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Abstract 

This paper introduces cross-conditional model averaging (CCMA), a method of model averaging that 
treats each model in a set, one at a time, as though it were the true model, then develops an optimal set of 
weights for the ensemble, conditional on that assumption, and then finally averages across the set of 
conditionally optimized ensembles, thus enabling estimation based on an “ensemble of ensembles.”  A 
pair of simple examples is provided to illustrate the method: one based on estimation of order means from 
two candidate statistical distributions, and the other based on estimation of typical population dynamic 
parameters from two candidate stock assessment models.  When performance is measured in terms of 
expected mean squared error, CCMA can perform no worse than either the best single-model approach or 
“conventional” model averaging, and the results from the two simple examples demonstrate that CCMA 
can sometimes perform substantially better than either of these. 

Introduction 

Providing accurate point estimates of quantities such as stock size, recruitment strengths, and reference 
fishing mortality rates has long been an emphasis of fishery stock assessment, and the use of statistical 
assessment models has improved the ability of assessment scientists to do so (e.g., Hilborn 2003).  
Typically, the assessment scientist develops several statistical models, evaluates them, and then chooses 
the “best” one, from which point estimates of the relevant quantities are derived.  However, assessment 
scientists have also long recognized (at least as far back as Walters 1975) that provision of accurate point 
estimates alone is insufficient, and that this should be supplemented with provision of accurate estimates 
of the uncertainty associated with those point estimates.  As with the point estimates themselves, the 
estimates of uncertainty have typically been based on a single “best” model.  Recently, though, model 
averaging (or ensemble modeling; these terms will be viewed as synonymous here) has been advocated in 
the fishery science literature as providing both more accurate point estimates and more accurate estimates 
of uncertainty than the single “best” model, with dozens of publications to date providing examples.   

Outside of the fishery science literature, advocacy of model averaging as a means of providing improved 
point estimates has an extensive history, starting as far back as a theoretical result by Laplace (1818, 
summarized by Stigler 1973) and a simple empirical demonstration by Galton (1907), and with increasing 
frequency in the 1960s-1980s literature on “combining forecasts” (reviewed by Clemen 1989).  With the 
development of Bayesian model averaging (e.g., Chatfield 1995, Draper 1995), model averaging also 
garnered interest as a means of providing improved estimates of statistical uncertainty, and the rapid 
growth of literature on “machine learning” in the last few decades has added greatly to the suite of tools 
available for model averaging (e.g., Knox 2018). 
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When attempting to apply some sort of model averaging, two questions jump immediately to the 
forefront, and there is currently no scientific consensus on the answer to either:  1) How should the set of 
models be chosen, and 2) how should the average be weighted (recognizing that equal weighting is itself a 
form of weighting)?  The importance of the first question notwithstanding, this paper will concern itself 
only with the second. 

Within the stock assessment literature, many authors have suggested that model weights should ideally 
consist of Bayesian posterior probabilities.  However, computation of such probabilities can be difficult 
and, perhaps more importantly, requires that the same data be used to fit all of the models in the set (e.g., 
Hill et al. 2007, Ianelli et al. 2016).  Although some model averaging studies have successfully produced 
fully Bayesian probabilities for the models in the set (e.g., Sainsbury 1988, Patterson 1999, Brandon and 
Wade 2006), most authors have defaulted to approximations such as purely subjective “plausibility 
weighting” (e.g., Butterworth et al. 1996) or weights based on importance sampling (e.g., McAllister and 
Kirchner 2002), harmonic mean approximation (e.g., Parma 2002, Millar et al. 2015), Akaike Information 
Criterion (AIC; e.g., Millar et al. 2015, Rossi et al. 2019), Bayesian (Schwarz) Information Criterion 
(BIC; e.g., Brodziak and Legault 2005), Deviance Information Criterion (DIC; e.g., Wilberg and Bence 
2008), bootstrapping (e.g., Millar et al. 2015) cross-validation (e.g., Scott et al. 2016, Rossi et al. 2019), 
retrospective analysis (e.g., Rossi et al. 2019), or “true skill statistic” (e.g., Tanaka et al. 2020).  Equal 
weighting of models has also been used (e.g., Stewart and Martell 2015, Ianelli et al. 2016, Rossi et al. 
2019, Bryndum-Buchholz et al. 2020, Holsman et al. 2020, Reum et al. 2020). 

Many model averaging approaches and applications arose in disciplines such as weather and climate 
forecasting, in which a time series of true values for the primary quantity of interest exists (e.g., 
precipitation is routinely measured with negligible error) and can be used to estimate (“train”) the 
ensemble.  However, in stock assessment, a time series of true values for the quantity of interest is 
invariably lacking.  For example, the assessment scientist seldom, if ever, has at his or her disposal a time 
series of true stock sizes or true harvest levels corresponding to a maximum sustainable yield (msy) 
exploitation rate.  One possibility is to optimize the set of model weights by training on data that are 
observed, such as a survey index time series (as suggested by Stewart and Martell 2015), but there is no 
guarantee that an ensemble tuned to fit something other than the quantity of interest will be good at 
estimating the quantity of interest.   

In other words, for the stock assessment scientist, not only is the true model structure unknown, but the 
task is confounded further by the fact that there is no unambiguously true standard to which an ensemble 
can be tuned.  This paper proposes a new method, cross-conditional model averaging (CCMA), which 
attempts to address these twin difficulties. 

Methods 

The basic construct in CCMA is an “ensemble of ensembles;” more specifically, a probability-weighted 
average of optimally weighted model averages (ensembles).   

As noted above, two main types of model weights have been addressed in the literature, broadly speaking.  
The “combining forecasts” literature focuses on weights that optimize the performance of a linear 
combination of the models in a set; while Bayesian model averaging, and the various approximations 
thereto, focus on the probability that the structure of any given model within the set corresponds to the 
true structure, or (perhaps equivalently) on how well any given model, taken by itself, fits the data.  The 
CCMA approach combines the two by using the former to specify the weights in each individual 
ensemble, and the latter to form a weighted average of the individual ensembles. 
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A more mathematically explicit description of the method follows.  Because modern statistical methods 
of producing point estimates can typically be cast in terms of the distribution of the estimator (e.g., as the 
mean or median), this description will focus on deriving the distribution.  The choice of point estimator 
will be addressed in the Discussion. 

The general case 

In principle, CCMA provides a distribution for some quantity of interest z as a weighted average of 
ensembles, where each ensemble is, in turn, a weighted average of distributions arising from nmod 
individual models, as follows: 

𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎(𝑧𝑧) = � �𝑝𝑝𝑖𝑖 � 𝑊𝑊𝑖𝑖,𝑗𝑗

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑗𝑗=1

𝑓𝑓�𝑧𝑧�𝑚𝑚𝑖𝑖⨂𝑚𝑚𝑗𝑗��  ,
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑖𝑖=1

 

where p is a an nmod vector of probabilities (summing to unity); W is an nmod×nmod matrix of non-
negative model weights (each row summing to unity), m is an nmod vector of model identifiers; f is the 
distribution of z; and the notation 𝑚𝑚𝑖𝑖⨂𝑚𝑚𝑗𝑗 means that the structure of model i is conditionally true, but the 
distribution is nevertheless based on the structure of model j.  In the special case where W is the identity 
matrix, CCMA reduces to conventional model averaging. 

In practice, of course, the individual f terms are unknown and must be approximated by use of data, so 
CCMA proceeds as follows: 

Given an observed data vector x of length nobs, each model i generates an estimate of z as follows: 

𝑧𝑧𝑖𝑖 = 𝑔𝑔(𝑚𝑚𝑖𝑖⨁𝐱𝐱) , 

where the notation 𝑚𝑚𝑖𝑖⨁𝐱𝐱 means that model i is fit to x, and g maps the results from fitting model i to x 
into the quantity of interest z. 

There are many ways of approximating the distribution of z from 𝑚𝑚𝑖𝑖⨁𝐱𝐱 (e.g., inverting the Hessian 
matrix, use of Markov chain Monte Carlo methods (MCMC)).  However, when cross-conditioning is 
involved, conditional parametric bootstrapping (Gavaris 1993, Smith et al. 1993) appears to be the most 
straightforward approach.  After model i is fit to the observed data vector x, conditional parametric 
bootstrapping is used to generate nrep replicated data vectors of length nobs, resulting in an nobs×nrep 
data matrix X, written as 𝐗𝐗(𝑚𝑚𝑖𝑖⨁𝐱𝐱 ) to emphasize its dependence on mi and x.  Then, a cross-
conditionally estimated vector of z values is generated for each combination of i=1,2,...,nmod and 
j=1,2,...,nmod by evaluating the following for k=1,2,...,nrep: 

�𝑍𝑍𝑖𝑖,𝑗𝑗�𝑘𝑘 = 𝑔𝑔�𝑚𝑚𝑗𝑗⨁𝐗𝐗(𝑚𝑚𝑖𝑖⨁𝐱𝐱 )〈𝑘𝑘〉� , 

where Z is an nmod×nmod matrix, each element of which is an nobs vector of estimated z values; and the 
superscript 〈𝑘𝑘〉 denotes the kth column of the matrix X. 

Let 𝜻𝜻 represent the midpoints of nbin equally sized histogram bins spanning the range [min(Z),max(Z)] 
and let h(z,𝜻𝜻) return the frequencies of a vector z within the set of equally sized histogram bins centered at 
𝜻𝜻.  Then, fave  is approximated as follows: 
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𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎(𝛇𝛇) = � �𝑝𝑝𝑖𝑖 � 𝑊𝑊𝑖𝑖,𝑗𝑗

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑗𝑗=1

ℎ�𝑍𝑍𝑖𝑖,𝑗𝑗 , 𝛇𝛇� 𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝⁄ �  .
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑖𝑖=1

 

As in Bayesian model averaging, each element of p should ideally represent the probability that the 
structure of the associated model is true, conditional on the assumption that the set of models includes the 
model with the true structure.  However, as noted in the Introduction, computation of Bayesian posterior 
model probabilities may be prohibitive, either because of computational difficulties or, more 
problematically, because the models do not all use the same data.  Therefore, it is anticipated that p will 
more commonly be set by one of the approximations listed in the Introduction.   

In contrast, W is unique to cross-conditional model averaging, and has a precise statistical objective, viz., 
optimizing each cross-conditional weighted average ensemble.  Specifically, for any given model i (the 
“pivot” model), the elements of the corresponding row of W are chosen, subject to the constraints of non-
negativity and summation to unity, so as to minimize the mean squared error for the ensemble, 
conditional on the structure of the pivot model being true.  Quantification of “error,” of course, requires 
specification of an optimal estimate whenever the true value of z is unknown, as will typically be the case 
for most quantities of interest in a stock assessment.  The optimal estimate of z for any given model i 
(zopti) is assumed to be either: 

• zi, the estimate obtained by fitting model i to the observed data x; or  
• mean(Zi,i), the mean of the estimates of z obtained by fitting model i to the conditional parametric 

bootstrap data that were generated by fitting that model to the observed data x. 

Given zopti, the mean (across data replicates) squared error for pivot model i is given by 

𝑚𝑚𝑚𝑚𝑛𝑛𝑖𝑖 �𝐖𝐖𝑇𝑇〈𝑖𝑖〉� =
1

𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝
� � � 𝑊𝑊𝑖𝑖,𝑗𝑗�𝑍𝑍𝑖𝑖,𝑗𝑗�𝑘𝑘

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑗𝑗=1

− 𝑧𝑧𝑧𝑧𝑝𝑝𝑧𝑧𝑖𝑖�

2𝑛𝑛𝑛𝑛𝑎𝑎𝑛𝑛

𝑘𝑘=1

 , 

where the superscript T denotes matrix transpose.   

Once each row of W has been optimized (subject to the constraints of non-negativity and summing to 
unity) by minimizing the above equation, thus yielding the best-performing ensemble conditional on the 
structure of the associated pivot model being true, the mean squared errors can be averaged (across pivot 
models) to give the expected mean squared error: 

𝑛𝑛𝑚𝑚𝑚𝑚𝑛𝑛(𝐖𝐖) = � 𝑝𝑝𝑖𝑖𝑚𝑚𝑚𝑚𝑛𝑛𝑖𝑖 �𝐖𝐖𝑇𝑇〈𝑖𝑖〉�  .
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑖𝑖=1

 

The emse can be used to compare the performance of the general CCMA approach to various special 
cases; for example, conventional model averaging (where W is the identity matrix), or any single-model 
approach (where each element of a given column of W is equal to 1 and all other elements are equal to 0). 

The two-model special case 

To facilitate exploration of CCMA, this paper makes use of a pair of simple, two-model examples. 
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In the special case where nmod=2, the fact that the elements of p and each row of W must sum to unity 
means that p can be expressed entirely in terms of a single element (i.e., 𝐩𝐩 = [𝑝𝑝1 1 − 𝑝𝑝1]𝑇𝑇), and W can 
be expressed entirely in terms of the diagonal vector w as follows: 

𝐖𝐖 = � 𝑤𝑤1 1 −𝑤𝑤1
1 − 𝑤𝑤2 𝑤𝑤2

� 

For pivot model i =1,2, define the mean squared error as: 

𝑚𝑚𝑚𝑚𝑛𝑛𝑖𝑖(𝑤𝑤𝑖𝑖) =
1

𝑛𝑛𝑛𝑛𝑚𝑚𝑛𝑛𝑖𝑖
� ��𝑤𝑤𝑖𝑖�𝑍𝑍𝑖𝑖,𝑖𝑖�𝑘𝑘 + (1 −𝑤𝑤𝑖𝑖)�𝑍𝑍𝑖𝑖,3−𝑖𝑖�𝑘𝑘� − 𝑧𝑧𝑧𝑧𝑝𝑝𝑧𝑧𝑖𝑖�

2
𝑛𝑛𝑛𝑛𝑛𝑛𝑎𝑎𝑖𝑖

𝑘𝑘=1

 

For vectors x and y of length n, let mean(x), var(x), and cov(x,y) represent the sample arithmetic mean, 
sample variance, and sample covariance, respectively (where all three use n as the denominator).  Mean 
squared error can then be rewritten as a quadratic function of wi by defining a 5×2 matrix of coefficients 
C from the moments of the elements of Z for i=1,2 as follows: 

𝐶𝐶1,𝑖𝑖 = 𝑣𝑣𝑣𝑣𝑛𝑛�𝑍𝑍𝑖𝑖,𝑖𝑖 − 𝑍𝑍𝑖𝑖,3−𝑖𝑖� + 𝑚𝑚𝑛𝑛𝑣𝑣𝑛𝑛�𝑍𝑍𝑖𝑖,𝑖𝑖 − 𝑍𝑍𝑖𝑖,3−𝑖𝑖�
2
 

𝐶𝐶2,𝑖𝑖 = 𝑣𝑣𝑣𝑣𝑛𝑛�𝑍𝑍𝑖𝑖,3−𝑖𝑖� − 𝑚𝑚𝑛𝑛𝑣𝑣𝑛𝑛�𝑍𝑍𝑖𝑖,3−𝑖𝑖�𝑚𝑚𝑛𝑛𝑣𝑣𝑛𝑛�𝑍𝑍𝑖𝑖,𝑖𝑖 − 𝑍𝑍𝑖𝑖,3−𝑖𝑖� − 𝑐𝑐𝑧𝑧𝑣𝑣�𝑍𝑍𝑖𝑖,𝑖𝑖 ,𝑍𝑍𝑖𝑖,3−𝑖𝑖� 

𝐶𝐶3,𝑖𝑖 = 𝑚𝑚𝑛𝑛𝑣𝑣𝑛𝑛�𝑍𝑍𝑖𝑖,𝑖𝑖 − 𝑍𝑍𝑖𝑖,3−𝑖𝑖� 

𝐶𝐶4,𝑖𝑖 = 𝑚𝑚𝑛𝑛𝑣𝑣𝑛𝑛�𝑍𝑍𝑖𝑖,3−𝑖𝑖� 

𝐶𝐶5,𝑖𝑖 = 𝑣𝑣𝑣𝑣𝑛𝑛�𝑍𝑍𝑖𝑖,3−𝑖𝑖� 

Given the above, the mean squared error can be rewritten for each pivot model i=1,2  as: 

𝑚𝑚𝑚𝑚𝑛𝑛𝑖𝑖(𝑤𝑤𝑖𝑖) = 𝐶𝐶1,𝑖𝑖𝑤𝑤𝑖𝑖2 − 2�𝐶𝐶2,𝑖𝑖 + 𝐶𝐶3,𝑖𝑖𝑧𝑧𝑧𝑧𝑝𝑝𝑧𝑧𝑖𝑖�𝑤𝑤𝑖𝑖 + �𝐶𝐶4,𝑖𝑖 − 𝑧𝑧𝑧𝑧𝑝𝑝𝑧𝑧𝑖𝑖�
2 + 𝐶𝐶5,𝑖𝑖 

The value of wi that minimizes the mean squared error, subject to the constraint 0 ≤ 𝑤𝑤𝑖𝑖 ≤ 1, is then 
obtained straightforwardly as: 

𝑤𝑤𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑛𝑛 �1,𝑚𝑚𝑣𝑣𝑚𝑚 �0,
𝐶𝐶2,𝑖𝑖 + 𝐶𝐶3,𝑖𝑖𝑧𝑧𝑧𝑧𝑝𝑝𝑧𝑧𝑖𝑖

𝐶𝐶1,𝑖𝑖
�� 

Finally, the expected mean squared error (i.e., the weighted average of msei across pivot models i=1 and 
i=2) is given by 

𝑛𝑛𝑚𝑚𝑚𝑚𝑛𝑛(𝐰𝐰) = 𝑝𝑝1𝑚𝑚𝑚𝑚𝑛𝑛1(𝑤𝑤1) + (1 − 𝑝𝑝1)𝑚𝑚𝑚𝑚𝑛𝑛2(𝑤𝑤2) 

Some special cases of emse are as follow: 
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Approach emse 
Single model, using model 1 𝑛𝑛𝑚𝑚𝑚𝑚𝑛𝑛([1 0]𝑇𝑇) 
Single model, using model 2 𝑛𝑛𝑚𝑚𝑚𝑚𝑛𝑛([0 1]𝑇𝑇) 
Conventional model averaging 𝑛𝑛𝑚𝑚𝑚𝑚𝑛𝑛([1 1]𝑇𝑇) 
Cross-conditional model averaging 𝑛𝑛𝑚𝑚𝑚𝑚𝑛𝑛([𝑤𝑤1 𝑤𝑤2]𝑇𝑇) 

 
Each of the examples described below involves two models.  For both examples: 

• The models are numbered 1 and 2, but a four-character label is also assigned to each model for 
ease of reference. 

• Model 1 was chosen as the true model, from which a single “observed” data set was simulated. 
• Parameters were estimated by the method of maximum likelihood. 
• Simply for convenience, p was specified on the basis of AIC weights. 
• Except where indicated otherwise, each zopti was set equal to the base estimate. 

Example 1: Order means as estimated by two distributional forms 

For positive random variable x, probability density function f(x), and real number q, the mean of order q is 
defined as the qth root of the qth noncentral moment (e.g., Mitrinović 1970): 

𝑚𝑚(𝑞𝑞) = �� 𝑓𝑓(𝑚𝑚)𝑚𝑚𝑞𝑞
∞

0
𝑑𝑑𝑚𝑚�

1 𝑞𝑞⁄

 , 

which, in the limit as q→0, converges to 

𝑚𝑚(0) = 𝑛𝑛𝑚𝑚𝑝𝑝 �� 𝑓𝑓(𝑚𝑚)𝑙𝑙𝑛𝑛(𝑚𝑚)
∞

0
𝑑𝑑𝑚𝑚� . 

Well known examples of order means include the arithmetic (q = 1), geometric (obtained in the limit as 
q→0), and harmonic (q = −1) means. 

For this example, the models were distinguished by the functional form of f(x).  Model 1 (label: logn) 
used the lognormal distribution (Aitchison and Brown 1957) and Model 2 (label: invg) used the inverse 
Gaussian distribution (Tweedie 1957). 

Additional background information for this example is given in Appendix 1. 

To conduct the simulations, the following dimensions were specified: 

• nobs = 20 
• nrep = 100,000 

The true mean and true coefficient of variation were set at values of 10.0 and 2.0, respectively.  True 
values and base estimates of the parameters are shown below (“True” is shown in quotes for the inverse 
Gaussian distribution because it is not the true distributional form, but the “true” values listed do 
correspond to the true mean and true coefficient of variation): 
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Lognormal Inverse Gaussian 
Parameter True Estimate Parameter “True” Estimate 

µ 1.498 1.550 α 0.250 0.396 
σ 1.269 1.134 β 10.000 9.444 

 
Based on AIC weighting, p1 was assigned a value of 0.448 in this example. 

The CCMA approach was applied multiple times in this example, each time using an order mean ranging 
from q = −5 to q = 5 as the quantity of interest, for the purpose of understanding how the performance of 
the approach varies with the choice of quantity of interest. 

Estimates of bias for the two possible choices of zopti (zi, the estimate obtained by fitting model i to the 
observed data x; or mean(Zi,i), the mean of the estimates of z obtained by fitting model i to the conditional 
parametric bootstrap data that were generated by fitting that model to the observed data x) were obtained 
by repeating the simulation 1000 times (i.e., generating a new observed data vector x) for each example 
value of q and measuring bias as mean(zopti)/m(q)−1, where mean(zopti) was computed across the 1000 
repeated simulations. 

Example 2: Stock assessment models with two forms for the stock-recruitment relationship 

For the second example, two very simple stock assessment models were developed, distinguished only by 
the form of the stock-recruitment relationship.  Model 1 (label: beho) used the form suggested by 
Beverton and Holt (1957), and Model 2 (label: rick) used the form suggested by Ricker (1954).  The 
parameters of both models consist of: 

• umsy, the discrete annual exploitation rate corresponding to maximum sustainable yield 
• v, the discrete annual natural mortality rate 
• x0, the initial stock size 
• xmsy, the stock size corresponding to maximum sustainable yield 
• σ, the standard deviation of log-scale observation (measurement) error 

In addition to the parameters, results will also be presented for two derived quantities: 

• xpro, the projected stock size for the coming year 
• ofl, the “overfishing level,” defined as the product of umsy and xpro 

Additional background information for this example is given in Appendix 2. 

To conduct the simulations, the following dimensions were specified: 

• nobs = 30 
• nrep = 10,000 

True values and base estimates of the parameters and derived quantities are shown below: 
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Parameter true beho rick 
umsy 0.200 0.227 0.237 
v 0.200 0.192 0.033 
x0 30.769 29.856 30.187 
xmsy 100.000 74.619 68.889 
σ 0.200 0.191 0.188 
xpro 81.712 71.350 69.926 
ofl 16.342 16.176 16.569 

 
Based on AIC weighting, p1 was assigned a value of 0.417 in this example. 

Results 

Example 1: Order means as estimated by two distributional forms 

Base estimates (i.e., the maximum likelihood estimates based on the observed data) of integer order 
means from −5 to 5 are shown for each of the two models below: 

order: −5 −4 −3 −2 −1 0 1 2 3 4 5 
logn: 0.19 0.36 0.69 1.30 2.48 4.71 8.96 17.05 32.43 61.69 117.35 
invg: 0.88 1.06 1.34 1.80 2.68 4.71 9.44 17.73 28.57 40.93 54.26 

 
The inverse Gaussian model generally gave higher estimates than the lognormal for integer order means 
−5 through 2 (although the estimates for order 0 were essentially equal), while the lognormal model gave 
higher estimates than the inverse Gaussian for integer orders 3 through 5. 

Figure 1 addresses the extent to which optimized model weights (w) were specific to the quantity being 
estimated, and the extent to which they mattered, by profiling over a range of order means from −5 to 5 
(not restricted to integer values).  As demonstrated by Figure 1, the optimal value of w can vary 
dramatically, depending on the quantity being estimated.  For example, w1=1 for all order means less than 
about −0.9, while w1=0 for all order means greater than about 2.3; whereas w2=1 for all order means 
between about −0.2 and 0.6 and greater than about 1.8, and w2 never falls below about 0.4.   

Figure 2 shows the proportional reductions in emse achieved by CCMA relative to the other three 
approaches (single-model using logn, single-model using invg, and conventional model averaging (conv)).   

The improvement resulting from use of CCMA were sometimes fairly modest: 

• For order means between about −1.2 and 1.8, improvements resulting from use of CCMA never 
exceeded about 10% relative to any of the other three alternatives. 

• For order means greater than about 2.3, relative to the single-model approach using invg, use of 
CCMA did not result in any improvement. 

• For order means between about −4.4 and 2.2, improvement relative to conv was less than 10%. 

However, in other circumstances, the improvement was substantial.  For example, reductions in excess of 
50% were obtained by CCMA for: 

• order means less than about −4.0 or greater than about 2.6, relative to the single-model approach 
using logn. 
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• order means less than about −3.0, relative to the single-model approach using invg. 
• order means greater than about 3.0, relative to conv. 

To examine a particular case in greater detail, Figure 3 shows results for q = −5, with nbin=50.  The 
optimal values of w1 and w2 were 1.000 and 0.775, respectively.  Curves are color-coded as follows: blue 
corresponds to Model 1 (logn), red corresponds to Model 2 (invg), and purple corresponds to some sort of 
model average (conv or ccma). 

The upper two panels of Figure 3 correspond to each cross-conditional pair of model fittings to nrep sets 
of bootstrap data replicates from a conditionally true model.  The upper left panel corresponds to the case 
where Model 1 (logn) is the conditionally true model, and the upper right panel corresponds to the case 
where Model 2 (invg) is the conditionally true model.  In each of the upper panels, the dashed curve 
represents the conditionally true model, the dotted curve represents the other model, and the solid curve 
represents the optimized ccma ensemble for that cross-conditional pair (i.e., the average of the dashed and 
dotted curves, weighted by w1 and 1−w1 in the case of the upper left panel, and by w2 and 1−w2 in the case 
of the upper right panel).  In the event that the respective element of w is 0.0 or 1.0, the solid curve will 
overlay the dotted or dashed curve, respectively. 

The lower two panels of Figure 3 develop the final model averages.  The lower left panel develops the 
conv average, and the lower right panel develops the ccma average.  In the lower left panel, the dashed 
blue and dashed red curves duplicate their counterparts from the upper left (blue) and upper right (red) 
panels, and the dashed purple curve represents the conv average (i.e., the average of the dashed blue and 
red curves, weighted by p1 and 1−p1).  In the lower right panel, the solid blue and solid red curves 
duplicate their counterparts from the upper left (blue) and upper right (red) panels, and the solid purple 
curve represents the ccma average (i.e., the average of the solid blue and red curves, weighted by p1 and 
1−p1). 

Means and standard deviations of the distributions shown in Figure 3 are provided below (where the 
notation i⊗j means that the bootstrap replicates were generated by model i and fit by model j), and 
ccma(i) represents the cross-conditional ensemble for the case where model i is conditionally true): 

Statistic 1⊗1 1⊗2 2⊗1 2⊗2 ccma(1) ccma(2) ccma conv 
mean: 0.344 0.987 0.300 0.999 0.344 0.841 0.618 0.705 
sdev: 0.326 0.411 0.260 0.320 0.326 0.424 0.456 0.459 

 
As expected, both the cross-conditional and conventional model averaging approaches (ccma and conv) 
reflect greater uncertainty in the estimated quantity than either single model by itself (1⊗1 and 2⊗2). 

Relative changes in emse for the q = −5 case were as follow (row relative to column): 

m(−5) logn invg conv ccma 
logn 0 -0.3391 1.2875 1.5963 
invg 0.5131 0 2.4611 2.9284 
conv -0.5628 -0.7111 0 0.1350 
ccma -0.6148 -0.7454 -0.1189 0 

 
Of the two single-model approaches, logn outperformed invg (i.e., it gave a lower emse).  Both model-
averaging approaches outperformed both of the single-model approaches, and, of the two model-
averaging approaches, ccma outperformed conv (by about 12%). 
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Finally, Figure 4 addresses the issue of which choice of zopti (the base estimate zi or mean(Zi,i)) is 
superior, by showing the bias in base estimates and sample means from each model for integer order 
means ranging from −5 to 5.  Both estimators (base and mean) for both models were close to unbiased for 
order means from −1 to 1.  However, performance of either estimator, for both models, degrades 
considerably for order means outside this range.  For the logn model, the mean estimator performed much 
more poorly than the base estimator outside the [−1,1] range, whereas for the invg model, the 
performance of the mean estimator was only slightly worse than that of the base estimator throughout the 
range. 

Example 2: Stock assessment models with two forms for the stock-recruitment relationship 

Of the model fits to the nrep=10,000 bootstrap data replicates generated for each pivot model, some were 
determined to be unreliable, either due to a large gradient (>0.0001) or a Hessian matrix that did not 
appear to be positive definite.  In the event that a model failed to provide a satisfactory fit to a bootstrap 
data replicate, the results from both models (for that data replicate) were discarded.  As a result, results 
from 994 of the bootstrap data replicates were discarded when Model 1 was the pivot model and results 
from 803 of the bootstrap data replicates were discarded when Model 2 was the pivot model.  Thus, 
wherever nrep appears in the description of the CCMA approach in the Methods section, it was replaced 
by nuse1=9,006 and nuse2=9,197 here. 

It should be noted that the results for xmsy contained several extremely large estimates.  In the interest of 
completeness, results for xmsy will be reported here, even though some of those results may not be 
particularly useful (e.g., the mean and standard deviation of the distribution seem unreasonably large). 

The optimized values of w for the parameters and derived quantities were as follow (values of 0 and 1 are 
highlighted red and green, respectively, for easy identification): 

Quantity w1 w2 
umsy 0.7227 0.3002 

v 0.7810 0.1161 
x0 1.0000 0.0000 

xmsy 0.5319 0.0909 
σ 1.0000 0.0000 

xpro 0.1177 1.0000 
ofl 0.7292 0.2863 

 
As with Example 1, the results for Example 2 demonstrate that the optimal value of w can vary 
dramatically depending on the quantity being estimated. 

Table 1 shows the relative changes in emse for each quantity and all combinations of estimator.  In nearly 
all cases, the emse for ccma was less than that for any other estimator.  The two exceptions were the two 
cases where one element of w was 0.0 and the other was 1.0, in which case ccma was tied with one of the 
single-model approaches (specifically, the single-model approach using beho in both cases).  Relative to 
conv, the reductions in emse achieved by ccma were sometimes small (e.g., 1% to 2% for xpro and σ), but 
were also sometimes quite substantial (e.g., >40% for v, umsy, ofl, and xmsy; although the xmsy result 
may be suspect, as noted above).  The conv approach always outperformed one of the single-model 
approaches but not the other:  conv gave a lower emse than the single-model approach using beho in the 
case of xpro, and a lower emse than the single-model approach using rick in all other cases.  Of the six 
cases where the single-model approach using beho outperformed the conv approach, some of the 
improvements were substantial (e.g., the reduction in emse for the single-model approach using beho, 
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relative to the emse for conv, exceeded 30% for umsy, v, xmsy, and ofl; although, again, the xmsy result 
may be suspect). 

Probability mass functions, following the format and conventions of Figure 3, are shown for the 
parameters and derived quantities in Figure 5, where nbin=50 in each case (for the panels associated with 
xmsy, each horizontal axis has been truncated so that it corresponds to the maximum of the upper end of 
the 67% concentrations, due to the extremely heavy tails of the full distributions). 

Means and standard deviations of the distributions shown in Figure 5 are provided in Table 2. 

Discussion 

As shown here, when performance is measured in terms of expected mean squared error, CCMA can 
perform no worse than either the best single-model approach or conventional model averaging, and the 
results from the two simple examples demonstrate that CCMA can sometimes perform substantially better 
than either of these (in contrast, note that conventional model averaging can actually perform worse than 
a single-model approach). 

Although the method has yet to be applied to a set of stock assessment models involving more than a few 
parameters each, the theory described here and the results from the two simple examples suggest that 
CCMA is worthy of further exploration as a tool for improving stock assessment estimates.  In 
anticipation of such exploration, some possible methodological issues, potential subjects for future 
research, and practical considerations for implementation are addressed below. 

Possible methodological issues 

Use of bootstrap distributions as an approximation of Bayesian posterior distributions 

In CCMA, at least as developed to date, the distribution of the quantity of interest for each pivot model is 
based on a set of conditional parametric bootstraps.  Use of bootstrap distributions has a long history in 
fishery science, going back at least as far as Deriso et al. (1985) and Kimura and Balsiger (1985).  
However, bootstrap distributions are only approximations to Bayesian posterior distributions.  Therefore, 
if a method could be found for obtaining the Bayesian posterior distributions required by CCMA, it would 
probably be preferable to use such an approach (subject to computational feasibility), but this appears 
difficult, because of the need to develop distributions for each model that are conditional on the structure 
of a given pivot model being true.   

Whether bootstrapped distributions are sufficiently good approximations of Bayesian posterior 
distributions remains an open question, with many studies having been conducted, often with divergent 
conclusions.  Among the studies that have evaluated the performance of alternative uncertainty estimators 
(Bayesian posterior distribution, various types of bootstrap distributions, Hessian matrix inversion, the 
delta method, frequentist methods, likelihood methods, and MCMC) are those by Mohn (1993, 2009), 
Punt and Butterworth (1993), Gavaris (1999), Patterson (1999), Gavaris et al. (2000), Restrepo et al. 
(2000), Patterson et al. (2001), Zhou (2002), Magnusson et al. (2013), and Elvarsson et al. (2014).  
Differences in results have been attributed (see, for example, Magnusson et al. 2013) to the specific type 
of bootstrap being evaluated (e.g., parametric versus non-parametric, bias-corrected versus not), the 
performance measure being used (full distributions versus confidence intervals or variances), the overall 
approach (empirical versus simulation-based), and, in the case of simulation-based approaches, the 
complexity of the operating model.  Another possible issue is the effect of assuming the wrong functional 
form for the likelihood when generating the posterior distribution. 
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In their review of methods for model averaging, Millar et al. (2015) considered weights based on 
bootstrapping, but focused primarily on non-parametric bootstraps, which they noted are often not well 
suited to fishery applications.  They suggested that parametric bootstraps might be a better alternative, but 
cautioned that the operating model underlying the parametric bootstraps might cause over-weighting of 
those models whose structures were the most similar to the operating model.  However, the cross-
conditioning aspect of CCMA addresses such potential over-weighting explicitly, by requiring each 
model to take a turn as the operating (pivot) model. 

Given the facts that: 1) all fishery modeling involves approximations, 2) bootstrap approximations to 
Bayesian posterior distributions remain a contender after extensive analysis, and 3) the potential 
shortcoming noted by Millar et al. (2015) has been addressed; it is reasonable to conclude that their use in 
CCMA is likely not a critical flaw. 

Assuming that the model set contains the true model 

The assumption that the model set contains the true model, while almost surely invalid in the strict sense, 
is widely made in the model selection literature, particularly the portion of the literature that advocates 
use of BIC (e.g., Bernardo and Smith (1994), Kadane and Lazar (2004), Chaurasia and Harel (2013), Aho 
et al. (2014)).  Moreover, even when the impossibility of ever identifying the true model is acknowledged, 
the fact remains that, in practice, the use of stock assessment results in a fishery management context 
typically involves proceeding as though one of the models in the model set is the true model (e.g., Kass 
and Raftery 1995).  In CCMA, this assumption is required in order to take the final step of converting the 
individual optimized ensembles, each of which is conditional on the structure of the respective pivot 
model being true, into an (unconditional) expectation across all pivot models.  Thus, the assumption that 
the model set contains the true model is best viewed as a matter of convenience (or logical necessity) 
rather than a matter of ontology. 

Potential subjects for future research 

Relation of CCMA to “combining forecasts” 

As noted in the Methods section, the CCMA approach bears some similarity to techniques described in 
the “combining forecasts” literature (Clemen 1989), to which Reid (1968) and Bates and Granger (1969) 
provided foundational contributions.  Granger and Ramanathan (1984) noted that the standard techniques 
for combining forecasts tended to take the form of linear regression models, with the observed value as 
the dependent variable and the individual model forecasts as the independent variables.  They noted that, 
while existing applications typically fixed the intercept term at zero and constrained the model weights so 
that they sum to unity (as is done for each row of W in CCMA), such constraints are not logically 
necessary, and that relaxing those constraints might be expected to result in better performance of the 
combined forecast.  However, Phillips (1987) showed that the constrained solution can sometimes 
actually outperform the unconstrained solution, and further noted that, even when the unconstrained 
solution performs better, the performance of the constrained solution can be very nearly as good.  
Whether removal of the constraints on W could be expected to improve the performance of CCMA is 
suggested as a subject for future research. 

Relation of CCMA to “machine learning” 

Machine learning techniques have been used in several fishery applications of ensemble modeling (e.g., 
Walsh and Kleiber 2001, Soykan et al. 2014, Liu et al. 2020, and Siders et al. 2020).  To the non-
practitioner, the terminology of machine learning can be confusing, with some techniques being so 
closely related that it is difficult to distinguish between them meaningfully.  One machine learning 
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technique that relates to CCMA is “bagging” (shorthand for “bootstrap aggregation,” Breiman 1996a).  
Both bagging and CCMA employ bootstraps, but bagging typically uses unconditional nonparametric 
bootstraps (i.e., the original bootstrapping method of Efron 1979; see also the classification of 
bootstrapping methods proposed by Smith et al. 1993), whereas CCMA uses conditional parametric 
bootstraps.   

The CCMA approach also appears to be closely related to “stacking” (Wolpert 1992, Breiman 1996b) and 
the “super learner” (van der Laan et al. 2007) and “superensemble” (Krishnamurti et al. 1999; see 
Anderson et al. 2017 and Rosenberg et al. 2018 for stock assessment applications) techniques.  In all of 
those techniques, the models are fit to the observed data and used to estimate the quantity of interest, and 
then those estimates are treated as variables to be used in fitting the ensemble to the observed data by 
tuning the model weights, akin to the “combining forecasts” technique discussed above.  A major 
difference between these machine learning techniques and CCMA is that the former use observed data 
only, so no cross-conditioning is possible and the “ensemble of ensembles” aspect of CCMA is absent 
(note that some authors, e.g., Sipper and Moore (2021), use the term “superensemble” to refer to an 
ensemble of ensembles, but this is different from the superensemble technique of Krishnamurti et al.).  
Another difference is that these machine learning techniques all involve cross-validation in an attempt to 
avoid over-fitting.  Note, however, that cross-validation is not typically used in bagging, because the use 
of bootstrapping is thought to serve the same purpose.  Further clarification of the relation between 
CCMA and existing machine learning techniques, and exploration of whether the performance of CCMA 
would be improved by incorporating a cross-validation step even though it already employs 
bootstrapping, are also suggested as subjects for future research. 

Point estimation 

As noted in the Introduction, both point estimates and estimates of uncertainty are important, and model 
averaging has been suggested as a means of improving both.  The description of CCMA in the Methods 
section was focused on deriving the distribution of the quantity of interest, anticipating that the point 
estimate would be based on that distribution (e.g., as the mean or median).   

Interpreted in the context of decision theory, the use of minimum squared error to estimate the elements 
of any given row of W implies the use a particular loss function.  One of the characteristics of the loss 
function used here is that the optimal estimator is the arithmetic mean of the average distribution.  With 
respect to the choice of measure used to represent zopti, and noting that the point estimate zi will often be 
expected to approximate mean(Zi,i), the fact that the arithmetic mean of the average distribution is the 
optimal estimator suggests that the choice might not be terribly consequential.  This conclusion is 
corroborated by the results from Example 1, in which the choice made little difference when estimating 
the population mean of order 1.   

However, other choices for the loss function are possible.  Appendix 3 describes a general loss function, 
of which the one used here is a special case.  In the general form of the loss function, the optimal 
estimator is the mean of order 1−ra, where ra is an ad hoc measure of risk aversion, so that the arithmetic 
mean of the estimated distribution is obtained as the optimal estimator (as here) only in the special case 
where ra = 0 (i.e., “risk neutrality”).  There is a coherence between the order means of the distributions 
corresponding to the individual ensembles and the order mean of the average distribution; viz., the order 
mean of the average distribution equals the order mean of the individual order means (Appendix 3).  This 
means that, for values of ra substantially different from 0, the sample mean of of order 1−ra (i.e., of the 
sample Zi,i) might be a better choice to serve as zopti than the point estimate zi.  This conclusion is also 
corroborated by the results from Example 1, in which both zi and mean(Zi,i) were substantially biased 
when estimating means of order less than −1 or greater than 1.   
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Use of the general loss function in Appendix 3 is therefore suggested as another subject for future 
research. 

Practical considerations for implementation 

Choosing which models to include 

As noted in the Introduction, one of the two fundamental problems involved in model averaging is 
choosing the set of models.  Although solving this problem is outside the scope of the present paper, it 
should be acknowledged that the results from any type of model averaging can be influenced by the 
choices involved in establishing the set of models.  Because each row of W is optimized for the ensemble 
specific to the pivot model associated with that row, CCMA presumably compensates to some extent for 
inclusion of duplicative, superfluous, or poorly performing models.  However, because specification of p 
is not as straightforward (see below), there is still potential for results to be biased by a less-than-careful 
choice of models to include in the set.  One strategy that may help to guard against subconscious 
“stacking of the deck” is to structure the set of models by some sort of factorial design. 

Specification of model probabilities 

The CCMA approach requires specification of the vector of model probabilities (p) used to compute the 
final expectation in the algorithm (i.e., the expectation across the set of pivot-specific, optimally weighted 
ensembles).  Except (perhaps) for the fact that the vector of model probabilities carries a particular 
interpretation in the CCMA approach (viz., p represents the probabilities of the various model structures 
in the set being the true model structure), the problem of specifying p in CCMA is similar to the problem 
of specifying model weights in conventional model averaging.  As noted in the Introduction, there is 
currently no scientific consensus on how this should be accomplished in conventional model averaging, 
and the task is no easier in CCMA.  Although an abundance of methods is available, choosing one will 
inevitably require making some subjective judgments. 

Optimal intra-ensemble weighting depends of the quantity being estimated 

The fact that the optimal estimate of W depends on the quantity being estimated, as shown here by both 
Examples 1 and 2, also raises a practical consideration.  One possible course of action would be to 
optimize W for each quantity being estimated.  In a stock assessment involving hundreds of parameters, 
this might appear daunting at best.  However, in a superensemble described by Krishnamurti et al. (2016), 
as many as 10 million weights were estimated in order to optimize performance fully across all models, 
variables, time steps, and spatial grid-points.  Alternatively, W could be optimized for the single quantity 
of greatest importance (e.g., ofl), then use that same W for estimation of all other quantities, recognizing 
that the resulting estimates for those other quantities would likely not be fully optimal (but at least they 
would be estimated consistently). 

Some data subsets may not be used by all models 

Another practical consideration arises if some data subsets are not used by all of the models.  For 
example, it may be the case that the data set used by model M1 includes subset D1, while model M2 does 
not use subset D1 at all, meaning that, when model M2 takes its turn as the pivot model, it will not be 
possible to generate bootstrap values for subset D1 that are truly conditional on model M2 being the true 
model.  A straightforward solution, however, would be to generate the bootstrap replicates for subset D1 
based on that subset’s sampling distribution.  For example, survey index data might be developed from a 
sampling design that gives rise to estimates of normal or lognormal sample mean and variance 
parameters, and compositional data might be assumed to follow a multinomial distribution with sample 
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size equal to the number of hauls from which the samples were taken.  In the worst-case scenario where 
the parameters of the sampling distribution cannot be estimated, it might be necessary to remove model 
M1 or M2 from the ensemble. 

Time limitations 

A significant practical consideration for implementing CCMA is the amount of time required to conduct 
the analysis.  If the ensemble involves many models, or a few very complicated models, application of 
CCMA could potentially take a long time, as 𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝 × 𝑛𝑛𝑚𝑚𝑧𝑧𝑑𝑑2 runs are required.  This could require 
adjusting expectations regarding use of the most recent data when conducting a stock assessment.   
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Tables 

Table 1. Relative changes in expected mean squared error (row relative to column). 

 

Table 2. Means and standard deviations of distributions generated by conditional parametric bootstraps. 

umsy beho rick conv ccma v beho rick conv ccma
beho 0 -0.5168 -0.3520 0.2713 beho 0 -0.5489 -0.4315 0.0553
rick 1.0696 0 0.3411 1.6311 rick 1.2167 0 0.2602 1.3393
conv 0.5432 -0.2544 0 0.9618 conv 0.7590 -0.2065 0 0.8563
ccma -0.2134 -0.6199 -0.4903 0 ccma -0.0524 -0.5725 -0.4613 0

x 0 beho rick conv ccma xmsy beho rick conv ccma
beho 0 -0.2220 -0.1332 0.0000 beho 0 -0.5249 -0.5044 0.4500
rick 0.2854 0 0.1142 0.2854 rick 1.1050 0 0.0433 2.0522
conv 0.1536 -0.1025 0 0.1536 conv 1.0176 -0.0415 0 1.9256
ccma 0.0000 -0.2220 -0.1332 0 ccma -0.3104 -0.6724 -0.6582 0

σ beho rick conv ccma
beho 0 -0.0324 -0.0197 0.0000
rick 0.0335 0 0.0131 0.0335
conv 0.0201 -0.0129 0 0.0201
ccma 0.0000 -0.0324 -0.0197 0

xpro beho rick conv ccma ofl beho rick conv ccma
beho 0 0.0414 0.0296 0.0416 beho 0 -0.5210 -0.3605 0.2375
rick -0.0398 0 -0.0113 0.0002 rick 1.0879 0 0.3353 1.5838
conv -0.0287 0.0115 0 0.0117 conv 0.5636 -0.2511 0 0.9350
ccma -0.0400 -0.0002 -0.0115 0 ccma -0.1919 -0.6130 -0.4832 0

Quantity Statistic 1⊗1 1⊗2 2⊗1 2⊗2 ccma (1) ccma (2) ccma conv
mean 0.251 0.398 0.226 0.335 0.283 0.239 0.257 0.300
sdev 0.297 0.398 0.261 0.380 0.328 0.279 0.301 0.350
mean 0.231 0.424 0.221 0.387 0.284 0.271 0.276 0.322
sdev 0.248 0.300 0.217 0.272 0.277 0.247 0.260 0.274
mean 29.116 28.899 29.000 28.896 29.116 29.000 29.048 28.987
sdev 2.424 2.768 2.387 2.690 2.424 2.387 2.403 2.585
mean n/a n/a n/a n/a n/a n/a n/a n/a
sdev n/a n/a n/a n/a n/a n/a n/a n/a
mean 0.178 0.177 0.177 0.176 0.178 0.177 0.177 0.177
sdev 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024
mean 72.537 72.116 72.120 71.526 72.166 71.526 71.793 71.948
sdev 7.729 7.678 7.456 7.406 7.685 7.406 7.530 7.559
mean 16.836 30.630 16.017 27.805 20.572 19.391 19.883 23.231
sdev 18.356 22.229 16.038 20.310 20.423 18.168 19.149 20.255

ofl

v

umsy

x 0

xmsy

σ

xpro
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Figures 

Figure 1. Model weights for a range of order means (Example 1). 

Figure 2. Expected mean squared errors for a range of order means (Example 1).
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Figure 3. Probability mass functions generated by conditional parametric bootstraps (Example 1).
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Figure 4. Bias in estimators for a range of order means (Example 1). 
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Figure 5a. Probability mass functions of umsy generated by conditional parametric bootstraps (Example 2). 
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Figure 5b. Probability mass functions of v generated by conditional parametric bootstraps (Example 2). 
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Figure 5c. Probability mass functions of x0 generated by conditional parametric bootstraps (Example 2). 
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Figure 5d. Probability mass functions of xmsy generated by conditional parametric bootstraps (Example 2). 
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Figure 5e. Probability mass functions of σ generated by conditional parametric bootstraps (Example 2). 
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Figure 5f. Probability mass functions of xpro generated by conditional parametric bootstraps (Example 2). 
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Figure 5g. Probability mass functions of ofl generated by conditional parametric bootstraps (Example 2).
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Appendix 1 

Additional background information for the distributional example 

The lognormal distribution (label: logn) can be written as 

𝑙𝑙𝑧𝑧𝑔𝑔𝑛𝑛(𝑚𝑚) = � 1
2𝜋𝜋

�
1
𝜎𝜎𝑚𝑚
� exp�−

1
2
�

ln(𝑚𝑚) − 𝜇𝜇
𝜎𝜎

�
2

� , 

and the inverse Gaussian distribution (label: invg) can be written as 

𝑚𝑚𝑛𝑛𝑣𝑣𝑔𝑔(𝑚𝑚) =
�𝑚𝑚𝛽𝛽�

−3 2⁄
exp �−𝛼𝛼2 �

𝑚𝑚
𝛽𝛽 + 𝛽𝛽

𝑚𝑚��

𝛽𝛽𝑛𝑛𝑚𝑚𝑝𝑝(−𝛼𝛼)�2𝜋𝜋 𝛼𝛼⁄
 . 

If the two distributions share the same mean and coefficient of variation (cv), their shapes are nearly 
indistinguishable by eye so long as cv is sufficiently small (e.g., less than about 0.5; Figure A1.1).  For 
larger values of cv, the inherently greater skewness of the lognormal distribution (by a factor of 1 +
𝑐𝑐𝑣𝑣2 3⁄ ) becomes apparent.  The two distributions also share the characteristic that, for a given cv: 

𝑚𝑚(−1)
𝑚𝑚(1) =

1
1 + 𝑐𝑐𝑣𝑣2

 . 

The order means for the lognormal distribution are given by 

𝑚𝑚𝑙𝑙𝑛𝑛𝑙𝑙𝑛𝑛(𝑞𝑞) = exp�𝜇𝜇 +
𝑞𝑞𝜎𝜎2

2
� , 

and for the inverse Gaussian distribution by 

𝑚𝑚𝑖𝑖𝑛𝑛𝑎𝑎𝑙𝑙(𝑞𝑞) = 𝛽𝛽�exp(𝛼𝛼)�
2𝛼𝛼
𝜋𝜋
𝐾𝐾 ��𝑞𝑞 −

1
2
� ,𝛼𝛼��

1 𝑞𝑞⁄

 , 

where K(n,⋅) is the nth-order modified Bessel function of the second kind (Abramowitz and Stegun 1972).  
Note that the order means for integer values of q (except zero) can be written without resorting to use of 
Bessel functions: 

𝑚𝑚(𝑞𝑞) = 𝛽𝛽 ��
(−𝑞𝑞 + 𝑗𝑗)!

𝑗𝑗! (−𝑞𝑞 − 𝑗𝑗)! (2𝛼𝛼)𝑗𝑗

−𝑞𝑞

𝑗𝑗=0

�

1 𝑞𝑞⁄

 for 𝑞𝑞 < 0 , 

𝑚𝑚(𝑞𝑞) = 𝛽𝛽 ��
(𝑞𝑞 − 1 + 𝑗𝑗)!

𝑗𝑗! (𝑞𝑞 − 1 − 𝑗𝑗)! (2𝛼𝛼)𝑗𝑗

𝑞𝑞−1

𝑗𝑗=0

�

1 𝑞𝑞⁄

 for 𝑞𝑞 > 0 . 

The maximum likelihood estimates (MLEs) of the parameters for the two distributions are given by: 



32 
 

This information is distributed solely for the purpose of pre-dissemination peer review under applicable 
information quality guidelines.  It has not been formally disseminated by NOAA/NMFS and should not be 
construed to represent any agency determination or policy. 
 

��̂�𝜇
𝜎𝜎�
� = �

𝑚𝑚𝑛𝑛𝑣𝑣𝑛𝑛�𝑙𝑙𝑛𝑛(𝐱𝐱)�

�𝑣𝑣𝑣𝑣𝑛𝑛�𝑙𝑙𝑛𝑛(𝐱𝐱)�
�  and �𝛼𝛼��̂�𝛽� = �

ℎ𝑣𝑣𝑛𝑛(𝐱𝐱)
𝑚𝑚𝑛𝑛𝑣𝑣𝑛𝑛(𝐱𝐱) − ℎ𝑣𝑣𝑛𝑛(𝐱𝐱)

𝑚𝑚𝑛𝑛𝑣𝑣𝑛𝑛(𝐱𝐱)
� , 

where har(x) is the harmonic mean of x. 

Below are the cases where the MLE of the population order mean equals the sample order mean: 

order logn invg 
1 no yes 
0 yes no 

−1 no yes 
  
However, it should be note that, in general, the sample geometric and harmonic means are positively 
biased estimators of their respective true population counterparts. 

Specifications for the experiment: 

• nobs = 20 
• nrep = 100,000 
• true mean = 10 
• true cv = 2 
• true distributional form: lognormal 

The randomly drawn data for the experiment are shown below: 

2.562 1.889 2.453 1.337 0.527 4.726 3.838 9.059 72.128 12.477 
15.606 13.353 14.288 10.503 1.189 4.882 1.715 10.823 3.551 1.975 

 
Reference 

Abramowitz, M., and I. A. Stegun.  1972.  Handbook of Mathematical Functions with Formulas, Graphs, 
and Mathematical Tables (9th printing).  Dover, New York.   
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Figure 

Figure A1.1.  Example lognormal and inverse Gaussian pdfs. 
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Appendix 2 

Additional background information for the stock assessment example 

Two simple stock assessment models were structured with the following features in common: 

• Stock dynamics are entirely deterministic 
• Time t is measured in units of integer years, ranging from 0 to ntim 
• Recruitment r in year t is determined by stock size in year t−1 
• Discrete annual exploitation rate u varies linearly with t from u0 to untim 
• Discrete annual natural mortality rate v is constant across t 
• Stock size x is measured, with lognormal(0,σ2) error, in units of fish density 
• Initial stock size x0 is in equilibrium at exploitation rate u0 
• Catch yt is measured, without error, in units of fish density 
• Intra-annual processes occur in the following order: 

o Measurement of stock size (except no measurement in year 0) 
o Recruitment 
o Exploitation 
o Natural mortality 

True stock size and observed stock size for t=1,2,...,ntim can thus be described as follows: 

𝑚𝑚𝑡𝑡 = 𝑚𝑚𝑡𝑡−1 + 𝑛𝑛(𝑚𝑚𝑡𝑡−1) − (𝑛𝑛𝑡𝑡−1(1 − 𝑣𝑣) + 𝑣𝑣)𝑚𝑚𝑡𝑡−1  and 

𝑚𝑚𝑧𝑧𝑥𝑥𝑚𝑚𝑡𝑡 = 𝑚𝑚𝑡𝑡exp(𝜀𝜀𝑡𝑡) , 

where 𝜀𝜀𝑡𝑡~𝑛𝑛𝑧𝑧𝑛𝑛𝑚𝑚𝑣𝑣𝑙𝑙(0,𝜎𝜎2), and catch for t=0,1,2,...,ntim is given by 𝑦𝑦𝑡𝑡 = 𝑛𝑛𝑡𝑡𝑚𝑚𝑡𝑡. 

The only feature distinguishing the models was that Model 1 (label: beho) used a Beverton-Holt stock-
recruitment relationship and Model 2 (label: rick) used a Ricker stock-recruitment relationship, each of 
which can be parameterized in terms of the slope at the origin (a) and a scale parameter (b) as follows: 

𝑛𝑛𝑏𝑏𝑎𝑎ℎ𝑛𝑛(𝑚𝑚) =
𝑣𝑣𝑏𝑏𝑎𝑎ℎ𝑛𝑛𝑥𝑥𝑏𝑏𝑎𝑎ℎ𝑛𝑛𝑚𝑚
𝑥𝑥𝑏𝑏𝑎𝑎ℎ𝑛𝑛 + 𝑚𝑚

  and  𝑛𝑛𝑛𝑛𝑖𝑖𝑟𝑟𝑘𝑘(𝑚𝑚) = 𝑣𝑣𝑛𝑛𝑖𝑖𝑟𝑟𝑘𝑘𝑚𝑚exp �−
𝑚𝑚

𝑥𝑥𝑛𝑛𝑖𝑖𝑟𝑟𝑘𝑘
� . 

Following a logic analogous to that of Schnute and Kronlund (1996), the parameters a and b for each 
model can be expressed in terms of v and the exploitation rate and stock size corresponding to maximum 
sustainable yield, umsy and xmsy, as: 

�
𝑣𝑣𝑏𝑏𝑎𝑎ℎ𝑛𝑛
𝑥𝑥𝑏𝑏𝑎𝑎ℎ𝑛𝑛

� = �

𝜆𝜆2

𝑣𝑣
𝑚𝑚𝑚𝑚𝑚𝑚𝑦𝑦 �

𝑣𝑣
𝜆𝜆 − 𝑣𝑣

�
�  and 

�
𝑣𝑣𝑛𝑛𝑖𝑖𝑟𝑟𝑘𝑘
𝑥𝑥𝑛𝑛𝑖𝑖𝑟𝑟𝑘𝑘

� = �
exp �

𝜆𝜆 − 𝑣𝑣
𝜆𝜆

� 𝜆𝜆

𝑚𝑚𝑚𝑚𝑚𝑚𝑦𝑦 �
𝜆𝜆

𝜆𝜆 − 𝑣𝑣
�
� , 

where 𝜆𝜆 = 𝑛𝑛𝑚𝑚𝑚𝑚𝑦𝑦(1 − 𝑣𝑣) + 𝑣𝑣. 
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The following parameters were estimated statistically by maximum likelihood: 

• umsy (logit transformed) 
• v (logit transformed) 
• x0 (log transformed) 
• xmsy (log transformed) 
• σ (log transformed) 

Note that it was unnecessary to estimate the annual exploitation rates ut statistically, because the 
assumptions of deterministic dynamics and errorless measurement of catch meant that they were 
determined automatically. 

To conduct the simulation, the following values were specified: 

• nrep = 10,000 
• ntim (= nobs) = 30 
• umsy = 0.2 
• u0 = 0.4 
• untim = 0.2 
• v = 0.2 
• xmsy = 100 
• σ = 0.2 

The resulting stock-recruitment relationships for the two models, with total mortality lines corresponding 
to u=0 and u=umsy, are shown in Figure A2.1a, and the resulting sustainable yield curves for the two 
models are shown in Figure A2.1b. 

Model 1 (beho) was assumed to be the true model, which, given the parameters specified above, resulted 
in the following set of derived quantities: 

• initial stock size (x0) = 30.769 
• projected stock size in year ntim+1 (xpro) = 81.712 
• overfishing level (ofl, the product of umsy and xpro) = 16.342 

The following set of random normal error terms was generated: 

time: 1 2 3 4 5 6 7 8 9 10 
error: 0.066 -0.102 0.248 0.014 0.269 -0.131 -0.051 -0.249 0.109 -0.006 
time: 11 12 13 14 15 16 17 18 19 20 
error: -0.019 0.046 0.034 -0.169 0.167 -0.016 -0.173 0.467 0.512 0.224 
time: 21 22 23 24 25 26 27 28 29 30 
error: -0.179 0.007 0.362 -0.018 -0.018 -0.324 0.019 0.064 -0.159 -0.234 

 
The time series of true and observed stock size are shown in Figure A2.2. 

Reference 

Schnute, J. T., and A. R. Kronlund.  1996.  A management oriented approach to stock recruitment 
analysis.  Can. J. Fish. Aquat. Sci. 53:1281-1293. 
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Figures 

 
Figure A2.1.  Equilibrium behavior of the beho and rick models. 
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Figure A2.2.  Time series of true and observed stock sizes. 
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Appendix 3 

A general loss function 

The loss function used in the main text can be viewed as a special case of the following:  

𝑙𝑙𝑧𝑧𝑚𝑚𝑚𝑚(𝑧𝑧|�̂�𝑧, 𝑛𝑛𝑣𝑣) = �
𝑧𝑧1−𝑛𝑛𝑎𝑎 − �̂�𝑧1−𝑛𝑛𝑎𝑎

1 − 𝑛𝑛𝑣𝑣
�
2

 , 

where z is the quantity to be estimated, �̂�𝑧 is the estimator of z, and ra is a real number.  Note that, in order 
for ra to be unrestricted, z must be restricted to non-negative values only.  Setting ra = 0 gives the special 
case used in the main text.  In the limit as ra approaches unity, the above loss function converges to 
(ln(𝑧𝑧) − ln(�̂�𝑧))2.   

Note that this function does not exhibit constant risk aversion, either relative or absolute, in the sense of 
Pratt (1964) and Arrow (1965, 1971), although the parameter ra can be viewed as an ad hoc measure of 
risk aversion, so long as z exhibits the property that any underestimate is preferred to an overestimate of 
the same magnitude.  

For probability density function 𝑓𝑓(𝑧𝑧), the risk (i.e., the expected loss) associated with �̂�𝑧 is given by 

𝑛𝑛𝑚𝑚𝑚𝑚𝑘𝑘(�̂�𝑧|𝑛𝑛𝑣𝑣) = � 𝑓𝑓(𝑧𝑧)
∞

0
𝑙𝑙𝑧𝑧𝑚𝑚𝑚𝑚(𝑧𝑧|�̂�𝑧, 𝑛𝑛𝑣𝑣)𝑑𝑑𝑧𝑧 =

𝑚𝑚(2(1 − 𝑛𝑛𝑣𝑣))2(1−𝑛𝑛𝑎𝑎) − 2𝑚𝑚(1 − 𝑛𝑛𝑣𝑣)1−𝑛𝑛𝑎𝑎�̂�𝑧1−𝑛𝑛𝑎𝑎 + �̂�𝑧2(1−𝑛𝑛𝑎𝑎)

(1 − 𝑛𝑛𝑣𝑣)2
 . 

The derivative of risk w.r.t. �̂�𝑧 is 

𝑑𝑑𝑛𝑛𝑚𝑚𝑚𝑚𝑘𝑘
𝑑𝑑�̂�𝑧

= 2�̂�𝑧−𝑛𝑛𝑎𝑎 �
�̂�𝑧1−𝑛𝑛𝑎𝑎 − 𝑚𝑚(1 − 𝑛𝑛𝑣𝑣)1−𝑛𝑛𝑎𝑎

1 − 𝑛𝑛𝑣𝑣
� , 

 
which is solved by setting �̂�𝑧 = 𝑚𝑚(1 − 𝑛𝑛𝑣𝑣).  Some examples: if ra = 0, the optimal estimator is the 
arithmetic mean; if ra = 1, the optimal estimator is the geometric mean; and if ra = 2, the optimal 
estimator is the harmonic mean. 

Given that the optimal estimator is an order mean, it is worthwhile noting that the order mean of the 
weighted average distribution is equal to the order mean of the individual (cross-conditional) order 
means.  For example, the harmonic mean of the CCMA distribution is equal to the harmonic mean of the 
individual (cross-conditional) harmonic means.  To see this, recall that the CCMA distribution is 
approximated as follows: 

𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎(𝛇𝛇) = � �𝑝𝑝𝑖𝑖 � 𝑊𝑊𝑖𝑖,𝑗𝑗

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑗𝑗=1

ℎ�𝑍𝑍𝑖𝑖,𝑗𝑗 , 𝛇𝛇� 𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝⁄ �  .
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑖𝑖=1

 

The order mean of the CCMA distribution is then given by 

𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎(𝑞𝑞) = � � 𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎(𝛇𝛇)𝑏𝑏𝑖𝑖𝑛𝑛(𝜁𝜁𝑏𝑏𝑖𝑖𝑛𝑛)𝑞𝑞
𝑛𝑛𝑏𝑏𝑖𝑖𝑛𝑛

𝑏𝑏𝑖𝑖𝑛𝑛=1

�

1 𝑞𝑞⁄

 , 
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and the order means of the individual (cross-conditional) distributions are given by 

𝑀𝑀𝑖𝑖,𝑗𝑗(𝑞𝑞) = � � �
ℎ�𝑍𝑍𝑖𝑖,𝑗𝑗 , 𝛇𝛇�

𝑏𝑏𝑖𝑖𝑛𝑛
𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝

� (𝜁𝜁𝑏𝑏𝑖𝑖𝑛𝑛)𝑞𝑞
𝑛𝑛𝑏𝑏𝑖𝑖𝑛𝑛

𝑏𝑏𝑖𝑖𝑛𝑛=1

�

1 𝑞𝑞⁄

 . 

Combining the above gives: 

𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎(𝑞𝑞) = � � �𝑝𝑝𝑖𝑖 � 𝑊𝑊𝑖𝑖,𝑗𝑗

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑗𝑗=1

𝑀𝑀𝑖𝑖,𝑗𝑗(𝑞𝑞)𝑞𝑞�
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑖𝑖=1

�

1 𝑞𝑞⁄

 . 
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