345 \mathrm{e}+02$ | $1.8945 \mathrm{e}+01$ | TotBiom | 3001.7 | 98.532 |
| TotBiom | $8.8198 \mathrm{e}+02$ | $1.7713 \mathrm{e}+01$ | TotBiom | 3123.9 | 104.810 |
| TotBiom | $8.5656 \mathrm{e}+02$ | $1.7036 \mathrm{e}+01$ | TotBiom | 3059.3 | 104.310 |
| TotBiom | $9.0029 \mathrm{e}+02$ | $1.7556 \mathrm{e}+01$ | TotBiom | 2893.7 | 103.030 |
| TotBiom | $8.9101 \mathrm{e}+02$ | $1.7949 \mathrm{e}+01$ | TotBiom | 2763.7 | 102.550 |
| TotBiom | $8.2307 \mathrm{e}+02$ | $1.7893 \mathrm{e}+01$ | TotBiom | 2717.1 | 106.300 |
| TotBiom | $8.5946 \mathrm{e}+02$ | $1.9710 \mathrm{e}+01$ | TotBiom | 2690.8 | 111.180 |
| TotBiom | $8.6166 \mathrm{e}+02$ | $2.1526 \mathrm{e}+01$ | TotBiom | 2724.5 | 117.300 |
| TotBiom | $9.5065 \mathrm{e}+02$ | $2.4926 \mathrm{e}+01$ | TotBiom | 2740.6 | 124.390 |
| TotBiom | $1.0693 \mathrm{e}+03$ | $2.9338 \mathrm{e}+01$ | TotBiom | 2551.7 | 120.890 |
| TotBiom | $1.3596 \mathrm{e}+03$ | $3.5392 \mathrm{e}+01$ | TotBiom | 2757.4 | 137.090 |
| TotBiom | $1.6352 \mathrm{e}+03$ | $4.1936 \mathrm{e}+01$ | TotBiom | 2846.8 | 149.060 |
| TotBiom | $2.0282 \mathrm{e}+03$ | $5.0581 \mathrm{e}+01$ |  |  |  |
| TotBiom | $2.3748 \mathrm{e}+03$ | $5.7988 \mathrm{e}+01$ |  |  |  |
| TotBiom | $2.7223 \mathrm{e}+03$ | $6.5091 \mathrm{e}+01$ |  |  |  |
| TotBiom | $3.0497 \mathrm{e}+03$ | $7.1703 \mathrm{e}+01$ |  |  |  |
| TotBiom | $3.2344 \mathrm{e}+03$ | $7.7067 \mathrm{e}+01$ |  |  |  |

Table 16: Parameter values and their $95 \%$ confidence intervals, Model 22.0. Total biomass is presented from 1954-2022.

| Name | Value | Standard Deviation | Name | Value | Standard Deviation |
| :---: | :---: | :---: | :---: | :---: | :---: |
| male natural mortality | $1.3894 \mathrm{e}-01$ | $1.0775 \mathrm{e}-03$ | TotBiom | 3748.6 | 87.346 |
| alpha (q-temp model) | -2.0107e-01 | $3.3096 \mathrm{e}-02$ | TotBiom | 3719.8 | 87.681 |
| beta (q-temp model) | $6.4116 \mathrm{e}-02$ | $1.2620 \mathrm{e}-02$ | TotBiom | 3976.9 | 93.440 |
| beta (survey start date) | $1.1632 \mathrm{e}-02$ | $3.0199 \mathrm{e}-03$ | TotBiom | 3994.8 | 96.114 |
| beta (start date/temp interaction) | -9.4751e-03 | $2.8424 \mathrm{e}-03$ | TotBiom | 3683.9 | 92.737 |
| mean log recruitment | $9.4954 \mathrm{e}-01$ | $9.0016 \mathrm{e}-02$ | TotBiom | 3661.7 | 95.291 |
| log_avg_fmort | $-2.4061 \mathrm{e}+00$ | 7.6414e-02 | TotBiom | 3543.7 | 94.530 |
| sel_slope_fsh_f | $1.2591 \mathrm{e}+00$ | $8.1167 \mathrm{e}-02$ | TotBiom | 3603.2 | 98.690 |
| sel50_fsh_f | $8.5857 \mathrm{e}+00$ | $2.3023 \mathrm{e}-01$ | TotBiom | 3445.4 | 96.505 |
| sel_slope_fsh_m | $1.2990 \mathrm{e}+00$ | $8.7360 \mathrm{e}-02$ | TotBiom | 3555.6 | 99.032 |
| sel50_fsh_m | $8.4216 \mathrm{e}+00$ | $2.3148 \mathrm{e}-01$ | TotBiom | 3770.2 | 104.280 |
| sel_slope_srv | $1.6054 \mathrm{e}+00$ | $4.3061 \mathrm{e}-02$ | TotBiom | 3824.1 | 106.490 |
| sel50_srv | $4.9389 \mathrm{e}+00$ | $3.5673 \mathrm{e}-02$ | TotBiom | 3855.3 | 107.370 |
| R_logalpha | $-4.3413 \mathrm{e}+00$ | $4.5760 \mathrm{e}-01$ | TotBiom | 3593.9 | 102.880 |
| R_logbeta | $-6.4650 \mathrm{e}+00$ | $2.5163 \mathrm{e}-01$ | TotBiom | 3481.7 | 100.750 |
| q_srv | $8.7797 \mathrm{e}-01$ | $3.3929 \mathrm{e}-02$ | TotBiom | 3504.2 | 102.010 |
| Bmsy | $5.0679 \mathrm{e}+02$ | $7.8127 \mathrm{e}+01$ | TotBiom | 3187.2 | 96.234 |
| Bmsyr | $4.5108 \mathrm{e}+03$ | $4.8960 \mathrm{e}+02$ | TotBiom | 2965.5 | 91.728 |
| TotBiom | $2.7625 \mathrm{e}+03$ | $1.5745 \mathrm{e}+02$ | TotBiom | 2779.7 | 86.111 |
| TotBiom | $2.6962 \mathrm{e}+03$ | $1.3881 \mathrm{e}+02$ | TotBiom | 2761.1 | 87.136 |
| TotBiom | $2.6156 \mathrm{e}+03$ | $1.2051 \mathrm{e}+02$ | TotBiom | 2800.3 | 86.978 |
| TotBiom | $2.5242 \mathrm{e}+03$ | $1.0322 \mathrm{e}+02$ | TotBiom | 3073.3 | 94.236 |
| TotBiom | $2.4469 \mathrm{e}+03$ | $8.6781 \mathrm{e}+01$ | TotBiom | 3181.5 | 96.913 |
| TotBiom | $2.3694 \mathrm{e}+03$ | $7.1402 \mathrm{e}+01$ | TotBiom | 3237.9 | 98.295 |
| TotBiom | $2.1656 \mathrm{e}+03$ | $5.7530 \mathrm{e}+01$ | TotBiom | 3246.7 | 99.622 |
| TotBiom | $1.7060 \mathrm{e}+03$ | $4.3054 \mathrm{e}+01$ | TotBiom | 3157.8 | 97.713 |
| TotBiom | $1.1920 \mathrm{e}+03$ | $2.7818 \mathrm{e}+01$ | TotBiom | 2996.5 | 94.339 |
| TotBiom | $8.6711 \mathrm{e}+02$ | $1.6466 \mathrm{e}+01$ | TotBiom | 2996.1 | 97.621 |
| TotBiom | $9.0710 \mathrm{e}+02$ | $1.7106 \mathrm{e}+01$ | TotBiom | 3117.5 | 103.830 |
| TotBiom | $8.7554 \mathrm{e}+02$ | $1.7208 \mathrm{e}+01$ | TotBiom | 3052.5 | 103.310 |
| TotBiom | $9.1987 \mathrm{e}+02$ | $1.8058 \mathrm{e}+01$ | TotBiom | 2887.0 | 102.040 |
| TotBiom | $9.0574 \mathrm{e}+02$ | $1.8612 \mathrm{e}+01$ | TotBiom | 2756.7 | 101.550 |
| TotBiom | $8.2410 \mathrm{e}+02$ | $1.8532 \mathrm{e}+01$ | TotBiom | 2709.3 | 105.250 |
| TotBiom | $8.6735 \mathrm{e}+02$ | $2.0297 \mathrm{e}+01$ | TotBiom | 2682.4 | 110.070 |
| TotBiom | $8.6797 \mathrm{e}+02$ | $2.1962 \mathrm{e}+01$ | TotBiom | 2715.3 | 116.120 |
| TotBiom | $9.5483 \mathrm{e}+02$ | $2.5297 \mathrm{e}+01$ | TotBiom | 2730.4 | 123.110 |
| TotBiom | $1.0533 \mathrm{e}+03$ | $2.9193 \mathrm{e}+01$ | TotBiom | 2541.5 | 119.630 |
| TotBiom | $1.3440 \mathrm{e}+03$ | $3.5186 \mathrm{e}+01$ | TotBiom | 2745.5 | 135.610 |
| TotBiom | $1.6257 \mathrm{e}+03$ | $4.1541 \mathrm{e}+01$ | TotBiom | 2833.5 | 147.380 |
| TotBiom | $2.0122 \mathrm{e}+03$ | $4.9744 \mathrm{e}+01$ | TotBiom | 3274.8 | 184.750 |
| TotBiom | $2.3604 \mathrm{e}+03$ | $5.7170 \mathrm{e}+01$ | TotBiom | 3685.1 | 231.090 |
| TotBiom | $2.7096 \mathrm{e}+03$ | $6.4285 \mathrm{e}+01$ |  |  |  |
| TotBiom | $3.0386 \mathrm{e}+03$ | $7.0911 \mathrm{e}+01$ |  |  |  |
| TotBiom | $3.2246 \mathrm{e}+03$ | $7.6278 \mathrm{e}+01$ |  |  |  |
| TotBiom | $3.4286 \mathrm{e}+03$ | $8.1085 \mathrm{e}+01$ |  |  |  |
| TotBiom | $3.6134 \mathrm{e}+03$ | $8.5118 \mathrm{e}+01$ |  |  |  |

Table 17: Parameter values and their $95 \%$ confidence intervals, Model 22.1. Total biomass is presented from 1954-2022.

| Name | Value | Standard Deviation | Name | Value | Standard Deviation |
| :---: | :---: | :---: | :---: | :---: | :---: |
| male natural mortality | $1.2509 \mathrm{e}-01$ | 1.1362e-03 | TotBiom | 3596.6 | 92.112 |
| alpha (q-temp model) | -1.6995e-03 | $3.3892 \mathrm{e}-02$ | TotBiom | 3570.7 | 92.507 |
| beta (q-temp model) | 5.9665e-02 | $9.5258 \mathrm{e}-03$ | TotBiom | 3822.4 | 98.781 |
| beta (survey start date) | $1.1051 \mathrm{e}-02$ | $2.6077 \mathrm{e}-03$ | TotBiom | 3842.7 | 101.770 |
| beta (start date/temp interaction) | -3.2244e-03 | $2.6783 \mathrm{e}-03$ | TotBiom | 3544.9 | 98.455 |
| mean log recruitment | $9.3547 \mathrm{e}-01$ | $9.1088 \mathrm{e}-02$ | TotBiom | 3526.4 | 101.360 |
| log_avg_fmort | $-2.4500 \mathrm{e}+00$ | $7.7525 \mathrm{e}-02$ | TotBiom | 3429.0 | 100.960 |
| sel_slope_fsh_f | $1.3303 \mathrm{e}+00$ | $8.7700 \mathrm{e}-02$ | TotBiom | 3497.6 | 105.710 |
| sel50_fsh_f | $8.1261 \mathrm{e}+00$ | $2.2281 \mathrm{e}-01$ | TotBiom | 3357.9 | 103.650 |
| sel_slope_fsh_m | $1.2462 \mathrm{e}+00$ | $8.3892 \mathrm{e}-02$ | TotBiom | 3479.9 | 106.600 |
| sel50_fsh_m | $8.5714 \mathrm{e}+00$ | $2.3334 \mathrm{e}-01$ | TotBiom | 3693.2 | 112.160 |
| sel_slope_srv | $1.6591 \mathrm{e}+00$ | $5.3376 \mathrm{e}-02$ | TotBiom | 3760.6 | 114.690 |
| sel50_srv | $4.6244 \mathrm{e}+00$ | $3.9531 \mathrm{e}-02$ | TotBiom | 3810.6 | 115.840 |
| R_logalpha | $-4.2486 \mathrm{e}+00$ | $4.7401 \mathrm{e}-01$ | TotBiom | 3562.5 | 111.150 |
| R_logbeta | $-6.3758 \mathrm{e}+00$ | $2.5570 \mathrm{e}-01$ | TotBiom | 3470.8 | 109.030 |
| q_srv | $1.0878 \mathrm{e}+00$ | $4.2313 \mathrm{e}-02$ | TotBiom | 3502.8 | 110.270 |
| Bmsy | $4.7520 \mathrm{e}+02$ | $7.7606 \mathrm{e}+01$ | TotBiom | 3201.9 | 104.170 |
| Bmsyr | $4.6790 \mathrm{e}+03$ | $5.2511 \mathrm{e}+02$ | TotBiom | 2990.3 | 99.387 |
| TotBiom | $2.3259 \mathrm{e}+03$ | $2.2189 \mathrm{e}+02$ | TotBiom | 2823.4 | 93.457 |
| TotBiom | $2.2929 \mathrm{e}+03$ | $2.1039 \mathrm{e}+02$ | TotBiom | 2815.8 | 94.562 |
| TotBiom | $2.2558 \mathrm{e}+03$ | $1.9712 \mathrm{e}+02$ | TotBiom | 2868.9 | 94.151 |
| TotBiom | $2.2172 \mathrm{e}+03$ | $1.7995 \mathrm{e}+02$ | TotBiom | 3167.5 | 101.780 |
| TotBiom | $2.2007 \mathrm{e}+03$ | $1.5513 \mathrm{e}+02$ | TotBiom | 3292.1 | 104.240 |
| TotBiom | $2.1885 \mathrm{e}+03$ | $1.2169 \mathrm{e}+02$ | TotBiom | 3352.2 | 104.950 |
| TotBiom | $2.0496 \mathrm{e}+03$ | $8.2936 \mathrm{e}+01$ | TotBiom | 3376.2 | 106.010 |
| TotBiom | $1.6466 \mathrm{e}+03$ | $4.5301 \mathrm{e}+01$ | TotBiom | 3294.6 | 103.350 |
| TotBiom | $1.1672 \mathrm{e}+03$ | $2.9499 \mathrm{e}+01$ | TotBiom | 3152.1 | 99.618 |
| TotBiom | $7.9772 \mathrm{e}+02$ | $2.7313 \mathrm{e}+01$ | TotBiom | 3167.3 | 102.570 |
| TotBiom | $8.4119 \mathrm{e}+02$ | $2.4640 \mathrm{e}+01$ | TotBiom | 3308.7 | 108.390 |
| TotBiom | $8.2390 \mathrm{e}+02$ | $2.1043 \mathrm{e}+01$ | TotBiom | 3259.2 | 106.900 |
| TotBiom | $8.7413 \mathrm{e}+02$ | $1.9965 \mathrm{e}+01$ | TotBiom | 3089.5 | 104.600 |
| TotBiom | $8.6589 \mathrm{e}+02$ | $1.9120 \mathrm{e}+01$ | TotBiom | 2971.2 | 103.350 |
| TotBiom | $8.0312 \mathrm{e}+02$ | $1.8737 \mathrm{e}+01$ | TotBiom | 2947.4 | 106.290 |
| TotBiom | $8.4038 \mathrm{e}+02$ | $2.0357 \mathrm{e}+01$ | TotBiom | 2936.1 | 110.280 |
| TotBiom | $8.3105 \mathrm{e}+02$ | $2.2020 \mathrm{e}+01$ | TotBiom | 2983.8 | 114.740 |
| TotBiom | $9.1309 \mathrm{e}+02$ | $2.5532 \mathrm{e}+01$ | TotBiom | 3018.2 | 120.700 |
| TotBiom | $1.0046 \mathrm{e}+03$ | $3.0019 \mathrm{e}+01$ | TotBiom | 2809.7 | 115.060 |
| TotBiom | $1.2824 \mathrm{e}+03$ | $3.6445 \mathrm{e}+01$ | TotBiom | 3010.5 | 126.970 |
| TotBiom | $1.5575 \mathrm{e}+03$ | $4.3401 \mathrm{e}+01$ | TotBiom | 3065.1 | 133.500 |
| TotBiom | $1.9312 \mathrm{e}+03$ | $5.2174 \mathrm{e}+01$ | TotBiom | 3443.3 | 158.970 |
| TotBiom | $2.2663 \mathrm{e}+03$ | $6.0100 \mathrm{e}+01$ | TotBiom | 3782.4 | 195.120 |
| TotBiom | $2.6030 \mathrm{e}+03$ | $6.7661 \mathrm{e}+01$ |  |  |  |
| TotBiom | $2.9203 \mathrm{e}+03$ | $7.4691 \mathrm{e}+01$ |  |  |  |
| TotBiom | $3.0980 \mathrm{e}+03$ | $8.0412 \mathrm{e}+01$ |  |  |  |
| TotBiom | $3.2941 \mathrm{e}+03$ | $8.5522 \mathrm{e}+01$ |  |  |  |
| TotBiom | $3.4725 \mathrm{e}+03$ | $8.9810 \mathrm{e}+01$ |  |  |  |

Table 18: Comparison of reference points for Model 18.2 (2022), 18.2 (2021), and Models 22.0 and 22.1 from the current assesssment (lower panel). Values are in metric tons ( t ). Female, then male natural mortality is listed for each year and model.

| Quantity | Model 18.2 (2022) |  | Model 18.2 (2021) |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 2023 | 2024 | 2023 | 2024 |
| $M$ (natural mortality rate) | 0.12, 0.138 | 0.12, 0.138 | 0.12, 0.14 | 0.12, 0.14 |
| Tier | 1 a | 1 a | 1 a | 1 a |
| Projected total (age 6+) biomass (t) | 3,265,700 | 4,051,680 | 2,479,370 | 2,284,820 |
| Projected female spawning biomass ( t ) | 827,515 | 850,621 | 857,101 | 727,101 |
| $B_{0}$ | 1,484,500 | 1,484,500 | 1,489,190 | 1,489,190 |
| $B_{M S Y}$ | 515,251 | 515,251 | 495,904 | 495,904 |
| $F_{O F L}$ | 0.113 | 0.113 | 0.152 | 0.152 |
| $\max F_{A B C}$ | 0.105 | 0.105 | 0.143 | 0.143 |
| $F_{A B C}$ | 0.105 | 0.105 | 0.143 | 0.143 |
| OFL | 369,038 | 457,857 | 377,071 | 347,483 |
| $\max A B C$ | 342,438 | 424,854 | 354,014 | 326,235 |
| $A B C$ | 342,438 | 424,854 | 354,014 | 326,235 |
| Status | 2021 | 2022 | 2021 | 2022 |
| Overfishing | No | n/a | No | n/a |
| Overfished | n/a | No | n/a | No |
| Approaching overfished | n/a | No | $\mathrm{n} / \mathrm{a}$ | No |
|  | Model | 22.0 | Mod | 22.1 |
| Quantity | 2023 | 2024 | 2023 | 2024 |
| $M$ (natural mortality rate) | 0.12, 0.139 | 0.12, 0.139 | 0.12, 0.125 | 0.12, 0.125 |
| Tier | 1a | 1a | 1 a | 1a |
| Projected total (age 6+) biomass (t) | 3,248,690 | 4,029,770 | 3,321,640 | 4,062,230 |
| Projected female spawning biomass (t) | 824,586 | 847,814 | 885,444 | 897,062 |
| $B_{0}$ | 1,478,700 | 1,478,700 | 1,407,000 | 1,407,000 |
| $B_{M S Y}$ | 506,792 | 506,792 | 475,199 | 475,199 |
| $F_{\text {OFL }}$ | 0.117 | 0.117 | 0.122 | 0.122 |
| $\max ^{\text {ABC }}$ | 0.11 | 0.11 | 0.114 | 0.114 |
| $F_{A B C}$ | 0.11 | 0.11 | 0.114 | 0.114 |
| OFL | 380,786 | 472,338 | 404,882 | 495,155 |
| $\max A B C$ | 356,013 | 441,608 | 378,499 | 462,890 |
| $A B C$ | 356,013 | 441,608 | 378,499 | 462,890 |
| Status | 2021 | 2022 | 2021 | 2022 |
| Overfishing | No | n/a | No | $\mathrm{n} / \mathrm{a}$ |
| Overfished | n/a | No | n/a | No |
| Approaching overfished | n/a | No | n/a | No |

Projections run in 2022 were based on estimated catches of $127,712 \mathrm{t}$ in 2022 and $126,157 \mathrm{t}$ used in place of maximum ABC for 2023. This estimate was based on the mean of the past 5 years, 2018-2022, which includes an extrapolated catch of $127,712 \mathrm{t}$ for 2022.

Table 19: Model estimates of yellowfin sole full selection fishing mortality (Full sel. F) and exploitation rate (Catch/Total Biomass) for 2022 Models 18.2, 22.0, and 22.1.

| Year | Model 18.2 |  | Model 22.0 |  | Model 22.1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Full sel. F | Catch/Tot. Biom. | Full sel. F | Catch/Tot. Biom. | Full sel. F | Catch/Tot. Biom. |
| 1954 | 0.006 | 0.005 | 0.006 | 0.005 | 0.007 | 0.005 |
| 1955 | 0.008 | 0.006 | 0.007 | 0.005 | 0.008 | 0.006 |
| 1956 | 0.013 | 0.010 | 0.012 | 0.009 | 0.014 | 0.011 |
| 1957 | 0.014 | 0.010 | 0.013 | 0.010 | 0.015 | 0.011 |
| 1958 | 0.027 | 0.019 | 0.025 | 0.018 | 0.028 | 0.020 |
| 1959 | 0.126 | 0.080 | 0.115 | 0.078 | 0.134 | 0.085 |
| 1960 | 0.423 | 0.214 | 0.378 | 0.211 | 0.453 | 0.223 |
| 1961 | 1.008 | 0.326 | 0.848 | 0.325 | 1.139 | 0.336 |
| 1962 | 4.756 | 0.352 | 2.757 | 0.353 | 4.766 | 0.360 |
| 1963 | 0.324 | 0.102 | 2.573 | 0.099 | 0.341 | 0.108 |
| 1964 | 0.265 | 0.127 | 0.258 | 0.123 | 0.285 | 0.133 |
| 1965 | 0.242 | 0.063 | 0.254 | 0.061 | 0.254 | 0.065 |
| 1966 | 0.423 | 0.114 | 0.447 | 0.111 | 0.447 | 0.117 |
| 1967 | 0.534 | 0.182 | 0.553 | 0.179 | 0.526 | 0.187 |
| 1968 | 0.384 | 0.102 | 0.366 | 0.102 | 0.422 | 0.105 |
| 1969 | 1.633 | 0.194 | 1.801 | 0.193 | 0.678 | 0.199 |
| 1970 | 0.782 | 0.154 | 0.742 | 0.153 | 0.722 | 0.160 |
| 1971 | 1.287 | 0.169 | 0.830 | 0.168 | 0.619 | 0.176 |
| 1972 | 0.418 | 0.045 | 0.292 | 0.045 | 0.323 | 0.048 |
| 1973 | 0.398 | 0.058 | 0.407 | 0.058 | 0.435 | 0.061 |
| 1974 | 0.137 | 0.026 | 0.136 | 0.026 | 0.138 | 0.027 |
| 1975 | 0.113 | 0.032 | 0.117 | 0.032 | 0.120 | 0.033 |
| 1976 | 0.109 | 0.024 | 0.116 | 0.024 | 0.118 | 0.025 |
| 1977 | 0.052 | 0.021 | 0.053 | 0.022 | 0.052 | 0.022 |
| 1978 | 0.103 | 0.045 | 0.105 | 0.046 | 0.106 | 0.047 |
| 1979 | 0.060 | 0.031 | 0.061 | 0.031 | 0.061 | 0.032 |
| 1980 | 0.068 | 0.025 | 0.069 | 0.025 | 0.068 | 0.027 |
| 1981 | 0.054 | 0.027 | 0.054 | 0.027 | 0.054 | 0.028 |
| 1982 | 0.040 | 0.025 | 0.040 | 0.026 | 0.041 | 0.027 |
| 1983 | 0.041 | 0.029 | 0.041 | 0.029 | 0.042 | 0.030 |
| 1984 | 0.064 | 0.040 | 0.064 | 0.040 | 0.065 | 0.042 |
| 1985 | 0.094 | 0.057 | 0.094 | 0.057 | 0.095 | 0.059 |
| 1986 | 0.087 | 0.057 | 0.087 | 0.057 | 0.089 | 0.059 |
| 1987 | 0.085 | 0.049 | 0.085 | 0.050 | 0.086 | 0.051 |
| 1988 | 0.108 | 0.063 | 0.108 | 0.063 | 0.109 | 0.065 |
| 1989 | 0.080 | 0.042 | 0.081 | 0.043 | 0.081 | 0.044 |
| 1990 | 0.039 | 0.024 | 0.039 | 0.024 | 0.039 | 0.025 |
| 1991 | 0.047 | 0.033 | 0.048 | 0.033 | 0.046 | 0.034 |
| 1992 | 0.054 | 0.039 | 0.054 | 0.039 | 0.054 | 0.039 |
| 1993 | 0.049 | 0.028 | 0.050 | 0.028 | 0.049 | 0.028 |
| 1994 | 0.064 | 0.036 | 0.064 | 0.036 | 0.064 | 0.037 |
| 1995 | 0.056 | 0.035 | 0.056 | 0.035 | 0.055 | 0.035 |
| 1996 | 0.053 | 0.037 | 0.053 | 0.037 | 0.052 | 0.037 |
| 1997 | 0.086 | 0.052 | 0.086 | 0.052 | 0.084 | 0.052 |
| 1998 | 0.058 | 0.032 | 0.058 | 0.032 | 0.058 | 0.032 |
| 1999 | 0.042 | 0.023 | 0.042 | 0.023 | 0.041 | 0.023 |
| 2000 | 0.048 | 0.030 | 0.048 | 0.030 | 0.047 | 0.030 |
| 2001 | 0.036 | 0.023 | 0.036 | 0.023 | 0.035 | 0.023 |


| 2002 | 0.042 | 0.027 | 0.042 | 0.027 | 0.040 | 0.026 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2003 | 0.036 | 0.026 | 0.036 | 0.026 | 0.035 | 0.025 |
| 2004 | 0.034 | 0.024 | 0.034 | 0.024 | 0.032 | 0.023 |
| 2005 | 0.040 | 0.029 | 0.040 | 0.029 | 0.038 | 0.028 |
| 2006 | 0.041 | 0.030 | 0.042 | 0.031 | 0.040 | 0.029 |
| 2007 | 0.055 | 0.038 | 0.055 | 0.038 | 0.052 | 0.037 |
| 2008 | 0.070 | 0.050 | 0.071 | 0.050 | 0.066 | 0.047 |
| 2009 | 0.048 | 0.036 | 0.048 | 0.036 | 0.046 | 0.034 |
| 2010 | 0.054 | 0.038 | 0.054 | 0.038 | 0.050 | 0.036 |
| 2011 | 0.070 | 0.049 | 0.070 | 0.050 | 0.065 | 0.046 |
| 2012 | 0.070 | 0.051 | 0.070 | 0.051 | 0.064 | 0.048 |
| 2013 | 0.082 | 0.060 | 0.082 | 0.060 | 0.075 | 0.056 |
| 2014 | 0.085 | 0.058 | 0.085 | 0.058 | 0.077 | 0.053 |
| 2015 | 0.074 | 0.047 | 0.074 | 0.047 | 0.066 | 0.043 |
| 2016 | 0.081 | 0.050 | 0.081 | 0.050 | 0.072 | 0.045 |
| 2017 | 0.078 | 0.048 | 0.078 | 0.048 | 0.068 | 0.044 |
| 2018 | 0.077 | 0.052 | 0.078 | 0.052 | 0.068 | 0.047 |
| 2019 | 0.080 | 0.046 | 0.080 | 0.047 | 0.070 | 0.043 |
| 2020 | 0.082 | 0.047 | 0.083 | 0.047 | 0.072 | 0.044 |
| 2021 | 0.068 | 0.033 | 0.068 | 0.033 | 0.058 | 0.032 |
| 2022 | 0.090 | 0.034 | 0.091 | 0.035 | 0.076 | 0.034 |

Table 20: Model estimates of yellowfin sole female spawning biomass (FSB) in the eastern Bering Sea in metric tons ( t ) and upper (HCI) and lower (LCI) $95 \%$ confidence intervals from the 2021 and 2022 stock assessments, including Model 18.2 (2021), 18.2 (2022), 22.0, and 22.1.

| Model | 18.2 (2021) | 18.2 (2022) | 22.0 |  |  | 22.1 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | FSB (t) | FSB (t) | FSB (t) | LCI | HCI | FSB (t) | LCI | HCI |
| 1954 | 952,185 | 986,614 | 1,072,470 | 834,022 | 1,379,090 | 902,163 | 670,910 | 1,213,120 |
| 1955 | 961,277 | 996,274 | 1,083,310 | 856,550 | 1,370,090 | 910,428 | 685,894 | 1,208,460 |
| 1956 | 952,493 | 987,468 | 1,074,320 | 862,956 | 1,337,450 | 901,639 | 687,244 | 1,182,920 |
| 1957 | 928,698 | 963,116 | 1,048,830 | 854,874 | 1,286,800 | 878,436 | 676,217 | 1,141,130 |
| 1958 | 893,148 | 926,420 | 1,010,420 | 834,732 | 1,223,090 | 843,822 | 654,856 | 1,087,320 |
| 1959 | 818,435 | 849,554 | 931,672 | 778,119 | 1,115,530 | 770,719 | 598,445 | 992,587 |
| 1960 | 634,298 | 661,375 | 742,273 | 622,086 | 885,680 | 590,420 | 442,694 | 787,443 |
| 1961 | 339,588 | 355,831 | 438,813 | 357,954 | 537,937 | 297,337 | 177,500 | 498,081 |
| 1962 | 108,308 | 47,043 | 151,547 | 81,793 | 280,785 | 33,713 | 10,509 | 108,151 |
| 1963 | 116,980 | 11,928 | 104,095 | 83,554 | 129,686 | 5,894 | 1,464 | 23,736 |
| 1964 | 135,606 | 22,919 | 132,630 | 116,307 | 151,243 | 12,024 | 3,553 | 40,689 |
| 1965 | 158,981 | 38,485 | 150,050 | 130,946 | 171,942 | 21,594 | 7,012 | 66,500 |
| 1966 | 187,964 | 63,654 | 169,318 | 147,905 | 193,832 | 36,321 | 13,639 | 96,720 |
| 1967 | 191,286 | 91,786 | 162,238 | 141,216 | 186,389 | 51,718 | 23,556 | 113,548 |
| 1968 | 175,009 | 104,043 | 138,893 | 117,893 | 163,634 | 68,311 | 37,278 | 125,180 |
| 1969 | 163,243 | 114,610 | 139,653 | 121,815 | 160,103 | 69,140 | 42,318 | 112,964 |
| 1970 | 123,201 | 126,257 | 133,770 | 117,216 | 152,661 | 69,115 | 50,779 | 94,071 |
| 1971 | 105,444 | 103,314 | 104,770 | 92,170 | 119,092 | 74,327 | 60,467 | 91,364 |
| 1972 | 87,711 | 93,027 | 75,596 | 63,468 | 90,041 | 67,047 | 55,243 | 81,372 |
| 1973 | 91,575 | 101,994 | 78,263 | 65,170 | 93,985 | 74,523 | 62,207 | 89,278 |
| 1974 | 103,288 | 111,320 | 84,138 | 69,640 | 101,654 | 87,493 | 74,078 | 103,338 |
| 1975 | 159,562 | 166,206 | 130,718 | 111,767 | 152,883 | 137,928 | 119,356 | 159,390 |
| 1976 | 229,757 | 228,987 | 193,479 | 171,310 | 218,515 | 200,473 | 177,623 | 226,263 |
| 1977 | 339,252 | 328,009 | 294,914 | 267,490 | 325,150 | 296,953 | 268,105 | 328,905 |
| 1978 | 481,917 | 459,158 | 429,863 | 396,053 | 466,560 | 421,756 | 386,123 | 460,678 |
| 1979 | 634,139 | 599,868 | 575,257 | 534,129 | 619,552 | 552,840 | 509,703 | 599,629 |
| 1980 | 805,817 | 759,495 | 738,318 | 689,078 | 791,078 | 699,582 | 648,247 | 754,981 |
| 1981 | 967,949 | 909,236 | 891,269 | 834,147 | 952,304 | 835,554 | 776,315 | 899,313 |
| 1982 | 1,061,500 | 995,244 | 979,979 | 918,837 | 1,045,190 | 912,222 | 849,060 | 980,084 |
| 1983 | 1,195,010 | 1,120,180 | 1,106,420 | 1,039,410 | 1,177,750 | 1,024,230 | 955,272 | 1,098,180 |
| 1984 | 1,301,670 | 1,220,410 | 1,209,420 | 1,137,810 | 1,285,550 | 1,112,620 | 1,039,190 | 1,191,230 |
| 1985 | 1,370,630 | 1,285,430 | 1,276,960 | 1,200,830 | 1,357,920 | 1,166,280 | 1,088,520 | 1,249,610 |
| 1986 | 1,365,140 | 1,281,270 | 1,274,800 | 1,196,750 | 1,357,930 | 1,155,190 | 1,075,800 | 1,240,450 |
| 1987 | 1,367,470 | 1,285,150 | 1,280,220 | 1,199,390 | 1,366,500 | 1,153,440 | 1,071,560 | 1,241,580 |
| 1988 | 1,302,130 | 1,224,460 | 1,220,580 | 1,140,760 | 1,305,980 | 1,096,160 | 1,015,520 | 1,183,190 |
| 1989 | 1,275,260 | 1,199,320 | 1,196,340 | 1,115,300 | 1,283,260 | 1,074,330 | 992,562 | 1,162,830 |
| 1990 | 1,288,130 | 1,213,870 | 1,211,600 | 1,129,260 | 1,299,930 | 1,091,800 | 1,008,580 | 1,181,900 |
| 1991 | 1,381,330 | 1,305,450 | 1,303,880 | 1,217,340 | 1,396,580 | 1,181,860 | 1,094,070 | 1,276,690 |
| 1992 | 1,481,730 | 1,401,930 | 1,401,050 | 1,310,010 | 1,498,430 | 1,277,710 | 1,185,030 | 1,377,640 |
| 1993 | 1,530,450 | 1,446,650 | 1,446,270 | 1,352,170 | 1,546,920 | 1,323,910 | 1,227,900 | 1,427,430 |
| 1994 | 1,523,110 | 1,438,020 | 1,438,000 | 1,343,790 | 1,538,820 | 1,318,420 | 1,222,170 | 1,422,260 |
| 1995 | 1,510,140 | 1,424,400 | 1,424,650 | 1,329,710 | 1,526,370 | 1,306,810 | 1,209,800 | 1,411,590 |
| 1996 | 1,421,340 | 1,339,560 | 1,339,900 | 1,248,790 | 1,437,650 | 1,229,900 | 1,136,870 | 1,330,550 |
| 1997 | 1,375,170 | 1,296,350 | 1,296,760 | 1,207,190 | 1,392,970 | 1,192,110 | 1,100,710 | 1,291,090 |
| 1998 | 1,289,700 | 1,214,790 | 1,215,160 | 1,128,980 | 1,307,920 | 1,120,550 | 1,032,630 | 1,215,950 |
| 1999 | 1,270,610 | 1,196,400 | 1,196,790 | 1,110,980 | 1,289,230 | 1,108,230 | 1,020,580 | 1,203,400 |
| 2000 | 1,191,140 | 1,119,790 | 1,120,140 | 1,038,590 | 1,208,090 | 1,041,530 | 958,111 | 1,132,220 |


| 2001 | $1,258,910$ | $1,183,530$ | $1,183,930$ | $1,097,160$ | $1,277,560$ | $1,106,600$ | $1,017,710$ | $1,203,250$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2002 | $1,215,080$ | $1,143,640$ | $1,144,110$ | $1,060,840$ | $1,233,900$ | $1,074,700$ | 989,380 | $1,167,370$ |
| 2003 | $1,273,030$ | $1,199,350$ | $1,199,910$ | $1,113,490$ | $1,293,040$ | $1,134,740$ | $1,046,090$ | $1,230,910$ |
| 2004 | $1,313,560$ | $1,237,560$ | $1,238,190$ | $1,150,010$ | $1,333,130$ | $1,177,520$ | $1,087,060$ | $1,275,520$ |
| 2005 | $1,350,480$ | $1,270,540$ | $1,271,200$ | $1,180,890$ | $1,368,420$ | $1,210,830$ | $1,118,440$ | $1,310,850$ |
| 2006 | $1,395,680$ | $1,311,490$ | $1,312,190$ | $1,218,710$ | $1,412,830$ | $1,253,620$ | $1,158,200$ | $1,356,910$ |
| 2007 | $1,338,790$ | $1,253,720$ | $1,254,350$ | $1,164,330$ | $1,351,330$ | $1,201,800$ | $1,110,170$ | $1,300,980$ |
| 2008 | $1,253,250$ | $1,170,190$ | $1,170,770$ | $1,086,150$ | $1,261,980$ | $1,129,350$ | $1,043,410$ | $1,222,380$ |
| 2009 | $1,302,940$ | $1,212,050$ | $1,212,580$ | $1,123,260$ | $1,309,020$ | $1,178,930$ | $1,088,230$ | $1,277,180$ |
| 2010 | $1,366,190$ | $1,266,220$ | $1,266,690$ | $1,171,820$ | $1,369,240$ | $1,236,230$ | $1,140,150$ | $1,340,420$ |
| 2011 | $1,259,070$ | $1,165,080$ | $1,165,420$ | $1,077,610$ | $1,260,390$ | $1,144,810$ | $1,056,260$ | $1,240,770$ |
| 2012 | $1,247,930$ | $1,154,630$ | $1,154,810$ | $1,065,460$ | $1,251,650$ | $1,143,040$ | $1,053,160$ | $1,240,600$ |
| 2013 | $1,184,960$ | $1,097,960$ | $1,097,920$ | $1,010,800$ | $1,192,540$ | $1,094,710$ | $1,007,660$ | $1,189,280$ |
| 2014 | $1,143,790$ | $1,060,110$ | $1,059,800$ | 971,888 | $1,155,660$ | $1,064,040$ | 976,829 | $1,159,040$ |
| 2015 | $1,171,780$ | $1,086,340$ | $1,085,710$ | 991,650 | $1,188,690$ | $1,096,900$ | $1,004,530$ | $1,197,770$ |
| 2016 | $1,145,170$ | $1,063,670$ | $1,062,750$ | 966,826 | $1,168,190$ | $1,080,390$ | 987,219 | $1,182,350$ |
| 2017 | $1,175,030$ | $1,088,380$ | $1,087,120$ | 983,474 | $1,201,680$ | $1,114,700$ | $1,014,760$ | $1,224,490$ |
| 2018 | $1,062,740$ | 986,764 | 985,267 | 887,462 | $1,093,850$ | $1,018,300$ | 925,191 | $1,120,780$ |
| 2019 | $1,119,540$ | $1,038,460$ | $1,036,520$ | 928,252 | $1,157,430$ | $1,081,010$ | 978,704 | $1,194,010$ |
| 2020 | $1,075,430$ | 996,104 | 993,881 | 884,042 | $1,117,370$ | $1,045,950$ | 942,796 | $1,160,390$ |
| 2021 | 985,341 | 913,917 | 911,523 | 805,376 | $1,031,660$ | 967,874 | 868,869 | $1,078,160$ |
| 2022 | NA | 865,440 | 862,739 | 757,047 | 983,187 | 923,828 | 825,889 | $1,033,380$ |

Table 27: Tier 3 reference points for this year's yellowfin sole assessment model 22.1.

| Quantity | As estimated or specified last year for: |  | As estimated or recommended this year for: |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 2022 | 2023 | 2023 | 2024 |
| $M$ (natural mortality rate) | 0.12, 0.135 | 0.12, 0.135 | 0.12, 0.125 | 0.12, 0.125 |
| Tier | 1 a | 1 a | 3 a | 3 a |
| Projected total (age 1+) biomass (t) | 2,479,370 t | 2,284,820 t | 3,301,360 t | 3,250,439 t |
| Projected female spawning biomass (t) | $857,101 \mathrm{t}$ | 727,101 t | 780,284 t | 754,839 t |
| $B_{100 \%}$ ( $B_{0}$ for Tier 1a) | 1,489,190 t | 1,489,190 t | 1,890,560 t | 1,890,560 t |
| $B_{40 \%}$ | - | - | 756,223 t | 756,223 t |
| $B_{35 \%}$ ( $B_{M S Y}$ for Tier 1a) | 495,904 t | 495,904 t | 661,695 t | 661,695 t |
| $F_{O F L}$ | 0.152 | 0.152 | 0.14 | 0.14 |
| $\max ^{\text {ABC }}$ | 0.143 | 0.143 | 0.117 | 0.117 |
| $F_{A B C}$ | 0.143 | 0.143 | 0.117 | 0.117 |
| OFL (t) | 377,071 t | 347,483 t | 226,860 t | 240,517 t |
| $\max A B C$ | 354,014 t | 326,235 t | 190,898 t | 195,438 t |
| $\mathrm{ABC}(\mathrm{t})$ | 269,649 t | 258,567 t | 190,898 t | 195,438 t |
| Status | 2020 | 2021 | 2021 | 2022 |
| Overfishing | No | n/a | No | n/a |
| Overfished | n/a | No | n/a | No |
| Approaching overfished | $\mathrm{n} / \mathrm{a}$ | No | n/a | No |

Projections were based on estimated catches of $127,712 \mathrm{t}$ in 2022 t in 2022 and $126,157 \mathrm{t}$ used in place of maximum ABC for 2023.

Table 21: Yellowfin sole total allowable catch (TAC), overfishing limit (OFL), and acceptable biological catch (ABC) levels, 1980-2021. Catch for the Bering Sea and Aleutian Islands was recorded through October 1, 2021. Data is in metric tons. Estimates for 2023 were calculated using Model 22.1, and the 2023 TAC has not yet been set.

|  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: |
| Year | TAC | ABC | OFL | Catch |
| 1980 | 117,000 | 169,000 | n/a | 87,391 |
| 1981 | 117,000 | 21,500 | n/a | 97,301 |
| 1982 | 117,000 | 214,500 | n/a | 95,712 |
| 1983 | 117,000 | 214,500 | n/a | 108,385 |
| 1984 | 230,000 | 310,000 | n/a | 159,526 |
| 1985 | 229,900 | 310,000 | n/a | 227,107 |
| 1986 | 209,500 | 230,000 | n/a | 208,597 |
| 1987 | 187,000 | 187,000 | n/a | 181,428 |
| 1988 | 254,000 | 254,000 | n/a | 223,156 |
| 1989 | 182,675 | 241,000 | n/a | 153,165 |
| 1990 | 207,650 | 278,900 | n/a | 83,970 |
| 1991 | 13,000 | 250,600 | n/a | 117,303 |
| 1992 | 235,000 | 372,000 | 452,000 | 145,386 |
| 1993 | 220,000 | 238,000 | 275,000 | 105,810 |
| 1994 | 150,325 | 230,000 | 269,000 | 140,050 |
| 1995 | 190,000 | 277,000 | 319,000 | 124,752 |
| 1996 | 200,000 | 278,000 | 342,000 | 129,659 |
| 1997 | 230,000 | 233,000 | 339,000 | 182,814 |
| 1998 | 220,000 | 220,000 | 314,000 | 101,155 |
| 1999 | 207,980 | 212,000 | 308,000 | 69,234 |
| 2000 | 123,262 | 191,000 | 226,000 | 84,071 |
| 2001 | 11,000 | 17,000 | 209,000 | 63,579 |
| 2002 | 86,000 | 115,000 | 136,000 | 74,986 |
| 2003 | 83,750 | 114,000 | 136,000 | 79,806 |
| 2004 | 86,075 | 114,000 | 135,000 | 75,511 |
| 2005 | 90,686 | 124,000 | 148,000 | 94,385 |
| 2006 | 95,701 | 121,000 | 144,000 | 99,160 |
| 2007 | 136,000 | 225,000 | 240,000 | 120,964 |
| 2008 | 225,000 | 248,000 | 265,000 | 148,894 |
| 2009 | 210,000 | 210,000 | 224,000 | 107,513 |
| 2010 | 219,000 | 219,000 | 234,000 | 118,624 |
| 2011 | 196,000 | 239,000 | 262,000 | 151,158 |
| 2012 | 202,000 | 203,000 | 222,000 | 147,187 |
| 2013 | 198,000 | 206,000 | 220,000 | 164,944 |
| 2014 | 184,000 | 239,800 | 259,700 | 156,772 |
| 2015 | 149,000 | 248,800 | 266,400 | 126,937 |
| 2016 | 144,000 | 211,700 | 228,100 | 135,324 |
| 2017 | 154,000 | 260,800 | 287,000 | 132,220 |
| 2018 | 154,000 | 277,500 | 306,700 | 131,496 |
| 2019 | 154,000 | 263,200 | 290,000 | 128,051 |
| 2020 | 150,700 | 260,918 | 287,307 | 133,800 |
| 2021 | 200,000 | 313,477 | 341,571 | 108,788 |
| 2022 | 250,000 | 354,014 | 377,014 | 106,096 |
| 2023 |  | 378,499 | 404,882 |  |
|  |  |  |  |  |

Table 22: Projections of yellowfin sole female spawning biomass (FSB), future catch, and full selection fishing mortality rates ( F ) for seven future harvest scenarios. Estimates of FSB and catch are in metric tons ( t ). All estimates are based on Model 22.1.

| Scenarios 1 and 2 <br> Maximum ABC |  |  |  |
| :--- | :--- | :--- | ---: |
| Year | FSB | Catch | F |
| 2022 | 805,605 | 126,157 | 0.077 |
| 2023 | 764,832 | 189,433 | 0.113 |
| 2024 | 739,149 | 201,306 | 0.113 |
| 2025 | 755,647 | 224,793 | 0.113 |
| 2026 | 817,069 | 246,893 | 0.113 |
| 2027 | 887,769 | 265,725 | 0.113 |
| 2028 | 965,724 | 270,666 | 0.113 |
| 2029 | 998,469 | 259,417 | 0.113 |
| 2030 | 999,121 | 248,410 | 0.113 |
| 2031 | 969,210 | 236,782 | 0.113 |
| 2032 | 928,365 | 227,859 | 0.113 |
| 2033 | 898,234 | 219,448 | 0.113 |
| 2034 | 857,174 | 213,525 | 0.113 |
| 2035 | 835,356 | 208,284 | 0.113 |


| Scenario 4, Maximum Tier 3 ABC <br> harvest permissible set at F60 |  |  |  |
| :--- | :--- | :--- | ---: |
| Year | FSB | Catch | F |
| 2022 | 786,896 | 95,621 | 0.055 |
| 2023 | 799,004 | 105,660 | 0.055 |
| 2024 | 850,980 | 121,521 | 0.055 |
| 2025 | 951,458 | 137,007 | 0.055 |
| 2026 | $1,065,402$ | 151,120 | 0.055 |
| 2027 | $1,190,845$ | 158,502 | 0.055 |
| 2028 | $1,269,335$ | 156,816 | 0.055 |
| 2029 | $1,310,548$ | 154,500 | 0.055 |
| 2030 | $1,310,660$ | 150,835 | 0.055 |
| 2031 | $1,288,490$ | 148,015 | 0.055 |
| 2032 | $1,275,499$ | 144,800 | 0.055 |
| 2033 | $1,239,523$ | 142,755 | 0.055 |
| 2034 | $1,226,309$ | 140,828 | 0.055 |
| 2035 |  |  |  |


| Scenario 3 |  |  |  |
| :--- | :--- | :--- | ---: |
| Harvest at average F over past |  |  |  |
| Year | FSB | years |  |
| 2022 | 805,605 | Catch | F |
| 2023 | 775,163 | 120,050 | 0.077 |
| 2024 | 777,481 | 131,450 | 0.071 |
| 2025 | 819,975 | 150,175 | 0.071 |
| 2026 | 909,648 | 168,270 | 0.071 |
| 2027 | $1,011,315$ | 184,489 | 0.071 |
| 2028 | $1,123,010$ | 192,062 | 0.071 |
| 2029 | $1,187,907$ | 188,446 | 0.071 |
| 2030 | $1,216,645$ | 184,256 | 0.071 |
| 2031 | $1,206,980$ | 178,703 | 0.071 |
| 2032 | $1,178,202$ | 174,392 | 0.071 |
| 2033 | $1,158,923$ | 169,815 | 0.071 |
| 2034 | $1,120,270$ | 166,747 | 0.071 |
| 2035 | $1,103,340$ | 163,961 | 0.071 |


| Scenario 5 <br> No fishing |  |  |  |
| :--- | :--- | ---: | :--- |
| Year | FSB | Catch | F |
| 2022 | 800,710 | 0 | 0 |
| 2023 | 853,453 | 0 | 0 |
| 2024 | 947,593 | 0 | 0 |
| 2025 | $1,097,523$ | 0 | 0 |
| 2026 | $1,269,239$ | 0 | 0 |
| 2027 | $1,460,915$ | 0 | 0 |
| 2028 | $1,607,733$ | 0 | 0 |
| 2029 | $1,715,270$ | 0 | 0 |
| 2030 | $1,772,584$ | 0 | 0 |
| 2031 | $1,795,020$ | 0 | 0 |
| 2032 | $1,826,501$ | 0 | 0 |
| 2033 | $1,818,703$ | 0 | 0 |
| 2034 | $1,838,483$ | 0 | 0 |
| 2035 |  |  |  |


| Alternative 6, Determination of whether <br> yellowfin sole are currently overfished |  |  |  |
| :--- | :--- | :--- | ---: |
| Year | FSB | Catch | F |
| 2022 | 805,605 | 126,157 | 0.077 |
| 2023 | 759,491 | 224,729 | 0.136 |
| 2024 | 719,933 | 235,146 | 0.136 |
| 2025 | 724,308 | 259,560 | 0.136 |
| 2026 | 773,088 | 282,252 | 0.136 |
| 2027 | 830,391 | 301,021 | 0.136 |
| 2028 | 894,116 | 303,295 | 0.136 |
| 2029 | 913,901 | 287,330 | 0.136 |
| 2030 | 903,961 | 272,391 | 0.136 |
| 2031 | 867,388 | 257,594 | 0.136 |
| 2032 | 823,560 | 246,407 | 0.136 |
| 2033 | 791,029 | 236,229 | 0.135 |
| 2034 | 751,388 | 226,684 | 0.134 |
| 2035 | 730,801 | 218,141 | 0.131 |


| Scenario 7, Determination of whether <br> stock is approaching an overfished condition |  |  |  |
| :--- | :--- | :--- | ---: |
| Year | FSB | Catch | F |
| 2022 | 805,605 | 126,157 | 0.077 |
| 2023 | 764,832 | 189,433 | 0.113 |
| 2024 | 739,149 | 201,306 | 0.113 |
| 2025 | 750,555 | 266,790 | 0.136 |
| 2026 | 796,596 | 288,470 | 0.136 |
| 2027 | 850,994 | 306,206 | 0.136 |
| 2028 | 911,659 | 307,537 | 0.136 |
| 2029 | 928,396 | 290,712 | 0.136 |
| 2030 | 915,691 | 275,071 | 0.136 |
| 2031 | 876,774 | 259,704 | 0.136 |
| 2032 | 830,971 | 248,071 | 0.136 |
| 2033 | 796,923 | 237,575 | 0.134 |
| 2034 | 755,982 | 228,048 | 0.132 |
| 2035 | 734,266 | 219,278 |  |

Table 23: Incidental catch of FMP Groundfish in the yellowfin sole fishery. Source: NMFS AKRO Blend/Catch Accounting System; 1991 - October 12, 2022. The following abbreviations are used: Fl. = flounder, Flathead $=$ Flathead Sole, AK $=$ Alaska, Atka $=$ Atka Mackerel, $\mathrm{RF}=$ rockfish, $\mathrm{POP}=$ Pacific Ocean Perch, $\mathrm{SR}=$ Shortraker, $\mathrm{RE}=$ Rougheye, $\mathrm{N} .=$ Northern, G. Turbot $=$ Greenland Turbot, O. $=$ Other.

| Year | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alaska Plaice | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10,395 | 118 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Arrowtooth Fl. | 366 | 1,017 | 1,595 | 345 | 819 | 386 | 2,382 | 1,631 | 1,998 | 1,845 | 997 | 1,132 | 263 | 645 | 350 | 213 | 1,969 | 1,851 | 1,619 | 2,331 | 987 | 2,042 | 2,216 | 1,685 | 3,249 | 1,262 | 3,075 | 3,219 | 2,015 | 1,540 | 728 |
| Atka Mackerel | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 32 | 0 |  | 0 | 16 | 0 | 110 | 17 |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 19 |  |
| AK Plaice | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 | 0 | 8,395 | 5,835 | 8,711 | 13,972 | 16,357 | 13,51 | 10,63 | 12,044 | 18,305 | 13,5 | 15,978 | 14,372 | 11,68 | 8,163 | 12,782 | 15,340 | 12,953 | 16,59 | 11,798 | 7,762 |
| Kamchatka Fl. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | , | 91 | 122 | 148 | 498 | 427 | 284 | 164 | 218 | 230 | 128 | 93 | 45 |
| O. Flatifish | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 213 | 433 | 653 | 877 | 2,850 | 1,235 | 241 | 977 | 1,585 | 1,206 | 388 | 2,886 | 1,04 | 1,135 | 1,734 | 3,282 | 1,476 | 2,175 | 1,025 | 548 |
| Shortraker RF | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | , | 0 | 0 | , | 0 | , | 0 | , | , | 0 | , | , | , | 0 | 0 | , |  | , | 0 |
| Skate | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2,107 | 2,234 | 2,683 | 1,970 | 1,072 | 1,294 | 1,931 | 2,561 | 3,50 | 2,480 | 3,47 | 2,398 |
| Squid | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | , | 0 | 0 |  |  |  |  |  |  |  |  |  |
| Flathead | 0 | 0 | 0 | 3,929 | 3,165 | 3,896 | 5,323 | 2,309 | 2,644 | 3,231 | 2,190 | 2,856 | 1,076 | 1,247 | 2,025 | 1,735 | 5,579 | 3,497 | 2,695 | 3,229 | 2,095 | 4,179 | 3,998 | 3,337 | 4,103 | 3,106 | 3,966 | 4,133 | 3,498 | 3,005 | 5,302 |


| Year | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Flounder | 16,826 | 9,620 | 12,422 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| G. Turbot | 0 | 4 | 4 | 67 | 8 | 4 | 103 | 69 | 23 | 32 | 2 | 3 | 0 | 6 | 8 | 0 | 0 | 3 | 1 | 5 | 5 | 35 | 56 | 42 | 7 | 8 | 26 | 6 | 12 | 5 | 2 |
| Non.TAC.Species | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 21 | 188 | 173 | 165 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Northern RF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Octopus | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| Other | 7,990 | 3,847 | 3,983 | 2,904 | 2,565 | 4,754 | 3,570 | 2,765 | 3,641 | 3,969 | 4,946 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| O. Flatish | 0 | 0 | 0 | 12,239 | 10,962 | 17,222 | 9,182 | 11,449 | 10,286 | 6,844 | 519 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Rockfish | 0 | 0 | 0 | 3 | 22 | 12 | 1 | 3 | 3 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| Other Species | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3,002 | 1,602 | 2,136 | 2,297 | 3,996 | 4,191 | 4,346 | 3,561 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |
| Pacific Cod | 8,700 | 8,723 | 16,415 | 13,181 | 8,684 | 12,825 | 10,233 | 4,383 | 5,192 | 6,531 | 6,259 | 4,634 | 3,574 | 3,769 | 2,545 | 2,519 | 5,767 | 10,716 | 11,117 | 16,204 | 19,380 | 24,339 | 15,218 | 12,168 | 11,985 | 14,648 | 12,582 | 11,769 | 12,063 | 8,934 | 8,312 |

8

| Year | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| POP | 0 | 4 | 0 | 0 | 0 | , | 1 | 12 | 1 | 0 | 1 | 10 | 0 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 | 2 | 0 | 0 | 0 | 63 | 1 | 0 |
| Pollock | 13,100 | 15,253 | 33,200 | 27,041 | 22,254 | 24,100 | 15,339 | 8,701 | 13,425 | 16,502 | 14,489 | 11,578 | 10,383 | 10,312 | 5,966 | 4,020 | 9,827 | 7,036 | 5,179 | 8,673 | 11,197 | 20,171 | 24,712 | 21,281 | 22,306 | 23,414 | 28,235 | 23,153 | 31,653 | 24,844 | 21,052 |
| Rex Sole | ${ }^{0} 146$ | ${ }^{0}$ | ${ }^{0}$ | ${ }^{0}$ | 0 | ${ }^{0} 6$ | ${ }^{0}$ | 0 | ${ }^{0}$ | ${ }_{5}^{010}$ | 0 | 0 | 0 | 0 | ${ }^{0}$ | 0 | 0 | 0 | ${ }^{0}$ | ${ }^{0}$ | 0 | ${ }^{0}$ | ${ }^{0}$ |  | 0 | 0 |  |  | 0 | 0 |  |
| Rock Sole | 14,646 | 7,300 | 8,096 | 7,486 | 12,903 | 16,693 | 9,826 | 10,774 | 7,345 | 5,810 | 10,664 | 8,314 | 9,972 | 10,090 | 7.971 | 8,241 | 10,468 | 8,978 | 9,624 | 9,694 | 9,179 | 7,688 | 7,030 | 9,772 | 7,948 | 12,196 | 9,362 | 9,204 | 11,243 | 8,120 | 8,113 |
| Sablefish | 0 | 0 | 0 | 0 | 0 | 0 |  | 4 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  | 0 | 3 | 0 | , |
| Sculpin | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1,804 | 1,940 | 1,920 | 1,259 | 1,082 | 948 | 1,308 | 1,246 | 1,534 | 1,451 | 0 | 0 |
| Shark | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 3 | 1 | 4 | 2 | 2 | 1 | 7 |
| Sharpchin/N. RF | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| SR/RE/Sharpchin/N. RF | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Squid | 0 | 0 | 4 | 0 | 10 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Table 24: Bycatch of Other Species in the yellowfin sole directed fishery, which includes Octopus, Shark, Skate, Squid, and Sculpin. These species are included in the FMP but not available by species in the FMP Groundfish Incidental catch table. Bycatch reported in metric tons. Source: NMFS AKRO Catch Accounting System, Nontarget Estimates; available for 2003 and later. Data through October 12, 2022.

| Year | BSAI.Skate | BSAI.Skate.and.GOA.Skate..Other | BSAI.Squid | Octopus | Other | Other.Species |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1992 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1994 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1995 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1996 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1997 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1998 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1999 | 0 | 0 | 0 | 0 | 26 | 0 |
| 2000 | 0 | 0 | 0 | 0 | 3 | 0 |
| 2001 | 0 | 0 | 0 | 0 | 21 | 0 |
| 2002 | 0 | 0 | 0 | 0 | 1,042 | 0 |
| 2003 | 0 | 0 | 1 | 0 | 0 | 1,529 |
| 2004 | 0 | 0 | 0 | 0 | 0 | 598 |
| 2005 | 0 | 0 | 0 | 0 | 0 | 944 |
| 2006 | 0 | 0 | 0 | 0 | 0 | 1,133 |
| 2007 | 0 | 0 | 0 | 0 | 0 | 1,410 |
| 2008 | 0 | 0 | 0 | 0 | 0 | 1,303 |
| 2009 | 0 | 0 | 0 | 0 | 0 | 1,785 |
| 2010 | 0 | 0 | 0 | 0 | 0 | 1,913 |
| 2011 | 2,107 | 0 | 0 | 1 | 0 | 0 |
| 2012 | 2,234 | 0 | 0 | 1 | 0 | 0 |
| 2013 | 2,683 | 0 | 0 | 0 | 0 | 0 |
| 2014 | 1,970 | 0 | 0 | 0 | 0 | 0 |
| 2015 | 1,072 | 0 | 0 | 0 | 0 | 0 |
| 2016 | 1,294 | 0 | 0 | 0 | 0 | 0 |
| 2017 | 0 | 1,931 | 0 | 0 | 0 | 0 |
| 2018 | 0 | 2,561 | 0 | 0 | 0 | 0 |
| 2019 | 0 | 3,508 | 0 | 0 | 0 | 0 |
| 2020 | 0 | 2,480 | 0 | 0 | 0 | 0 |
| 2021 | 0 | 3,473 | 0 | 0 | 0 | 0 |
| 2022 | 0 | 2,398 | 0 | 1 | 0 | 0 |

Table 25: Catch ( t ) of BSAI non-target and ecosystem species of birds in the yellowfin sole fishery, 1992-2022. Source: NMFS AKRO CAS.

| Year | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 2022.

Table 28: Catch ( t ) of BSAI non-target and ecosystem species (excluding birds) in the yellowfin sole fishery, 1992-2022. Source: NMFS AKRO CAS.

| Year | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Benthic.urochordata | 1,671 | 1,701 | 674 | 520 | 114 | 347 | 204 | 155 | 133 | 147 | 197 | 116 | 260 | 225 | 319 | 207 | 188 | 108 | 175 | 119 |
| Bivalves | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
| Brittle.star.unidentified | 34 | 32 | 28 | 19 | 7 | 18 | 5 | 4 | 14 | 13 | 5 | 11 | 11 | 6 | 2 | 2 | 4 | 3 | 5 | 1 |
| Capelin | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 2 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Corals.Bryozoans...Corals.Bryozoans.Unidentified | 0 | 0 | 1 | 9 | 0 | 8 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
| Eelpouts | 19 | 12 | 7 | 4 | 2 | 5 | 5 | 5 | 29 | 14 | 51 | 69 | 30 | 56 | 8 | 26 | 21 | 16 | 27 | 2 |
| Eulachon | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
| Giant.Grenadier | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 0 | 0 | 0 | 0 |
| Greenlings | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| Grenadier...Rattail.Grenadier.Unidentified | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Gunnels | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Hermit.crab.unidentified | 87 | 51 | 83 | 26 | 35 | 36 | 15 | 17 | 15 | 10 | 6 | 8 | 4 | 2 | 2 | 0 | 2 | 2 | 2 | 2 |
| Invertebrate.unidentified | 556 | 625 | 421 | 177 | 40 | 70 | 30 | 25 | 65 | 121 | 25 | 44 | 6 | 7 | 11 | 3 | 1 | 1 | 1 | 1 |
| Large.Sculpins | 238 | 823 | 1,057 | 1,058 | 2,269 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Large.Sculpins...Bigmouth.Sculpin | 0 | 0 | 0 | 0 | 0 | 47 | 26 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Large.Sculpins...Great.Sculpin | 0 | 0 | 0 | 0 | 0 | 1,203 | 1,346 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Large.Sculpins...Hemilepidotus.Unidentified | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Large.Sculpins...Myoxocephalus.Unidentified | 0 | 0 | 0 | 0 | 0 | 129 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Large.Sculpins...Plain.Sculpin | 0 | 0 | 0 | 0 | 0 | 1,273 | 914 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Large.Sculpins...Red.Irish.Lord | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Large.Sculpins...Warty.Sculpin | 0 | 0 | 0 | 0 | 0 | 68 | 49 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Large.Sculpins...Yellow.Irish.Lord | 0 | 0 | 0 | 0 | 0 | 133 | 145 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Misc.crabs | 14 | 21 | 11 | 10 | 28 | 14 | 11 | 12 | 20 | 19 | 39 | 20 | 22 | 13 | 15 | 5 | 5 | 8 | 5 | 3 |
| Misc.crustaceans | 0 | 0 | 0 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Misc.fish | 95 | 91 | 66 | 42 | 71 | 66 | 48 | 29 | 39 | 54 | 46 | 26 | 36 | 30 | 42 | 25 | 30 | 30 | 60 | 25 |
| Misc.inverts..worms.etc. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Other.osmerids | 4 | 4 | 0 | 0 | 35 | 9 | 0 | 2 | 2 | 4 | 1 | 9 | 4 | 5 | 2 | 0 | 12 | 4 | 1 | 2 |
| Other.Sculpins | 1,157 | 131 | 105 | 68 | 195 | 38 | 74 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pacific.Sand.lance | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pacific.Sandfish | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pandalid.shrimp | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Polychaete.unidentified | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
| Saffron.Cod | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 31 | 1 | 42 | 3 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
| Sculpin | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 | 0 |  |  |  |
| Scypho.jellies | 111 | 298 | 115 | 46 | 42 | 145 | 223 | 152 | 307 | 179 | 463 | 804 | 381 | 67 | 93 | 161 | 677 | 334 | 623 | 137 |
| Sea.anemone.unidentified | 6 | 6 | 2 | 4 | 8 | 24 | 25 | 20 | 14 | 6 | 23 | 5 | 4 | 1 | 2 | 2 | 4 | 6 | 4 | 7 |
| Sea.pens.whips | 0 |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 |  |  |  |  |  |  |
| Sea.star | 1,941 | 1,867 | 1,611 | 1,308 | 1,462 | 1,828 | 683 | 795 | 1,674 | 1,735 | 1,372 | 2,106 | 2,248 | 2,050 | 1,616 | 1,468 | 1,816 | 1,799 | 1,768 | 769 |
| Smelt..Family.Osmeridae. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Snails | 118 | 191 | 69 | 141 | 95 | 139 | 57 | 57 | 74 | 34 | 46 | 33 | 36 | 24 | 24 | 13 | 22 | 29 | 38 | 25 |
| Sponge.unidentified | 11 | 6 | 12 | 3 | 0 | 6 | 69 | 16 | 15 | 14 | 16 | 1 | 2 | 1 | 2 | 5 | 2 | 1 | 2 | 3 |
| Squid | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| State.managed.Rockfish | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Stichaeidae | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Surf.smelt | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| urchins.dollars.cucumbers | 2 | 0 | 2 | 0 | 3 | 4 | 7 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 3 | 4 | 3 | 3 |

Table 26: Ecosystem indicators for yellowfin sole, interpretation and evaluation.

| Indicator | Observation | Interpretation |
| :--- | :--- | :--- |
| Prey availability or abundance trends <br> Benthic infauna | Stomach contents | Stable, data limited |

Predator population trends

Fish (Pacific cod, halibut, skates)
Changes in habitat quality
Temperature regime

Winter-spring environmental conditions

Yellowfin sole effects on ecosystem

## Indicator

Fishery contribution to bycatch
Prohibited species
Forage (including herring, Atka mackerel, cod, and pollock) HAPC biota
Marine mammals and birds
Sensitive non-target species
Fishery concentration in space and time

Fishery effects on amount of large size target fish
Fishery contribution to discards and offal production
Fishery effects on age-at-maturity and fecundity

Stable
Cold years yellowfin sole catchability and herding may decrease,
timing of migration may be prolonged
Affects pre-recruit survival

Observation
Stable, heavily monitored
Stable, heavily monitored
Low bycatch levels of (spp)
Very minor direct-take
Likely minor impact
Low exploitation rate

Low exploitation rate
Stable trend
Unknown

Possible increases to YFS mortality
Likely to affect surveyed stock

Probably a number of factors

Interpretation
Minor contribution to mortality
Bycatch levels small relative to forage biomass Bycatch levels small relative to HAPC biota
Safe
Data limited, likely to be safe

Little detrimental effect

Natural fluctuation
Improving, but data limited

No concern (dealt with in model)

Causes natural variability

Evaluation
No concern
No concern
No concern No concern No concern

No concern

No concern
Possible concern
Possible concern

## Figures



Figure 1: Distribution of wintering, spawning, and feeding areas for yellowfin sole in the Bering Sea, and observed regional grouping. Migration routes from wintering to feeding take place in spring, and the dates that yellowfin sole return to their wintering areas are unknown, adapted from Wakabayashi (1989).


Figure 2: Yellowfin sole annual total catch (1,000s t) in the eastern Bering Sea from 2003-2022 (upper panel). Yellowfin sole annual cumulative catch by month and year (non CDQ) 2003-October 1, 2022 (lower panel).

Sex

- Females
- Males

Figure 4: Size composition of the yellowfin sole catch in 2022 (through October 12) caught by trawl gear, by subarea, for the primary areas where yellowfin sole are caught, $509,513,514,516,521$, and 524.


Figure 5: Yellowfin sole catch proportion by area in which catch through October 12, 2022 was greater than 100 t (upper panel) and by month (lower panel) in the eastern Bering Sea in 2022, through October 1.

## Yellowfin Sole catch by trawl, 1 degree bins



Figure 6: Catch of yellowfin sole in the BSAI in 2022 by month (through October 12), reported by observers. Circles represent presence of yellowfin sole the catch by the following gear types: non-pelagic trawl, pair trawl, or pelagic trawl.



Figure 7: Age frequency of females and males from the yellowfin sole fishery, 1975-2021.


YFS Ages - Survey Males


Figure 8: Age frequency of yellowfin sole females and males from the AFSC/NMFS research surveys, 1977-2021.

## CPUE Weight/Duration for trawl gear, Vessel size cutoff 125 ft .



Figure 9: Catch per unit effort based on yellowfin sole fishery data, 1996-2022. CPUE weight (kg)/trawl duration (min) is shown for vessels greater and less than 125 ft , and only including self-made tows. Estimates of relative CPUE are complete through October 26, 2022. Results are limited to Catcher/Processor and Catcher vessels and tow duration $>0$ and $<$ the $90 \%$ percentile of all the data ( 974 minutes). Source: NMFS/AKRO Catch Accounting System. The EBS bottom temperature anomalies from 1996-2022 (x10 for visualization) are shown as a dotted line.


Figure 10: Estimates of weight (g) at age for yellowfin sole females and males, based on fishery data 1954-2022, and used in this year's models.


Figure 11: Master chronology for yellowfin sole and time series of mean summer bottom temperature and May sea surface temperature for the eastern Bering Sea (Panel a). All data were normalized to a mean of 0 and standard deviation of 1 . Correlations of chronologies with bottom temperature and sea surface temperature are shown in panels b and c, respectively (Matta et al. 2010).


Figure 12: Yellowfin sole length-at-age anomalies, for 5-year old males and females, and bottom temperature anomalies from the eastern Bering Sea survey area $<100 \mathrm{~m}$. Correspondence in these residuals is apparent with a $2-3$ year lag effect from the mid-1990s to 2022 (excluding 2020). Late 1980s and early 1990s pattern may be a density-dependent response in growth from the large 1981 and 1983 year-classes. Note: Bottom temperature anomalies were scaled up by a factor of 10 to demonstrate the pattern and match length anomalies. Age data is not yet available for 2022.


Figure 13: Average catch per unit effort on NMFS eastern Bering Sea surveys, 1987-2022, in kg/hectare.


Figure 3: Catch of yellowfin sole by non-pelagic trawl gear in the eastern Bering Sea, 2008-2022, by year, reported by observers. Colored circles represent catch of yellowfin sole, with darker shades representing higher catch.


Figure 14: Annual eastern Bering Sea bottom trawl survey biomass point estimates and $95 \%$ confidence intervals for yellowfin sole, 1982-2022, with Model 18.2 (red line) Model 18.2 (2021, blue line) fit to EBS design-based survey estimates (black dots and confidence intervals) and Model 22.1 (orange line) fit to NBS+EBS VAST estimates of survey biomass (grey dots with confidence intervals).


Figure 15: Center of gravity plot with eastings (Longitude) in the left panel and northings (Latitude) in the right panel. The units are in kilometers.


Figure 16: The effective area occupied by yellowfin sole, estimated in the VAST analysis, in the eastern Bering Sea (green), northern Bering Sea (blue) and the combined region (red).


Figure 17: Average catch per unit effort (CPUE) of yellowfin sole in Norton Sound, based on ADF\&G survey time series, 1976-2021.

## Model 22.0



Figure 18: Ricker stock recruitment curve for yellowfin sole Model 22.0 with $95 \%$ confidence intervals (shaded region) fit to female spawning biomass and recruitment data from 1978-2016. Years in black indicate data used to fit the model, years in blue were not used to fit the model.


Figure 19: Ricker stock recruitment curve for yellowfin sole Model 22.1 with $95 \%$ confidence intervals (shaded region) fit to female spawning biomass and recruitment data from 1978-2016. Years in black indicate data used to fit the model, years in blue were not used to fit the model.

Male and Female YFS, age 12, EBS survey data, 1999-2021


Figure 20: Mean weight at age (g) for yellowfin sole Age 12 females and males from the eastern Bering Sea survey and fishery, 1999-2021. Data includes 680 survey ages from the Bering Sea.


Figure 21: Yellowfin sole weight at length by decade, females, fitted to the von Bertalanffy growth model.

Female survey weight at age used in 2022 model


Male survey weight at age used in 2022 model


Figure 22: Mean weight at age (g) for yellowfin sole females and males from the eastern Bering Sea survey, 1954-2022 used in Model 18.2. Estimates for 2022 are highlighted in yellow.


Figure 23: Estimate of yellowfin sole survey selectivity for males and females, Model 18.2 upper panel, and combined sex survey selectivity Model 22.0 lower panel.


Figure 24: Estimate of yellowfin sole fishery selectivity for males and females, 1954-2022, Model 18.2.


Figure 25: Estimate of yellowfin sole fishery selectivity for males and females, 1954-2022, Model 22.1.


Figure 26: Survey catchability for yellowfin sole Model 18.2 and 22.0, 1982-2022. Survey catchability for Models 18.2 and 22.0 appears as a single line because it is nearly identical for these two models.


Figure 27: Model estimates of the proportion of female yellowfin sole in the population, 1982-2022 for Models 18.2 , 22.0, and 22.1. Note that the proportion female from Models 18.2 and 22.0 are superimposed.

Model 18.2, EBS design-based biomass estimate



Model 22.1, EBS+NBS VAST biomass estimate


Figure 28: Model 18.2 (upper panel), Model 22.0 (middle panel), and Model 22.1 (lower panel) fit to NMFS Bering Sea survey biomass estimates for yellowfin sole, from 1982-2022. Models 18.2 and 22.0 incorporate design-based estimates from the EBS only, while Model 22.1 used NBS+EBS model-based (VAST) estimates. Blue lines are model estimates, grey represent survey estimates.


Figure 29: Total (age $2+$ ) and spawning stock biomass for yellowfin sole, and total numbers, based on Models 18.2 (2021), 18.2, 22.0, and 22.1, from 1954-2022. Note that Models 18.2 and 22.0 are so similar that they appear superimposed.


Figure 30: Model estimates of yellowfin sole total (age $2+$ ) and female spawning biomass with $95 \%$ confidence intervals, 1954-2022, Model 22.0. Dots indicate projections for 2023 and 2024.


Figure 31: Model estimates of yellowfin sole total (age $2+$ ) and female spawning biomass with $95 \%$ confidence intervals, 1954-2022, Model 22.1. Dots indicate projections for 2023 and 2024.

Fit to Survey Age Compositions, Model 18.2

| 0.2 | 1979 |
| :---: | :---: |
|  |  |
| 0.1 |  |
| 0.0 |  |
| -0.1 |  |
|  |  |



| 1981 |
| :--- |
|  |










Sex



Females
Males





| 2018 |
| :---: |
|  |



Figure 32: Model 22.0 fit to the time-series of yellowfin sole survey age composition, by sex, 1979-2021. The x -axis represents age.

Fit to Survey Age Compositions, Model 22.1


Figure 33: Model 22.1 fit to the time-series of yellowfin sole survey age composition, by sex, 1979-2021. The x -axis represents age.

Fit to Fishery Age Compositions, Model 22.0


Figure 34: Model 22.0 fit to the time-series of yellowfin sole fishery age composition, by sex, 1975-2021. The x -axis represents age.

Fit to Fishery Age Compositions, Model 22.1


Figure 35: Model 22.1 fit to the time-series of yellowfin sole fishery age composition, by sex, 1975-2021. The x -axis represents age.


Figure 36: Bottom temperature anomalies from the NMFS survey $<100 \mathrm{~m}, 1982$-2022.


Figure 37: Pairwise parameter posteriors, trace plots, and confidence ellipses for several estimated parameters in the yellowfin sole Model 22.0: male natural mortality ('natmort_m'), and survey catchability parameters ('q_alpha' and 'q_beta'), as well as the mean of $\log$ (Recruitment). The effective sample size (ESS) and Rhat are also shown for each parameter. Rhat is the ratio of the spread of all the values combined to the mean spread of each chain; if all the chains are sampling properly from the posterior distribution, this ratio should be 1 .


Figure 38: Markov Chain Monte Carlo distribution for the mean $\log$ (Recruitment) parameter estimated by Model 22.0 for yellowfin sole. Output was generated in the R package adnuts using 10,000,000 iterations and thinning every 1,000 .


Figure 39: Projected yellowfin sole female spawning biomass for 2022 to 2035 (blue line), with $5 \%$ and $95 \%$ confidence intervals, and fishing at the 5 -year (2017-2021) average fishing mortality rate, $\mathrm{F}=0.0675$, Model 22.1.


Figure 40: Year-class strength of age 5 yellowfin sole estimated by the stock assessment model. The horizontal line represents the average of the estimates from recruitment, 1954-2022, 1.71 billion, Model 22.0.


Figure 41: Year-class strength of age 5 yellowfin sole estimated by the stock assessment model. The horizontal line represents the average of the estimates from recruitment, 1954-2019, 1.69 billion, Model 22.1.


Figure 42: Retrospective plot of female spawning biomass for yellowfin sole Model 22.0. Mohn's Rho for this model was -0.007.


Figure 43: Retrospective plot of female spawning biomass for yellowfin sole Model 22.1. Mohn's rho for this model was 0.007.


Figure 44: Relative differences in spawning biomass between the 2022 model and the retrospective model run for years 2021 through 2012, yellowfin sole Model 22.0. The upper panel includes all years while the lower panel is shown for 1974-2022.


Figure 45: Relative differences in spawning biomass between the 2022 model and the retrospective model run for years 2021 through 2012, yellowfin sole Model 22.1. The upper panel includes all years while the lower panel is shown for 1974-2022.


Figure 46: Yellowfin sole fishing mortality rate and female spawning biomass from 1975 to 2022 compared to the F35\% and F40\% control rules, based on Model 22.1. Vertical line is B35\%. Squares indicate estimates for 2022, 2023, and 2024.


Figure 47: Yellowfin sole fishing mortality rate and female spawning biomass from 1975 to 2022 compared to the F35\% and F40\% control rules, based on Model 22.0. Vertical line is B35\%. Squares indicate estimates for 2022, 2023, and 2024.

## Appendix A

Flatfish (BSAI) Economic Performance Report for 2021 (Author: Ben Fissel) with updated tables for 2022 (Author: Anna Abelman).
BSAI FMP flatfish are predominantly caught in the Eastern Bering Sea by catcher/processors in the Amendment 80 Fleet. In 2020, total catch of FMP flatfish in the BSAI was 214 thousand t. Retained catch was 203.5 thousand t , which was a $3 \%$ increase over 2019 and was below the average catches between 2011-2015. The two most significant flatfish species in terms of market value and volume are yellowfin and rock sole. These two species accounted for $65 \%$ and $12 \%$, respectively, of the retained flatfish catch. Flathead sole, arrowtooth flounder, and Kamchatka flounder are also caught in significant quantities accounting for approximately $5-10 \%$ of the retained flatfish. The remainder of the catch volume is comprised of other flatfish which includes Alaska plaice and Greenland turbot. First-wholesale value decreased $17 \%$ to $\$ 175$ million with a $20 \%$ decrease in prices.

COVID-19 had an unprecedented impact on fisheries in Alaska. Undoubtedly, one of the significant economic impacts experienced by the industry were the mitigation costs experienced by the fishing and processing industries to continue to supply national and global markets for seafood. Existing data collections do not adequately capture these costs, and as such, this report focuses on catch, revenues, and effort and changes occurring during the most recent year. BSAI flatfish catch levels relative to TAC were within a typical range suggesting that COVID-19 did not have a significant impact on catch levels. In contrast to changes in landings, however, there was a notable decrease in prices for many of the products with significant exports to China for reprocessing. This includes BSAI flatfish, which has significant end markets in North America and Europe in both foodservice and retail. The downward pressure on these prices is likely the result of COVID-19 related logistical difficulties in international shipping and inspections, as well as foodservice closures, and compounded the downward pressure on prices from tariffs. This downward pressure on fish product prices in the first-wholesale market coupled with cost pressure from COVID-19 mitigation efforts likely resulted in negative impacts on net revenues (Table B1).

In 2008, Amendment 80 to the BSAI FMP rationalized the non-pollock groundfish fisheries by instituting a catch-share system that annually allocates quota. The group of catcher processors managed under this system is referred to as the Amendment 80 Fleet. The species targeted by the Amendment 80 fleet include flatfish. Amendment 80 also mandated improved retention and utilization of fishery resources, which lowered discard and bycatch rates. Since 2008 total FMP flatfish catch has increased to an average of 265 thousand $t$ over 2008-2012 from 184 thousand t in 2003-2007, and retention has increased from approximately $70 \%$ to more than $90 \%$. In late 2014 flatfish harvest specification flexibility was implemented through Amendment 105 that allows Amendment 80 and CDQ entities to exchange harvest allocation between yellowfin sole, rock sole, and flathead sole. The Alaska flatfish undergo relatively low fishing pressure and harvests are routinely below their TAC and TACs are below the Allowable Biological Catches (ABC) because of the 2 million metric ton cap on Bering Sea groundfish catch. While the TAC is not typically a binding constraint on the fishery, industry may react to TAC changes. Since 2012 approximately $75-80 \%$ of the aggregate flatfish TACs have been caught and TACs are approximately $43-55 \%$ of the aggregate ABCs, though these proportions vary across individual species.

First-wholesale value in the BSAI flatfish fisheries decreased $17 \%$ to $\$ 175$ million with a $23 \%$ decrease in yellowfin sole price, a $14 \%$ decrease in the rock sole price, a $25 \%$ decrease in the flathead sole price, and a $14 \%$ decrease in the arrowtooth flounder price. Prices for most flatfish were at a decadal high in 2018 and the decreases in 2020 brought the average 2020 price across species to a level that was approximately equal to the 2011-2015 average price. Flatfish are primarily processed into the headed-and-gutted (H\&G) and whole fish product forms and changes in production largely reflect changes in catch. The export volume of yellowfin sole and rock sole is approximately $75-90 \%$ of the annual volume of processed products. Exports are primarily destined for China and South Korea, with China typically accounting approximately 80-85\% of total exports. In 2019 China's share of exports dropped to $71 \%$ and South Korea's share of value increased from approximately $15 \%$ to $20 \%$ in 2019. A significant share of this product is re-processed into fillets and re-exported to North American and European markets. Flatfish can serve as a substitute for other higher priced whitefish products, and price changes for these other species can influence flatfish demand. Some
rock sole is processed as $H \& G$ with roe, which is a higher priced product that is primarily destined for Japanese markets. The Alaska flatfish fishery became MSC certified in 2010 and received the Responsible Fishery Management (RFM) certification in 2014. Certification provides access to some markets, particularly in Europe, and may enhance value. Some media reports have attributed the price increase in 2011 to the MSC certification and Asian markets where demand is expected to increase with growth in the middle class population. Reduced fishing opportunities in 2013-2014 for higher valued Atka mackerel may have diverted additional fishing effort towards flatfish increasing catch in these years. Increased supply and inventories from the additional catch put downward pressure on prices. As Atka mackerel fishing resumed more normal levels in 2015 and later, flatfish supply and inventories were reduced, prices began to rise. Atka mackerel catches were high in 2017 and 2018 which may have contributed to the reduced catch of flatfish despite high prices. Because of China's significance as a re-processor of flatfish products, the tariffs between the U.S. and China, which begun in 2018, have put downward pressure on flatfish prices which has inhibited value growth in rockfish markets. Flatfish were among the species to receive relief under the USDA Seafood Tariff Relief Program in 2019-2020. Industry lacks immediate alternative reprocessing options to China on a large scale. Export quantities of flatfish increased in 2020 from 2019 and the share of exports to China was consistent with the average over the last decade (Table B2). The COVID-19 pandemic created supply chain logistical difficulties, particularly in China, which put downward pressure on prices. In addition, foodservice closures in major markets also likely impacted prices negatively for flatfish finished goods.

Table B1. BSAI flatfish catch and first-wholesale market data. Total and retained catch (thousand metric tons), number of vessels, first-wholesale production (thousand metric tons), value (million US\$), price (US\$ per pound), and head and gut share of production; 2011-2015 average and 2016-2020.

|  | 2011-2016 Average | 2017 | 2018 | 2019 | 2020 | 2021 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total catch K mt | 262.22 | 211.4 | 212.2 | 208.6 | 214.1 | 169.2 |
| Retained catch K mt | 238.152 | 198.71 | 197.47 | 198.22 | 203.52 | 160.99 |
| Yellowfin sole share of retained | 57.35\% | 64.73\% | 64.48\% | 63.62\% | 64.68\% | 66.28\% |
| Rock sole share of retained | 22.14\% | 17.08\% | 13.75\% | 12.30\% | 12.12\% | 8.31\% |
| Flathead sole share of retained | 4.96\% | 4.07\% | 5.15\% | 7.52\% | 4.07\% | 5.89\% |
| Arrowtooth and Kamchatka flounder share of retained | 8.62\% | 4.95\% | 4.48\% | 6.70\% | 8.36\% | 8.96\% |
| Vessels \# | 37.2 | 35 | 35 | 35 | 33 | 28 |
| Total flatfish first-wholesale production K mt | 142.45 | 116.9 | 115.11 | 116.18 | 121.32 | 91.69 |
| Total flatfish first-wholesale value M US\$ | \$192.83 | \$192.37 | \$211.65 | \$209.83 | \$174.56 | \$118.38 |
| Total flatfish first-wholesale price/lb US\$ | \$0.61 | \$0.75 | \$0.83 | \$0.82 | \$0.65 | \$0.59 |
| Yellowfin sole share of value | 53.04\% | $57.57 \%$ | 64.55\% | 61.41\% | 61.73\% | 63.76\% |
| Yellowfin sole price/lb US\$ | \$0.54 | \$0.65 | \$0.81 | \$0.78 | \$0.60 | \$0.55 |
| Rock sole share of value | 22.65\% | 15.75\% | 13.76\% | 11.63\% | 12.01\% | 6.84\% |
| Rock sole price/lb US\$ | \$0.66 | \$0.72 | \$0.89 | \$0.83 | \$0.72 | \$0.55 |
| Flathead sole share of value | 5.33\% | 4.17\% | 5.63\% | 7.28\% | 3.36\% | 5.05\% |
| Flathead sole price/lb US\$ | \$0.78 | \$0.86 | \$0.96 | \$0.85 | \$0.63 | \$0.58 |
| Arrowtooth and Kamchatka flounder share of value | 9.90\% | 8.64\% | 4.54\% | 6.74\% | 9.45\% | 12.04\% |
| Arrowtooth and Kamchatka flounder price/lb US\$ | \$0.77 | \$1.36 | \$1 | \$0.91 | \$0.79 | \$0.82 |
| H\&G share of value | 86.32\% | 89.68\% | 93.04\% | 93.95\% | 92.83\% | 96.44\% |

Source: NMFS Alaska Region Blend and Catch-accounting System estimates; NMFS Alaska Region At-sea Production Reports; and ADF\&G Commercial Operators Annual Reports (COAR). Data compiled and provided by the Alaska Fisheries Information Network (AKFIN).

Table B2. Flatfish U.S. trade and global market data. Global production (thousand metric tons), U.S. share of global production, BSAI share of U.S. production. U.S. yellowfin sole and rock sole export volume (thousand metric tons), U.S. export value (million US dollars), U.S. export price (US dollars per pound), the share of U.S. export value from China, and the Euro/U.S. Dollar exchange rate; 2012-2016 average and 2017-2021.

|  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Global production of flounder, halibut, and sole K mt | 2011-2016 Average | 2017 | 2018 | 2019 | 2020 | 2021 |
| US share global production | 1011.47 | 977.32 | 994.28 | 954.56 | 934.23 | - |
| BSAI FMP flatfish share of U.S.1 | $30 \%$ | $27 \%$ | $25 \%$ | $27 \%$ | $27 \%$ | - |
| Export quantity of yellowfin sole and rock sole K mt | $85.16 \%$ | $80.79 \%$ | $85.52 \%$ | $81.79 \%$ | $83.62 \%$ | - |
| Export value of yellowfin sole and rock sole M US $\$$ | 84.61 | 81.36 | 72 | 76.7 | 80.75 | 48.54 |
| Export price/lb of yellowfin sole and rock sole US $\$$ | $\$ 119.93$ | $\$ 115.26$ | $\$ 107.06$ | $\$ 118.43$ | $\$ 118.12$ | $\$ 71.69$ |
| China's share of yellowfin sole and rock sole export value | $\$ 0.64$ | $\$ 0.64$ | $\$ 0.67$ | $\$ 0.70$ | $\$ 0.66$ | $\$ 0.67$ |
| Exchange rate, Euro/Dollar | $82.69 \%$ | $81.67 \%$ | $78.63 \%$ | $70.60 \%$ | $79.60 \%$ | $73.59 \%$ |

Source: FAO Fisheries \& Aquaculture Dept. Statistics http://www.fao.org/fishery/statistics/en. NOAA Fisheries, Fisheries Statistics Division, Foreign Trade Division of the U.S. Census Bureau, http://ww w.st.nmfs.noaa.gov/commercial-fisheries/foreign-trade/index. U.S. Department of Agriculture http: //www.ers.usda.gov/data-products/agricultural-exchange-rate-data-set.aspx. 1 - The BSAI FMP share of U.S. production is calculated as the BSAI retained catch divided by the FAO's U.S. production of flounder, halibut and sole.

